Science.gov

Sample records for adjacent drainage basins

  1. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  2. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  3. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  4. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain

    NASA Astrophysics Data System (ADS)

    Stokes, Martin

    2008-08-01

    fluvial incision into the underlying basin fill sediments and basin margin mountainous topography. Fluvial incision, headwards erosion, expansion and modification of the consequent drainage network is documented within a series of up to four major inset river terrace levels and associated landforms. Fluvial incision and drainage network expansion are attributed to differential uplift and the creation of regional gradients between adjacent basins. The relatively low Plio-Pleistocene uplift rate of the Vera basin (11-21 m Ma - 1 ) in comparison to adjacent basins (Sorbas: 80-160 m Ma - 1 ; Huercal-Overa: > 50 m Ma - 1 ) resulted in a switch from internal to external basin drainage. Ancestral forms of the principal drainage systems within the Vera basin: the Ríos Almanzora, Aguas and Antas, captured basins and mountain catchment areas to the north (Huercal-Overa basin), southwest (Sorbas basin) and west (Sierra de los Filabres range). The switch from basin infilling to fluvial dissection is coincident with a phase of Early-Mid Pleistocene compressional tectonics, expressed by extensional faulting. This deformation is probably linked to accelerated strike-slip movement along the Palomares Fault Zone. The faulting is superimposed onto the longer term pattern of Plio-Pleistocene uplift and basin inversion.

  5. GIS Analysis of Size Relationships between Drainage Basins and Alluvial Fans

    NASA Astrophysics Data System (ADS)

    Wright, S. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Imagery from the global database of modern sedimentary basins compiled by Weissman et al. (2010) allows us to test whether a size relationship between drainage basin area and distributive fluvial system (DFS) area exists. We are testing this hypothesis using a combination of SRTM-based digital elevation models and Landsat satellite imagery in ArcGIS. Sedimentary basins are delineated by preforming a Gaussian smoothing on the DEM, followed by optimal edge detection through application of a modified Canny edge detector. The pour points defining the link between contributing hydrologic basins and these sedimentary basins are then located by generating a stream network in ArcGIS and intersecting the stream network arcs with the sedimentary basin polygons. From these pour points we delineate the adjacent contributing drainage basin using the watershed tool in ArcGIS. We manually digitize the boundary and geometry of the DFS identified for each drainage basin, using the higher resolution imagery found on Google Earth for visual confirmation if the scale or resolution of the Landsat imagery requires it. We then extract drainage basins and DFS polygon parameters and calculate areal extents in order to evaluate whether such a size relationship exists within basins, regionally across several basins, or across different basin types (e.g., endorheic vs exhoreic). A limitation of this approach is that we cannot evaluate sediment volumes, only aerial coverage. Results from this study may provide a better understanding of extrabasinal processes that control DFS shape and size.

  6. Thermokarst lakes, drainage, and drained basins

    USGS Publications Warehouse

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.

    2013-01-01

    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  7. Natural water loss in selected drainage basins

    USGS Publications Warehouse

    Williams, Gordon R.

    1940-01-01

    Determinations of areal rainfall, run-off, and water loss, comprising largely evaporation from land surfaces and transpiration by vegetation, are essential in indicating the hydrologic characteristics of river basins. This report is primarily a statistical study that presents the results of computations of annual water loss, or annual rainfall minus annual run-off, for river basins in the humid or semiarid regions east of the Rocky Mountains. The basic period for which the computations are made is the water year or year ending September 30. As it is impractical to present in this report all the basic data used in arriving at the results, only sample computations are given. The various steps in the computations and the probable accuracy of the results are discussed. The drainage areas for which data are presented are those above river-measuring stations that have records for 3 years or more. For each area there are determinations of annual rainfall, annual run-off, and annual water loss for each year of record .as well as the means for the period of record. Results are given for about 200 drainage areas with an aggregate period of record of more than 2,000 years. As an illustration of the magnitude involved, the annual water loss from the eastern streams draining directly into the Atlantic Ocean varies more or less closely with latitude from about 20 inches as an average in northern New England to about 30 inches in Georgia. As the annual water loss from a basin is affected by the temperature, a supplemental study was made of the relation between water loss and temperature. For 28 drainage areas selected in various parts 8f eastern and central United States, average temperatures were computed for each year of the period shown in table 1. The results indicate a relation between average annual water loss and average annual temperature.

  8. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  9. Drainage basins and channel incision on Mars.

    PubMed

    Aharonson, Oded; Zuber, Maria T; Rothman, Daniel H; Schorghofer, Norbert; Whipple, Kelin X

    2002-02-19

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents.

  10. Late Wisconsinan deglaciation styles of parts of the Contoocook, Souhegan, and Piscataquog drainage basins, New Hampshire

    USGS Publications Warehouse

    Hildreth, C.T.; Moore, R.B.

    1996-01-01

    This report is the guidebook for the 56th annual meeting and field conference of the Friends of the Pleistocene, held May 22 and 23, 1993. Features were examined at 11 sites in the Contoocook, Souhegan, and Piscataquog Drainage Basins to illustrate the geologic history of this area, about 14,000 years ago, during the time of deglaciation. The Contoocook River Basin is the largest river basin that drains north in New Hampshire and is similar to northwardly draining parts of the Piscataquog and Souhegan River basins. During the retreat of the ice, the drainage divide between adjacent drainage basins acted as a dam and lakes formed behind it. As the ice continued to melt farther north, drainage outlets were uncovered at progressively lower altitudes along the drainage divide. This resulted in catastrophic draining of the lakes. Evidence for the existence of the lakes includes fine-grained lake-bottom deposits and deltas at successively lower elevations. Geomorphic evidence for the catastrophic draining includes Pulpit Rock in Bedford, N.H. and V-shaped notches eroded into till and bedrock. In Henniker, N.H., further evidence of catastrophic draining of a large lake in the Contoocook River Basin is a combination alluvial fan and delta that formed when rapidly draining lake water flowed across a till slope, eroded the till, and redeposited the material where it entered a smaller, much lower lake.

  11. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    ) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.

  12. Erosional landform map of the Redwood Creek drainage basin, Humboldt County, California, 1947-74

    USGS Publications Warehouse

    Nolan, K.M.; Harden, D.M.; Colman, Steven M.

    1976-01-01

    Landslides and actively eroding stream channels disrupt roads, damage valuable timberland, and increase stream sediment loads in northwestern California. This 1:62,500 photointerpretative map shows the distribution of ten common types of fluvial and mass-movement erosional landforms in the drainage basin of Redwood Creek in 1947 and 1974. The mapped landforms include slides, slumps, large compound earthflows, debris avalanches, unstable streambanks and adjacent hillslopes, small mass-movement features, questionable or inactive landslides, deeply incised amphitheater shaped drainage basins, small actively eroding water courses, and actively eroding main channel stream banks. The map legend describes these landforms and the techniques used in preparing the map. The amount and diversity of erosional activity increased greatly between 1947 and 1974. This increased activity apparently reflects major floods in 1953, 1955, 1964, and 1972, as well as the start of large scale, tractor-yarded clearcut timber harvest in the basin. (Woodard-USGS)

  13. MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA FACES SOUTHEAST TOWARD NORTH SIDE OF PUMP HOUSE. INL NEGATIVE NO. 2690. Unknown Photographer, 6/1951. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. The role of antecedent drainage networks and isolated normal fault propagation on basin stratigraphy

    NASA Astrophysics Data System (ADS)

    Finch, E.; Brocklehurst, S. H.; Gawthorpe, R.

    2010-12-01

    The stratigraphy of an extensional basin reflects a history of fault activity, erosion, drainage network evolution, and sediment transport and deposition. Here a three-dimensional numerical model of erosion and clastic sedimentation is applied to investigate the effect of displacement on a normal fault to the distribution of deposition in an extensional basin. Material is eroded from the hinterland through a stream-power incision law and deposited in the basin using a modified diffusion algorithm. Experiments are implemented for 3Ma, in which the initial 1Ma are used to permit a drainage network to evolve to a topographic steady state. This system is then perturbed by the introduction of a propagating isolated normal fault at varying displacement rates (1.0m/kyr - 2.0m/kyr) to demonstrate the influence of fault propagation on drainage capture, network re-organisation, sediment routing and deposition. Faster displacement rates and smaller antecedent drainage networks cause footwall-derived deltas to be cut-off more rapidly from the hinterland source area. Drainage networks are re-organised such that sediment is then transported around the fault tips into axially sourced deltas. Sediments may continue to be deposited in the hanging wall at the fault centre, but this material has not been sourced directly from the adjacent footwall, even though the stratigraphic architecture might suggest that this is the case. Drainage networks are modified by drainage reversals in the antecedent channels, and the development of areas of abandoned/trapped drainage. These changes in sediment supply due to network re-organisation are also reflected in the basin stratigraphy, with rapid back-stepping of deltas when the source is removed in the adjacent footwall. Later incision and headward erosion of the footwall channels may cause re-capture of earlier channels, while network re-organisation may also cause depositional in-filling of earlier channels. The drainage divide shifts

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River basin, northeastern Montana, 1986-87

    USGS Publications Warehouse

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)

  16. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  17. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean.

    PubMed

    Glasser, Neil F; Jansson, Krister N; Duller, Geoffrey A T; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-12

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface "hosing" to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  18. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  19. Basinsoft, a computer program to quantify drainage basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    2001-01-01

    In 1988, the USGS began developing a program called Basinsoft. The initial program quantified 16 selected drainage basin characteristics from three source-data layers that were manually digitized from topographic maps using the versions of ARC/INFO, Fortran programs, and prime system Command Programming Language (CPL) programs available in 1988 (Majure and Soenksen, 1991). By 1991, Basinsoft was enhanced to quantify 27 selected drainage-basin characteristics from three source-data layers automatically generated from digital elevation model (DEM) data using a set of Fortran programs (Majure and Eash, 1991: Jenson and Dominique, 1988). Due to edge-matching problems encountered in 1991 with the preprocessing

  20. Canyon drainage induced mixing over a large basin

    SciTech Connect

    Stalker, J.

    2000-05-01

    Complex terrain surrounding urbanized basins around the world has long been recognized to strongly affect the characteristics of vertical transport and mixing of pollutants. The Department of Energy's Vertical Transport and Mixing (VTMX) program will investigate mixing processes within night-time boundary layers over large urban basins. The program will launch several field experiments within the Salt Lake City basin in the coming years. This modeling study, like many other studies being undertaken by the participants of the VTMX programs, is intended to complement the proposed field experiments by numerically examining some of the flow interactions known to occur in large basins. Using idealized simulations, we particularly investigate drainage flows from deep canyons similar to those along the Wasatch Front into the Salt Lake City basin. Literature shows that under favorable conditions, drainage flows can generate bore waves that may propagate ahead of the density current (e.g., Simpson 1969; Simpson 1982; Crook and Miller 1985). Existence and frequency of such bore waves can profoundly influence the spatial and temporal variability of vertical transport and mixing within large basins. If bore waves do occur on a regular basis within the Salt Lake City basin (a task for the upcoming experiments to determine), then understanding the basin-scale conditions under which these waves are produced and how they may propagate and interact with the city's buildings will be of great importance in characterizing transport and mixing processes within the basin.

  1. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  2. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  3. Critical Concavity of a Drainage Basin for Steady-State

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude

  4. A review of sediment quantity issues: examples from the River Ebro and adjacent basins (Northeastern Spain).

    PubMed

    Batalla, Ramon J; Vericat, Damià

    2011-04-01

    Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers.

  5. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  6. Drainage modifications in southeastern Ohio and adjacent parts of West Virginia and Kentucky

    USGS Publications Warehouse

    Tight, W.G.

    1903-01-01

    The field work upon which this paper is based was carried on intermittently for several years. During the season of 1899 the work in Washington County, Ohio, was conducted under the direction of the Ohio State Academy of Science, the expenses being covered by a grant from the Emerson McMillin special research fund. The field work of the season of 1900 was done under the direction of Dr. T. C. Chamberlin, chief of the Division of Pleistocene Geology of the United States Geological Survey, and to him the author is greatly indebted for many valuable suggestions in relation to the work, and for an extended correspondence concerning the interpretations, during the preparation of this report. The study of this particular region was the natural result of earlier studies of drainage modifications in Ohio, in the region more nearly adjacent to the glaciated area. Until a few years ago but very little systematic study of the drainage features of Ohio had been made. It is not intended at present to make a complete review of the early literature, but to refer only to such portions of it as bear directly on the problem in hand. On account of the lack of good maps of Ohio it has not been possible to make the maps which accompany this paper as accurate as might be desired. They have been constructed from various published maps and from personal observations in the field; and, while they are not strictly accurate, it is hoped that they will set forth the facts with reference to the drainage modifications with sufficient clearness to enable anyone to follow the features in the field, or to serve for purposes of correlation. The map of Flatwoods and Teays valleys has been constructed from four topographic sheets of the United States Geological Survey Ironton, Kenova, Huntington, and Charleston. The author is under obligations to Mr. H. M. Wilson, geographer of the Survey, for data furnished from the unpublished map of the Kenova quadrangle. The photographs illustrating the report

  7. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  8. Drainage areas in the Big Sioux River basin in eastern South Dakota

    USGS Publications Warehouse

    Amundson, Frank D.; Koch, Neil C.

    1985-01-01

    The Big Sioux River basin of eastern South Dakota contains an important surface water supply and a sizeable aquifer system of major importance to the economy of South Dakota. The aquifers are complex, consisting of many small aquifers that are hydrologically associated with several large aquifers and the Big Sioux River. The complexity and interrelation of the surface water/groundwater systems has already created management problems. As development continues and increases, the problems will increase in number and complexity. To aid in planning for future development, an accurate determination of drainage areas for all basins, sub-basins, and noncontributing areas in the Big Sioux River basin is needed. All named stream basins, and all unnamed basins > 10 sq mi within the Big Sioux River basin in South Dakota are shown and are listed by stream name. Stream drainage basins in South Dakota were delineated by visual interpretation of contour information shown on U.S. Geological Survey 77-1/2 minute topographic maps. One table lists the drainage areas of major drainage basins in the Big Sioux River basin that do not have a total drainage area value > 10 sq mi. Another shows the drainage area above stream gaging stations in the Big Sioux River basin. (Lantz-PTT)

  9. A Geographic Information System procedure to quantify drainage-basin characteristics

    USGS Publications Warehouse

    Eash, David A.

    1993-01-01

    The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.

  10. Contrasting impact of forestry-drainage on CO2 balance at two adjacent peatlands in Finland

    NASA Astrophysics Data System (ADS)

    Lohila, Annalea; Minkkinen, Kari; Penttilä, Timo; Launiainen, Samuli; Koskinen, Markku; Ojanen, Paavo; Laurila, Tuomas

    2014-05-01

    Fate of carbon in peatlands after drainage has been a subject of many studies, particularly at agriculturally managed sites, but also at sites prepared for forestry. In general, the drainage of peatlands has been considered to trigger the decomposition rate of peat and to cause carbon dioxide (CO2) emissions from the peat into the atmosphere. However, there is not yet full consensus on what are the main regulating factors of the carbon balances in forested peatlands, and do all the forested peatland even act as a source of carbon into the atmosphere. In this study we compare the CO2 exchange rates at two adjacent peatland sites in southern Finland, drained for forestry about 40 years earlier. The pair of sites with similar climatic conditions offer an excellent case for studying the mechanisms controlling the carbon balances of forestry-drained peatlands. The sites differ from each other only by fertility, which has an impact on, e.g., tree growth rate. At both sites, CO2 and energy fluxes have been measured with the eddy covariance method over the course of 4 years, but not simultaneously. We have also built at both sites an automatic system consisting of six transparent closed chambers which collect data on the CO2 exchange of the forest floor vegetation (including tree roots) and soil around the year. This enables us to quantify the carbon uptake potential of the ground layer and the peat decomposition rates and helps us to understand the differences between the sites. The results show that the pine and dwarf-shrub-dominated site (nutrient-poor) is a large CO2 sink. The site with a mixture of spruce, birch and pine and lesser ground vegetation (nutrient-rich), on the contrary, has a close-to-neutral CO2 balance, despite the much higher tree growth rate there. In this presentation we will compare the general dynamics and climatic responses of CO2 exchange at the sites, compare the magnitude and factors causing interannual variation, and discuss potential reasons

  11. Drainage basin morphometry controls on the active depositional area of debris flow fans

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Wasklewicz, Thad; Malamud, Bruce

    2015-04-01

    A majority of the research on understanding the connection between alluvial fans and drainage basins to date has focused on coarse-scale relations between total fan area and drainage basin area. Here we take a new approach where we assess relationships between active fan depositional area and drainage basin morphometry using 52 debris flow fans (32 from the White Mountains and 20 from the Inyo Mountains) on the eastern side of Owens Valley, California, USA. The boundaries for fans, drainage basin and active depositional areas were delineated from 10m digital elevation models and 1 m aerial photographs. We examined the relationships between the normalised active depositional area of the fan (Afad/Af, where Afad is the fan active depositional area and Af the entire fan area) and the following four variables for drainage basin: (i) area (Adb), (ii) total stream length (Ls), (iii) relief (BHH), (iv) roughness (R). We find a statistically significant (r2 > 0.40) inverse power-law relationship between recent sediment contribution to the fan and drainage basin area (Afad/Af = 0.29Adb-0.167) drainage network length (Afad/Af = 0.39Ls-0.161) and basin relief (Afad/Af = 3.90BHH-0.401), and a statistically weak (r2 = 0.22) inverse power law with basin roughness (Afad/Af = 0.32R0.5441). Drainage basin size combined with other morphometric variables may largely determine efficiency in sediment transport and delivery to the fan surface. A large proportion of the total fan area of smaller fans are flooded by debris flow indicating less sediment storage in the drainage basins and greater efficiency in sediment delivery. The findings signify the importance of coarse-scale relationships to both long- and short-term fan evolution.

  12. Functional and structural connectivity within a recently burned drainage basin

    NASA Astrophysics Data System (ADS)

    Wester, Thad; Wasklewicz, Thad; Staley, Dennis

    2014-02-01

    Studies examining post-wildfire sediment transport have often focused on changes to individual landscape compartments (planar slopes, rills, gullies, channels, or alluvial fans) or have captured coarse-scale hydrologic and sediment transport events at the drainage basin scale. We advance the understanding of functional and structural connectivity by quantifying changes of the morphodynamics of and sediment transport along seven rill-gully threads (RGTs) after two low intensity rainstorms in a burned basin from the 2008 Gap fire near Goleta, CA, USA. TLS surveys conducted within two months of the initial fire and three days after the rainfall events provide point clouds for high-resolution digital terrain models (DTMs). DTM differencing techniques and morphological sediment budgets from the RGTs showed discontinuous sediment transport along the extent of these two landscape compartments immediately after the rainfall. Surface runoff was unable to remove dry ravel deposits within the RGTs and implied a high degree of structural disconnectivity there. Dry ravel and runoff erosion from the contributing areas to the RGTs indicated functional and structural connectivity at this scale of analysis. The results provide clear evidence that small amounts of rainfall and gravity-induced erosion are interacting at different scales within the recently burned watershed to produce structural and functional disconnectivity along the RGTs. While the current system was transport-limited during the analyzed event, higher magnitude rainstorms may produce enhanced connectivity, resulting in the ability of surface runoff to remove the stored sediments and perhaps produce debris flows.

  13. Fluvial drainage basins, outflow channels, and valley networks: Margaritifer Sinus, Mars

    SciTech Connect

    Boothroyd, J.C.; Grant, J.A.

    1985-01-01

    The fluvial drainage basins of the Margaritifer Sinus Quadrangle (MC-19) are dominated by Capri and Eos Chasma and associated chaos on the northwest, by Ladon Basin in the center, and by Noachis Basin to the southeast. Laadon and Noachis are ancient, multi-ringed impact structures. The Uzboi/Ladon outflow channels are the principal drainage into Ladon Basin contributing to a major sediment sink on the central Basin plain (18/sup 0/S,29/sup 0/W). Osuga Valles outflow system (16S,39W), and some valley networks, have been beheaded by the formation of Eos Chasma. Flow out of Ladon Basin to the northeast is obscured by Margaritifer Chaos collapse. Two major longitudinal valley networks, Samara/Himera to the west and Parana/Loire to the east, dominate the drainage of eastern Margaritifer Sinus. These networks, through-going to the northwest, cross the outer ring hills of Ladon to debouch into etched terrain near Margaritifer Chaos. The Parana multi-digitate network flows into a small impact basin with a sediment sink characterized by positive relief chaos (22S,12W). Loire Valles heads in this basin; thus the authors treat Parana/Loire as a single system. Mapping with stereo pairs has allowed not only the delineation of major drainage basins, but also the identification of sub-basins, areas of internal drainage between larger basins, and determination of drainage-basin area. This mapping demonstrates that an integrated series of drainage systems with a complex fluvial history encompasses a large part of Margaritifer Sinus.

  14. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  15. Rare periodontal ligament drainage for periapical inflammation of an adjacent tooth: a case report and review of the literature.

    PubMed

    Guo, Hongmei; Lu, Wei; Han, Qianqian; Li, Shubo; Yang, Pishan

    2014-01-01

    Aim. To report a case with an unusual drainage route of periapical inflammation exiting through the gingival sulcus of an adjacent vital tooth and review probable factors determining the diversity of the discharge routes of periapical inflammation. Summary. An 18-year-old male patient presented with periodontal abscess of tooth 46, which was found to be caused by a periapical cyst with an acute abscess of tooth 45. During endodontic surgery, a rarely reported drainage route for periapical inflammation via the gingival sulcus of an adjacent vital tooth was observed for the first time. Complete periodontal healing of the deep pocket of tooth 46 and hiding of the periapical cyst of tooth 45 followed after root canal treatment and periapical surgery with Bio-Oss Collagen implantation on tooth 45. The drainage routes of periapical inflammation are multivariate and the diversity of drainage pathways of periapical inflammation is mainly related to factors such as gravity, barriers against inflammation, and the causative tooth itself.

