Science.gov

Sample records for adjacent cysteine residues

  1. On methylene-bridged cysteine and lysine residues in proteins.

    PubMed

    Ruszkowski, Milosz; Dauter, Zbigniew

    2016-09-01

    Cysteine residues ubiquitously stabilize tertiary and quaternary protein structure by formation of disulfide bridges. Here we investigate another linking interaction that involves sulfhydryl groups of cysteines, namely intra- and intermolecular methylene-bridges between cysteine and lysine residues. A number of crystal structures possessing such a linkage were identified in the Protein Data Bank. Inspection of the electron density maps and re-refinement of the nominated structures unequivocally confirmed the presence of Lys-CH2 -Cys bonds in several cases. PMID:27261771

  2. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A.

    PubMed Central

    Farnsworth, C C; Seabra, M C; Ericsson, L H; Gelb, M H; Glomset, J A

    1994-01-01

    Rab proteins are Ras-related small GTPases that are geranylgeranylated on cysteine residues located at or near their C termini. They differ from other geranylgeranylated small GTPases in several important respects. (i) Most Rab proteins contain two adjacent cysteine residues within one of the following C-terminal sequence motifs: -XXCC, -XCXC, or -CCXX; (ii) a Rab protein that ends in a -XCXC motif has been shown to be geranylgeranylated on both adjacent cysteine residues; and (iii) Rab proteins are substrates of a unique Rab-specific geranylgeranyltransferase. Whether this enzyme catalyzes the geranylgeranylation of both cysteines is unknown. We addressed this question by direct structural analysis of in vitro prenylated proteins. We incubated recombinant Rab geranylgeranyltransferase, Rab escort protein, and [1-3H]geranylgeranyl pyrophosphate with recombinant wild-type Rab1A (-XXCC), Rab3A (-XCXC), or Rab5A (-CCXX) and treated each labeled protein with trypsin. We then analyzed the resulting peptides by HPLC and electrospray mass spectrometry and found that for each protein both C-terminal adjacent cysteines were geranylgeranylated. These results indicate that Rab geranylgeranyltransferase/Rab escort protein catalyzes the geranylgeranylation of both cysteines in Rab proteins with three distinct C-terminal motifs and suggest that other Rab proteins with these motifs may be similarly modified. PMID:7991565

  3. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A.

    PubMed

    Farnsworth, C C; Seabra, M C; Ericsson, L H; Gelb, M H; Glomset, J A

    1994-12-01

    Rab proteins are Ras-related small GTPases that are geranylgeranylated on cysteine residues located at or near their C termini. They differ from other geranylgeranylated small GTPases in several important respects. (i) Most Rab proteins contain two adjacent cysteine residues within one of the following C-terminal sequence motifs: -XXCC, -XCXC, or -CCXX; (ii) a Rab protein that ends in a -XCXC motif has been shown to be geranylgeranylated on both adjacent cysteine residues; and (iii) Rab proteins are substrates of a unique Rab-specific geranylgeranyltransferase. Whether this enzyme catalyzes the geranylgeranylation of both cysteines is unknown. We addressed this question by direct structural analysis of in vitro prenylated proteins. We incubated recombinant Rab geranylgeranyltransferase, Rab escort protein, and [1-3H]geranylgeranyl pyrophosphate with recombinant wild-type Rab1A (-XXCC), Rab3A (-XCXC), or Rab5A (-CCXX) and treated each labeled protein with trypsin. We then analyzed the resulting peptides by HPLC and electrospray mass spectrometry and found that for each protein both C-terminal adjacent cysteines were geranylgeranylated. These results indicate that Rab geranylgeranyltransferase/Rab escort protein catalyzes the geranylgeranylation of both cysteines in Rab proteins with three distinct C-terminal motifs and suggest that other Rab proteins with these motifs may be similarly modified. PMID:7991565

  4. Chemical Protein Ubiquitylation with Preservation of the Native Cysteine Residues.

    PubMed

    Yang, Kun; Li, Guorui; Gong, Ping; Gui, Weijun; Yuan, Libo; Zhuang, Zhihao

    2016-06-01

    We report a cysteine-based ligation strategy for generating a monoubiquitylated protein while preserving the native cysteine residues on the acceptor protein. In monoubiquitylation of proliferating cell nuclear antigen (PCNA) this method circumvents the need to mutate the native cysteine residues on PCNA. The chemically ubiquitylated PCNA contains a noncleavable linkage of the same length as the native isopeptide linkage. It also retains the normal function of the native Ub-PCNA in stimulating the ATPase activity of replication factor C (RFC) and lesion bypass synthesis by Polη. This method may be adapted for chemical ubiquitylation of other proteins and for site-specific modification of a target protein at a specific site through sulfhydryl chemistry. PMID:27113245

  5. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  6. Role of cysteine residues in regulation of p53 function.

    PubMed

    Rainwater, R; Parks, D; Anderson, M E; Tegtmeyer, P; Mann, K

    1995-07-01

    Previous studies of p53 have implicated cysteine residues in site-specific DNA binding via zinc coordination and redox regulation (P. Hainaut and J. Milner, Cancer Res. 53:4469-4473, 1993; T. R. Hupp, D. W. Meek, C. A. Midgley, and D. P. Lane, Nucleic Acids Res. 21:3167-3174, 1993). We show here that zinc binding and redox regulation are, at least in part, distinct determinants of the binding of p53 to DNA. Moreover, by substituting serine for each cysteine in murine p53, we have investigated the roles of individual cysteines in the regulation of p53 function. Substitution of serine for cysteine at position 40, 179, 274, 293, or 308 had little or no effect on p53 function. In contrast, replacement of cysteine at position 173, 235, or 239 markedly reduced in vitro DNA binding, completely blocked transcriptional activation, and led to a striking enhancement rather than a suppression of transformation by p53. These three cysteines have been implicated in zinc binding by X-ray diffraction studies (Y. Cho, S. Gorina, P.D. Jeffrey, and N.P. Pavletich, Science 265:346-355, 1994); our studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to bind zinc. Lastly, substitutions for cysteines at position 121, 132, 138, or 272 partially blocked both transactivation and the suppression of transformation by p53. These four cysteines are located in the loop-sheet-helix region of the site-specific DNA-binding domain of p53. Like the cysteines in the zinc-binding region, therefore, these cysteines may cooperate to modulate the structure of the DNA-binding domain. Our findings argue that p53 is subject to more than one level of conformational modulation through oxidation-reduction of cysteines at or near the p53-DNA interface. PMID:7791795

  7. New method for effectively and quantitatively labeling cysteine residues on chicken eggshell membrane.

    PubMed

    Wang, Xiaojing; Li, Qian; Yuan, Yue; Mei, Bin; Huang, Rui; Tian, Ying; Sun, Jing; Cao, Chunyan; Lu, Guangming; Liang, Gaolin

    2012-10-28

    Using maleimidoethylmonoamide cysteine (Fmoc)(StBu) (1) as a medium, cysteine residues on proteins of chicken eggshell membrane (ESM) were successfully converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (2), a new fluorogenic structure luciferin-Gly-Gly-Gly-FITC (3) was obtained, which exhibits a 2-fold fluorescence emission increase compared to that of 2. Thus, a new method for effectively labeling cysteine residues on ESMs was developed. Enhanced fluorescence images of ESMs were directly observed under a microscope and a small animal imaging machine. PMID:22961406

  8. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster.

    PubMed

    Menger, Katja E; James, Andrew M; Cochemé, Helena M; Harbour, Michael E; Chouchani, Edward T; Ding, Shujing; Fearnley, Ian M; Partridge, Linda; Murphy, Michael P

    2015-06-30

    Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. PMID:26095360

  9. Amino acid sequences around the cysteine residues of rabbit muscle triose phosphate isomerase

    PubMed Central

    Miller, Janet C.; Waley, S. G.

    1971-01-01

    1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes. PMID:5165707

  10. Serine substitution for cysteine residues in levansucrase selectively abolishes levan forming activity.

    PubMed

    Senthilkumar, Velusamy; Busby, Stephen J W; Gunasekaran, Paramasamy; Senthikumar, Velusamy; Bushby, Stephen J W

    2003-10-01

    Levansucrase is responsible for levan formation during sucrose fermentation of Zymomonas mobilis, and this decreases the efficiency of ethanol production. As thiol modifying agents decrease levan formation, a role for cysteine residues in levansucrase activity has been examined using derivatives of Z. mobilis levansucrase that carry serine substitutions of cysteine at positions 121, 151 or 244. These substitutions abolished the levan forming activity of levansucrase whilst only halving its activity in sucrose hydrolysis. Thus, polymerase and hydrolase activities of Z. mobilis levansucrase are separate and have different requirements for the enzyme's cysteine residues. PMID:14584923

  11. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    PubMed Central

    Menger, Katja E.; James, Andrew M.; Cochemé, Helena M.; Harbour, Michael E.; Chouchani, Edward T.; Ding, Shujing; Fearnley, Ian M.; Partridge, Linda; Murphy, Michael P.

    2015-01-01

    Summary Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. PMID:26095360

  12. Two Japanese CADASIL families exhibiting Notch3 mutation R75P not involving cysteine residue.

    PubMed

    Mizuno, Toshiki; Muranishi, Manabu; Torugun, Torusunjian; Tango, Hiromi; Nagakane, Yoshinari; Kudeken, Tukasa; Kawase, Yuji; Kawabe, Kiyokazu; Oshima, Fumiko; Yaoi, Takeshi; Itoh, Kyoko; Fushiki, Shinji; Nakagawa, Masanori

    2008-01-01

    Most previously reported mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) result in an odd number of cysteine residues within the epidermal growth factor (EGF)-like repeats in Notch3. We report here R75P mutation in two Japanese CADASIL families not directly involving cysteine residues located within the first EGF-like repeats. Probands in both families had repeated episodes of stroke, depression, dementia as well as T2 high-intensity lesions in the basal ganglia and periventricular white matter, but fewer white matter lesions in the temporal pole on MRI. These families provide new insights into the diagnosis and pathomechanisms of CADASIL. PMID:19043263

  13. Versatility and differential roles of cysteine residues in human prostacyclin receptor structure and function.

    PubMed

    Stitham, Jeremiah; Gleim, Scott R; Douville, Karen; Arehart, Eric; Hwa, John

    2006-12-01

    Prostacyclin plays important roles in vascular homeostasis, promoting vasodilatation and inhibiting platelet thrombus formation. Previous studies have shown that three of six cytoplasmic cysteines, particularly those within the C-terminal tail, serve as important lipidation sites and are differentially conjugated to palmitoyl and isoprenyl groups (Miggin, S. M., Lawler, O. A., and Kinsella, B. T. (2003) J. Biol. Chem. 278, 6947-6958). Here we report distinctive roles for extracellular- and transmembrane-located cysteine residues in human prostacyclin receptor structure-function. Within the extracellular domain, all cysteines (4 of 4) appear to be involved in disulfide bonding interactions (i.e. a highly conserved Cys-92-Cys-170 bond and a putative non-conserved Cys-5-Cys-165 bond), and within the transmembrane (TM) region there are several cysteines (3 of 8) that maintain critical hydrogen bonding interactions (Cys-118 (TMIII), Cys-251 (TMVI), and Cys-202 (TMV)). This study highlights the necessity of sulfhydryl (SH) groups in maintaining the structural integrity of the human prostacyclin receptor, as 7 of 12 extracellular and transmembrane cysteines studied were found to be differentially indispensable for receptor binding, activation, and/or trafficking. Moreover, these results also demonstrate the versatility and reactivity of these cysteine residues within different receptor environments, that is, extracellular (disulfide bonds), transmembrane (H-bonds), and cytoplasmic (lipid conjugation). PMID:17015447

  14. A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A.

    PubMed

    Kim, Geumsoo; Levine, Rodney L

    2016-06-28

    Methionine sulfoxide reductase A (msrA) reduces methionine sulfoxide in proteins back to methionine. Its catalytic cysteine (Cys72-SH) has a low pKa that facilitates oxidation by methionine sulfoxide to cysteine sulfenic acid. If the catalytic cycle proceeds efficiently, the sulfenic acid is reduced back to cysteine at the expense of thioredoxin. However, the sulfenic acid is vulnerable to "irreversible" oxidation to cysteine sulfinic acid that inactivates msrA (hyperoxidation). We observed that human msrA is resistant to hyperoxidation while mouse msrA is readily hyperoxidized by micromolar concentrations of hydrogen peroxide. We investigated the basis of this difference in susceptibility to hyperoxidation and established that it is controlled by the presence or absence of a Met residue in the carboxyl-terminal domain of the enzyme, Met229. This residue is Val in human msrA, and when it was mutated to Met, human msrA became sensitive to hyperoxidation. Conversely, mouse msrA was rendered insensitive to hyperoxidation when Met229 was mutated to Val or one of five other residues. Positioning of the methionine at residue 229 is not critical, as hyperoxidation occurred as long as the methionine was located within the group of 14 carboxyl-terminal residues. The carboxyl domain of msrA is known to be flexible and to have access to the active site, and Met residues are known to form stable, noncovalent bonds with aromatic residues through interaction of the sulfur atom with the aromatic ring. We propose that Met229 forms such a bond with Trp74 at the active site, preventing formation of a protective sulfenylamide with Cys72 sulfenic acid. As a consequence, the sulfenic acid is available for facile, irreversible oxidation to cysteine sulfinic acid. PMID:27259041

  15. A conformationally mobile cysteine residue (Cys-561) modulates Na+ and H+ activation of human CNT3.

    PubMed

    Slugoski, Melissa D; Smith, Kyla M; Mulinta, Ras; Ng, Amy M L; Yao, Sylvia Y M; Morrison, Ellen L; Lee, Queenie O T; Zhang, Jing; Karpinski, Edward; Cass, Carol E; Baldwin, Stephen A; Young, James D

    2008-09-01

    In humans, the SLC28 concentrative nucleoside transporter (CNT) protein family is represented by three Na+-coupled members; human CNT1 (hCNT1) and hCNT2 are pyrimidine and purine nucleoside-selective, respectively, whereas hCNT3 transports both purine and pyrimidine nucleosides and nucleoside drugs. Belonging to a phylogenetic CNT subfamily distinct from hCNT1/2, hCNT3 also mediates H+/nucleoside cotransport. Using heterologous expression in Xenopus oocytes, we have characterized a cysteineless version of hCNT3 (hCNT3C-). Processed normally to the cell surface, hCNT3C- exhibited hCNT3-like transport properties, but displayed a decrease in apparent affinity specific for Na+ and not H+. Site-directed mutagenesis experiments in wild-type and hCNT3C- backgrounds identified intramembranous Cys-561 as the residue responsible for this altered Na+-binding phenotype. Alanine at this position restored Na+ binding affinity, whereas substitution with larger neutral amino acids (threonine, valine, and isoleucine) abolished hCNT3 H+-dependent nucleoside transport activity. Independent of these findings, we have established that Cys-561 is located in a mobile region of the hCNT3 translocation pore adjacent to the nucleoside binding pocket and that access of p-chloromercuribenzene sulfonate to this residue reports a specific H+-induced conformational state of the protein ( Slugoski, M. D., Ng, A. M. L., Yao, S. Y. M., Smith, K. M., Lin, C. C., Zhang, J., Karpinski, E., Cass, C. E., Baldwin, S. A., and Young, J. D. (2008) J. Biol. Chem. 283, 8496-8507 ). The present investigation validates hCNT3C- as a template for substituted cysteine accessibility method studies of CNTs and reveals a pivotal functional role for Cys-561 in Na+- as well as H+-coupled modes of hCNT3 nucleoside transport. PMID:18621735

  16. Analysis and Functional Prediction of Reactive Cysteine Residues*

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pKa, to algorithms for functional prediction of different types of Cys in proteins. PMID:22157013

  17. Characterization of iduronate sulphatase mutants affecting N-glycosylation sites and the cysteine-84 residue.

    PubMed

    Millat, G; Froissart, R; Maire, I; Bozon, D

    1997-08-15

    Iduronate sulphatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to evaluate the functional importance of each N-glycosylation site, and of the cysteine-84 residue. IDS mutant cDNAs, lacking one of the eight potential N-glycosylation sites, were expressed in COS cells. Although each of the potential sites was used, none of the eight glycosylation sites appeared to be essential for lysosomal targeting. Another important sulphatase co- or post-translational modification for generating catalytic activity involves the conversion of a cysteine residue surrounded by a conserved sequence C-X-P-S-R into a 2-amino-3-oxopropionic acid residue [Schmidt, Selmer, Ingendoh and von Figura (1995) Cell 82, 271-278]. This conserved cysteine, located at amino acid position 84 in IDS, was replaced either by an alanine (C84A) or by a threonine (C84T) using site-directed mutagenesis. C84A and C84T mutant cDNAs were expressed either in COS cells or in human lymphoblastoid cells deleted for the IDS gene. C84A had a drastic effect both for IDS processing and for catalytic activity. The C84T mutation produced a small amount of mature forms but also abolished enzyme activity, confirming that the cysteine residue at position 84 is required for IDS activity. PMID:9337875

  18. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    EPA Science Inventory

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  19. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.

    PubMed

    Fatehi, Mohammad; Linsdell, Paul

    2009-04-01

    Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current-voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl(-) permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore. PMID:19381710

  20. Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress.

    PubMed

    Araki, Kazutaka; Kusano, Hidewo; Sasaki, Naoyuki; Tanaka, Riko; Hatta, Tomohisa; Fukui, Kazuhiko; Natsume, Tohru

    2016-08-01

    The protein cysteine residue is one of the amino acids most susceptible to oxidative modifications, frequently caused by oxidative stress. Several applications have enabled cysteine-targeted proteomics analysis with simultaneous detection and quantitation. In this study, we employed a quantitative approach using a set of iodoacetyl-based cysteine reactive isobaric tags (iodoTMT) and evaluated the transient cellular oxidation ratio of free and reversibly modified cysteine thiols under DTT and hydrogen peroxide (H2O2) treatments. DTT treatment (1 mM for 5 min) reduced most cysteine thiols, irrespective of their cellular localizations. It also caused some unique oxidative shifts, including for peroxiredoxin 2 (PRDX2), uroporphyrinogen decarboxylase (UROD), and thioredoxin (TXN), proteins reportedly affected by cellular reactive oxygen species production. Modest H2O2 treatment (50 μM for 5 min) did not cause global oxidations but instead had apparently reductive effects. Moreover, with H2O2, significant oxidative shifts were observed only in redox active proteins, like PRDX2, peroxiredoxin 1 (PRDX1), TXN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Overall, our quantitative data illustrated both H2O2- and reduction-mediated cellular responses, whereby while redox homeostasis is maintained, highly reactive thiols can potentiate the specific, rapid cellular signaling to counteract acute redox stress. PMID:27350002

  1. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups

    PubMed Central

    Soeda, Yoshiyuki; Yoshikawa, Misato; Almeida, Osborne F. X.; Sumioka, Akio; Maeda, Sumihiro; Osada, Hiroyuki; Kondoh, Yasumitsu; Saito, Akiko; Miyasaka, Tomohiro; Kimura, Tetsuya; Suzuki, Masaaki; Koyama, Hiroko; Yoshiike, Yuji; Sugimoto, Hachiro; Ihara, Yasuo; Takashima, Akihiko

    2015-01-01

    Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies. PMID:26671725

  2. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups.

    PubMed

    Soeda, Yoshiyuki; Yoshikawa, Misato; Almeida, Osborne F X; Sumioka, Akio; Maeda, Sumihiro; Osada, Hiroyuki; Kondoh, Yasumitsu; Saito, Akiko; Miyasaka, Tomohiro; Kimura, Tetsuya; Suzuki, Masaaki; Koyama, Hiroko; Yoshiike, Yuji; Sugimoto, Hachiro; Ihara, Yasuo; Takashima, Akihiko

    2015-01-01

    Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies. PMID:26671725

  3. Oxidation of an Adjacent Methionine Residue Inhibits Regulatory Seryl-phosphorylation of Pyruvate Dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Met residue is located adjacent to phosphorylation site 1 in the sequences of mitochondrial pyruvate dehydrogenase E1alpha subunits. When synthetic peptides including site 1 were treated with Hydrogen peroxide, the Met residue was oxidized to methionine sulfoxide (MetSO), and the peptides were no...

  4. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.

    PubMed

    Tinguely, J N; Wermuth, B

    1999-02-01

    Carbonyl reductase is highly susceptible to inactivation by organomercurials suggesting the presence of a reactive cysteine residue in, or close to, the active site. This residue is also close to a site which binds glutathione. Structurally, carbonyl reductase belongs to the short-chain dehydrogenase/reductase family and contains five cysteine residues, none of which is conserved within the family. In order to identify the reactive residue and investigate its possible role in glutathione binding, alanine was substituted for each cysteine residue of human carbonyl reductase by site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli and purified to homogeneity. Four of the five mutants (C26A, C122A C150A and C226A) exhibited wild-type-like enzyme activity, although K(m) values of C226A for three structurally different substrates were increased threefold to 10-fold. The fifth mutant, C227A, showed a 10-15-fold decrease in kcat and a threefold to 40-fold increase in K(m), resulting in a 30-500-fold drop in kcat/K(m). NaCl (300 mM) increased the activity of C227A 16-fold, whereas the activity of the wild-type enzyme was only doubled. Substitution of serine rather than alanine for Cys227 similarly affected the kinetic constants with the exception that NaCl did not activate the enzyme. Both C227A and C227S mutants were insensitive to inactivation by 4-hydroxymercuribenzoate. Unlike the parent carbonyl compounds, the glutathione adducts of menadione and prostaglandin A1 were better substrates for the C227A and C227S mutants than the wild-type enzyme. Conversely, the binding of free glutathione to both mutants was reduced. Our findings indicate that Cys227 is the reactive residue and suggest that it is involved in the binding of both substrate and glutathione. PMID:10091578

  5. Solution oxygen-17 NMR application for observing a peroxidized cysteine residue in oxidized human SOD1

    NASA Astrophysics Data System (ADS)

    Fujiwara, Noriko; Yoshihara, Daisaku; Sakiyama, Haruhiko; Eguchi, Hironobu; Suzuki, Keiichiro

    2016-12-01

    NMR active nuclei, 1H, 13C and 15N, are usually used for determination of protein structure. However, solution 17O-NMR application to proteins is extremely limited although oxygen is an essential element in biomolecules. Proteins are oxidized through cysteine residues by two types of oxidation. One is reversible oxidation such as disulphide bonding (Cys-S-S-Cys) and the other is irreversible oxidation to cysteine sulfinic acid (Cys-SO 2H) and cysteine sulfonic acid (Cys-SO 3H). Copper,Zinc-superoxide dismutase (SOD1) is a key enzyme in the protection of cells from the superoxide anion radical. The SH group at Cys 111 residue in human SOD1 is selectively oxidized to -SO 2H and -SO 3H with atmospheric oxygen, and this oxidized human SOD1 is also suggested to play an important role in the pathophysiology of various neurodegenerative diseases, probably mainly via protein aggregation. Therefore, information on the structural and the dynamics of the oxidized cysteine residue would be crucial for the understanding of protein aggregation mechanism. Although the -SO 3H group on proteins cannot be directly detected by conventional NMR techniques, we successfully performed the site-specific 17O-labeling of Cys 111 in SOD1 using ^{17}it {O}2 gas and the 17O-NMR analysis for the first time. We observed clear 17O signal derived from a protein molecule and show that 17O-NMR is a sensitive probe for studying the structure and dynamics of the 17O-labeled protein molecule. This novel and unique strategy can have great impact on many research fields in biology and chemistry.

  6. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity.

    PubMed

    Oliveira, Marco A S; Baura, Valter A; Aquino, Bruno; Huergo, Luciano F; Kadowaki, Marco A S; Chubatsu, Leda S; Souza, Emanuel M; Dixon, Ray; Pedrosa, Fábio O; Wassem, Roseli; Monteiro, Rose A

    2009-01-01

    Herbaspirillum seropedicae is an endophytic diazotrophic bacterium that associates with economically important crops. NifA protein, the transcriptional activator of nif genes in H. seropedicae, binds to nif promoters and, together with RNA polymerase-sigma(54) holoenzyme, catalyzes the formation of open complexes to allow transcription initiation. The activity of H. seropedicae NifA is controlled by ammonium and oxygen levels, but the mechanisms of such control are unknown. Oxygen sensitivity is attributed to a conserved motif of cysteine residues in NifA that spans the central AAA+ domain and the interdomain linker that connects the AAA+ domain to the C-terminal DNA binding domain. Here we mutagenized this conserved motif of cysteines and assayed the activity of mutant proteins in vivo. We also purified the mutant variants of NifA and tested their capacity to bind to the nifB promoter region. Chimeric proteins between H. seropedicae NifA, an oxygen-sensitive protein, and Azotobacter vinelandii NifA, an oxygen-tolerant protein, were constructed and showed that the oxygen response is conferred by the central AAA+ and C-terminal DNA binding domains of H. seropedicae NifA. We conclude that the conserved cysteine motif is essential for NifA activity, although single cysteine-to-serine mutants are still competent at binding DNA. PMID:19573596

  7. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  8. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    PubMed

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located. PMID:27476698

  9. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    PubMed

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  10. The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues

    PubMed Central

    2004-01-01

    The yeast SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein Ykt6 was shown to mediate palmitoylation of the fusion factor Vac8 in a reaction essential for the fusion of vacuoles. Here I present evidence that hYkt6 (human Ykt6) has self-palmitoylating activity. Incubation of recombinant hYkt6 with [3H]Pal-CoA ([3H]palmitoyl-CoA) leads to covalent attachment of palmitate to C-terminal cysteine residues. The N-terminal domain of human Ykt6 contains a Pal-CoA binding site and is required for the reaction. PMID:15479160

  11. Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation.

    PubMed

    Pekovic, Vanja; Gibbs-Seymour, Ian; Markiewicz, Ewa; Alzoghaibi, Fahad; Benham, Adam M; Edwards, Robert; Wenhert, Manfred; von Zglinicki, Thomas; Hutchison, Christopher J

    2011-12-01

    Pre-lamin A and progerin have been implicated in normal aging, and the pathogenesis of age-related degenerative diseases is termed 'laminopathies'. Here, we show that mature lamin A has an essential role in cellular fitness and that oxidative damage to lamin A is involved in cellular senescence. Primary human dermal fibroblasts (HDFs) aged replicatively or by pro-oxidants acquire a range of dysmorphic nuclear shapes. We observed that conserved cysteine residues in the lamin A tail domain become hyperoxidized in senescent fibroblasts, which inhibits the formation of lamin A inter- and intramolecular disulfide bonds. Both in the absence of lamin A and in the presence of a lamin A cysteine-to-alanine mutant, which eliminates these cysteine residues (522, 588, and 591), mild oxidative stress induced nuclear disorganization and led to premature senescence as a result of decreased tolerance to ROS stimulators. Human dermal fibroblasts lacking lamin A or expressing the lamin A cysteine-to-alanine mutant displayed a gene expression profile of ROS-responsive genes characteristic of chronic ROS stimulation. Our findings suggest that the conserved C-terminal cysteine residues are essential for lamin A function and that loss or oxidative damage to these cysteine residues promotes cellular senescence. PMID:21951640

  12. Conserved cysteine residues in the pore region are obligatory for human TRPM2 channel function

    PubMed Central

    Mei, Zhu-Zhong; Mao, Hong-Ju; Jiang, Lin-Hua

    2006-01-01

    TRPM2 proteins belong to the melastatin-related transient receptor potential or TRPM subfamily and form Ca2+-permeable cationic channels activated by intracellular adenosine diphosphoribose (ADPR). The TRPM2 channel subunit, like all its close relatives, is structurally homologous to the well-characterized voltage-gated potassium channel subunits, each containing six transmembrane segments and a putative pore loop between the fifth and sixth segments. Nevertheless, the structural elements determining the TRPM2 channel functions are still not well understood. In this study, we investigated the functional role of two conserved cysteine residues (at positions 996 and 1008) in the putative pore region of the human TRPM2 by site-directed mutagenesis combined with electrophysiological and biochemical approaches. Expression of wild type hTRPM2 channels in HEK293 cells resulted in robust ADPR-evoked currents. Substitution of cysteine with alanine or serine generated mutant channels that failed to be activated by ADPR. Furthermore, experiments by Western blotting, immunocytochemistry, biotin labelling, and co-immunoprecipitation techniques showed no obvious changes in protein expression, trafficking or membrane localisation, and the ability of interacting with neighbouring subunits that is required for channel assembly. Co-expression of wild type and mutant subunits significantly reduced the ADPR-evoked currents; for combination of wild type and C996S mutant subunits, the reduction was approximately 95%, indicating that incorporation of one or more non-functional C996S subunits leads to the loss of channel function. These results taken together suggest that the cysteine residues in the pore region are obligatory for TRPM2 channel function. PMID:16822940

  13. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  14. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 1: Cysteine Residues and Glycans.

    PubMed

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M

    2016-02-01

    Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates--both antibody-drug conjugates as well as constructs for in vivo imaging--has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope

  15. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila.

    PubMed Central

    Rasche, M E; Smith, K S; Ferry, J G

    1997-01-01

    Phosphotransacetylase catalyzes the following reaction: CoASH + CH3CO2PO3(2-) <==> CH3COSCoA + HPO4(2-) (where CoA is coenzyme A). Based on biochemical characterization of the enzyme from the obligate anaerobe Clostridium kluyveri, a ternary mechanism was proposed in which an unspecified cysteine abstracts a proton from CoASH forming a nucleophilic thiolate anion which attacks acetyl phosphate (J. Henkin and R. H. Abeles, Biochemistry 15:3472-3479, 1976). Heterologous production in Escherichia coli of the phosphotransacetylase from Methanosarcina thermophila, an obligately anaerobic methanoarchaeon, allowed site-specific replacements to identify essential residues. All four cysteines present in the sequence were individually replaced with alanine, and the kinetic constants of the altered enzymes were determined. The results indicated that only C159 is essential for activity; however, replacement with serine resulted in a fully active enzyme. Activity of the unaltered phosphotransacetylase was sensitive to N-ethylmaleimide. Inhibition kinetics of altered enzymes indicated that this sensitivity resulted from modification of C312, which is at the active site but itself is nonessential for catalysis. Five arginines were individually replaced with glutamine. Kinetic analysis of the altered enzymes identified R310 as essential for activity. Of the four nonessential for activity, R87 and R133 appear to be involved in binding CoA. PMID:9401029

  16. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry

    PubMed Central

    Rombouts, Ine; Lagrain, Bert; Brunnbauer, Markus; Delcour, Jan A.; Koehler, Peter

    2013-01-01

    The concentration and composition of wheat gluten proteins and the presence, concentration and location of cysteine residues therein are important for wheat flour quality. However, it is difficult to identify gluten proteins, as they are an extremely polymorphic mixture of prolamins. We here present methods for cysteine labeling of wheat prolamins with 4-vinylpyridine (4-VP) and iodoacetamide (IDAM) which, as compared to label-free analysis, substantially improve identification of cysteine-containing peptides in enzymic prolamin digests by electrospray ionization - tandem mass spectrometry. Both chymotrypsin and thermolysin yielded cysteine-containing peptides from different gluten proteins, but more proteins could be identified after chymotryptic digestion. In addition, to the best of our knowledge, we were the first to label prolamins with isotope coded affinity tags (ICAT), which are commonly used for quantitative proteomics. However, more peptides were detected after labeling gluten proteins with 4-VP and IDAM than with ICAT. PMID:23880742

  17. Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins.

    PubMed

    Arumugam, Selvanathan; Guo, Jun; Mbua, Ngalle Eric; Friscourt, Frédéric; Lin, Nannan; Nekongo, Emmanuel; Boons, Geert-Jan; Popik, Vladimir V

    2014-04-01

    Selective derivatization of solvent-exposed cysteine residues in peptides and proteins is achieved by brief irradiation of an aqueous solution containing 3-(hydroxymethyl)-2-naphthol derivatives (NQMPs) with 350 nm fluorescent lamp. NQMP can be conjugated with various moieties, such as PEG, dyes, carbohydrates, or possess a fragment for further selective derivatization, e.g., biotin, azide, alkyne, etc. Attractive features of this labeling approach include an exceptionally fast rate of the reaction and a requirement for low equivalence of the reagent. The NQMP-thioether linkage is stable under ambient conditions, survives protein digestion and MS analysis. Irradiation of NQMP-labeled protein in a dilute solution (<40 μM) or in the presence of a vinyl ether results in a traceless release of the substrate. The reversible biotinylation of bovine serum albumin, as well as capture and release of this protein using NeutrAvidin Agarose resin beads has been demonstrated. PMID:24765521

  18. Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein.

    PubMed

    Katsuma, Susumu; Sugano, Yudai; Kiuchi, Takashi; Shimada, Toru

    2015-10-23

    We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity. PMID:26342076

  19. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.

    PubMed

    Saer, Rafael; Orf, Gregory S; Lu, Xun; Zhang, Hao; Cuneo, Matthew J; Myles, Dean A A; Blankenship, Robert E

    2016-09-01

    The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complex's absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex. PMID:27114180

  20. Role of cysteine residues in the enhancement of chaperone function in methylglyoxal-modified human αA-crystallin

    PubMed Central

    Kanade, Santosh R.; Pasupuleti, NagaRekha

    2013-01-01

    We have previously demonstrated that the reaction of a physiological dicarbonyl, methylglyoxal (MGO) enhances the chaperone function of human αA-crystallin. MGO can react with cysteine, arginine, and lysine residues in proteins. Although the role of arginine and lysine residues in the enhancement of chaperone function has been investigated, the role of cysteine residues is yet to be determined. In this study, we have investigated the effect of MGO modification on the structure and chaperone function of αA-crystallin mutant proteins in which C131 and C142 were replaced either individually or simultaneously with isoleucine. MGO-modification resulted in improved chaperone function in all three αA-crystallin mutants, including the cysteine-free double mutant. The enhanced chaperone function was due to increased surface hydrophobicity and increased binding of client proteins. These results suggest that the two cysteine residues, even though they could be modified, do not take part in the MGO-induced improvement in the chaperone function of human αA-crystallin. PMID:19020808

  1. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  2. Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae

    PubMed Central

    Marino, Stefano M.; Li, Yehua; Fomenko, Dmitri E.; Agisheva, Natalia; L.Cerny, Ronald; Gladyshev, Vadim N.

    2010-01-01

    Numerous cellular processes are subject to redox regulation, and thiol-dependent redox control, acting through reactive cysteine (Cys) residues, is among the major mechanisms of redox regulation. However, information on the sets of proteins that provide thiol-based redox regulation or are affected by it is limited. Here, we describe proteomic approaches to characterize proteins that contain reactive thiols and methods to identify redox Cys in these proteins. Using Saccharomyces cerevisiae as a eukaryotic model organism, we identified 284 proteins with exposed reactive Cys and determined the identities of 185 of these residues. We then characterized subsets of these proteins as in vitro targets of major cellular thiol oxidoreductases, thioredoxin and glutaredoxin, and found that these enzymes can control the redox state of a significant number of thiols in target proteins. We further examined common features of exposed reactive Cys and compared them with an unbiased control set of Cys using computational approaches. This analysis (i) validated the efficacy of targeting exposed Cys in proteins in their native, folded state, (ii) quantified the proportion of targets that can be redox regulated via thiol oxidoreductase systems, and (iii) revealed the theoretical range of the experimental approach with regard to protein abundance and physico-chemical properties of reactive Cys. From these analyses, we estimate that approximately one fourth of exposed Cys in the yeast proteome can be regarded as functional sites, either subject to regulation by thiol oxidoreductases or involved in structural disulfides and metal binding. PMID:20698499

  3. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  4. Role of extracellular cysteine residues in the adenosine A2A receptor.

    PubMed

    De Filippo, Elisabetta; Namasivayam, Vigneshwaran; Zappe, Lukas; El-Tayeb, Ali; Schiedel, Anke C; Müller, Christa E

    2016-06-01

    The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs. PMID:26969588

  5. Cyst(e)ine residues of bovine white-matter proteolipid proteins. Role of disulphides in proteolipid conformation.

    PubMed Central

    Oteiza, P I; Adamo, A M; Aloise, P A; Paladini, A C; Paladini, A A; Soto, E F

    1987-01-01

    Cyst(e)ine residues of bovine white-matter proteolipid proteins were characterized in a highly purified preparation. From a total of 10.6 cyst(e)ine residues/molecule of protein, as determined by performic acid oxidation, 2.5-3 thiol groups were freely accessible to iodoacetamide, iodoacetic acid and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), when the proteins were solubilized in chloroform/methanol (C/M) (2:1, v/v). The presence of lipids had no effect on thiol-group exposure. One thiol group available to DTNB in C/M could not be detected when proteolipids were solubilized in the more polar solvent n-butanol. In a C/M solution of purified proteolipid proteins, SDS did not increase the number of reactive thiol groups, but the cleavage of one disulphide bridge made it possible to alkylate six more groups. C.d. and fluorescence studies showed that rupture of this disulphide bond changed the protein conformation, which was reflected in partial loss of helical structure and in a greater exposure to the solvent of at least one tryptophan residue. Cyst(e)ine residues were also characterized in the different components [PLP (principal proteolipid protein), DM20 and LMW (low-Mr proteins)] of the proteolipid preparation. Although the numbers of cyst(e)ine residues in PLP and DM20 were similar, in LMW fewer residues were alkylated under four different experimental conditions. The differences, however, are not simply related to differences in Mr. PMID:3663175

  6. Direct determination of the redox status of cysteine residues in proteins in vivo

    SciTech Connect

    Hara, Satoshi; Tatenaka, Yuki; Ohuchi, Yuya; Hisabori, Toru

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  7. Identification of Two Reactive Cysteine Residues in the Tumor Suppressor Protein p53 Using Top-Down FTICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Scotcher, Jenna; Clarke, David J.; Weidt, Stefan K.; Mackay, C. Logan; Hupp, Ted R.; Sadler, Peter J.; Langridge-Smith, Pat R. R.

    2011-05-01

    The tumor suppressor p53 is a redox-regulated transcription factor involved in cell cycle arrest, apoptosis and senescence in response to multiple forms of stress, as well as many other cellular processes such as DNA repair, glycolysis, autophagy, oxidative stress and differentiation. The discovery of cysteine-targeting compounds that cause re-activation of mutant p53 and the death of tumor cells in vivo has emphasized the functional importance of p53 thiols. Using a combination of top-down and middle-down FTICR mass spectrometry, we show that of the 10 Cys residues in the core domain of wild-type p53, Cys182 and Cys277 exhibit a remarkable preference for modification by the alkylating reagent N-ethylmaleimide. The assignment of Cys182 and Cys277 as the two reactive Cys residues was confirmed by site-directed mutagenesis. Further alkylation of p53 beyond Cys182 and Cys277 was found to trigger co-operative modification of the remaining seven Cys residues and protein unfolding. This study highlights the power of top-down FTICR mass spectrometry for analysis of the cysteine reactivity and redox chemistry in multiple cysteine-containing proteins.

  8. Role of cysteine residues in the redox-regulated oligomerization and nucleotide binding to EhRabX3.

    PubMed

    Chandra, Mintu; Datta, Sunando

    2016-08-01

    The enteric protozoan parasite, Entamoeba histolytica, an etiological agent of amebiasis, is involved in the adhesion and destruction of human tissues. Worldwide, the parasite causes about 50 million cases of amebiasis and 100,000 deaths annually. EhRabX3, a unique amoebic Rab GTPase with tandem G-domains, possesses an unusually large number of cysteine residues in its N-terminal domain. Crystal structure of EhRabX3 revealed an intra-molecular disulfide bond between C39 and C163 which is critical for maintaining the 3-dimensional architecture and biochemical function of this protein. The remaining six cysteine residues were found to be surface exposed and predicted to be involved in inter-molecular disulfide bonds. In the current study, using biophysical and mutational approaches, we have investigated the role of the cysteine residues in the assembly of EhRabX3 oligomer. The self-association of EhRabX3 is found to be redox sensitive, in vitro. Furthermore, the oligomeric conformation of EhRabX3 failed to bind and exchange the guanine nucleotide, indicating structural re-organization of the active site. Altogether, our results provide valuable insights into the redox-dependent oligomerization of EhRabX3 and its implication on nucleotide binding. PMID:27485554

  9. Characterization of a novel y-type HMW-GS with eight cysteine residues from Triticum monococcum ssp. monococcum.

    PubMed

    Li, Zenglin; Li, Hongyu; Chen, Gang; Kou, Chunlan; Ning, Shunzong; Yuan, Zhongwei; Jiang, Qi; Zheng, Youliang; Liu, Dengcai; Zhang, Lianquan

    2015-11-15

    The composition and number of high-molecular-weight glutenin subunits (HMW-GSs) play important roles in determining the grain-processing quality of common wheat. The Glu-1Ay allele is silent in common wheat. In this study, an active y-type HMW-GS allele termed 1Ay8.2 (GenBank No. KP137569) was identified from Triticum monococcum L. ssp. monococcum (AmAm, 2n=2x=14), a species with a genome related to the A-genome of common wheat. Compared with previously reported active 1Ay subunits, this novel subunit contained an extra cysteine residue at position 103 of the amino acid sequence in the N-terminal region, in addition to the six cysteines in the N- and C-terminal regions found in most active 1Ay subunits and the one in the repetitive region that appears in only a few 1Ay alleles. This subunit was expressed in an amphiploid (AAAmAmBB, 2n=6x=42) between Triticum turgidum L. ssp. dicoccon and T. monococcum ssp. monococcum. This amphiploid could be used as a bridge to transfer 1Ay8.2 into common wheat cultivars. Replacing the silenced 1Ay in common wheat with the active 1Ay8.2 allele harboring an extra cysteine residue is expected to improve the quality by increasing the number of HMW-GSs and promoting the formation of covalent interactions through disulfide bonds with the extra cysteine residue. PMID:26187064

  10. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  11. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1

    PubMed Central

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Marri, Lucia; Mellor, Silas B.; Glaring, Mikkel A.; Jensen, Poul E.; Palcic, Monica M.; Blennow, Andreas

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98–99%). In addition of being part of a redox directed activity “light switch”, reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings

  12. Mutation of cysteine residues alters the heme-binding pocket of indoleamine 2,3-dioxygenase-1.

    PubMed

    Austin, Christopher J D; Kosim-Satyaputra, Priambudi; Smith, Jason R; Willows, Robert D; Jamie, Joanne F

    2013-07-12

    The hemoprotein indoleamine 2,3-dioxygenase-1 (IDO1) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. Interest in IDO1 continues to grow, due to the ever expanding influence IDO1 plays in the immune response. This study examined the contribution of all individual cysteine residues towards the overall catalytic properties and stability of recombinant human IDO1 via mutagenesis studies using a range of biochemical and spectroscopic techniques, including in vitro kinetic assessment, secondary structure identification via circular dichroism spectroscopy and thermal stability assessment. Upon mutation of cysteine residues we observed changes in secondary structure (principally, shifting from α-helix/β-sheet features to random coil structures) that produced out of plane heme torsion and puckering, changes to thermal stability (including gains in stability for one mutant protein) and differences in enzymatic activity (such as, increased ability to convert non-natural substrates, e.g.d-tryptophan) from wild type IDO1 enzyme. PMID:23751345

  13. Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL

    SciTech Connect

    Cairns, Tina M. . E-mail: tmcairns@biochem.dental.upenn.edu; Landsburg, Daniel J. . E-mail: dlandsbu@temple.edu; Charles Whitbeck, J. . E-mail: whitbeck@biochem.dental.upenn.edu; Eisenberg, Roselyn J. . E-mail: roselyn@biochem.dental.upenn.edu; Cohen, Gary H. . E-mail: cohen@biochem.dental.upenn.edu

    2005-02-20

    In HSV types 1 and 2, gH forms a noncovalent heterodimer with gL. Previous studies demonstrated that the first 323 amino acids of gH1 and the first 161 amino acids of gL1 are sufficient for gH/gL binding. For gL1, substitution of any of its four cysteine (C) residues (all located within the gH/gL binding region) destroyed gH binding and function. Although gH1 contains 8 cysteines in its ectodomain, gH 2 contains 7 (C3 of gH1 is replaced by arginine in gH2). We found that mutation of any of the four C-terminal cysteines led to a reduction or loss of gH/gL function. Mutation of C5 or C6 in gH1 or gH2 rendered the proteins non-functional. However, substitution of C7 and/or C8 in gH1 has a definite negative impact on cell-cell fusion, although these mutations had less effect on complementation. Remarkably, all four gH1 N-terminal cysteines could be mutated simultaneously with little effect on fusion or complementation. As gH2 already lacks C3, we constructed a triple mutant (gH2-C1/2/4) which exhibited a similar phenotype. Since gH1 is known to bind gL2 and vice versa, we wondered whether binding of gH2 to the heterologous gL1 would enhance the fusion defect seen with the gH2-C2 mutant. The combination of mutant gH2-C2 with wild-type gL1 was nonfunctional in a cell-cell fusion assay. Interestingly, the reciprocal was not true, as gH1-C2 could utilize both gL1 and gL2. These findings suggest that there is a structural difference in the gH2 N-terminus as compared to gH1. We also present genetic evidence for at least one disulfide bond within gH2, between cysteines 2 and 4.

  14. Removal of the free cysteine residue reduces irreversible thermal inactivation of feruloyl esterase: evidence from circular dichroism and fluorescence spectra.

    PubMed

    Li, Jingjing; Zhang, Shuaibing; Yi, Zhuolin; Pei, Xiaoqiong; Wu, Zhongliu

    2015-08-01

    Feruloyl esterase A from Aspergillus niger (AnFaeA) contains three intramolecular disulfide bonds and one free cysteine at position 235. Saturated mutagenesis at Cys235 was carried out to produce five active mutants, all of which displayed unusual thermal inactivation patterns with the most residual activity achieved at 75°C, much higher than the parental AnFaeA. But their optimal reaction temperatures were lower than the parental AnFaeA. Extensive investigation into their free thiol and disulfide bond, circular dichroism spectra and fluorescence spectra revealed that the unfolding of the parental enzyme was irreversible on all the tested conditions, while that of the Cys235 mutants was reversible, and their ability to refold was highly dependent on the denaturing temperature. Mutants denatured at 75°C were able to efficiently reverse the unfolding to regain native structure during the cooling process. This study provided valid evidence that free cysteine substitutions can reduce irreversible thermal inactivation of proteins. PMID:26079173

  15. Recombinant expression and isolation of human L-arginine:glycine amidinotransferase and identification of its active-site cysteine residue.