  16. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  17. Paleotopographic Reconstruction of the Tharsis Magmatic Complex Reveals Potential Ancient Drainage Basin/Aquifer System

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Ferris, J.; Anderson, R. C.; Baker, V.; Hare, T.; Barlow, N. G.; Strom, R. G.; Tanaka, K. L.; Scott, D. H.

    2001-01-01

    Paleotopographic reconstructions reveal the potential existence of an enormous Noachian drainage basin in the eastern part of the Tharsis region of significant geologic and paleohydrologic implications. Additional information is contained in the original extended abstract.

  18. HANDBOOK: RETROFITTING POTWS FOR PHOSPHORUS REMOVAL IN THE CHESAPEAKE BAY DRAINAGE BASIN

    EPA Science Inventory

    This document assesses the technology, economics, and efficiency of phosphorus removal processes for use in the Chesapeake Bay Drainage basin (CBDB). ince phosphorus removal requirements in the CBDB vary widely with geographic location, this document discusses the feasibility of ...

  19. Generalized estimates from streamflow data of annual and seasonal ground-water-recharge rates for drainage basins in New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Tasker, Gary D.

    2004-01-01

    This report presents regression equations to estimate generalized annual and seasonal ground-water-recharge rates in drainage basins in New Hampshire. The ultimate source of water for a ground-water withdrawal is aquifer recharge from a combination of precipitation on the aquifer, ground-water flow from upland basin areas, and infiltration from streambeds to the aquifer. An assessment of ground-water availability in a basin requires that recharge rates be estimated under `normal' conditions and under assumed drought conditions. Recharge equations were developed by analyzing streamflow, basin characteristics, and precipitation at 55 unregulated continuous record stream-gaging stations in New Hampshire and in adjacent states. In the initial step, streamflow records were analyzed to estimate a series of annual and seasonal ground-water-recharge components of streamflow in each drainage basin evaluated in this study. Regression equations were then developed relating the series of annual and seasonal ground-water-recharge values to the corresponding series of annual and seasonal precipitation values as determined at the centroid of each drainage basin. This resulted in one equation for each of the 55 basins for each of the four seasonal periods and the annual period, or a total of 275 regression equations. Average annual and seasonal precipitation data for 1961-90 were then used to compute a set of normalized ground-water-recharge values that reflected the long-term average annual and seasonal variations (normalized) and mean recharge characteristics of each drainage basin. Ordinary-least-squares regression was applied in the process of selecting 10 out of 93 possible basin and climatic characteristics for further testing in the development of the equations for computing the generalized estimate of annual and seasonal ground-water recharge based on the set of normalized recharge values. Generalized-least-squares regression was used for the final parameter estimation and

  20. Drainage areas for selected stream-sampling stations, Missouri River Basin

    USGS Publications Warehouse

    2006-01-01

    As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to document trends in surface-water quality, specifically for trends in nutrients and suspended sediment. Surface-water samples were collected from streams at specific sampling stations. Water-quality characteristics at each station are influenced by the natural and cultural characteristics of the drainage area upstream from the sampling station. Efficient quantification of the drainage area characteristics requires a digital map of the drainage area boundary that may be processed, together with other digital thematic maps (such as geology or land use), in a geographic information system (GIS). Digital drainage-area boundary data for one stream-sampling station in the Missouri River Basin (MRB4) study area is included in this data release. The drainage divides were identified chiefly using 1:24,000-scale hypsography.

  1. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew D.

    2016-11-01

    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  2. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  3. Prairie stream water quality in sub-basins characterized by differing degrees of wetland drainage

    NASA Astrophysics Data System (ADS)

    Brunet, N. N.; Westbrook, C. J.

    2010-12-01

    The prairie pothole region is dotted with millions of pothole wetlands. These wetlands provide important habitat for numerous wildlife species. Potholes are small, shallow marshes that typically lack surface water connections and have been shown to trap nutrients, ions, and bacteria from catchment runoff. Approximately 70% of the potholes located in the Canadian prairies have been drained since 1900 to increase agricultural production; recently there have been renewed efforts to drain potholes. Wetland drainage has been shown to increase stream discharge and is perceived to impact downstream water quality as previously isolated wetlands become connected to streams via drainage ditches. Our objective was to determine the extent to which stream water quality was influenced by wetland drainage. We compared time series of water quality for four sub-basins of Smith Creek watershed, southeastern Saskatchewan. The stream drains into the Assiniboine River and then Lake Winnipeg where excessive N and P loadings are causing eutrophication. Wetland distribution in the sub-basins was historically similar, but recently the sub-basins have been subject to differing degrees of drainage (extreme, high, moderately-high, and low). Stream water sampling and discharge measurement occurred daily during peak flow (spring runoff) and weekly during low flows in 2009 at the outlet of each sub-basin. Export coefficients for nutrients, DOC, salts and bacteria were compared among sub-basins. The sub-basin characterized by extreme drainage (81% wetland reduction) had the largest nutrient and DOC export coefficients while the low drainage sub-basin (23% wetland reduction) had the lowest. Concentrations of TP and ortho-P were greater in the moderately-high and high drainage sub-basins than in the low drainage sub-basin during the snowmelt period. TP concentrations exceeded the Saskatchewan Watershed Authority Lake Stewardship Program objective of 0.1 mg/L. N concentrations were greatest in the

  4. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  5. Mesozoic tectonics and paleogeography of the western U. S. and the adjacent Pacific basin

    SciTech Connect

    Dilek, Y. )

    1990-06-01

    Recent geological, geochemical, and geochronological information from Jurassic and older ophiolite complexes and arc rocks in northern California provides new interpretations for Mesozoic tectonics of the western US and the adjacent Pacific basin. This information is discussed in conjunction with the Mesozoic tectonics and paleogeography of the western United States and the Pacific Ocean.

  6. Analysis of Length Distribution of Drainage Basin Perimeter

    NASA Astrophysics Data System (ADS)

    Werner, Christian

    1982-08-01

    To establish a theoretical base for the study of the length distribution of basin perimeters, the paper introduces a descriptive model of the topology of interlocking channel and ridge networks. Assuming topological randomness within and between both, the expected number of links of basin perimeters is derived; for large basin magnitudes n, it approximates a square root function in n. Observed link numbers of perimeters deviate significantly, showing a 0.69 regression exponent for their growth rate relative to the basin magnitude rather than the expected value of 0.5. The spatial constraint of possible perimeter/(area;)½ proportions as defined by the circle is translated into a corresponding topological constraint but fails to provide a sufficient explanation. The paper then explores the possibility that the relatively large length of the perimeter reflects the basin elongation which, following Hack, might be linked to the length of the mainstream. Although basin perimeter, elongation, and mainstream length are highly correlated and the elongation axis is oriented to the outlet in two-thirds of the sample basins, the data indicate that the mainstream link number does not account for the basin elongation, nor does it account for the number of links of the basin perimeter.

  7. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  8. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.

  9. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  10. Chemical quality of water and sedimentation in the Moreau River drainage basin, South Dakota

    USGS Publications Warehouse

    Colby, Bruce R.; Hembree, C.H.; Jochens, E.R.

    1953-01-01

    The Moreau River drainage basin is a narrow basin in northwestern South Dakota that covers about 5, 360 square miles of rolling, grassy plains, which are broken by buttes and by some small areas of badlands. It is underlain by shales, sandstones, siltstones, and limestones that are primarily of Cretaceous age. Precipitation averages about 16 inches per year. Average annual runoff is about 0. 7 inch but varies widely from year to year.

  11. 78 FR 26807 - Vista Grande Drainage Basin Improvement Project, Fort Funston, Golden Gate National Recreation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... the Vista Grande Watershed Drainage Basin and the effects of coastal erosion. The National Park... reduce future erosion. The existing force main would also be removed and replaced with a similar... renovated to protect it from erosion and extend its operating life. FOR FURTHER INFORMATION CONTACT:...

  12. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  13. Teaching the Hydrologic and Geomorphic Significance of Drainage Basins and Discharge in Physical Geography.

    ERIC Educational Resources Information Center

    Sutherland, Ross

    1994-01-01

    States that drainage basins, stream discharge, and sediment discharge are fundamental concepts in physical geography and integral parts of other cognate disciplines. Presents two exercises about these concepts. Includes a set of field-based exercises and a set of exercises for students who are unable to conduct field monitoring. (CFR)

  14. Morphotectonic control of the Białka drainage basin (Central Carpathians): Insights from DEM and morphometric analysis.

    NASA Astrophysics Data System (ADS)

    Wołosiewicz, Bartosz

    2016-06-01

    The Białka river valley is directly related to a deep NNW-SSE oriented fault zone. According to the results of previous morphometric analyses, the Białka drainage basin is one of the most tectonically active zones in the Central Carpathians. It is also located within an area of high seismic activity. In this study Digital Elevation Model (DEM) based, morphometric analyses were used to investigate the morphotectonic conditions of the watershed. The results reveal the relationships between the main tectonic feature and the landforms within the research area. The lineaments, as obtained from the classified aspect map, seem to coincide with the orientation of the main structures as well as the trends revealed by the theoretical Riedel-Skempton shear model. Base-level and isolong maps support the conclusion that the Białka and Biały Dunajec fault zones exert a strong influence on the morphology of the adjacent area.

  15. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic

  16. Estimating Vadose Zone Drainage From a Capped Seepage Basin, F Area, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wan, J.; Tokunaga, T. K.; Denham, M.

    2011-12-01

    Large volumes of waste solutions were commonly discharged into unlined seepage basins at many different facilities in the past. Plutonium was extracted from depleted uranium from 1955 to 1988 at the F-Area within the Savannah River Site, with contaminated process waters disposed of in permeable seepage basins. The primarily acidic solutions contained radioactive components (including tritium, 129I, and multiple isotopes of U, Pu, Sr, and Cs), elevated nitrate, and some metals (Hg, Pb, Cd). Basin 3 was the largest F-Area seepage basin, covering 2.0 hectare, with the water table typically at about 20 m below the soil surface. The local groundwater flows at an average velocity of 200 m/y in the approximately 10 m thick shallow aquifer, and is underlain by the low permeability Tan Clay. We used nearly 20 years of groundwater quality data from a monitoring well immediately downstream of Basin 3 to estimate the post-closure drainage of waste solutions through its underlying vadose zone, into the shallow aquifer. The measurements of tritium, nitrate, and specific conductance, were used as plume tracers in our estimates of vadose zone drainage. These calculations indicate that early stages of post-closure waste drainage occurred with high fluxes (≈ 1 m/y), and quickly declined. However, even after 20 years, drainage continues at a low but significant rate of several cm/y. These estimated drainage fluxes can help constrain predictions on the waste plume behavior, especially with respect to its emerging trailing gradient and anticipated time scales suitable for monitored natural attenuation.

  17. Nature of solute loads in the rivers of the Bengal drainage basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Datta, Dilip K.; Subramanian, V.

    1997-11-01

    The Bengal drainage basin is geologically one of the youngest and tectonically most active denudation regimes of the world, and encompasses the total lower reaches of the Ganges-Brahmaputra-Meghna (GBM) drainage basin. The GBM river system contributes around 4.5% of the total annual global freshwater flux to the oceans. The solute load of the GBM river system is dominated by the carbonate weathering products of the transport-limited denudation regime. However, in the Meghna basin, which drains a mountainous region, silicate weathering is slightly more predominant, and the solute load tends to be more influenced by the atmospheric contribution. The river system represents about 5% (152×10 6 t yr -1) of the annual global chemical flux to the world's oceans. The chemical denudation rate of the GBM system in the Bengal basin, is one of the world's highest (79-114 t km -2 yr -1), suggesting intensive weathering and erosion in the drainage basin both in Bangladesh as well as in the hinterlands of India and China.

  18. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    NASA Astrophysics Data System (ADS)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  19. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows

  20. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge

    NASA Astrophysics Data System (ADS)

    Evangelatos, John; Funck, Thomas; Mosher, David C.

    2017-01-01

    This study examines the velocity structure of Makarov Basin and the adjacent Alpha Ridge to determine the tectonic origins of these features and link them to the larger Amerasia Basin. Seismic data from sonobuoys distributed along a 650 km-long line extending from Alpha Ridge and across Makarov Basin to the Lomonosov Ridge were analyzed for this purpose. Forward modelling of traveltimes, supported by coincident multi-channel seismic reflection and shipborne gravity data, were used to determine the P-wave velocity structure along the line. The sedimentary cover averages 0.5 km-thick on Alpha Ridge and 1.9 km-thick in Makarov Basin, but reaches up to 5 km-thick at the base of Lomonosov Ridge. Velocities in the sedimentary section range from 1.6 to 4.3 km s- 1. As suggested by relatively high velocities, interbedded volcaniclastic or volcanic rock may occur in the deep sedimentary section. The shallow basement of Alpha Ridge (3.3 to 3.6 km s- 1) is characterized by semi-continuous high amplitude reflections and is interpreted as volcanic rock possibly intercalated with sedimentary rock. Velocities do not vary significantly in the upper and mid-crustal layers between Alpha Ridge and Makarov Basin. Total crustal thickness decreases from 27 km beneath Alpha Ridge to 5 km-thick in Makarov Basin then thickens to > 20 km over a short distance as part of Lomonosov Ridge. The crustal structure of Alpha Ridge is consistent with previous studies suggesting that the Alpha-Mendeleev ridge complex is part of a large igneous province (LIP) with thick igneous crust. The lack of change in crustal velocities between Alpha Ridge and Makarov Basin suggests that the basin, at least partly, either formed during or was influenced by LIP-related magmatism. The rapid transition of crustal thicknesses from Makarov Basin to Lomonosov Ridge supports the interpretation that this section of the ridge is a transform margin.

  1. Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1975-01-01

    Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres

  2. Gulf of California analogue for origin of Late Paleozoic ocean basins adjacent to western North America

    SciTech Connect

    Murchey, B.L. )

    1993-04-01

    Ocean crust accreted to the western margin of North America following the Late Devonian to earliest Missippian Antler orogeny is not older than Devonian. Therefore, ocean crust all along the margin of western North America may have been very young following the Antler event. This situation can be compared to the present-day margin of North America which lies adjacent to young ocean crust as a result of the subduction of the Farallon plate and arrival of the East Pacific spreading ridge. Syn- and post-Antler rifting that occurred along the North American margin may well be analogous to the formation of the Gulf of California by the propagation of the East Pacific spreading ridge. Black-arc rifting associated with the subduction of very old ocean crust seems a less likely mechanism for the early stages of ocean basin formation along the late Paleozoic margin of western North America because of the apparent absence of old ocean crust to the west of the arc terranes. The eastern Pacific basins were as long-lived as any truly oceanic basins and may have constituted, by the earliest Permian, a single wedge-shaped basin separated from the western Pacific by rifted fragments of North American arc-terranes. In the Permian, the rifted arcs were once again sites of active magmatism and the eastern Pacific basins began to close, from south (Golconda terrane) to north. Final closure of the northernmost eastern Pacific basin (Angayucham in Alaska) did not occur until the Jurassic.

  3. Explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  4. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  5. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  6. Hydrologic data for the drainage basins of Chatfield and Cherry Creek Lakes, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, J.W.; Arnold, L.M.; Reed, R.L.

    1983-01-01

    Chatfield and Cherry Creek Lakes are flood control lakes constructed by the U.S. Army Corps of Engineers and leased to the Colorado Division of Parks and Recreation. Both lakes are in the Denver metropolitan area and provide a variety of recreational activities, including boating, camping, fishing, picnicking, and swimming. The projected increase of urban development in the drainage basins of Chatfield and Cherry Creek lakes could increase the constituent loads delivered to the lakes. Due to the eutrophic condition of Cherry Creek Lake and the potential eutrophic condition of Chatfield Lake, increased constituent loads could affect the suitability of the lakes for recreation. A monitoring program was started to determine the constituent loads of the drainage basins to both lakes. A network of monitoring stations was established to collect ambient water quality samples, storm runoff water quality samples, precipitation, and stream discharge. In the Cherry Creek basin 12 observation wells were established in the alluvium upgradient from Cherry Creek lake. Water levels and water quality data were collected to determine the quantity and quality of groundwater entering Cherry Creek lake. Data were collected from January through December 1982. The data may be used to evaluate the present and projected impact of urbanization in the drainage basins and the effect of increased constituent loads delivered to Chatfield and Cherry Creek lakes. (Author 's abstract)

  7. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  8. Geologic evolution of drainage basins: Margaritifer Sinus Quadrangle, Mars

    SciTech Connect

    Grant, J.A.; Boothroyd, J.C.

    1985-01-01

    Relative ages have been assigned to selected surfaces in the Margaritifer Sinus Quadrangle based on 102 crater counts employing the method of dating local surfaces, utilizing small, homogeneous crater populations. Ages are given as the number of craters >1km x 10/sup 6/km/sup -2/, obtained by projection of the Neukum and Wise standard curve (1976). Four resurfacing events of probably volcanic origin have been recognized. The earliest (300,000-100,000), of wide regional extent, was the first modification of the cratered highlands. A second event (70,000-50,000), also of regional extent, coincides with the end of crustal destruction of the northern part of Mars. The third event (14,000-8200), the youngest surface dissected by valley networks, occurred near the end of emplacement of the Lunae Planum lava plains. The youngest surface (6000-2000), also dated mainly in MC19SE, occurs locally, filling basins, and always covers valley networks when present. Major valley and channel formation occurred from 10,000-5000, concurrent with peak Tharsis tectonic activity. Events include the formation of Uzboi/Ladon Valles with deposition in Ladon Basin (11,000-6200), and the formation of Samara and Parana/Loire Valles in MC19SE (8500-4500). Flow out of Ladon Basin and Samara and Parana/Loire Valles created etched terrain (9000-4500) that is synchronous with initiation of Margaritifer and Iani Chaos (10,000-2300). Comparison with the standard lunar crater curve yields an absolute date of 3.75 to 3.6 BY for the peak period of valley formation.

  9. Flooding of Sinking Creek, Garretts Spring karst drainage basin, Jessamine and Woodford counties, Kentucky, USA

    USGS Publications Warehouse

    Currens, J.C.; Graham, C.D.R.

    1993-01-01

    Tashamingo Subdivision in Sinking Creek karst valley, a tributary of the Garretts Spring drainage basin in Jessamine and Woodford counties, Kentucky, was flooded in February 1989. To determine the cause of flooding, the groundwater basin boundary was mapped, discharge data were measured to determine intake capacity of swallets, and hydrologic modeling of the basin was conducted. Swallet capacity was determined to be limited by the hydraulic parameters of the conduit, rather than by obstruction by trash. Flooding from a precipitation event is more likely, and will be higher, when antecedent soil moisture conditions in the watershed are near saturation. Hydrologic modeling shows that suburban development of 20 percent of the southeast basin will cause a small increase in flood stage at Tashamingo Subdivision. ?? 1993 Springer-Verlag.

  10. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  11. Evaluation of some /sup 90/Sr sources in the White Oak Creek drainage basin

    SciTech Connect

    Stueber, A.M.; Huff, D.D.; Farrow, N.D.; Jones, J.R.; Munro, I.L.

    1981-01-01

    The drainage basin was monitored to evaluate the relative importance of each source as a contributor to /sup 90/Sr in White Oak Creek. The various sources fall into two general categories, those whose /sup 90/Sr discharge is dependent upon rainfall and those relatively unaffected by the level of precipitation. The identification and ranking of existing non-point sources of /sup 90/Sr in the White Oak Creek basin represents an important step in the ongoing comprehensive program at ORNL to provide a scientific basis for improved control measures and future disposal practices in solid waste disposal areas.

  12. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  13. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and

  14. Selected ground-water information for the Pasco basin and adjacent areas, Washington, 1986-1989

    USGS Publications Warehouse

    Drost, B.W.; Schurr, K.M.; Lum, W. E.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the United States Department of Energy, conducted a study of the Pasco basin and adjacent areas, Washington, in support of the Basalt Waste Isolation Project at the Hanford site, Washington. The purpose of the study was to develop a data set that would help define the groundwater-flow system of the Pasco Basin. This report contains the basic data, without interpretation, that were collected from the start of the project in February 1986 through January 1989. Information presented is from the U.S. Bureau of Reclamation, State of Washington Department of Ecology , US Army Corps of Engineers, Kennewick Irrigation District, and the Survey, and consists of well location and construction data, records of water levels in the wells, and aquifer designations for each well. The aquifer designation represents the geohydrologic unit to which the well is reported to be open. (USGS)

  15. Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.

    2014-12-01

    The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.

  16. Geohydrology of the Aucilla-Suwannee-Ochlockonee River Basin, south-central Georgia and adjacent parts of Florida

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.

    2010-01-01

    Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in

  17. Chemical status of selenium in evaporation basins for disposal of agricultural drainage.

    PubMed

    Gao, S; Tanji, K K; Dahlgren, R A; Ryu, J; Herbel, M J; Higashi, R M

    2007-09-01

    Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.

  18. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    SciTech Connect

    Lincoln, J.M. )

    1990-05-01

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea level fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.

  19. Pleistocene alterations of drainage network between the Alps and the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2012-04-01

    The investigated study area is situated in the transition zone between the still uplifting Eastern Alps and the subsiding Little Hungarian Plain (Joó 1992), bordered by Lafnitz (Lapincs), Répce (Rabnitz) and Rába (Raab) rivers. The contrasting forcing of the regions of differential uplift created a distinctive surface morphology of typically low relief that has a characteristic drainage network pattern as well. Our study is aimed at the reconstruction of the surface evolution by separation of individual geomorphic domains delineated by their geomorphometric characteristics. The hilly area is mostly covered by Miocene sediments. The mesoscale geomorphological units of the study area are influenced by the uplifting metamorphic core complex of Koszeg-Rechnitz Mountains (Tari - Horváth 1995), by the also metamorphic and relatively uplifting Vas Hill as well as by the subsiding grabens. There are two dominant flow directions alternating downstream. Valley segments are often bordered by steep scarps, which were identified by previous research as listric normal faults and grabens. Largely, the investigated area consists of tilted blocks bordered by 30-60 m high and steep, fault-related escarpments as it was demonstrated by the analysis of lignite layers, topographic sections and topographic swath analyses (Kovács et al. 2010, Kovács et al. 2011). Drainage network reorganizations occurred in several steps during the Pleistocene. Corresponding landforms are abrupt changes in stream direction, wind gaps, uplifted terrace levels built up of sedimentary rocks and wide alluvial valleys. Terraces are best developed along the Strem stream, which has a strikingly small drainage area at present, due to the Pinka River, which captured the upper parts of the drainage basin. The widest valley belongs to Pinka River. Drainage reorganizations are most likely due to the uplifting scarps that diverted the streams. Remainders of previous cross-valleys are wind gaps. Using these

  20. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  1. Transpressional tectonics in the Marrakech High Atlas: Insight by the geomorphic evolution of drainage basins

    NASA Astrophysics Data System (ADS)

    Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier

    2011-11-01

    The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.

  2. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  3. Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits

    NASA Astrophysics Data System (ADS)

    Wilson, Moyra E. J.; Chambers, John L. C.; Manning, Christina; Nas, Dharma S.

    2012-10-01

    The variability in low to moderate energy carbonate platform margins is poorly known from the geological record. Here, the spatial and temporal evolution of platform margin and adjacent basinal deposits is evaluated from the little known Tertiary Kedango Limestone that developed in a semi-enclosed marine embayment in SE Asia. The hypothesis here is that platform margin development will reflect regional and perhaps global influences, such as tectonics, eustasy or biotic change, rather than windward-leeward effects and storms that typically impact strongly upon open oceanic platforms. The development of the carbonate platform was determined through logging, petrography, facies evaluation, provenance and high-resolution dating studies. Eleven carbonate facies were identified from the 30 km long western margin of the > 600 m thick platform and its adjacent slope and basinal deposits. Larger benthic foraminifera and coralline algal packstones and wackestones dominated in shallow waters. During the Oligo-Miocene, coral patch reef-related floatstones, rudstones and less commonly boundstones were also present on the platform top. Perhaps surprisingly for a low energy platform there was considerable variation along the platform margin and much reworking of material into slope and basinal deposits during the Oligo-Miocene. Reworked material includes shallow water bioclasts, clasts from older siliciclastics, fresh feldspars, lithified slope and platform top carbonate clasts, some of the latter showing evidence for karstification. The western platform margin varied laterally over a few kilometres from a gently sloping unrimmed platform, to a probable bank top, with in places coral-fringed, bypass and erosional faulted escarpment margins. Eustasy may have influenced shallowing and deepening trends on the platform top, but apparently had little impact on mass wasting. Instead platform margin development was strongly impacted by tectonics (including active faulting), terrestrial

  4. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  5. Water quality in the Santee River basin and coastal drainages, North and South Carolina, 1995-98

    USGS Publications Warehouse

    Hughes, W. Brian; Abrahamsen, Thomas A.; Maluk, Terry L.; Reuber, Eric J.; Wilhelm, Lance J.

    2000-01-01

    Surface water sampled in the Santee River basin and coastal drainages generally meets existing Federal and State guidelines for drinking-water quality and protection of aquatic life. However, urban and agricultural land uses have affected water quality, as indicated by elevated concentrations of bacteria, pesticides, and nutrients in basins dominated by these land uses.

  6. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    USGS Publications Warehouse

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  7. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a

  8. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  9. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  10. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    PubMed

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  11. Airborne hyperspectral imaging for sensing phosphorus concentration in the Lake Okeechobee drainage basin

    NASA Astrophysics Data System (ADS)

    Bogrekci, Ismail; Lee, Won Suk; Jordan, Jonathan D.

    2005-05-01

    Eutrophication disturbs the ecological balance in the Lake Okeechobee due to high concentration of phosphorus emanated from the regions in the lake's drainage basin. Ability of measuring phosphorus (P) concentrations of water in the Lake Okeechobee itself is very important. Furthermore, monitoring P in its drainage basins is crucial in order to find the cause of P loading and contributing regions. Also, inexpensive real-time sensing capability for a large area in a short time would help scientist, government agents, and civilians to understand the causes, spot the high-risk areas, and develop management practices for restoring the natural equilibrium. In order to measure P concentrations in the Lake Okeechobee drainage basin, airborne hyperspectral images were taken from five representative target sites by deploying a modified queen air twin engine aircraft. Each flight line covered a swath of approximately 365 m wide. Spatial resolution was about 1 m. Spectral range covered was between 412.65 and 991.82 nm with an approximate of 5 nm spectral resolution. Ground truthing was conducted to collect soil and vegetation samples, GPS coordinates of each location, and reflectance measurement of each sample. On the ground, spectral reflectance was measured using a handheld spectrometer in 400-2500 nm. The samples were sent to a laboratory for chemical analysis. Also diffuse reflectance of the samples was measured in a laboratory setting using a spectrophotometer with an integrating sphere. Images were geocorrected and rectified to reduce geometric effect. Calibration of images was conducted to obtain actual reflectance of the target area. Score, SAM (Spectral Angle Mapping), SFF (Spectral Feature Fitting) were computed for spectral matching with image derived spectral library.

  12. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Ramadan Ali, R.; Faid, A.; El Osta, M.

    2013-04-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins) and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and seepage water can be

  13. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah

    USGS Publications Warehouse

    Feltis, R.D.; Robinson, G.B. Jr.

    1963-01-01

    A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.

  14. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward

  15. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank. Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank. Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine. Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  16. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect

    L. D. Habel

    2008-03-18

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  17. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  18. Elaboration of climatic maps using GIS. Case study: Olãnesti drainage basin, Romania.

    PubMed

    Tîrlã, Laura

    2012-04-01

    Creating precise climatic maps (temperature and precipitation map especially) on small areas such as drainage basins or landform units is always very useful for ecology of plants, distribution of vegetation and also different types of agricultural land. The geographic information system (GIS) analysis of several key-factors (aspect and slope of terrain, insolation degree, thermal gradient, geology and structure of landforms) offers the necessary tools to operate with in order to create an accurate climatic map. This method was applied in order to create a map showing the distribution of temperatures in the Olanesti drainages basin, a 235 km2 area located at middle latitude, in Romania. After creating the DEM, aspect and slope of the terrain, reclassifying categories and calculating the thermal gradient, a map showing the distribution of the annual mean temperature is obtained. Other climatic parameters could be calculated for small areas too, with precise results. These demonstrate that not only elevation and mathematical location of an area are important factors in the distribution of temperature, but also the aspect, the gradient, the insolation, the type of rock and the structure.

  19. Distribution of bedrock and alluvial channels in forested mountain drainage basins

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Abbe, Tim B.; Buffington, John M.; Peterson, N. Phil; Schmidt, Kevin M.; Stock, Jonathan D.

    1996-06-01

    MOUNTAIN river networks often consist of both bedrock and alluvial channels1-5, the spatial distribution of which controls several fundamental geomorphological and ecological processes6,7. The nature of river channels can influence the rates of river incision and landscape evolution1,2, as well as the stream habitat characteristics affecting species abundance and aquatic ecosystem structure8-11. Studies of the factors controlling the distribution of bedrock and alluvial channels have hitherto been limited to anthropogenic badlands12. Here we investigate the distribution of channel types in forested mountain drainage basins, and show that the occurrence of bedrock and alluvial channels can be described by a threshold model relating local sediment transport capacity to sediment supply. In addition, we find that valley-spanning log jams create alluvial channels- hospitable to aquatic life-in what would otherwise be bedrock reaches. The formation of such jams depends critically on the stabilizing presence of logs derived from the largest trees in the riverside forests, suggesting that management strategies that allow harvesting of such trees can have a devastating influence on alluvial habitats in mountain drainage basins.

  20. Map showing major drainage basins and stream-gaging stations in Massachusetts

    USGS Publications Warehouse

    Rader, J.C.

    1994-01-01

    This map report shows the 27 major drainage basins, locations of the 71 permanent stream- gaging stations, and the primary rivers, lakes, and reservoirs of Massachusetts. These features are presented at a scale of 1:400,000 (map size about 36 by 24 inches). The map also lists uses of streamflow data. The map was produced from a digital data base using a Geographic Information System (GIS). It shows information about the stream-gaging stations that can be accessed from the digital data base--stream-gaging station number and name, telemetry code, and cooperating agency. By use of GIS and the major basin divides from the data base, additional data bases could be grouped to produce other hydrologic planning maps. The drainage divides were digitized from paper maps into the GIS at a scale of 1:24,000. The map was compiled from original maps that was produced by the USGS in cooperation with the Massachusetts Department of Environment Management.

  1. A full graphics processing unit implementation of uncertainty-aware drainage basin delineation

    NASA Astrophysics Data System (ADS)

    Eränen, David; Oksanen, Juha; Westerholm, Jan; Sarjakoski, Tapani

    2014-12-01

    Terrain analysis based on modern, high-resolution Digital Elevation Models (DEMs) has become quite time consuming because of the large amounts of data involved. Additionally, when the propagation of uncertainties during the analysis process is investigated using the Monte Carlo method, the run time of the algorithm can increase by a factor of between 100 and 1000, depending on the desired accuracy of the result. This increase in run time constitutes a large barrier when we expect the use of uncertainty-aware terrain analysis become more general. In this paper, we evaluate the use of Graphics Processing Units (GPUs) in uncertainty-aware drainage basin delineation. All computations are run on a GPU, including the creation of the realization of a stationary DEM uncertainty model, stream burning, pit filling, flow direction calculation, and the actual delineation of the drainage basins. On average, our GPU version is approximately 11 times faster than a sequential, one-core CPU version performing the same task.

  2. Preliminary study of the hydrologic response of an urban drainage basin at two different scales

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Ferreira, António; Coelho, Celeste; de Lima João, Pedroso

    2010-05-01

    Predicted changes in climate and urban sprawl areas are expected to cause significant modification in rainfall pattern and hydrological regimes. Urbanization can alter the hydrologic response by increasing streamflow, reducing time of concentration, altering soil moisture levels and increasing overland flow, thereby increasing the size, frequency and speed of peak flow responses. However, despite the profusion of works, effective methodologies to investigate the impacts of potential land-use change on how spatial variability of soil moisture and precipitation affect runoff production at a range of scales and on different land uses remain largely undeveloped. This has important implications for flood prediction accuracy. The main aim of this work is to assess the hydrological response and to understand the influence of different land uses. The study is based on a small urban drainage basin (7 Km2), undergoing rapid urbanization, located in central Portugal: Ribeira dos Covões. It considers a combined approach of field survey and data acquisition to access spatiotemporal dynamics and land uses contributions to surface hydrology, based on drainage basins and small plot scales. At drainage basin scale, the study is based on three years rainfall and stream flow data analysis (collected through an automatic water level recorder and rain gauges). Rainfall-runoff relationship was assessed over the time and isolated events were studied. To understand land uses on the hydrology, rainfall simulations were conducted at the small plot scale (0.25 m2) during a dry period, in forested and deforested areas, agricultural areas, including tilled and abandoned areas, as well as built-up areas (21 experiments with 1 hour duration, with a rain intensity of 43±3 mm h-1). During the experiments hydrophobicity was monitored (Molarity of an Ethanol Droplet technique), soil moisture content was assessed every minute, and runoff volume was measured every 5 minutes. This work has shown the

  3. Characterization of a small-scale drainage basin in Central Portugal - a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Correia, Carla G.; Azevedo, José Manuel; Rodrigues, Nelson V.; Figueiredo, Fernando P. O.

    2015-04-01

    This study presents a multidisciplinary characterization of a small-scale watershed encompassing its topography, geology, local and regional tectonics, morphometry of the drainage system, soil type, land use and climatology. All this parameters are important controllers of the groundwater circulation and storage, as well as the localization of the recharge areas. It also identifies the piezometric changes, the upper (or phreatic) aquifer flow and the major recharge areas. Simultaneously, it includes the hydrochemical classification and the active hydrogeochemical processes occurring on the local aquifers. The combined analysis of these data is necessary for interpreting the hydrodynamics of the local aquifer units. The research focused on the surrounding domains of Olhos da Fervença spring, particularly in the Fervença watershed, a small-scale drainage basin close to Cantanhede city (Coimbra District, Portugal). This watershed is located on a rural area within the Vouga hydrographic basin. The methodology included: (1) delimitation of the watershed; (2) geometric (or physiographic) characterization of the basin; (3) analysis of the digital elevation model to quantify the slopes and to detect structural alignments that influence the surface and groundwater flow; (4) geologic characterization of the basin; (5) description of the soil type and the land use; (6) classification of the regional climatic conditions; (7) inventory and regular hydrogeologic characterization of wells (diameter, depth, wellhead and piezometry); (8) elaboration of piezometric maps in order to identify the groundwater flow; (9) groundwater sampling and in situ measurement of physico-chemical parameters (pH, groundwater temperature, specific electrical conductivity, Eh, dissolved oxygen, HCO3); (10) conducting laboratorial hydrochemical analyzes (Cl, NO3, SO4, PO4, Ca, Na, Mg, K, Fe, Mn, Al); (11) groundwater classification, hydrochemical interpretation and identification of the water

  4. Phylogeographic Analysis of Blastomyces dermatitidis and Blastomyces gilchristii Reveals an Association with North American Freshwater Drainage Basins

    PubMed Central

    McTaggart, Lisa R.; Brown, Elizabeth M.; Richardson, Susan E.

    2016-01-01

    Blastomyces dermatitidis and Blastomyces gilchristii are dimorphic fungal pathogens that cause serious pulmonary and systemic infections in humans. Although their natural habitat is in the environment, little is known about their specific ecologic niche(s). Here, we analyzed 25 microsatellite loci from 169 strains collected from various regions throughout their known endemic range in North America, representing the largest and most geographically diverse collection of isolates studied to date. Genetic analysis of multilocus microsatellite data divided the strains into four populations of B. dermatitidis and four populations of B. gilchristii. B. dermatitidis isolates were recovered from areas throughout North America, while the B. gilchristii strains were restricted to Canada and some northern US states. Furthermore, the populations of both species were associated with major freshwater drainage basins. The four B. dermatitidis populations were partitioned among (1) the Nelson River drainage basin, (2) the St. Lawrence River and northeast Atlantic Ocean Seaboard drainage basins, (3) the Mississippi River System drainage basin, and (4) the Gulf of Mexico Seaboard and southeast Atlantic Ocean Seaboard drainage basins. A similar partitioning of the B. gilchristii populations was observed among the more northerly drainage basins only. These associations suggest that the ecologic niche where the sexual reproduction, growth, and dispersal of B. dermatitidis and B. gilchristii occur is intimately linked to freshwater systems. For most populations, sexual reproduction was rare enough to produce significant linkage disequilibrium among loci but frequent enough that mating-type idiomorphic ratios were not skewed from 1:1. Furthermore, the evolutionary divergence of B. dermatitidis and B. gilchristii was estimated at 1.9 MYA during the Pleistocene epoch. We suggest that repeated glaciations during the Pleistocene period and resulting biotic refugia may have provided the

  5. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  6. Pesticides in streams in the Tar-Pamlico drainage basin, North Carolina, 1992-94

    USGS Publications Warehouse

    Woodside, Michael D.; Ruhl, Kelly E.

    2001-01-01

    From 1992 to 1994, 147 water samples were collected at 5 sites in the Tar-Pamlico drainage basin in North Carolina and analyzed for 46 herbicides, insecticides, and pesticide metabolites as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Based on a common adjusted detection limit of 0.01 microgram per liter, the most frequently detected herbicides were metolachlor (84 percent), atrazine (78 percent), alachlor (72 percent), and prometon (57 percent). The insecticides detected most frequently were carbaryl (12 percent), carbofuran (7 percent), and diazinon (4 percent). Although the pesticides with the highest estimated uses generally were the compounds detected most frequently, there was not a strong correlation between estimated use and detection frequency. The development of statistical correlations between pesticide use and detection frequency was limited by the lack of information on pesticides commonly applied in urban and agricultural areas, such as prometon, chlorpyrifos, and diazinon, and the small number of basins included in this study. For example, prometon had the fourth highest detection frequency, but use information was not available. Nevertheless, the high detection frequency of prometon indicates that nonagricultural uses also contribute to pesticide levels in streams in the Tar-Pamlico drainage basin. Concentrations of the herbicides atrazine, alachlor, and trifluralin varied seasonally, with elevated concentrations generally occurring in the spring, during and immediately following application periods, and in the summer. Seasonal concentration patterns were less evident for prometon, diazinon, and chlorpyrifos. Alachlor is the only pesticide detected in concentrations that exceeded current (2000) drinking-water standards.

  7. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    PubMed

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun

    2016-04-01

    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.

  8. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  9. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  10. Morphometric Discharge Relationships in the Cosumnes River Drainage Basin, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Cornwell, K.; Meyer, R.

    2002-12-01

    Hydrographic similarities between disparate gaging stations in the Consumnes River drainage basin suggest that it may be possible to extend stream gage records in areas with limited or missing records. This has led to an analysis of the relationship between recorded daily discharge values and bankfull channel conditions in the basin using USGS gage data from three sites in the basin [11335000 Cosumnes River at Michigan Bar (MBAR - period of record 1907-2002), 11333500 North Fork Cosumnes near El Dorado (NFELDO - period of record 1911-1941 and 1948-1987) and the 11334200 Middle Fork Cosumnes near Somerset (MFSOM - period of record 1957-1971)], 3-day mean discharge values and bank-full conditions (discharge recurrence interval of ~1.5 years) were calculated. Utilizing the bank-full discharge of the mainstem gage (MBAR) as a threshold, we compared discharge values between MBAR and two of its tributaries (NFELDO and MFSOM) and observed strong linear trends in the data sets. Mathematical expressions were derived to characterize the relations between the individual tributaries and the mainstem gage. When calibrated against the complete gage records of the tributaries we encountered overall error rates of less than 5 percent from both tributary data sets. This suggests that it is possible to extend stream gage records in areas with limited existing records or where occasional activiation and de-activation of gage sites result in incomplete long-term records.

  11. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors

    USGS Publications Warehouse

    Van Nest, J.; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective. ?? 1990.

  12. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan.

  13. Morphologic Variability of two Adjacent Mass-Transport Deposits: Twin Slides, Gela Basin (Sicily Channel).

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F.

    2006-12-01

    Integrating geophysical, sedimentological, structural and paleontological data, we reconstruct the age, size and internal geometry of two adjacent and recent mass-transport deposits (Twin Slides) exposed on the seafloor of Gela Basin (Sicily Channel). Twin Slides are coeval (late-Holocene), and were likely triggered by an earthquake. Twin Slides originated from the mobilization of Pleistocene slope units, are only 6 km apart from each other, have their headscarps in similar water depth (230 m), and have a comparable run out distance (ca. 10 km). Both slides suggest a multistage evolution, but differ in internal organization and morphological expression. The northern slide shows a deposit characterised by pressure ridges in the toe region suggesting a component of plastic deformation, while the southern slide is characterised by large blocks and a reduced thickness of displaced masses. We ascribe the difference in deformation style and resulting morphology to the stratigraphic architecture of the Pleistocene progradational units involved in failure. In the case of the blocky southern slide the units affected by failure are slightly older (Eemian or pre-Emian) and more consolidated; furthermore, in the area where the headscarp is located these units appear affected by shallow faulting likely resulting in the definition of large blocks. The northern slide, instead, affects progradational units of the Last Glacial Maximum in an area where these units are more than 100 m thick and, possibly, underconsolidated.

  14. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Calegari, Salomão Silva; Neves, Mirna Aparecida; Guadagnin, Felipe; França, George Sand; Vincentelli, Maria Gabriela Castillo

    2016-08-01

    The structural framework and tectonic evolution of the sedimentary basins along the eastern margin of the South American continent are closely associated with the tectonic framework and crustal heterogeneities inherited from the Precambrian basement. However, the role of NW-SE and NNW-SSE structures observed at the outcropping basement in Southeastern Brazil and its impact over the development of those basins have not been closely investigated. In the continental region adjacent to the Campos Basin, we described a geological feature with NNW-SSE orientation, named in this paper as the Alegre Fracture Zone (AFZ), which is observed in the onshore basement and can be projected to the offshore basin. The main goal of this work was to study this structural lineament and its influence on the tectonic evolution of the central portion of the Campos Basin and adjacent mainland. The onshore area was investigated through remote sensing data joint with field observations, and the offshore area was studied through the interpretation of 2-D seismic data calibrated by geophysical well logs. We concluded that the AFZ occurs in both onshore and offshore as a brittle deformation zone formed by multiple sets of fractures that originated in the Cambrian and were reactivated mainly as normal faults during the rift phase and in the Cenozoic. In the Campos Basin, the AFZ delimitates the western side of the Corvina-Parati Low, composing a complex fault system with the NE-SW faults and the NW-SE transfer faults.

  15. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  16. National Water-Quality Assessment Program - Western Lake Michigan Drainage Basin

    USGS Publications Warehouse

    Setmire, J.O.

    1991-01-01

    A major component of the program is study-unit investigations, which comprise the princ ipal bui lding blocks of the program on which national-level asses ment activities a re based . The 60 study-unit in vestigations that make up the program are hydrologic systems that include parts of most major river bas ins and a qui fer systems. These study units cover areas of I ,200 to more than 65 ,000 square mi les and incorporate about 60 to 70 percent of the Nation's water use and popul ation e rved by public water supply. In 1991 , the Western Lake Michigan drainage basin was among the fir st 20 NA WQA study unit selected for study under the full -scale implementation plan.