    PubMed Central

    Humm, A; Fritsche, E; Mann, K; Göhl, M; Huber, R

    1997-01-01

    Creatine and its phosphorylated form play a central role in the energy metabolism of muscle and nerve tissues. l-Arginine:glycine amidinotransferase (AT) catalyses the committed step in the formation of creatine. The mitochondrial and cytosolic forms of the enzyme are believed to derive from the same gene by alternative splicing. We have expressed recombinant human AT in Escherichia coli with two different N-termini, resembling the longest two forms of the enzyme that we had isolated recently from porcine kidney mitochondria as a mixture. The enzymes were expressed with N-terminal histidine tags followed by factor Xa-cleavage sites. We established a new method for the removal of N-terminal fusion peptides by means of an immobilized snake venom prothrombin activator. We identified cysteine-407 as the active-site residue of AT by radioactive labelling and isolation of labelled peptides, and by site-directed mutagenesis of the protein. PMID:9148748

  16. Effect of extrusion temperature on the solubility and molecular weight of lentil bean flour proteins containing low cysteine residues.

    PubMed

    Li, M; Lee, T C

    2000-03-01

    Lentil flour was extruded at die temperatures of 135, 160, and 175 degrees C. The soluble protein content in the extrudates decreased by 40.1% in the extracting buffer (1% sodium dodecyl sulfate in 50 mM sodium phosphate buffer, pH 6.9) as the extrusion die temperature was increased to 175 degrees C. The most insoluble proteins in the extrudates extruded at die temperatures of up to 175 degrees C could be resolubilized by using sonication. The total disulfide content and sulfhydryl content in the extrudates decreased. The SDS-PAGEs showed that the molecular weight distribution of proteins in the lentil flour changed little before and after extrusion as well as during reduction. The results from this study show that the extrusion temperature had less effect on the solubility and molecular weight of the lentil proteins, which contain a lower level of cysteine residues than wheat proteins. PMID:10725167

  17. A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2009-01-01

    Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases. PMID:19424433

  18. Substitution of conserved cysteine residues in Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substitutions in the amino-terminal region of Wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution a...

  19. Quantification of lincomycin resistance genes associated with lincomycin residues in waters and soils adjacent to representative swine farms in China

    PubMed Central

    Li, Liang; Sun, Jian; Liu, Baotao; Zhao, Donghao; Ma, Jun; Deng, Hui; Li, Xue; Hu, Fengyang; Liao, Xiaoping; Liu, Yahong

    2013-01-01

    Lincomycin is commonly used on swine farms for growth promotion as well as disease treatment and control. Consequently, lincomycin may accumulate in the environment adjacent to the swine farms in many ways, thereby influencing antibiotic resistance in the environment. Levels of lincomycin-resistance genes and lincomycin residues in water and soil samples collected from multiple sites near wastewater discharge areas were investigated in this study. Sixteen lincomycin-resistance and 16S rRNA genes were detected using real-time PCR. Three genes, lnu(F), erm(A), and erm(B), were detected in all water and soil samples except control samples. Lincomycin residues were determined by rapid resolution liquid chromatography-tandem mass spectrometry, with concentrations detected as high as 9.29 ng/mL in water and 0.97 ng/g in soil. A gradual reduction in the levels of lincomycin-resistance genes and lincomycin residues in the waters and soils were detected from multiple sites along the path of wastewater discharging to the surrounding environment from the swine farms. Significant correlations were found between levels of lincomycin-resistance genes in paired water and soil samples (r = 0.885, p = 0.019), and between lincomycin-resistance genes and lincomycin residues (r = 0.975, p < 0.01). This study emphasized the potential risk of dissemination of lincomycin-resistance genes such as lnu(F), erm(A), and erm(B), associated with lincomycin residues in surrounding environments adjacent to swine farms. PMID:24348472

  20. Non-essential roles of cysteine residues in functional expression and redox regulatory pathways for canine glutamate/aspartate transporter based on mutagenic analysis.

    PubMed Central

    Tamahara, Satoshi; Inaba, Mutsumi; Sato, Kota; Matsuki, Naoaki; Hikasa, Yoshiaki; Ono, Ken-Ichiro

    2002-01-01

    A redox regulatory mechanism and a molecular link between oxidative and excitotoxic neurodegeneration have been postulated for high-affinity Na(+)-dependent glutamate transporters. In the present study, mutations were introduced at three cysteine residues in canine glutamate/aspartate transporter (GLAST) to investigate the functional significance of thiol groups in response to oxidation. Cys(-) GLAST, in which all cysteines were replaced by other amino acids, as well as other mutants with disruption of one of three cysteine residues, showed insoluble oligomer formation, which was considered to be due to spontaneous and excessive oxidation as observed in wild-type GLAST. The mutant transporters also showed plasma-membrane localization and glutamate-transport kinetics that were very similar to those of wild-type GLAST. Glutamate-transport activities in COS-7 cells transfected with wild-type and Cys(-) GLAST were inhibited to the same degree when cells were exposed to Hg(2+) and were recovered by the addition of thiol-specific reductant dithiothreitol. These findings suggest that cysteine residues are not critical in functional expression of GLAST and the redox-sensing pathway via glutamate transporters. PMID:12088508

  1. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group. PMID:18298367

  2. Beta-branched residues adjacent to GG4 motifs promote the efficient association of glycophorin A transmembrane helices.

    PubMed

    Cunningham, Fiona; Poulsen, Bradley E; Ip, Wilfred; Deber, Charles M

    2011-01-01

    Protein transmenembrane (TM) segments participating in helix-helix packing commonly contain small residue patterns (termed GG4 or "small-xxx-small" motifs) at i and i + 4 positions. Within many TM segments - such as the glycophorin A (GpA) sequence L75IxxGVxxGVxxT87- the G17y-xxx-Gly83 motif often occurs in combination with large, usually beta3-branched aliphatic residues at adjacent positions, typified here by Val30 and Val84 residues. To explore the importance of local P-branched character on GpA dimerization, we made systematic replacements to all 16 combinations of single or double Ile, Leu, and AIa residues at GpA TM Val/Val positions 80 and 84. Using the TOXCAT system to assay self-oligomerization in the Escherichia coli inner membrane--we observed that (i) combinations of Val and lie residues maintained, or improved dimerization levels; (ii) single Ala or Leu mutant combinations with Val or Ile maintained near-wild type dimerization affinities; and (iii) in the absence of beta-branching, i.e., Leu/Leu, Ala/Ala and Ala/Leu combinations, GpA dimerization was significantly diminished. An apparent capacity of lle-containing mutants to increase GpA dimerization versus WT likely arises from improved van der Waals packing (vs. Val) within the locus of helix contact, consistent with correlations we noted in lipid accessibility measurements. Examination of several synthetic peptides with sequences corresponding to selected GpA mutants (VV VI, IV II, and LL) confirmed their dimerization on sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The overall results reinforce the importance of a beta-branch-containing "ridge" residue to complement a "small-xxx-small groove" in promotion of TM-TM interactions. PMID:21072853

  3. Crystal structure of a papain-fold protein without the catalytic residue: a novel member in the cysteine proteinase family.

    PubMed

    Zhang, Min; Wei, Zhiyi; Chang, Shaojie; Teng, Maikun; Gong, Weimin

    2006-04-21

    A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34. PMID:16497323

  4. Influences of Proline and Cysteine Residues on Fragment Yield in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Smargiasso, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2014-06-01

    Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/ w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.

  5. Adjacent proline residues in the inhibitory domain of the Oct-2 transcription factor play distinct functional roles.

    PubMed Central

    Liu, Y Z; Lee, I K; Locke, I; Dawson, S J; Latchman, D S

    1998-01-01

    A 40 amino acid region of Oct-2 from amino acids 142 to 181 functions as an active repressor domain capable of inhibiting both basal activity and activation of promoters containing a TATA box, but not of those that contain an initiator element. Based on our observation that the equivalent region of the closely related Oct-1 factor does not act as an inhibitory domain, we have mutated specific residues in the Oct-2 domain in an attempt to probe their importance in repressor domain function. Although mutations of several residues have no or minimal effect, mutation of proline 175 to arginine abolishes the ability to inhibit both basal and activated transcription. In contrast, mutation of proline 174 to arginine confers upon the domain the ability to repress activation of an initiator-containing promoter by acidic activation domains, and also suppresses the effect of the proline 175 mutation. Hence, adjacent proline residues play key roles in the functioning of the inhibitory domain and in limiting its specificity to TATA-box-containing promoters. PMID:9580701

  6. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy.

    PubMed

    Kikuchi, Shunsuke; Kanoh, Daisuke; Sato, Shinichi; Sakurai, Yoshinori; Suzuki, Minoru; Nakamura, Hiroyuki

    2016-09-10

    Maleimide-conjugating closo-dodecaborate sodium form 5c (MID) synthesized by the nucleophilic ring-opening reaction of closo-dodecaborate-1,4-dioxane complex 2 with tetrabutylammonium (TBA) azide was found to conjugate to free SH of cysteine and lysine residues in BSA under physiological conditions, forming highly boronated BSA that showed high and selective accumulation in tumor and significant tumor growth inhibition in colon 26 tumor-bearing mice subjected to thermal neutron irradiation. PMID:27422608

  7. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.

    PubMed

    Lee, Yu-Ching; Hsiao, Nai-Wan; Tseng, Tien-Sheng; Chen, Wang-Chuan; Lin, Hui-Hsiung; Leu, Sy-Jye; Yang, Ei-Wen; Tsai, Keng-Chang

    2015-02-01

    Tyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects. Thus, we systematically and comprehensively investigated the tyrosinase-inhibitory abilities of N- and C-terminal cysteine/tyrosine-containing tetrapeptides by constructing a phage-display random tetrapeptide library and conducting computational molecular docking studies on novel tyrosinase tetrapeptide inhibitors. We found that N-terminal cysteine-containing tetrapeptides exhibited the most potent tyrosinase-inhibitory abilities. The positional preference of cysteine residues at the N terminus in the tetrapeptides significantly contributed to their tyrosinase-inhibitory function. The sulfur atom in cysteine moieties of N- and C-terminal cysteine-containing tetrapeptides coordinated with copper ions, which then tightly blocked substrate-binding sites. N- and C-terminal tyrosine-containing tetrapeptides functioned as competitive inhibitors against mushroom tyrosinase by using the phenol ring of tyrosine to stack with the imidazole ring of His263, thus competing for the substrate-binding site. The N-terminal cysteine-containing tetrapeptide CRVI exhibited the strongest tyrosinase-inhibitory potency (with an IC50 of 2.7 ± 0.5 μM), which was superior to those of the known tyrosinase inhibitors (arbutin and kojic acid) and outperformed kojic acid-tripeptides, mimosine-FFY, and short-sequence oligopeptides at inhibiting mushroom tyrosinase. PMID:25403678

  8. Human METTL20 Methylates Lysine Residues Adjacent to the Recognition Loop of the Electron Transfer Flavoprotein in Mitochondria*

    PubMed Central

    Rhein, Virginie F.; Carroll, Joe; He, Jiuya; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2014-01-01

    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria. PMID:25023281

  9. Retention by the endoplasmic reticulum of rotavirus VP7 is controlled by three adjacent amino-terminal residues.

    PubMed Central

    Maass, D R; Atkinson, P H

    1994-01-01

    The rotavirus outer capsid glycoprotein, VP7, is an endoplasmic reticulum (ER) membrane-associated glycoprotein in both infected and transfected cells. It was previously demonstrated in this laboratory and by others that both the cleaved signal sequence (H2) and the first NH2-terminal 61 amino acids of VP7 are sufficient and necessary for ER retention of this molecule. Using site-specific mutagenesis and transfection techniques, we show that residues Ile-9, Thr-10, and Gly-11 were specifically necessary for ER retention. These results further define the ER retention sequence of VP7 and demonstrate that conservative changes, apparently innocuous in only three adjacent amino acids, can lead to major solubility and compartmentalization changes. It was found that placement of the first 31 mature NH2-terminal residues of VP7, in addition to the cleaved ER translocation signal sequence, was sufficient to retain the enzymatically active chimeric alpha-amylase in the ER; this enzyme is normally secreted. Deletions of the residues Ile-9, Thr-10, and Gly-11 within the amylase chimera containing 31 VP7 amino acids resulted in secretion of enzymatically active protein. It was also observed that the residues of VP7 presented in certain chimeras were able to abolish alpha-amylase enzymatic activity. These chimeras are presumably misfolded since it was demonstrated by pulse-chase experiments that these molecules are degraded in the ER. We surmise that a favorable conformation is necessary for retention since ER retention and activity of the chimeras depend on the primary sequence context. Images PMID:8254749

  10. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria.

    PubMed

    Rhein, Virginie F; Carroll, Joe; He, Jiuya; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2014-08-29

    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria. PMID:25023281

  11. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus

    PubMed Central

    Zhang, Yuanwei; Zheng, Qingqing; Sun, Congcong; Song, Jinxing; Gao, Lina; Zhang, Shizhu; Muñoz, Alberto; Read, Nick D.; Lu, Ling

    2016-01-01

    Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. PMID:27058039

  12. Redox-sensitive DNA binding by homodimeric Methanosarcina acetivorans MsvR is modulated by cysteine residues

    PubMed Central

    2013-01-01

    Background Methanoarchaea are among the strictest known anaerobes, yet they can survive exposure to oxygen. The mechanisms by which they sense and respond to oxidizing conditions are unknown. MsvR is a transcription regulatory protein unique to the methanoarchaea. Initially identified and characterized in the methanogen Methanothermobacter thermautotrophicus (Mth), MthMsvR displays differential DNA binding under either oxidizing or reducing conditions. Since MthMsvR regulates a potential oxidative stress operon in M. thermautotrophicus, it was hypothesized that the MsvR family of proteins were redox-sensitive transcription regulators. Results An MsvR homologue from the methanogen Methanosarcina acetivorans, MaMsvR, was overexpressed and purified. The two MsvR proteins bound the same DNA sequence motif found upstream of all known MsvR encoding genes, but unlike MthMsvR, MaMsvR did not bind the promoters of select genes involved in the oxidative stress response. Unlike MthMsvR that bound DNA under both non-reducing and reducing conditions, MaMsvR bound DNA only under reducing conditions. MaMsvR appeared as a dimer in gel filtration chromatography analysis and site-directed mutagenesis suggested that conserved cysteine residues within the V4R domain were involved in conformational rearrangements that impact DNA binding. Conclusions Results presented herein suggest that homodimeric MaMsvR acts as a transcriptional repressor by binding Ma PmsvR under non-reducing conditions. Changing redox conditions promote conformational changes that abrogate binding to Ma PmsvR which likely leads to de-repression. PMID:23865844

  13. Hepatitis C Virus (HCV) Envelope Glycoproteins E1 and E2 Contain Reduced Cysteine Residues Essential for Virus Entry*

    PubMed Central

    Fraser, Johanna; Boo, Irene; Poumbourios, Pantelis; Drummer, Heidi E.

    2011-01-01

    The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process. PMID:21768113

  14. Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 contain reduced cysteine residues essential for virus entry.

    PubMed

    Fraser, Johanna; Boo, Irene; Poumbourios, Pantelis; Drummer, Heidi E

    2011-09-16

    The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process. PMID:21768113

  15. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    NASA Astrophysics Data System (ADS)

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.

    1992-08-01

    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  16. Subtype-selective regulation of IP3 receptors by thimerosal via cysteine residues within the IP3-binding core and suppressor domain

    PubMed Central

    Khan, Samir A.; Rossi, Ana M.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    IP3R (IP3 [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca2+ channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP3R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP3-evoked Ca2+ release via IP3R1 and IP3R2, but inhibited IP3R3. Activation of IP3R is initiated by IP3 binding to the IBC (IP3-binding core; residues 224–604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1–223). Thimerosal (100 μM) stimulated IP3 binding to the isolated NT (N-terminal; residues 1–604) of IP3R1 and IP3R2, but not to that of IP3R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP3) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP3R activation. IP3 binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP3R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP3 binding to the chimaeric NT and IP3-evoked Ca2+ release from the chimaeric IP3R. This is the first systematic analysis of the effects of a thiol reagent on each IP3R subtype. We conclude that thimerosal selectively sensitizes IP3R1 and IP3R2 to IP3 by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor. PMID:23282150

  17. P-wave and S-wave traveltime residuals in Caledonian and adjacent units of Northern Europe and Greenland

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Holm Jacobsen, Bo; Kind, Rainer; Tilmann, Frederik; England, Richard; Bom Nielsen, Søren

    2014-05-01

    This work combines P-wave and S-wave travel time residuals from in total 477 temporary and 56 permanent stations deployed across Caledonian and adjacent units in Northern Europe and Greenland (Tor, Gregersen et al. 2002; SVEKALAPKO, Sandoval et al., 2003; CALAS, Medhus et al, 2012a; MAGNUS, Weidle et al. 2010; SCANLIPS south, England & Ebbing 2012; SCANLIPS north, Hejrani et al. 2012; JULS Hejrani et al. 2013; plus permanent stations in the region). We picked data from 2002 to 2012 (1221 events) using a cross correlation technique on all waveforms recorded for each event. In this way we achieve maximum consistency of relative residuals over the whole region (Medhus et al. 2012b). On the European side 18362 P-wave travel time residuals was delivered. In East Greenland 1735 P-wave residuals were recovered at the Central Fjord array (13 stations) and 2294 residuals from the sparse GLISN-array (23 stations). Likewise, we picked a total of 6034 residuals of the SV phase (For the Tor and SVEKALAPKO projects we used data from Amaru et al. 2008). Relative residuals within the region are mainly due to sub-crustal uppermost mantle velocity anomalies. A dominant subvertical boundary was detected by Medhus et al. (2012), running along the Tornquist zone, east of the Oslo Graben and crossing under high topography of the southern Scandes. We delineated this boundary in more detail, tracking it towards the Atlantic margin north of Trondheim. Further north (Scanlips north), a similar subvertical upper mantle boundary seems to be present close to the coast, coinciding with the edge of the stretched crust. The North German Caledonides were probed by the new JULS (JUtland Lower Saxony) profile which closes the gap between Tor and CALAS arrays. Mantle structure found by the Tor project was confirmed, and modelling was extended to the eastern edge of the North Sea. References: Amaru, M. L., Spakman, W., Villaseñor, A., Sandoval, S., Kissling, E., 2008, A new absolute arrival time data

  18. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    SciTech Connect

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  19. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing.

    PubMed

    Melo-Nava, Brenda; Casas-González, Patricia; Pérez-Solís, Marco A; Castillo-Badillo, Jean; Maravillas-Montero, José L; Jardón-Valadez, Eduardo; Zariñán, Teresa; Aguilar-Rojas, Arturo; Gallay, Nathalie; Reiter, Eric; Ulloa-Aguirre, Alfredo

    2016-01-01

    Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these

  20. Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing

    PubMed Central

    Melo-Nava, Brenda; Casas-González, Patricia; Pérez-Solís, Marco A.; Castillo-Badillo, Jean; Maravillas-Montero, José L.; Jardón-Valadez, Eduardo; Zariñán, Teresa; Aguilar-Rojas, Arturo; Gallay, Nathalie; Reiter, Eric; Ulloa-Aguirre, Alfredo

    2016-01-01

    Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these

  1. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells

    PubMed Central

    Subramanian, Veedamali S.; Rapp, Laramie; Marchant, Jonathan S.

    2011-01-01

    The water-soluble vitamin B2 (riboflavin, RF) is an essential micronutrient for normal cell function and survival. Recent studies have identified a role for the human riboflavin transporter-2 (hRFT2) in normal intestinal RF absorption. However, little is known about the cell biology of this transporter and specifically about the molecular determinant(s) that dictate its cell surface expression in human intestinal epithelial cells. Here we show that the full-length hRFT2 protein fused to green fluorescent protein (GFP) (GFP-hRFT2) is expressed exclusively at the apical membrane domain of Caco-2 cells. COOH-terminal sequence was essential in dictating cell surface expression with a specific role for conserved cysteine residues (C463 and C467). Mutation of C463 and C467 ablated RF uptake, explained by retention of the constructs within the endoplasmic reticulum. Modeling analysis suggested a potential disulfide bridge between C463 and C386. Consistent with this prediction, mutating the C386 site in the context of the full-length transporter resulted in intracellular retention, whereas mutation of another conserved cysteine (C326A) was without effect on hRFT2 targeting. Intracellular trafficking of hRFT2 was also examined and appeared to involve distinct vesicular structures, the motility of vesicles critically dependent on an intact microtubule network. These results demonstrate a potential role for specific cysteine residues in the cell surface expression of the hRFT2 in human intestinal epithelial cells. PMID:21512156

  2. Neutral sphingomyelinase-2 is a redox sensitive enzyme: role of catalytic cysteine residues in regulation of enzymatic activity through changes in oligomeric state

    PubMed Central

    Dotson, P. Patrick; Karakashian, Alexander A.; Nikolova-Karakashian, Mariana N.

    2015-01-01

    Neutral sphingomyelinase-2 (nSMase-2) is the major sphingomyelinase activated in response to pro-inflammatory cytokines and during oxidative stress. It is a membrane-bound 655 amino acid protein containing 22 cysteine residues. In this study, we expressed recombinant mouse nSMase-2 protein in Escherichia coli, and investigated whether nSMase-2 is a redox sensitive enzyme. Our results demonstrate that nSMase-2 exists as both monomers and multimers that are associated with high and low enzymatic activity respectively. Mutational analysis of nSMase-2 identified within its C-terminal catalytic domain several oxidant-sensitive cysteine residues that were shown to be involved in enzyme oligomerization. Changing Cys617 to Ser for example is a gain-of-function mutation associated with a decreased propensity for oligomerization. Alternatively, nSMase-2 expression in a bacterial strain that lacks endogenous thioredoxin, Rosetta-gami2, results in increased oligomer formation and lower enzyme activity. Phenotypic rescue was accomplished by treating nSMase-2 lysates with recombinant human thioredoxin. This indicates that nSMase-2 may be a novel substrate for thioredoxin. FRET analysis confirmed the presence of nSMase-2 multimers in mammalian HEK cells and their localization to the plasma membrane. In conclusion, our results identify nSMase-2 as a redox-sensitive enzyme, whose basal activity is influenced by thioredoxin-mediated changes in its oligomeric state. PMID:25287744

  3. Neutral sphingomyelinase-2 is a redox sensitive enzyme: role of catalytic cysteine residues in regulation of enzymatic activity through changes in oligomeric state.

    PubMed

    Dotson, P Patrick; Karakashian, Alexander A; Nikolova-Karakashian, Mariana N

    2015-02-01

    Neutral sphingomyelinase-2 (nSMase-2) is the major sphingomyelinase activated in response to pro-inflammatory cytokines and during oxidative stress. It is a membrane-bound 655 amino acid protein containing 22 cysteine residues. In this study, we expressed recombinant mouse nSMase-2 protein in Escherichia coli, and investigated whether nSMase-2 is a redox sensitive enzyme. Our results demonstrate that nSMase-2 exists as both monomers and multimers that are associated with high and low enzymatic activity respectively. Mutational analysis of nSMase-2 identified within its C-terminal catalytic domain several oxidant-sensitive cysteine residues that were shown to be involved in enzyme oligomerization. Changing Cys(617) to Ser for example is a gain-of-function mutation associated with a decreased propensity for oligomerization. Alternatively, nSMase-2 expression in a bacterial strain that lacks endogenous thioredoxin, Rosetta-gami2, results in increased oligomer formation and lower enzyme activity. Phenotypic rescue was accomplished by treating nSMase-2 lysates with recombinant human thioredoxin. This indicates that nSMase-2 may be a novel substrate for thioredoxin. FRET analysis confirmed the presence of nSMase-2 multimers in mammalian HEK cells and their localization to the plasma membrane. In conclusion, our results identify nSMase-2 as a redox-sensitive enzyme, whose basal activity is influenced by thioredoxin-mediated changes in its oligomeric state. PMID:25287744

  4. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.

    PubMed

    Lamparter, Tilman; Carrascal, Montserrat; Michael, Norbert; Martinez, Enriqueta; Rottwinkel, Gregor; Abian, Joaquin

    2004-03-30

    Phytochromes are widely distributed biliprotein photoreceptors. Typically, the chromophore becomes covalently linked to the protein during an autocatalytic lyase reaction. Plant and cyanobacterial phytochromes incorporate bilins with a ring A ethylidene side chain, whereas other bacterial phytochromes utilize biliverdin as chromophore, which has a vinyl ring A side chain. For Agrobacterium phytochrome Agp1, site-directed mutagenesis provided evidence that biliverdin is bound to cysteine 20. This cysteine is highly conserved within bacterial homologues, but its role as attachment site has as yet not been proven. We therefore performed mass spectrometry studies on proteolytic holopeptide fragments. For that purpose, an Agp1 expression vector was re-engineered to produce a protein with an N-terminal affinity tag. Following proteolysis, the chromophore co-purified with a ca. 5 kDa fragment during affinity chromatography, showing that the attachment site is located close to the N-terminus. Mass spectrometry analyses performed with the purified chromopeptide confirmed the role of the cysteine 20 as biliverdin attachment site. We also analyzed the role of the highly conserved histidine 250 by site-directed mutagenesis. The homologous amino acid plays an important but yet undefined role in plant phytochromes and has been proposed as chromophore attachment site of Deinococcus phytochrome. We found that in Agp1, this amino acid is dispensable for covalent attachment, but required for tight chromophore-protein interaction. PMID:15035636

  5. Accessibility of cysteine residues in a cytoplasmic loop of CitS of Klebsiella pneumoniae is controlled by the catalytic state of the transporter.

    PubMed

    Sobczak, Iwona; Lolkema, Juke S

    2003-08-19

    The citrate transporter CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with two sodium ions and one proton. Treatment of CitS with the alkylating agent N-ethylmaleimide resulted in a complete loss of transport activity. Treatment of mutant proteins in which the five endogenous cysteine residues were mutated into serines in different combinations revealed that two cysteine residues located in the C-terminal cytoplasmic loop, Cys-398 and Cys-414, were responsible for the inactivation. Labeling with the membrane impermeable methanethiosulfonate derivatives MTSET and MTSES in right-side-out membrane vesicles showed that the cytoplasmic loop was accessible from the periplasmic side of the membrane. The membrane impermeable but more bulky maleimide AmdiS did not inactivate the transporter in right-side-out membrane vesicles. Inactivation by N-ethylmaleimide, MTSES, and MTSET was prevented by the presence of the co-ion Na(+). Protection was obtained upon binding 2 Na(+), which equals the transport stoichiometry. In the absence of Na(+), the substrate citrate had no effect on the inactivation by permeable or impermeable thiol reagents. In contrast, when subsaturating concentrations of Na(+) were present, citrate significantly reduced inactivation suggesting ordered binding of the substrate and co-ion; citrate is bound after Na(+). In the presence of the proton motive force, the reactivity of the Cys residues was increased significantly for the membrane permeable N-ethylmaleimide, while no difference was observed for the membrane impermeable thiol reagents. The results are discussed in the context of a model for the opening and closing of the translocation pore during turnover of the transporter. PMID:12911322

  6. Characterization of oxidation products from 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine in aqueous solutions and their reactions with cysteine, histidine and lysine residues.

    PubMed

    Milic, Ivana; Fedorova, Maria; Teuber, Kristin; Schiller, Jürgen; Hoffmann, Ralf

    2012-02-01

    This report focuses on studies of lipid peroxidation products reactivity towards the side chains of cysteine, histidine, and lysine residues in structurally unordered peptides. Thus we have analyzed linoleic acid peroxidation products (LaPP) obtained by incubating 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine (PLPC) overnight with or without H(2)O(2) in the presence or absence of CuCl. In total, 55 different LaPP were identified with 26 containing reactive carbonyl groups. The strongest oxidation conditions (H(2)O(2) and Cu(I), i.e. a Fenton-like reagent) yielded 51 LaPP, whereas air oxidation produced only 12 LaPP. Independent of the oxidation conditions, around half of all LaPP were short-chain (oxidative cleavage) and the others long-chain (oxygen addition) PLPC oxidation products. The stronger oxidation conditions increased the number of LaPP, but also oxidized the added peptide Ac-PAAPAAPAPAEXTPV-OH (X=Cys, His or Lys) very quickly, especially under Fenton conditions. Thus, PLPC was oxidized by milder conditions (air or Cu(I)), incubated with the peptide and the peptide modifications were then analyzed by nano-RPC-ESI-Orbitrap-MS. Ten LaPP-derived peptide modifications were identified at lysine, whereas nine products were identified for cysteine and only three for histidine. Three high molecular weight LaPP still esterified to the GPC backbone were detected on Lys-containing peptide. Furthermore, three LaPP-derived mass shifts were obtained at cysteine, which have not previously been reported. PMID:22222463

  7. A Central Cysteine Residue Is Essential for the Thermal Stability and Function of SUMO-1 Protein and SUMO-1 Peptide-Protein Conjugates.

    PubMed

    Drobecq, Hervé; Boll, Emmanuelle; Sénéchal, Magalie; Desmet, Rémi; Saliou, Jean-Michel; Lacapère, Jean-Jacques; Mougel, Alexandra; Vicogne, Jérôme; Melnyk, Oleg

    2016-06-15

    SUMOylation constitutes a major post-translational modification (PTM) used by the eukaryote cellular machinery to modulate protein interactions of the targeted proteins. The small ubiquitin-like modifier-1 (SUMO-1) features a central and conserved cysteine residue (Cys52) that is located in the hydrophobic core of the protein and in tight contact with Phe65, suggesting the occurrence of an S/π interaction. To investigate the importance of Cys52 on SUMO-1 thermal stability and biochemical properties, we produced by total chemical synthesis SUMO-1 or SUMO-1 Cys52Ala peptide-protein conjugates featuring a native isopeptidic bond between SUMO-1 and a peptide derived from p53 tumor suppressor protein. The Cys52Ala modification perturbed SUMO-1 secondary structure and resulted in a dramatic loss of protein thermal stability. Moreover, the cleavage of the isopeptidic bond by the deconjugating enzyme Upl1 was significantly less efficient than for the wild-type conjugate. Similarly, the in vitro SUMOylation of RanGap1 by E1/E2 conjugating enzymes was significantly less efficient with the SUMO-1 C52A analog compared to wild-type SUMO-1. These data demonstrate the critical role of Cys52 in maintaining SUMO-1 conformation and function and the importance of keeping this cysteine intact for the study of SUMO-1 protein conjugates. PMID:27195426

  8. Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Yutthanasirikul, Rayakorn; Nagano, Takanori; Jimbo, Haruhiko; Hihara, Yukako; Kanamori, Takashi; Ueda, Takuya; Haruyama, Takamitsu; Konno, Hiroki; Yoshida, Keisuke; Hisabori, Toru; Nishiyama, Yoshitaka

    2016-03-11

    Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner. PMID:26786107

  9. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.

    PubMed

    Cook, Naomi L; Moeke, Cassidy H; Fantoni, Luca I; Pattison, David I; Davies, Michael J

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN(-)) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 µM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species, can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation. PMID:26616646

  10. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe.

    PubMed

    Katerelos, N A; Goodenough, P W

    1996-11-26

    Cysteine proteinases are endopeptidases whose catalytic activity depends upon the nucleophilicity of the active site cysteine thiol group. An ion pair forms with an active site histidine. The presence in some cysteine proteinases of an aspartic acid close to the ion pair has been used as evidence of a "catalytic triad" as found in the serine proteinases. In these enzymes, the correct alignment of serine, histidine, and aspartate residues controls catalysis. However, the absence of the homologous aspartate residue in the mammalian cysteine proteinases cathepsins B and H argues against this pivotal role for aspartic acid. Instead, an Asn, physically close to the histidine in cysteine proteinases, has been proposed as a member of the catalytic triad. Protein engineering is being used to investigate these questions. In this study, the Asp158Glu mutant of the plant cysteine proteinase caricain was analyzed by stopped-flow rapid kinetics. The probe that was used was 2,2'-dipyridyl disulfide (2 PDS), and the profile of k versus pH gave results more closely allied to a small molecule active site model than the normal profile with cysteine proteinases. Multiple pKa's identified in the profile are as follows: pK1 = 3.4 (Cys 25), pK2 = 3.6, pK3 = 7.0, and pK4 = 8.6 (His 158). The structure of the enzyme with the bound inhibitor E64 was solved (R factor of 19.3%). Although the distance between the imadazolium and the surrounding charged amino acids is only slightly changed in the mutant, the reduced steady state activity and narrower pH range can be related to changes in the hydrogen-bonding capacity of the imadazolium. PMID:8942638

  11. Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity.

    PubMed

    Lee, J; Gravel, M; Gao, E; O'Neill, R C; Braun, P E

    2001-05-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP; EC ) catalyzes in vitro hydrolysis of 3'-phosphodiester bonds in 2',3'-cyclic nucleotides to produce 2'-nucleotides exclusively. N-terminal deletion mapping of the C-terminal two-thirds of recombinant rat CNP1 identified a region that possesses the catalytic domain, with further truncations abolishing activity. Proteolysis and kinetic analysis indicated that this domain forms a compact globular structure and contains all of the catalytically essential features. Subsequently, this catalytic fragment of CNP1 (CNP-CF) was used for chemical modification studies to identify amino acid residues essential for activity. 5,5'-Dithiobis-(2-nitrobenzoic acid) modification studies and kinetic analysis of cysteine CNP-CF mutants revealed the nonessential role of cysteines for enzymatic activity. On the other hand, modification studies with diethyl pyrocarbonate indicated that two histidines are essential for CNPase activity. Consequently, the only two conserved histidines, His-230 and His-309, were mutated to phenylalanine and leucine. All four histidine mutants had k(cat) values 1000-fold lower than wild-type CNP-CF, but K(m) values were similar. Circular dichroism studies demonstrated that the low catalytic activities of the histidine mutants were not due to gross changes in secondary structure. Taken together, these results demonstrate that both histidines assume critical roles for catalysis. PMID:11278504

  12. Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

    SciTech Connect

    Eun Jin Kim; Jian Feng; Matthew R. Bramlett; Paul A. Lindahl

    2004-05-18

    OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no EPR signals originating from the C-cluster. Electronic absorption and metal analysis suggests that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity.

  13. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  14. Effect of P to A Mutation of the N-Terminal Residue Adjacent to the Rgd Motif on Rhodostomin: Importance of Dynamics in Integrin Recognition

    PubMed Central

    Chen, Yi-Chun; Chang, Yao-Tsung; Chang, Yung-Sheng; Huang, Chun-Hao; Chuang, Woei-Jer

    2012-01-01

    Rhodostomin (Rho) is an RGD protein that specifically inhibits integrins. We found that Rho mutants with the P48A mutation 4.4–11.5 times more actively inhibited integrin α5β1. Structural analysis showed that they have a similar 3D conformation for the RGD loop. Docking analysis also showed no difference between their interactions with integrin α5β1. However, the backbone dynamics of RGD residues were different. The values of the R2 relaxation parameter for Rho residues R49 and D51 were 39% and 54% higher than those of the P48A mutant, which caused differences in S2, Rex, and τe. The S2 values of the P48A mutant residues R49, G50, and D51 were 29%, 14%, and 28% lower than those of Rho. The Rex values of Rho residues R49 and D51 were 0.91 s−1 and 1.42 s−1; however, no Rex was found for those of the P48A mutant. The τe values of Rho residues R49 and D51 were 9.5 and 5.1 times lower than those of P48A mutant. Mutational study showed that integrin α5β1 prefers its ligands to contain (G/A)RGD but not PRGD sequences for binding. These results demonstrate that the N-terminal proline residue adjacent to the RGD motif affect its function and dynamics, which suggests that the dynamic properties of the RGD motif may be important in Rho's interaction with integrin α5β1. PMID:22238583

  15. Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Trus, Michael; Atlas, Daphne

    2013-01-01

    The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A. PMID:23567899

  16. Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia.

    PubMed

    Heuertz, Solange; Le Merrer, Martine; Zabel, Bernhard; Wright, Michael; Legeai-Mallet, Laurence; Cormier-Daire, Valérie; Gibbs, Linda; Bonaventure, Jacky

    2006-12-01

    Achondroplasia (ACH) and hypochondroplasia (HCH) are two autosomal-dominant skeletal disorders caused by recurrent missense FGFR3 mutations in the transmembrane (TM) and tyrosine kinase 1 (TK1) domains of the receptor. Although 98% of ACH cases are accounted for by a single G380R substitution in the TM, a common mutation (N540K) in the TK1 region is detected in only 60-65% of HCH cases. The aim of this study was to determine whether the frequency of mutations in patients with HCH was the result of incomplete mutation screening or genetic heterogeneity. Eighteen exons of the FGFR3 gene were entirely sequenced in a cohort of 25 HCH and one ACH patients in whom common mutations had been excluded. Seven novel missense FGFR3 mutations were identified, one causing ACH and six resulting in HCH. Six of these substitutions were located in the extracellular region and four of them creating additional cysteine residues, were associated with severe phenotypes. No mutations were detected in 19 clinically diagnosed HCH patients. Our results demonstrate that the spectrum of FGFR3 mutations causing short-limb dwarfism is wider than originally recognised and emphasise the requirement for complete screening of the FGFR3 gene if appropriate genetic counselling is to be offered to patients with HCH or ACH lacking the most common mutations and their families. PMID:16912704

  17. Direct one-step labeling of cysteine residues on peptides with [(11)C]methyl triflate for the synthesis of PET radiopharmaceuticals.

    PubMed

    Chin, Joshua; Vesnaver, Matthew; Bernard-Gauthier, Vadim; Saucke-Lacelle, Erin; Wängler, Björn; Wängler, Carmen; Schirrmacher, Ralf

    2013-11-01

    Radiolabeled peptides have emerged as an attractive platform for the diagnostic and therapeutic oncology. However, the (11)C-radiolabeling of peptides for positron emission tomography (PET) has been poorly explored, owing to the relatively short half-life of carbon-11 (t 1/2 = 20.3 min) and time-consuming multi-step radiochemical reactions. Existing methods have found limited use and are not routinely encountered in the production of radiotracers. Herein, we propose a facile one-step direct (11)C-methylation of cysteine residues in peptides using [(11)C]methyl triflate under ambient temperatures (20 °C) and short reaction times, on the order of seconds. Good regioselectivity of this method was demonstrated by HPLC in a simple peptide (glutathione, GSH) and a more complex test decapeptide (Trp-Tyr-Trp-Ser-Arg-Cys-Lys-Trp-Thr-Gly) bearing multiple nucleophilic sites. In addition, we extend this method towards the synthesis of [(11)C]Cys(Me)-[Tyr(3)-octreotate] as a demonstration of applicability for peptides of biological interest. This octreotate derivative was obtained in non-decay-corrected radiochemical yields of 11 ± 2 % (n = 3) with a synthesis time of approx. 30 min. PMID:23921782

  18. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts.

    PubMed

    Liu, Y; Santi, D V

    2000-07-18

    A family of RNA m(5)C methyl transferases (MTases) containing over 55 members in eight subfamilies has been identified recently by an iterative search of the genomic sequence databases by using the known 16S rRNA m(5)C 967 MTase, Fmu, as an initial probe. The RNA m(5)C MTase family contained sequence motifs that were highly homologous to motifs in the DNA m(5)C MTases, including the ProCys sequence that contains the essential Cys catalyst of the functionally similar DNA-modifying enzymes; it was reasonable to assign the Cys nucleophile to be that in the conserved ProCys. The family also contained an additional conserved Cys residue that aligns with the nucleophilic catalyst in m(5)U54 tRNA MTase. Surprisingly, the mutant of the putative Cys catalyst in the ProCys sequence was active and formed a covalent complex with 5-fluorocytosine-containing RNA, whereas the mutant at the other conserved Cys was inactive and unable to form the complex. Thus, notwithstanding the highly homologous sequences and similar functions, the RNA m(5)C MTase uses a different Cys as a catalytic nucleophile than the DNA m(5)C MTases. The catalytic Cys seems to be determined, not by the target base that is modified, but by whether the substrate is DNA or RNA. The function of the conserved ProCys sequence in the RNA m(5)C MTases remains unknown. PMID:10899996

  19. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts

    PubMed Central

    Liu, Yaoquan; Santi, Daniel V.

    2000-01-01

    A family of RNA m5C methyl transferases (MTases) containing over 55 members in eight subfamilies has been identified recently by an iterative search of the genomic sequence databases by using the known 16S rRNA m5C 967 MTase, Fmu, as an initial probe. The RNA m5C MTase family contained sequence motifs that were highly homologous to motifs in the DNA m5C MTases, including the ProCys sequence that contains the essential Cys catalyst of the functionally similar DNA-modifying enzymes; it was reasonable to assign the Cys nucleophile to be that in the conserved ProCys. The family also contained an additional conserved Cys residue that aligns with the nucleophilic catalyst in m5U54 tRNA MTase. Surprisingly, the mutant of the putative Cys catalyst in the ProCys sequence was active and formed a covalent complex with 5-fluorocytosine-containing RNA, whereas the mutant at the other conserved Cys was inactive and unable to form the complex. Thus, notwithstanding the highly homologous sequences and similar functions, the RNA m5C MTase uses a different Cys as a catalytic nucleophile than the DNA m5C MTases. The catalytic Cys seems to be determined, not by the target base that is modified, but by whether the substrate is DNA or RNA. The function of the conserved ProCys sequence in the RNA m5C MTases remains unknown. PMID:10899996

  20. Plastidic phosphoglycerate kinase from Phaeodactylum tricornutum: on the critical role of cysteine residues for the enzyme function.

    PubMed

    Bosco, María Belén; Aleanzi, Mabel Cristina; Iglesias, Alberto Álvaro

    2012-03-01

    Chloroplastidic phosphoglycerate kinase (PGKase) plays a key role in photosynthetic organisms, catalyzing a key step in the Calvin cycle. We performed the molecular cloning of the gene encoding chloroplastidic PGKase-1 in the diatom Phaeodactylum tricornutum. The recombinant enzyme was expressed in Escherichia coli, purified and characterized. Afterward, it showed similar kinetic properties than the enzyme studied from other organisms, although the diatom enzyme displayed distinctive responses to sulfhydryl reagents. The activity of the enzyme was found to be dependent on the redox status in the environment, determined by different compounds, including some of physiological function. Treatment with oxidant agents, such as diamide, hydrogen peroxide, glutathione and sodium nitroprusside resulted in enzyme inhibition. Recovery of activity was possible by subsequent incubation with reducing reagents such as dithiothreitol and thioredoxins (from E. coli and P. tricornutum). We determined two midpoint potentials of different regulatory redox centers, both values indicating that PGKase-1 might be sensitive to changes in the intracellular redox environment. The role of all the six Cys residues found in the diatom enzyme was analyzed by molecular modeling and site-directed mutagenesis. Results suggest key regulatory properties for P. tricornutum PGKase-1, which could be relevant for the functioning of photosynthetic carbon metabolism in diatoms. PMID:21816671

  1. Reactivation of a thermostable lipase by solid phase unfolding/refolding effect of cysteine residues on refolding efficiency.

    PubMed

    Godoy, César A; de las Rivas, Blanca; Bezbradica, Dejan; Bolivar, Juan M; López-Gallego, Fernando; Fernandez-Lorente, Gloria; Guisan, Jose M

    2011-09-10

    Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones. PMID:22112565

  2. Configurational statistics of the DNA duplex: extended generator matrices to treat the rotations and translations of adjacent residues.