  17. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  18. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    USGS Publications Warehouse

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of .southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, ,adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  19. Geomorphometry of Drainage Basin for Natural Resources Management Using High Resolution Satellite Data an Indian Example

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, P.; Reddy, M. A.; Prasad, A. T.

    2003-12-01

    Application of Remote Sensing and Geographic Information System for the development of land and water resources action plan at micro level for appropriate management of land/water resources of a watershed in rain fed region of Prakasam District in Andhra Pradesh, India forms the focal theme of this paper. The quantitative description of drainage basin geometry can be effectively determined using Remote Sensing and GIS techniques. Each of the sixty-two sub-watersheds of the study area have been studied in terms of the Morphometric parameters - Stream length, Bifurcation ratio, Length ratio, Drainage density, Stream frequency, Texture ratio, Form factor, Area Perimeters, Circularity ratio and Elongation ratio and prioritized all the sub-watersheds under study. The prioritization of sub sheds based on morphometry is compared with sediment yield prioritization and found nearly same for the study area. The information obtained from the thematic maps are integrated and action plans are suggested for land and water resources development on a sustainable basis. Landuse/Landcover, Hydrogeomorphology and Soil thematic maps were generated. In addition slope and Drainage maps were prepared from Survey of India toposheets. Based on the computerized database created using ARC/INFO software, information derived in terms of natural resources and their spatial distribution was then integrated with the socio economic data to formulate an action plan, which includes suggestion of alternative Landuse/Landcover practices. Such a plan is useful for natural resources management and for improving the socio-economic status of rural population on a sustainable basis. Keywords: Natural Resources, Remote Sensing, Morphometry sustainable development.

  20. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  1. Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Strouhal, Luděk; Landa, Martin; Neuman, Martin; Kožant, Petr; Muller, Miloslav

    2016-04-01

    The aim of this contribution is to introduce the recently started three year's project named "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Its main goal is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The outcomes of the project will especially be helpful in modelling hydrological or soil erosion problems when designing common measures for promoting water retention or landscape drainage systems in or out of the scope of Landscape consolidation projects. The precipitation scenarios will be derived from 10 years of observed data from point gauging stations and radar data. The analysis is focused on events' return period, rainfall total amount, internal intensity distribution and spatial distribution over the area of Czech Republic. The methodology will account for the choice of the simulation model. Several representatives of practically oriented models will be tested for the output sensitivity to selected precipitation scenario comparing to variability connected with other inputs uncertainty. The variability of the outputs will also be assessed in the context of economic impacts in design of landscape water structures or mitigation measures. The research was supported by the grant QJ1520265 of the Czech Ministry of Agriculture, using data provided by the Czech Hydrometeorological Institute.

  2. Methods for delineating flood-prone areas in the Great Basin of Nevada and adjacent states

    USGS Publications Warehouse

    Burkham, D.E.

    1988-01-01

    The Great Basin is a region of about 210,000 square miles having no surface drainage to the ocean; it includes most of Nevada and parts of Utah, California, Oregon, Idaho, and Wyoming. The area is characterized by many parallel mountain ranges and valleys trending north-south. Stream channels usually are well defined and steep within the mountains, but on reaching the alluvial fan at the canyon mouth, they may diverge into numerous distributary channels, be discontinuous near the apex of the fan, or be deeply entrenched in the alluvial deposits. Larger rivers normally have well-defined channels to or across the valley floors, but all terminate at lakes or playas. Major floods occur in most parts of the Great Basin and result from snowmelt, frontal-storm rainfall, and localized convective rainfall. Snowmelt floods typically occur during April-June. Floods resulting from frontal rain and frontal rain on snow generally occur during November-March. Floods resulting from convective-type rainfall during localized thunderstorms occur most commonly during the summer months. Methods for delineating flood-prone areas are grouped into five general categories: Detailed, historical, analytical, physiographic, and reconnaissance. The detailed and historical methods are comprehensive methods; the analytical and physiographic are intermediate; and the reconnaissance method is only approximate. Other than the reconnaissance method, each method requires determination of a T-year discharge (the peak rate of flow during a flood with long-term average recurrence interval of T years) and T-year profile and the development of a flood-boundary map. The procedure is different, however, for each method. Appraisal of the applicability of each method included consideration of its technical soundness, limitations and uncertainties, ease of use, and costs in time and money. Of the five methods, the detailed method is probably the most accurate, though most expensive. It is applicable to

  3. Water-quality data from Taylor Creek drainage basin, El Dorado County, California, July 1975 through October 1976

    USGS Publications Warehouse

    Templin, William E.; Green, D. Brady; Ferreira, Rodger F.

    1980-01-01

    Data were collected from July 1975 through October 1976 to establish benchmark water-quality conditions in the Taylor Creek drainage basin in California. The Taylor Creek drainage basin is a high-altitude system of lakes and streams which forms one of the tributaries to Lake Tahoe in the Sierra Nevada of California and Nevada. Sampling sites were distributed between the upper and lower reaches of the basin. Streamflow and water-quality data were collected at 13 stream sites. Water-quality data and depth profiles were collected at six lake sites. The reconnaissance included measurement and evaluation of the following selected characteristics: major chemicals, nutrients, fecal coliform bacteria, phytoplankton, periphytic algae, benthic macroinvertebrates, primary productivity, and stream community diversity. (USGS)

  4. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.

  5. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    PubMed

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  6. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  7. Drainage areas of New York streams, by river basins; a stream gazetteer; Part 1, Data compiled as of October 1980

    USGS Publications Warehouse

    Wagner, L.A.

    1982-01-01

    Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)

  8. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  9. Integration of the Gila River drainage system through the Basin and Range province of southern Arizona and southwestern New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Dickinson, William R.

    2015-05-01

    The Gila River and its tributaries in southern Arizona and adjoining states incorporate several dozen individual extensional basins of the central Basin and Range province into a single integrated drainage network. Forty basins in the Gila domain contain more than 1000 m (maximum ~ 3500 m) of post-12 Ma basin fill. Subsurface evaporites in many basins document internal drainages terminating in isolated playa lakes during early phases of basin history. The nature of intrabasinal and interbasinal divides and of eroded or sedimented stream passages through mountain ranges intervening between the basins reveal the geomorphic mechanisms that achieved drainage integration over late Miocene to early Pleistocene time. Drainage integration accompanied by headward erosion eastward toward Gila headwaters was a response to Miocene opening of the Gulf of California, into which the Gila River debouched directly before the Pliocene (< 5 Ma) lower course of the Colorado River was established. Residual basins of internal drainage where headward erosion has not yet penetrated into basin fill are most common in the easternmost Gila domain but also persist locally farther west. Most basin fill was dissected during drainage integration within the upstream Gila domain but continued accumulation of undissected basin fill by sediment aggradation is dominant in the downstream Gila domain. Basin dissection was initiated by Pliocene time in the central Gila domain but was delayed until Pleistocene time farther east. In the westernmost Gila domain, interaction with erosional and depositional episodes along the Colorado River influenced the development of Quaternary landscapes along the tributary Gila River. The sedimentary history of the Gila drainage network illustrates the means by which trunk rivers can establish courses across corrugated topography produced by the extensional rupture of continental blocks.

  10. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    USGS Publications Warehouse

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  11. Regional-Scale Modeling of Soil Seasonal Freeze/Thaw Over the Arctic Drainage Basin

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2001-12-01

    Changes in active layer depth over permafrost during summer have direct impacts on soil water storage and river discharge through partitioning surface runoff. Since only the uppermost part of the soil is investigatable by remote sensing techniques and direct measurements are sparse, modeling is the only possibility to observe the thermal status of soil on a large scale.\\A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25 km resolution EASE-Grid. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. Soil moisture is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3 layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54 model nodes ranging from a thickness of 10 cm near the surface to 1 m at 15 m depth. Initial temperatures are chosen according to the pixel's permafrost classification in the Circumpolar Active-Layer Permafrost System (CAPS) on EASE grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. \\Active layer depths, simulated for the period September 1998 through December 2000, compare well to maximal thaw depths measured at Circumarctic Active Layer Monitoring (CALM) field sites. This study shows for the first time the regionally highly variable active layer depth, frozen ground depth, and freezing and thawing periods for the whole pan-Arctic land mass. Sensitivity studies for changes in seasonally frozen and thawed depths with air temperature, physical and thermal properties, and soil

  12. Radiolarian paleo-oceanographic studies of Humboldt basin and adjacent areas

    SciTech Connect

    Nelson, C.O.

    1986-04-01

    Miocene-Pliocene samples from land-based sections along an east-west transect of the Humboldt basin were analyzed for microfossil content. The microfossil populations reflect the gradual infilling and shoaling of the basin. Radiolarian fauna indicate that initial deposition occurred in a basin open to deep marine waters. The shelfal characteristics of the radiolarian populations increase through time in a west-east direction. Fauna appear to be sourced from cooler waters of the North Pacific and deep Central Pacific.

  13. Controls on bacterial gas accumulations in thick Tertiary coal beds and adjacent channel sandstones, Powder River basin, Wyoming and Montana

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1991-03-01

    Coal beds, as much as 250 ft thick, and adjacent sandstones in the Paleocene Tongue River Member of the Fort Union Formation are reservoirs for coal-derived natural gas in the Powder River basin. The discontinuous coal beds were deposited in raised, ombrotrophic peat bogs about 3 mi{sup 2} in size, adjoining networks of fluvial channels infilled by sand. Coal-bed thickness was controlled by basin subsidence and depositional environments. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub o} values of 0.4 to 0.5%). Although the coals are relatively low rank, they display fracture systems. Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amount of Co{sub 2} ({lt}10%). The methane is isotopically light and enriched in deuterium. The gases are interpreted to be generated by bacterial processes and the fermentation pathway, prior to the main phase of thermogenic methane generation by devolatilization. Large amounts of bicarbonate water generated during early stages of coalification will have to be removed from the fracture porosity in the coal beds before desorption and commercial gas production can take place. Desorbed amounts of methane-rich, bacterial gas in the Powder River basin are relatively low ({lt}60 Scf/ton) compared to amounts of thermogenic coal-bed gases (hundreds of Scf/ton) from other Rocky Mountain basins. However, the total coal-bed gas resource in both the coal beds and the adjacent sandstones is considered to be large (as much as 40 Tcf) because of the vast coal resources (as much as 1.3 trillion tons).

  14. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    NASA Astrophysics Data System (ADS)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  15. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  16. Assessing differences in topographic form between arctic and temperate drainage basins: Possible implications for dominant erosion processes

    NASA Astrophysics Data System (ADS)

    Prancevic, J. P.; Rowland, J. C.; Wilson, C. J.; Marsh, P.; Wilson, H.

    2010-12-01

    The extent and topology of channel networks are first-order controls on the timing and magnitude of flood events, as well as the rate of landscape drainage. The latter is particularly important in arctic environments, where the release of greenhouse gases from organic-rich permafrost is partially governed by the presence of water. Recent studies are in disagreement as to whether arctic channel networks will contract or expand due to a warming climate. A challenge in predicting arctic landscape adjustment is quantifying the uncertain role permafrost and ground ice play in erosional processes. An improved understanding of the dominant geomorphic processes in low-order arctic drainage basins is required to better inform predictions of the network response to warming. In both temperate and Arctic systems, researchers often use topographic analyses to suggest scaling breaks at which there are transitions between processes. This study utilizes 2-m resolution digital elevation models to investigate divergence in topographic form between temperate systems and Trail Valley Creek basin (TVC), a 63-km2 basin in Northwest Territories, Canada that is underlain by continuous permafrost and high amounts of ground ice. The valley bottoms of the low-order basins in TVC contain vegetated swales in place of incised channels. We constructed cumulative drainage area distributions and slope-area plots in order to assess any differences in scaling breaks and network topology. We also calculated estimates of fluvial basal shear stress along flow paths with drainage areas larger than an estimated threshold (~10,000 to 20,000 m2). Our analysis includes five sub-basins within TVC, three exhibiting relatively well-developed ridge and valley topography and two less dissected landscapes that are drained by small, closely-spaced swales. The cumulative drainage area distribution curves for these sub-basins do not reveal any scaling breaks that are different from those seen in temperate regions

  17. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  18. Mosses Indicating Atmospheric Nitrogen Deposition and Sources in the Yangtze River Drainage Basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-07-01

    Characterizing the level and sources of atmospheric N deposition in a large-scale area is not easy when using physical monitoring. In this study, we attempted to use epilithic mosses (Haplocladium microphyllum (Hedw.)) as a bioindicator. A gradient of atmospheric N deposition from 13.8 kg N ha-1 yr-1 to 47.7 kg N ha-1 yr-1 was estimated on the basis of moss tissue N concentrations and the linear equation between them. The estimated results are reliable because the highest atmospheric N deposition occurred in the middle parts of the Yangtze River, where the highest TN concentrations were also observed. Moss δ15N values in cities and forests were found in distinctly different ranges of approximately -10‰ to -6‰ and approximately -2‰ to 2‰, respectively, indicating that the main N sources in most of these cities were excretory wastes and those in forests were soil emissions. A negative correlation between moss δ15N values and the ratios of NH4-N/NO3-N in deposition (y = -1.53 x + 1.78) has been established when the ratio increased from 1.6 to 6.5. On the basis of the source information, the negative moss δ15N values in this study strongly indicate that NHy-N is the dominant N form in N deposition in the whole drainage basin. These findings are supported by the existing data of chemical composition of local N deposition.

  19. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  20. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  1. Correlations between the Lomonosov Ridge, Marvin Spur and adjacent basins of the Arctic Ocean based on seismic data

    NASA Astrophysics Data System (ADS)

    Langinen, A. E.; Lebedeva-Ivanova, N. N.; Gee, D. G.; Zamansky, Yu. Ya.

    2009-07-01

    Seismic profiles across the Lomonosov Ridge, Marvin Spur and adjacent basins, acquired near the North Pole by the drifting ice-station NP-28, provide a reflection image of the upper parts of the Ridge that is readily correlatable with those acquired by the Alfred Wegner Institute closer to the Siberian margin. A prominent flat-lying composite reflection package is seen in most parts of the Ridge at a few hundred meters below the sea bottom. Underlying reflections are variable in intensity and also in dip. The base of this reflection package is often accompanied by a sharp increase in P-velocity and defines a major angular discontinuity, referred to here as the Lomonosov Unconformity. The Arctic Coring Expedition (ACEX) cored the first c. 430 m section on the Lomonosov Ridge near the North Pole, in 2004 defining the deeper water character of the Neogene and the shallower water Paleogene sediments. These boreholes penetrated the composite reflection package towards the base of the hole and identified sediments (our Unit III) of late Paleocene and early Eocene age. Campanian beds at the very base of the hole were thought to be representative of the units below the Lomonosov Unconformity, but the P-velocity data suggest that this is unlikely. Correlation of the lithologies along the top of the Lomonosov Ridge and to the Marvin Spur indicates that the Marvin Spur is a sliver of continental crust closely related to, and rifted off the Ridge. This narrow (50 km wide) linear basement high can be followed into, beneath and across the Makarov Basin, supporting the interpretation that this Basin is partly resting on thinned continental crust. In the Makarov Basin, the Paleogene succession is much thicker than on the Ridge. Thus, the condensed, shallow water succession (with hiati) was deposited on the Ridge during rapid Eocene to Miocene subsidence of the Basin. In the Amundsen Basin, adjacent to the Lomonosov Ridge, the sedimentary successions thicken towards the Canadian

  2. Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Reilly, Pamela A.; Watson, Kara M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain underlain by the Kirkwood-Cohansey aquifer system. The demand for ground water from this aquifer system is increasing as local development increases. To assess the effects of ground-water withdrawals on Pinelands stream and wetland water levels, three drainage basins were selected for detailed hydrologic assessments, including the Albertson Brook, McDonalds Branch and the Morses Mill Stream basins. Study areas were defined surrounding the three drainage basins to provide sub-regional hydrogeologic data for the ground-water flow modeling phase of this study. In the first phase of the hydrologic assessments, a database of hydrogeologic information and a hydrogeologic framework model for each of the three study areas were produced. These framework models, which illustrate typical hydrogeologic variations among different geographic subregions of the Pinelands, are the structural foundation for predictive ground-water flow models to be used in assessing the hydrologic effects of increased ground-water withdrawals. During 2004-05, a hydrogeologic database was compiled using existing and new geophysical and lithologic data including suites of geophysical logs collected at 7 locations during the drilling of 21 wells and one deep boring within the three study areas. In addition, 27 miles of ground-penetrating radar (GPR) surface geophysical data were collected and analyzed to determine the depth and extent of shallow clays in the general vicinity of the streams. On the basis of these data, the Kirkwood-Cohansey aquifer system was divided into 7 layers to construct a hydrogeologic framework model for each study area. These

  3. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  4. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  5. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components

  6. Hydrology of the Prairie Dog Creek drainage basin, Rosebud and Big Horn Counties, Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1982-01-01

    The Prairie Dog Creek drainage basin in southeastern Montana was investigated during 1978-79 to establish a basic understanding of its surface-water and ground-water resources and the quality of water in an area having coal-mining potential. The principal minable coal is the 40-to 60-foot-thick Wall and lower Wall coal beds near the middle part of the Tongue River Member of the Fort Union Formation (Paleocene age). Prairie Dog Creek, which originates from springs and seeps from coal and sandstone layers , maintained perennial flow in its upstream and middle reaches then lost flow until the channel near its mouth had only standing water or was dry. The dissolved-solids concentration of streamwater during periods of high flow (1 cubic foot per second) ranged from 700 to about 1,000 milligrams per liter and during periods of lesser flow (0.5 cubic foot per second) ranged from about 1,300 to 1,600 milligrams per liter. Relatively clean sandstone aquifers had transmissivities of about 15 feet squared per day and water of the magnesium sulfate or sodium sulfate type, with dissolved-solids concentrations ranging from about 2 ,200 to 3,000 milligrams per liter; the water was of a sodium sulfate type and ranged from 1,820 to 4,190 milligrams per liter. The Brewster-Arnold coal aquifer had transmissivities similar to the Wall coal but its water was of a different type, sodium bicarbonate; it also contained large concentration of fluoride (more than 10 milligrams per liter) and had a very high sodium-adsorption ratio (more than 60). (USGS)

  7. Multisensor monitoring system for assessment of locust hazard risk in the Lake Balkhash drainage basin.

    PubMed

    Propastin, Pavel

    2012-12-01

    Satellite and ground-based data were combined in a monitoring system to quantify the link between climate conditions and the risk of locust infestations in the southern part of Lake Balkhash's drainage basin in the Republic of Kazakhstan. In this monitoring system, the Normalized Difference Vegetation Index (NDVI), derived from the SPOT-VGT satellite, was used for mapping potential locust habitats and monitoring their area throughout 1998 to 2007. TOPEX/Poseidon and Jason 1 altimeter data were used to track the interannual dynamics of water level in Balkhash Lake. Climate conditions were represented by weather records for air temperature and precipitation during the same period. The classification procedure, based on an analysis of multitemporal dynamics of SPOT-VGT NDVI values observed by individual vegetation classes, generated annual areas of ten land-cover types, which were then categorized as areas with low, medium, and high risk for locust infestation. Statistical analyses showed significant influences of the climatic parameters and the Balkhash Lake hydrological regime on the spatial extend of annual areas of potential locust habitats. The results also indicate that the linkages between locust infestation risk and environmental factors are characterized by time lags. The expansion of locust risk areas are usually preceded by dry, hot years and lower water levels in Balkhash Lake when larger areas of reed grass are free from seasonal flooding. Years with such conditions are favourable for locust outbreaks due to expansion of the habitat areas suitable for locust oviposition and nymphal development. In contrast, years with higher water levels in Balkhash Lake and lower temperature decrease the potential locust habitat area.

  8. Water quality in the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1992-95

    USGS Publications Warehouse

    Spruill, Timothy B.; Harned, Douglas A.; Ruhl, Peter M.; Eimers, Jo Leslie; McMahon, Gerard; Smith, Kelly E.; Galeone, David R.; Woodside, Michael D.

    1998-01-01

    The NAWQA Program is assessing the water-quality conditions of more than 50 of the Nation's largest river basins and aquifers, known as Study Units. Collectively, these Study Units cover about one-half of the United States and include sources of drinking water used by about 70 percent of the U.S. population. Comprehensive assessments of about one-third of the Study Units are ongoing at a given time. Each Study Unit is scheduled to be revisited every decade to evaluate changes in water-quality conditions. NAWQA assessments rely heavily on existing information collected by the USGS and many other agencies as well as the use of nationally consistent study designs and methods of sampling and analysis. Such consistency simultaneously provides information about the status and trends in water-quality conditions in a particular stream or aquifer and, more importantly, provides the basis to make comparisons among watersheds and improve our understanding of the factors that affect water-quality conditions regionally and nationally. This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Albemarle-Pamlico Drainage Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Indeed, this report addresses many of the concerns raised by regulators, water-utility managers, industry representatives, and other scientists, engineers, public officials, and members of stakeholder groups who provided advice and input to the USGS during this NAWQA Study-Unit investigation. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  9. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    Water availability is the most important limiting factor in arid lands. Any additional source of water, such as dew and fog, may have a positive impact upon the ecosystem. Dew and fog precipitation are largely dictated by weather conditions and habitat. Dew and fog measurements were carried out for 29 days in the fall of 1987-1989 at three distinctive habitats within a single drainage basin in the Negev Highlands, Israel. The habitats were a sun- and wind-exposed habitat, at two hilltops, a sun-shaded habitat, at the north- and west-facing footslopes, and a wind-protected habitat, at two wadi beds. Morning weather conditions (cloudiness, wind speed) were also monitored. An analysis of the dew and fog quantities and duration was performed. Clear mornings and a single foggy morning recorded were characterized by high dew and fog amounts and duration, whereas lower values were recorded during cloudy and especially windy mornings. The hilltop stations and especially the sun-shaded footslope stations obtained significantly higher values of dew and fog for a significantly longer duration than the wadi bed stations. Whereas the results did not support the hypothesis that advective condensation is responsible for the high dew amounts at the sun-shaded habitat, the data showed a continuous dew condensation even after sunrise. This continuous condensation, averaging up to 1.1 h following sunrise, was especially pronounced at the sun-shaded habitat and may explain the higher dew values and longer time duration obtained at this habitat. Since maximal dew values may not necessarily be obtained at sunrise and may change according to habitat, dew collection time should be carefully considered.

  10. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    NASA Astrophysics Data System (ADS)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  11. Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California

    USGS Publications Warehouse

    Robertson, Frederick N.

    1991-01-01

    Chemical and isotope analyses of ground water from 28 basins in the Basin and Range physiographic province of Arizona and parts of adjacent States were used to evaluate ground-water quality, determine processes that control ground-water chemistry, provide independent insight into the hydrologic flow system, and develop information transfer. The area is characterized by north- to northwest-trending mountains separated by alluvial basins that form a regional topography of alternating mountains and valleys. On the basis of ground-water divides or zones of minimal basin interconnection, the area was divided into 72 basins, each representing an individual aquifer system. These systems are joined in a dendritic pattern and collectively constitute the major water resource in the region. Geochemical models were developed to identify reactions and mass transfer responsible for the chemical evolution of the ground water. On the basis of mineralogy and chemistry of the two major rock associations of the area, a felsic model and a mafic model were developed to illustrate geologic, climatic, and physiographic effects on ground-water chemistry. Two distinct hydrochemical processes were identified: (1) reactions of meteoric water with minerals and gases in recharge areas and (2) reactions of ground water as it moves down the hydraulic gradient. Reactions occurring in recharge and downgradient areas can be described by a 13-component system. Major reactions are the dissolution and precipitation of calcite and dolomite, the weathering of feldspars and ferromagnesian minerals, the formation of montmorillonite, iron oxyhydroxides, and probably silica, and, in some basins, ion exchange. The geochemical modeling demonstrated that relatively few phases are required to derive the ground-water chemistry; 14 phases-12 mineral and 2 gas-consistently account for the chemical evolution in each basin. The final phases were selected through analysis of X-ray diffraction and fluorescence data

  12. The concentration of radionuclides and metals in vegetation adjacent to and in the SRL Seepage Basins

    SciTech Connect

    Murphy, C. E. Jr.

    1992-12-14

    In 1991 the trees on the dikes surrounding the SRL Seepage Basins were sampled and analyzed to inventory the contaminants transported from the basins into the vegetation. Tree leaves and wood were collected and analyzed for {sup 90}Sr, {sup 60}Co, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 242,244}Cm, {sup 241}Am, Ba, Cr, Hg, Mg, Mn, Ni, and Pb. The concentrations of contaminants were influenced by sample type (leaves versus wood), species type (pines versus hardwoods), and location relative to distance from the basin. The total inventory of each contaminant in the trees was estimated. The relationships between leaf and wood, pines and hardwood, location, and mass of the material in each of these classes were used to weight the total inventory estimate. The radionuclide with the largest inventory was 0.7 mCi for {sup 90}Sr. The metallic contaminant with the largest inventory was Mn at 200 gm.

  13. The concentration of radionuclides and metals in vegetation adjacent to and in the SRL Seepage Basins

    SciTech Connect

    Murphy, C. E. Jr.

    1992-12-14

    In 1991 the trees on the dikes surrounding the SRL Seepage Basins were sampled and analyzed to inventory the contaminants transported from the basins into the vegetation. Tree leaves and wood were collected and analyzed for [sup 90]Sr, [sup 60]Co, [sup 137]Cs, [sup 238]Pu, [sup 239,240]Pu, [sup 242,244]Cm, [sup 241]Am, Ba, Cr, Hg, Mg, Mn, Ni, and Pb. The concentrations of contaminants were influenced by sample type (leaves versus wood), species type (pines versus hardwoods), and location relative to distance from the basin. The total inventory of each contaminant in the trees was estimated. The relationships between leaf and wood, pines and hardwood, location, and mass of the material in each of these classes were used to weight the total inventory estimate. The radionuclide with the largest inventory was 0.7 mCi for [sup 90]Sr. The metallic contaminant with the largest inventory was Mn at 200 gm.

  14. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  15. The relationship between conductivity and major ions within the Davis Spring drainage basin as a method to determine the source of spring discharge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Davis Spring drainage basin is a 190 km2 karst basin in Greenbrier County, West Virginia underlain by the 300+ m sequence of the Mississippian Greenbrier Limestone Group which rests on top of the Maccrady Shale. Davis Spring is the largest karst spring in West Virginia with average flows of 10 ...

  16. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    USGS Publications Warehouse

    Wasiolek, Maryann

    1995-01-01

    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  17. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  18. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  19. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  20. Effects of agriculture, housing development, and industry on water quality in a small drainage basin, Bushkill Creek, Pennsylvania

    SciTech Connect

    Germanoski, D. . Geology Dept.); Braunwell, P. . Dept. of Environmental Science and Engineering); Coykendall, J.P. ); Kelsey, J. . Dept. of Environmental Chemistry)

    1993-03-01

    Beginning in 1989, three successive studies have focused on the effects of various land use activities on water quality in the Bushkill Creek. Bushkill Creek is located in Northampton County, Pennsylvania and is a tributary to the Delaware River. Bushkill Creek has a drainage area of 206 km[sup 2]. The watershed is underlain by slate and shale units of the Martinsburg Formation and Ordovician carbonate rocks including the Jacksonburg Formation, the Beeckmantown Group, and the Allentown Formations. The authors have been collecting water quality data in the Bushkill Creek drainage basin over a three-year period (1989--1992) in order to determine the general quality of the water and to assess the impact of various land use and industrial activities on water quality. The authors' initial investigation focused on the impact of several potential point sources of contamination in the lower, more heavily industrialized, portion of the Bushkill Creek. Water samples were analyzed for ammonia, chromium (at one site only), nitrate, nitrite, orthophosphate, sulfate, and gasoline (at one site only). The results of that research indicated that background concentrations of nitrates and sulfates were quite high. Therefore, subsequent investigations have focused on the potential impact of agricultural activity and housing development in the upper portion of the Bushkill drainage basin. In particular: (1) petroleum contamination was occurring as a point source in the lower Bushkill drainage, (2) nitrate concentrations in the creek have increased during the past twenty years, most likely as the result of agricultural activity and housing development, (3) sulfate loading into the Bushkill Creek occurs from the Little Bushkill Creek, and (4) the high sulfate concentration in the Little Bushkill Creek originates in the vicinity of a slate quarry.

  1. An ecological study of the KSC Turning Basin and adjacent waters

    NASA Technical Reports Server (NTRS)

    Nevin, T. A.; Lasater, J. A.; Clark, K. B.; Kalajian, E. H.

    1974-01-01

    The conditions existing in the waters and bottoms of the Turning Basin, the borrow pit near Pad 39A, and the Barge Canal connecting them were investigated to determine the ecological significance of the chemical, biological, and microbiological parameters. The water quality, biological, microbiological findings are discussed. It is recommended that future dredging activities be limited in depth, and that fill materials should not be removed down to the clay strata.

  2. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  3. Geochemistry of Groundwater in the Beaver and Camas Creek Drainage Basins, Idaho

    NASA Astrophysics Data System (ADS)

    Rattray, G.

    2013-12-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from two sediment and three rock samples and water-quality analyses from four surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. The groundwater geochemistry was influenced by reactions with rocks of the geologic terranes--carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway15 were a source of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of

  4. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  5. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    basin is an ideal location to quantify long wavelength dynamic topography due to its low relief. Long river profiles streams that are transverse to the topographic swell in the basin suggest a transient advective signal preserved as profile knickpoints. Abandoned strath terraces, stream piracy, drainage reorganization, and lateral channel migration within the Bighorn Basin are all consistent indicators of the advection of a topographic swell. However, the lack of a high-resolution absolute age chronology precludes us from attributing the primary landscape and drainage forcing to climate change or dynamic topography. Our future work will focus on the timing of geomorphic and river profile evolution to disentangle competing effects of topographic advection, climate, and other factors.

  6. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  7. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2015-01-01

    Contemporary fluvial bedload transport rates are still very difficult to measure and, as a result of this, in many sites only quantitative data on suspended and solute transport are included in sediment budget studies carried out for defined drainage basin systems. The presented analysis of fluvial bedload dynamics in different defined subsystems of the glacier-connected Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the steep fjord landscape of western Norway provides insights into (i) detectable relevant sediment sources, (ii) instream channel storage of bedload material, (iii) spatiotemporal variability and controls of bedload transport rates and bedload yields, and (iv) the absolute and relative importance of fluvial bedload transport within the sedimentary budgets of these steep cold climate mountain valleys. Rockfalls, snow avalanches, stream channel bank erosion, and fluvial transfers through small tributaries draining slope systems are relevant sediment sources for fluvial bedload transport in the main stream channels, whereas the main outlet glaciers in both drainage basins are not of importance as all bedload material delivered directly from these outlet glaciers is trapped within proglacial lakes. Narrow valleys within both drainage basin systems are characterized by a higher intensity of slope-channel coupling and display higher rates of sediment supply from slopes into the main stream channels than wider valleys. Snow avalanches are the most important sediment source in Erdalen, whereas fluvial transfers through small tributaries followed by snow avalanches are most important in Bødalen. Longer term, instream channel storage is not of great importance in the steep Bødalen drainage basin but currently plays an important role within the Erdalen drainage basin, which is characterized by a stepped longitudinal main valley bottom profile favoring deposition of bedload material within less steep main channel reaches. The mean annual bedload

  8. A tectogenetic mechanism controlling the evolution of the Texel-IJsselmeer High (northern Netherlands) and adjacent basins

    SciTech Connect

    Rijkers, R.; Geluk, M. )

    1993-09-01

    Geological studies around the Texel-IJsselmeer High have been carried out for the regional subsurface mapping project of the Geological Survey of The Netherlands. The Texel-IJsselmeer High, in the northern part of the Netherlands, is a northwest-southeast-trending structural unit, slightly tilted to the northeast. The geological evolution of the Texel-IJsselmeer High and the adjacent areas can be linked to an extensional tectonic regime during which several Jurassic basins in the Netherlands originated. During the Late Jurassic, the southern border of the Texel-IJsselmeer High was characterized by normal faulting. Main faults are dipping southwest and are generally part of a half-graben structure. Faulting is accompanied by subsidence of the hanging wall (Jurassic basin area), while the footwall (the Texel-IJsselmeer High) is isostatically uplifted and eroded. The proposed model is based on thinning of the lower crust beneath the basins during Jurassic extension by pure shear. This mechanism is coupled locally with shear zones (simple shear) as a result of lower crustal failure. The model is supported by observations on deep regional seismics at the southern margin of the basin area. During the Late Cretaceous/early Tertiary, transpressional intraplate stresses reactivated the structural weakness zones in the lower and upper crust in a reversed way (inversion). During this tectonic inversion the northwest-southeast-trending Texel-IJsselmeer High acted as a buffer zone perpendicular to the direction of maximum principal stress. Paleogeographical studies and geohistory analysis support the proposed tectogenetic model of the Texel-IJsselmeer High.

  9. Hydrologic landscapes on the Delmarva Peninsula Part 1: Drainage basin type and base-flow chemistry

    USGS Publications Warehouse

    Phillips, P.J.; Bachman, L.J.

    1996-01-01

    The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base- flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well- drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.

  10. Magnetotelluric studies in and adjacent to the Northumberland Basin, Northern England

    NASA Astrophysics Data System (ADS)

    Parr, R. S.; Hutton, V. R. S.

    1993-12-01

    During the past decade broadband magnetotelluric (MT) soundings, with d.c. resistivity soundings at some sites, have been undertaken in three separate field studies in and around the Northumberland Basin, a region of great interest to earth scientists on account of the proposed location there of the Iapetus Suture. As a result of an increase in cultural noise during this period, the data from the last two studies have been processed using a new robust constrained impedance tensor estimation program. The resulting apparent resistivity and phase data from these studies, together with those from the first broadband study and some earlier MT responses from the region, have now all been modelled using an interpretative modelling procedure. New information has been provided by the MT models on basement depths and, by integrating these new estimates with those from gravity modelling and seismic studies both on land and offshore, a detailed basement topography map has been compiled for the region. The deep eletrical resistivity structure has been modelled along a NW-SE traverse from the Weardale Granite of the Alston Block across the Northumberland Basin to the Southern Uplands of Scotland. Underlying the more conductive sedimentary rocks, the basement rock is found to have resistivities which range from about 100 μ m in the Northumberland Basin to more than 1000 μ m in the Alston Block and probably of the same order in the Southern Uplands. A mid-crustal conductor exists along the whole traverse, which is well resolved and has a southward dip beneath the Weardale Granite. Under the Northumberland Basin, the conductor is less well resolved and thus an apparent northward dip can only be regarded as tentative. Comparison of the pseudo-2D and full 2D models resulting from this study and from earlier MT and magnetovariational (MV) studies in Southern Scotland with new MT and joint MT and MV inversions of Livelybrooks et al. (Phys. Earth Planet. Inter., 81: 67-84 (1993)) for

  11. High levels of mercury contamination in multiple media of the Carson River drainage basin of Nevada: implications for risk assessment.

    PubMed Central

    Gustin, M S; Taylor, G E; Leonard, T L

    1994-01-01

    Approximately 5.5 x 109 g (4.0 x 105) of mercury was discharged into the Carson River Drainage Basin of west-central Nevada during processing of the gold- and silver-rich Comstock ore in the late 1800s. For the past 13 decades, mercury has been redistributed throughout 500 km2 of the basin, and concentrations are some of the highest reported values in North America. This article documents the concentrations of mercury in the air, water, and substrate at both contaminated and noncontaminated sites within the basin and discusses the implications for risk assessment. At contaminated areas, the range of mercury concentrations are as follows: mill tailings, 3-1610 micrograms/g; unfiltered reservoir water, 53-591 ng/l; atmospheric vapor, 2-294 ng/m3. These values are three to five orders of magnitude greater than natural background. In all media at contaminated sites, concentrations are spatially variable, and air and water mercury concentrations vary temporally. The study are in situated in a natural mercuriferous belt, and regional background mercury concentrations in all environmental media are higher than values typically cited for natural background. As a mercury-contaminated site in North America, the Carson River Drainage Basin is unusual for a number of reasons, including its location in a natural mercuriferous belt, high and sustained levels of anthropogenic mercury inputs, long exposure time, aridity of the climate, and the riparian setting in an arid landscape, where biological activity is concentrated in the same areas that contain high levels of mercury in multiple media. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 4. Figure 4. PMID:9657709

  12. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matthew J.; Le Friant, Anne; Ishizuka, Osamu; Stroncik, Nicole; Adachi, Tatsuya; Aljahdali, Mohammed; Boudon, Georges; Breitkreuz, Christoph; Fraass, Andrew; Fujinawa, Akihiko; Hatfield, Robert; Jutzeler, Martin; Kataoka, Kyoko; Lafuerza, Sara; Maeno, Fukashi; Martinez-Colon, Michael; McCanta, Molly; Morgan, Sally; Palmer, Martin R.; Saito, Takeshi; Slagle, Angela; Stinton, Adam J.; Subramanyam, K. S. V.; Tamura, Yoshihiko; Talling, Peter J.; Villemant, Benoit; Wall-Palmer, Deborah; Wang, Fei

    2012-08-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to <0.07 W/m2 at distances >15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.

  13. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, M.; Hornbach, M. J.; Le Friant, A.; Ishizuka, O.; Stroncik, N.

    2012-12-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  14. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matt; Le Friant, Anne; Ishizuka, Osamu

    2014-05-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  15. A modern analog for carbonate source-to-sink sedimentary systems: the Glorieuses archipelago and adjacent basin (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Jorry, S.; Jouet, G.; Prat, S.; Courgeon, S.; Le Roy, P.; Camoin, G.; Caline, B.

    2014-12-01

    This study presents the geomorphological and sedimentological analysis of a modern carbonate source-to-sink system located north of Madagascar (SW Indian Ocean). The sedimentary system is composed of an isolated carbonate platform sited on top of a seamount rising steeply from the seabed located at 3000 m water depth. The slope of the seamount is incised by canyons, and meandering channels occur above lobbed sedimentary bodies at the foot of the slope. The dataset consists of dredges, sediment piston cores, swath bathymetry and seismic (sparker and 2D high-resolution) lines collected from inner platform (less than 5 m deep) to the adjacent deep sedimentary basin. Particle size analysis and composition of carbonate grains are used to characterize the distribution and heterogeneity of sands accumulated on the archipelago. Main results show that composition of carbonate sediments is dominated by segments of Halimeda, large benthic foraminifera, coral debris, molluscs, echinoderms, bryozoans and sponges. According to the shape and the position of sandwaves and intertidal sandbars developed in the back-barrier reef, the present organization of these well-sorted fine-sand accumulations appears to be strongly influenced by flood tidal currents. Seismic lines acquired from semi-enclosed to open lagoon demonstrate that most of the sediment is exported and accumulated along the leeward margin of the platform, which is connected to a canyon network incising the outer slope. Following the concept of highstand shedding of carbonate platforms (Schlager et al., 1994), excess sediment is exported by plumes and gravity flows to the adjacent deep sea where it feeds a carbonate deep-sea fan. Combined observations from platform to basin allow to explain how the Glorieuses carbonate source to sink system has evolved under the influence of climate and of relative sea-level changes since the last interglacial.

  16. Micropaleontological Record of Post-glacial History in Lake Champlain and Adjacent Regions: Implications for Glacial Lake Drainage and Abrupt Climate Events

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Manley, P. L.; Guilbault, J.; Berke, M.; Rayburn, J. A.; Franzi, D. A.; Knuepfer, P. L.

    2005-12-01

    Post-glacial lacustrine and marine sediments of the Lake Champlain region range from 20 to >50 meters in thickness presenting an opportunity to assess the timing of North American glacial lake drainage at multidecadal timescales and evaluate its effect on North Atlantic salinity and abrupt climate events 13.5 to 10 kyr B.P. High-resolution analysis of foraminifera and ostracodes from cores taken onshore in the Plattsburgh, N.Y. vicinity and southern Quebec and offshore in southern Lake Champlain reveal complex changes in salinity during and after the transition from pro-glacial Lake Vermont (Lake Candona in Canada) to marine sedimentation in the Champlain Sea. The microfaunal sequence (bottom to top) includes: non-marine ostracodes ( Candona) in lacustrine varves, foraminiferal assemblages (common Cassidulina reniforme), another interval of Candona-bearing sediments (sometimes containing foraminifera), and, finally, sediments from the main phase of the Champlain sea episode containing diverse foraminiferal and marine ostracode assemblages. A decrease in salinity during the Champlain Sea is also in evidence from the shift in dominance of distinct variants of Elphidium in the deep basin. The marine episode ended with a progressive salinity decrease and the formation of Lake Champlain about 10 kyr B.P. Observed salinity changes could be caused by catastrophic fresh-water influx from large glacial lakes west of the Lake Champlain region, meltwater from the retreating Laurentide Ice Sheet margin, diminished influx of marine water from the St. Lawrence due to changes in the position of the ice sheet margin and isostatic adjustment, or a combination of factors. The ages of these events were determined by estimating the reservoir effect on radiocarbon dates on marine shells through comparison with AMS dates on plant material and palynology, and shed light on the hypothesis that glacial lake discharges catalyzed abrupt climate events.

  17. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    USGS Publications Warehouse

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  18. [Drainage basin of the the Senegal River, sanitary conditions in 2010. Part I: Illnesses directly linked to the water].

    PubMed

    Michel, R; Sondaz, D; Philip, J M; Calvet, F; Daoud, W

    2011-04-01

    Recent decades have seen an increase in the number of cases of waterborne illnesses involving humans and animals living in the Senegal River Basin. The "Senegal River Basin Development Authority" (French acronym, OMVS) decided to draft a "Water Development and Management Master Plan" (French acronym, SDAGE) for the Senegal drainage basin. The aim of ther plan is to avoid overuse of natural resources while allowing development of human activities in the area of the Senegal River. The SDAGE was designed to serve as a timetable and program for mobilizing resources and monitoring impact on the environment and local population until 2025. As part of the initial phase of the SDAGE, a study was carried out in 2009 to evaluate the status of waterborne illness in the Senegal River Basin. This study of the sanitary conditions was based on review of documents compiled from a bibliographic search. The purpose of this report is describe the main findings regarding diseases directly linked to water and national or regional programs for control of those disease in the study area.

  19. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Grimaud, Jean-Louis; Rouby, Delphine; Beauvais, Anicet; Christophoul, Frédéric

    2016-03-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction of two physiographic configurations of West Africa in the Paleogene. Those reconstructions show that the geometry of the drainage is stabilized by the late early Oligocene (29 Ma) and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland morphoclimatic record to offshore sedimentation since that time, particularly in the case of the Niger catchment—delta system. Mid-Eocene paleogeography reveals the antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a marginal upwarp forming a continental divide preexisted early Oligocene connection of the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage rearrangement was primarily enhanced by the topographic growth of the Hoggar hot spot swell and caused a stratigraphic turnover along the Equatorial margin of West Africa.