    PubMed

    Marky, N L; Olson, W K

    1994-01-01

    The base-to-base virtual bond treatment of nucleic acids used in statistical mechanical calculations of polynucleotide chain properties has been refined by incorporating the six parameters that relate the positions and orientations of sequential rigid bodies. The scheme allows for the sequence-dependent bending, twisting, and displacement of base pairs as well as for asymmetry in the angular and translational fluctuations of individual residues. Expressions are developed for the generator matrices required for the computation, as a function of chain length, of various parameters measuring the overall mean extension and shape of the DNA. Quantities of interest include the end-to-end vector r, the square of the end-to-end distance r2, the square radius of gyration s2, the center-of-gravity vector g, the second moments of inertia Sx2, and the higher moments of r and g. The matrix expressions introduced in the 1960s by Flory and co-workers for the determination of configuration-dependent polymer chain averages are decomposed into their translational and orientational contributions so that the methods can be extended to the rigid body analysis of chemical moieties. The new expressions permit, for the first time, examination of the effects of sequence-dependent translations, such as the lateral sliding of residues in A- and B-helices and the vertical opening of base pairs in drug-DNA complexes, on the average extension and shape of the long flexible double helix. The approach is in the following paper using conformational energy estimates of the base sequence-dependent flexibility of successive B-DNA base pairs. PMID:8110963

  3. VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications

    PubMed Central

    Saletti, Rosaria; Guardiani, Carlo; Guarino, Francesca; Scorciapino, Mariano Andrea; Magrì, Andrea; Foti, Salvatore; Ceccarelli, Matteo; Messina, Angela Anna; Mahalakshmi, Radhakrishnan; Szabo, Ildiko; De Pinto, Vito

    2016-01-01

    Voltage-Dependent Anion selective Channels (VDAC) are pore-forming mitochondrial outer membrane proteins. In mammals VDAC3, the least characterized isoform, presents a set of cysteines predicted to be exposed toward the intermembrane space. We find that cysteines in VDAC3 can stay in different oxidation states. This was preliminary observed when, in our experimental conditions, completely lacking any reducing agent, VDAC3 presented a pattern of slightly different electrophoretic mobilities. This observation holds true both for rat liver mitochondrial VDAC3 and for recombinant and refolded human VDAC3. Mass spectroscopy revealed that cysteines 2 and 8 can form a disulfide bridge in native VDAC3. Single or combined site-directed mutagenesis of cysteines 2, 8 and 122 showed that the protein mobility in SDS-PAGE is influenced by the presence of cysteine and by the redox status. In addition, cysteines 2, 8 and 122 are involved in the stability control of the pore as shown by electrophysiology, complementation assays and chemico-physical characterization. Furthermore, a positive correlation between the pore conductance of the mutants and their ability to complement the growth of porin-less yeast mutant cells was found. Our work provides evidence for a complex oxidation pattern of a mitochondrial protein not directly involved in electron transport. The most likely biological meaning of this behavior is to buffer the ROS load and keep track of the redox level in the inter-membrane space, eventually signaling it through conformational changes. PMID:26760765

  4. VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications.

    PubMed

    Reina, Simona; Checchetto, Vanessa; Saletti, Rosaria; Gupta, Ankit; Chaturvedi, Deepti; Guardiani, Carlo; Guarino, Francesca; Scorciapino, Mariano Andrea; Magrì, Andrea; Foti, Salvatore; Ceccarelli, Matteo; Messina, Angela Anna; Mahalakshmi, Radhakrishnan; Szabo, Ildiko; De Pinto, Vito

    2016-01-19

    Voltage-Dependent Anion selective Channels (VDAC) are pore-forming mitochondrial outer membrane proteins. In mammals VDAC3, the least characterized isoform, presents a set of cysteines predicted to be exposed toward the intermembrane space. We find that cysteines in VDAC3 can stay in different oxidation states. This was preliminary observed when, in our experimental conditions, completely lacking any reducing agent, VDAC3 presented a pattern of slightly different electrophoretic mobilities. This observation holds true both for rat liver mitochondrial VDAC3 and for recombinant and refolded human VDAC3. Mass spectroscopy revealed that cysteines 2 and 8 can form a disulfide bridge in native VDAC3. Single or combined site-directed mutagenesis of cysteines 2, 8 and 122 showed that the protein mobility in SDS-PAGE is influenced by the presence of cysteine and by the redox status. In addition, cysteines 2, 8 and 122 are involved in the stability control of the pore as shown by electrophysiology, complementation assays and chemico-physical characterization. Furthermore, a positive correlation between the pore conductance of the mutants and their ability to complement the growth of porin-less yeast mutant cells was found. Our work provides evidence for a complex oxidation pattern of a mitochondrial protein not directly involved in electron transport. The most likely biological meaning of this behavior is to buffer the ROS load and keep track of the redox level in the inter-membrane space, eventually signaling it through conformational changes. PMID:26760765

  5. Structural Basis of Conserved Cysteine in the Fibroblast Growth Factor Family: Evidence for a Vestigial Half-Cystine

    SciTech Connect

    Lee, Jihun; Blaber, Michael

    2010-11-09

    The 22 members of the mouse/human fibroblast growth factor (FGF) family of proteins contain a conserved cysteine residue at position 83 (numbering scheme of the 140-residue form of FGF-1). Sequence and structure information suggests that this position is a free cysteine in 16 members and participates as a half-cystine in at least 3 (and perhaps as many as 6) other members. While a structural role as a half-cystine provides a stability basis for possible selective pressure, it is less clear why this residue is conserved as a free cysteine (although free buried thiols can limit protein functional half-life). To probe the structural role of the free cysteine at position 83 in FGF-1, we constructed Ala, Ser, Thr, Val, and Ile mutations and determined their effects on structure and stability. These results show that position 83 in FGF-1 is thermodynamically optimized to accept a free cysteine. A second cysteine mutation was introduced into wild-type FGF-1 at adjacent position Ala66, which is known to participate as a half-cystine with position 83 in FGF-8, FGF-19, and FGF-23. Results show that, unlike position 83, a free cysteine at position 66 destabilizes FGF-1; however, upon oxidation, a near-optimal disulfide bond is formed between Cys66 and Cys83, resulting in {approx} 14 kJ/mol of increased thermostability. Thus, while the conserved free cysteine at position 83 in the majority of the FGF proteins may have a principal role in limiting functional half-life, evidence suggests that it is a vestigial half-cystine.

  6. Amino acid substitutions of cysteine residues near the amino terminus of Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amino-terminal half of HC-Pro of Wheat streak mosaic virus (WSMV) is required for semi-persistent transmission by the wheat curl mite (Aceria tosichella Keifer). The amino-proximal region of WSMV HC-Pro is cysteine-rich with a zinc finger-like motif. Amino acid substitutions were made in this re...

  7. Evolutionary lines of cysteine peptidases.

    PubMed

    Barrett, A J; Rawlings, N D

    2001-05-01

    The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases. PMID:11517925

  8. Cysteine residues in the transmembrane (TM) 9 to TM11 region of the human equilibrative nucleoside transporter subtype 1 play an important role in inhibitor binding and translocation function.

    PubMed

    Park, Jamie S; Hammond, James R

    2012-11-01

    Inhibitor and substrate interactions with equilibrative nucleoside transporter 1 (ENT1; SLC29A1) are known to be affected by cysteine-modifying reagents. A previous study from our laboratory established Cys222 in transmembrane (TM) 6 as the residue responsible for methyl methanethiosulfonate (a membrane-permeable sulfhydryl modifier)-mediated enhancement of the binding of the ENT1 inhibitor nitrobenzylmercaptopurine riboside (NBMPR) in intact cells. However, the capacity of charged sulfhydryl reagents to inhibit the binding of NBMPR in broken cell preparations (allowing cytoplasmic access) was not affected by mutation of any of the cysteines (Cys87, 193, 213, or 222) in the N-terminal half of the protein. We thus hypothesized that the inhibitory effects of the modifiers were due to the one or more of the six cysteine residues in the C-terminal half of ENT1, particularly one or both of those in the fifth intracellular loop (Cys414 and Cys416). Each of the cysteines were mutated to serine or alanine and expressed in nucleoside transport-deficient PK15 cells and probed with a series of methanethiosulfonate sulfhydryl-modifying reagents. Transporter function was assessed by the site-specific binding of [(3)H]NBMPR and the cellular uptake of [(3)H]2-chloroadenosine. These studies established that Cys378 is an extracellular-located residue modified by [2-(trimethylammonium)ethyl] methane-thiosulfonate (MTSET) to inhibit the binding of NBMPR to intact cells. Mutation of Cys414 led to an enhancement of the ability of MTSET to inhibit NBMPR binding, and this enhancement was eliminated by the comutation of Cys378, indicating that disruption of the fifth intracellular loop modifies the conformation of TM10 and its extracellular extension. Mutation of Cys416 led to the loss of the ability of the charged sulfhydryl reagents to inhibit NBMPR binding in isolated membranes and also led to the loss of transport function. This finding further supports an allosteric interaction

  9. Further studies on the role of the residue 890 cysteine to tyrosine mutation in the M70 primase ORF of the temperature-sensitive mutant (tsm5) of murine cytomegalovirus.

    PubMed

    Al-Ali, Abdulaziz Taher; Sweet, Clive

    2016-09-01

    A mutation (C890Y) introduced into the M70 primase gene of murine cytomegalovirus (MCMV) resulted in reduced viral replication in murine embryo fibroblasts at 40°C and the mutant was severely attenuated in vivo. The attenuated replication of the M70 mutant was also observed in Raw 264.7 macrophages at 37°C, demonstrating that the mutation produced a defective rather than an unstable protein possibly reducing the amount of functional protein under different environmental conditions. Many synonymous mutations were introduced into this ORF by changing codon preferences that should reduce the efficiency of gene translation, but not change protein sequence or structure. Two Bacterial Artificial Chromosome (BAC) constructs were produced with 155 codons (at the distal third of the M70 gene) changed to MCMV less preferred codons and with either cysteine (BAC70(155Cys) ) or tyrosine (BAC70(155Tyr) ) at residue 890. Upon transfection of these BACs into NIH 3T3 cells, only BAC70(155Cys) produced virus and this mutant Mt70(155Cys) replicated similarly to its revertant and the wt MCMV K181 (Perth) variant. A metagenomic analysis of the protein structure of the primase using PredictProtein showed that the change from cysteine (M70Cys) to tyrosine (M70Tyr) has a marked effect on protein structure. However, when the cysteine residue was replaced by serine (M70Ser) or methionine (M70Met), which produced mutant viruses with a wild-type phenotype, the predicted structure was similar to the wild-type structure. J. Med. Virol. 88:1613-1621, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919386

  10. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  11. Covalent targeting of acquired cysteines in cancer.

    PubMed

    Visscher, Marieke; Arkin, Michelle R; Dansen, Tobias B

    2016-02-01

    The thiolate side chain of cysteine has a unique functionality that drug hunters and chemical biologists have begun to exploit. For example, targeting cysteine residues in the ATP-binding pockets of kinases with thiol-reactive molecules has afforded increased selectivity and potency to drugs like imbrutinib, which inhibits the oncogene BTK, and CO-1686 and AZD9291 that target oncogenic mutant EGFR. Recently, disulfide libraries and targeted GDP-mimetics have been used to selectively label the G12C oncogenic mutation in KRAS. We reasoned that other oncogenes contain mutations to cysteine, and thus screened the Catalog of Somatic Mutations in Cancer for frequently acquired cysteines. Here, we describe the most common mutations and discuss how these mutations could be potential targets for cysteine-directed personalized therapeutics. PMID:26629855

  12. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  13. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  14. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues.

    PubMed

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-16

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  15. Parkinsonism-associated Protein DJ-1/Park7 Is a Major Protein Deglycase That Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues

    PubMed Central

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-01

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  16. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1

    NASA Astrophysics Data System (ADS)

    Lórenz-Fonfría, Víctor A.; Muders, Vera; Schlesinger, Ramona; Heberle, Joachim

    2014-12-01

    Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2380 intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H218O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm-1) and with the other O-H group medium (3440 cm-1) to moderately strongly (3300 cm-1) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.

  17. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1.

    PubMed

    Lórenz-Fonfría, Víctor A; Muders, Vera; Schlesinger, Ramona; Heberle, Joachim

    2014-12-14

    Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2(380) intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H2 (18)O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm(-1)) and with the other O-H group medium (3440 cm(-1)) to moderately strongly (3300 cm(-1)) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1. PMID:25494778

  18. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.

    PubMed

    Amara, Amro A; Rehm, Bernd H A

    2003-09-01

    The class II PHA (polyhydroxyalkanoate) synthases [PHA(MCL) synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHA(MCL)s using CoA thioesters of medium-chain-length 3-hydroxy fatty acids (C6-C14) as a substrate. Only recently PHA(MCL) synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHA(MCL) synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the alpha/beta-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the alpha/beta-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved gamma-turns of the alpha/beta-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved

  19. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.

    PubMed

    Pickard, R T; Chiou, X G; Strifler, B A; DeFelippis, M R; Hyslop, P A; Tebbe, A L; Yee, Y K; Reynolds, L J; Dennis, E A; Kramer, R M; Sharp, J D

    1996-08-01

    Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M.(1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzyme's sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzyme's function and suggest that the cPLA2 catalytic center is novel. PMID:8702602

  20. Selenocysteine Positional Variants Reveal Contributions to Copper Binding From Cysteine Residues in Domains 2 And 3 of Human Copper Chaperone for Superoxide Dismutase

    SciTech Connect

    Barry, A.N.; Clark, K.M.; Otoikhian, A.; Donk, W.A.van der; Blackburn, N.J.

    2009-05-11

    The human copper chaperone for superoxide dismutase binds copper both in an Atx1-like MTCQSC motif in domain 1 and via a multinuclear cluster formed by two CXC motifs at the D3 dimer interface. The composition of the Cu(I) cluster has been investigated previously by mutagenesis of the CXC motif, and by construction of a CXU selenocysteine derivative, which has permitted XAS studies at both Cu and Se absorption edges. Here, we report the semisynthesis and spectroscopic characterization of a series of derivatives with the sequences 243-CACA, 243-CAUA, 243-UACA, and 243-UAUA in the D1 double mutant (C22AC25A) background, prepared by expressed protein ligation of Sec-containing tetrapeptides to an hCCS-243 truncation. By varying the position of the Se atom in the CXC motif, we have been able to show that Se is always bridging (2 Se-Cu) rather than terminal (1 Se-Cu). Substitution of both D3 Cys residues by Sec in the UAUA variant does not eliminate the Cu-S contribution, confirming our previous description of the cluster as most likely a Cu{sub 4}S{sub 6} species, and suggesting that D2 Cys residues contribute to the cluster. As predicted by this model, when Cys residues C141, C144, and C227 are mutated to alanine either individually or together as a triple mutant, the cluster nuclearity is dramatically attenuated. These data suggest that Cys residues in D2 of hCCS are involved in the formation, stability, and redox potential of the D3 cluster. The significance of these finding to the SOD1 thiol/disulfide oxidase activity are discussed in terms of a model in which a similar multinuclear cluster may form in the CCS-SOD heterodimer.

  1. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  2. Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide**

    PubMed Central

    He, Qing-Li; Titov, Denis V.; Li, Jing; Tan, Minjia; Ye, Zhaohui; Zhao, Yingming; Romo, Daniel

    2015-01-01

    Triptolide is a key component of the traditional Chinese medicinal plant Thunder God Vine and has potent anticancer and immunosuppressive activities. It is an irreversible inhibitor of eukaryotic transcription through covalent modification of XPB, a subunit of the general transcription factor TFIIH. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide. Mutation of Cys342 of XPB to threonine conferred resistance to triptolide on the mutant protein. Replacement of the endogenous wild-type XPB with the Cys342Thr mutant in a HEK293T cell line rendered it completely resistant to triptolide, thus validating XPB as the physiologically relevant target of triptolide. Together, these results deepen our understanding of the interaction between triptolide and XPB and have implications for the future development of new analogues of triptolide as leads for anticancer and immunosuppressive drugs. PMID:25504624

  3. Covalent modification of a cysteine residue in the XPB subunit of the general transcription factor TFIIH through single epoxide cleavage of the transcription inhibitor triptolide.

    PubMed

    He, Qing-Li; Titov, Denis V; Li, Jing; Tan, Minjia; Ye, Zhaohui; Zhao, Yingming; Romo, Daniel; Liu, Jun O

    2015-02-01

    Triptolide is a key component of the traditional Chinese medicinal plant Thunder God Vine and has potent anticancer and immunosuppressive activities. It is an irreversible inhibitor of eukaryotic transcription through covalent modification of XPB, a subunit of the general transcription factor TFIIH. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide. Mutation of Cys342 of XPB to threonine conferred resistance to triptolide on the mutant protein. Replacement of the endogenous wild-type XPB with the Cys342Thr mutant in a HEK293T cell line rendered it completely resistant to triptolide, thus validating XPB as the physiologically relevant target of triptolide. Together, these results deepen our understanding of the interaction between triptolide and XPB and have implications for the future development of new analogues of triptolide as leads for anticancer and immunosuppressive drugs. PMID:25504624

  4. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein.

    PubMed Central

    Ayers, D J; Sunshine, M G; Six, E W; Christie, G E

    1994-01-01

    The bacteriophage P2 ogr gene product is a positive regulator of transcription from P2 late promoters. The ogr gene was originally defined by compensatory mutations that overcame the block to P2 growth imposed by a host mutation, rpoA109, in the gene encoding the alpha subunit of RNA polymerase. DNA sequence analysis has confirmed that this mutation affects the C-terminal region of the alpha subunit, changing a leucine residue at position 290 to a histidine (rpoAL290H). We have employed a reporter plasmid system to screen other, previously described, rpoA mutants for effects on activation of a P2 late promoter and have identified a second allele, rpoA155, that blocks P2 late transcription. This mutation lies just upstream of rpoAL290H, changing the leucine residue at position 289 to a phenylalanine (rpoAL289F). The effect of the rpoAL289F mutation is not suppressed by the rpoAL290H-compensatory P2 ogr mutation. P2 ogr mutants that overcome the block imposed by rpoAL289F were isolated and characterized. Our results are consistent with a direct interaction between Ogr and the alpha subunit of RNA polymerase and support a model in which transcription factor contact sites within the C terminus of alpha are discrete and tightly clustered. PMID:8002564

  5. Eubacterial arylamine N-acetyltransferases - identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.

    PubMed

    Payton, M; Mushtaq, A; Yu, T W; Wu, L J; Sinclair, J; Sim, E

    2001-05-01

    Arylamine N-acetyltransferases (NATs) are enzymes involved in the detoxification of a range of arylamine and hydrazine-based xenobiotics. NATs have been implicated in the endogenous metabolism of p-aminobenzoyl glutamate in eukaryotes, although very little is known about the distribution and function of NAT in the prokaryotic kingdom. Using DNA library screening techniques and the analysis of data from whole-genome sequencing projects, we have identified 18 nat-like sequences from the Proteobacteria and Firmicutes. Recently, the three-dimensional structure of NAT derived from the bacterium Salmonella typhimurium (PDB accession code 1E2T) was resolved and revealed an active site catalytic triad composed of Cys(69)-His(107)-Asp(122). These residues have been shown to be conserved in all prokaryotic and eukaryotic NAT homologues together with three highly conserved regions which are found proximal to the active site triad. The characterization of prokaryotic NATs and NAT-like enzymes is reported. It is also predicted that prokaryotic NATs, based on gene cluster composition and distribution amongst genomes, participate in the metabolism of xenobiotics derived from decomposition of organic materials. PMID:11320117

  6. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin.

    PubMed

    Krämer, Anna C; Thulstrup, Peter W; Lund, Marianne N; Davies, Michael J

    2016-08-01

    Oxidation results in protein deterioration in mammals, plants, foodstuffs and pharmaceuticals, via changes in amino acid composition, fragmentation, aggregation, solubility, hydrophobicity, conformation, function and susceptibility to digestion. This study investigated whether and how individual or combined treatment with heat, a commonly encountered factor in industrial processing, and H2O2 alters the structure and composition of the major whey protein β-lactoglobulin. Thermal treatment induced reducible cross-links, with this being enhanced by low H2O2 concentrations, but decreased by high concentrations, where fragmentation was detected. Cross-linking was prevented when the single free Cys121 residue was blocked with iodoacetamide. Low concentrations of H2O2 added before heating depleted thiols, with H2O2 alone, or H2O2 added after heating, having lesser effects. A similar pattern was detected for methionine loss and methionine sulfoxide formation. Tryptophan loss was only detected with high levels of H2O2, and no other amino acid was affected, indicating that sulfur-centered amino acids are critical targets. No protection against aggregation was provided by high concentrations of the radical scavenger 5, 5-dimethyl-1-pyrroline N-oxide (DMPO), consistent with molecular oxidation, rather than radical reactions, being the major process. Sulfenic acid formation was detected by Western blotting and LC-MS/MS peptide mass-mapping of dimedone-treated protein, consistent with these species being significant intermediates in heat-induced cross-linking, especially in the presence of H2O2. Studies using circular dichroism and intrinsic fluorescence indicate that H2O2 increases unfolding during heating. These mechanistic insights provide potential strategies for modulating the extent of modification of proteins exposed to thermal and oxidant treatment. PMID:27430598

  7. Characterization of the Cysteine Content in Proteins Utilizing Cysteine Selenylation with 266 nm Ultraviolet Photodissociation (UVPD)

    NASA Astrophysics Data System (ADS)

    Parker, W. Ryan; Brodbelt, Jennifer S.

    2016-04-01

    Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se-S bond upon 266 UVPD. The number of Se-S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.

  8. Characterization of the Cysteine Content in Proteins Utilizing Cysteine Selenylation with 266 nm Ultraviolet Photodissociation (UVPD)

    NASA Astrophysics Data System (ADS)

    Parker, W. Ryan; Brodbelt, Jennifer S.

    2016-08-01

    Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se-S bond upon 266 UVPD. The number of Se-S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.

  9. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    PubMed

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  10. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication

    PubMed Central

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2015-01-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  11. π-Clamp Mediated Cysteine Conjugation

    PubMed Central

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; Van Voorhis, Troy; Pentelute, Bradley L.

    2016-01-01

    Site-selective functionalization of complex molecules is a grand challenge in chemistry. Protecting groups or catalysts must be used to selectively modify one site among many that are similarly reactive. General strategies are rare such the local chemical environment around the target site is tuned for selective transformation. Here we show a four amino acid sequence (Phe-Cys-Pro-Phe), which we call the “π-clamp”, tunes the reactivity of its cysteine thiol for the site-selective conjugation with perfluoroaromatic reagents. We used the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues (e.g. antibodies and cysteine-based enzymes), which was impossible with prior cysteine modification methods. The modified π-clamp antibodies retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates (ADCs) for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach for site-selective chemistry and provides opportunities to modify biomolecules for research and therapeutics. PMID:26791894

  12. π-Clamp-mediated cysteine conjugation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  13. Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation

    PubMed Central

    Kim, Soohyun; Kim, Hyori; Chung, Junho

    2016-01-01

    For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process. PMID:26764487

  14. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  15. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site

    PubMed Central

    Aurelius, Oskar; Johansson, Renzo; Bågenholm, Viktoria; Lundin, Daniel; Tholander, Fredrik; Balhuizen, Alexander; Beck, Tobias; Sahlin, Margareta; Sjöberg, Britt-Marie; Mulliez, Etienne; Logan, Derek T.

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, the building blocks for DNA synthesis, and are found in all but a few organisms. RNRs use radical chemistry to catalyze the reduction reaction. Despite RNR having evolved several mechanisms for generation of different kinds of essential radicals across a large evolutionary time frame, this initial radical is normally always channelled to a strictly conserved cysteine residue directly adjacent to the substrate for initiation of substrate reduction, and this cysteine has been found in the structures of all RNRs solved to date. We present the crystal structure of an anaerobic RNR from the extreme thermophile Thermotoga maritima (tmNrdD), alone and in several complexes, including with the allosteric effector dATP and its cognate substrate CTP. In the crystal structure of the enzyme as purified, tmNrdD lacks a cysteine for radical transfer to the substrate pre-positioned in the active site. Nevertheless activity assays using anaerobic cell extracts from T. maritima demonstrate that the class III RNR is enzymatically active. Other genetic and microbiological evidence is summarized indicating that the enzyme is important for T. maritima. Mutation of either of two cysteine residues in a disordered loop far from the active site results in inactive enzyme. We discuss the possible mechanisms for radical initiation of substrate reduction given the collected evidence from the crystal structure, our activity assays and other published work. Taken together, the results suggest either that initiation of substrate reduction may involve unprecedented conformational changes in the enzyme to bring one of these cysteine residues to the expected position, or that alternative routes for initiation of the RNR reduction reaction may exist. Finally, we present a phylogenetic analysis showing that the structure of tmNrdD is representative of a new RNR subclass IIIh, present in all Thermotoga

  16. Cysteine Modification: Probing Channel Structure, Function and Conformational Change.

    PubMed

    Akabas, Myles H

    2015-01-01

    Cysteine substitution has been a powerful tool to investigate the structure and function of proteins. It has been particularly useful for studies of membrane proteins in their native environment, embedded in phospholipid membranes. Among the 20 amino acids, cysteine is uniquely reactive. This reactivity has motivated the synthesis of a wide array of sulfhydryl reactive chemicals. The commercially available array of sulfhydryl reactive reagents has allowed investigators to probe the local steric and electrostatic environment around engineered cysteines and to position fluorescent, paramagnetic and mass probes at specific sites within proteins and for distance measurements between pairs of sites. Probing the reactivity and accessibility of engineered cysteines has been extensively used in Substituted Cysteine Accessibility Method (SCAM) investigations of ion channels, membrane transporters and receptors. These studies have successfully identified the residues lining ion channels, agonist/antagonist and allosteric modulator binding sites, and regions whose conformation changes as proteins transition between different functional states. The thousands of cysteine-substitution mutants reported in the literature demonstrate that, in general, mutation to cysteine is well tolerated. This has allowed systematic studies of residues in transmembrane segments and in other parts of membrane proteins. Finally, by inserting pairs of cysteines and assaying their ability to form disulfide bonds, changes in proximity and mobility relationships between specific positions within a protein can be inferred. Thus, cysteine mutagenesis has provided a wealth of data on the structure of membrane proteins in their functional environment. This data can complement the structural insights obtained from the burgeoning number of crystal structures of detergent solubilized membrane proteins whose functional state is often uncertain. This article will review the use of cysteine mutagenesis to probe

  17. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes

    PubMed Central

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A.; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes. PMID:26054293

  18. Mapping of the local environmental changes in proteins by cysteine scanning

    PubMed Central

    Yamazaki, Yoichi; Nagata, Tomoko; Terakita, Akihisa; Kandori, Hideki; Shichida, Yoshinori; Imamoto, Yasushi

    2014-01-01

    Protein conformational changes, which regulate the activity of proteins, are induced by the alternation of intramolecular interactions. Therefore, the detection of the local environmental changes around the key amino acid residues is essential to understand the activation mechanisms of functional proteins. Here we developed the methods to scan the local environmental changes using the vibrational band of cysteine S-H group. We validated the sensitivity of this method using bathorhodopsin, a photoproduct of rhodopsin trapped at liquid nitrogen temperature, which undergoes little conformational changes from the dark state as shown by the X-ray crystallography. The cysteine residues were individually introduced into 15 positions of Helix III, which contains several key amino acid residues for the light-induced conformational changes of rhodopsin. The shifts of S-H stretching modes of these cysteine residues and native cysteine residues upon the formation of bathorhodopsin were measured by Fourier transform infrared spectroscopy. While most of cysteine residues demonstrated no shift of S-H stretching mode, cysteine residues introduced at positions 117, 118, and 122, which are in the vicinity of the chromophore, demonstrated the significant changes. The current results are consistent with the crystal structure of bathorhodopsin, implying that the cysteine scanning is sensitive enough to detect the tiny conformational changes.

  19. Mapping of the local environmental changes in proteins by cysteine scanning.

    PubMed

    Yamazaki, Yoichi; Nagata, Tomoko; Terakita, Akihisa; Kandori, Hideki; Shichida, Yoshinori; Imamoto, Yasushi

    2014-01-01

    Protein conformational changes, which regulate the activity of proteins, are induced by the alternation of intramolecular interactions. Therefore, the detection of the local environmental changes around the key amino acid residues is essential to understand the activation mechanisms of functional proteins. Here we developed the methods to scan the local environmental changes using the vibrational band of cysteine S-H group. We validated the sensitivity of this method using bathorhodopsin, a photoproduct of rhodopsin trapped at liquid nitrogen temperature, which undergoes little conformational changes from the dark state as shown by the X-ray crystallography. The cysteine residues were individually introduced into 15 positions of Helix III, which contains several key amino acid residues for the light-induced conformational changes of rhodopsin. The shifts of S-H stretching modes of these cysteine residues and native cysteine residues upon the formation of bathorhodopsin were measured by Fourier transform infrared spectroscopy. While most of cysteine residues demonstrated no shift of S-H stretching mode, cysteine residues introduced at positions 117, 118, and 122, which are in the vicinity of the chromophore, demonstrated the significant changes. The current results are consistent with the crystal structure of bathorhodopsin, implying that the cysteine scanning is sensitive enough to detect the tiny conformational changes. PMID:27493492

  20. Determining cysteine oxidation status using differential alkylation

    NASA Astrophysics Data System (ADS)

    Schilling, Birgit; Yoo, Chris B.; Collins, Christopher J.; Gibson, Bradford W.

    2004-08-01

    Oxidative damage to proteins plays a major role in aging and in the pathology of many degenerative diseases. Under conditions of oxidative stress, reactive oxygen and nitrogen species can modify key redox sensitive amino acid side chains leading to altered biological activities or structures of the targeted proteins. This in turn can affect signaling or regulatory control pathways as well as protein turnover and degradation efficiency in the proteasome. Cysteine residues are particularly susceptible to oxidation, primarily through reversible modifications (e.g., thiolation and nitrosylation), although irreversible oxidation can lead to products that cannot be repaired in vivo such as sulfonic acid. This report describes a strategy to determine the overall level of reversible cysteine oxidation using a stable isotope differential alkylation approach in combination with mass spectrometric analysis. This method employs 13C-labeled alkylating reagents, such as N-ethyl-[1,4-13C2]-maleimide, bromo-[1,2-13C2]-acetic acid and their non-labeled counterparts to quantitatively assess the level of cysteine oxidation at specific sites in oxidized proteins. The differential alkylation protocol was evaluated using standard peptides and proteins, and then applied to monitor and determine the level of oxidative damage induced by diamide, a mild oxidant. The formation and mass spectrometric analysis of irreversible cysteine acid modification will also be discussed as several such modifications have been identified in subunits of the mitochondrial electron transport chain complexes. This strategy will hopefully contribute to our understanding of the role that cysteine oxidation plays in such chronic diseases such as Parkinson's disease, where studies in animal and cell models have shown oxidative damage to mitochondrial Complex I to be a specific and early target.

  1. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).

    PubMed

    Gu, Liqing; Robinson, Renã A S

    2016-04-01

    Cysteine is widely involved in redox signaling pathways through a number of reversible and irreversible modifications. Reversible modifications (e.g., S-glutathionylation, S-nitrosylation, disulfide bonds, and sulfenic acid) are used to protect proteins from oxidative attack and maintain cellular homeostasis, while irreversible oxidations (e.g., sulfinic acid and sulfonic acid) serve as hallmarks of oxidative stress. Proteomic analysis of cysteine-enriched peptides coupled with reduction of oxidized thiols can be used to measure the oxidation states of cysteine, which is helpful for elucidating the role that oxidative stress plays in biology and disease. As an extension of our previously reported cysDML method, we have developed oxidized cysteine-selective dimethylation (OxcysDML), to investigate the site-specific total oxidation of cysteine residues in biologically relevant samples. OxcysDML employs (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing reversibly oxidized cysteine by a solid phase resin, and (3) isotopic labeling of peptide amino groups to quantify cysteine modifications arising from different biological conditions. On-resin enrichment and labeling minimizes sample handing time and improves efficiency in comparison with other redox proteomic methods. OxcysDML is also inexpensive and flexible, as it can accommodate the exploration of various cysteine modifications. Here, we applied the method to liver tissues from a late-stage Alzheimer's disease (AD) mouse model and wild-type (WT) controls. Because we have previously characterized this proteome using the cysDML approach, we are able here to probe deeper into the redox status of cysteine in AD. OxcysDML identified 1129 cysteine sites (from 527 proteins), among which 828 cysteine sites underwent oxidative modifications. Nineteen oxidized cysteine sites had significant alteration levels in AD and represent proteins involved in metabolic processes. Overall

  2. Reactivity of C-terminal cysteines with HNO.

    PubMed

    Keceli, Gizem; Toscano, John P

    2014-06-10

    Nitroxyl (HNO), a potential heart failure therapeutic, is known to target cysteine residues to form sulfinamides and/or disulfides. Because HNO-derived modifications may depend on their local environment, we have investigated the reactivity of HNO with cysteine derivatives and C-terminal cysteine-containing peptides at physiological pH and temperature. Our findings indicate that the nature of HNO-derived modifications of C-terminal cysteines is affected by the C-terminal carboxylate. Apart from the lack of sulfinamide formation, these studies have revealed the presence of new products, a sulfohydroxamic acid derivative (RS(O)2NHOH) and a thiosulfonate (RS(O)2SR), presumably produced under our experimental conditions via the intermediacy of a cyclic structure that is hydrolyzed to give a sulfenic acid (RSOH). Moreover, these modifications are formed independent of oxygen. PMID:24869490

  3. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  4. Cysteines under ROS attack in plants: a proteomics view.

    PubMed

    Akter, Salma; Huang, Jingjing; Waszczak, Cezary; Jacques, Silke; Gevaert, Kris; Van Breusegem, Frank; Messens, Joris

    2015-05-01

    Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction. PMID:25750420

  5. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking.

    PubMed

    Cohen, Todd J; Hwang, Andrew W; Unger, Travis; Trojanowski, John Q; Lee, Virginia M Y

    2012-03-01

    TDP-43 is the major disease protein in ubiquitin-positive inclusions of amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD) characterized by TDP-43 pathology (FTLD-TDP). Accumulation of insoluble TDP-43 aggregates could impair normal TDP-43 functions and initiate disease progression. Thus, it is critical to define the signalling mechanisms regulating TDP-43 since this could open up new avenues for therapeutic interventions. Here, we have identified a redox-mediated signalling mechanism directly regulating TDP-43. Using in vitro and cell-based studies, we demonstrate that oxidative stress promotes TDP-43 cross-linking via cysteine oxidation and disulphide bond formation leading to decreased TDP-43 solubility. Biochemical analysis identified several cysteine residues located within and adjacent to the second RNA-recognition motif that contribute to both intra- and inter-molecular interactions, supporting TDP-43 as a target of redox signalling. Moreover, increased levels of cross-linked TDP-43 species are found in FTLD-TDP brains, indicating that aberrant TDP-43 cross-linking is a prominent pathological feature of this disease. Thus, TDP-43 is dynamically regulated by a redox regulatory switch that links oxidative stress to the modulation of TDP-43 and its downstream targets. PMID:22193716

  6. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking

    PubMed Central

    Cohen, Todd J; Hwang, Andrew W; Unger, Travis; Trojanowski, John Q; Lee, Virginia M Y

    2012-01-01

    TDP-43 is the major disease protein in ubiquitin-positive inclusions of amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD) characterized by TDP-43 pathology (FTLD-TDP). Accumulation of insoluble TDP-43 aggregates could impair normal TDP-43 functions and initiate disease progression. Thus, it is critical to define the signalling mechanisms regulating TDP-43 since this could open up new avenues for therapeutic interventions. Here, we have identified a redox-mediated signalling mechanism directly regulating TDP-43. Using in vitro and cell-based studies, we demonstrate that oxidative stress promotes TDP-43 cross-linking via cysteine oxidation and disulphide bond formation leading to decreased TDP-43 solubility. Biochemical analysis identified several cysteine residues located within and adjacent to the second RNA-recognition motif that contribute to both intra- and inter-molecular interactions, supporting TDP-43 as a target of redox signalling. Moreover, increased levels of cross-linked TDP-43 species are found in FTLD-TDP brains, indicating that aberrant TDP-43 cross-linking is a prominent pathological feature of this disease. Thus, TDP-43 is dynamically regulated by a redox regulatory switch that links oxidative stress to the modulation of TDP-43 and its downstream targets. PMID:22193716

  7. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  8. Post-translational modification in the gas phase: mechanism of cysteine S-nitrosylation via ion-molecule reactions

    PubMed Central

    Osburn, Sandra; O'Hair, Richard A.J.; Black, Stephen M.; Ryzhov, Victor

    2013-01-01

    The gas-phase mechanism of S-nitrosylation of thiols was studied in a quadrupole ion trap mass spectrometer. This was done via ion-molecule reactions of protonated cysteine and many of its derivatives and other thiol ions with neutral tert-butyl nitrite or nitrous acid. Our results showed that the presence of the carboxylic acid functional group, –COOH, in the vicinity of the thiol group is essential for the gas-phase nitrosylation of thiols. When the carboxyl proton is replaced by a methyl group (cysteine methyl ester) no nitrosylation was observed. Other thiols lacking a carboxylic acid functional group displayed no S-nitrosylation, strongly suggesting that the carboxyl hydrogen plays a key role in the nitrosylation process. These results are in excellent agreement with a solution-phase mechanism proposed by Stamler et al. (J. S. Stamler, E. J. Toone, S. A. Lipton, N. J. Sucher. Neuron 1997, 18, 691–696) who suggested a catalytic role for the carboxylic acid group adjacent to cysteine residues and with later additions by Ascenzi et al. (P. Ascenzi, M. Colasanti, T. Persichini, M. Muolo, F. Polticelli, G. Venturini, D. Bordo, M. Bolognesi. Biol. Chem. 2000, 381, 623–627) who postulated that the presence of the carboxyl in the cysteine microenvironment in proteins is crucial for S-nitrosylation. A concerted mechanism for the gas-phase S-nitrosylation was proposed based on our results and was further studied using theoretical calculations. Our calculations showed that this proposed pathway is exothermic by 44.0 kJ mol−1. This is one of the few recent examples when a gas-phase mechanism matches one in solution. PMID:22006383

  9. Post-translational modification in the gas phase: mechanism of cysteine S-nitrosylation via ion-molecule reactions.

    PubMed

    Osburn, Sandra; O'Hair, Richard A J; Black, Stephen M; Ryzhov, Victor

    2011-11-15

    The gas-phase mechanism of S-nitrosylation of thiols was studied in a quadrupole ion trap mass spectrometer. This was done via ion-molecule reactions of protonated cysteine and many of its derivatives and other thiol ions with neutral tert-butyl nitrite or nitrous acid. Our results showed that the presence of the carboxylic acid functional group, -COOH, in the vicinity of the thiol group is essential for the gas-phase nitrosylation of thiols. When the carboxyl proton is replaced by a methyl group (cysteine methyl ester) no nitrosylation was observed. Other thiols lacking a carboxylic acid functional group displayed no S-nitrosylation, strongly suggesting that the carboxyl hydrogen plays a key role in the nitrosylation process. These results are in excellent agreement with a solution-phase mechanism proposed by Stamler et al. (J. S. Stamler, E. J. Toone, S. A. Lipton, N. J. Sucher. Neuron 1997, 18, 691-696) who suggested a catalytic role for the carboxylic acid group adjacent to cysteine residues and with later additions by Ascenzi et al. (P. Ascenzi, M. Colasanti, T. Persichini, M. Muolo, F. Polticelli, G. Venturini, D. Bordo, M. Bolognesi. Biol. Chem. 2000, 381, 623-627) who postulated that the presence of the carboxyl in the cysteine microenvironment in proteins is crucial for S-nitrosylation. A concerted mechanism for the gas-phase S-nitrosylation was proposed based on our results and was further studied using theoretical calculations. Our calculations showed that this proposed pathway is exothermic by 44.0 kJ mol(-1). This is one of the few recent examples when a gas-phase mechanism matches one in solution. PMID:22006383

  10. Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine.

    PubMed

    Saisawang, Chonticha; Saitornuang, Sawanan; Sillapee, Pornpan; Ubol, Sukathida; Smith, Duncan R; Ketterman, Albert J

    2015-01-01

    Chikungunya virus is the pathogenic alphavirus that causes chikungunya fever in humans. In the last decade millions of cases have been reported around the world from Africa to Asia to the Americas. The alphavirus nsP2 protein is multifunctional and is considered to be pivotal to viral replication, as the nsP2 protease activity is critical for proteolytic processing of the viral polyprotein during replication. Classically the alphavirus nsP2 protease is thought to be papain-like with the enzyme reaction proceeding through a cysteine/histidine catalytic dyad. We performed structure-function studies on the chikungunya nsP2 protease and show that the enzyme is not papain-like. Characterization of the catalytic dyad cysteine residue enabled us to identify a nearby serine that is catalytically interchangeable with the dyad cysteine residue. The enzyme retains activity upon alanine replacement of either residue but a replacement of both cysteine and serine residues results in no detectable activity. Protein dynamics appears to allow the use of either the cysteine or the serine residue in catalysis. This switchable dyad residue has not been previously reported for alphavirus nsP2 proteases and would have a major impact on the nsP2 protease as an anti-viral target. PMID:26597768

  11. A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine.

    PubMed

    Manibalan, Kesavan; Chen, Sin-Ming; Mani, Veerappan; Huang, Tsung-Tao; Huang, Sheng-Tung

    2016-07-01

    The development of sensitive fluorescence probes to detect biothiols such as cysteine and homocysteine has attracted great attention in recent times. Herein, we described the design and synthesis of coumarin based long-wavelength fluorescence probe, Bromo-2-benzothiazolyl-3-cyano-7-hydroxy coumarin (BBCH, 2) for selective detections of cysteine and homocysteine. The probe is rationally designed in such a way that both sulfhydryl and adjacent amino groups of thiols are involved in sensing process. Only cysteine/homocysteine able to react with BBCH to release fluorescence reporter (BCH, 1); while, glutathione and other amino acids unable to react with BBCH due to the absence of adjacent amino groups. In presence of cysteine, the color of BBCH is turns from colorless to red and thus BBCH is a naked eye fluorescence indicator for cysteine. Besides, BBCH can discriminate cysteine and homocysteine based on color changes and different reaction rates. The described sensing platform showed good sensing performances to detect cysteine and homocysteine with detection limits of 0.87 and 0.19 μM, respectively. Practical applicability was verified in biological and pharmaceutical samples. PMID:27290640

  12. The Cysteine Proteome

    PubMed Central

    Go, Young-Mi; Chandler, Joshua D.; Jones, Dean P.

    2015-01-01

    The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metallation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to discriminate network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome. PMID:25843657

  13. Quantitative Mapping of Reversible Mitochondrial Complex I Cysteine Oxidation in a Parkinson Disease Mouse Model*

    PubMed Central

    Danielson, Steven R.; Held, Jason M.; Oo, May; Riley, Rebeccah; Gibson, Bradford W.; Andersen, Julie K.

    2011-01-01

    Differential cysteine oxidation within mitochondrial Complex I has been quantified in an in vivo oxidative stress model of Parkinson disease. We developed a strategy that incorporates rapid and efficient immunoaffinity purification of Complex I followed by differential alkylation and quantitative detection using sensitive mass spectrometry techniques. This method allowed us to quantify the reversible cysteine oxidation status of 34 distinct cysteine residues out of a total 130 present in murine Complex I. Six Complex I cysteine residues were found to display an increase in oxidation relative to controls in brains from mice undergoing in vivo glutathione depletion. Three of these residues were found to reside within iron-sulfur clusters of Complex I, suggesting that their redox state may affect electron transport function. PMID:21196577

  14. Copper Inhibits the Protease from Human Immunodeficiency Virus 1 by Both Cysteine-Dependent and Cysteine-Independent Mechanisms

    NASA Astrophysics Data System (ADS)

    Karlstrom, Anders R.; Levine, Rodney L.

    1991-07-01

    The protease of the human immunodeficiency virus is essential for replication of the virus, and the enzyme is therefore an attractive target for antiviral action. We have found that the viral protease is inhibited by approximately stoichiometric concentrations of copper or mercury ions. Inactivation by Cu2+ was rapid and not reversed by subsequent exposure to EDTA or dithiothreitol. Direct inhibition by Cu2+ required the presence of cysteine residue(s) in the protease. Thus, a synthetic protease lacking cysteine residues was not inhibited by exposure to copper. However, addition of dithiothreitol as an exogenous thiol rendered even the synthetic protease susceptible to inactivation by copper. Oxygen was not required for inactivation of either the wild-type or the synthetic protease. These results provide the basis for the design of novel types of protease inhibitors.

  15. Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response

    PubMed Central

    Saito, Ryota; Hiramoto, Keiichiro; Asami, Soichiro; Naganuma, Eriko; Suda, Hiromi; Iso, Tatsuro; Yamamoto, Hirotaka; Morita, Masanobu; Baird, Liam; Furusawa, Yuki; Negishi, Takaaki; Ichinose, Masakazu

    2015-01-01

    The Keap1-Nrf2 system plays a central role in cytoprotection against electrophilic/oxidative stresses. Although Cys151, Cys273, and Cys288 of Keap1 are major sensor cysteine residues for detecting these stresses, it has not been technically feasible to evaluate the functionality of Cys273 or Cys288, since Keap1 mutants that harbor substitutions in these residues and maintain the ability to repress Nrf2 accumulation do not exist. To overcome this problem, we systematically introduced amino acid substitutions into Cys273/Cys288 and finally identified Cys273Trp and Cys288Glu mutations that do not affect Keap1's ability to repress Nrf2 accumulation. Utilizing these Keap1 mutants, we generated stable murine embryonic fibroblast (MEF) cell lines and knock-in mouse lines. Our analyses with the MEFs and peritoneal macrophages from the knock-in mice revealed that three major cysteine residues, Cys151, Cys273, and Cys288, individually and/or redundantly act as sensors. Based on the functional necessity of these three cysteine residues, we categorized chemical inducers of Nrf2 into four classes. Class I and II utilizes Cys151 and Cys288, respectively, while class III requires all three residues (Cys151/Cys273/Cys288), while class IV inducers function independently of all three of these cysteine residues. This study thus demonstrates that Keap1 utilizes multiple cysteine residues specifically and/or collaboratively as sensors for the detection of a wide range of environmental stresses. PMID:26527616

  16. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  17. Artemisolide is a typical inhibitor of I{kappa}B kinase {beta} targeting cysteine-179 residue and down-regulates NF-{kappa}B-dependent TNF-{alpha} expression in LPS-activated macrophages

    SciTech Connect

    Kim, Byung Hak; Lee, Jun-Young; Seo, Jee Hee; Lee, Hwa Young; Ryu, Shi Yong; Ahn, Byung Woo; Lee, Chong-Kil; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2007-09-28

    Nuclear factor (NF)-{kappa}B regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-{kappa}B inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-{kappa}B activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of I{kappa}B kinase {beta} (IKK{beta}), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-{kappa}B activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKK{beta} and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKK{beta} activity was completely abolished by substitution of Cys-179 residue of IKK{beta} to Ala residue, indicating direct targeting site of ATM. ATM could inhibit I{kappa}B{alpha} phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-{kappa}B activation. Further, we demonstrate that ATM down-regulates NF-{kappa}B-dependent TNF-{alpha} expression. Taken together, this study provides a pharmacological potential of ATM in NF-{kappa}B-dependent inflammatory disorders.