  20. Groundwater Characterization of Cihaur Watershed Basin, Batujajar and Adjacent, West Bandung District, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Azy, Fikri Noor; Sapari Dwi Hadian, Mohamad; Ismawan

    2016-01-01

    The study was conducted based on data from outcrop, well data, and springs with field orientation method assisted by the use of GPS and measurement tool physical and chemical properties of groundwater. Geological conditions investigated were geomorphology and stratigraphy, geomorphology unit study area consists of four units, namely geomorphology unit of strato volcano body, foot of strato volcano, intrusion units, and plains units and the river drainage patterns are parallel and subparallel. Stratigraphy in the study area are volcanic breccia (Qbv), Unit Andesite (Qa), Unit Tuff (Qtf) and Unit Clay Tuffan (Qlt). The characteristics of the groundwater of the study area are in form of the physico-chemical, major elements, and hydrolic parameter of the groundwater aquifers. From 27 locations, the water quality assesment by physico-chemical properties is classified as fresh water category and based on chemical major elements, has been classified 8 facies which are located in the study area. Then, there are two lithologies which act as aquifers ie, tuff and volcanic breccias. Conductivity values in the range of volcanic breccia aquifers respectively 0,128 m/day and 0,288 m/day, transmitivity (T) ranges respectively 1,9296 m2/day and 4,32 m2/day. The value of conductivity in tuff aquifer is 0,063 m/day, transmitivity (T) is 0,95 m2/day. While lithology Qlt (Clay tuffan) is lithology with very low productivity of groundwater or called groundwater rare area (akiclud) and the rock units Qa (Andesite) is a non-aquifer that is the absence of groundwater in these rock units (akifug).

  1. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  2. Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin.

    PubMed

    de Lafontaine, Yves; Beauvais, Conrad; Cessna, Allan J; Gagnon, Pierre; Hudon, Christiane; Poissant, Laurier

    2014-05-01

    The use of sulfonylurea herbicides (SU) has increased greater than 100 times over the past 30 years in both Europe and North America. Applied at low rates, their presence, persistence and potential impacts on aquatic ecosystems remain poorly studied. During late-spring to early fall in 2009-2011, concentrations of 9 SU were assessed in two agricultural streams and their receiving wetland, an enlargement of the St. Lawrence River (Canada). Six SU in concentrations >LOQ (10 ng L(-1)) were detected in 10% or less of surface water samples. Rimsulfuron was detected each year, sulfosulfuron and nicosulfuron in two years and the others in one year only, suggesting that application of specific herbicides varied locally between years. Detection frequency and concentrations of SU were not significantly associated with total precipitation which occurred 1 to 5d before sampling. Concentrations and fate of SU differed among sites due to differences in stream dynamics and water quality characteristics. The persistence of SU in catchment basin streams reflected the dissipation effects associated with stream discharge. Maximum concentrations of some SU (223 and 148 ng L(-1)) were occasionally above the baseline level (100 ng L(-1)) for aquatic plant toxicity, implying potential toxic stress to flora in the streams. Substantially lower concentrations (max 55 ng L(-1)) of SU were noted at the downstream wetland site, likely as a result from dilution and mixing with St. Lawrence River water, and represent less toxicological risk to the wetland flora. Sporadic occurrence of SU at low concentrations in air and rain samples indicated that atmospheric deposition was not an important source of herbicides to the study area.

  3. Analysis of Existing Hydrologic Models, Red River of the North Drainage Basin, North Dakota and Minnesota.

    DTIC Science & Technology

    1980-11-01

    storage of water. " Deep groundwater seepage, K24L, is higher for lowlands since near surface ponding and poor surface drainage prolongs the period when...streams. o Evaporation from perched groundwater , K24EL, is higher in lowlands where muck deposits and poor surface drainage hold water near the surface...parameter 0.30 0.25 0.30 0.902 K24L Seepage to deep groundwater 0.08 0.08 0.08 0.152 K24EL Evaporation from perched groundwater 0.04 0.08 0.04 0.152 INFIL

  4. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California

    SciTech Connect

    Benson, L.V.; Burdett, J.W.; Phillips, F.M.

    1996-11-01

    Oxygen isotope and total organic carbon values of cored sediments from the Owens Lake basin, California, indicate that Owens Lake overflowed most of the time between 52,500 and 12,500 carbon-14 ({sup 14}C) years before present (B.P.). Owens Lake desiccated during or after Heinrich event H1 and was hydrologically closed during Heinrich event H2. The magnetic susceptibility and organic carbon content of cored sediments indicate that about 19 Sierra Nevada glaciations occurred between 52,500 and 23,500 {sup 14}C years B.P. Most of glacial advances were accompanied by decreases in the amount of discharge reaching Owens Lake. Comparison of the timing of glaciation with the lithic record of North Atlantic core V23-81 indicates that the number of mountain glacial cycles and the number of North Atlantic lithic events were about equal between 39,000 and 23,500 {sup 14}C years B.P. 27 refs., 3 figs.

  5. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Müller, T.; Johnson, E. A.; Martin, Y. E.

    2013-12-01

    is generally argued that Pleistocene glaciation results in increased sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial erosion is the geomorphic decoupling of cirque basins from main river systems. This study provides a quantitative link between glacier-induced basin morphology, postglacial erosion, and sediment delivery for mountain headwaters (with basin area <10 km2). We analyze the morphology of 57 headwater basins in the Canadian Rockies and establish postglacial sediment budgets for select basins. Notable differences in headwater morphology suggest different degrees of erosion by cirque glaciers, which we classify into headwater basins with either cirque or noncirque morphology. Despite steeper slope gradients in cirque basins, higher-mean postglacial erosion rates in basins with noncirque morphology (0.43-0.6 mm a-1) compared to those in cirques (0.19-0.39 mm a-1) suggest a more complex relationship between hillslope erosion and slope gradient in calcareous mountain environments than implied by the threshold hillslope concept. Higher values of channel profile concavity and lower channel gradients in cirques imply lower transport capacities and, thus, lower sediment delivery ratios (SDR). These results are supported by (i) postglacial SDR values for cirques and noncirque basins of <15% and >28%, respectively, and (ii) larger fan sizes at outlets of noncirque basins compared to cirques. Although small headwater basins represent the steepest part of mountain environments and erode significant postglacial sediment, the majority of sediment remains in storage under interglacial climatic conditions and does not affect large-scale mountain river systems.

  6. Depth to water table, recharge areas, drainage basins, and relief of Duval County, Florida

    USGS Publications Warehouse

    Causey, L.V.

    1975-01-01

    This 3-sheet map report depicts hydrologic systems of surface water and groundwater in Duval County, Florida. The maps are from 1:20,000 and 1:62,500 quadrangles, U.S. Geological Survey. Symbols and colors describe water levels, groundwater recharge, drainage areas, and topography. (Woodard-USGS)

  7. Impacts of Hydro-Climatic Change, Permafrost Thaw and Industrial Pressures in the Lake Baikal Drainage Basin (Mongolia and Russia)

    NASA Astrophysics Data System (ADS)

    Jarsjo, J.; Törnqvist, R.; Bring, A.; Pietron, J.; Rogberg, P.; Asokan, S. M.; Destouni, G.

    2014-12-01

    The large Arctic river Yenisei and Lake Baikal with its unique ecosystem containing endemic species are influenced by on-going hydro-climatic changes in the Lake Baikal Drainage Basin. The latter extends from southern Siberia into northern Mongolia, and contains one of the word's larger mining regions, for instance with mining of gold, silver, copper and coal. Recognizing that changing hydro-climatic conditions in the basin may lead to changed loading pattern of anthropogenic substances to Lake Baikal and Yenisei, we aim at identifying long-term historic and projected future hydro-climatic trends in this basin and their (possible) impacts. The analyses are based on hydro-climatic observations and the output 22 Earth System Models (ESMs) of the Coupled Model Intercomparison Project, Phase 5 (CMIP5). Observations show that warming rates of the basin were twice as high as the global average during past 70 years. Decreased intra annual variability of river discharge over this period indicates basin-scale permafrost degradation. CMIP5 ensemble projections show further future warming, implying continued permafrost thaw. Most individual models as well as the CMIP5 ensemble mean result indicate increased runoff in the future. However the spread of individual model results is large. Parallel results show that such increased runoff can considerably increase the annual riverine sediment loads and consequently the loading of contaminants that are attached to the sediments, in particular downstream of mining sites. More generally, this exemplifies how long-term hydro-climatic changes, permafrost thaw, and industrial pressures may interact in increasing the bioavailability of contaminants in downstream recipients.

  8. Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota

    SciTech Connect

    Strobel, M.L. Univ. of North Dakota, Grand Forks, ND )

    1992-01-01

    Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

  9. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    -chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.

  10. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors*1

    NASA Astrophysics Data System (ADS)

    Van Nest, Julieann; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective.

  11. A new species of Cottus from the Onega River drainage, White Sea basin (Actinopterygii: Scorpaeniformes: Cottidae).

    PubMed

    Sideleva, Valentina G; Naseka, Alexander M; Zhidkov, Zakhar V

    2015-04-29

    Cottus gratzianowi, a new cottid species, is described from material collected in the Ukhtomitsa River in the Onega River drainage, White Sea basin. It differs from its congeners in Europe east of the Meuse except C. koshewnikowi by having no transverse dark bands on the pelvic fin, a single chin canal pore, an incomplete lateral line not reaching behind the anal-fin insertion, and the position of the lateral line which is located considerably above the mid-line of the flank. From C. koshewnikowi distributed in the Volga (Caspian basin), Pechora, and Northern Dvina rivers (Arctic basin), C. gratzianowi sp. nov. can be distinguished by a combination of character states, the most differentiating are as follows: a larger eye (horizontal diameter 23-28% HL, equal to or exceeding snout length vs. 16-25% HL, less than snout length), a rounded caudal fin (vs. commonly truncated), frequent presence of one to three branched rays in median part of the pectoral fin (vs. usual absence), an interrupted supratemporal canal commissure with 4 pores (vs. non-interrupted, with 3 pores), abdominal vertebrae commonly 10 (vs. 11), and contrasting black blotches on all fins including pelvic and anal fins (vs. no blotches on pelvic and anal fins).

  12. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  13. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  14. Hydrology of Johnson Creek Basin, a Mixed-Use Drainage Basin in the Portland, Oregon, Metropolitan Area

    USGS Publications Warehouse

    Williams, John S.; Lee, Karl K.; Snyder, Daniel T.

    2010-01-01

    Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the Portland, Oregon, metropolitan area and through rural and agricultural land in unincorporated Multnomah and Clackamas Counties. Johnson Creek has had a history of persistent flooding and water-quality problems. The U.S. Geological Survey (USGS) has conducted streamflow monitoring and other hydrologic studies in the basin since 1941.

  15. Holocene valley-floor deposition and incision in a small drainage basin in western Colorado, USA

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence S.; Rosenburg, Margaret; Figueroa, Maria del Mar; McKee, Kathleen; Haravitch, Ben; Hunter, Jenna

    2010-09-01

    The valley floor of a 33.9 km 2 watershed in western Colorado experienced gradual sedimentation from before ˜ 6765 to ˜ 500 cal yr BP followed by deep incision, renewed aggradation, and secondary incision. In contrast, at least four terraces and widespread cut-and-fill architecture in the valley floor downstream indicate multiple episodes of incision and deposition occurred during the same time interval. The upper valley fill history is atypical compared to other drainages in the Colorado Plateau. One possible reason for these differences is that a bedrock canyon between the upper and lower valley prevented headward erosion from reaching the upper valley fill. Another possibility is that widespread, sand-rich, clay-poor lithologies in the upper drainage limited surface runoff and generally favored alluviation, whereas more clay-rich lithologies in the lower drainage resulted in increased surface runoff and more frequent incision. Twenty-two dates from valley fill charcoal indicate an approximate forest fire recurrence interval of several hundred years, similar to that from other studies in juniper-piñon woodlands. Results show that closely spaced vertical sampling of alluvium in headwater valleys where linkages between hillslope processes and fluvial activity are relatively direct can provide insight about the role of fires in alluvial chronologies of semi-arid watersheds.

  16. Hydrologic data of the coastal drainage basins of southeastern Massachusetts, Weir River, Hingham, to Jonas River, Kingston

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.; Tasker, Gary D.

    1975-01-01

    This report presents, in tabular form, selected records of wells, test wells, borings, and springs; measurements of stream discharge, specific conductance, and temperature at partial-record stations; chemical analyses of ground water and surface water; and a summary of municipal water sources and additional sources available. The data were collected during a study of the drainage basins from 1969 to 1971 in cooperation with the Massachusetts Water Resources Commission. The report is released in order to make available to the public and to local, state, and federal agencies basic hydrologic information that may aid in planning water-resources development. Basic records contained in this report and streamflow data published elsewhere (U.S. Geol. Survey, 1960 et seq.) complement an interpretive report (Williams and Tasker, 1974).

  17. Ecological data collected in the Santee River basin and coastal drainages, North and South Carolina, 1996-98

    USGS Publications Warehouse

    Abrahamsen, Thomas A.

    2001-01-01

    As part of the National Water-Quality Assessment Program, ecological investigations were conducted in 23 reaches of 16 streams in the Santee River Basin and Coastal Drainages study unit in North and South Carolina during 1996-98. Habitat characteristics, such as stream width and depth, bank composition, bank vegetative cover, stream shading by overhanging vegetation, and streambed composition were recorded. Algal and benthic invertebrate communities were sampled using quantitative and qualitative techniques. These data will provide information needed to: (1) support findings of the effects of human landuse activities on water quality by augmenting or enhancing physical and chemical water-quality data, (2) provide a basic overview of aquatic community structure in selected stream reaches in the study unit, and (3) provide a means for comparing aquatic communities in subsequent years of the assessment program.

  18. Hawaii StreamStats; a web application for defining drainage-basin characteristics and estimating peak-streamflow statistics

    USGS Publications Warehouse

    Rosa, Sarah N.; Oki, Delwyn S.

    2010-01-01

    Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.

  19. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  20. Geomorphological and sedimentological analysis of a catastrophic flash flood in the Arás drainage basin (Central Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Gutiérrez, Mateo; Sancho, Carlos

    1998-04-01

    On August 7th, 1996, an intense and short-duration convective storm occurred over the 18.6-km 2 Arás drainage basin (Central Pyrenees, Spain). This high relief basin is composed of three subbasins, Aso, Betés and La Selva, and feeds the Arás alluvial fan, in the Gállego river valley. This alluvial fan had been drained by an artificial channel (about 125 m 3/s at bank-full capacity). More than 30 check dams in its feeder channel, the Arás barranco, had been previously filled by earlier sediments. The heaviest rain was over the Betés subbasin (total rainfall 178.4 mm; maximum rainfall intensity of 153 mm/h for a 10-min time interval was estimated). Most of the rainfall fell in a 70-min period. This storm resulted in high runoff, causing catastrophic damage and significant geomorphic changes in the drainage basin, especially in the Betés subbasin. The high discharge, concentrated in the Arás barranco, destroyed most of the check dams, flushing out a great amount of debris. Major channel trenching and widening occurred in this barranco. When the confined sediment-laden flash flood reached the basin mouth, it sheet-flooded the southern sector of the Arás fan depositing a massive amount of debris. On this fan 87 people lost their lives and the direct physical damage has been estimated at 55 million dollars. Two stages in the development of the flood have been differentiated from the sedimentological and morphological analysis of the flooded fan lobe. A first stage (peak discharge) of sheet-flooding deposited a coarse boulder lobe, burying the artificial channel at the fan head and causing a darnming effect on the water flood. During the second stage (discharge decline) the flood made its way through the fan head, incising the previous debris accumulation and splitting into two main flow paths.

  1. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  2. Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California: a progress report

    USGS Publications Warehouse

    Harden, Deborah Reid; Janda, Richard J.; Nolan, K. Michael

    1978-01-01

    Numerous active landslides are clearly significant contributors to high sediment loads in the Redwood Creek basin. Field and aerial-photograph inspections indicate that large mass-movement features, such as earthflows and massive streamside debris slides, occur primarily in terrain underlain by unmetamorphosed or slightly metamorphosed sedimentary rocks. These features cannot account for stream sediment derived from schist. Observed lithologic heterogeneity of stream sediment therefore suggests that large-scale mass movement is only one part of a complex suite of processes supplying sediment to streams in this basin. Other significant sediment contributors include various forms of fluvial erosion and small-scale discrete mass failures, particularly on oversteepened hillslopes adjacent to perennial streams. Photo-interpretive studies of landslide and timber-harvest history adjacent to Redwood Creek, together with analysis of regional precipitation and runoff records for six flood-producing storms between 1953 and 1975, indicate that loci and times of significant streamside landsliding are influenced by both local storm intensity and streamside logging. Analysis of rainfall records and historic accounts indicates that the individual storms comprising a late-19th-century series of storms in northwestern California were similar in magnitude and spacing to those of the past 25 years. The recent storms apparently initiated more streamside landslides than comparable earlier storms, which occurred prior to extensive road construction and timber harvest. Field observations and repeated surveys of stake arrays at 10 sites in the basin indicate that earthflows are especially active during prolonged periods of moderate rainfall; but that during brief intense storms, fluvial processes are the dominant erosion mechanism. Stake movement occurs mostly during wet winter months. Spring and summer movement was detected at some moist streamside sites. Surveys of stake arrays in two

  3. Land use and nutrient concentrations and yields in selected streams in the Albemarle-Pamlico drainage basin, North Carolina and Virginia

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1995-01-01

    Because nutrients can cause water-quaiity degradation, a major focus of NAWQA is to investigate effects of nutrients on surface- and ground-water quality. This report summarizes surface-water quality study design and land uses in the NAWQA Albemarle-Pamlico Drainage Basin study unit, one of 60 study units nationwide, and shows how nutrient concentrations are related to land uses at selected basins in the study unit. The study area encompasses about 28,000 square miles (mi2) in central and eastern North Carolina and southern Virginia. The major river basins in the Albemarle-Pamlico Drainage Basin are the Chowan, Roanoke, Tar, and Neuse. The barrier islands, estuaries, and the AlbemarIe, Pamlico, and associated sounds are not included in the study-unit area. The Albemarle-Pamlico Drainage Basin covers four physiographic provinces:Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. About 50 percent of the land in the study areais forested, 30 percent is cropland, 15 percent is wetland, and 5 percent is developed. The population--of the study unit is about 3 million people.

  4. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    USGS Publications Warehouse

    Brigham, Mark E.

    1994-01-01

    Pesticide data have been collected in the Red River Basin by various Federal, State, and local agencies. Tornes and Brigham (1994) recently summarized many of these historical data. This paper summarizes selected data collected as part of the NAWQA program during 1992-93, and briefly compares these data to historical data and to pesticide usage.

  5. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  6. Synthesis of nutrient and sediment data for watersheds within the Chesapaeake Bay drainage basin

    USGS Publications Warehouse

    Langland, M.J.; Lietman, P.L.; Hoffman, S.A.

    1995-01-01

    Nutrient and sediment data collected by Federal and state agencies from 1972 through 1992 at 1,058 surface-water sites in nontidal parts of the Chesapeake Bay Basin were compiled into a large database. Adequate nutrient, sediment, and streamflow data were not available to compute annual loads for all sites because water-quality monitoring at many of the sites was either short term or noncontinuous or because stream-flow was not measured. Annual nutrient and sediment loads were calculated at a total of 127 sites. Annual loads of dissolved nitrate were calculated for 108 sites, but total nitrogen loads could be calculated for only 48 of these sites because ammonia plus organic nitrogen data were not available for many of these 108 sites. Annual loads of total phosphorus were calculated for 99 sites, and annual loads of suspended sediment were calculated for 33 sites. Loads could be calculated for only a very few sites in the Juniata River Basin (a tributary to the Susquehanna River), the York River Basin, the middle and lower reaches of the James River, and the nontidal parts of the eastern shore of the Bay. Geographic Information System (GIS) spatial data sets of land use, physiographic province, rock type, and watershed delineation were compiled for the entire Chesapeake Bay Basin (approximately 64,000 square miles). The nutrient- and sediment-yield were evaluated with respect to land use, physiographic province, rock type, and hydrologic characteristics. During years that the mean streamflow was about equal to the long-term mean streamflow, the Susquehanna River contributed about 50 percent of the freshwater, 66 percent of the total nitrogen, and 40 percent of the total phosphorus transported by tributaries to the Bay. Nutrient and sediment data were available for less than 18 percent of the predominantly agricultural areas underlain by siliciclastic rock and for less than 35 percent of the predominantly agricultural areas underlain by either carbonate rock or

  7. Deployment of Indicator of Reduction in Soils (IRIS) Probes in Arctic Drained Thaw Lake Basins and Drainages: Time Integrated Signals of Soil Saturation and Redox

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Newman, B. D.; Hudak, M.; Gard, M.; Altmann, G.; Throckmorton, H.; Wilson, C. J.

    2013-12-01

    Climate driven warming and degradation of permafrost may lead to changes in the hydrology of low gradient regions like the North Slope of Alaska. Hydrologic changes will affect the saturation and redox state of soils in drained thaw lake basins (DTLBs), interlake areas, and associated drainages. These changes are being investigated at the Barrow Environmental Observatory (BEO) and surroundings as part of the Next Generation Ecosystem Experiment - Arctic project. As a complement to traditional redox and aqueous chemistry measurements, the use of indicator of reduction in soils (IRIS) probes is being assessed as a simple and cost-effective way to monitor redox changes. The probes consist of PVC sheets coated with a ferrihydrite paint. Under reducing conditions iron on these probes will partially dissolve. The amount of dissolution can be quantified by image analysis and related in a semi-quantitative fashion to redox conditions in the soils. IRIS probes have been successfully utilized in numerous temperate settings to demonstrate, for example, the presence of reducing soils for wetlands delineation. Test probes were installed in saturated soils for 48 hours in July, 2013. After 48 hours, minor reductive dissolution of ferrihydrite was observed. No sulfide precipitation was noted. As such, probes were installed in quadruplicate at 14 locations representing primarily outlet drainages from different-aged DTLBs and interlake areas. In each case, the probes were installed to refusal at the frost table within the active layer overlying the permafrost. IRIS probes were deployed adjacent to arrays of rhizon samplers used for soil pore water sampling so that time-integrated IRIS probe results can be compared to chemical results (a snapshot in time) obtained at the beginning and end of the monitoring period (probes will be extracted in September). Image analysis will employ LANL's GENIE technology. Field measurements of ferrous iron in water samples showed significant redox

  8. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  9. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  10. The Vigil Network: A means of observing landscape change in drainage basins

    USGS Publications Warehouse

    Osterkamp, W.R.; Emmett, W.W.; Leopold, Luna Bergere

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed change to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network provides an opportunity for earth and life scientists to participate in a systematic monitoring effort to detect landscape changes over time, and to relate such changes to possible causes. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations.

  11. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  12. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins.

    PubMed

    Ahrens, Joseph B; Borda, Elizabeth; Barroso, Rômulo; Paiva, Paulo C; Campbell, Alexandra M; Wolf, Alexander; Nugues, Maggy M; Rouse, Greg W; Schulze, Anja

    2013-04-01

    Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long-lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of 'cosmopolitan' species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re-instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re-evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between H. carunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re-affirm the

  13. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wörman, Anders; Wang, Heng; Wang, Xu-Sheng; Li, Hailong

    2015-10-01

    Although it has been reported that flowing artesian wells could be topographically controlled, there is no quantitative research on artesian flow conditions in unconfined aquifers. In this study, the water table, which has a lower amplitude than the land surface, is damped from the topography and used as the boundary condition to obtain the analytical solution of hydraulic head of a unit basin with a single flow system. The term artesian head is defined to characterize the condition of flowing artesian wells. The zone with positive artesian head is called artesian zone while with negative artesian head is nonartesian zone. The maximum artesian head and the size of artesian zones are found to increase with the damping factor and the anisotropy ratio, and decrease with the ratio of basin width to depth and the depth-decay exponent of hydraulic conductivity. Moreover, the artesian head increases with depth nearby the valley and decreases with depth near by the divide, and the variation rates are influenced by the decay exponent and the anisotropy ratio. Finally, the distribution of flowing artesian wells and the artesian head measurements in different depths of a borehole in a small catchment in the Ordos Plateau, Northwestern China is used to illustrate the theoretical findings. The change in artesian head with depth was used to estimate the anisotropy ratio and the decay exponent. This study opens up a new door to analyze basin-scale groundwater flow.

  14. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California

    USGS Publications Warehouse

    Kellogg, K.S.; Minor, S.A.

    2005-01-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  15. An Open Source approach to automated hydrological analysis of ungauged drainage basins in Serbia using R and SAGA

    NASA Astrophysics Data System (ADS)

    Zlatanovic, Nikola; Milovanovic, Irina; Cotric, Jelena

    2014-05-01

    Drainage basins are for the most part ungauged or poorly gauged not only in Serbia but in most parts of the world, usually due to insufficient funds, but also the decommission of river gauges in upland catchments to focus on downstream areas which are more populated. Very often, design discharges are needed for these streams or rivers where no streamflow data is available, for various applications. Examples include river training works for flood protection measures or erosion control, design of culverts, water supply facilities, small hydropower plants etc. The estimation of discharges in ungauged basins is most often performed using rainfall-runoff models, whose parameters heavily rely on geomorphometric attributes of the basin (e.g. catchment area, elevation, slopes of channels and hillslopes etc.). The calculation of these, as well as other paramaters, is most often done in GIS (Geographic Information System) software environments. This study deals with the application of freely available and open source software and datasets for automating rainfall-runoff analysis of ungauged basins using methodologies currently in use hydrological practice. The R programming language was used for scripting and automating the hydrological calculations, coupled with SAGA GIS (System for Automated Geoscientivic Analysis) for geocomputing functions and terrain analysis. Datasets used in the analyses include the freely available SRTM (Shuttle Radar Topography Mission) terrain data, CORINE (Coordination of Information on the Environment) Land Cover data, as well as soil maps and rainfall data. The choice of free and open source software and datasets makes the project ideal for academic and research purposes and cross-platform projects. The geomorphometric module was tested on more than 100 catchments throughout Serbia and compared to manually calculated values (using topographic maps). The discharge estimation module was tested on 21 catchments where data were available and compared

  16. Full Stokes or shallow ice approximation? Comparing the ice flow dynamics at the Shirase Drainage Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Sugiyama, S.

    2012-12-01

    Covering an area of 2 x 105 km2, the Shirase Drainage Basin is located in East Antarctica (37-50° E, 70-78° S). The basin is characterized by the convergence of the ice flow towards the Shirase glacier, one of the fastest flowing glacier in Antarctica. The Shirase glacier flows at a speed of 2.3 km a-1 at the grounding line (Rignot, 2002; Pattyn and Derauw, 2002; Nakamura and others, 2008) and drains about 10 Gt a-1 of ice through a narrow outlet into the Lützow-Holm Bay (Fujii, 1981). With nearly 90% of total ice discharge from the basin being calved by the glacier, the fast flowing nature of the Shirase glacier is important for the investigation of the ice sheet mass budget in this region. The dynamics of the Shirase glacier is investigated by means of the full Stokes equations and the shallow ice approximation. The model Elmer/Ice (http://elmerice.elmerfem.com) is applied to the Shirase Drainage Basin and employs the finite element method to solve the full Stokes equations, the temperature evolution equation and the evolution equation of the free surface. The shallow ice approximation is also implemented into Elmer/Ice so that both the full Stokes and the shallow ice approximation are computed on the same mesh. Data for the present geometry (surface and basal topographies with no shelf) are obtained from the Community Ice Sheet Model, based on the DEM of Bamber and others (2009) and Griggs and Bamber (2009), and on the BEDMAP1-Plus ice sheet basal topography. A mesh of the computational domain is created using an initial footprint which contains elements from 15 km to 500 m horizontal resolution. The footprint is vertically extruded to form a 3D mesh of 240720 elements with 21 equidistant, terrain-following layers. The approach taken in this study is to compare the response of the glacier to dynamical and climate forcings when separately the full Stokes and the shallow ice approximation are employed. The sensitivity experiments are modeled after the Sea

  17. Potential hazards from flood in part of the Chalone Creek and Bear Valley drainage basins, Pinnacles National Monument, California

    USGS Publications Warehouse

    Meyer, Robert W.

    1995-01-01

    Areas of Chalone Creek and Bear Valley drainage basins in Pinnacles National Monument, California, are subject to frontal storms that can cause major flooding from November to April in areas designated for public use. To enhance visitor safety and to protect cultural and natural resources, the U.S. Geological Survey in cooperation with the National Park Service studied flood-hazard potentials within the boundaries of the Pinnacles National Monument. This study area extends from about a quarter of a mile north of Chalone Creek Campground to the mouth of Bear Valley and from the east monument entrance to Chalone Creek. Historical data of precipitation and floodflow within the monument area are sparse to nonexistent, therefore, U.S. Soil Conservation Service unit-hydrograph procedures were used to determine the magnitude of a 100-year flood. Because of a lack of specific storm-rainfall data, a simulated storm was applied to the basins using a digital-computer model developed by the Soil Conservation Service. A graphical relation was used to define the regionally based maximum flood for Chalone Creek and Bear Valley. Water-surface elevations and inundation areas were determined using a conventional step-backwater program. Flood-zone boundaries were derived from the computed water-surface elevations. The 100-year flood plain for both streams would be inundated at all points by the regional maximum flood. Most of the buildings and proposed building sites in the monument area are above the elevation of the 100-year flood, except the proposed building sites near the horse corral and the east monument entrance. The 100-year flood may cause reverse flow through a 12-inch culvert embedded in the embankment of Old Pinnacles Campground Road in the center of Chalone Creek Campground. The likelihood of this occurring is dependant upon the amount of aggradation that occurs upstream; therefore, the campground area also is considered to be within the 100-year flood zone.

  18. Using U-Pb Detrital Zircon to Identify Evolution of Sediment Drainage in the South Central Pyrenean Foreland Basin, Spain

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.

    2014-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  19. Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Hagg, Wilfried; Wagner, Stephan

    2010-05-01

    Central Asia is well known as an area of substantial water problems mainly caused by climate change and careless consumption of water resources. As in other parts of the globe where high mountains are surrounded by arid and semi-arid zones, snow and glacier melt are major contributors to runoff and important resources for agriculture in the lowlands. The FAO-UNESCO has started a "Climate Impact Study on Streamflow" to estimate future discharge in the catchments of the rivers Vakhsh (39,100 km2) and Panj(114,000 km2), the two tributaries of Amu Darya river. According to the World Glacier Inventory (WGI) prepared in the mid 20th century, the Panj and Vakhsh catchments have glacier covers of 3,913 km2 and 3,675 km2, respectively. A new inventory was conducted in 2003 within the frame of the GLIMS project. We used a simple parametrization scheme based on steady state conditions to infer the ice volumes for the two different time periods in the past and to extrapolate future changes. The resulting volumes for the WGI are 170-200 km3 for the Panj catchment and 200-240 km3 for the Vakhsh catchment. From the mid of the 20th century to 2003, an area (volume) decrease of 8.2% (10.5%) for the Panj and 7.5% (4.1%) for the Vakhsh catchment was determined. A comparison of two digital elevation models (SRTM of 2001 and Aster 2008) show for the glacier areas a mean mass change of -0.61 m a-1 for the Vakhsh and -0.81 m a-1 for the Panj. Regional climate simulations project a warming of 1.8°C-2.9°C until 2050, while it remains unclear if and in what direction precipitation will change. Assuming a temperature increase of 2°C until 2050 and no change in precipitation, the ice reserves in the two catchments will decline at an accelerated rate in comparison to the past with total volume reduction of 75.5% for the Panj basin and of 53% for the Vakhsh basin. To simulate present-day and future runoff, the HBV-ETH hydrological model was set up in the two sub-basins of Abramov (56 km

  20. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    Dileanis, P.D.; Schwarzbach, S.E.; Bennett, Jewel

    1996-01-01

    The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal

  1. Pleistocene-Recent Drainage Evolution in the Western Himalayan Foreland Basin

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Macklin, M.; Carter, A.; Tabrez, A. R.

    2011-12-01

    The rivers of the upper Indus flood plains support large populations in an area where rainfall is relatively weak. Nonetheless, the region has been one in which early civilizations flourished and then dispersed, most notably the Indus Valley or Harappan Culture. We investigated potential links between human settlement and drainage evolution by drilling abandoned and filled river channels on the northern edge of the Thar Desert to see how they have evolved. Pb isotope data from single K-feldspar grains from Holocene and Pleistocene sands showed that the channels were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ~4.5 ka when flow in the Ghaggar-Hakra ceased entirely. U-Pb dating of single zircon sand grains confirms this general pattern. Grain ages <300 Ma are typical of the Thar Desert and become more common around 6-8 ka as the river flux decreased and desert began to encroach. Zircons ages at ~1900 Ma can be linked to a westward flow of the Yamuna River into the Indus but this flow may have finished as early as 49 ka, so that this capture does not affect the Harappan Culture. After this time the Sutlej and Beas River flowed through the region until they were both captured away to the north prior to 6-8 ka. The Harappan centers on the north of the Thar Desert likely dispersed because of unpredictable water supply as the monsoon weakened and because the flow of major rivers had ceased well before 4 ka.

  2. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  3. Establishing the geometry and nature of sediments trapped in either natural or artificial dam lakes in contrasted drainage basins from Western Europe (French Massif Central and Pyrenees)

    NASA Astrophysics Data System (ADS)

    Chapron, Emmanuel; Chassiot, Léo; Zouzou, Claude; Simonneau, Anaelle; Galop, Didier; Di Giovanni, Christian

    2016-04-01

    Lacustrine sedimentary archives from artificial dam lakes are poorly documented both in terms of basin fill geometries and dominating sedimentary processes. In order to better understand their sensitivities to regional environmental changes, we performed a similar multidisciplinary study of French natural and artificial dam lakes in contrasted drainage basins from the volcanic Massif Central (lakes Aydat and Crégut) and two granitic sectors of the northern Pyrenees (lakes Fourcat and Orédon). Our approach combined high-resolution sub bottom profiling (14 kHz and 4 kHz chirp) and a detailed study of sediment cores based on qualitative and quantitative analysis (radiographies, sediment physical and chemical properties) together with radionuclide and radiocarbon dates. In all cases either changes in land uses within the drainage basin or the flooding of natural lakes by dams and the production of hydroelectricity induced changes in sedimentation rates and modes. Human activities affecting either the catchment or the lake itself favored enhanced clastic sediment supply in the lake basins and/or higher and fluctuating lake levels. Subaquatic slopes failures are also identified in Lake Aydat formed by a lava flow 8.5 kYrs ago and in glacial lakes Crégut (Massif Central) and Orédon (Pyrenees) now used to produce hydroelectricity and suggest that lake level changes and ground accelerations during earthquakes can remobilize distinct sectors of the basin fills and not only deltaic environments.

  4. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  5. Prey capture behavior of native vs. nonnative fishes: a case study from the Colorado River drainage basin (USA).

    PubMed

    Arena, Anthony; Ferry, Lara A; Gibb, Alice C

    2012-02-01

    The Colorado River drainage basin is home to a diverse but imperiled fish fauna; one putative challenge facing natives is competition with nonnatives. We examined fishes from Colorado River tributaries to address the following questions: Do natives and nonnatives from the same trophic guild consume the same prey items? Will a given species alter its behavior when presented with different prey types? Do different species procure the same prey types via similar feeding behaviors? Roundtail chub (Gila robusta) and smallmouth bass (Micropterus dolomieu), midwater predators, and Sonora sucker (Catostomus insignis) and common carp (Cyprinus carpio), benthic omnivores, were offered six ecologically relevant prey types in more than 600 laboratory trials. Native species consumed a broader array of prey than nonnatives, and species from a given trophic guild demonstrated functional convergence in key aspects of feeding behavior. For example, roundtail chub and smallmouth bass consume prey attached to the substrate by biting, then ripping the prey from its point of attachment; in contrast, Sonora sucker remove attached prey via scraping. When presented with different prey types, common carp, roundtail chub, and smallmouth bass altered their prey capture behavior by modifying strike distance, gape, and angle of attack. Gape varied among the species examined here, with smallmouth bass demonstrating the largest functional and anatomical gape at a given body size. Because fish predators are gape-limited, smallmouth bass will be able to consume a variety of large prey items in the wild, including large, invasive crayfish and young roundtail chub-their presumptive trophic competitors.

  6. Morphological evolution of the Pyrenees and Ebro drainage basin: effect of a capture on the erosion of a mountain chain

    NASA Astrophysics Data System (ADS)

    Babault, J.; van den Driessche, J.; Bonnet, S.; Crave, A.

    2003-04-01

    In the Pyrenees, the existence of summit flat erosional surfaces is well known for a long time. This smoothed topography meets around 2000 m above sea level in the Axial Zone. The current relief is characterized by the deeply dissection of this surfaces by rivers of the Ebro drainage basin. These observations lead Boissevin (1934) and De Sitter (1952) to argue for a 2000 m post-orogenic uplift of the Pyrenean chain. However Molnar and England (1990) argue that climatic changes can also be responsible for the acceleration of erosional processes and the isostatic uplift of summit flat of the Pyrenees. The southern Pyrenees foreland fold thrust belt undergone a syn-tectonic and pos-tectonic burial allowing the development of the smoothed topography in the Axial Zone (Coney, 1996). Then it has been re-excavated to its present relief. It is assumed that the opening of the Valencia Trough and the Messinian desiccation crisis favoured the growth of a proto-Ebro river along the Catalan coastal range and the subsequent capture and re-excavation of the Pyrenees. In order to test the assumption of a burial of the Pyrenees and Ebro basin we reconstructed the paleo-topography of the Pyrenees and Ebro basin before the capture and we compare it to the present-day relief. The paleotopographic reconstruction is based on the field recognition of end-burial, post-tectonic sedimentary deposits and flat surfaces of the Axial Zone. We use elevations of the summit flat and crests plus elevations of the top of post-tectonic deposits to build a DEM of the Pyrenean paleotopography. From reconstruction, the volume of eroded material we calculate since capture (2.8 1013 m^3) is on the same order than the volume of sediments deposited within the Ebro margin calculated by Nelson (1990). The architecture of the sedimentary bodies on the Ebro margin shows an increase in sedimentary flux during the Pleistocene by 3 times superior than the flux of sediments during Pliocene and the amount of

  7. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    NASA Astrophysics Data System (ADS)

    Gonzalez, Veronica Sosa; Bierman, Paul R.; Nichols, Kyle K.; Rood, Dylan H.

    2016-12-01

    Erosion rates of tropical landscapes are poorly known. Using measurements of in situ-produced 10Be in quartz extracted from river and landslide sediment samples, we calculate long-term erosion rates for many physiographic regions of Panama. We collected river sediment samples from a wide variety of watersheds (n = 35), and then quantified 24 landscape-scale variables (physiographic, climatic, seismic, geologic, and land-use proxies) for each watershed before determining the relationship between these variables and long-term erosion rates using linear regression, multiple regression, and analysis of variance (ANOVA). We also used grain-size-specific 10Be analysis to infer the effect of landslides on the concentration of 10Be in fluvial sediment and thus on erosion rates. Cosmogenic 10Be-inferred, background erosion rates in Panama range from 26 to 595 m My- 1, with an arithmetic average of 201 m My- 1, and an area-weighted average of 144 m My- 1. The strongest and most significant relationship in the dataset was between erosion rate and silicate weathering rate, the mass of material leaving the basin in solution. None of the topographic variables showed a significant relationship with erosion rate at the 95% significance level; we observed weak but significant correlation between erosion rates and several climatic variables related to precipitation and temperature. On average, erosion rates in Panama are higher than other cosmogenically-derived erosion rates in tropical climates including those from Puerto Rico, Madagascar, Australia and Sri Lanka, likely the result of Panama's active tectonic setting and thus high rates of seismicity and uplift. Contemporary sediment yield and cosmogenically-derived erosion rates for three of the rivers we studied are similar, suggesting that human activities are not increasing sediment yield above long-term erosion rate averages in Panama. 10Be concentration is inversely proportional to grain size in landslide and fluvial samples

  8. Redescription of Gobio nigrescens from the Hari River drainage (Teleostei: Cyprinidae).

    PubMed

    Mousavi-Sabet, Hamed; Ganjbakhsh, Babak; Geiger, Matthias F; Geiger, Matthias F; Freyhof, Jörg

    2016-05-20

    Gobio nigrescens, from the Hari River drainage, is redescribed. It represents a valid species distinguished from congeners in the adjacent Caspian and Aral Sea basins by a combination of characters: a naked breast, 16 circumpeduncular scales and 6-7 irregularly shaped, black or brown blotches on back behind dorsal-fin base.

  9. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  10. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  11. Modeling Active Layer Depth Over Permafrost for the Arctic Drainage Basin and the Comparison to Measurements at CALM Field Sites

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2002-12-01

    A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25~km~x~25~km resolution NSIDC EASE-Grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. In addition, we parameterize a spatially and vertically variable peat layer and modify soil bulk density and thermal conductivity accordingly. Climatological soil moisture content is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3~layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54~model nodes ranging from a thickness of 10~cm near the surface to 1~m at 15~m depth. Initial temperatures are chosen according to the grid cell's IPA permafrost classification on EASE grid. Active layer depths, simulated for the summers of 1999 and 2000, compare well to maximal thaw depths measured at about 60 Circumarctic Active Layer Monitoring Network (CALM) field sites. A remaining RMS-error between modeled and measured values is attributed mainly to scale discrepancies (100~m~x~100~m vs. 25~km~x~25~km) based on differences in the fields of air temperature, snow height, and soil bulk density. For the whole pan-Arctic land mass and the time period 1980 through 2001, this study shows the regionally highly variable active layer depth, frozen ground depth, lengths of freezing and thawing periods, and the day of year when the maxima are reached.

  12. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  13. Verification of LANDSAT imagery for morphametric and topological studies of drainage basins in a section of the western plateau of Sao Paulo State: Tiete-Aguapei watershed. M.S. Thesis; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camargo, J. C. G.

    1982-01-01

    The potential of using LANDSAT MSS imagery for morphometric and topological studies of drainage basins was verified. Using Tiete and Aguapei watershed (Western Plateau) as the test site because of its homogeneous landscape. Morphometric variables collected for ten drainage basins include: circularity index; river density; drainage density; topographic texture; areal and index length; basin parameter; and main river length 1st order and 2nd order channel length. The topographical variables determined were: order; magnitude; bifuraction ratio; weighted bifuraction ratio; number of segments; number of linking; trajectory length; and topological diameter. Data were collected on topographical maps at the scale of 1:250,000 and 1:59,000 and on LANDSAT imagery at the scale of 1:250,000. The results which were summarized on tables for further analysis, show that LANDSAT imagery can supply the lack of topographic charts for drainage studies.

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  15. Hydrogeology and ground-water flow, fractured Mesozoic structural-basin rocks, Stony Brook, Beden Brook, and Jacobs Creek drainage basins, west-central New Jersey

    USGS Publications Warehouse

    Lewis, Jean C.; Jacobsen, Eric

    1995-01-01

    This study was undertaken to characterize ground- water flow in the Stony Brook, Beden Brook, and Jacobs Creek drainage basins in west-central New Jersey. The 89-square-mile study area is underlain by dipping beds of fractured siltstone, shale, and sandstone and by massive diabase sills. In all of the rocks, the density of interconnected fractures decreases with depth. A major fault extends through the study area, and rocks on both sides of the fault are extensively fractured. The average annual rates of precipitation and ground-water recharge in the study area are 45.07 inches and 8.58 inches, respectively. The rate of recharge to diabase rocks is about one-half the rate of recharge to other rocks. Part of the surface runoff from diabase rocks enters the ground-water system where it encounters more permeable rocks. Most ground water in the study area follows short, shallow flow paths. A three- dimensional finite-difference model of ground-water flow was developed to test hypotheses concerning geologic features that control ground-water flow in the study area. The decrease in the density of interconnected fractures with depth was represented by dividing the model into two layers with different hydraulic conductivity. The pinching out of water- bearing beds in the dip direction at land surface and at depth was simulated as a lower hydraulic conductivity in the dip direction than in the strike direction. This model can be used to analyze ground-water flow if the area of interest is more than about 0.5 square mile.