  18. A conserved cysteine motif essential for ceramide kinase function.

    PubMed

    Lidome, Emilie; Graf, Christine; Jaritz, Markus; Schanzer, Andrea; Rovina, Philipp; Nikolay, Rainer; Bornancin, Frédéric

    2008-10-01

    Ceramide kinase (CerK) is a sphingolipid metabolizing enzyme very sensitive to oxidation; however, the determinants are unknown. We show here that the thiol-modifying agent N-ethyl-maleimide abrogates CerK activity in vitro and in a cell based assay, implying that important cysteine residues are accessible in purified as well as endogenous CerK. We replaced every 22 residues in human CerK, by an alanine, and measured activity in the resulting mutant proteins. This led to identification of a cluster of cysteines, C(347)XXXC(351)XXC(354), essential for CerK function. These findings are discussed based on homology modeling of the catalytic domain of CerK. PMID:18662741

  19. Intrinsic membrane association of Drosophila cysteine string proteins.

    PubMed

    Mastrogiacomo, A; Kohan, S A; Whitelegge, J P; Gundersen, C B

    1998-09-25

    Cysteine string proteins (csps) are highly conserved constituents of vertebrate and invertebrate secretory organelles. Biochemical and immunoprecipitation experiments implied that vertebrate csps were integral membrane proteins that were tethered to the outer leaflet of secretory vesicles via the fatty acyl residues of their extensively acylated cysteine string. Independently, work of others suggested that Drosophila csps were peripheral membrane proteins that were anchored to membranes by a mechanism that was independent of the cysteine string and its fatty acyl residues. We extended these investigation and found first that sodium carbonate treatment partially stripped both csps and the integral membrane protein, synaptotagmin, from Drosophila membranes. Concomitantly, carbonate released fatty acids into the medium, arguing that it has a mild, solubilizing effect on these membranes. Second, we observed that Drosophila csps behaved like integral membrane proteins in Triton X-114 partitioning experiments. Third, we found that when membrane-bound csps were deacylated, they remained membrane bound. Moreover, it appeared that hydrophobic interactions were necessary for this persistent membrane association of csps. Thus, neither reducing conditions, urea, nor chaotropic agents displaced deacylated csps from membranes. Only detergents were effective in solubilizing deacylated csps. Finally, by virtue of the inaccessibility of deacylated csps to thiol alkylation by the membrane-impermeant alkylating reagent, iodoacetic acid, we inferred that it was the cysteine string domain that mediated the membrane association of deacylated csps. Thus, we conclude that under physiological conditions csps are integral membrane proteins of secretory organelles, and that the cysteine string domain plays a vital role in the membrane association of these proteins. PMID:9771899

  20. Analysis of the subgroup A avian sarcoma and leukosis virus receptor: the 40-residue, cysteine-rich, low-density lipoprotein receptor repeat motif of Tva is sufficient to mediate viral entry.

    PubMed

    Rong, L; Bates, P

    1995-08-01

    The genes encoding the receptor for subgroup A Rous sarcoma viruses (tva) were recently cloned from both chicken and quail cells (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Previous work suggested that only the extracellular domain of Tva interacts with the virus (P. Bates, J. A. T. Young, and H. E. Varmus, Cell 74:1043-1051, 1993). Tva is a small membrane-associated protein containing in its extracellular domain a 40-amino-acid region which is closely related to the low-density lipoprotein receptor (LDLR) repeat motif. To determine the region of the Tva extracellular domain responsible for viral receptor function, we created chimeric proteins containing various regions of the Tva extracellular domain fused with a murine CD8 membrane anchor. Analysis of these proteins demonstrates that any chimera containing the Tva LDLR repeat motif can specifically bind the envelope protein of subgroup A avian sarcoma and leukosis viruses. Furthermore, NIH 3T3 cell lines expressing these chimeric proteins were efficiently infected by subgroup A avian sarcoma and leukosis virus vectors. Our results demonstrate that the 40-residue-long LDLR repeat motif of Tva is responsible for viral receptor function. PMID:7609052

  1. Structural requirements for assembly of dimeric IgA probed by site-directed mutagenesis of J chain and a cysteine residue of the alpha-chain CH2 domain.

    PubMed

    Krugmann, S; Pleass, R J; Atkin, J D; Woof, J M

    1997-07-01

    The structural features of J chain required for interaction with IgA in IgA dimer assembly were investigated by coexpression of wild-type and mutant forms of J chain with IgA1 in CHO cells. With wild-type J chain, a mixture of J chain-containing dimers and monomers was secreted. Substitution of Cys14 of J chain with Ser resulted in expression of only monomer IgA covalently associated with J chain. Similarly, mutation of Cys68 to Ser also resulted in expression predominantly of a monomer IgA-J chain species. These results suggest that Cys14 and Cys68 play critical roles in formation of J chain-containing IgA dimers, with each forming a disulfide bridge to an IgA monomer. Substitution of Asn48 with Ala, to prevent attachment of N-linked carbohydrate to J chain, also resulted in markedly reduced dimer assembly, suggesting a requirement for the sugar moiety in J chain function. We also mutated Cys311 on the C alpha2 domain of the IgA heavy chain to Ser. When coexpressed with wild-type J chain, this mutant was still capable of forming dimers, indicating that this residue was not involved in dimerization. Taken together, our results are consistent with an arrangement in which IgA monomers are linked end-to-end with J chain interposed. PMID:9200460

  2. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    PubMed Central

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  3. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5271 Cysteine. (a) Product. Cysteine...

  4. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  5. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    PubMed

    Mason, Alexander F; Thordarson, Pall

    2016-01-01

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers. PMID:27501061

  6. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  7. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.

    PubMed

    Defelipe, Lucas A; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A; Turjanski, Adrián G

    2015-03-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  8. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    PubMed Central

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  9. Isotope-coded, iodoacetamide-based reagent to determine individual cysteine pKa values by MALDI-TOF mass spectrometry

    PubMed Central

    Nelson, Kimberly J.; Day, Amanda E.; Zeng, Bubing B.; King, S. Bruce; Poole, Leslie B.

    2008-01-01

    Cysteine reactivity in enzymes is imparted to a large extent by the stabilization of the deprotonated form of the reduced cysteine (i.e. the thiolate) within the active site. While this is likely to be an important chemical attribute of many thiol-based enzymes including cysteine-dependent peroxidases (peroxiredoxins) and proteases, only relatively few pKa values have been determined experimentally. Presented here is a new technique for determining the pKa value of cysteine residues through quantitative mass spectrometry following chemical modification with an iodoacetamide-based reagent over a range of pH buffers. This isotope-coded reagent, N-phenyl iodoacetamide (iodoacetanilide), is readily prepared in deuterated (d5) and protiated (d0) versions and is more reactive toward free cysteine than is iodoacetamide. Using this approach, the pKa values for the two cysteine residues in Escherichia coli thioredoxin were determined to be 6.5 and > 10, in good agreement with previous reports using chemical modification approaches. This technique allows the pKa of specific cysteine residues to be determined in a clear, fast, and simple manner and, because cysteine residues on separate tryptic peptides are measured separately, is not complicated by the presence of multiple cysteines within the protein of interest. PMID:18162165

  10. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs

    PubMed Central

    Driggers, Camden M; Hartman, Steven J; Karplus, P Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ∼15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases. PMID:25307852

  11. A Caged Electrophilic Probe for Global Analysis of Cysteine Reactivity in Living Cells.

    PubMed

    Abo, Masahiro; Weerapana, Eranthie

    2015-06-10

    Cysteine residues are subject to diverse modifications, such as oxidation, nitrosation, and lipidation. The resulting loss in cysteine reactivity can be measured using electrophilic chemical probes, which importantly provide the stoichiometry of modification. An iodoacetamide (IA)-based chemical probe has been used to concurrently quantify reactivity changes in hundreds of cysteines within cell lysates. However, the cytotoxicity of the IA group precludes efficient live-cell labeling, which is important for preserving transient cysteine modifications. To overcome this limitation, a caged bromomethyl ketone (BK) electrophile was developed, which shows minimal cytotoxicity and provides spatial and temporal control of electrophile activation through irradiation. The caged-BK probe was utilized to monitor cysteine reactivity changes in A431 cells upon epidermal growth factor (EGF)-stimulated release of cellular reactive oxygen species. Decreased reactivity was observed for cysteines known to form sulfenic acids and redox-active disulfides. Importantly, the caged-BK platform provided the first quantification of intracellular disulfide bond formation upon EGF stimulation. In summary, the caged-BK probe is a powerful tool to identify reactivity changes associated with diverse cysteine modifications, including oxidation, metal chelation, and inhibitor binding, within a physiologically relevant context. PMID:26020833

  12. Development of Cysteine-Free Fluorescent Proteins for the Oxidative Environment

    PubMed Central

    Suzuki, Takahisa; Arai, Seisuke; Takeuchi, Mayumi; Sakurai, Chiye; Ebana, Hideaki; Higashi, Tsunehito; Hashimoto, Hitoshi; Hatsuzawa, Kiyotaka; Wada, Ikuo

    2012-01-01

    Molecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins. These proteins almost cotranslationally form disulfide bonded oligomers when expressed in the endoplasmic reticulum (ER). Although single molecule photobleaching analysis showed that these oligomers were not fluorescent, the fluorescent monomer form often showed aberrant behavior in folding and motion, particularly when fused to cysteine-containing cargo. Therefore we investigated whether it was possible to eliminate the cysteine without losing the brightness. By site-saturated mutagenesis, we found that the cysteine residues in fluorescent proteins could be replaced with specific alternatives while still retaining their brightness. cf(cysteine-free)SGFP2 showed significantly reduced restriction of free diffusion in the ER and marked improvement of maturation when fused to the prion protein. We further applied this approach to TagRFP family proteins and found a set of mutations that obtains the same level of brightness as the cysteine-containing proteins. The approach used in this study to generate new cysteine-free fluorescent tags should expand the application of molecular imaging to the extracellular milieu and facilitate its usage in medicine and biotechnology. PMID:22649538

  13. Development of cysteine-free fluorescent proteins for the oxidative environment.

    PubMed

    Suzuki, Takahisa; Arai, Seisuke; Takeuchi, Mayumi; Sakurai, Chiye; Ebana, Hideaki; Higashi, Tsunehito; Hashimoto, Hitoshi; Hatsuzawa, Kiyotaka; Wada, Ikuo

    2012-01-01

    Molecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins. These proteins almost cotranslationally form disulfide bonded oligomers when expressed in the endoplasmic reticulum (ER). Although single molecule photobleaching analysis showed that these oligomers were not fluorescent, the fluorescent monomer form often showed aberrant behavior in folding and motion, particularly when fused to cysteine-containing cargo. Therefore we investigated whether it was possible to eliminate the cysteine without losing the brightness. By site-saturated mutagenesis, we found that the cysteine residues in fluorescent proteins could be replaced with specific alternatives while still retaining their brightness. cf(cysteine-free)SGFP2 showed significantly reduced restriction of free diffusion in the ER and marked improvement of maturation when fused to the prion protein. We further applied this approach to TagRFP family proteins and found a set of mutations that obtains the same level of brightness as the cysteine-containing proteins. The approach used in this study to generate new cysteine-free fluorescent tags should expand the application of molecular imaging to the extracellular milieu and facilitate its usage in medicine and biotechnology. PMID:22649538

  14. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure.

    PubMed Central

    Kreisberg, R.; Buchner, V.; Arad, D.

    1995-01-01

    This paper discusses the benefit of mapping paired cysteine mutation patterns as a guide to identifying the positions of protein disulfide bonds. This information can facilitate the computer modeling of protein tertiary structure. First, a simple, paired natural-cysteine-mutation map is presented that identifies the positions of putative disulfide bonds in protein families. The method is based on the observation that if, during the process of evolution, a disulfide-bonded cysteine residue is not conserved, then it is likely that its counterpart will also be mutated. For each target protein, protein databases were searched for the primary amino acid sequences of all known members of distinct protein families. Primary sequence alignment was carried out using PileUp algorithms in the GCG package. To search for correlated mutations, we listed only the positions where cysteine residues were highly conserved and emphasized the mutated residues. In proteins of known three-dimensional structure, a striking pattern of paired cysteine mutations correlated with the positions of known disulfide bridges. For proteins of unknown architecture, the mutation maps showed several positions where disulfide bridging might occur. PMID:8563638

  15. Cysteine Cathepsins in Human Carious Dentin

    PubMed Central

    Nascimento, F.D.; Minciotti, C.L.; Geraldeli, S.; Carrilho, M.R.; Pashley, D.H.; Tay, F.R.; Nader, H.B.; Salo, T.; Tjäderhane, L.; Tersariol, I.L.S.

    2011-01-01

    Matrix metalloproteinases (MMPs) are important in dentinal caries, and analysis of recent data demonstrates the presence of other collagen-degrading enzymes, cysteine cathepsins, in human dentin. This study aimed to examine the presence, source, and activity of cysteine cathepsins in human caries. Cathepsin B was detected with immunostaining. Saliva and dentin cysteine cathepsin and MMP activities on caries lesions were analyzed spectrofluorometrically. Immunostaining demonstrated stronger cathepsins B in carious than in healthy dentin. In carious dentin, cysteine cathepsin activity increased with increasing depth and age in chronic lesions, but decreased with age in active lesions. MMP activity decreased with age in both active and chronic lesions. Salivary MMP activities were higher in patients with active than chronic lesions and with increasing lesion depth, while cysteine cathepsin activities showed no differences. The results indicate that, along with MMPs, cysteine cathepsins are important, especially in active and deep caries. PMID:21248362

  16. The Basics of Thiols and Cysteines in Redox Biology and Chemistry

    PubMed Central

    Poole, Leslie B.

    2014-01-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts functional sites with their specialized properties (e.g., nucleophilicity, high affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low molecular weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes including signal transduction. PMID:25433365

  17. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids

    PubMed Central

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J.; Wilkinson, Trevor C. I.

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  18. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    PubMed

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  19. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.

    PubMed

    Hodges, Amelia J; Gallegos, Isaura J; Laughery, Marian F; Meas, Rithy; Tran, Linh; Wyrick, John J

    2015-07-01

    A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these "sprocket" arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or cysteine in Saccharomyces cerevisiae (budding yeast). However, the roles of the remaining sprocket arginine residues (H3 R63, H3 R83, H2A R43, H2B R36, H2A R78, H3 R49) in chromatin structure and other cellular processes have not been well characterized. We have genetically characterized mutations in each of these histone residues when introduced either singly or in combination to yeast cells. We find that pairs of arginine residues that bind DNA adjacent to the DNA exit/entry sites in the nucleosome are lethal in yeast when mutated in combination and cause a defect in histone occupancy. Furthermore, mutations in individual residues compromise repair of UV-induced DNA lesions and affect gene expression and cryptic transcription. This study reveals simple rules for how the location and structural mode of DNA binding influence the biological function of each histone sprocket arginine residue. PMID:25971662

  20. Plasma cysteine, cystine, and glutathione in cirrhosis.

    PubMed

    Chawla, R K; Lewis, F W; Kutner, M H; Bate, D M; Roy, R G; Rudman, D

    1984-10-01

    Plasma contains three forms of cyst(e)ine: cysteine, cystine, and protein-bound cysteine. The former is a thiol and the latter two are disulfides. The levels of all three types of cyst(e)ine, as well as the cysteinyl tripeptide glutathione, were measured in the plasma of 14 normal and 10 cirrhotic individuals. All subjects ate mixed foods. Some cirrhotic patients were studied during nasogastric hyperalimentation with Vivonex (Norwich Eaton Pharmaceuticals, Norwich, N.Y.) as well as during total parenteral nutrition with FreAmine III (American McGaw, Irvine, Calif.); neither formula contains cyst(e)ine. Regardless of the nature of the diet, cirrhotic patients had significantly subnormal values for cysteine, glutathione, and albumin. In addition, the following significant changes were found to be diet-dependent: (a) elevated methionine during Vivonex, (b) subnormal taurine during mixed foods and total parenteral nutrition, (c) depressed protein-bound cysteine during total parenteral nutrition, (d) depressed cyst(e)ine thiol/disulfide ratio during mixed foods, and (e) depressed total thiol during Vivonex and total parenteral nutrition. The data indicate multiple abnormalities in sulfur metabolism in cirrhosis. PMID:6468868

  1. 2,2'-Dithiobis(5-nitropyridine) (DTNP) as an effective and gentle deprotectant for common cysteine protecting groups.

    PubMed

    Schroll, Alayne L; Hondal, Robert J; Flemer, Stevenson

    2012-01-01

    Of all the commercially available amino acid derivatives for solid phase peptide synthesis, none has a greater abundance of side-chain protection diversity than cysteine. The high reactivity of the cysteine thiol necessitates its attenuation during peptide construction. Moreover, the propensity of cysteine residues within a peptide or protein sequence to form disulfide connectivity allows the opportunity for the peptide chemist to install these disulfides iteratively as a post-synthetic manipulation through the judicious placement of orthogonal pairs of cysteine S-protection within the peptide's architecture. It is important to continuously discover new vectors of deprotection for these different blocking protocols in order to achieve the highest degree of orthogonality between the removal of one species in the presence of another. We report here a complete investigation of the scope and limitations of the deprotective potential of 2,2'-dithiobis(5-nitropyridine) (DTNP) on a selection of commercially available Cys S-protecting groups. The gentle conditions of DTNP in a TFA solvent system show a remarkable ability to deprotect some cysteine blocking functionality traditionally removable only by more harsh or forcing conditions. Beyond illustrating the deprotective ability of this reagent cocktail within a cysteine-containing peptide sequence, the utility of this method was further demonstrated through iterative disulfide formation in oxytocin and apamin test peptides. It is shown that this methodology has high potential as a stand-alone cysteine deprotection technique or in further manipulation of disulfide architecture within a more complex cysteine-containing peptide template. PMID:22083608

  2. Cysteine sensing by plasmons of silver nanocubes

    NASA Astrophysics Data System (ADS)

    Elfassy, Eitan; Mastai, Yitzhak; Salomon, Adi

    2016-09-01

    Noble metal nanoparticles are considered to be valuable nanostructures in the field of sensors due to their spectral response sensitivity to small changes in the surrounding refractive index which enables them to detect a small amount of molecules. In this research, we use silver nanocubes of about 50 nm length to detect low concentrations of cysteine, a semi-essential amino acid. Following cysteine adsorption onto the nanocubes, a redshift in the plasmonic modes was observed, enabling the detection of cysteine down to 10 μM and high sensitivity of about 125 nm/RIU (refractive index units). Furthermore, we found that multilayer adsorption of cysteine leads to the stabilization of the silver nanocubes. The cysteine growth onto the nanocubes was also characterized by high-resolution transmission electron microscopy (HR-TEM).

  3. Detection of Homocysteine and Cysteine

    PubMed Central

    Wang, Weihua; Xu, Xiangyang; Kim, Kyu Kwang; Escobedo, Jorge O.; Fakayode, Sayo O.; Fletcher, Kristin A.; Lowry, Mark; Schowalter, Corin M.; Lawrence, Candace M.; Fronczek, Frank R.; Warner, Isiah M.

    2012-01-01

    At elevated levels, homocysteine (Hcy, 1) is a risk factor for cardiovascular diseases, Alzheimer’s disease, neural tube defects, and osteoporosis. Both 1 and cysteine (Cys, 3) are linked to neurotoxicity. The biochemical mechanisms by which 1 and 3 are involved in disease states are relatively unclear. Herein, we describe simple methods for detecting either Hcy or Cys in the visible spectral region with the highest selectivity reported to date without using biochemical techniques or preparative separations. Simple methods and readily available reagents allow for the detection of Cys and Hcy in the range of their physiologically relevant levels. New HPLC postcolumn detection methods for biological thiols are reported. The potential biomedical relevance of the chemical mechanisms involved in the detection of 1 is described. PMID:16277539

  4. S-sulfhydration: a cysteine posttranslational modification in plant systems.

    PubMed

    Aroca, Ángeles; Serna, Antonio; Gotor, Cecilia; Romero, Luis C

    2015-05-01

    Hydrogen sulfide is a highly reactive molecule that is currently accepted as a signaling compound. This molecule is as important as carbon monoxide in mammals and hydrogen peroxide in plants, as well as nitric oxide in both eukaryotic systems. Although many studies have been conducted on the physiological effects of hydrogen sulfide, the underlying mechanisms are poorly understood. One of the proposed mechanisms involves the posttranslational modification of protein cysteine residues, a process called S-sulfhydration. In this work, a modified biotin switch method was used for the detection of Arabidopsis (Arabidopsis thaliana) proteins modified by S-sulfhydration under physiological conditions. The presence of an S-sulfhydration-modified cysteine residue on cytosolic ascorbate peroxidase was demonstrated using liquid chromatography-tandem mass spectrometry analysis, and a total of 106 S-sulfhydrated proteins were identified. Immunoblot and enzyme activity analyses of some of these proteins showed that the sulfide added through S-sulfhydration reversibly regulates the functions of plant proteins in a manner similar to that described in mammalian systems. PMID:25810097

  5. Structure-function and pathogenesis studies of Streptococcus pyogenes extracellular cysteine protease.

    PubMed

    Burns, E H; Marciel, A M; Musser, J M

    1997-01-01

    Replacement of the single cysteine residue (C192) with serine in the Streptococcus pyogenes extracellular cysteine protease (SCP) prevented auto-catalytic processing of the 40-kDa zymogen to the 28-kDa mature form and eliminated proteolytic activity. SCP incubated with human endothelial cells induced a time- and concentration-dependent increase in a 66-kDa gelatinase/type IV collagenase in culture supernatants. Activation of this gelatinase/collagenase may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive S. pyogenes infection. PMID:9331720

  6. Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization, and analysis of the activation and inactivation.

    PubMed

    Yamaguchi, K; Hosokawa, Y; Kohashi, N; Kori, Y; Sakakibara, S; Ueda, I

    1978-02-01

    Rat liver cysteine dioxygenase has been purified to homogeneity. It is a single subunit protein having a molecular weight of 22,500 +/- 1,000, with a pI of 5.5. The enzyme purified was catalytically inactive and activated by anaerobic incubation with either L-cysteine or its analogues such as carboxymethyl-L-cysteine, carboxyethyl-L-cysteine, S-methyl-L-cysteine, D-cysteine, cysteamine, N-acetyl-L-cysteine, and DL-homocysteine. The enzyme thus activated with L-cysteine was rapidly inactivated under aerobic condition. This rapid inactivation was observed at 0 degrees C where no formation of either the reaction product cysteine sulfinate or the autoxidation product of cysteine, cystine, was detected. Further analysis shows that the inactivation of the activated enzyme was due to oxygen but unrelated to either the presence of substrate, enzyme turnover or accumulation of inhibitor produced during assay. A distinct rat liver cytoplasmic protein, called protein-A, could completely prevented the enzyme from the aerobic inactivation. The loss of activity during assay in the absence of protein-A was shown to be a first order decay process. From the plots of log(deltaproduct/min) versus time, the initial velocity (VO) and the velocity at 7 min (V7) were obtained. The apparent Km value for L-cysteine in the absence of protein-A was calculated from the initial velocity as 4.5 X 10(-4)M. Protein-A did not alter the apparent Km value for L-cysteine. The chelating agents such as o-phenanthroline, alpha,alpha'-dipyridyl, bathophenanthroline, 8-hydroxyquinoline, EGTA, and EDTA strongly inhibited the enzyme activity when these chelating agents were added before preactivation. The purified cystein dioxygenase contains 1 atom of iron per mol of enzyme protein. By the activation procedure, the enzyme became less susceptible to the heat denaturation, the inhibitory effects of chelating agents and the tryptic digestion. PMID:632231

  7. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate

    PubMed Central

    Li, M-S; Demsey, AFA; Qi, J; Linsdell, P

    2009-01-01

    Background and purpose: Methanethiosulphonate (MTS) reagents are used extensively to modify covalently cysteine side chains in ion channel structure-function studies. We have investigated the interaction between a widely used negatively charged MTS reagent, (2-sulphonatoethyl) methanethiosulphonate (MTSES), and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Experimental approach: Patch clamp recordings were used to study a ‘cys-less’ variant of human CFTR, in which all 18 endogenous cysteine residues have been removed by mutagenesis, expressed in mammalian cell lines. Use of excised inside–out membrane patches allowed MTS reagents to be applied to the cytoplasmic face of active channels. Key results: Intracellular application of MTSES, but not the positively charged MTSET, inhibited the function of cys-less CFTR. Inhibition was voltage dependent, with a Kd of 1.97 mmol·L−1 at −80 mV increasing to 36 mmol·L−1 at +80 mV. Inhibition was completely reversed on washout of MTSES, inconsistent with covalent modification of the channel protein. At the single channel level, MTSES caused a concentration-dependent reduction in unitary current amplitude. This inhibition was strengthened when extracellular Cl− concentration was decreased. Conclusions and implications: Our results indicate that MTSES inhibits the function of CFTR in a manner that is independent of its ability to modify cysteine residues covalently. Instead, we suggest that MTSES functions as an open channel blocker that enters the CFTR channel pore from its cytoplasmic end to physically occlude Cl− permeation. Given the very widespread use of MTS reagents in functional studies, our findings offer a broadly applicable caveat to the interpretation of results obtained from such studies. PMID:19466983

  8. Blends of cysteine-containing proteins

    NASA Astrophysics Data System (ADS)

    Barone, Justin

    2005-03-01

    Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.

  9. A mechanistic model of the cysteine synthase complex.

    PubMed

    Feldman-Salit, Anna; Wirtz, Markus; Hell, Ruediger; Wade, Rebecca C

    2009-02-13

    Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL). Although it is experimentally known that formation of the CS complex influences cysteine production, the exact biological function of the CS complex, the mechanism of reciprocal regulation of the constituent enzymes and the structure of the complex are still poorly understood. Here, we used docking techniques to construct a model of the CS complex from mitochondrial Arabidopsis thaliana. The three-dimensional structures of the enzymes were modeled by comparative techniques. The C-termini of SAT, missing in the template structures but crucial for CS formation, were modeled de novo. Diffusional encounter complexes of SAT and OAS-TL were generated by rigid-body Brownian dynamics simulation. By incorporating experimental constraints during Brownian dynamics simulation, we identified complexes consistent with experiments. Selected encounter complexes were refined by molecular dynamics simulation to generate structures of bound complexes. We found that although a stoichiometric ratio of six OAS-TL dimers to one SAT hexamer in the CS complex is geometrically possible, binding energy calculations suggest that, consistent with experiments, a ratio of only two OAS-TL dimers to one SAT hexamer is more likely. Computational mutagenesis of residues in OAS-TL that are experimentally significant for CS formation hindered the association of the enzymes due to a less-favorable electrostatic binding free energy. Since the enzymes from A. thaliana were expressed in Escherichia coli, the cross-species binding of SAT and OAS-TL from E. coli and A. thaliana was explored. The results showed that reduced cysteine production might be due to a cross-binding of A. thaliana

  10. The role of cysteine in the alteration of bovine liver dihydrodiol dehydrogenase 3 activity.

    PubMed Central

    Nanjo, H; Adachi, H; Aketa, M; Mizoguchi, T; Nishihara, T; Terada, T

    1995-01-01

    Bovine liver NADP(+)-dependent dihydrodiol dehydrogenase (DD3) is extremely sensitive to SH reagents such as N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid). NEM produced time- and concentration-dependent inactivation of DD3 in a pseudo-first-order reaction manner. This inactivation was prevented by NADP+, 3-acetylpyridine-adenine dinucleotide phosphate, 2',5'-ADP and 2'-AMP but not by substrates, NAD+, nicotinamide mononucleotide or 5'-ADP.DD3 was absorbed by an affinity column of thiopropyl-Sepharose 6B, but enzyme incubated with both NEM and NADP+ was not. Moreover, one [14C]NEM molecule was incorporated into a cysteine of DD3 in the presence, and two cysteines of DD3 in the absence, of NADP+. These results suggested that two cysteine residues were modified per enzyme molecule by NEM, one was protected by NADP+ and the other had no significant function for the enzyme activity. Two radiolabelled peptides (P1 and P2) produced by the digestion with lysyl endopeptidase of [14C]NEM-modified DD3 could be separated by reverse-phase HPLC. P1, which was radiolabelled by [14C]NEM only in the absence of NADP+, showed the following sequence; H2N-Tyr-Lys-Pro-Val-Xaa-Asn-Gln-Val-Glu- NEM.Cys-His-Pro-Tyr-Phe-Asn-Gln-Ser-Lys-COOH (Xaa indicates a possible cysteine residue). This sequence was very similar to that of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase (3 alpha-HSD/DD) (residues 184 to 201) and was also highly conserved in the aldo-keto reductase superfamily. The sequence of P2, which had radioactivity in both the absence and presence of NADP+, also contained an NEM-modified cysteine and was similar in sequence to the regions located in loop A of rat 3 alpha-HSD/DD. The present study suggests that P1, which may have a cysteine residue corresponding to Cys-193 of rat 3 alpha-HSD/DD, functions in the alteration of DD3 activity depending on the modulation of NADP(+)-binding ability through a thiol/disulphide exchange reaction similar to that of

  11. Electronic Structure of Transition Metal-Cysteine Complexes From X-Ray Absorption Spectroscopy

    SciTech Connect

    Leung, B.O.; Jalilehvand, F.; Szilagyi, R.K.

    2009-05-19

    The electronic structures of Hg{sup II}, Ni{sup II}, Cr{sup III}, and Mo{sup V} complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  12. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    DOE PAGESBeta

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog ofmore » uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.« less

  13. One-Step Conjugation Method for Site-Specific Antibody-Drug Conjugates through Reactive Cysteine-Engineered Antibodies.

    PubMed

    Shinmi, Daisuke; Taguchi, Eri; Iwano, Junko; Yamaguchi, Tsuyoshi; Masuda, Kazuhiro; Enokizono, Junichi; Shiraishi, Yasuhisa

    2016-05-18

    Engineered cysteine residues are particularly convenient for site-specific conjugation of antibody-drug conjugates (ADC), because no cell engineering and additives are required. Usually, unpaired cysteine residues form mixed disulfides during fermentation in Chinese hamster ovarian (CHO) cells; therefore, additional reduction and oxidization steps are required prior to conjugation. In this study, we prepared light chain (Lc)-Q124C variants in IgG and examined the conjugation efficiency. Intriguingly, Lc-Q124C exhibited high thiol reactivity and directly generated site-specific ADC without any pretreatment (named active thiol antibody: Actibody). Most of the cysteine-maleimide conjugates including Lc-Q124C showed retro-Michael reaction with cysteine 34 in albumin and were decomposed over time. In order to acquire resistance to a maleimide exchange reaction, the facile procedure for succinimide hydrolysis on anion exchange resin was employed. Hydrolyzed Lc-Q124C conjugate prepared with anion exchange procedure retained high stability in plasma. Recently, various stable linkage schemes for cysteine conjugation have been reported. The combination with direct conjugation by the use of Actibody and stable linker technology could enable the generation of stable site-specific ADC through a simple method. Actibody technology with Lc-Q124C at a less exposed position opens a new path for cysteine-based conjugation, and contributes to reducing entry barriers to the preparation and evaluation of ADC. PMID:27074832

  14. Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP.

    PubMed

    Maugeais, Cyrille; Perez, Anne; von der Mark, Elisabeth; Magg, Christine; Pflieger, Philippe; Niesor, Eric J

    2013-11-01

    Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13. PMID:23872476

  15. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    SciTech Connect

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.

  16. A viable synthesis of N-methyl cysteine.

    PubMed

    Ruggles, Erik L; Flemer, Stevenson; Hondal, Robert J

    2008-01-01

    While a number of methods exist for the production of N-methyl amino acid derivatives, the methods for the production of N-methyl cysteine (MeCys) derivatives are suboptimal as they either have low yields or lead to significant sulfhydryl deprotection during the synthetic protocol. This article focuses on the generation of MeCys and its subsequent use in Fmoc solid-phase peptide synthesis for the generation of N-methyl cystine containing peptides. Various methods for amino methylation of cysteine, in the presence of acid labile or acid stable sulfhydryl protecting groups, are compared and contrasted. Production of MeCys is best attained through formation of an oxazolidinone precursor obtained via cyclization of Fmoc--Cys(StBu)--OH. Following oxazolidinone ring opening, iminium ion reduction generates Fmoc--MeCys(StBu)--OH with an overall yield of 91%. The key to this procedure is using an electronically neutral Cys-derivative, as other polar Cys-derivatives gave poor results using the oxazolidinone procedure. Subsequently, the Fmoc--MeCys(StBu)--OH building block was used to replace a Cys residue with a MeCys residue in two peptide fragments that correspond to the active sites of glutaredoxin and thioredoxin reductase. The examples used here highlight the use of a MeCys(StBu) derivative, which allows for facile on-resin conversion to a MeCys(5-Npys) residue that can be subsequently used for intramolecular disulfide bond formation with concomitant cleavage of the peptide from the solid support. (c) 2007 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 90: 61-68, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:18008337

  17. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  18. Quantification of free cysteines in membrane and soluble proteins using a fluorescent dye and thermal unfolding

    PubMed Central

    Hagelueken, Gregor; Naismith, James H

    2013-01-01

    Cysteine is an extremely useful site for selective attachment of labels to proteins for many applications, including the study of protein structure in solution by electron paramagnetic resonance (EPR), fluorescence spectroscopy and medical imaging. The demand for quantitative data for these applications means that it is important to determine the extent of the cysteine labeling. The efficiency of labeling is sensitive to the 3D context of cysteine within the protein. Where the label or modification is not directly measurable by optical or magnetic spectroscopy, for example, in cysteine modification to dehydroalanine, assessing labeling efficiency is difficult. We describe a simple assay for determining the efficiency of modification of cysteine residues, which is based on an approach previously used to determine membrane protein stability. The assay involves a reaction between the thermally unfolded protein and a thiol-specific coumarin fluorophore that is only fluorescent upon conjugation with thiols. Monitoring fluorescence during thermal denaturation of the protein in the presence of the dye identifies the temperature at which the maximum fluorescence occurs; this temperature differs among proteins. Comparison of the fluorescence intensity at the identified temperature between modified, unmodified (positive control) and cysteine-less protein (negative control) allows for the quantification of free cysteine. We have quantified both site-directed spin labeling and dehydroalanine formation. The method relies on a commonly available fluorescence 96-well plate reader, which rapidly screens numerous samples within 1.5 h and uses <100 μg of material. The approach is robust for both soluble and detergent-solubilized membrane proteins. PMID:24091556

  19. The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom.

    PubMed Central

    Calvete, J. J.; Moreno-Murciano, M. P.; Sanz, L.; Jürgens, M.; Schrader, M.; Raida, M.; Benjamin, D. C.; Fox, J. W.

    2000-01-01

    The disulfide bond pattern of catrocollastatin-C was determined by N-terminal sequencing and mass spectrometry. The N-terminal disintegrin-like domain is a compact structure including eight disulfide bonds, seven of them in the same pattern as the disintegrin bitistatin. The protein has two extra cysteine residues (XIII and XVI) that form an additional disulfide bond that is characteristically found in the disintegrin-like domains of cellular metalloproteinases (ADAMs) and PIII snake venom Zn-metalloproteinases (SVMPs). The C-terminal cysteine-rich domain of catrocollastatin-C contains five disulfide bonds between nearest-neighbor cysteines and a long range disulfide bridge between CysV and CysX. These results provide structural evidence for a redefinition of the disintegrin-like and cysteine-rich domain boundaries. An evolutionary pathway for ADAMs, PIII, and PII SVMPs based on disulfide bond engineering is also proposed. PMID:10933502

  20. Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting.

    PubMed

    Qiao, Liang; Su, Fangzheng; Bi, Hongyan; Girault, Hubert H; Liu, Baohong

    2011-09-01

    β-Ga(2)O(3) is a wide-band-gap semiconductor having strong oxidation ability under light irradiation. Herein, the steel target plates modified with β-Ga(2)O(3) nanoparticles have been developed to carry out in-source photo-catalytic oxidative reactions for online peptide tagging during laser desorption/ionization mass spectrometry (LDI-MS) analysis. Under UV laser irradiation, β-Ga(2)O(3) can catalyze the photo-oxidation of 2-methoxyhydroquinone added to a sample mixture to 2-methoxy benzoquinone that can further react with the thiol groups of cysteine residues by Michael addition reaction. The tagging process leads to appearance of pairs of peaks with an m/z shift of 138.1Th. This online labelling strategy is demonstrated to be sensitive and efficient with a detection-limit at femtomole level. Using the strategy, the information on cysteine content in peptides can be obtained together with peptide mass, therefore constraining the database searching for an advanced identification of cysteine-containing proteins from protein mixtures. The current peptide online tagging method can be important for specific analysis of cysteine-containing proteins especially the low-abundant ones that cannot be completely isolated from other high-abundant non-cysteine-proteins. PMID:21751383

  1. Mechanism of Thiosulfate Oxidation in the SoxA Family of Cysteine-ligated Cytochromes

    PubMed Central

    Grabarczyk, Daniel B.; Chappell, Paul E.; Eisel, Bianca; Johnson, Steven; Lea, Susan M.; Berks, Ben C.

    2015-01-01

    Thiosulfate dehydrogenase (TsdA) catalyzes the oxidation of two thiosulfate molecules to form tetrathionate and is predicted to use an unusual cysteine-ligated heme as the catalytic cofactor. We have determined the structure of Allochromatium vinosum TsdA to a resolution of 1.3 Å. This structure confirms the active site heme ligation, identifies a thiosulfate binding site within the active site cavity, and reveals an electron transfer route from the catalytic heme, through a second heme group to the external electron acceptor. We provide multiple lines of evidence that the catalytic reaction proceeds through the intermediate formation of a S-thiosulfonate derivative of the heme cysteine ligand: the cysteine is reactive and is accessible to electrophilic attack; cysteine S-thiosulfonate is formed by the addition of thiosulfate or following the reverse reaction with tetrathionate; the S-thiosulfonate modification is removed through catalysis; and alkylating the cysteine blocks activity. Active site amino acid residues required for catalysis were identified by mutagenesis and are inferred to also play a role in stabilizing the S-thiosulfonate intermediate. The enzyme SoxAX, which catalyzes the first step in the bacterial Sox thiosulfate oxidation pathway, is homologous to TsdA and can be inferred to use a related catalytic mechanism. PMID:25673696

  2. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A

    PubMed Central

    Mallorquí-Fernández, Noemí; Manandhar, Surya P.; Mallorquí-Fernández, Goretti; Usón, Isabel; Wawrzonek, Katarzyna; Kantyka, Tomasz; Solà, Maria; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan; Gomis-Rüth, F.Xavier

    2009-01-01

    Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defences and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and its self-processed mature form. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. PMID:17993455

  3. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  4. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils.

    PubMed

    Hasan, Md Ashraful; Ahn, Won-Gyun; Song, Dong-Keun

    2016-09-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca(2+) signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca(2+)]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca(2+)]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca(2+)]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca(2+)]i in human neutrophils was observed. In Ca(2+)-free buffer, NAC- and cysteine-induced [Ca(2+)]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca(2+)]i in human neutrophils occur through Ca(2+) influx. NAC- and cysteine-induced [Ca(2+)]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na(+)-free HEPES, both NAC and cysteine induced a marked increase in [Ca(2+)]i in human neutrophils, arguing against the possibility that Na(+)-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca(2+)]i increasing activity. Our results show that NAC and cysteine induce [Ca(2+)]i increase through Ca(2+) influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  5. Chromatin condensation, cysteine-rich protamine, and establishment of disulphide interprotamine bonds during spermiogenesis of Eledone cirrhosa (Cephalopoda).

    PubMed

    Gimenez-Bonafé, Pepita; Ribes, Enric; Sautière, Pierre; Gonzalez, Angel; Kasinsky, Harold; Kouach, Mustafa; Sautière, Pierre-Eric; Ausió, Juan; Chiva, Manel

    2002-06-01

    During spermiogenesis in Eledone cirrhosa a single protamine substitutes for histones in nuclei of developing spermatids. This protein displays a peculiar primary structure. It contains 22.6 mol% cysteine residues (19 cysteines in 84 residues). This makes it the most cysteine-rich protamine known. The proportion of basic residues is relatively low (arginine 36.9 mol%, lysine 19.0 mol%). The protamine of E. cirrhosa condenses spermiogenic chromatin in a pattern which comprises fibres with a progressively larger diameter and lamellae that finally undergo definitive coalescence. We have also performed a study that estimates the number of interprotamine disulphide bonds formed during the process of spermiogenic chromatin condensation by means of sequential disappearance of MMNA (monomaleimido-nanogold) labelling. During the first step of spermiogenesis, protamines are found spread over very slightly condensed chromatin with their cysteines in a reactive state (protamine-cys-SH). From this stage the interprotamine disulphide bonds are established in a progressive way. First they are formed inside the chromatin fibres. Subsequently, they participate in the mechanism of fibre coalescence and finally, in the last step of spermiogenesis, the remaining free reactive -SH groups of cysteine form disulphide bonds, thus promoting a definitive stabilization of the nucleoprotein complex in the ripe sperm nucleus. PMID:12113475

  6. CFTR: A Cysteine at Position 338 in TM6 Senses a Positive Electrostatic Potential in the Pore

    PubMed Central

    Liu, Xuehong; Zhang, Zhi-Ren; Fuller, Matthew D.; Billingsley, Joshua; McCarty, Nael A.; Dawson, David C.

    2004-01-01

    We investigated the accessibility to protons and thiol-directed reagents of a cysteine substituted at position 338 in transmembrane segment 6 (TM6) of CFTR to test the hypothesis that T338 resides in the pore. Xenopus oocytes expressing T338C CFTR exhibited pH-dependent changes in gCl and I-V shape that were specific to the substituted cysteine. The apparent pKa of T338C CFTR was more acidic than that expected for a cysteine or similar simple thiols in aqueous solution. The pKa was shifted toward alkaline values when a nearby positive charge (R334) was substituted with neutral or negatively charged residues, consistent with the predicted influence of the positive charge of R334, and perhaps other residues, on the titration of a cysteine at 338. The relative rates of chemical modification of T338C CFTR by MTSET+ and MTSES− were also altered by the charge at 334. These observations support a model for CFTR that places T338 within the anion conduction path. The apparent pKa of a cysteine substituted at 338 and the relative rates of reaction of charged thiol-directed reagents provide a crude measure of a positive electrostatic potential that may be due to R334 and other residues near this position in the pore. PMID:15361410

  7. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore.

    PubMed

    Liu, Xuehong; Zhang, Zhi-Ren; Fuller, Matthew D; Billingsley, Joshua; McCarty, Nael A; Dawson, David C

    2004-12-01

    We investigated the accessibility to protons and thiol-directed reagents of a cysteine substituted at position 338 in transmembrane segment 6 (TM6) of CFTR to test the hypothesis that T338 resides in the pore. Xenopus oocytes expressing T338C CFTR exhibited pH-dependent changes in gCl and I-V shape that were specific to the substituted cysteine. The apparent pKa of T338C CFTR was more acidic than that expected for a cysteine or similar simple thiols in aqueous solution. The pKa was shifted toward alkaline values when a nearby positive charge (R334) was substituted with neutral or negatively charged residues, consistent with the predicted influence of the positive charge of R334, and perhaps other residues, on the titration of a cysteine at 338. The relative rates of chemical modification of T338C CFTR by MTSET+ and MTSES- were also altered by the charge at 334. These observations support a model for CFTR that places T338 within the anion conduction path. The apparent pKa of a cysteine substituted at 338 and the relative rates of reaction of charged thiol-directed reagents provide a crude measure of a positive electrostatic potential that may be due to R334 and other residues near this position in the pore. PMID:15361410

  8. Nonfouling property of zwitterionic cysteine surface.

    PubMed

    Lin, Peter; Ding, Ling; Lin, Chii-Wann; Gu, Frank

    2014-06-10

    Applications of implantable bioelectronics for analytical and curative purposes are currently limited by their poor long-term biofunctionality in physiological media and nonspecific interactions with biomolecules. In an attempt to prolong in vivo functionality, recent advances in surface modifications have demonstrated that zwitterionic coatings can rival the performance of conventional poly(ethylene glycol) polymers in reducing nonspecific protein fouling. Herein, we report the fabrication of a very thin layer of nonfouling zwitterionic cysteine surface capable of protecting implantable bioelectronics from nonspecific adsorption of plasma proteins. This work is the first of its kind to fabricate, through solution chemistry, a cysteine surface exhibiting zwitterionic state as high as 88% and to demonstrate antibiofouling under the exposure of bovine serum albumin (BSA) and human serum. The fabricated surface utilized a minimal amount of gold substrate, approximately 10 nm, and an extremely thin antifouling layer at 1.14 nm verified by ellipsometry. X-ray photoelectron spectroscopy assessment of the nitrogen (N1s) and carbon (C1s) spectra conclude that 87.8% of the fabricated cysteine surface is zwitterionic, 2.5% is positively charged, and 9.6% is noncharged. Antibiofouling performance of the cysteine surface is quantitatively determined by bicinchoninic acid (BCA) protein assay as well as qualitatively confirmed using scanning electron spectroscopy. Cysteine surfaces demonstrated a BSA fouling of 3.9 ± 4.84% μg/cm(2), which is 93.6% and 98.5% lower than stainless steel and gold surfaces, respectively. Surface plasmon resonance imaging analysis returned similar results and suggest that a thinner cysteine coating will enhance performance. Scanning electron microscopy confirmed the results of BCA assay and suggested that the cysteine surface demonstrated a 69% reduction to serum fouling. The results reported in this paper demonstrate that it is possible to achieve

  9. Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines.

    PubMed

    Eastland, Adrienne; Hornick, Jessica; Kawamura, Ryo; Nanavati, Dhaval; Marko, John F

    2016-09-01

    We have found that reagents that reduce oxidized cysteines lead to destabilization of metaphase chromosome folding, suggesting that chemically linked cysteine residues may play a structural role in mitotic chromosome organization, in accord with classical studies by Dounce et al. (J Theor Biol 42:275-285, 1973) and Sumner (J Cell Sci 70:177-188, 1984a). Human chromosomes isolated into buffer unfold when exposed to dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). In micromanipulation experiments which allow us to examine the mechanics of individual metaphase chromosomes, we have found that the gel-like elastic stiffness of native metaphase chromosomes is dramatically suppressed by DTT and TCEP, even before the chromosomes become appreciably unfolded. We also report protein labeling experiments on human metaphase chromosomes which allow us to tag oxidized and reduction-sensitive cysteine residues. PAGE analysis using fluorescent labels shows a small number of labeled bands. Mass spectrometry analysis of similarly labeled proteins provides a list of candidates for proteins with oxidized cysteines involved in chromosome organization, notably including components of condensin I, cohesin, the nucleosome-interacting proteins RCC1 and RCC2, as well as the RNA/DNA-binding protein NONO/p54NRB. PMID:27145786

  10. Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi.

    PubMed

    Venturini, G; Salvati, L; Muolo, M; Colasanti, M; Gradoni, L; Ascenzi, P

    2000-04-13

    Nitric oxide (NO) is a pluripotent regulatory molecule showing, among others, an antiparasitic activity. Moreover, NO inhibits cysteine proteinase action by nitrosylating the Cys catalytic residue. In the present study, the inhibitory effect of the substrate N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methyl coumarin) and of NO on the catalytic activity of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi (the hemoflagellate protozoan parasite which causes the American trypanosomiasis), is reported. In particular, NO-donors S-nitroso-glutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), 3-morpholinosydnonimine (SIN-1), S-nitroso-acetyl-penicillamine (SNAP), and sodium nitroprusside (SNP) dose-dependently inhibited cruzipain, this effect being likely attributable to the S-nitrosylation of the Cys25 catalytic residue. These results were analyzed in parallel with those concerning the inhibitory effect of the substrate and of NO on the catalytic activity of falcipain, the cruzipain-homologous cysteine proteinase from Plasmodium falciparum. The modulation of the cruzipain and falcipain activity by NO may be relevant in developing new strategies against T. cruzi and P. falciparum in human host. As a whole, the NO-mediated S-nitrosylation of pathogenic viral, bacterial, fungal, and parasitic cysteine proteinases may represent a general mechanism of antimicrobial and antiparasitic host defences. PMID:10753643

  11. Hydrogen exchange of the glycyl radical of pyruvate formate-lyase is catalyzed by cysteine 419.

    PubMed

    Parast, C V; Wong, K K; Lewisch, S A; Kozarich, J W; Peisach, J; Magliozzo, R S

    1995-02-28

    Pyruvate formate-lyase (PFL) catalyzes the reversible conversion of CoA and pyruvate into acetyl-CoA and formate. Active enzyme contains a glycyl radical whose alpha-hydrogen undergoes rapid exchange with solvent (t1/2 approximately 5 min at 0 degree C). We have investigated this exchange using site-directed mutagenesis and mechanism-based inactivation. Mutation of the active-site cysteine 419 into a serine, which renders the enzyme catalytically inactive, abolishes alpha-hydrogen exchange in the radical. This suggests that the exchange process is not an intrinsic property of the glycyl radical but is a consequence of its interaction with cysteine 419. This residue is also demonstrated to be involved in the transfer of the radical to acetylphosphinate, a mechanism-based inactivator of the enzyme. In contrast, mutation of the other essential cysteine 418 to a serine has no effect on the hydrogen exchange or the transfer of the radical to acetylphosphinate. A mechanism for the hydrogen exchange catalyzed by cysteine 419 consistent with a redox role for this residue in the normal catalytic reaction is proposed. PMID:7873518

  12. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface.

    PubMed

    Luebke, Justin L; Giedroc, David P

    2015-06-01

    Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response. PMID:25946648

  13. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    PubMed

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels. PMID:24916017

  14. ROSICS: CHEMISTRY AND PROTEOMICS OF CYSTEINE MODIFICATIONS IN REDOX BIOLOGY

    PubMed Central

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1–2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, “ROSics,” for the science which describes the principles of mode of action of ROS at molecular levels. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:184–208, 2015. PMID:24916017

  15. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    NASA Technical Reports Server (NTRS)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  16. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    SciTech Connect

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  17. Stereochemical Configuration of 4-Hydroxy-2-nonenal-Cysteine Adducts and Their Stereoselective Formation in a Redox-regulated Protein*

    PubMed Central

    Wakita, Chika; Maeshima, Takuya; Yamazaki, Atsushi; Shibata, Takahiro; Ito, Sohei; Akagawa, Mitsugu; Ojika, Makoto; Yodoi, Junji; Uchida, Koji

    2009-01-01

    4-Hydroxy-2-nonenal (HNE), a major racemic product of lipid peroxidation, preferentially reacts with cysteine residues to form a stable HNE-cysteine Michael addition adduct possessing three chiral centers. Here, to gain more insight into sulfhydryl modification by HNE, we characterized the stereochemical configuration of the HNE-cysteine adducts and investigated their stereoselective formation in redox-regulated proteins. To characterize the HNE-cysteine adducts by NMR, the authentic (R)-HNE- and (S)-HNE-cysteine adducts were prepared by incubating N-acetylcysteine with each HNE enantiomer, both of which provided two peaks in reversed-phase high performance liquid chromatography (HPLC). The NMR analysis revealed that each peak was a mixture of anomeric isomers. In addition, mutarotation at the anomeric center was also observed in the analysis of the nuclear Overhauser effect. To analyze these adducts in proteins, we adapted a pyridylamination-based approach, using 2-aminopyridine in the presence of sodium cyanoborohydride, which enabled analyzing the individual (R)-HNE- and (S)-HNE-cysteine adducts by reversed-phase HPLC following acid hydrolysis. Using the pyridylamination method along with mass spectrometry, we characterized the stereoselective formation of the HNE-cysteine adducts in human thioredoxin and found that HNE preferentially modifies Cys73 and, to the lesser extent, the active site Cys32. More interestingly, the (R)-HNE- and (S)-HNE-cysteine adducts were almost equally formed at Cys73, whereas Cys32 exhibited a remarkable preference for the adduct formation with (R)-HNE. Finally, the utility of the method for the determination of the HNE-cysteine adducts was confirmed by an in vitro study using HeLa cells. The present results not only offer structural insight into sulfhydryl modification by lipid peroxidation products but also provide a platform for the chemical analysis of protein S-associated aldehydes in vitro and in vivo. PMID:19692331

  18. Cysteine string protein (CSP) and its role in preventing neurodegeneration.

    PubMed

    Burgoyne, Robert D; Morgan, Alan

    2015-04-01

    Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12-15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases. PMID:25800794

  19. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.

    PubMed

    Harder, Daniel; Hirschi, Stephan; Ucurum, Zöhre; Goers, Roland; Meier, Wolfgang; Müller, Daniel J; Fotiadis, Dimitrios

    2016-07-25

    For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system. PMID:27294681

  20. A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge

    SciTech Connect

    Huvent, Isabelle; Kamah, Amina; Cantrelle, François-Xavier; Barois, Nicolas; Slomianny, Christian; Smet-Nocca, Caroline; Landrieu, Isabelle; Lippens, Guy

    2014-03-07

    Highlights: • A functional fragment of Tau forms bundled ribbon-like fibrils. • Nucleation of its fibril formation is faster than for full-length Tau. • In contrast to full-length Tau, without cysteines, the fragment still forms fibers. - Abstract: We study the aggregation of a fragment of the neuronal protein Tau that contains part of the proline rich domain and of the microtubule binding repeats. When incubated at 37 °C with heparin, the fragment readily forms fibers as witnessed by Thioflavin T fluorescence. Electron microscopy and NMR spectroscopy show bundled ribbon like structures with most residues rigidly incorporated in the fibril. Without its cysteines, this fragment still forms fibers of a similar morphology, but with lesser Thioflavin T binding sites and more mobility for the C-terminal residues.

  1. Chemical Synthesis of Proteins with Non-Strategically Placed Cysteines Using Selenazolidine and Selective Deselenization.

    PubMed

    Reddy, Post Sai; Dery, Shahar; Metanis, Norman

    2016-01-18

    Although native chemical ligation has enabled the synthesis of hundreds of proteins, not all proteins are accessible through typical ligation conditions. The challenging protein, 125-residue human phosphohistidine phosphatase 1 (PHPT1), has three cysteines near the C-terminus, which are not strategically placed for ligation. Herein, we report the first sequential native chemical ligation/deselenization reaction. PHPT1 was prepared from three unprotected peptide segments using two ligation reactions at cysteine and alanine junctions. Selenazolidine was utilized as a masked precursor for N-terminal selenocysteine in the middle segment, and, following ligation, deselenization provided the native alanine residue. This approach was used to synthesize both the wild-type PHPT1 and an analogue in which the active-site histidine was substituted with the unnatural and isosteric amino acid β-thienyl-l-alanine. The activity of both proteins was studied and compared, providing insights into the enzyme active site. PMID:26636774

  2. Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease.

    PubMed

    Venturini, G; Colasanti, M; Salvati, L; Gradoni, L; Ascenzi, P

    2000-01-01

    Nitric oxide (NO) is a pluripotent regulatory molecule possessing, among others, an antiparasitic activity. In the present study, the inhibitory effect of NO on the catalytic activity of falcipain, the papain-like cysteine protease involved in Plasmodium falciparum trophozoite hemoglobin degradation, is reported. In particular, NO donors S-nitrosoglutathione (GSNO), (+/-)-(E)-p6ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenami de (NOR-3), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) inhibit dose-dependently the falcipain activity present in the P. falciparum trophozoite extract, this effect likely attributable to S-nitrosylation of the Cys25 catalytic residue. The results represent a new insight into the modulation mechanism of falcipain activity, thereby being relevant in developing new strategies for inhibition of the P. falciparum life cycle. PMID:10623597

  3. The cysteine proteinases of the pineapple plant.

    PubMed Central

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-01-01

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. Images Fig. 4. Fig. 5. PMID:2327970

  4. The cysteine proteinases of the pineapple plant.

    PubMed

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. PMID:2327970

  5. Substrate-Assisted Cysteine Deprotonation in the Mechanism of Dimethylargininase (DDAH) from Pseudomonas aeruginosa

    SciTech Connect

    Stone,E.; Costello, A.; Tierney, D.; Fast, W.

    2006-01-01

    The enzyme dimethylargininase (also known as dimethylarginine dimethylaminohydrolase or DDAH; EC 3.5.3.18) catalyzes the hydrolysis of endogenous nitric oxide synthase inhibitors, N{sup {omega}}-methyl-L-arginine and N{sup {omega}},N{sup {omega}}-dimethyl-L-arginine. Understanding the mechanism and regulation of DDAH activity is important for developing ways to control nitric oxide production during angiogenesis and in many cases of vascular endothelial pathobiology. Several possible physiological regulation mechanisms of DDAH depend upon the presence of an active-site cysteine residue, Cys249 in Pseudomonas aeruginosa (Pa) DDAH, which is proposed to serve as a nucleophile in the catalytic mechanism. Through the use of pH-dependent ultraviolet and visible (UV-vis) difference spectroscopy and inactivation kinetics, the pK{sub a} of the active-site Cys249 in the resting enzyme was found to be unperturbed from pK{sub a} values of typical noncatalytic cysteine residues. In contrast, the pH dependence of k{sub cat} values indicates a much lower apparent pKa value. UV-vis difference spectroscopy between wild-type and C249S DDAH shows absorbance changes consistent with Cys249 deprotonation to the anionic thiolate upon binding positively charged ligands. The proton from Cys249 is lost either to the solvent or to an unidentified general base. A mutation of the active-site histidine residue, H162G, does not eliminate cysteine nucleophilicity, further arguing against a pre-formed ion pair with Cys249. Finally, UV-vis and X-ray absorption spectroscopy revealed that inhibitory metal ions can bind at these two active-site residues, Cys249 and His162, and also stabilize the anionic form of Cys249. These results support a proposed substrate-assisted mechanism for Pa DDAH in which ligand binding modulates the reactivity of the active-site cysteine.

  6. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  10. Influence of cysteine 164 on active site structure in rat cysteine dioxygenase.

    PubMed

    Fellner, Matthias; Siakkou, Eleni; Faponle, Abayomi S; Tchesnokov, Egor P; de Visser, Sam P; Wilbanks, Sigurd M; Jameson, Guy N L

    2016-07-01

    Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding. PMID:27193596

  11. CFTR: Temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway

    PubMed Central

    Liu, Xuehong; Dawson, David C.

    2011-01-01

    Cysteine scanning has been widely used to identify pore-lining residues in mammalian ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR). These studies, however, have been typically conducted at room temperature rather than human body temperature. Reports of substantial effects of temperature on gating and anion conduction in CFTR channels as well as an unexpected pattern of cysteine reactivity in the sixth transmembrane segment (TM6), prompted us to investigate the effect of temperature on the reactivity of cysteines engineered into TM6 of CFTR. We compared reaction rates at temperatures ranging from 22°C to 37°C for cysteines placed on either side of an apparent size-selective, accessibility barrier previously defined by comparing reactivity toward channel-permeant and channel-impermeant, thiol-directed reagents. The results indicate that reactivity of cysteines at three positions extracellular to the position of the accessibility barrier, 334, 336 and 337, is highly temperature dependent, such that at 37°C cysteines at these positions were highly reactive toward MTSES−, whereas at 22°C the reaction rates ranged from two to six-fold slower to undetectable. An activation energy of 157 kJ/mole for the reaction at 337 is consistent with the hypothesis that, at physiological temperature, the extracellular portion of the CFTR pore can adopt conformations that differ significantly from those accessible at room temperature. However, the position of the accessibility barrier defined empirically by applying channel-permeant and channel-impermeant reagents to the extracellular aspect of the pore is not altered. The results illuminate previous scanning results and indicate that assay temperature is a critical variable in studies designed to use chemical modification to test structural models for the CFTR anion conduction pathway. PMID:22014307

  12. Sample Multiplexing with Cysteine-Selective Approaches: cysDML and cPILOT

    NASA Astrophysics Data System (ADS)

    Gu, Liqing; Evans, Adam R.; Robinson, Renã A. S.

    2015-04-01

    Cysteine-selective proteomics approaches simplify complex protein mixtures and improve the chance of detecting low abundant proteins. It is possible that cysteinyl-peptide/protein enrichment methods could be coupled to isotopic labeling and isobaric tagging methods for quantitative proteomics analyses in as few as two or up to 10 samples, respectively. Here we present two novel cysteine-selective proteomics approaches: cysteine-selective dimethyl labeling (cysDML) and cysteine-selective combined precursor isotopic labeling and isobaric tagging (cPILOT). CysDML is a duplex precursor quantification technique that couples cysteinyl-peptide enrichment with on-resin stable-isotope dimethyl labeling. Cysteine-selective cPILOT is a novel 12-plex workflow based on cysteinyl-peptide enrichment, on-resin stable-isotope dimethyl labeling, and iodoTMT tagging on cysteine residues. To demonstrate the broad applicability of the approaches, we applied cysDML and cPILOT methods to liver tissues from an Alzheimer's disease (AD) mouse model and wild-type (WT) controls. From the cysDML experiments, an average of 850 proteins were identified and 594 were quantified, whereas from the cPILOT experiment, 330 and 151 proteins were identified and quantified, respectively. Overall, 2259 unique total proteins were detected from both cysDML and cPILOT experiments. There is tremendous overlap in the proteins identified and quantified between both experiments, and many proteins have AD/WT fold-change values that are within ~20% error. A total of 65 statistically significant proteins are differentially expressed in the liver proteome of AD mice relative to WT. The performance of cysDML and cPILOT are demonstrated and advantages and limitations of using multiple duplex experiments versus a single 12-plex experiment are highlighted.

  13. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc.

    PubMed

    Gottlieb, Colin D; Zhang, Sheng; Linder, Maurine E

    2015-12-01

    DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins. PMID:26487721

  14. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  16. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  17. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. Cysteine Prevents Menopausal Syndromes in Ovariectomized Mouse.

    PubMed

    Han, Na-Ra; Kim, Na-Rae; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-05-01

    Cysteine (Cys) is well known to be involved in oxidation-reduction reactions, serving as a source of sulfides in the body. Amino acids are known to improve menopausal symptoms and significantly reduce morbidity. This study aims to find an unrevealed effect of Cys with estrogenic and osteogenic actions. Ovariectomized (OVX) mice were treated with Cys daily for 8 weeks. Estrogen-related and osteoporosis-related factors were analyzed in the vagina, serum, and tibia. Cys was treated in estrogen receptor (ER)-positive human osteoblast-like MG-63 cells and ER-positive human breast cancer Michigan Cancer Foundation-7 (MCF-7) cells. Cysteine administration ameliorated overweightness of the body and vaginal atrophy in the OVX mice. Cysteine increased the levels of alkaline phosphatase (ALP) and 17β-estradiol in the serum of the OVX mice and improved the bone mineral density in the OVX mice. In MG-63 cells, Cys increased the proliferation, ERβ messenger RNA (mRNA) expression, and estrogen response element (ERE) activity. Cysteine increased the ALP activity and the phosphorylation of extracellular signal-regulated kinase. In MCF-7 cells, Cys also increased the proliferation, ERβ mRNA expression, and ERE activity. Taken together, these results demonstrated that Cys has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. The novel insights gained here strongly imply the potential use of Cys as a new agent for postmenopausal women. PMID:26494699

  19. Cloning and analysis of human gastric mucin cDNA reveals two types of conserved cysteine-rich domains.

    PubMed Central

    Klomp, L W; Van Rens, L; Strous, G J

    1995-01-01

    Human gastric mucin was isolated by successive CsCl-gradient ultracentrifugation in the presence of guanidinium hydrochloride to prevent degradation of the polypeptide moieties of the molecules. The amino acid sequence of a tryptic fragment of this molecule was identical to that of a tryptic fragment of tracheobronchial mucin. An oligonucleotide based on this sequence hybridized specifically to human stomach mRNA and was subsequently used to screen a human stomach lambda ZAPII cDNA library. The largest of 10 positive clones encoded 850 amino acid residues, including the tryptic fragment, with high amounts of threonine, serine and proline residues. Interestingly, cysteine accounted for almost 8% of the amino acid residues. The 3' part of the sequence was very similar but not identical to the 3' region of human tracheobronchial cDNA. No tandem repeated sequences were present and the deduced polypeptide sequence contained two potential N-linked glycosylation sites. Four cysteine-rich clusters were detected, one of which was apparently homologous to the D-domains present in other mucins and in von Willebrand factor. The arrangement of the cysteines in three other cysteine-rich clusters was conserved in the human gastric mucin cDNA in a similar fashion as in two domains in the MUC2 gene product. The cysteine-rich domains were separated by short stretches of non-repetitive amino acid residues with a very high content of threonine and serine residues. These data suggest that the encoded polypeptide of this clone may be involved in disulphide-bond-mediated oligomerization of the mucin, and provide new insights into the molecular organization of mammalian apomucins. Images Figure 1 PMID:8948439

  20. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A.

    PubMed

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-09-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity. PMID:26044846

  1. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  2. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  3. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  4. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  5. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family.

    PubMed

    Costa, Tatiana F R; Lima, Ana Paula C A

    2016-03-01

    Chagasin-type inhibitors comprise natural inhibitors of papain-like cysteine proteases that are distributed among Protist, Bacteria and Archaea. Chagasin was identified in the pathogenic protozoa Trypanosoma cruzi as an approximately 11 kDa protein that is a tight-binding and highly thermostable inhibitor of papain, cysteine cathepsins and endogenous parasite cysteine proteases. It displays an Imunoglobulin-like fold with three exposed loops to one side of the molecule, where amino acid residues present in conserved motifs at the tips of each loop contact target proteases. Differently from cystatins, the loop 2 of chagasin enters the active-site cleft, making direct contact with the catalytic residues, while loops 4 and 6 embrace the enzyme from the sides. Orthologues of chagasin are named Inhibitors of Cysteine Peptidases (ICP), and share conserved overall tri-dimensional structure and mode of binding to proteases. ICPs are tentatively distributed in three families: in family I42 are grouped chagasin-type inhibitors that share conserved residues at the exposed loops; family I71 contains Plasmodium ICPs, which are large proteins having a chagasin-like domain at the C-terminus, with lower similarity to chagasin in the conserved motif at loop 2; family I81 contains Toxoplasma ICP. Recombinant ICPs tested so far can inactivate protozoa cathepsin-like proteases and their mammalian counterparts. Studies on their biological roles were carried out in a few species, mainly using transgenic protozoa, and the conclusions vary. However, in all cases, alterations in the levels of expression of chagasin/ICPs led to substantial changes in one or more steps of parasite biology, with higher incidence in influencing their interaction with the hosts. We will cover most of the findings on chagasin/ICP structural and functional properties and overview the current knowledge on their roles in protozoa. PMID:26546840

  6. Posttranslational Modification of Cysteine in Redox Signaling and Oxidative Stress: Focus on S-Glutathionylation

    PubMed Central

    Chock, P. Boon

    2012-01-01

    Abstract Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have become recognized as second messengers for initiating and/or regulating vital cellular signaling pathways, and they are known also as deleterious mediators of cellular stress and cell death. ROS and RNS, and their cross products like peroxynitrite, react primarily with cysteine residues whose oxidative modification leads to functional alterations in the proteins. In this Forum, the collection of six review articles presents a perspective on the broad biological impact of cysteine modifications in health and disease from the molecular to the cellular and organismal levels, focusing in particular on reversible protein-S-glutathionylation and its central role in transducing redox signals as well as protecting proteins from irreversible cysteine oxidation. The Forum review articles consider the role of S-glutationylation in regulation of the peroxiredoxin enzymes, the special redox environment of the mitochondria, redox regulation pertinent to the function of the cardiovascular system, mechanisms of redox-activated apoptosis in the pulmonary system, and the role of glutathionylation in the initiation, propagation, and treatment of neurodegenerative diseases. Several common themes emerge from these reviews; notably, the probability of crosstalk between signaling/regulation mechanisms involving protein-S-nitrosylation and protein-S-glutathionylation, and the need for quantitative analysis of the relationship between specific cysteine modifications and corresponding functional changes in various cellular contexts. Antioxid. Redox Signal. 16, 471–475. PMID:22136616

  7. A Novel Cysteine-Sparing NOTCH3 Mutation in a Chinese Family with CADASIL

    PubMed Central

    Wei, Bin; Bo, Le; Xu, Zhice; Xu, Xingshun; Geng, Deqin; Sun, Miao

    2014-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult onset cerebral small vessel disorder caused by the mutations of the neurogenic locus notch homolog protein 3 (NOTCH3) gene. The extracellular part of NOTCH3 is composed of 34 epidermal growth factor-like (EGF-like) repeat domains. Each EGF-like domain is rich of cysteine and glycine to produce three loops that are essential for high-affinity binding to its ligand. Nearly all reported CADASIL-associated mutations result in gain or loss of a cysteine residue within the EGF-like domains. Only a few cysteine-sparing NOTCH3 mutations have been documented in the patients with CADASIL to date. Here, we reported a Chinese CADASIL family with a cysteine-sparing NOTCH3 mutation. In this family, affected patients had dizziness, memory loss, gait instability, or hemiplegia. Brain magnetic resonance imaging (MRI) showed diffuse leukoencephalopathy with confluent signal abnormalities in the periventricular white matter, basal ganglia, and centrum semiovale bilaterally. By screening the entire coding region of NOTCH3, a novel missense mutation p.G149V (c.446G>T) was found. This mutation was not detected in 400 normal controls. Considering the critical position of glycine within the C-loop of EGF-like domain and its high conservation through evolution, p.G149V mutation could be a potential pathogenic cause for CADASIL. PMID:25098330

  8. Mechanistic Details of Glutathione Biosynthesis Revealed by Crystal Structures of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2009-12-01

    Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl{sub 2} (2.1 {angstrom}; R = 18.2%, R{sub free} = 21.9%), and in complex with glutamate, MgCl{sub 2}, and ADP (2.7 {angstrom}; R = 19.0%, R{sub free} = 24.2%). Inspection of these structures reveals an unusual binding pocket for the {alpha}-carboxylate of the glutamate substrate and an ATP-independent Mg{sup 2+} coordination site, clarifying the Mg{sup 2+} dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.

  9. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.

    PubMed

    Abegg, Daniel; Frei, Reto; Cerato, Luca; Prasad Hari, Durga; Wang, Chao; Waser, Jerome; Adibekian, Alexander

    2015-09-01

    In this study, we present a highly efficient method for proteomic profiling of cysteine residues in complex proteomes and in living cells. Our method is based on alkynylation of cysteines in complex proteomes using a "clickable" alkynyl benziodoxolone bearing an azide group. This reaction proceeds fast, under mild physiological conditions, and with a very high degree of chemoselectivity. The formed azide-capped alkynyl-cysteine adducts are readily detectable by LC-MS/MS, and can be further functionalized with TAMRA or biotin alkyne via CuAAC. We demonstrate the utility of alkynyl benziodoxolones for chemical proteomics applications by identifying the proteomic targets of curcumin, a diarylheptanoid natural product that was and still is part of multiple human clinical trials as anticancer agent. Our results demonstrate that curcumin covalently modifies several key players of cellular signaling and metabolism, most notably the enzyme casein kinase I gamma. We anticipate that this new method for cysteine profiling will find broad application in chemical proteomics and drug discovery. PMID:26211368

  10. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    SciTech Connect

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G. . E-mail: vtgusk@lsu.edu

    2007-04-10

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of {sup 3}H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.

  11. Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine.

    PubMed

    Portillo-Ledesma, Stephanie; Sardi, Florencia; Manta, Bruno; Tourn, María Victoria; Clippe, André; Knoops, Bernard; Alvarez, Beatriz; Coitiño, E Laura; Ferrer-Sueta, Gerardo

    2014-09-30

    Human peroxiredoxin-5 (PRDX5) is a thiol peroxidase that reduces H2O2 10(5) times faster than free cysteine. To assess the influence of two conserved residues on the reactivity of the critical cysteine (C47), we determined the reaction rate constants of PRDX5, wild type (WT), T44V and R127Q with one substrate electrophile (H2O2) and a nonspecific electrophile (monobromobimane). We also studied the corresponding reactions of low molecular weight (LMW) thiolates in order to construct a framework against which we could compare our proteins. To obtain a detailed analysis of the structural and energetic changes involved in the reaction between WT PRDX5 and H2O2, we performed ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations with a QM region including 60 atoms of substrate and active site described by the B3LYP density functional and the 6-31+G(d,p) basis set; the rest of the protein was included in the MM region. Brønsted correlations reveal that the absence of T44 can increase the general nucleophilicity of the C47 but decreases the specific reactivity toward H2O2 by a factor of 10(3). The R127Q mutation causes C47 to behave like a LMW thiolate in the two studied reactions. QM/MM results with WT PRDX5 showed that hydrogen bonds in the active site are the cornerstone of two effects that make catalysis possible: the enhancement of thiolate nucleophilicity upon substrate ingress and the stabilization of the transition state. In both effects, T44 has a central role. These effects occur in a precise temporal sequence that ensures that the selective nucleophilicity of C47 is available only for peroxide substrates. PMID:25184942

  12. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4.

    PubMed

    Okada, Mariko; Miura, Takashi

    2016-06-01

    Copper transporter Ctr4 of fission yeast has a quasi-palindromic sequence rich in cysteine and aromatic amino acid residues, CX4YWNWYX4C (where X represents any amino acid), in the N-terminal extracellular domain. A 24-mer peptide comprising this sequence is bound to Cu(I) through the cysteine thiolate coordination. Luminescence, UV absorption and resonance Raman spectra of the Cu(I)-peptide complex show that at least one of the two tryptophan side chains is located in close proximity to the thiolate-Cu(I) center and interacts with the Cu(I) ion via π-electrons of the indole ring. Although the thiolates and Cu(I) are oxidized to disulfide and Cu(II), respectively, only very slowly in air-saturated solutions, replacements of the tryptophan residues to phenylalanine significantly accelerate the oxidation reactions. The results obtained indicate that the interaction between Cu(I) and tryptophan via π-electrons plays a significant role in protecting the thiolate-Cu(I) center against the oxidation. The cysteine- and tryptophan-rich quasi-palindromic sequence may be a metal binding motif that stabilizes Cu(I) in the oxidizing extracellular environment. PMID:26908286

  13. Disulfide bond assignments by mass spectrometry of native natural peptides: cysteine pairing in disulfide bonded conotoxins.

    PubMed

    Gupta, Kallol; Kumar, Mukesh; Balaram, Padmanabhan

    2010-10-01

    The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C(β)-S bond cleavage through H(α) abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H(β) abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MS(n)) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides Ar1446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides. PMID:20843009

  14. Cysteines control the N- and C-linker-dependent gating of KCNH1 potassium channels.

    PubMed

    Sahoo, Nirakar; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2012-05-01

    KCNH1 (EAG1) is a member of the Kv family of voltage-gated potassium channels. However, KCNH1 channels also show some amino-acid sequence similarity to cyclic-nucleotide-regulated channels: they harbor an N-terminal PAS domain, a C-terminal cyclic nucleotide binding homology domain (cNBHD), and N- and C-terminal binding sites for calmodulin. Another notable feature is the channels' high sensitivity toward oxidative modification. Using human KCNH1 expressed in Xenopus oocytes and HEK 293 cells we investigated how oxidative modification alters channel function. Intracellular application of H(2)O(2) or cysteine-specific modifiers potently inhibited KCNH1 channels in two phases. Our systematic cysteine mutagenesis study showed that the rapid and dominant phase was attributed to a right-shift in the voltage dependence of activation, caused by chemical modification of residues C145 and C214. The slow component depended on the C-terminal residues C532 and C562. The cysteine pairs are situated at structural elements linking the transmembrane S1 segment with the PAS domain (N-linker) and the transmembrane channel gate S6 with the cNBH domain (C-linker), respectively. The functional state of KCNH1 channels is determined by the oxidative status of these linkers that provide an additional dimension of channel regulation. PMID:22310694

  15. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans

    PubMed Central

    Lenarčič, Brigita

    2014-01-01

    Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail. PMID:25587532

  16. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  17. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.

    PubMed

    Cerny, Christoph; Guntz-Dubini, Renée

    2013-11-15

    Cysteine-S-conjugates (CS-conjugates) occur in foods derived from plant sources like grape, passion fruit, onion, garlic, bell pepper and hops. During eating CS-conjugates are degraded into aroma-active thiols by β-lyases that originate from oral microflora. The present study provides evidence for the formation of the CS-conjugates S-furfuryl-l-cysteine (FFT-S-Cys) and S-(2-methyl-3-furyl)-l-cysteine (MFT-S-Cys) in the Maillard reaction of xylose with cysteine at 100°C for 2h. The CS-conjugates were isolated using cationic exchange and reversed-phase chromatography and identified by (1)H NMR, (13)C NMR and LC-MS(2). Spectra and LC retention times matched those of authentic standards. To the best of our knowledge, this is the first time that CS-conjugates are described as Maillard reaction products. Furfuryl alcohol (FFA) is proposed as an intermediate which undergoes a nucleophilic substitution with cysteine. Both FFT-S-Cys and MFT-S-Cys are odourless but produce strong aroma when tasted in aqueous solutions, supposedly induced by β -lyases from the oral microflora. The perceived aromas resemble those of the corresponding aroma-active thiols 2-furfurylthiol (FFT) and 2-methyl-3-furanthiol (MFT) which smell coffee-like and meaty, respectively. PMID:23790889

  18. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  19. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity.

    PubMed

    Waller, Daniel D; Jansen, Gregor; Golizeh, Makan; Martel-Lorion, Chloe; Dejgaard, Kurt; Shiao, Tze Chieh; Mancuso, John; Tsantrizos, Youla S; Roy, René; Sebag, Michael; Sleno, Lekha; Thomas, David Y

    2016-05-01

    The unfolded protein response (UPR) initiated by the transmembrane kinase/ribonuclease Ire1 has been implicated in a variety of diseases. Ire1, with its unique position in the UPR, is an ideal target for the development of therapies; however, the identification of specific kinase inhibitors is challenging. Recently, the development of covalent inhibitors has gained great momentum because of the irreversible deactivation of the target. We identified and determined the mechanism of action of the Ire1-inhibitory compound UPRM8. MS analysis revealed that UPRM8 inhibition occurs by covalent adduct formation at a conserved cysteine at the regulatory DFG+2 position in the Ire1 kinase activation loop. Mutational analysis of the target cysteine residue identified both UPRM8-resistant and catalytically inactive Ire1 mutants. We describe a novel covalent inhibition mechanism of UPRM8, which can serve as a lead for the rational design and optimization of inhibitors of human Ire1. PMID:26792008

  20. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  1. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  2. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...

  3. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  4. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  5. The reactions of nitrosyl complexes with cysteine.

    PubMed

    Roncaroli, Federico; Olabe, José A

    2005-06-27

    The reaction kinetics of a set of ruthenium nitrosyl complexes, {(X)5MNO}n, containing different coligands X (polypyridines, NH3, EDTA, pz, and py) with cysteine (excess conditions), were studied by UV-vis spectrophotometry, using stopped-flow techniques, at an appropriate pH, in the range 3-10, and T = 25 degrees C. The selection of coligands afforded a redox-potential range from -0.3 to +0.5 V (vs Ag/AgCl) for the NO+/NO bound couples. Two intermediates were detected. The first one, I1, appears in the range 410-470 nm for the different complexes and is proposed to be a 1:1 adduct, with the S atom of the cysteinate nucleophile bound to the N atom of nitrosyl. The adduct formation step of I1 is an equilibrium, and the kinetic rate constants for the formation and dissociation of the corresponding adducts were determined by studying the cysteine-concentration dependence of the formation rates. The second intermediate, I2, was detected through the decay of I1, with a maximum absorbance at ca. 380 nm. From similar kinetic results and analyses, we propose that a second cysteinate adds to I1 to form I2. By plotting ln k1(RS-) and ln k2(RS-) for the first and second adduct formation steps, respectively, against the redox potentials of the NO+/NO couples, linear free energy plots are obtained, as previously observed with OH- as a nucleophile. The addition rates for both processes increase with the nitrosyl redox potentials, and this reflects a more positive charge at the electrophilic N atom. In a third step, the I2 adducts decay to form the corresponding Ru-aqua complexes, with the release of N2O and formation of cystine, implying a two-electron process for the overall nitrosyl reduction. This is in contrast with the behavior of nitroprusside ([Fe(CN)5NO]2-; NP), which always yields the one-electron reduction product, [Fe(CN)5NO]3-, either under substoichiometric or in excess-cysteine conditions. PMID:15962980

  6. Cysteine pK[subscript a] Depression by a Protonated Glutamic Acid in Human DJ-1

    SciTech Connect

    Witt, Anna C.; Lakshminarasimhan, Mahadevan; Remington, Benjamin C.; Hasim, Sahar; Pozharski, Edwin; Wilson, Mark A.

    2008-07-09

    Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined pK{sub a} value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed pK{sub a} of 5.4 {+-} 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine pK{sub a} analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the pK{sub a} of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its pK{sub a} in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.

  7. Significance of redox-active cysteines in human FAD synthase isoform 2.

    PubMed

    Miccolis, Angelica; Galluccio, Michele; Nitride, Chiara; Giancaspero, Teresa Anna; Ferranti, Pasquale; Iametti, Stefania; Indiveri, Cesare; Bonomi, Francesco; Barile, Maria

    2014-12-01

    FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399-C402, C303-C312, both in the PAPS domain), and two unstable disulfides (C39-C50; C440-C464). Whereas the C39-C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain. PMID:25135855

  8. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus

    PubMed Central

    Stewart-Jones, Guillaume B. E.; Thomas, Paul V.; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S.; McLellan, Jason S.; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R.; Graham, Barney S.; Kwong, Peter D.

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  9. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

    PubMed

    Stewart-Jones, Guillaume B E; Thomas, Paul V; Chen, Man; Druz, Aliaksandr; Joyce, M Gordon; Kong, Wing-Pui; Sastry, Mallika; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S; McLellan, Jason S; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Graham, Barney S; Kwong, Peter D

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  10. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain.

    PubMed

    McShan, Danielle; Kathman, Stefan; Lowe, Brittiney; Xu, Ziyang; Zhan, Jennifer; Statsyuk, Alexander; Ogungbe, Ifedayo Victor

    2015-10-15

    Rhodesain, the major cathepsin L-like cysteine protease in the protozoan Trypanosoma brucei rhodesiense, the causative agent of African sleeping sickness, is a well-validated drug target. In this work, we used a fragment-based approach to identify inhibitors of this cysteine protease, and identified inhibitors of T. brucei. To discover inhibitors active against rhodesain and T. brucei, we screened a library of covalent fragments against rhodesain and conducted preliminary SAR studies. We envision that in vitro enzymatic assays will further expand the use of the covalent tethering method, a simple fragment-based drug discovery technique to discover covalent drug leads. PMID:26342866

  11. Changes in crystallographic structure and thermostability of a Cu,Zn superoxide dismutase mutant resulting from the removal of a buried cysteine.

    PubMed

    McRee, D E; Redford, S M; Getzoff, E D; Lepock, J R; Hallewell, R A; Tainer, J A

    1990-08-25

    In principle, protein thermostability depends on efficient interior packing of apolar residues and on avoidance of irreversible denaturation in the unfolded state. To study these effects, the single free cysteine in the highly stable enzyme bovine Cu,Zn superoxide dismutase was mutated to alanine (Cys6----Ala), and the recombinant protein was expressed in yeast, purified, characterized for reversible and irreversible denaturation, crystallized isomorphously to the wild-type enzyme, and used to determine the atomic structure. Removal of the chemically reactive thiol significantly decreased the rate of irreversible denaturation (as monitored by thermal inactivation at 70 degrees C), but the observed energetic cost (delta delta G of 0.7-1.3 kcal/mol as determined by differential scanning calorimetry) was much less than predicted from either the change in hydrophobicity or packing due to removal of the interior sulfur atom. X-ray diffraction data were collected to 2.1-A resolution using an area detector, and the atomic model for the mutant enzyme was determined by fitting to electron density difference maps, followed by reciprocal space refinement both with stereochemical restraints using PROLSQ and with molecular dynamics using X-PLOR. The refined 2.1-A resolution crystallographic structure suggests that small concerted and compensating shifts (less than 0.5 A) of the surrounding side chains and of the adjacent N- and C-terminal beta-strands significantly reduced the energetic cost of the interior mutation by improving packing and stereochemistry in the mutant enzyme. Taken together, these results differentiate between the effects of reversible and irreversible processes as they impact the design of thermostable proteins and suggest that relatively subtle concerted shifts can significantly reduce the energetic cost of evolutionary variation in internal residues of proteins with Greek key beta-barrel folds. PMID:2387847

  12. Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1

    SciTech Connect

    Blackinton, Jeff; Lakshminarasimhan, Mahadevan; Thomas, Kelly J.; Ahmad, Rili; Greggio, Elisa; Raza, Ashraf S.; Cookson, Mark R.; Wilson, Mark A.

    2009-03-02

    The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys{sup 106} in human DJ-1). Mutation of Cys{sup 106} causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys{sup 106} oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu{sup 18}) in human DJ-1 that alter the oxidative propensity of Cys{sup 106} through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys{sup 106} to be oxidized to Cys{sup 106}-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys{sup 106}-sulfinic acid is a key modification that regulates the protective function of DJ-1.

  13. Isolation and characterization of a cDNA encoding a mammalian cathepsin L-like cysteine proteinase from Acanthamoeba healyi.

    PubMed

    Hong, Yeon-Chul; Hwang, Mi-Yul; Yun, Ho-Cheol; Yu, Hak-Sun; Kong, Hyun-Hee; Yong, Tai-Soon; Chung, Dong-Il

    2002-03-01

    We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healyi OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healyi cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healyi (AhCP1) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues. Cys25, His159, and Asn175. Deduced amino acid sequence analysis indicates that AhCP1 belong to ERFNIN subfamily of C1 peptidases. By Northern blot analysis, no direct correlation was observed between AhCP1 mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that Ahcp1 protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue. PMID:11949209

  14. Differential expression of cysteine desulfurases in soybean

    PubMed Central

    2011-01-01

    Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069

  15. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  16. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  17. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false L-Cysteine. 184.1271 Section 184.1271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the...

  18. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

    PubMed Central

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D.; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian

    2013-01-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity. PMID:23417561

  19. Residual stresses in welded plates

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  20. Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides.

    PubMed

    Giron, Priscille; Dayon, Loïc; Mihala, Nikolett; Sanchez, Jean-Charles; Rose, Keith

    2009-11-01

    Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so-called cysteine-reactive covalent capture tags (C3T), for the isolation of Cys-containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine-containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. PMID:19813279

  1. Phosphorylation of Cysteine String Protein Triggers a Major Conformational Switch.

    PubMed

    Patel, Pryank; Prescott, Gerald R; Burgoyne, Robert D; Lian, Lu-Yun; Morgan, Alan

    2016-08-01

    Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 chaperone family that localizes to neuronal synaptic vesicles. Impaired CSP function leads to neurodegeneration in humans and model organisms as a result of misfolding of client proteins involved in neurotransmission. Mammalian CSP is phosphorylated in vivo on Ser10, and this modulates its protein interactions and effects on neurotransmitter release. However, there are no data on the structural consequences of CSP phosphorylation to explain these functional effects. We show that Ser10 phosphorylation causes an order-to-disorder transition that disrupts CSP's extreme N-terminal α helix. This triggers the concomitant formation of a hairpin loop stabilized by ionic interactions between phosphoSer10 and the highly conserved J-domain residue, Lys58. These phosphorylation-induced effects result in significant changes to CSP conformation and surface charge distribution. The phospho-switch revealed here provides structural insight into how Ser10 phosphorylation modulates CSP function and also has potential implications for other DnaJ phosphoproteins. PMID:27452402

  2. Cysteine mutagenesis to study the structure of claudin-2 paracellular pores.

    PubMed

    Angelow, Susanne; Yu, Alan S L

    2009-05-01

    The structure and transport mechanism of paracellular pores are only poorly understood. Here we describe for the first time how the substituted cysteine accessibility method (SCAM), previously developed to study transmembrane transport, can be applied to analyze the pathway of paracellular ion permeation. Using stable transfected Madin Darby canine kidney type I cells, induced to express claudin-2, we show that paracellular cation transport can be blocked by sulfhydryl-specific methanethiosulfonate (MTS) and that SCAM can be used to identify residues that line paracellular pores. PMID:19538299

  3. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.

    PubMed

    Blewett, Megan M; Xie, Jiji; Zaro, Balyn W; Backus, Keriann M; Altman, Amnon; Teijaro, John R; Cravatt, Benjamin F

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  4. Techniques for the Analysis of Cysteine Sulfhydryls and Oxidative Protein Folding

    PubMed Central

    Sherma, Nisha D.

    2014-01-01

    Abstract Significance: Modification of cysteine thiols dramatically affects protein function and stability. Hence, the abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond structures are crucial to gaining greater insights into how proteins operate in human health and disease. Recent Advances: Many different molecular probes are now commercially available to label and track cysteine residues at great sensitivity. Coupled with mass spectrometry, stable isotope-labeled sulfhydryl-specific reagents can provide previously unprecedented molecular insights into the dynamics of cysteine modification. Likewise, the combined application of modern mass spectrometers with improved sample preparation techniques and novel data mining algorithms is beginning to routinize the analysis of complex protein disulfide structures. Critical Issues: Proper application of these modern tools and techniques, however, still requires fundamental understanding of sulfhydryl chemistry as well as the assumptions that accompany sample preparation and underlie effective data interpretation. Future Directions: The continued development of tools, technical approaches, and corresponding data processing algorithms will, undoubtedly, facilitate site-specific protein sulfhydryl quantification and disulfide structure analysis from within complex biological mixtures with ever-improving accuracy and sensitivity. Fully routinizing disulfide structure analysis will require an equal but balanced focus on sample preparation and corresponding mass spectral dataset reproducibility. Antioxid. Redox Signal. 21, 511–531. PMID:24383618

  5. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport.

    PubMed Central

    Hempe, J M; Cousins, R J

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. We have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPLC and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein [Birkenmeier, E. H. & Gordon, J. I. (1986) Proc. Natl. Acad. Sci. USA 83, 2516-2520]. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient. Images PMID:1946385

  6. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex.

    PubMed

    Orf, Gregory S; Saer, Rafael G; Niedzwiedzki, Dariusz M; Zhang, Hao; McIntosh, Chelsea L; Schultz, Jason W; Mirica, Liviu M; Blankenship, Robert E

    2016-08-01

    Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna-Matthews-Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems. PMID:27335466

  7. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    SciTech Connect

    Hempe, J.M.; Cousins, R.J. )

    1991-11-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient.

  8. N-helix and Cysteines Inter-regulate Human Mitochondrial VDAC-2 Function and Biochemistry*

    PubMed Central

    Maurya, Svetlana Rajkumar; Mahalakshmi, Radhakrishnan

    2015-01-01

    Human voltage-dependent anion channel-2 (hVDAC-2) functions primarily as the crucial anti-apoptotic protein in the outer mitochondrial membrane, and additionally as a gated bidirectional metabolite transporter. The N-terminal helix (NTH), involved in voltage sensing, bears an additional 11-residue extension (NTE) only in hVDAC-2. In this study, we assign a unique role for the NTE as influencing the chaperone-independent refolding kinetics and overall thermodynamic stability of hVDAC-2. Our electrophysiology data shows that the N-helix is crucial for channel activity, whereas NTE sensitizes this isoform to voltage gating. Additionally, hVDAC-2 possesses the highest cysteine content, possibly for regulating reactive oxygen species content. We identify interdependent contributions of the N-helix and cysteines to channel function, and the measured stability in micellar environments with differing physicochemical properties. The evolutionary demand for the NTE in the presence of cysteines clearly emerges from our biochemical and functional studies, providing insight into factors that functionally demarcate hVDAC-2 from the other VDACs. PMID:26487717

  9. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    PubMed Central

    Wani, Revati; Nagata, Asako; Murray, Brion W.

    2014-01-01

    The perception of reactive oxygen species has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g., cancer). New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically distinct alterations to the protein (e.g., sulfenic/sulfinic/sulfonic acid, disulfides). These post-translational modifications (PTM) are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology. PMID:25339904

  10. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept.

    PubMed

    Rutten, Julie W; Dauwerse, Hans G; Peters, Dorien J M; Goldfarb, Andrew; Venselaar, Hanka; Haffner, Christof; van Ommen, Gert-Jan B; Aartsma-Rus, Annemieke M; Lesnik Oberstein, Saskia A J

    2016-04-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in theNOTCH3gene.NOTCH3mutations in CADASIL result in an uneven number of cysteine residues in one of the 34 epidermal growth factor like-repeat (EGFr) domains of the NOTCH3 protein. The consequence of an unpaired cysteine residue in an EGFr domain is an increased multimerization tendency of mutant NOTCH3, leading to toxic accumulation of the protein in the (cerebro)vasculature, and ultimately reduced cerebral blood flow, recurrent stroke and vascular dementia. There is no therapy to delay or alleviate symptoms in CADASIL. We hypothesized that exclusion of the mutant EGFr domain from NOTCH3 would abolish the detrimental effect of the unpaired cysteine and thus prevent toxic NOTCH3 accumulation and the negative cascade of events leading to CADASIL. To accomplish this NOTCH3 cysteine correction by EGFr domain exclusion, we used pre-mRNA antisense-mediated skipping of specificNOTCH3exons. Selection of these exons was achieved usingin silicostudies and based on the criterion that skipping of a particular exon or exon pair would modulate the protein in such a way that the mutant EGFr domain is eliminated, without otherwise corrupting NOTCH3 structure and function. Remarkably, we found that this strategy closely mimics evolutionary events, where the elimination and fusion of NOTCH EGFr domains led to the generation of four functional NOTCH homologues. We modelled a selection of exon skip strategies using cDNA constructs and show that the skip proteins retain normal protein processing, can bind ligand and be activated by ligand. We then determined the technical feasibility of targetedNOTCH3exon skipping, by designing antisense oligonucleotides targeting exons 2-3, 4-5 and 6, which together harbour the majority of distinct CADASIL-causing mutations. Transfection of

  11. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  12. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  13. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  14. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  15. Role of cysteines in mammalian VDAC isoforms' function.

    PubMed

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  16. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks

    PubMed Central

    Lavergne, Vincent; Harliwong, Ivon; Jones, Alun; Miller, David; Taft, Ryan J.; Alewood, Paul F.

    2015-01-01

    Cone snails are predatory marine gastropods characterized by a sophisticated venom apparatus responsible for the biosynthesis and delivery of complex mixtures of cysteine-rich toxin peptides. These conotoxins fold into small highly structured frameworks, allowing them to potently and selectively interact with heterologous ion channels and receptors. Approximately 2,000 toxins from an estimated number of >70,000 bioactive peptides have been identified in the genus Conus to date. Here, we describe a high-resolution interrogation of the transcriptomes (available at www.ddbj.nig.ac.jp) and proteomes of the diverse compartments of the Conus episcopatus venom apparatus. Using biochemical and bioinformatic tools, we found the highest number of conopeptides yet discovered in a single Conus specimen, with 3,305 novel precursor toxin sequences classified into 9 known superfamilies (A, I1, I2, M, O1, O2, S, T, Z), and identified 16 new superfamilies showing unique signal peptide signatures. We were also able to depict the largest population of venom peptides containing the pharmacologically active C-C-CC-C-C inhibitor cystine knot and CC-C-C motifs (168 and 44 toxins, respectively), as well as 208 new conotoxins displaying odd numbers of cysteine residues derived from known conotoxin motifs. Importantly, six novel cysteine-rich frameworks were revealed which may have novel pharmacology. Finally, analyses of codon usage bias and RNA-editing processes of the conotoxin transcripts demonstrate a specific conservation of the cysteine skeleton at the nucleic acid level and provide new insights about the origin of sequence hypervariablity in mature toxin regions. PMID:26150494

  17. Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation

    PubMed Central

    Schwartzkopff, Benjamin; Platta, Harald W.; Hasan, Sohel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-01-01

    Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p. PMID:26182377

  18. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  19. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation.

    PubMed

    Parker, W Ryan; Holden, Dustin D; Cotham, Victoria C; Xu, Hua; Brodbelt, Jennifer S

    2016-07-19

    The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity. PMID:27320857

  20. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation.

    PubMed

    Masepohl, B; Kutsche, M; Riedel, K U; Schmehl, M; Klipp, W; Pühler, A

    1992-05-01

    The Rhizobium meliloti fdxN gene, which is part of the nifA-nifB-fdxN operon, is absolutely required for symbiotic nitrogen fixation. The deduced sequence of the FdxN protein is characterized by two cysteine motifs typical of bacterial-type ferredoxins. The Fix-phenotype of an R. meliloti fdxN::[Tc] mutant could be rescued by the R. leguminosarum fdxN gene, whereas no complementation was observed with nif-associated genes encoding ferredoxins from Bradyrhizobium japonicum, Azotobacter vinelandii, A. chroococcum and Rhodobacter capsulatus. In addition to these heterologous genes, several R. meliloti fdxN mutant genes constructed by site-directed mutagenesis were analyzed. Not only a cysteine residue within the second cysteine motif (position 42), which is known to coordinate the Fe-S cluster in homologous proteins, but also a cysteine located down-stream of this motif (position 61), was found to be essential for the activity of the R. meliloti FdxN protein. Changing the amino acid residue proline in position 56 into methionine resulted in a FdxN mutant protein with decreased activity, whereas changes in positions 35 (Asp35Glu) and 45 (Gly45Glu) had no significant effect on the function of the FdxN mutant proteins. In contrast to bacterial-type ferredoxins, which contain two identical cysteine motifs of the form C-X2-C-X2-C-X3-C, nif-associated ferredoxins, including R. meliloti FdxN, are characterized by two different cysteine motifs. Six "additional" amino acids separate the second (Cys42) and the third cysteine (Cys51) in the C-terminal motif (C-X2-C-X8-C-X3-C).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1603075

  1. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode.

    PubMed

    Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani

    2014-04-01

    A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices. PMID:24459003

  2. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  3. The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH-redoxin family.

    PubMed

    Van Laer, Koen; Oliveira, Margarida; Wahni, Khadija; Messens, Joris

    2014-02-01

    NrdH-redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH-redoxins have a CVQC active site motif and belong to the thioredoxin-fold protein family. As for other thioredoxin-fold proteins, the pK(a) of the nucleophilic cysteine of NrdH-redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pK(a) value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH-redoxins were determined, but structural insights explaining the relatively low pK(a) remained elusive. We subjected C. glutamicum NrdH-redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pK(a) of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N-terminal of the active site further lowers the cysteine pK(a). However, site-directed mutagenesis data show that the major contribution to the lowering of the cysteine pK(a) comes from the positive charge of the lysine and not from the additional Lys-Cys hydrogen bond. In 12% of the NrdH-redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pK(a). All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N-terminally of the active site dynamically regulate the pK(a) of the nucleophilic cysteine in NrdH-redoxins. PMID:24243781

  4. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-09-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  5. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-01-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  6. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis

    PubMed Central

    Gerdol, Marco; Puillandre, Nicolas; Moro, Gianluca De; Guarnaccia, Corrado; Lucafò, Marianna; Benincasa, Monica; Zlatev, Ventislav; Manfrin, Chiara; Torboli, Valentina; Giulianini, Piero Giulio; Sava, Gianni; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling. PMID:26201648

  7. Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac.

    PubMed

    Kumari, Geeta; Serra, Aida; Shin, Joon; Nguyen, Phuong Q T; Sze, Siu Kwan; Yoon, Ho Sup; Tam, James P

    2015-11-25

    Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs. PMID:26555361

  8. Mutation of cysteine 46 in IKK-beta increases inflammatory responses

    PubMed Central

    Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-01-01

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  9. S-Sulfhydration: A Cysteine Posttranslational Modification in Plant Systems1

    PubMed Central

    Serna, Antonio

    2015-01-01

    Hydrogen sulfide is a highly reactive molecule that is currently accepted as a signaling compound. This molecule is as important as carbon monoxide in mammals and hydrogen peroxide in plants, as well as nitric oxide in both eukaryotic systems. Although many studies have been conducted on the physiological effects of hydrogen sulfide, the underlying mechanisms are poorly understood. One of the proposed mechanisms involves the posttranslational modification of protein cysteine residues, a process called S-sulfhydration. In this work, a modified biotin switch method was used for the detection of Arabidopsis (Arabidopsis thaliana) proteins modified by S-sulfhydration under physiological conditions. The presence of an S-sulfhydration-modified cysteine residue on cytosolic ascorbate peroxidase was demonstrated using liquid chromatography-tandem mass spectrometry analysis, and a total of 106 S-sulfhydrated proteins were identified. Immunoblot and enzyme activity analyses of some of these proteins showed that the sulfide added through S-sulfhydration reversibly regulates the functions of plant proteins in a manner similar to that described in mammalian systems. PMID:25810097

  10. Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes.

    PubMed

    Zaccarin, Mattia; Falda, Marco; Roveri, Antonella; Bosello-Travain, Valentina; Bordin, Luciana; Maiorino, Matilde; Ursini, Fulvio; Toppo, Stefano

    2014-06-01

    Reversible oxidation of cysteine residues is a relevant posttranslational modification of proteins. However, the low activation energy and transitory nature of the redox switch and the intrinsic complexity of the analysis render quite challenging the aim of a rigorous high-throughput screening of the redox status of redox-sensitive cysteine residues. We describe here a quantitative workflow for redox proteomics, where the ratio between the oxidized forms of proteins in the control vs treated samples is determined by a robust label-free approach. We critically present the convenience of the procedure by specifically addressing the following aspects: (i) the accurate ratio, calculated from the whole set of identified peptides rather than just isotope-tagged fragments; (ii) the application of a robust analytical pipeline to frame the most consistent data averaged over the biological variability; (iii) the relevance of using stringent criteria of analysis, even at the cost of losing potentially interesting but statistically uncertain data. The pipeline has been assessed on red blood cell membrane challenged with diamide as a model of a mild oxidative condition. The cluster of identified proteins encompassed components of the cytoskeleton more oxidized. Indirectly, our analysis confirmed the previous observation that oxidized hemoglobin binds to membranes while oxidized peroxiredoxin 2 loses affinity. PMID:24642086

  11. Mutation of cysteine 46 in IKK-beta increases inflammatory responses.

    PubMed

    Li, Ting; Wong, Vincent Kam Wai; Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-10-13

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β-NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-β C46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-β C46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  12. Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate.

    PubMed

    Blaesse, M; Kupke, T; Huber, R; Steinbacher, S

    2000-12-01

    Epidermin from Staphylococcus epidermidis Tü3298 is an antimicrobial peptide of the lantibiotic family that contains, amongst other unusual amino acids, S:-[(Z:)- 2-aminovinyl]-D-cysteine. This residue is introduced by post-translational modification of the ribosomally synthesized precursor EpiA. Modification starts with the oxidative decarboxylation of its C-terminal cysteine by the flavoprotein EpiD generating a reactive (Z:)-enethiol intermediate. We have determined the crystal structures of EpiD and EpiD H67N in complex with the substrate pentapeptide DSYTC at 2.5 A resolution. Rossmann-type monomers build up a dodecamer of 23 point symmetry with trimers disposed at the vertices of a tetrahedron. Oligomer formation is essential for binding of flavin mononucleotide and substrate, which is buried by an otherwise disordered substrate recognition clamp. A pocket for the tyrosine residue of the substrate peptide is formed by an induced fit mechanism. The substrate contacts flavin mononucleotide only via Cys-Sgamma, suggesting its oxidation as the initial step. A thioaldehyde intermediate could undergo spontaneous decarboxylation. The unusual substrate recognition mode and the type of chemical reaction performed provide insight into a novel family of flavoproteins. PMID:11101502

  13. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  14. Border separation for adjacent orthogonal fields

    SciTech Connect

    Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )

    1991-06-01

    Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.

  15. L-Cysteine metabolism and its nutritional implications.

    PubMed

    Yin, Jie; Ren, Wenkai; Yang, Guan; Duan, Jielin; Huang, Xingguo; Fang, Rejun; Li, Chongyong; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Kim, Sung Woo; Wu, Guoyao

    2016-01-01

    L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans. PMID:25929483

  16. Cysteine peptidases from Phytomonas serpens: biochemical and immunological approaches.

    PubMed

    Elias, Camila G R; Aor, Ana Carolina; Valle, Roberta S; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2009-12-01

    Phytomonas serpens, a phytoflagellate trypanosomatid, shares common antigens with Trypanosoma cruzi. In the present work, we compared the hydrolytic capability of cysteine peptidases in both trypanosomatids. Trypanosoma cruzi epimastigotes presented a 10-fold higher efficiency in hydrolyzing the cysteine peptidase substrate Z-Phe-Arg-AMC than P. serpens promastigotes. Moreover, two weak cysteine-type gelatinolytic activities were detected in P. serpens, while a strong 50-kDa cysteine peptidase was observed in T. cruzi. Cysteine peptidase activities were detected at twofold higher levels in the cytoplasmic fraction when compared with the membrane-rich or the content released from P. serpens. The cysteine peptidase secreted by P. serpens cleaved several proteinaceous substrates. Corroborating these findings, the cellular distribution of the cruzipain-like molecules in P. serpens was attested through immunocytochemistry analysis. Gold particles were observed in all cellular compartments, including the cytoplasm, plasma membrane, flagellum, flagellar membrane and flagellar pocket. Interestingly, some gold particles were visualized free in the flagellar pocket, suggesting the release of the cruzipain-like molecule. The antigenic properties of the cruzipain-like molecules of P. serpens were also analyzed. Interestingly, sera from chagasic patients recognized both cellular and extracellular antigens of P. serpens, including the cruzipain-like molecule. These results point to the use of P. serpens antigens, especially the cruzipain-like cysteine-peptidases, as an alternative vaccination approach to T. cruzi infection. PMID:19780820

  17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  18. Probes of the Catalytic Site of Cysteine Dioxygenase

    SciTech Connect

    Chai,S.; Bruyere, J.; Maroney, M.

    2006-01-01

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the a-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ a-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by {alpha}-ketoglutarate.

  19. Effect of (L)-cysteine on acetaldehyde self-administration.

    PubMed

    Peana, Alessandra T; Muggironi, Giulia; Fois, Giulia R; Zinellu, Manuel; Sirca, Donatella; Diana, Marco

    2012-08-01

    Acetaldehyde (ACD), the first metabolite of ethanol, has been implicated in several behavioural actions of alcohol, including its reinforcing effects. Recently, we reported that l-cysteine, a sequestrating agent of ACD, reduced oral ethanol self-administration and that ACD was orally self-administered. This study examined the effects of l-cysteine pre-treatment during the acquisition and maintenance phases of ACD (0.2%) self-administration as well as on the deprivation effect after ACD extinction and on a progressive ratio (PR) schedule of reinforcement. In a separate PR schedule of reinforcement, the effect of l-cysteine was assessed on the break-point produced by ethanol (10%). Furthermore, we tested the effect of l-cysteine on saccharin (0.2%) reinforcement. Wistar rats were trained to self-administer ACD by nose poking on a fixed ratio (FR1) schedule in 30-min daily sessions. Responses on an active nose-poke caused delivery of ACD solution, whereas responses on an inactive nose-poke had no consequences. l-cysteine reduced the acquisition (40 mg/kg), the maintenance and the deprivation effect (100 mg/kg) of ACD self-administration. Furthermore, at the same dose, l-cysteine (120 mg/kg) decreased both ACD and ethanol break point. In addition, l-cysteine was unable to suppress the different responses for saccharin, suggesting that its effect did not relate to an unspecific decrease in a general motivational state. Compared to saline, l-cysteine did not modify responses on inactive nose-pokes, suggesting an absence of a non-specific behavioural activation. Taken together, these results could support the hypotheses that ACD possesses reinforcing properties and l-cysteine reduces motivation to self-administer ACD. PMID:22440691

  20. Cysteine-Ag Cluster Hydrogel Confirmed by Experimental and Numerical Studies.

    PubMed

    Cui, Yanyan; Wang, Yaling; Zhao, Lina

    2015-10-01

    The native cysteine (Cys)-Ag3 cluster hydrogel is approved for the first time by both experimental and theoretical studies. From the detailed molecular structure and energy information, three factors are found to ensure the self-assembly of Cys and Ag3 , and result in the hydrogel. First, the Ag-S bonds make Cys and Ag3 form Cys-Ag3 -Cys monomer. Second, intermolecular hydrogen bonds between carboxyl groups of adjacent monomer push them self-assembled. Third, more monomer precisely self-assemble to produce the -[Cys-Ag3 -Cys]n multimer, e.g., a single molecular chain with the left-handed helix conformation, via a benign thermodynamic process. These multimers entangle together to form micro-network to trap water and produce hydorgel in situ. The hydrogen bonds of hydrogel are sensitive to thermal and proton stimuli, and the hydrogel presents lysosome targeting properties via fluorescent imaging with biocompatibility. PMID:26248576

  1. NMR-Based Mapping of Disulfide Bridges in Cysteine-Rich Peptides: Application to the μ-Conotoxin SxIIIA*

    PubMed Central

    Walewska, Aleksandra; Skalicky, Jack J.; Davis, Darrell R.; Zhang, Min-Min; Lopez-Vera, Estuardo; Watkins, Maren; Han, Tiffany S.; Yoshikami, Doju; Olivera, Baldomero M.; Bulaj, Grzegorz

    2009-01-01

    Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide bridged conotoxin, μ-SxIIIA (from the venom of Conus striolatus) whose discovery is also reported here for the first time. μ-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with 15N/13C, while the remaining three cysteine residues were incorporated using a mixture of 70%:30% unlabeled:labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple resonance (1H,13C,15N) NMR experiments and 2D [13C,1H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of μ-conotoxins. μ-SxIIIA was found to be a potent blocker of the sodium channel subtype NaV1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides. PMID:18831583

  2. Organometallic Palladium Reagents for Cysteine Bioconjugation

    PubMed Central

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-01-01

    Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579

  3. Organometallic palladium reagents for cysteine bioconjugation.

    PubMed

    Vinogradova, Ekaterina V; Zhang, Chi; Spokoyny, Alexander M; Pentelute, Bradley L; Buchwald, Stephen L

    2015-10-29

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications. PMID:26511579

  4. Organometallic palladium reagents for cysteine bioconjugation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  5. Developing novel anthelmintics from plant cysteine proteinases

    PubMed Central

    Behnke, Jerzy M; Buttle, David J; Stepek, Gillian; Lowe, Ann; Duce, Ian R

    2008-01-01

    Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists) that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestock. PMID:18761736

  6. Cathepsin K: a unique collagenolytic cysteine peptidase.

    PubMed

    Novinec, Marko; Lenarčič, Brigita

    2013-09-01

    Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation. PMID:23629523

  7. Possible involvement of the A/sup 20/-A/sup 21/ peptide bond in the expression of the biological activity of insulin. 3. (21-Desasparagine,20-cysteine ethylamide-A)insulin and (21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A)insulin

    SciTech Connect

    Chu, Y.C.; Wang, R.Y.; Burke, G.T.; Chanley, J.D.; Katsoyannis, P.G.

    1987-11-03

    The authors have synthesized (21-desasparagine,20-cysteine ethylamide-A)insulin and (21-desasparagine,20-cysteine,2,2,2,-trifluoroethylamide-A)insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A/sup 20/ cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. (21-Desasparagine,20-cysteine ethylamide-A)insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, (21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A)insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A/sup 20/-A/sup 21/ amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A/sup 20/-A/sup 21/ amide bond can modulate biological activity independently of receptor binding affinity. The A/sup 20/-A/sup 21/ amide bond is thus considered as an important element in the message region of insulin.

  8. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  9. Metabolism of cysteine and cysteinesulfinate in rat and cat hepatocytes.

    PubMed

    de la Rosa, J; Drake, M R; Stipanuk, M H

    1987-03-01

    The metabolism of cysteine and cysteinesulfinate was studied in freshly isolated hepatocytes from fed rats and cats. In incubations of rat hepatocytes with cysteinesulfinate, the rate of hypotaurine plus taurine production was approximately the same as the rate of conversion of the 1-carbon of cysteinesulfinate to CO2. In contrast, no significant production of hypotaurine plus taurine occurred in incubations of cat hepatocytes with cysteinesulfinate. These data are consistent with the species difference in the activity of hepatic cysteinesulfinate decarboxylase, which converts cysteinesulfinate to hypotaurine. In incubations of either rat or cat hepatocytes with cysteine, no hypotaurine plus taurine production was detected. However, the 1-carbon of cysteine was converted to CO2 and the production of urea plus ammonia nitrogen was significantly increased over the rates observed in incubations of cells without substrate. Our results suggest that most cysteine oxidation by hepatocytes occurs by pathways that do not involve formation of cysteinesulfinate. PMID:3106599

  10. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  11. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  12. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  13. Residual stress patterns in steel welds

    SciTech Connect

    Spooner, S.; Hubbard, C.R.; Wang, X.L.; David, S.A.; Holden, T.M.; Root, J.H.; Swainson, I.

    1994-12-31

    Neutron strain scanning of residual stress is a valuable nondestructive tool for evaluation of residual stress in welds. The penetrating characteristic of neutrons permits mapping of strain patterns with a spatial resolution approaching 1mm at depths of 20mm in steels. While the overall patterns of the residual stress tensor in a weld are understood, the detailed patterns depend on welding process parameters and the effects of solid state transformation. The residual strain profiles in two multi-pass austenitic welds and a ferritic steel weld are presented. The stress-free lattice parameters within the fusion zone and the adjacent heat affected zone in the two austenitic welds show that the interpretation of residual stress from strains are affected by welding parameters. An interpretation of the residual strain pattern in the ferritic steel plate can be made using the strain measurements of a Gleeble test bar which has undergone the solid state austenite decomposition.

  14. Cysteine 149 in the extracellular finger domain of ASIC1b subunit is critical for zinc-mediated inhibition

    PubMed Central

    JIANG, Q.; INOUE, K; WU, X.; PAPASIAN, C.J.; WANG, J. Q.; XIONG, Z.G.; CHU, X.P.

    2012-01-01

    Acid-sensing ion channel 1b (ASIC1b) is a proton-gated Na+ channel mostly expressed in peripheral sensory neurons. To date, the functional significance of ASIC1b in these cells is unclear due to the lack of a specific inhibitor/blocker. A better understanding of the regulation of ASIC1b may provide a clue for future investigation of its functional importance. One important regulator of acid-sensing ion channels (ASICs) is zinc. In this study, we examined the detailed zinc inhibition of ASIC1b currents and specific amino acid(s) involved in the inhibition. In CHO cells expressing rat ASIC1b subunit, pretreatment with zinc concentration-dependently inhibited the ASIC1b currents triggered by pH dropping from 7.4 to 6.0 with a half-maximum inhibitory concentration of 26 μM. The inhibition of ASIC1b currents by pre-applied zinc was independent of pH, voltage, or extracellular Ca2+. Further, we showed that the effect of zinc is dependent on the extracellular cysteine, but not histidine residue. Mutating cysteine 149, but not cysteine 58 or cysteine 162, located in the extracellular domain of the ASIC1b subunit abolished the zinc inhibition. These findings suggest that cysteine 149 in the extracellular finger domain of ASIC1b subunit is critical for zinc-mediated inhibition and provide the basis for future mechanistic studies addressing the functional significance of zinc inhibition of ASIC1b. PMID:21767613

  15. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID

  16. 2,2,2-Trifluoroethyl 6-thio-β-d-glucopyranoside as a selective tag for cysteines in proteins

    PubMed Central

    Fröhlich, Richard F.G.; Schrank, Evelyne; Zangger, Klaus

    2012-01-01

    A synthetic route to a trifluoromethyl and thiol containing glucose derivative (2,2,2-trifluoroethyl 6-thio-β-d-glucopyranoside) is presented, which is based on microwave-assisted Fischer glycosylation under increased pressure. This water-soluble, neutral thiol-compound can be used to selectively introduce a fluorine probe for 19F NMR spectroscopy on cysteines in proteins. It can be attached under mild conditions in an aqueous environment without the risk of denaturing the protein. This tag has been applied to determine the redox-state of two cysteine residues in a bacterial transcription activator. Qualitative information about the solvent accessibility can be obtained from F-19 solvent PREs. PMID:23000216

  17. Methionine-to-Cysteine Recycling in Klebsiella aerogenes

    PubMed Central

    Seiflein, Thomas A.; Lawrence, Jeffrey G.

    2001-01-01

    In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5′-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella. PMID:11114934

  18. Measurement of Cysteine Dioxygenase Activity and Protein Abundance

    PubMed Central

    Stipanuk, Martha H.; Dominy, John E.; Ueki, Iori; Hirschberger, Lawrence L.

    2009-01-01

    Cysteine dioxygenase is an iron (Fe2+)-dependent thiol dioxygenase that uses molecular oxygen to oxidize the sulfhydryl group of cysteine to generate 3-sulfinoalanine (commonly called cysteinesulfinic acid). Cysteine dioxygenase activity is routinely assayed by measuring cysteinesulfinate formation from substrate L-cysteine at pH 6.1 in the presence of ferrous ions to saturate the enzyme with metal cofactor, a copper chelator to diminish substrate oxidation, and hydroxylamine to inhibit pyridoxal 5′-phosphate-dependent degradation of product. The amount of cysteine dioxygenase may be measured by immunoblotting. Upon SDS-PAGE, cysteine dioxygenase can be separated into two major bands, with the upper band representing the 23-kDa protein and the lower band representing the mature enzyme that has undergone formation of an internal thioether cross link in the active site. Formation of this cross link is dependent upon the catalytic turnover of substrate and produces an enzyme with a higher catalytic efficiency and catalytic half-life. PMID:19885389

  19. Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase

    SciTech Connect

    Lakshminarasimhan, Mahadevan; Madzelan, Peter; Nan, Ruth; Milkovic, Nicole M.; Wilson, Mark A.

    2010-09-13

    Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 {angstrom}. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 {angstrom} C-{alpha} root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.

  20. Discovery of Potent Cysteine-Containing Dipeptide Inhibitors against Tyrosinase: A Comprehensive Investigation of 20 × 20 Dipeptides in Inhibiting Dopachrome Formation.

    PubMed

    Tseng, Tien-Sheng; Tsai, Keng-Chang; Chen, Wang-Chuan; Wang, Yeng-Tseng; Lee, Yu-Ching; Lu, Chung-Kuang; Don, Ming-Jaw; Chang, Chang-Yu; Lee, Ching-Hsiao; Lin, Hui-Hsiung; Hsu, Hung-Ju; Hsiao, Nai-Wan

    2015-07-15

    Tyrosinase is an essential copper-containing enzyme required for melanin synthesis. The overproduction and abnormal accumulation of melanin cause hyperpigmentation and neurodegenerative diseases. Thus, tyrosinase is promising for use in medicine and cosmetics. Our previous study identified a natural product, A5, resembling the structure of the dipeptide WY and apparently inhibiting tyrosinase. Here, we comprehensively estimated the inhibitory capability of 20 × 20 dipeptides against mushroom tyrosinase. We found that cysteine-containing dipeptides, directly blocking the active site of tyrosinase, are highly potent in inhibition; in particular, N-terminal cysteine-containing dipeptides markedly outperform the C-terminal-containing ones. The cysteine-containing dipeptides, CE, CS, CY, and CW, show comparative bioactivities, and tyrosine-containing dipeptides are substrate-like inhibitors. The dipeptide PD attenuates 16.5% melanin content without any significant cytotoxicity. This study reveals the functional role of cysteine residue positional preference and the selectivity of specific amino acids in cysteine-containing dipeptides against tyrosinase, aiding in developing skin-whitening products. PMID:26083974

  1. Bovine superoxide dismutase and copper ions potentiate the bactericidal effect of autoxidizing cysteine.

    PubMed Central

    Nyberg, G K; Granberg, G P; Carlsson, J

    1979-01-01

    When cysteine is oxidized by oxygen, hydrogen peroxide is formed, and hydrogen peroxide is very toxic to Peptostreptococcus anaerobius VPI 4330-1. Native and inactivated superoxide dismutase increased the rate of oxidation of cysteine and thereby potentiated the toxic effect of cysteine. A similar increase in the rate of oxidation of cysteine and in the toxicity of cysteine was obtained with Cu2+. PMID:573589

  2. Porphyromonas gingivalis Virulence Factor Gingipain RgpB Shows a Unique Zymogenic Mechanism for Cysteine Peptidases*

    PubMed Central

    de Diego, Iñaki; Veillard, Florian T.; Guevara, Tibisay; Potempa, Barbara; Sztukowska, Maryta; Potempa, Jan; Gomis-Rüth, F. Xavier

    2013-01-01

    Zymogenicity is a regulatory mechanism that prevents inadequate catalytic activity in the wrong context. It plays a central role in maintaining microbial virulence factors in an inactive form inside the pathogen until secretion. Among these virulence factors is the cysteine peptidase gingipain B (RgpB), which is the major virulence factor secreted by the periodontopathogen Porphyromonas gingivalis that attacks host vasculature and defense proteins. The structure of the complex between soluble mature RgpB, consisting of a catalytic domain and an immunoglobulin superfamily domain, and its 205-residue N-terminal prodomain, the largest structurally characterized to date for a cysteine peptidase, reveals a novel fold for the prodomain that is distantly related to sugar-binding lectins. It attaches laterally to the catalytic domain through a large concave surface. The main determinant for latency is a surface “inhibitory loop,” which approaches the active-site cleft of the enzyme on its non-primed side in a substrate-like manner. It inserts an arginine (Arg126) into the S1 pocket, thus matching the substrate specificity of the enzyme. Downstream of Arg126, the polypeptide leaves the cleft, thereby preventing cleavage. Moreover, the carbonyl group of Arg126 establishes a very strong hydrogen bond with the co-catalytic histidine, His440, pulling it away from the catalytic cysteine, Cys473, and toward Glu381, which probably plays a role in orienting the side chain of His440 during catalysis. The present results provide the structural determinants of zymogenic inhibition of RgpB by way of a novel inhibitory mechanism for peptidases in general and open the field for the design of novel inhibitory strategies in the treatment of human periodontal disease. PMID:23558682

  3. Purine salvage in Methanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase.

    PubMed

    Miller, Danielle V; Brown, Anne M; Xu, Huimin; Bevan, David R; White, Robert H

    2016-06-01

    Adenine deaminases (Ade) and hypoxanthine/guanine phosphoribosyltransferases (Hpt) are widely distributed enzymes involved in purine salvage. Characterization of the previously uncharacterized Ade (MJ1459 gene product) and Hpt (MJ1655 gene product) are discussed here and provide insight into purine salvage in Methanocaldococcus jannaschii. Ade was demonstrated to use either Fe(II) and/or Mn(II) as the catalytic metal. Hpt demonstrated no detectable activity with adenine, but was equally specific for hypoxanthine and guanine with a kcat /KM of 3.2 × 10(7) and 3.0 × 10(7) s(- 1) M(- 1) , respectively. These results demonstrate that hypoxanthine and IMP are the central metabolites in purine salvage in M. jannaschii for AMP and GMP production. A conserved cysteine (C127, M. jannaschii numbering) was examined due to its high conservation in bacterial and archaeal homologues. To assess the role of this highly conserved cysteine in M. jannaschii Ade, site-directed mutagenesis was performed. It was determined that mutation to serine (C127S) completely abolished Ade activity and mutation to alanine (C127A) exhibited 10-fold decrease in kcat over the wild type Ade. To further investigate the role of C127, detailed molecular docking and dynamics studies were performed and revealed adenine was unable to properly orient in the active site in the C127A and C127S Ade model structures due to distinct differences in active site conformation and rotation of D261. Together this work illuminates purine salvage in M. jannaschii and the critical role of a cysteine residue in maintaining active site conformation of Ade. Proteins 2016; 84:828-840. © 2016 Wiley Periodicals, Inc. PMID:26990095

  4. Structure-Function Studies of Claudin Extracellular Domains by Cysteine-scanning Mutagenesis*

    PubMed Central

    Angelow, Susanne; Yu, Alan S. L.

    2009-01-01

    Claudins form size- and charge-selective pores in the tight junction that control the paracellular flux of inorganic ions and small molecules. However, the structural basis for ion selectivity of paracellular pores is poorly understood. Here we applied cysteine scanning to map the paracellular pathway of ion permeation across claudin-2-transfected Madin-Darby canine kidney type I cells. Four potential pore-lining amino acid residues in the first extracellular loop were mutated to cysteine and screened for their accessibility to thiol-reactive reagents. All mutants were functional except D65C, which formed dimers by intermolecular disulfide bonding, leading to a loss of charge and size selectivity. This suggests that claudin-2 pores are multimeric and that Asp65 lies close to a protein-protein interface. Methanethiosulfonate reagents of different size and charge and the organic mercury derivate, p-(chloromercuri)benzenesulfonic acid, significantly decreased paracellular ion permeation across I66C-transfected cells by a mechanism that suggests steric blocking of the pore. The conductance of wild-type claudin-2 and the other cysteine mutants was only weakly affected. The rate of reaction with I66C decreased dramatically with increasing size of the reagent, suggesting that Ile66 is buried deep within a narrow segment of the pore with its side group facing into the lumen. Furthermore, labeling with N-biotinoylaminoethyl methanethiosulfonate showed that I66C was weakly reactive, whereas Y35C was strongly reactive, suggesting that Tyr35 is located at the protein surface outside of the pore. PMID:19690347

  5. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    SciTech Connect

    Lima, Cassia A.; Sasaki, Sergio D.; Tanaka, Aparecida S. . E-mail: Tanaka.bioq@epm.br

    2006-08-18

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M{sub r} of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K{sub i} value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis.

  6. Identification and characterization of a cathepsin L-like cysteine protease from Gnathostoma spinigerum.

    PubMed

    Kongkerd, Natthawan; Uparanukraw, Pichart; Morakote, Nimit; Sajid, Mohammed; McKerrow, James H

    2008-08-01

    Gnathostoma spinigerum is a causative agent of human gnathostomiasis, a common parasitic disease involving skin and visceral organs, especially the central nervous system. In this study, we identified a cDNA encoding a cathepsin L-like cysteine protease (GsCL1) from the lambdaZAP cDNA library of G. spinigerum advanced third-stage larva (aL3) and characterized the biochemical properties of the recombinant enzyme. The cloned cDNA of 1484bp encoded 398 amino acids which contained a typical signal peptide sequence (23 amino acids), a pro-domain (156 amino acids), and a mature domain (219 amino acids) with an approximate molecular weight of 24kDa. The deduced amino acid sequence of GsCL1 gene showed 53-64% identity to cathepsin L proteases of various organisms including a cathepsin L family member (cpl-1) of Caenorhabditis elegans. Recombinant proGsCL1 expressed in Pichia pastoris showed typical biochemical characteristics of cysteine proteases. The expressed enzyme displayed optimal protease activity toward Z-Phe-Arg-AMC substrate at pH 6.0 but not toward Z-Arg-Arg-AMC. The activity was sensitive to cysteine protease inhibitors E-64 and K11777. The preference for large hydrophilic and aromatic residues in the P2 position (I, L, F, W, U, V) was typical of cathepsin L proteases. Mouse anti-GST-proGsCL1 serum showed reactivity with 35-, 38- and 45-kDa proteins in the aL3 extracts. These proteins were shown to localize inside the intestinal cells of aL3. PMID:18554733

  7. Reconstructing genome mixtures from partial adjacencies.

    PubMed

    Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J

    2012-01-01

    Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028

  8. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    PubMed

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. PMID:27132865

  9. Localization of human platelet autoantigens to the cysteine-rich region of glycoprotein IIIa.

    PubMed Central

    Kekomaki, R; Dawson, B; McFarland, J; Kunicki, T J

    1991-01-01

    The object of this study was to further localize autoantigenic structures on IIb-IIIa and, if possible, to precisely identify the epitopes recognized by human autoantibodies. In this paper, we identify a 50-kD chymotryptic fragment of IIIa that is recognized by a high percentage of human autoantibodies, typified by the prototype IgG autoantibody RA, which binds to IIIa on intact platelets as well as in an immunoblot assay under nonreduced conditions. Using an immunoblot assay, a carboxy-terminal region of this fragment (33 kD) that contains the cysteine-rich domains of IIIa was found to carry the epitope(s) recognized by the prototype autoantibody RA. The amino-terminal amino acid sequence of the reduced 33-kD fragment, the smallest fragment that retains the RA epitope, is XPSQQDEXSP, and that of the reduced 50-kD fragment is IVQVTFD. This indicates that the 33-kD fragment consists of approximately 175 amino acids beginning at residue 479 and extending at least through residues 636-654, while the 50-kD fragment spans the same region but begins at residue 427. It is apparent that the 33-kD fragment is generated from the 50-kD fragment by additional chymotryptic hydrolysis but remains associated because of the multiple disulfide bonds that are characteristic of this cysteine-rich domain. Sera from 48% of patients with chronic ITP and 2 of 8 patients with acute ITP contain antibodies that bind to the 50-kD fragment in an ELISA. Antibodies of the same specificity are also found in one-third of patients with either secondary immune thrombocytopenia or apparent non-immune thrombocytopenia. We conclude that the 50-kD cysteine-rich region of IIIa is a frequent target of autoantibodies in ITP, but that such antibodies may also be present in cases of thrombocytopenia that cannot be linked to an apparent autoimmune process. Images PMID:1715887

  10. Modulation of Human Mitochondrial Voltage-dependent Anion Channel 2 (hVDAC-2) Structural Stability by Cysteine-assisted Barrel-lipid Interactions*

    PubMed Central

    Maurya, Svetlana Rajkumar; Mahalakshmi, Radhakrishnan

    2013-01-01

    Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed biophysical examination of a Cys-less mutant of hVDAC-2, and its behavioral comparison with the wild type protein. Our findings suggest that cysteine mutation results in the formation of a better barrel at the expense of weakened protein-lipid interactions. The wild type protein displays stronger lipid association, despite being less structured. A reversal in behavior of both proteins is observed in the case of chemical denaturation, with the Cys-less mutant exhibiting lowered unfolding free energies. In bicellar systems comprising 14-C phosphocholines, we observe that protein-lipid interactions are weakened in both constructs, resulting in barrel structure destabilization. Our biochemical and biophysical studies together reveal key structural roles for the cysteine residues. We find that minor conformational variations in local residues are sufficient to define the membrane protein dynamics in hVDAC-2. Such subtle sequence variations contribute to differential stability of VDACs and may have implications in their in vivo regulation and recycling. PMID:23873934

  11. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.

    PubMed

    Ramazanova, Anna S; Starkov, Vladislav G; Osipov, Alexey V; Ziganshin, Rustam H; Filkin, Sergey Yu; Tsetlin, Victor I; Utkin, Yuri N

    2009-01-01

    Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system. PMID:19041663

  12. Cysteine scanning reveals minor local rearrangements of the horizontal helix of respiratory complex I.

    PubMed

    Steimle, Stefan; Schnick, Christian; Burger, Eva-Maria; Nuber, Franziska; Krämer, Dorothée; Dawitz, Hannah; Brander, Sofia; Matlosz, Bartlomiej; Schäfer, Jacob; Maurer, Katharina; Glessner, Udo; Friedrich, Thorsten

    2015-10-01

    The NADH:ubiquinone oxidoreductase, respiratory complex I, couples electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the redox reaction and a membrane arm catalyzing proton translocation. The membrane arm is almost completely aligned by a 110 Å unique horizontal helix that is discussed to transmit conformational changes induced by the redox reaction in a piston-like movement to the membrane arm driving proton translocation. Here, we analyzed such a proposed movement by cysteine-scanning of the helix of the Escherichia coli complex I. The accessibility of engineered cysteine residues and the flexibility of individual positions were determined by labeling the preparations with a fluorescent marker and a spin-probe, respectively, in the oxidized and reduced states. The differences in fluorescence labeling and the rotational flexibility of the spin probe between both redox states indicate only slight conformational changes at distinct positions of the helix but not a large movement. PMID:26115017

  13. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases.

    PubMed Central

    Rauber, P; Angliker, H; Walker, B; Shaw, E

    1986-01-01

    A synthesis of peptidylfluoromethanes is described that utilizes the conversion of phthaloyl amino acids into their fluoromethane derivatives. These can be deblocked and elongated. The inactivation of chymotrypsin by Cbz-Phe-CH2F (benzyloxycarbonylphenylalanylfluoromethane) was found to be considerably slower than that of the analogous chloromethane. The fluoromethane analogue inactivates chymotrypsin with an overall rate constant that is 2% of that observed for the inactivation of the enzyme with the chloromethane. However, the result is the same. The reagent complexes in a substrate-like manner, with Ki = 1.4 X 10(-4) M, and alkylates the active-centre histidine residue. Cbz-Phe-Phe-CH2F and Cbz-Phe-Ala-CH2F were investigated as inactivators of the cysteine proteinase cathepsin B. The difference in reactivity between fluoromethyl ketones and chloromethyl ketones is less pronounced in the case of the cysteine proteinase than for the serine proteinase. Covalent bond formation takes place in this case also, as demonstrated by the use of a radiolabelled reagent. PMID:3827817

  14. Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy

    PubMed Central

    Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

    2013-01-01

    Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies. PMID:23181936

  15. THE ROLE OF CYSTEINE PROTEASE IN ALZHEIMER DISEASE

    PubMed Central

    Hasanbasic, Samra; Jahic, Alma; Karahmet, Emina; Sejranic, Asja; Prnjavorac, Besim

    2016-01-01

    Introduction: Cysteine protease are biological catalysts which play a pivotal role in numerous biological reactions in organism. Much of the literature is inscribed to their biochemical significance, distribution and mechanism of action. Many diseases, e.g. Alzheimer’s disease, develop due to enzyme balance disruption. Understanding of cysteine protease’s disbalance is therefor a key to unravel the new possibilities of treatment. Cysteine protease are one of the most important enzymes for protein disruption during programmed cell death. Whether protein disruption is part of cell deaths is not enough clear in any cases. Thereafter, any tissue disruption, including proteolysis, generate more or less inflammation appearance. Review: This review briefly summarizes the current knowledge about pathological mechanism’s that results in AD, with significant reference to the role of cysteine protease in it. Based on the summary, new pharmacological approach and development of novel potent drugs with selective toxicity targeting cysteine protease will be a major challenge in years to come. PMID:27482169

  16. Cysteine-dependent inactivation of hepatic ornithine decarboxylase.

    PubMed Central

    Murakami, Y; Kameji, T; Hayashi, S

    1984-01-01

    When rat liver homogenate or its postmitochondrial supernatant was incubated with L-cysteine, but not D-cysteine, ornithine decarboxylase (ODC) lost more than half of its catalytic activity within 30 min and, at a slower rate, its immunoreactivity. The inactivation correlated with production of H2S during the incubation. These changes did not occur in liver homogenates from vitamin B6-deficient rats. A heat-stable inactivating factor was found in both dialysed cytosol and washed microsomes obtained from the postmitochondrial supernatant incubated with cysteine. The microsomal inactivating factor was solubilized into Tris/HCl buffer, pH 7.4, containing dithiothreitol. Its absorption spectrum in the visible region resembled that of Fe2+ X dithiothreitol in Tris/HCl buffer. On the other hand FeSO4 inactivated partially purified ODC in a similar manner to the present inactivating factor. During the incubation of postmitochondrial supernatant with cysteine, there was a marked increase in the contents of Fe2+ loosely bound to cytosolic and microsomal macromolecules. Furthermore, the content of such reactive iron in the inactivating factor preparations was enough to account for their inactivating activity. These data suggested that H2S produced from cysteine by some vitamin B6-dependent enzyme(s) converted cytosolic and microsomal iron into a reactive loosely bound form that inactivated ODC. PMID:6696745

  17. Fluorescent derivative of cysteine-10 reveals thyroxine-dependent conformational modifications in human serum prealbumin.

    PubMed

    González, G

    1989-05-15

    Fluorescence studies on the N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled cysteine-10 residue of human prealbumin were carried out to detect conformational changes induced by the binding of the ligand thyroxine to the two structurally identical binding sites. A red shift of the spectrum was observed and the total change was confined to the first ligand. This was interpreted as resulting from a conformational change which increases the exposure of the fluorescent probe moiety. Thyroxine also alters the effect of the collisional quencher, acrylamide, confirming the greater exposure of the probe. This modification in structure is associated with changes in relaxation time which indicate that when thyroxine is bound there is an increase in the rotational freedom of the segment or domain of prealbumin which contains the fluorescent probe. PMID:2712572

  18. Cysteines in the neuropilin-2 MAM domain modulate receptor homooligomerization and signal transduction.

    PubMed

    Barton, Rachael; Driscoll, Alyssa; Flores, Samuel; Mudbhari, Durlav; Collins, Theresa; Iovine, M Kathryn; Berger, Bryan W

    2015-07-01

    Neuropilins (NRPs) are transmembrane receptors involved in angiogenesis, lymphangiogenesis, and neuronal development as well as in cancer metastasis. Previous studies suggest that NRPs exist in heteromeric complexes with vascular endothelial growth factors (VEGFs) and VEGF receptors as well as plexins and semaphorins. We determined via site-directed mutagenesis and bioluminescent resonance energy transfer assays that a conserved cysteine (C711) in the Danio rerio NRP2a MAM (meprin, A-5 protein, and protein tyrosine phosphatase μ) domain modulates NRP2a homomeric interactions. Mutation of this residue also disrupts semaphorin-3F binding in NRP2a-transfected COS-7 cells and prevents the NRP2a overexpression effects in a zebrafish vascular model. Collectively, our results indicate the MAM domain plays an important role in defining the NRP2 homodimer structure, which is important for semaphorin-dependent signal transduction via NRP2. PMID:25656526

  19. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  20. Cysteine-modifying agents: a possible approach for effective anticancer and antiviral drugs.

    PubMed Central

    Casini, Angela; Scozzafava, Andrea; Supuran, Claudiu T

    2002-01-01

    Modification of cysteine residues in proteins, due to a) the participation of the thiol moiety of this amino acid in oxido-reduction reactions, b) its ability to strongly coordinate transition metal ions, or c) its nucleophilic nature and facile reaction with electrophiles, may be critically important for the design of novel types of pharmacological agents. Application of such procedures recently led to the design of novel antivirals, mainly based on the reaction of zinc finger proteins with disulfides and related derivatives. This approach was particularly successful for developing novel antiviral agents for human immunodeficiency virus and human papilloma virus. Several new anticancer therapeutic approaches, mainly targeting tubulin, have also been reported. Thus, this unique amino acid offers very interesting possibilities for developing particularly useful pharmacological agents, which generally possess a completely different mechanism of action compared with classic agents in clinical use, thus avoiding major problems such as multidrug resistance (for antiviral and anticancer agents) or high toxicity. PMID:12426135

  1. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Wang, Yuxi; Wang, Taijing; Jiang, Jian; Botting, Catherine H.; Liu, Huanting; Chen, Qiang; Yang, Jinliang; Naismith, James H.; Zhu, Xiaofeng; Chen, Lijuan

    2016-06-01

    Molecules that alter the normal dynamics of microtubule assembly and disassembly include many anticancer drugs in clinical use. So far all such therapeutics target β-tubulin, and structural biology has explained the basis of their action and permitted design of new drugs. However, by shifting the profile of β-tubulin isoforms, cancer cells become resistant to treatment. Compounds that bind to α-tubulin are less well characterized and unexploited. The natural product pironetin is known to bind to α-tubulin and is a potent inhibitor of microtubule polymerization. Previous reports had identified that pironetin reacts with lysine-352 residue however analogues designed on this model had much lower potency, which was difficult to explain, hindering further development. We report crystallographic and mass spectrometric data that reveal that pironetin forms a covalent bond to cysteine-316 in α-tubulin via a Michael addition reaction. These data provide a basis for the rational design of α-tubulin targeting chemotherapeutics.

  2. Obtaining structural and functional information for GPCRs using the substituted-cysteine accessibility method (SCAM).

    PubMed

    Liapakis, George

    2014-01-01

    G-protein coupled receptors (GPCRs) are proteins of the plasma membrane, which are characterized by seven membrane-spanning segments (TMs). GPCRs play an important role in almost all of our physiological and pathophysiological conditions by interacting with a large variety of ligands and stimulating different G-proteins and signaling cascades. By playing a key role in the function of our body and being involved in the pathophysiology of many disorders, GPCRs are very important therapeutic targets. Determination of the structure and function of GPCRs could advance the design of novel receptor-specific drugs against various diseases. A powerful method to obtain structural and functional information for GPCRs is the cysteine substituted accessibility method (SCAM). SCAM is used to systematically map the TM residues of GPCRs and determine their functional role. SCAM can also be used to determine differences in the structures of the TMs in different functional states of GPCRs. PMID:25335535

  3. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  4. Exchange coupling between laterally adjacent nanomagnets.

    PubMed

    Dey, H; Csaba, G; Bernstein, G H; Porod, W

    2016-09-30

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing. PMID:27535227

  5. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  6. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  7. Preparation and Characterization of Cysteine Adducts of Deoxynivalenol.

    PubMed

    Stanic, Ana; Uhlig, Silvio; Solhaug, Anita; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2016-06-15

    Conjugation with the biologically relevant thiol glutathione is one of the metabolic pathways for the mycotoxin deoxynivalenol (DON) in wheat. The occurrence of putative DON-cysteine conjugates has also been shown in wheat, likely in part as a result of degradation of the glutathione conjugates. It was reported that thiols react in vitro with DON at two positions: reversibly at C-10 of the α,β-unsaturated ketone and irreversibly at C-13 of the epoxy group. We synthesized pure DON-cysteine adducts and made analytical standards using quantitative NMR experiments. Compounds were characterized using NMR and LC-HRMS/MS and tested in vitro for toxicity. Cysteine conjugates were much less toxic than DON at the same concentration, and LC-HRMS analysis demonstrated that there was no detectable metabolism of the conjugates in human monocytes or human macrophages. PMID:27229448

  8. Development of nitrile-based peptidic inhibitors of cysteine cathepsins.

    PubMed

    Frizler, Maxim; Stirnberg, Marit; Sisay, Mihiret Tekeste; Gütschow, Michael

    2010-01-01

    It is now becoming clear that several papain-like cysteine cathepsins are involved in the pathophysiology of diseases such as osteoporosis, autoimmune disorders, and cancer. Therefore, the development of potent and selective cathepsin inhibitors is an attractive subject for medicinal chemists. New advances have been made for nitrile-based inhibitors, leading to the identification of the cathepsin K inhibitor odanacatib and other candidates with potential for therapeutic use. This review summarizes the development of peptidic and peptidomimetic compounds with an electrophilic nitrile 'warhead' as inhibitors of the cysteine cathepsins B, S, L, C, and K. Peptide nitriles have been shown to reversibly react with the active site cysteine under formation of a covalent thioimidate adduct. The structural optimization with respect to the positions P3, P2, P1, P1', and P2' resulted in the identification of potent and selective inhibitors of the corresponding cathepsins. The underlying structure-activity relationships are discussed herein. PMID:20166952

  9. New insights into the molecular mechanism of amyloid formation from cysteine scanning

    PubMed Central

    Fei, Li

    2010-01-01

    Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.1 This potential amyloid-forming region, which corresponds to residues 18–21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the corresponding octapeptide CQVNIGNR, were found to form fibrils rapidly under oxidative conditions due to the formation of a disulfide bond. Deletions within the QVNI sequence cause the fibril formation ability of R17C Ure2 to be inhibited. The aggregation propensity of this region is strongly modulated by its preceding residue: replacement of R17 with a hydrophobic residue promotes fibril formation in both full-length Ure2 and in the corresponding octapeptides. The wild-type octapeptide, RQVNIGNR, also forms fibrils, and is the shortest amyloid-forming peptide found for Ure2 to date. Interestingly, the wild-type octapeptide crystallizes readily and so provides a starting point towards obtaining high resolution structural information for the amyloid core of Ure2 fibrils. PMID:20083897

  10. The still mysterious roles of cysteine-containing glutathione transferases in plants

    PubMed Central

    Lallement, Pierre-Alexandre; Brouwer, Bastiaan; Keech, Olivier; Hecker, Arnaud; Rouhier, Nicolas

    2014-01-01

    Glutathione transferases (GSTs) represent a widespread multigenic enzyme family able to modify a broad range of molecules. These notably include secondary metabolites and exogenous substrates often referred to as xenobiotics, usually for their detoxification, subsequent transport or export. To achieve this, these enzymes can bind non-substrate ligands (ligandin function) and/or catalyze the conjugation of glutathione onto the targeted molecules, the latter activity being exhibited by GSTs having a serine or a tyrosine as catalytic residues. Besides, other GST members possess a catalytic cysteine residue, a substitution that radically changes enzyme properties. Instead of promoting GSH-conjugation reactions, cysteine-containing GSTs (Cys-GSTs) are able to perform deglutathionylation reactions similarly to glutaredoxins but the targets are usually different since glutaredoxin substrates are mostly oxidized proteins and Cys-GST substrates are metabolites. The Cys-GSTs are found in most organisms and form several classes. While Beta and Omega GSTs and chloride intracellular channel proteins (CLICs) are not found in plants, these organisms possess microsomal ProstaGlandin E-Synthase type 2, glutathionyl hydroquinone reductases, Lambda, Iota and Hemerythrin GSTs and dehydroascorbate reductases (DHARs); the four last classes being restricted to the green lineage. In plants, whereas the role of DHARs is clearly associated to the reduction of dehydroascorbate to ascorbate, the physiological roles of other Cys-GSTs remain largely unknown. In this context, a genomic and phylogenetic analysis of Cys-GSTs in photosynthetic organisms provides an updated classification that is discussed in the light of the recent literature about the functional and structural properties of Cys-GSTs. Considering the antioxidant potencies of phenolic compounds and more generally of secondary metabolites, the connection of GSTs with secondary metabolism may be interesting from a pharmacological

  11. A computational analysis of S-(2-succino)cysteine sites in proteins.

    PubMed

    Miglio, Gianluca; Sabatino, Alessandro Damiano; Veglia, Eleonora; Giraudo, Maria Teresa; Beccuti, Marco; Cordero, Francesca

    2016-02-01

    The adduction of fumaric acid to the sulfhydryl group of certain cysteine (Cys) residues in proteins via a Michael-like reaction leads to the formation of S-(2-succino)cysteine (2SC) sites. Although its role remains to be fully understood, this post-translational Cys modification (protein succination) has been implicated in the pathogenesis of diabetes/obesity and fumarate hydratase-related diseases. In this study, theoretical approaches to address sequence- and 3D-structure-based features possibly underlying the specificity of protein succination have been applied to perform the first analysis of the available data on the succinate proteome. A total of 182 succinated proteins, 205 modifiable, and 1750 non-modifiable sites have been examined. The rate of 2SC sites per protein ranged from 1 to 3, and the overall relative abundance of modifiable sites was 10.8%. Modifiable and non-modifiable sites were not distinguishable when the hydrophobicity of the Cys-flaking peptides, the acid dissociation constant value of the sulfhydryl groups, and the secondary structure of the Cys-containing segments were compared. By contrast, significant differences were determined when the accessibility of the sulphur atoms and the amino acid composition of the Cys-flaking peptides were analysed. Based on these findings, a sequence-based score function has been evaluated as a descriptor for Cys residues. In conclusion, our results indicate that modifiable and non-modifiable sites form heterogeneous subsets when features often discussed to describe Cys reactivity are examined. However, they also suggest that some differences exist, which may constitute the baseline for further investigations aimed at the development of predictive methods for 2SC sites in proteins. PMID:26589354

  12. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments.

    PubMed

    Kuzmenkov, Alexey I; Fedorova, Irina M; Vassilevski, Alexander A; Grishin, Eugene V

    2013-02-01

    Venom of Lachesana tarabaevi (Zodariidae, "ant spiders") exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices. PMID:23088912

  13. Development of PEGylated Cysteine-Modified Lysine Dendrimers with Multiple Reduced Thiols To Prevent Hepatic Ischemia/Reperfusion Injury.

    PubMed

    Katsumi, Hidemasa; Nishikawa, Makiya; Hirosaki, Rikiya; Okuda, Tatsuya; Kawakami, Shigeru; Yamashita, Fumiyoshi; Hashida, Mitsuru; Sakane, Toshiyasu; Yamamoto, Akira

    2016-08-01

    To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury. PMID:27336683

  14. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis.

    PubMed

    Butts, Carter T; Zhang, Xuhong; Kelly, John E; Roskamp, Kyle W; Unhelkar, Megha H; Freites, J Alfredo; Tahir, Seemal; Martin, Rachel W

    2016-01-01

    Carnivorous plants represent a so far underexploited reservoir of novel proteases with potentially useful activities. Here we investigate 44 cysteine proteases from the Cape sundew, Drosera capensis, predicted from genomic DNA sequences. D. capensis has a large number of cysteine protease genes; analysis of their sequences reveals homologs of known plant proteases, some of which are predicted to have novel properties. Many functionally significant sequence and structural features are observed, including targeting signals and occluding loops. Several of the proteases contain a new type of granulin domain. Although active site residues are conserved, the sequence identity of these proteases to known proteins is moderate to low; therefore, comparative modeling with all-atom refinement and subsequent atomistic MD-simulation is used to predict their 3D structures. The structure prediction data, as well as analysis of protein structure networks, suggest multifarious variations on the papain-like cysteine protease structural theme. This in silico methodology provides a general framework for investigating a large pool of sequences that are potentially useful for biotechnology applications, enabling informed choices about which proteins to investigate in the laboratory. PMID:27471585

  15. A facile and versatile methodology for cysteine specific labeling of proteins with octahedral polypyridyl d6 metal complexes

    PubMed Central

    Dwaraknath, Sudharsan; Tran, Ngoc-Han; Dao, Thanh; Colbert, Alexander; Mullen, Sarah; Nguyen, Angelina; Cortez, Alejandro; Cheruzel, Lionel

    2014-01-01

    We have synthesized and characterized four octahedral polypyridyl d6 metal complexes bearing the 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline ligand (L1) as cysteine specific labeling reagents. The proposed synthetic pathways allow the preparation of the metal complexes containing Re(I), Ru(II), Os(II) and Ir(III) while preserving the epoxide functionality. The complexes were characterized by 1H and 13C NMR, mass spectrometry, UV-visible and luminescence spectroscopies as well as cyclic voltammetry. As proof of concept, a set of non-native single cysteine P450 BM3 heme domain mutants previously developed in our laboratory was used to study the labeling reaction. We demonstrate that the proposed labels can selectively react, often in high yield, with cysteine residues of the protein via the nucleophilic thiol ring opening of the epoxide moiety. In addition, under basic conditions, subsequent loss of a water molecule led to the aromatization of the phenanthroline ring on the protein-bound label compounds, as observed by mass spectrometry and luminescence measurements. PMID:24468675

  16. A Cysteine-Rich Motif in Poliovirus Protein 2CATPase Is Involved in RNA Replication and Binds Zinc In Vitro

    PubMed Central

    Pfister, Thomas; Jones, Keith W.; Wimmer, Eckard

    2000-01-01

    Protein 2CATPase of picornaviruses is involved in the rearrangement of host cell organelles, viral RNA replication, and encapsidation. However, the biochemical and molecular mechanisms by which 2CATPase engages in these processes are not known. To characterize functional domains of 2CATPase, we have focused on a cysteine-rich motif near the carboxy terminus of poliovirus 2CATPase. This region, which is well conserved among enteroviruses and rhinoviruses displaying an amino acid arrangement resembling zinc finger motifs, was studied by genetic and biochemical analyses. A mutation that replaced the first cysteine residue of the motif with a serine was lethal. A mutant virus which lacked the second of four potential coordination sites for zinc was temperature sensitive. At the restrictive temperature, RNA replication was inhibited whereas translation and polyprotein processing, assayed in vitro and in vivo, appeared to be normal. An intragenomic second-site revertant which reinserted the missing coordination site for zinc and recovered RNA replication at the restrictive temperature was isolated. The cysteine-rich motif was sufficient to bind zinc in vitro, as assessed in the presence of 4-(2-pyridylazo)resorcinol by a colorimetric assay. Zinc binding, however, was not required for hydrolysis of ATP. 2CATPase as well as its precursors 2BC and P2 were found to exist in a reduced form in poliovirus-infected cells. PMID:10590122

  17. Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding

    PubMed Central

    Pérez-Sala, Dolores; Oeste, Clara L.; Martínez, Alma E.; Carrasco, M. Jesús; Garzón, Beatriz; Cañada, F. Javier

    2015-01-01

    The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial–mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc. PMID:26031447

  18. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier.

    PubMed

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent-invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  19. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier

    PubMed Central

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  20. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  1. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  2. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  3. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  4. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  5. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  6. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  7. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  8. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  9. Residual Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces.

    Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  10. Density functional study of the cysteine adsorption on Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Pérez, L. A.; López-Lozano, X.; Garzón, I. L.

    2009-04-01

    The adsorption of the cysteine amino acid (H-SCβH2-CαH-NH2-COOH) on the Au55 cluster is investigated through density functional theory calculations. Two isomers, with icosahedral (Ih) and chiral (C1) geometries, of the Au55 cluster are used to calculate the adsorption energy of the cysteine on different facets of these isomers. Results, only involving the S(thiolate)-Au bonding show that the higher adsorption energies are obtained when the sulfur atom is bonded to an asymmetrical bridge site at the facet containing Au atoms with the lowest coordination of the C1 cluster isomer.

  11. Hypohomocysteinemic effect of cysteine is associated with increased plasma cysteine concentration in rats fed diets low in protein and methionine levels.

    PubMed

    Kawakami, Yoshiko; Ohuchi, Seiya; Morita, Tatsuya; Sugiyama, Kimio

    2009-02-01

    Rats were fed diets with and without 0.5% L-cysteine supplement for 14 d or shorter periods to clarify the mechanism by which dietary cysteine elicits its hypohomocysteinemic effect. Cysteine supplementation significantly decreased plasma homocysteine concentration with an increase in plasma cysteine concentration in rats fed 10% casein diet (10C) or 15% soybean protein diet (15S) but not in rats fed 25% casein diet (25C) or 25% soybean protein diet. Cysteine supplementation also significantly suppressed hyperhomocysteinemia induced by choline-deprived 10C with an increase in plasma cysteine concentration but not that induced by 25C+0.65% methionine or 25C+0.4% guanidinoacetic acid. Hepatic S-adenosylmethionine (SAM) and homocysteine concentrations were significantly decreased by cysteine supplementation of 15S. These decreases in plasma homocysteine concentration and hepatic SAM and homocysteine concentrations due to cysteine supplementation disappeared when 15S was fortified with 0.3% methionine. The plasma homocysteine concentration significantly decreased with an increase in plasma cysteine concentration only 1 d after diet change from 15S to cysteine-supplemented 15S, while hepatic cystathionine beta-synthase and betaine-homocysteine S-methyltransferase activities were not altered. Unlike cysteine, cysteic acid and 2-mercaptoethylamine did not decrease plasma homocysteine concentration. These results indicate that cysteine markedly decreases plasma homocysteine concentration only when added to diets low in both protein and methionine levels and suggest that increased plasma cysteine concentration and decreased flow of methionine toward homocysteine formation, but not alteration of homocysteine-metabolizing enzyme activities, are associated with the hypohomocysteinemic effect of cysteine. PMID:19352065

  12. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.

    PubMed

    Gao, Xiaolong; Bai, Yonghong; Hwang, Tzyh-Chang

    2013-02-19

    Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR's TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR's TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR's gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC

  13. Conformational and oligomeric effects on the cysteine pK(a) of tryparedoxin peroxidase.

    PubMed

    Yuan, Ye; Knaggs, Michael H; Poole, Leslie B; Fetrow, Jacquelyn S; Salsbury, Freddie R

    2010-08-01

    Typical 2-Cys peroxiredoxins (Prxs) are peroxidases which regulate cell signaling pathways, apoptosis, and differentiation. These enzymes are obligate homodimers, and can form decamers in solution. During catalysis, Prxs exhibit cysteine-dependent reactivity which requires the deprotonation of the peroxidatic cysteine (C(p)) supported by a lowered pK(a) in the initial step. We present the results of molecular dynamics simulations combined with pKa calculations on the monomeric, dimeric and decameric forms of one typical 2-Cys Prx, the tryparedoxin peroxidase from Trypanosoma cruzi (PDB id, 1uul). The calculations indicate that C(p) (C52) pK(a) values are highly affected by oligomeric state; an unshifted C(p) pK(a) (approximately 8.3, comparable to the pK(a) of isolated cysteine) is calculated for the monomer. In the dimers, starting with essentially identical structures, the C(p)s evolve dynamically asymmetric pK(a)s during the simulations; one subunit's C(p) pK(a) is shifted downward at a time, while the other is unshifted. However, when averaged over time, or multiple simulations, the two subunits within a dimer exhibit the same C(p), showing no preference for a lowered pK(a) in either subunit. Two conserved pathways that communicate the asymmetric pK(a)s between C(p)s of different subunits can be identified. In the decamer, all the C(p) pK(a)s are shifted downward, with slight asymmetry in the dimers which form the decamers. Structural analyses implicate oligomerization effects as responsible for these oligomeric state-dependent C(p) pK(a) shifts. The intra-dimer and the inter-dimer subunit contacts in the decamer restrict the conformations of the side chains of several residues (T49, T54 and E55) calculated to be key in shifting the C(p) pK(a). In addition, the backbone fluctuations of a few residues (M46, D47 and F48) result in a different electrostatic environment for the C(p) in dimers relative to the monomers. These side chain and backbone interactions

  14. Cysteine Mutational Studies Provide Insight into a Thiol-Based Redox Switch Mechanism of Metal and DNA Binding in FurA from Anabaena sp. PCC 7120

    PubMed Central

    Botello-Morte, Laura; Pellicer, Silvia; Sein-Echaluce, Violeta C.; Contreras, Lellys M.; Neira, José Luis; Abián, Olga; Velázquez-Campoy, Adrián; Peleato, María Luisa; Fillat, María F.

    2016-01-01

    Abstract Aims: The ferric uptake regulator (Fur) is the main transcriptional regulator of genes involved in iron homeostasis in most prokaryotes. FurA from Anabaena sp. PCC 7120 contains five cysteine residues, four of them arranged in two redox-active CXXC motifs. The protein needs not only metal but also reducing conditions to remain fully active in vitro. Through a mutational study of the cysteine residues present in FurA, we have investigated their involvement in metal and DNA binding. Results: Residue C101 that belongs to a conserved CXXC motif plays an essential role in both metal and DNA binding activities in vitro. Substitution of C101 by serine impairs DNA and metal binding abilities of FurA. Isothermal titration calorimetry measurements show that the redox state of C101 is responsible for the protein ability to coordinate the metal corepressor. Moreover, the redox state of C101 varies with the presence or absence of C104 or C133, suggesting that the environments of these cysteines are mutually interdependent. Innovation: We propose that C101 is part of a thiol/disulfide redox switch that determines FurA ability to bind the metal corepressor. Conclusion: This mechanism supports a novel feature of a Fur protein that emerges as a regulator, which connects the response to changes in the intracellular redox state and iron management in cyanobacteria. Antioxid. Redox Signal. 24, 173–185. PMID:26414804

  15. Human p53 is Inhibited by Glutathionylation of Cysteines Present in the Proximal DNA-Binding Domain During Oxidative Stress†

    PubMed Central

    Velu, Chinavenmeni S.; Niture, Suryakant K.; Doneanu, Catalin E.; Pattabiraman, Nagarajan; Srivenugopal, Kalkunte S.

    2008-01-01

    The cellular mechanisms that modulate the redox state of p53 tumor suppressor remain unclear, although its DNA-binding function is known to be strongly inhibited by oxidative and nitrosative stresses. We show that human p53 is subjected to a new and reversible posttranslational modification, namely, S-glutathionylation in stressed states including DNA damage. First, a rapid and direct incorporation of biotinylated GSH or GSSG into the purified recombinant p53 protein was observed. The modified p53 had significantly decreased ability to bind its consensus DNA sequence. Reciprocal immunoprecipitations and a GST-overlay assay showed that p53 in tumor cells was marginally glutathionylated, however, the modification increased greatly after oxidant and DNA-damaging treatments. GSH-modification coexisted with the serine phophorylations in activated p53, and the thiol-conjugated protein was present in nuclei. When tumor cells treated with camptothecin or cisplatin were subsequently exposed to glutathione-enhancing agents, p53 underwent dethiolation accompanied by detectable increases in p21waf1 expression, relative to the DNA damaging drugs alone. Mass spectrometry of GSH-modified p53 protein identified the cysteines 124, 141 and 182, all present in the proximal DNA-binding domain, as the sites of glutathionylation. Biotinylated maleimide also reacted rapidly with Cys141, implying this to be the most reactive cysteine on p53 surface. The glutathionylatable cysteines were found to exist in a negatively-charged microenvironment in cellular p53. Molecular modeling studies located Cys124 and 141 to the dimer interface of p53 and showed glutathionylation of either residue would inhibit p53-DNA association, and also interfere with protein dimerization. These results show for the first time that shielding of reactive cysteines contributes to a negative regulation for human p53, and imply that such an inactivation of the transcription factor may represent an acute defensive

  16. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase].

    PubMed

    Saito, K; Kurosawa, M; Tatsuguchi, K; Takagi, Y; Murakoshi, I

    1994-11-01

    Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea) cytoplasmic CSase A cDNA (K. Saito, N. Miura, M. Yamazaki, H. Horano, I. Murakoshi [1992] Proc Natl Acad Sci USA 89: 8078-8082) were constructed as follows: pCSK3F, cDNA driven by the cauliflower mosaic virus (CaMV) 35S RNA promoter with a sense orientation; pCSK3R, cDNA driven by the CaMV 355 promoter with an antisense orientation; pCSK4F, cDNA fused with the sequence for chloroplast-targeting transit peptide of pea ribulose-1,5-biphosphate carboxylase small subunit driven by the CaMV 35S promoter with a sense orientation. These chimeric genes were transferred into tobacco (Nicotiana tabacum) with Agrobacterium-mediated transformation, and self-fertilized progeny were obtained. CSase activities in cell-free extracts of pCSK3F and pCSK4F transformants were 2- to 3-fold higher than those of control and pCSK3R plants. CSase activities in chloroplasts of pCSK4F transformants were severalfold higher than those of control and pCSK3F plants, indicating that the foreign CSase protein is transported and accumulated in a functionally active form in chloroplasts of pCSK4F plants. Isolated chloroplasts of a pCSK4F transformant had a more pronounced ability to form cysteine in response to addition of OAS and sulfur compounds than those of a control plant. In particular, feeding of OAS and sulfite resulted in enhanced cysteine formation, which required photoreduction of sulfite in chloroplasts. The enhanced cysteine formation in a pCSK4F plant responding to sulfite was also observed in leaf discs. In addition, these leaf discs were partially resistant to sulfite toxicity, possibly due to metabolic detoxification of sulfite by fixing into cysteine. These results suggested that overaccumulated

  17. Interaction between adjacent lightning discharges in clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Zhang, Guangshu; Zhang, Tong; Li, Yajun; Wu, Bin; Zhang, Tinglong

    2013-07-01

    Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.

  18. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server

    PubMed Central

    Ceroni, Alessio; Passerini, Andrea; Vullo, Alessandro; Frasconi, Paolo

    2006-01-01

    DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most likely connectivity patterns. The server is available at . PMID:16844986

  19. Unfolding the fold of cyclic cysteine-rich peptides

    PubMed Central

    Shehu, Amarda; Kavraki, Lydia E.; Clementi, Cecilia

    2008-01-01

    We propose a method to extensively characterize the native state ensemble of cyclic cysteine-rich peptides. The method uses minimal information, namely, amino acid sequence and cyclization, as a topological feature that characterizes the native state. The method does not assume a specific disulfide bond pairing for cysteines and allows the possibility of unpaired cysteines. A detailed view of the conformational space relevant for the native state is obtained through a hierarchic multi-resolution exploration. A crucial feature of the exploration is a geometric approach that efficiently generates a large number of distinct cyclic conformations independently of one another. A spatial and energetic analysis of the generated conformations associates a free-energy landscape to the explored conformational space. Application to three long cyclic peptides of different folds shows that the conformational ensembles and cysteine arrangements associated with free energy minima are fully consistent with available experimental data. The results provide a detailed analysis of the native state features of cyclic peptides that can be further tested in experiment. PMID:18287281

  20. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184.1272 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1272...

  1. DNA cleavage by oxymyoglobin and cysteine-introduced metmyoglobin.

    PubMed

    Deshpande, Megha Subhash; Junedi, Sendy; Prakash, Halan; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2014-12-11

    Double stranded DNA was cleaved oxidatively by incubation with oxygenated myoglobin, and Lys96Cys sperm whale myoglobin in its stable ferric form functioned as an artificial nuclease under air by formation of an oxygenated species, owing to electron transfer from the SH group of the introduced cysteine to the heme. PMID:25327831

  2. Measuring Cysteine Cathepsin Activity to Detect Lysosomal Membrane Permeabilization.

    PubMed

    Repnik, Urška; Česen, Maruša Hafner; Turk, Boris

    2016-01-01

    During lysosomal membrane permeabilization (LMP), lysosomal lumenal contents can be released into the cytosol. Small molecules are more likely to be released, and cysteine cathepsins, with mature forms possessing a mass of 25-30 kDa, are among the smallest lumenal lysosomal enzymes. In addition, specific substrates for cysteine cathepsins are available to investigators, and therefore the measurement of the cathepsin activity as a hallmark of LMP works well. Here, we present a protocol for measuring the activity of these enzymes after selective plasma membrane permeabilization with a low concentration of digitonin and after total cell membrane lysis with a high concentration of digitonin. A fluorogenic substrate can be added either directly to the well with lysed cells to show LMP or to the cell-free extract to show that the lysosomal membrane has been sufficiently destabilized to allow the translocation of lysosomal enzymes. Although the content of lysosomal cysteine cathepsins differs between cell lines, this method has general applicability, is sensitive, and has high throughput. The presented protocol shows how to measure cysteine cathepsin activity in the presence of lysed cells and also in cell-free extracts. Depending on the aim of the study, one or both types of measurements can be performed. PMID:27140915

  3. Comparative Proteomic Analysis of Cysteine Oxidation in Colorectal Cancer Patients

    PubMed Central

    Yang, Hee-Young; Chay, Kee-Oh; Kwon, Joseph; Kwon, Sang-Oh; Park, Young-Kyu; Lee, Tae-Hoon

    2013-01-01

    Oxidative stress promotes damage to cellular proteins, lipids, membranes and DNA, and plays a key role in the development of cancer. Reactive oxygen species disrupt redox homeostasis and promote tumor formation by initiating aberrant activation of signaling pathways that lead to tumorigenesis. We used shotgun proteomics to identify proteins containing oxidation-sensitive cysteines in tissue specimens from colorectal cancer patients. We then compared the patterns of cysteine oxidation in the membrane fractions between the tumor and non-tumor tissues. Using nano-UPLC-MSE proteomics, we identified 31 proteins containing 37 oxidation-sensitive cysteines. These proteins were observed with IAM-binding cysteines in non-tumoral region more than tumoral region of CRC patients. Then using the Ingenuity pathway program, we evaluated the cellular canonical networks connecting those proteins. Within the networks, proteins with multiple connections were related with organ morphology, cellular metabolism, and various disorders. We have thus identified networks of proteins whose redox status is altered by oxidative stress, perhaps leading to changes in cellular functionality that promotes tumorigenesis. PMID:23677378

  4. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  5. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  6. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur

    PubMed Central

    Ueki, Iori

    2010-01-01

    Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H2S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions. PMID:20162368

  7. Purification and characterization of a stable cysteine protease ervatamin B, with two disulfide bridges, from the latex of Ervatamia coronaria.

    PubMed

    Kundu, S; Sundd, M; Jagannadham, M V

    2000-02-01

    Latex of the medicinal plant Ervatamia coronaria was found to contain at least three cysteine proteases with high proteolytic activity, called ervatamins. One of these proteases, named ervatamin B, has been purified to homogeneity using ion-exchange chromatography and crystallization. The molecular mass of the enzyme was estimated to be 26 000 Da by SDS-PAGE and gel filtration. The extinction coefficient (epsilon(1%)(280 nm)) of the enzyme was 20.5 with 7 tryptophan and 10 tyrosine residues per molecule. The enzyme hydrolyzed denatured natural substrates such as casein, azoalbumin, and azocasein with a high specific activity. In addition, it showed amidolytic activity toward N-succinyl-alanine-alanine-alanine-p-nitroanilide with an apparent K(m) and K(cat) of 6.6 +/- 0.5 mM and 1.87 x 10(2) s(-)(1), respectively. The pH optima was 6.0-6.5 with azocasein as substrate and 7.0-7.5 with azoalbumin as substrate. The temperature optimum was around 50-55 degrees C. The enzyme was basic with an isoelectric point of 9.35 and had no carbohydrate content. Both the proteolytic and amidolytic activity of the enzyme was strongly inhibited by thiol-specific inhibitors. Interestingly, the enzyme had only two disulfide bridges versus three as in most plant cysteine proteases of the papain superfamily. The enzyme was relatively stable toward pH, denaturants, temperature, and organic solvents. Polyclonal antibodies raised against the pure enzyme gave a single precipitin line in Ouchterlony's double immunodiffusion and typical color in ELISA. Other related proteases do not cross-react with the antisera to ervatamin B showing that the enzyme is immunologically distinct. The N-terminal sequence showed conserved amino acid residues and considerable similarity to typical plant cysteine proteases. PMID:10691612

  8. Crystal Structure of a Sulfur Carrier Protein Complex Found in the Cysteine Biosynthetic Pathway of Mycobacterium tuberculosis

    SciTech Connect

    Jurgenson, Christopher T.; Burns, Kristin E.; Begley, Tadhg P.; Ealick, Steven E.

    2008-10-02

    The structure of the protein complex CysM-CysO from a new cysteine biosynthetic pathway found in the H37Rv strain of Mycobacterium tuberculosis has been determined at 1.53 {angstrom} resolution. CysM (Rv1336) is a PLP-containing {beta}-replacement enzyme and CysO (Rv1335) is a sulfur carrier protein with a ubiquitin-like fold. CysM catalyzes the replacement of the acetyl group of O-acetylserine by CysO thiocarboxylate to generate a protein-bound cysteine that is released in a subsequent proteolysis reaction. The protein complex in the crystal structure is asymmetric with one CysO protomer binding to one end of a CysM dimer. Additionally, the structures of CysM and CysO were determined individually at 2.8 and 2.7 {angstrom} resolution, respectively. Sequence alignments with homologues and structural comparisons with CysK, a cysteine synthase that does not utilize a sulfur carrier protein, revealed high conservation of active site residues; however, residues in CysM responsible for CysO binding are not conserved. Comparison of the CysM-CysO binding interface with other sulfur carrier protein complexes revealed a similarity in secondary structural elements that contribute to complex formation in the ThiF-ThiS and MoeB-MoaD systems, despite major differences in overall folds. Comparison of CysM with and without bound CysO revealed conformational changes associated with CysO binding.

  9. Petroleum basins of Sakhalin and adjacent shelf

    SciTech Connect

    Mavrinski, Y.; Koblov, E. )

    1993-09-01

    Sixty-seven oil and gas fields have been discovered on Sakhalin and the adjacent shelf but the distribution of fields is uneven in north Sakhalin, south Sakhalin, and the Tatar basins. The sedimentary cover is composed of sandy, clayey, and siliceous rocks, with volcanogenic and coal-bearing deposits of Upper Cretaceous, Paleogene, and Neogene 8-12 km thick. Marine clayey and siliceous oil source rocks are regionally developed in the section at different stratigraphic levels; the organic matter is of mixed type and the content varies from 0.5 to 1.5%. The upper Oligocene and middle-upper Miocene source rocks in the north Sakhalin basin are typical, and the organic carbon content ranges from 1 to 5%. The level of organic matter catagenesis and conversion into hydrocarbons is high because of the high differential geothermal gradient in the basins, 30-50[degrees]C per km. Porous sandstones in the Miocene form the reservoirs in all fields with the exception of Okruzhnoye, where the pay zone is a siliceous claystone. Growth-fault rollovers and anticlines form the main traps ranging in area from 5 to 300 km[sup 2], with amplitudes between 100 and 600 m. both stratigraphic and structural traps have been identified. Considerable volumes of reserves are associated with the Miocene deposits of north Sakhalin, which are characterized by an optimum combination of oil source rocks, focused migration paths, and thick sequences of reservoirs and cap rocks. Six large fields have been discovered in the past 15 yr. Oil and condensate reserves stand at over 300 million MT, and gas reserves are about 900 billion m[sup 3].

  10. Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa.

    PubMed

    Cabral, Hamilton; Leopoldino, Andréia M; Tajara, Eloiza H; Greene, Lewis J; Faça, Vitor M; Mateus, Rogério P; Ceron, Carlos R; de Souza Judice, Wagner A; Julianod, Luiz; Bonilla-Rodriguez, Gustavo O

    2006-01-01

    The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%). PMID:16454675

  11. Specific Prenylation of Tomato Rab Proteins by Geranylgeranyl Type-II Transferase Requires a Conserved Cysteine-Cysteine Motif.

    PubMed Central

    Yalovsky, S.; Loraine, A. E.; Gruissem, W.

    1996-01-01

    Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity. PMID:12226265

  12. Probing Structural Transitions in the Intrinsically Disordered C-Terminal Domain of the Measles Virus Nucleoprotein by Vibrational Spectroscopy of Cyanylated Cysteines

    PubMed Central

    Bischak, Connor G.; Longhi, Sonia; Snead, David M.; Costanzo, Stéphanie; Terrer, Elodie; Londergan, Casey H.

    2010-01-01

    Four single-cysteine variants of the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) were cyanylated at cysteine and their infrared spectra in the C≡N stretching region were recorded both in the absence and in the presence of one of the physiological partners of NTAIL, namely the C-terminal X domain (XD) of the viral phosphoprotein. Consistent with previous studies showing that XD triggers a disorder-to-order transition within NTAIL, the C≡N stretching bands of the infrared probe were found to be significantly affected by XD, with this effect being position-dependent. When the cyanylated cysteine side chain is solvent-exposed throughout the structural transition, its changing linewidth reflects a local gain of structure. When the probe becomes partially buried due to binding, its frequency reports on the mean hydrophobicity of the microenvironment surrounding the labeled side chain of the bound form. The probe moiety is small compared to other common covalently attached spectroscopic probes, thereby minimizing possible steric hindrance/perturbation at the binding interface. These results show for the first time to our knowledge the suitability of site-specific cysteine mutagenesis followed by cyanylation and infrared spectroscopy to document structural transitions occurring within intrinsically disordered regions, with regions involved in binding and folding being identifiable at the residue level. PMID:20816082

  13. The BPV-1 E2 DNA-contact helix cysteine is required for transcriptional activation but not replication in mammalian cells.

    PubMed

    Grossel, M J; Barsoum, J; Prakash, S S; Androphy, E J

    1996-03-01

    The papillomavirus E2 protein contains an amino-terminal region thought necessary and sufficient to support transcriptional activation and a carboxy-terminal region shown to direct sequence-specific DNA binding and dimerization. A cysteine residue in the center of the E2 DNA recognition helix is highly conserved among papillomavirus E2 proteins. Mutations of this cysteine in bovine papillomavirus type 1 E2 to serine and glycine resulted in proteins which failed to activate E2-dependent promoters in mammalian cells. These E2 mutants were DNA-binding competent, dimeric, and nuclear. When fused to the VP16 transactivation domain, C-terminal regions of E2 containing the mutations at 340 supported transcriptional activation, indicating that the heterologous trans-activation domain did not require cysteine in the DNA-binding helix as did the full-length E2 transactivating protein. Although cysteine-340 was required for transcriptional activation it was not required for DNA replication in vivo. Together, these results suggest that the E2 DNA-binding domain may directly contribute to functions of transcriptional activation previously thought limited to the N-terminal domain. PMID:8599215

  14. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease.

    PubMed

    Hu, Xin; Compton, Jaimee R; Leary, Dagmar H; Olson, Mark A; Lee, Michael S; Cheung, Jonah; Ye, Wenjuan; Ferrer, Mark; Southall, Noel; Jadhav, Ajit; Morazzani, Elaine M; Glass, Pamela J; Marugan, Juan; Legler, Patricia M

    2016-05-31

    The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a β-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 μM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9

  15. Bioactivation of cysteine conjugates of 1-nitropyrene oxides by cysteine conjugate beta-lyase purified from Peptostreptococcus magnus.

    PubMed Central

    Kataoka, K; Kinouchi, T; Akimoto, S; Ohnishi, Y

    1995-01-01

    To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8526486

  16. The synthesis and properties of peptidylmethylsulphonium salts with two cationic residues as potential inhibitors of prohormone processing.

    PubMed Central

    Zumbrunn, A; Stone, S; Shaw, E

    1988-01-01

    Peptidylmethylsulphonium salts incorporating consecutive basic residues at the C-terminus of the peptidyl portion such as -Arg-Arg-, -Arg-Lys-, -Lys-Lys- and -Lys-Arg- were synthesized and examined as proteinase inhibitors. Serine proteinases with a specificity directed towards hydrolysis at cationic residues were found to be unaffected by these derivatives. On the other hand, cysteine proteinases, cathepsin B and, in particular, clostripain were readily inactivated by affinity labelling. The reagents thus are of promise for the study of prohormone processing promoted by cysteine proteinases. PMID:3223967

  17. Nonvolatile S-alk(en)ylthio-L-cysteine derivatives in fresh onion (Allium cepa L. cultivar).

    PubMed

    Starkenmann, Christian; Niclass, Yvan; Troccaz, Myriam

    2011-09-14

    The L-cysteine derivatives (R)-2-amino-3-(methyldisulfanyl)propanoic acid (S-methylthio-L-cysteine), (R)-2-amino-3-(propyldisulfanyl)propanoic acid (S-propylthio-L-cysteine), (R)-2-amino-3-(1-propenyldisulfanyl)propanoic acid (S-(1-propenylthio)-L-cysteine), and (R)-2-amino-3-(2-propenyldisulfanyl)propanoic acid (S-allylthio-L-cysteine) were prepared from 3-[(methoxycarbonyl)dithio]-L-alanine, obtained from the reaction of L-cysteine with methoxycarbonylsulfenyl chloride. The occurrence of these S-(+)-alk(en)ylthio-L-cysteine derivatives in onion (Allium cepa L.) was proven by using UPLC-MS-ESI(+) in SRM mode. Their concentrations in fresh onion were estimated to be 0.19 mg/kg S-methylthio-L-cysteine, 0.01 mg/kg S-propylthio-L-cysteine, and 0.56 mg/kg (S-(1-propenyllthio)-L-cysteine, concentrations that are about 3000 times lower than that of isoalliin (S-(1-propenyl-S-oxo-L-cysteine). These compounds were treated with Fusobacterium nucleatum, a microorganism responsible for the formation of mouth malodor. These L-cysteine disulfides were demonstrated to predominantly produce tri- and tetrasulfides. Isoalliin is almost entirely consumed by the plant enzyme alliin lyase (EC 4.4.1.4 S-alk(en)yl-S-oxo-L-cysteine lyase) in a few seconds, but it is not transformed by F. nucleatum. This example of flavor modulation shows that the plant produces different precursors, leading to the formation of the same types of volatile sulfur compounds. Whereas the plant enzyme efficiently transforms S-alk(en)yl-S-oxo-L-cysteine, mouth bacteria are responsible for the transformation of S-alk(en)ylthio-L-cysteine. PMID:21854077

  18. Identification and characterization of the cysteine protease inhibitor gene MdCPI from Musca domestica.

    PubMed

    Dong, X; Liu, Fengsong; Zhang, D; Tang, T; Ge, X

    2011-10-01

    Cysteine proteinase inhibitors (CPIs) are involved in many vital cellular processes such as signalling pathways, apoptosis, immune response and development; however, no CPIs have yet been reported from the housefly Musca domestica. Here we report the isolation and characterization of a housefly CPI gene designated MdCPI. The gene contains an open reading frame of 357 bp encoding a protein of 118 amino acid residues with a putative signal peptide of 17 amino acid residues. Protein alignment demonstrated a high homology to that of Sarcophaga crassipalpis (identity = 51%). Phylogenetic analysis suggested that all CPIs from dipterans, including the housefly, belong to the I25A family and may be descended from a single common ancestor. The gene was expressed in and purified from Escherichia coli. Biochemical studies showed that MdCPI exerts an inhibiting function on papain, which is a classical assay to confirm CPIs. Real-time quantitative PCR and immunolocalization analysis revealed that MdCPI is specifically expressed in haemocytes and fat bodies. It is highly down-regulated in larvae and markedly up-regulated in the pupal stage, suggesting that it may be related to development. PMID:21711401

  19. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    SciTech Connect

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  20. Glutamyl cysteine dipeptide suppresses ferritin expression and alleviates liver injury in iron-overload rat model.

    PubMed

    Salama, Samir A; Al-Harbi, Mohammad S; Abdel-Bakky, Mohamed S; Omar, Hany A

    2015-08-01

    Despite its biological importance, iron is a pro-oxidant element and its accumulation results in tissue injury. Iron overload diseases such as thalassemia and hereditary hemochromatosis are commonly associated with liver tissue injury. Glutamyl cysteine (GC) is a dipeptide with antioxidant properties owing to its cysteine residue. The aim of the current work was to investigate the hepatoprotective effect of GC against iron overload-induced liver injury. Rats were distributed into five groups; normal control, GC control, iron-treated (150 mg/kg ip injection) and both iron and GC-treated (total iron: 150 mg/kg ip and GC: 50 mg or 100 mg/kg/day ip for 30 days). Our results showed that treatment with GC at the two-dose levels attenuated iron-induced liver tissue injury as evidenced by significant reduction in serum activity of liver enzymes ALT and AST, amelioration of iron-induced histopathological alteration, suppression of iron-induced oxidative stress as demonstrated by significant reduction of malondialdehyde and protein carbonyl content beside elevation of total antioxidant capacity, reduced glutathione and the antioxidant enzymes GPx and SOD in liver tissue. In addition, GC significantly reduced levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β and activity of the apoptotic marker caspase-3 in liver tissues. To our surprise, GC reduced liver iron content and ferritin expression, denoting the possible iron chelation competency. Collectively our results highlight evidence for the hepatoprotective effect of GC against iron overload-induced liver injury that is potentially mediated through suppression of oxidative tissue injury, attenuation of inflammatory response, amelioration of hepatocellular apoptosis and possibly through iron chelation. PMID:26093100

  1. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis.

    PubMed

    Kini, Shruthi G; Nguyen, Phuong Q T; Weissbach, Sophie; Mallagaray, Alvaro; Shin, Joon; Yoon, Ho Sup; Tam, James P

    2015-11-01

    Hevein-like peptides make up a family of cysteine-rich peptides (CRPs) and play a role in plants in their defense against insects and fungal pathogens. In this study, we report the isolation and characterization of six hevein-like peptides, aSG1-G3 and aSR1-R3, collectively named altides from green and red varieties of Alternanthera sessilis, a perennial herb belonging to the Amaranthaceae family. Proteomic analysis of altides revealed they contain six cysteines (6C), seven glycines, four prolines, and a conserved chitin-binding domain (SXYGY/SXFGY). Thus far, only four 6C-hevein-like peptides have been isolated and characterized; hence, our study expands the existing library of these peptides. Nuclear magnetic resonance (NMR) study of altides showed its three disulfide bonds were arranged in a cystine knot motif. As a consequence of this disulfide arrangement, they are stable against thermal and enzymatic degradation. Gene cloning studies revealed altides contain a three-domain precursor with an endoplasmic reticulum signal peptide followed by a mature CRP domain and a short C-terminal tail. This indicates that the biosynthesis of altides is through the secretory pathway. (1)H NMR titration experiments showed that the 29-30-amino acid altides bind to chitin oligomers with dissociation constants in the micromolar range. Aromatic residues in the chitin-binding domain of altides were involved in the binding interaction. To the best of our knowledge, aSR1 is the smallest hevein-like peptide with a dissociation constant toward chitotriose comparable to those of hevein and other hevein-like peptides. Together, our study expands the existing library of 6C-hevein-like peptides and provides insights into their structure, biosynthesis, and interaction with chitin oligosaccharides. PMID:26467613

  2. Cysteine protease inhibition by nitrile-based inhibitors: a computational study

    PubMed Central

    Quesne, Matthew G.; Ward, Richard A.; de Visser, Sam P.

    2013-01-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism. PMID:24790966

  3. Cysteine Oxidation Targets Peroxiredoxins 1 and 2 for Exosomal Release through a Novel Mechanism of Redox-Dependent Secretion

    PubMed Central

    Mullen, Lisa; Hanschmann, Eva-Maria; Lillig, Christopher Horst; Herzenberg, Leonore A; Ghezzi, Pietro

    2015-01-01

    Nonclassical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of nonclassical secretion. We have shown recently that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms, as has been postulated for the inflammatory mediators interleukin-1β (IL-1β) and high mobility group box-1 (HMGB1). We show here that circulating Prdx1 and 2 are present exclusively as disulfide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α, and this release can be induced with an oxidant. By contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway, instead, both Prdx1 and 2 are released in exosomes from both human embryonic kidney (HEK) cells and monocytic cells. Serum Prdx1 and 2 also are associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signaling mechanisms in inflammation. PMID:25715249

  4. F-actin is intermolecularly crosslinked by N,N'-p-phenylenedimaleimide through lysine-191 and cysteine-374.

    PubMed

    Elzinga, M; Phelan, J J

    1984-11-01

    The bifunctional reagent N,N'-p-phenylenedimaleimide (PDM) is being used in an attempt to measure distances between specific side chains in adjacent monomers within F-actin. [14C]PDM was synthesized and was used to crosslink F-actin. Uncrosslinked actin was removed by gel filtration, and, from an arginine-specific tryptic digest of the covalently crosslinked dimers and higher oligomers, one radioactive crosslinked peptide was obtained in high yield. Amino acid composition and sequence analysis indicated that it comprises residues 184-196 of one monomer and 373-375 of an adjacent actin molecule, bridged by PDM through Cys-374 and Lys-191. Thus, these groups are shown to be 1.2-1.4 nm apart in adjacent actin monomers in F-actin. This information may be crucial in establishing the orientation of actin monomers within F-actin. PMID:6436818

  5. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.

    PubMed

    Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N

    2000-02-29

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes. PMID:10681429

  6. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease

    PubMed Central

    Kagawa, Todd F.; Cooney, Jakki C.; Baker, Heather M.; McSweeney, Sean; Liu, Mengyao; Gubba, Siddeswar; Musser, James M.; Baker, Edward N.

    2000-01-01

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-Å resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes. PMID:10681429

  7. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  8. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide.

    PubMed

    Pan, Jia; Carroll, Kate S

    2015-12-18

    S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol peroxidase after illumination in vitro. These caged sulfoxides should be promising for site-specific incorporation of Cys sulfenic acid in living cells via genetic code expansion. PMID:26641493

  9. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Verhaert, Peter D E M; Lopes, Adriana R

    2015-05-01

    Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles. PMID:25818482

  10. Cysteine Peptidases as Schistosomiasis Vaccines with Inbuilt Adjuvanticity

    PubMed Central

    El Ridi, Rashika; Tallima, Hatem; Selim, Sahar; Donnelly, Sheila; Cotton, Sophie; Gonzales Santana, Bibiana; Dalton, John P.

    2014-01-01

    Schistosomiasis is caused by several worm species of the genus Schistosoma and afflicts up to 600 million people in 74 tropical and sub-tropical countries in the developing world. Present disease control depends on treatment with the only available drug praziquantel. No vaccine exists despite the intense search for molecular candidates and adjuvant formulations over the last three decades. Cysteine peptidases such as papain and Der p 1 are well known environmental allergens that sensitize the immune system driving potent Th2-responses. Recently, we showed that the administration of active papain to mice induced significant protection (P<0.02, 50%) against an experimental challenge infection with Schistosoma mansoni. Since schistosomes express and secrete papain-like cysteine peptidases we reasoned that these could be employed as vaccines with inbuilt adjuvanticity to protect against these parasites. Here we demonstrate that sub-cutaneous injection of functionally active S. mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant (P<0.0001) protection (up to 73%) against an experimental challenge worm infection. Protection and reduction in worm egg burden were further increased (up to 83%) when the cysteine peptidases were combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP), without the need to add chemical adjuvants. These studies demonstrate the capacity of helminth cysteine peptidases to behave simultaneously as immunogens and adjuvants, and offer an innovative approach towards developing schistosomiasis vaccines PMID:24465551

  11. Interplay between fast diffusion and molecular interaction in the formation of self-assembled nanostructures of S-cysteine on Au(111).

    PubMed

    Mateo-Martí, E; Rogero, C; Gonzalez, C; Sobrado, J M; de Andrés, P L; Martin-Gago, J A

    2010-03-16

    We have studied the first stages leading to the formation of self-assembled monolayers of S-cysteine molecules adsorbed on a Au(111) surface. Density functional theory (DFT) calculations for the adsorption of individual cysteine molecules on Au(111) at room temperature show low-energy barriers all over the 2D Au(111) unit cell. As a consequence, cysteine molecules diffuse freely on the Au(111) surface and they can be regarded as a 2D molecular gas. The balance between molecule-molecule and molecule-substrate interactions induces molecular condensation and evaporation from the morphological surface structures (steps, reconstruction edges, etc.) as revealed by scanning tunnelling microscopy (STM) images. These processes lead progressively to the formation of a number of stable arrangements, not previously reported, such as single-molecular rows, trimers, and 2D islands. The condensation of these structures is driven by the aggregation of new molecules, stabilized by the formation of electrostatic interactions between adjacent NH(3)(+) and COO(-) groups, together with adsorption at a slightly more favorable quasi-top site of the herringbone Au reconstruction. PMID:20092363

  12. View of north side from exterior stairs of adjacent building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north side from exterior stairs of adjacent building, bottom cut off by fringed buildings, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  13. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  14. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  15. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.

    PubMed

    Qian, Feng; El Hiani, Yassine; Linsdell, Paul

    2011-10-01

    The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged into two pseudo-symmetrical groups of six. While TM6 in the N-terminal TMs is known to line the pore and to make an important contribution to channel properties, much less is known about its C-terminal counterpart, TM12. We have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of TM12 in a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM12 residues N1138, M1140, S1141, T1142, Q1144, W1145, V1147, N1148, and S1149 when applied to the cytoplasmic side of open channels. Cysteines sensitive to internal MTS reagents were not modified by extracellular [2-(trimethylammonium)ethyl] MTS, consistent with MTS reagent impermeability. Both S1141C and T1142C could be modified by intracellular [2-sulfonatoethyl] MTS prior to channel activation; however, N1138C and M1140C, located deeper into the pore from its cytoplasmic end, were modified only after channel activation. Comparison of these results with previous work on CFTR-TM6 allows us to develop a model of the relative positions, functional contributions, and alignment of these two important TMs lining the CFTR pore. We also propose a mechanism by which these seemingly structurally symmetrical TMs make asymmetric contributions to the functional properties of the channel pore. PMID:21796338

  16. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins

    PubMed Central

    2012-01-01

    Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation. PMID:23088625

  17. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    PubMed

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. PMID:25871637

  18. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris.

    PubMed

    Bown, David P; Wilkinson, Hillary S; Jongsma, Maarten A; Gatehouse, John A

    2004-04-01

    Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z-phe-tyr-DMK, specific for cathepsin L. A cDNA library representing larval gut tissue mRNA contained cysteine proteinase-encoding clones at high frequency. Sequence analysis of 11 cysteine proteinase cDNAs showed that 9 encoded cathepsin L-like enzymes, and 2 encoded cathepsin B-like enzymes. Three enzymes (two cathepsin L-like, DvRS5 and DvRS30, and one cathepsin B-like, DvRS40) were expressed as recombinant proteins in culture supernatants of the yeast Pichia pastoris. The cathepsin L-like enzymes were active proteinases, whereas the cathepsin B-like enzyme was inactive until treated with bovine trypsin. The amino acid residue in the S2 binding pocket, the major determinant of substrate specificity in cathepsin cysteine proteinases, predicted that the two cathepsin L-like enzymes, DvRS5 and DvRS30, should differ in substrate specificity, with the latter resembling cathepsin B in hydrolysing substrates with a positively charged residue at P2. This prediction was confirmed; DvRS5 only hydrolysed Z-phe-arg-AMC and not Z-arg-arg-AMC, whereas DvRS30 hydrolysed both substrates. The enzymes showed similar proteolytic activity towards peptide substrates. PMID:15041015

  19. Uterine smooth muscle tumors with features suggesting fumarate hydratase aberration: detailed morphologic analysis and correlation with S-(2-succino)-cysteine immunohistochemistry

    PubMed Central

    Reyes, Carolina; Karamurzin, Yevgeniy; Frizzell, Norma; Garg, Karuna; Nonaka, Daisuke; Chen, Ying-Bei; Soslow, Robert A.

    2013-01-01

    Rare, sporadic uterine leiomyomas arise in the setting of severe metabolic aberration due to somatic fumarate hydratase mutation. Germline mutations account for the Hereditary Leiomyomatosis and Renal Cell Carcinoma syndrome, which predisposes for cutaneous and uterine leiomyomas and aggressive renal cell carcinomas. Altered fumarate hydratase leads to fumarate accumulates in affected cells with formation of S-(2-succino)-cysteine, which can be detected with polyclonal antibody. High levels of these modified cysteine residues are found characteristically in fumarate hydratase-deficient cells, but not in normal tissues or tumors unassociated with Hereditary Leiomyomatosis and Renal Cell Carcinoma syndrome. We hypothesized that S-(2-succino)-cysteine-positive leiomyomas, indicating fumarate hydratase aberration, have morphologic features that differ from those without S-(2-succino)-cysteine positivity. Hematoxylin and eosin-stained slides of uterine smooth muscle tumors were prospectively analyzed for features suggesting Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome, such as prominent eosinophilic macronucleoli with perinucleolar halos, yielding 9 cases. Germline genetic testing for fumarate hydratase mutations was performed in 3 cases. A detailed morphological analysis was undertaken, and S-(2-succino)-cysteine immunohistochemistry was performed with controls from a tissue microarray [leiomyomas (19), leiomyosarcomas (29), and endometrial stromal tumors (15)]. Of the 9 study cases, 4 had multiple uterine smooth muscle tumors. All cases had increased cellularity, staghorn vasculature, and fibrillary cytoplasm with pink globules. All cases had inclusion-like nucleoli with perinuclear halos (7 diffuse, 1 focal). All showed diffuse granular cytoplasmic labeling with the S-(2-succino)-cysteine antibody. Two of 3 tested patients had germline fumarate hydratase mutations. Only 1 leiomyoma from the tissue microarray controls was immunohistochemically positive

  20. Identification of papain-like cysteine proteases from the bovine piroplasm Babesia bigemina and evolutionary relationship of piroplasms C1 family of cysteine proteases.

    PubMed

    Martins, Tiago M; do Rosário, Virgílio E; Domingos, Ana

    2011-01-01

    Papain-like cysteine proteases have been shown to have essential roles in parasitic protozoa and are under study as promising drug targets. Five genes were identified by sequence similarity search to be homologous to the cysteine protease family in the ongoing Babesia bigemina genome sequencing project database and were compared with the annotated genes from the complete bovine piroplasm genomes of Babesia bovis, Theileria annulata, and Theileria parva. Multiple genome alignments and sequence analysis were used to evaluate the molecular evolution events that occurred in the C1 family of cysteine proteases in these piroplasms of veterinary importance. BbiCPL1, one of the newly identified cysteine protease genes in the B. bigemina genome was expressed in Escherichia coli and shows activity against peptide substrates. Considerable differences were observed in the cysteine protease family between Babesia and Theileria genera, and this may partially explain the diverse infection mechanisms of these tick-borne diseases. PMID:20655912

  1. Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect.

    PubMed

    Helbo, Signe; Gow, Andrew J; Jamil, Amna; Howes, Barry D; Smulevich, Giulietta; Fago, Angela

    2014-01-01

    The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions. PMID:24879536

  2. Accessibility of cysteines in the native bovine rod cGMP-gated channel.

    PubMed

    Bauer, Paul J; Krause, Eberhard

    2005-02-01

    Cyclic nucleotide-gated channels of photoreceptors and olfactory sensory neurons are tetramers consisting of A and B subunits. Here, the accessibility of the cysteines of the bovine rod cyclic nucleotide-gated channel is examined as a function of ligand binding. N-Ethylmaleimide-modified cysteines of both subunits were identified by mass spectrometry after trypsin digestion. In the absence of ligand, the intracellular carboxy-terminal cysteines of both subunits were accessible to N-ethylmaleimide. Activation of the channel abolished the accessibility of Cys505 of the A subunit and Cys1104 of the B subunit, with both being conserved cysteines of the cyclic nucleotide-binding sites. The cysteine of the pore loop of the B subunit was also found to be modified by this reagent in the absence of ligand. The total number of accessible cysteines of each subunit was determined by mass shifting upon modification with polyethylene glycol maleimide. In the absence of cyclic nucleotides, this hydrophilic reagent only weakly labeled cysteines of the A subunit but readily labeled at least three cysteines of the B subunit. Ligand binding exposed two cysteines of the A subunit and one cysteine of the B subunit to chemical modification. Double-modification experiments suggest that some of these cysteines are in or close to membrane-spanning domains. However, these cysteines could not yet be identified. Together, the cysteine accessibility of the native rod cyclic nucleotide-gated channel varies markedly upon ligand binding, thus indicating major structural rearrangements, which are of functional importance for channel activation. PMID:15683246

  3. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties

    PubMed Central

    Sanchez, Ricardo; Riddle, Megan; Woo, Jongwook; Momand, Jamil

    2008-01-01

    Protein cysteine thiols can be divided into four groups based on their reactivities: those that form permanent structural disulfide bonds, those that coordinate with metals, those that remain in the reduced state, and those that are susceptible to reversible oxidation. Physicochemical parameters of oxidation-susceptible protein thiols were organized into a database named the Balanced Oxidation Susceptible Cysteine Thiol Database (BALOSCTdb). BALOSCTdb contains 161 cysteine thiols that undergo reversible oxidation and 161 cysteine thiols that are not susceptible to oxidation. Each cysteine was represented by a set of 12 parameters, one of which was a label (1/0) to indicate whether its thiol moiety is susceptible to oxidation. A computer program (the C4.5 decision tree classifier re-implemented as the J48 classifier) segregated cysteines into oxidation-susceptible and oxidation-non-susceptible classes. The classifier selected three parameters critical for prediction of thiol oxidation susceptibility: (1) distance to the nearest cysteine sulfur atom, (2) solvent accessibility, and (3) pKa. The classifier was optimized to correctly predict 136 of the 161 cysteine thiols susceptible to oxidation. Leave-one-out cross-validation analysis showed that the percent of correctly classified cysteines was 80.1% and that 16.1% of the oxidation-susceptible cysteine thiols were incorrectly classified. The algorithm developed from these parameters, named the Cysteine Oxidation Prediction Algorithm (COPA), is presented here. COPA prediction of oxidation-susceptible sites can be utilized to locate protein cysteines susceptible to redox-mediated regulation and identify possible enzyme catalytic sites with reactive cysteine thiols. PMID:18287280

  4. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots.

    PubMed

    Zhao, Qin; Wang, Yang; Wang, Shaolin; Wang, Zheng; Du, Xiang-Dang; Jiang, Haiyang; Xia, Xi; Shen, Zhangqi; Ding, Shuangyang; Wu, Congming; Zhou, Bingrui; Wu, Yongning; Shen, Jianzhong

    2016-01-01

    Florfenicol is extensively used in livestock to prevent or cure bacterial infections. However, it is not known whether the administration of florfenicol has resulted in the emergence and dissemination of florfenicol resistance genes (FRGs, including fexA, fexB, cfr, optrA, floR, and pexA) in microbial populations in surrounding farm environments. Here we collected soil samples for the detection of FRGs and the residue of florfenicol from six swine farms with the record of florfenicol usage. Quantitative polymerase chain reaction and metagenomic sequencing revealed a significantly higher relative abundance of FRGs in the soils adjacent to the three swine farms where florfenicol was heavily used compared with the other sites. Meanwhile, the detectable levels of florfenicol were also identified in soils from two of these three farms using ultra-performance liquid chromatography tandem mass spectrometry. It appears that amount of florfenicol used on swine farms and the spreading of soils with swine waste could promote the prevalence and abundance of FRGs, including the linezolid resistance genes cfr and optrA, in adjacent soils, and agricultural application of swine manure with florfenicol may have caused a residual level of florfenicol in the soils. PMID:27573068

  5. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots

    PubMed Central

    Zhao, Qin; Wang, Yang; Wang, Shaolin; Wang, Zheng; Du, Xiang-dang; Jiang, Haiyang; Xia, Xi; Shen, Zhangqi; Ding, Shuangyang; Wu, Congming; Zhou, Bingrui; Wu, Yongning; Shen, Jianzhong

    2016-01-01

    Florfenicol is extensively used in livestock to prevent or cure bacterial infections. However, it is not known whether the administration of florfenicol has resulted in the emergence and dissemination of florfenicol resistance genes (FRGs, including fexA, fexB, cfr, optrA, floR, and pexA) in microbial populations in surrounding farm environments. Here we collected soil samples for the detection of FRGs and the residue of florfenicol from six swine farms with the record of florfenicol usage. Quantitative polymerase chain reaction and metagenomic sequencing revealed a significantly higher relative abundance of FRGs in the soils adjacent to the three swine farms where florfenicol was heavily used compared with the other sites. Meanwhile, the detectable levels of florfenicol were also identified in soils from two of these three farms using ultra-performance liquid chromatography tandem mass spectrometry. It appears that amount of florfenicol used on swine farms and the spreading of soils with swine waste could promote the prevalence and abundance of FRGs, including the linezolid resistance genes cfr and optrA, in adjacent soils, and agricultural application of swine manure with florfenicol may have caused a residual level of florfenicol in the soils. PMID:27573068

  6. X-ray crystal structure of CMS1MS2: a high proteolytic activity cysteine proteinase from Carica candamarcensis.

    PubMed

    Gomes, Marco T R; Teixeira, Raphael D; Lopes, Míriam T P; Nagem, Ronaldo A P; Salas, Carlos E

    2012-12-01

    CMS1MS2 (CC-Ib) from Carica candamarcensis (Vasconcellea cundinamarcensis) is a cysteine proteinase found as a single polypeptide containing 213 residues of 22,991 Da. The enzyme was purified by three chromatographic steps, two of them involving cationic exchange. Crystals of CMS1MS2 complexed with E-64 were obtained by the hanging drop vapor-diffusion method at 291 K using ammonium sulfate and polyethylene glycol 4000/8000 as precipitant. The complex CMS1MS2-E-64 crystallized in the tetragonal space group P4(1)2(1)2 with unit-cell parameters; a = b = 73.64, c = 118.79 Å. The structure was determined by Molecular Replacement and refined at 1.87 Å resolution to a final R factor of 16.2 % (R (free) = 19.3 %). Based on the model, the structure of CMS1MS2 (PDB 3IOQ) ranks as one of the least basic cysteine isoforms from C. candamarcensis, is structurally closer to papain, caricain, chymopapain and mexicain than to the other cysteine proteinases, while its activity is twice the activity of papain towards BAPNA substrate. Two differences, one in the S2 subsite and another in the S3 subsite of CMS1MS2 may contribute to the enhanced activity relative to papain. In addition, the model provides a structural basis for the sensitivity of CMS1MS2 to inhibition by cystatin, not shown by other enzymes of the group, e.g., glycyl endopeptidase and CMS2MS2. PMID:22610687

  7. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  8. Regulatory Control or Oxidative Damage? Proteomic Approaches to Interrogate the Role of Cysteine Oxidation Status in Biological Processes*

    PubMed Central

    Held, Jason M.; Gibson, Bradford W.

    2012-01-01

    Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease. PMID:22159599

  9. Mass spectrometry characterization of the thermal decomposition/digestion (TDD) at cysteine in peptides and proteins in the condensed phase.

    PubMed

    Basile, Franco; Zhang, Shaofeng; Kandar, Sujit Kumar; Lu, Liang

    2011-11-01

    We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220-250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700-1704). The C cleavage proceeds through cleavage of the nitrogen and α-carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (-1 Da) of the N-terminal thermal decomposition product and a -32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS. PMID:21952765

  10. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme

    PubMed Central

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen

    2009-01-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ~30Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite, and not to the catalytic site. In agreement with observed high Km values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all thirteen cysteines is insensitive to the inhibition by S-nitroso-glutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing towards an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis. PMID:18986166

  11. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  12. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.

    PubMed

    Katritzky, Alan R; Tala, Srinivasa R; Abo-Dya, Nader E; Ibrahim, Tarek S; El-Feky, Said A; Gyanda, Kapil; Pandya, Keyur M

    2011-01-01

    Cysteine-containing dipeptides 3a-l, (3b+3b') (compound numbers in parentheses are used to indicate racemic mixtures; thus (3b+3b') is the racemate of 3b and 3b'), and tripeptide 13 were synthesized in 68-96% yields by acylation of cysteine with N-(Pg-α-aminoacyl)- and N-(Pg-α-dipeptidoyl)benzotriazoles (where Pg stands for protecting group in the nomenclature for peptides throughout the paper) in the presence of Et(3)N. Cysteine-containing peptides 3a-l and 13 were S-acylated to give S-(Pg-α-aminoacyl)dipeptides 5a-l and S-(Pg-α-aminoacyl)tripeptide 14 without racemization in 47-90% yields using N-(Pg-α-aminoacyl)benzotriazoles 2 in CH(3)CN-H(2)O (7:3) in the presence of KHCO(3). (In our peptide nomenclature, the prefixes di-, tri-, etc. refer to the number of amino acid residues in the main peptide chain; amino acid residues attached to sulfur are designated as S-acyl peptides. Thus we avoid use of the prefix "iso".) Selective S-acylations of serine peptide 3k and threonine peptide 3l containing free OH groups were thus achieved in 58% and 72% yield, respectively. S-(Pg-α-aminoacyl)cysteines 4a,b underwent native chemical ligations to form native dipeptides 3f,i via 5-membered cyclic transition states. Microwave irradiation of S-(Pg-α-aminoacyl)tripeptide 15 and S-(Pg-α-aminoacyl)tetrapeptide 17 in the presence of NaH(2)PO(4)/Na(2)HPO(4) buffer solution at pH 7.8 achieved chemical ligations, involving intramolecular migrations of acyl groups, via 11- and 14-membered cyclic transition states from the S-atom of a cysteine residue to a peptide terminal amino group to form native peptides 19 and 20 in isolated yields of 26% and 23%, respectively. PMID:21158395

  13. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family

    SciTech Connect

    Herga, Sameh; Brutus, Alexandre; Vitale, Rosa Maria; Miche, Helene; Perrier, Josette; Puigserver, Antoine; Scaloni, Andrea; Giardina, Thierry . E-mail: thierry.giardina@univ.u-3mrs.fr

    2005-05-06

    Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure.

  14. Cadmium(II) Complex Formation with Cysteine and Penicillamine

    PubMed Central

    Jalilehvand, Farideh; Leung, Bonnie O.; Mah, Vicky

    2009-01-01

    The complex formation between cadmium(II) and the ligands cysteine (H2Cys) or penicillamine (H2Pen = 3, 3′-dimethylcysteine) in aqueous solutions, containing CCd(II) ∼ 0.1 mol dm-3 and CH2L = 0.2 – 2 mol dm-3, was studied at pH = 7.5 and 11.0 by means of 113Cd-NMR and Cd K- and L3-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine mole ratios the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52 – 2.54 Å and 2.27 – 2.35 Å, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50 – 2.53 Å, but with the Cd-(N/O) bond distances in a similar wide range, 2.28 – 2.33 Å. For the mole ratio CH2L / CCd(II) = 2, the 113Cd chemical shifts, in the range 509 – 527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS2N(N/O) coordination geometry. With a large excess of cysteine (mole ratios CH2Cys / CCd(II) ≥ 10) complexes with CdS4 coordination geometry dominate, consistent with the 113Cd NMR chemical shifts, δ ∼ 680 ppm at pH 7.5 and 636 - 658 ppm at pH 11.0, and their mean Cd-S distances of 2.53 ± 0.02 Å. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)4]n-, while at higher pH the deprotonation of the amine groups promotes chelate formation, and at pH 11.0 a minor amount of the [Cd(Cys)3]4- complex with CdS3N coordination is formed. For the corresponding penicillamine solutions with mole ratios CH2Pen / CCd(II) ≥ 10, the 113Cd-NMR chemical shifts, δ ∼ 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances Cd-S 2.53 ± 0.02 Å and Cd-O 2.30 – 2.33 Å, indicate that [Cd(penicillaminate)3]n- complexes with chelating CdS3(N/O) coordination dominate already at pH 7.5, and become mixed with CdS2N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the cadmium(II) ion that can explain why cysteine-rich metallothionines

  15. Cadmium(II) complex formation with cysteine and penicillamine.

    PubMed

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-01

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  16. Biosynthesis and Reactivity of Cysteine Persulfides in Signaling.

    PubMed

    Yadav, Pramod K; Martinov, Michael; Vitvitsky, Victor; Seravalli, Javier; Wedmann, Rudolf; Filipovic, Milos R; Banerjee, Ruma

    2016-01-13

    Hydrogen sulfide (H2S) elicits pleiotropic physiological effects ranging from modulation of cardiovascular to CNS functions. A dominant method for transmission of sulfide-based signals is via posttranslational modification of reactive cysteine thiols to persulfides. However, the source of the persulfide donor and whether its relationship to H2S is as a product or precursor is controversial. The transsulfuration pathway enzymes can synthesize cysteine persulfide (Cys-SSH) from cystine and H2S from cysteine and/or homocysteine. Recently, Cys-SSH was proposed as the primary product of the transsulfuration pathway with H2S representing a decomposition product of Cys-SSH. Our detailed kinetic analyses demonstrate a robust capacity for Cys-SSH production by the human transsulfuration pathway enzymes, cystathionine beta-synthase and γ-cystathionase (CSE) and for homocysteine persulfide synthesis from homocystine by CSE only. However, in the reducing cytoplasmic milieu where the concentration of reduced thiols is significantly higher than of disulfides, substrate level regulation favors the synthesis of H2S over persulfides. Mathematical modeling at physiologically relevant hepatic substrate concentrations predicts that H2S rather than Cys-SSH is the primary product of the transsulfuration enzymes with CSE being the dominant producer. The half-life of the metastable Cys-SSH product is short and decomposition leads to a mixture of polysulfides (Cys-S-(S)n-S-Cys). These in vitro data, together with the intrinsic reactivity of Cys-SSH for cysteinyl versus sulfur transfer, are consistent with the absence of an observable increase in protein persulfidation in cells in response to exogenous cystine and evidence for the formation of polysulfides under these conditions. PMID:26667407

  17. Characterization of a cysteine-rich protein specifically expressed in the silk gland of caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae).

    PubMed

    Wang, Yujun; Wang, Hong; Zhao, Tianfu; Nakagaki, Masao

    2010-01-01

    A novel protein, Smsp-72k, was found to be selectively expressed in the silk gland of aquatic larvae of the Stenopsychid caddisfly (Stenopsyche marmorata). The protein was characterized by an abundance of cysteine (13.97%) and charged residues (47.21%). Amino acids with hydroxyl side-chains accounted for an additional 10% of the Smsp-72k protein, with serine at 4.4% and threonine at 5.6%. A cysteine-rich repetitive sequence is common to many potential and known underwater adhesive/cement proteins and cell-cell adhesion molecules. We hypothesized that Smsp-72k is an adhesive/cement protein that increases the adhesiveness of the silk fiber of S. marmorata. The hydroxyl groups of Smsp-72k might form a link with the heavy chain fibroin of S. marmorata, removing the weak boundary-water layer and allowing the spreading of the silk protein onto the surface of the substratum during the process of adhesion. PMID:20057124

  18. Use of cysteine-modified TiO{sub 2} photocatalyst for treatment of combined organic/inorganic wastewaters

    SciTech Connect

    Peters, R.W.; Wu, J.M.; Meshkov, N.; Thurnauer, M.C.; Ostafin, A.G.

    1995-03-01

    The utilization of semiconductor-based photocatalysts, such as titanium dioxide (TiO{sub 2}), for carrying out photochemical reactions to treat water contaminated with organic and inorganic compounds has received considerable attention in recent years. The authors strategy for optimizing the process of photocatalytic reduction of heavy metals on TiO{sub 2} colloids involves modifying the colloid surface. Specific project objectives included: (1) identification and development of potential biomimetic photocatalysts for simultaneous heavy metal recovery and organic destruction; (2) identification of treatment conditions that minimize the residual metal concentration(s) contained in the effluent, even in the presence of complexants and interferences, and development of appropriate scale-up criteria; and (3) determination of system performance, including an economic analysis for comparison with conventional technologies (such as pump-and-treat using metal hydroxide precipitation of ion exchange). The experimental results indicate that simultaneous removal of organic compounds (such as naphthalene) and inorganic compounds (such as lead ions) in aqueous solution can be achieved using a TiO{sub 2} photocatalyst system with UV light. The removal rates of organic and inorganic compounds can be enhanced through surface modification of the TiO{sub 2} photocatalyst using an organic substance such as cysteine. The cysteine-modified TiO{sub 2} photocatalyst enhanced the oxidation rates of organics as well as the reduction rates of heavy metals in the irradiated solution, resulting in improved treatment efficiencies for combined organic/inorganic wastestreams.

  19. Structural and biochemical analyses of Microcystis aeruginosa O-acetylserine sulfhydrylases reveal a negative feedback regulation of cysteine biosynthesis.

    PubMed

    Lu, Mo; Xu, Bo-Ying; Zhou, Kang; Cheng, Wang; Jiang, Yong-Liang; Chen, Yuxing; Zhou, Cong-Zhao

    2014-02-01

    O-acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis from O-acetylserine (OAS) and inorganic sulfide in plants and bacteria. Bioinformatics analyses combined with activity assays enabled us to annotate the two putative genes of Microcystis aeruginosa PCC 7806 to CysK1 and CysK2, which encode the two 75% sequence-identical OASS paralogs. Moreover, we solved the crystal structures of CysK1 at 2.30Ǻ and cystine-complexed CysK2 at 1.91Ǻ, revealing a quite similar overall structure that belongs to the family of fold-type II PLP-dependent enzymes. Structural comparison indicated a significant induced fit upon binding to the cystine, which occupies the binding site for the substrate OAS and blocks the product release tunnel. Subsequent enzymatic assays further confirmed that cystine is a competitive inhibitor of the substrate OAS. Moreover, multiple-sequence alignment revealed that the cystine-binding residues are highly conserved in all OASS proteins, suggesting that this auto-inhibition of cystine might be a universal mechanism of cysteine biosynthesis pathway. PMID:24275508

  20. In vitro modification of substituted cysteines as tool to study receptor functionality and structure-activity relationships.

    PubMed

    Rathmann, Daniel; Pedragosa-Badia, Xavier; Beck-Sickinger, Annette G

    2013-08-15

    Mutagenic investigations of expressed membrane proteins are routine, but the variety of modifications is limited by the twenty canonical amino acids. We describe an easy and effective cysteine substitution mutagenesis method to modify and investigate distinct amino acids in vitro. The approach combines the substituted cysteine accessibility method (SCAM) with a functional signal transduction readout system using different thiol-specific reagents. We applied this approach to the prolactin-releasing peptide receptor (PrRPR) to facilitate biochemical structure-activity relationship studies of eight crucial positions. Especially for D(6.59)C, the treatment with the positively charged methanethiosulfonate (MTS) ethylammonium led to an induced basal activity, whereas the coupling of the negatively charged MTS ethylsulfonate nearly reconstituted full activity, obviously by mimicking the wild-type charged side chain. At E(5.26)C, W(5.28)C, Y(5.38)C, and Q(7.35)C, accessibility was observed but hindered transfer into the active receptor conformation. Accordingly, the combination of SCAM and signaling assay is feasible and can be adapted to other G-protein-coupled receptors (GPCRs). This method circumvents the laborious way of inserting non-proteinogenic amino acids to investigate activity and ligand binding, with rising numbers of MTS reagents allowing selective side chain modification. This method pinpoints to residues being accessible but also presents potential molecular positions to investigate the global conformation. PMID:23624320

  1. 73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, LOOKING WEST BY NORTHWEST, SHOWING EASTERNMOST ARCH OF FORMER GREAT HALL NORTH ARCADE - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. View of viaduct, looking SE from roof of adjacent parking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of viaduct, looking SE from roof of adjacent parking garage. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA

  3. Cement Leakage into Adjacent Vertebral Body Following Percutaneous Vertebroplasty

    PubMed Central

    Park, Jae Hoo; Kim, Hyeun Sung

    2016-01-01

    Percutaneous vertebroplasty (PV) is a minimally invasive procedure for osteoporotic vertebral compression fractures that fail to respond to conventional conservative treatment. It significantly improves intolerable back pain within hours, and has a low complication rate. Although rare, PV is not free of complications, most of which are directly related to cement leakage. Because of its association with new adjacent fracture, the importance of cement leakage into the adjacent disc space is paramount. Here, we report an interesting case of cement leakage into the adjacent upper vertebral body as well as disc space following PV. To the best of our knowledge, there has been no report of cement leakage into the adjacent vertebral body following PV. This rare case is presented along with a review of the literature. PMID:27437018

  4. 1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL CO., MA. Sec. 4116, MP 193.75. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  5. 3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL CO., MA. Sec. 4116, MP 195.55. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  6. 33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY WITH CONCRETE CULVERT LEADING NORTH OUT OF RAVINE TOWARD JOHNSTON MEMORIAL SITE. VIEW NW. - Shiloh National Military Park Tour Roads, Shiloh, Hardin County, TN

  7. Lock 4 View east of lock wall and adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 4 - View east of lock wall and adjacent roadway built atop tow path. The gate pocket can be seen at center. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  8. 1. Ninth Street (west) facade. Adjacent on the north is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC

  9. 2. THREEQUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. THREE-QUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS AND NORTHWEST APPROACH SPANS, LOOKING SOUTHEAST - Red River Bridge, Spanning Red River at U.S. Highway 82, Garland, Miller County, AR

  10. 1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD HOMES, LOOKING SOUTH. GARAGE TO EXTREME LEFT, BUILDING 1 TO EXTREME RIGHT. - Techwood Homes (Public Housing), Bounded by North Avenue, Parker Street, William Street & Lovejoy Street, Atlanta, Fulton County, GA

  11. 3. View of north side of house facing from adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north side of house facing from adjacent vacant property. Original wood lap siding and trim is covered by aluminum siding. Recessed side porch is in middle. - 645 South Eighteenth Street (House), Louisville, Jefferson County, KY

  12. 1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE OF THE ADIT OPENINGS (VIEW TO THE NORTH). - Foster Gulch Mine, Fan Housing, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  13. 7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH (NOT IN STUDY AREA) - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  14. OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY 391 IN THE FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI

  15. Complications in exodontia--accidental dislodgment to adjacent anatomical areas.

    PubMed

    Grandini, S A; Barros, V M; Salata, L A; Rosa, A L; Soares, U N

    1993-01-01

    The authors report 4 cases of accidental dislodgement of teeth to adjacent anatomical areas during extraction. The causes and their prevention are discussed and solutions for the problem are suggested. PMID:8241759

  16. 6. Detail, vertical guides adjacent to east portal of Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail, vertical guides adjacent to east portal of Tunnel 28, view to southwest, 135mm lens with electronic flash fill. - Central Pacific Transcontinental Railroad, Tunnel No. 28, Milepost 134.75, Applegate, Placer County, CA

  17. VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO THE COLUMBIA SOUTHERN CANAL. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  18. Pump house adjacent to the superintendent's house at the west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump house adjacent to the superintendent's house at the west end of the complex near Highway 101. Detail of Holloshaft pump. View to the south. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  19. VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT TO BUILDING 199 (POLICE STATION) - U.S. Naval Base, Pearl Harbor, Post Office, Avenue A near Eleventh Avenue, Pearl City, Honolulu County, HI

  20. 24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO BRADLEY HAMMER; NOTE THIS IS THE SAME TOOL AS BEING FORGED ABOVE - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  1. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  2. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  3. 14. Charles Acey Cobb standing adjacent to the fish screen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Charles Acey Cobb standing adjacent to the fish screen he designed and installed in the Congdon Canal, facing southeast. Photo dates ca. late 1920's. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  4. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  5. Interior building details of Building A, dungeon cell adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building A, dungeon cell adjacent to northwest cell: granite and brick threshold, poured concrete floors, plastered finished walls, vaulted veiling; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  6. VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE STRUCTURE (DOWNSTREAM SIDE). LOOKING EAST/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  7. Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.

    PubMed

    Gupta, Vinayak; Carroll, Kate S

    2016-02-16

    Concerns about off-target effects has motivated the development of reversible covalent inhibition strategies for targeting cysteine. However, such strategies have not been reported for the unique cysteine oxoform, sulfenic acid. Herein, we have designed and identified linear C-nucleophiles that react selectively with cysteine sulfenic acid. The resulting thioether adducts exhibit reversibility ranging from minutes to days under reducing conditions, showing the feasibility of tuning C-nucleophile reactivity across a wide range of time scales. PMID:26878905

  8. Predicting the Reactivity of Nitrile-Carrying Compounds with Cysteine: A Combined Computational and Experimental Study

    PubMed Central

    2014-01-01

    Here, we report on a mechanistic investigation based on DFT calculations and kinetic measures aimed at determining the energetics related to the cysteine nucleophilic attack on nitrile-carrying compounds. Activation energies were found to correlate well with experimental kinetic measures of reactivity with cysteine in phosphate buffer. The agreement between computations and experiments points to this DFT-based approach as a tool for predicting both nitrile reactivity toward cysteines and the toxicity of nitriles as electrophile agents. PMID:24900869

  9. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  10. Adjacent Segment Disease Perspective and Review of the Literature

    PubMed Central

    Saavedra-Pozo, Fanor M.; Deusdara, Renato A. M.; Benzel, Edward C.

    2014-01-01

    Background Adjacent segment disease has become a common topic in spine surgery circles because of the significant increase in fusion surgery in recent years and the development of motion preservation technologies that theoretically should lead to a decrease in this pathology. The purpose of this review is to organize the evidence available in the current literature on this subject. Methods For this literature review, a search was conducted in PubMed with the following keywords: adjacent segment degeneration and disease. Selection, review, and analysis of the literature were completed according to level of evidence. Results The PubMed search identified 850 articles, from which 41 articles were selected and reviewed. The incidence of adjacent segment disease in the cervical spine is close to 3% without a significant statistical difference between surgical techniques (fusion vs arthroplasty). Authors report the incidence of adjacent segment disease in the lumbar spine to range from 2% to 14%. Damage to the posterior ligamentous complex and sagittal imbalances are important risk factors for both degeneration and disease. Conclusion Insufficient evidence exists at this point to support the idea that total disc arthroplasty is superior to fusion procedures in minimizing the incidence of adjacent segment disease. The etiology is most likely multifactorial but it is becoming abundantly clear that adjacent segment disease is not caused by motion segment fusion alone. Fusion plus the presence of abnormal end-fusion alignment appears to be a major factor in creating end-fusion stresses that result in adjacent segment degeneration and subsequent disease. The data presented cast further doubt on previously established rationales for total disc arthroplasty, at least with regard to the effect of total disc arthroplasty on adjacent segment degeneration pathology. PMID:24688337

  11. Approximating the largest eigenvalue of network adjacency matrices

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.

    2007-11-01

    The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.

  12. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  13. Enzymatic synthesis of S-phenyl-L-cysteine from keratin hydrolysis industries wastewater with tryptophan synthase.

    PubMed

    Xu, Lisheng; Wang, Zhiyuan; Mao, Pingting; Liu, Junzhong; Zhang, Hongjuan; Liu, Qian; Jiao, Qing-Cai

    2013-04-01

    An economical method for production of S-phenyl-L-cysteine from keratin acid hydrolysis wastewater (KHW) containing L-serine was developed by recombinant tryptophan synthase. This study provides us with an alternative KHW utilization strategy to synthesize S-phenyl-L-cysteine. Tryptophan synthase could efficiently convert L-serine contained in KHW to S-phenyl-L-cysteine at pH 9.0, 40°C and Trion X-100 of 0.02%. In a scale up study, L-serine conversion rate reach 97.1% with a final S-phenyl-L-cysteine concentration of 38.6 g l(-1). PMID:23478091

  14. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer

    PubMed Central

    Edgington-Mitchell, Laura E.; Rautela, Jai; Duivenvoorden, Hendrika M.; Jayatilleke, Krishnath M.; van der Linden, Wouter A.; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S.

    2015-01-01

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis. PMID:26308073

  15. Cysteine Prevents the Reduction in Keratin Synthesis Induced by Iron Deficiency in Human Keratinocytes.

    PubMed

    Miniaci, Maria Concetta; Irace, Carlo; Capuozzo, Antonella; Piccolo, Marialuisa; Di Pascale, Antonio; Russo, Annapina; Lippiello, Pellegrino; Lepre, Fabio; Russo, Giulia; Santamaria, Rita

    2016-02-01

    L-cysteine is currently recognized as a conditionally essential sulphur amino acid. Besides contributing to many biological pathways, cysteine is a key component of the keratin protein by its ability to form disulfide bridges that confer strength and rigidity to the protein. In addition to cysteine, iron represents another critical factor in regulating keratins expression in epidermal tissues, as well as in hair follicle growth and maturation. By focusing on human keratinocytes, the aim of this study was to evaluate the effect of cysteine supplementation as nutraceutical on keratin biosynthesis, as well as to get an insight on the interplay of cysteine availability and cellular iron status in regulating keratins expression in vitro. Herein we demonstrate that cysteine promotes a significant up-regulation of keratins expression as a result of de novo protein synthesis, while the lack of iron impairs keratin expression. Interestingly, cysteine supplementation counteracts the adverse effect of iron deficiency on cellular keratin expression. This effect was likely mediated by the up-regulation of transferrin receptor and ferritin, the main cellular proteins involved in iron homeostasis, at last affecting the labile iron pool. In this manner, cysteine may also enhance the metabolic iron availability for DNA synthesis without creating a detrimental condition of iron overload. To the best of our knowledge, this is one of the first study in an in vitro keratinocyte model providing evidence that cysteine and iron cooperate for keratins expression, indicative of their central role in maintaining healthy epithelia. PMID:26212225

  16. Metabolism of cysteine in rat hepatocytes. Evidence for cysteinesulphinate-independent pathways.

    PubMed

    Drake, M R; De La Rosa, J; Stipanuk, M H

    1987-06-01

    The metabolism of cysteine and cysteinesulphinate was studied in freshly isolated rat hepatocytes. Over 80% of the 14CO2 formed from [1-14C]cysteinesulphinate could be accounted for by production of hypotaurine plus taurine in incubations of rat hepatocytes with either 1 mM- or 25 mM-cysteinesulphinate. In similar incubations with 1 mM- or 25 mM-cysteine, less than 10% of 14CO2 evolution from [1-14C]cysteine could be accounted for by production of hypotaurine plus taurine. In incubations with cysteine, but not with cysteinesulphinate, the production of urea and ammonia was substantially increased above that observed in incubations without substrate. Addition of unlabelled cysteinesulphinate did not affect 14CO2 production from [1-14C]cysteine. Addition of 2-oxoglutarate resulted in a marked increase in cysteinesulphinate catabolism via the transamination pathway, but addition of neither 2-oxoglutarate nor pyruvate to the incubation system had any effect on cysteine catabolism. Inhibition of cystathionase with propargylglycine decreased 14CO2 production from [1-14C]cysteine about 50% and markedly decreased production of ammonia plus urea N; cysteinesulphinate catabolism by cysteinesulphinate-independent pathways in the rat hepatocyte and, furthermore, that cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for cysteine catabolism in rat liver. PMID:3117038

  17. Use of cysteine-reactive crosslinkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers

    PubMed Central

    Prahlad, Janani; Hauser, David N.; Milkovic, Nicole M.; Cookson, Mark R.; Wilson, Mark A.

    2014-01-01

    The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2− (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein’s function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, CD spectroscopy, sedimentation equilibrium ultracentrifugation, and crosslinking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol crosslinking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple crosslinked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed crosslinking efficiency in cells. In addition, thiol crosslinkers may have an underappreciated value as qualitative probes of protein conformational flexibility. PMID:24832775

  18. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    PubMed

    Schrier, B P; Lichtendonk, W J; Witjes, J A

    2002-05-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a refrigerator. After precipitation, the urine was decanted. The residue was stirred to a homogeneous suspension. To samples of 4.5 ml mucus, 0.5 ml NAC 10% was added. To the control sample, 0.5 ml water was added. The samples were incubated in a water bath at 37 degrees C for 5, 30 and 60 min. Viscosity was measured in the Bohlin VOR Rheometer. The viscosity of the ileal neobladder mucus decreased quickly after incubating with NAC 10%. Viscosity increased slightly after I h of incubation. The viscosity in the control sample was higher than in the other incubated samples. NAC was found to decrease the viscosity of ileal neobladder mucus, supporting the in vivo experience that NAC can be useful in patients with an ileal neobladder to facilitate the evacuation of mucus by decreasing viscosity. PMID:12088194

  19. Cysteine-Rich Atrial Secretory Protein from the Snail Achatina achatina: Purification and Structural Characterization

    PubMed Central

    Shabelnikov, Sergey; Kiselev, Artem

    2015-01-01

    Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates. PMID:26444993

  20. An unequivocal example of cysteine proteinase activity affected by multiple electrostatic interactions.

    PubMed

    Taylor, M A; Baker, K C; Connerton, I F; Cummings, N J; Harris, G W; Henderson, I M; Jones, S T; Pickersgill, R W; Sumner, I G; Warwicker, J

    1994-10-01

    The role of electrostatic interactions between the ionizable Asp158 and the active site thiolate-imidazolium ion pair of some cysteine proteinases has been the subject of controversy for some time. This study reports the expression of wild type procaricain and Asp158Glu, Asp158Asn and Asp158Ala mutants from Escherichia coli. Purification of autocatalytically matured enzymes yielded sufficient fully active material for pH (kcat/Km) profiles to be obtained. Use of both uncharged and charged substrates allowed the effects of different reactive enzyme species to be separated from the complications of electrostatic effects between enzyme and substrate. At least three ionizations are detectable in the acid limb of wild type caricain and the Glu and Asn mutants. Only two pKa values, however, are detectable in the acid limb using the Ala mutant. Comparison of pH activity profiles shows that whilst an ionizable residue at position 158 is not essential for the formation of the thiolate-imidazolium ion pair, it does form a substantial part of the electrostatic field responsible for increased catalytic competence. Changing the position of this ionizable group in any way reduces activity. Complete removal of the charged group reduces catalytic competence even further. This work indicates that hydronations distant to the active site are contributing to the electrostatic effects leading to multiple active ionization states of the enzyme. PMID:7855143