  16. Statistical Summary of Hydrologic and Water-Quality Data from the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-99

    USGS Publications Warehouse

    Wong, Michael F.; Young, Stacie T.M.

    2001-01-01

    This report provides statistical summaries of rainfall, streamflow, suspended-sediment, and water-quality data collected in the Halawa, Haiku, and Kaneohe drainage basins before, during, and after construction of the H-3 Highway on the island of Oahu, Hawaii. Methods of data collection also are described. Data collected during water years 1983 through 1999 at eight streamflow and six stream water-quality gaging stations, and two water-quality stations located in Waimaluhia Reservoir are included. Physiographic data for all basins contributing to the 14 stream stations as well as brief land-use descriptions of the Halawa, Haiku, and Kaneohe drainage basins are provided.

  17. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  18. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  19. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor

  20. Use of a precipitation-runoff model for simulating effects of forest management on streamflow in 11 small drainage basins, Oregon Coast Range

    USGS Publications Warehouse

    Risley, J.C.

    1994-01-01

    The Precipitation-Runoff Modeling System (PRMS) model of the U.S. Geological Survey was used to simulate the hydrologic effects of timber management in 11 small, upland drainage basins of the Coast Range in Oregon. The coefficients of determination for observed and simulated daily flow during the calibration periods ranged from 0.92 for the Flynn Creek Basin to 0.68 for the Priorli Creek Basin; percent error ranged from -0.25 for the Deer Creek Basin to -4.49 for the Nestucca River Basin. The coefficients of determination during the validation periods ranged from 0.90 for the Flynn Creek Basin to 0.66 for the Wind River Basin; percent error during the validation periods ranged from -0.91 for the Flynn Creek Basin to 22.3 for the Priorli Creek Basin. In addition to daily simulations, 42 storms were selected from the time-series periods in which the 11 basins were studied and used in hourly storm-mode simulations. Sources of simulation error included the quality of the input data, deficiencies in the PRMS model-algorithms, and the quality of parameter estimation. Times-series data from the Flynn Creek and Needle Branch Basins, collected during an earlier U.S. Geological Survey paired-watershed study, were used to evaluate the PRMS as a tool for predicting the hydrologic effects of timber-management practices. The Flynn Creek Basin remained forested and undisturbed during the data-collection period, while the Needle Branch Basin had been clearcut 82 percent at a midpoint during the period of data collection. Using the PRMS, streamflow at the Needle Branch Basin was simulated during the postlogging period using prelogging parameter values. Comparison of postlogging observed streamflow with the simulated data showed an increase in annual discharge volume of approximately 8 percent and a small increase in peak flows of from 1 to 2 percent. The simulated flows from the basins studied were generally insensitive to the number of hydrologic-response units used to replicate

  1. We are in need of sampling the sedimentary cover and bedrock in the Amerasia Basin. (Suggested site locations in the Makarov Basin, the Mendeleev and Lomonosov ridges and adjacent areas.)

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, N. N.

    2010-12-01

    The Amerasia Basin has a complex origin; alone, the geophysical data can support very different hypotheses. For understanding the tectonic evolution of the Basin and origin of the ridges and troughs it is important to collect geological samples. Based on analyzed seismic data (NP-28 and 26, HOTRAX, Arctic-2000 and TransArctic) over the Makarov Basin, the Mendeleev and Lomonosov ridges and adjacent areas, numbers of key drill sites are proposed. All proposed sites in combinations with other geophysical research of the area are fit well with most of the Site Survey Data Requirements (IODP) for a drilling site. Bedrock samples from key locations are especially needed, with full video or photo documentation of the sampling for avoiding later debates about whether bedrock or ice-drift was collected. Due to close locations to a sea bottom, bedrock can be sampled by gravity piston-cores or shallow drilling. Full stratigraphic sections though the Cenozoic and older sedimentary successions are needed at other proposed key locations for understanding the tectonic evolution of the Amerasia Basin. The depositional environment of the key reflections related to Cenozoic shallow water environments, as recorded in the ACEX drillholes, needs to be investigated in other locations. We will then be able to define better the nature of particular morphological features and construct more reliable tectonic models of the Amerasia Basin, in general.

  2. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  3. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  4. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    USGS Publications Warehouse

    Baker, Ronald J.; Esralew, Rachel A.

    2010-01-01

    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  5. Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Dettinger, M.D.

    1996-01-01

    This report briefly describes the general quality and chemical character of the ground water, discusses in detail the geochemical and hydrologic processes that produce the chemical and isotopic compositions of water in the two principal types of aquifers (basin fill and carbonate rock), delineates flow systems in carbonate-rock aquifers of southern Nevada, and discusses ground-water ages and flow velocities within the carbonate-rock systems.

  6. Application of a watershed model (HSPF) for evaluating sources and transport of pathogen indicators in the Chino Basin drainage area, San Bernardino County, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Lorraine E.; Church, Clinton D.; Mendez, Gregory O.

    2011-01-01

    A watershed model using Hydrologic Simulation Program-FORTRAN (HSPF) was developed for the urbanized Chino Basin in southern California to simulate the transport of pathogen indicator bacteria, evaluate the flow-component and land-use contributions to bacteria contamination and water-quality degradation throughout the basin, and develop a better understanding of the potential effects of climate and land-use change on water quality. The calibration of the model for indicator bacteria was supported by historical data collected before this study and by samples collected by the U.S. Geological Survey from targeted land-use areas during storms in water-year 2004. The model was successfully calibrated for streamflow at 5 gage locations representing the Chino Creek and Mill Creek drainages. Although representing pathogens as dissolved constituents limits the model's ability to simulate the transport of pathogen indicator bacteria, the bacteria concentrations measured over the period 1998-2004 were well represented by the simulated concentrations for most locations. Hourly concentrations were more difficult to predict because of high variability in measured bacteria concentrations. In general, model simulations indicated that the residential and commercial land uses were the dominant sources for most of the pathogen indicator bacteria during low streamflows. However, simulations indicated that land used for intensive livestock (dairies and feedlots) and mixed agriculture contributed the most bacteria during storms. The calibrated model was used to evaluate how various land use, air temperature, and precipitation scenarios would affect flow and transport of bacteria. Results indicated that snow pack formation and melt were sensitive to changes in air temperature in the northern, mountainous part of the Chino Basin, causing the timing and magnitude of streamflow to shift in the natural drainages and impact the urbanized areas of the central Chino Basin. The relation between

  7. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Thomas, S. A.; Deeks, N.; Sivhed, U.

    1997-04-01

    Southernmost Sweden, Bornholm and the surrounding Baltic Sea region are located on a large-scale releasing bend in the dextral strike-slip system of the Tornquist Zone, with its resulting pull-apart basins. The well constrained geology of Scania and Bornholm has been combined with detailed on- and offshore borehole data and three proprietary marine seismic surveys. This in conjunction with supplementary BABEL deep seismic reflection findings allows a combined 3D interpretation of sediment/structure interactions. As a result, a regional interpretation has emerged which gives a new understanding of the interplay between structural movement on a complex strike-slip fault system (Tornquist Zone) and its intrazonal depressions (Vomb Trough and Colonus Shale Trough) as well as the sedimentation history of associated areas of sediment accumulation (Rønne and Arnager Grabens, Höllviken Halfgraben, Hanö Bay Basin and Skurup Platform). Detailed sequential litho- and seismo-stratigraphic descriptions have been possible by combination of the various data sets. This resulted in the clarification or recognition of previously unknown structural limits to sub-basins and highs in the study area. A 3D chronological (4D) model for the development of the region is proposed. This model takes into account the long-lived structural history combining elements of strike-slip, extension and inversion tectonics. The deep-seated faulting controlling these structures is integrated with the deep structure as revealed by the BABEL line in this area.

  8. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    USGS Publications Warehouse

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  9. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  10. A geochemical approach to the restoration plans for the Odiel River basin (SW Spain), a watershed deeply polluted by acid mine drainage.

    PubMed

    Macías, Francisco; Pérez-López, Rafael; Caraballo, Manuel A; Sarmiento, Aguasanta M; Cánovas, Carlos R; Nieto, Jose M; Olías, Manuel; Ayora, Carlos

    2017-02-01

    The Odiel River Basin (SW Spain) drains the central part of the Iberian Pyrite Belt (IPB), a world-class example of sulfide mining district and concomitantly of acid mine drainage (AMD) pollution. The severe AMD pollution and the incipient state of remediation strategies implemented in this region, coupled with the proximity of the deadline for compliance with the European Water Framework Directive (WFD), urge to develop a restoration and water resources management strategy. Furthermore, despite the presence of some reservoirs with acid waters in the Odiel basin, the construction of the Alcolea water reservoir has already started. On the basis of the positive results obtained after more than 10 years of developing a specific passive remediation technology (dispersed alkaline substrate (DAS)) for the highly polluted AMD of this region, a restoration strategy is proposed. The implementation of 13 DAS treatment plants in selected acid discharges along the Odiel and Oraque sub-basins and other restoration measurements of two acidic creeks is proposed as essential to obtain a good water quality in the future Alcolea reservoir. This restoration strategy is also suggested as an economically and environmentally sustainable approach to the extreme metal pollution affecting the waters of the region and could be considered the starting point for the future compliance with the WFD in the Odiel River Basin.

  11. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  12. Timing the structural events in the Palaeoproterozoic Bolé-Nangodi belt terrane and adjacent Maluwe basin, West African craton, in central-west Ghana

    NASA Astrophysics Data System (ADS)

    de Kock, G. S.; Théveniaut, H.; Botha, P. M. W.; Gyapong, W.

    2012-04-01

    The Maluwe basin, north-adjacent to the Sunyani basin, is the northernmost of the northeast-trending Eburnean volcaniclastic depositories in Ghana. These basins are separated from one another by remnants of Eoeburnean crust, all formed during the evolution of an arc-backarc basins complex in a Palaeoproterozoic intraoceanic environment. The Bolé-Nangodi belt terrane to the northwest, of mostly Eoeburnean crust is fault bounded with the Maluwe basin along the northeast-trending Bolé-Navrongo fault zone. The stratigraphic sequence, which was the key to unravelling the structural evolution of the study area, was established by means of field observations aided by precision SHRIMP geochronology. The quartzitic, pelitic, quartzofeldspathic and granitic gneisses of the Eoeburnean crust (>2150 Ma) experienced complex metamorphic mineral growth and migmatitization, mostly under static crustal conditions and were subjected to several deformation episodes. The foliated mafic and metasedimentary enclaves within the Ifanteyire granite establish deformation to have taken place prior to ˜2195 Ma, while the tectonically emplaced Kuri amphibolites within the 2187-Ma gneissic Gondo granite indicate a stage of rifting followed by collision. Deformation of granite dykes in the Gondo granites at ˜2150 Ma concluded the development of the Eoeburnean orogenic cycle (DEE). The Sawla Suite, contemporaneous with the deposition of the Maluwe Group, intruded the tectonic exhumed Bolé-Nangodi terrane during extension between ˜2137 and 2125 Ma. The rifting separated the Abulembire fragment from the Bolé-Nangodi terrane. During subsequent northwestward subduction of young back-arc basin oceanic crust the volcaniclastic strata of the Maluwe Group and Sawla granitoids were deformed (DE1) under chlorite/sericite greenschist-grade conditions. The NE-trending folds had subhorizontal axes and subvertical axial planes. Simultaneous to the DE1 orogenesis the molasses of the Banda Group was

  13. Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand

    SciTech Connect

    Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst; Merren A. Jones; David M. Schultz

    2013-02-01

    Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, New Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.

  14. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    USGS Publications Warehouse

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.

  15. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  16. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  17. More than one way to stretch: A tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Smith, R.P.

    1998-01-01

    The eastern Snake River Plain of southern Idaho poses a paradoxical problem because it is nearly aseismic and unfaulted although it appears to be actively extending in a SW-NE direction continuously with the adjacent block-faulted Basin and Range Province. The plain represents the 100-km-wide track of the Yellowstone hotspot during the last ???16-17 m.y., and its crust has been heavily intruded by mafic magma, some of which has erupted to the surface as extensive basalt flows. Outside the plain's distinct topographic boundaries is a transition zone 30-100 km wide that has variable expression of normal faulting and magmatic activity as compared with the surrounding Basin and Range Province. Many models for the evolution of the Snake River Plain have as an integral component the suggestion that the crust of the plain became strong enough through basaltic intrusion to resist extensional deformation. However, both the boundaries of the plain and its transition zone lack any evidence of zones of strike slip or other accommodation that would allow the plain to remain intact while the Basin and Range Province extended around it; instead, the plain is coupled to its surroundings and extending with them. We estimate strain rates for the northern Basin and Range Province from various lines of evidence and show that these strains would far exceed the elastic limit of any rocks coupled to the Basin and Range; thus, if the plain is extending along with its surroundings, as the geologic evidence indicates, it must be doing so by a nearly aseismic process. Evidence of the process is provided by volcanic rift zones, indicators of subsurface dikes, which trend across the plain perpendicular to its axis. We suggest that variable magmatic strain accommodation, by emplacement and inflation of dikes perpendicular to the least principal stress in the elastic crust, allows the crust of the plain to extend nearly aseismically. Dike injection releases accumulated elastic strain but

  18. From source to sink in central Gondwana: Exhumation of the Precambrian basement rocks of Tanzania and sediment accumulation in the adjacent Congo basin

    NASA Astrophysics Data System (ADS)

    Kasanzu, Charles Happe; Linol, Bastien; Wit, Maarten J.; Brown, Roderick; Persano, Cristina; Stuart, Finlay M.

    2016-09-01

    Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronometry data are reported and used to unravel the exhumation history of crystalline basement rocks from the elevated (>1000 m above sea level) but low-relief Tanzanian Craton. Coeval episodes of sedimentation documented within adjacent Paleozoic to Mesozoic basins of southern Tanzania and the Congo basin of the Democratic Republic of Congo indicate that most of the cooling in the basement rocks in Tanzania was linked to erosion. Basement samples were from an exploration borehole located within the craton and up to 2200 m below surface. Surface samples were also analyzed. AFT dates range between 317 ± 33 Ma and 188 ± 44 Ma. Alpha (Ft)-corrected AHe dates are between 433 ± 24 Ma and 154 ± 20 Ma. Modeling of the data reveals two important periods of cooling within the craton: one during the Carboniferous-Triassic (340-220 Ma) and a later, less well constrained episode, during the late Cretaceous. The later exhumation is well detected proximal to the East African Rift (70 Ma). Thermal histories combined with the estimated geothermal gradient of 9°C/km constrained by the AFT and AHe data from the craton and a mean surface temperature of 20°C indicate removal of up to 9 ± 2 km of overburden since the end of Paleozoic. The correlation of erosion of the craton and sedimentation and subsidence within the Congo basin in the Paleozoic may indicate regional flexural geodynamics of the lithosphere due to lithosphere buckling induced by far-field compressional tectonic processes and thereafter through deep mantle upwelling and epeirogeny tectonic processes.

  19. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  20. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  1. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment

  2. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  3. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  4. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  5. Estimating debris-flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, U.S.A

    USGS Publications Warehouse

    Coe, J.A.; Godt, J.W.; Parise, M.; Moscariello, A.; ,

    2003-01-01

    We have used stratigraphic and historic records of debris-flows to estimate mean recurrence intervals of past debris-flow events on 19 fans along the Interstate 70 highway corridor in the Front Range of Colorado. Estimated mean recurrence intervals were used in the Poisson probability model to estimate the probability of future debris-flow events on the fans. Mean recurrence intervals range from 7 to about 2900 years. Annual probabilities range from less than 0.1% to about 13%. A regression analysis of mean recurrence interval data and drainage-basin morphometry yields a regression model that may be suitable to estimate mean recurrence intervals on fans with no stratigraphic or historic records. Additional work is needed to verify this model. ?? 2003 Millpress.

  6. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2000 to June 30, 2001

    USGS Publications Warehouse

    Presley, Todd K.

    2001-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.

  7. Post-Eruption Changes in Channel Geometry of Streams in the Toutle River Drainage Basin, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Meyer, D.F.; Nolan, K. Michael; Dodge, J.E.

    1985-01-01

    The May 18, 1980, eruption of Mount St. Helens, Washington, generated a debris avalanche, lateral blast, lahars, and tephra deposits that altered mainstem and tributary channels within the Toutle River drainage basin. Channel cross sections were monumented and surveyed on North Fork Toutle River and its tributaries, on South Fork Toutle River, on Green River, and on Toutle River in 1980 and 1981. These streams drain the north and west flanks of the volcano. The network of channel cross sections was surveyed more frequently following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. These data can be used to determine erosion rates, and to identify sources and storage sites of sediment in sediment budget computations. This report presents channel cross-section profiles constructed from the survey data collected during water years 1980 through 1982.

  8. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in

  9. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.

    PubMed

    Stapleton, C M; Wyer, M D; Crowther, J; McDonald, A T; Kay, D; Greaves, J; Wither, A; Watkins, J; Francis, C; Humphrey, N; Bradford, M

    2008-06-01

    Under the EU Water Framework Directive (WFD) 20/60/EC and the US Federal Water Pollution Control Act 2002 management of water quality within river drainage basins has shifted from traditional point-source control to a holistic approach whereby the overall contribution of point and diffuse sources of pollutants has to be considered. Consequently, there is a requirement to undertake source-apportionment studies of pollutant fluxes within catchments. The inclusion of the Bathing Water Directive (BWD), under the list of 'protected areas' in the WFD places a requirement to control sources of faecal indicator organisms within catchments in order to achieve the objectives of both the BWD (and its revision - 2006/7/EC) and the WFD. This study was therefore initiated to quantify catchment-derived fluxes of faecal indicator compliance parameters originating from both point and diffuse sources. The Ribble drainage basin is the single UK sentinel WFD research catchment and discharges to the south of the Fylde coast, which includes a number of high profile, historically non-compliant, bathing waters. Faecal indicator concentrations (faecal coliform concentrations are reported herein) were measured at 41 riverine locations, the 15 largest wastewater treatment works (WwTWs) and 15 combined sewer overflows (CSOs) across the Ribble basin over a 44-day period during the 2002 bathing season. The sampling programme included targeting rainfall-induced high flow events and sample results were categorised as either base flow or high flow. At the riverine sites, geometric mean faecal coliform concentrations showed statistically significant elevation at high flow compared to base flow. The resultant faecal coliform flux estimates revealed that over 90% of the total organism load to the Ribble Estuary was discharged by sewage related sources during high flow events. These sewage sources were largely related to the urban areas to the south and east of the Ribble basin, with over half the

  10. Effect of environmental setting on sediment, nitrogen, and phosphorus concentrations in Albemarle-Pamlico drainage basin, North Carolina and Virginia, USA

    USGS Publications Warehouse

    McMahon, G.; Harned, D.A.

    1998-01-01

    Environmental settings were defined, through an overlay process, as areas of coincidence between categories of three mapped variables - land use, surficial geology, and soil drainage characteristics. Expert judgment was used in selecting factors thought to influence sediment and nutrient concentrations in the Albemarle-Pamlico drainage area. This study's findings support the hypothesis that environmental settings defined using these three variables can explain variations in the concentration of certain sediment and nutrient constituents. This finding underscores the importance of developing watershed management plans that account for differences associated with the mosaic of natural and anthropogenic factors that define a basin's environmental setting. At least in the case of sediment and nutrients in the Albemarle-Pamlico region, a watershed management plan that focuses only on anthropogenic factors, such as point-source discharges, and does not account for natural characteristics of a watershed and the influences of these characteristics on water quality, may lead to water-quality goals that are over- or underprotective of key environmental features and to a misallocation of the resources available for environmental protection.

  11. Garra mondica, a new species from the Mond River drainage with remarks on the genus Garra from the Persian Gulf basin in Iran (Teleostei: Cyprinidae).

    PubMed

    Sayyadzadeh, Golnaz; Esmaeili, Hamid Reza; Freyhof, Jörg

    2015-11-24

    Garra mondica, new species, from the Mond River drainage in Iran is distinguished from its congeners by having 7½ branched dorsal-fin rays; the breast, belly and back in front of the dorsal-fin origin naked and 9+8 branched caudal-fin rays. Garra mondica is also distinguished from all other congeners in the Persian Gulf basin, except an unidentified species from the Kol River, by having two fixed, diagnostic nucleotide substitutions in the mtDNA COI barcode region. The identity of G. gymnothorax, a nominal species from the Karun River drainage, and G. crenulata, a nominal species from Central Iran, are discussed. Garra populations examined from the Karun have a unique mtDNA COI barcode sequence, but their diagnostic characters are not consistent with the description and syntypes of G. gymnothorax. G. crenulata is considered as a synonym of G. rufa. Two populations of Garra from the Kol River have a sequence of the COI barcode region very similar to G. mondica, but cannot be identified as G. mondica and their identity cannot be resolved here.

  12. Two new species of Melanorivulus (Cyprinodontiformes: Cynolebiidae) from Rio Verde drainage, Upper Rio Paraná basin, Brazil.

    PubMed

    Volcan, Matheus Vieira; Klotzel, Bruno; Lanés, Luis Esteban Krause

    2017-02-21

    Two new species of the genus Melanorivulus are herein described from the middle Rio Verde drainage, upper Rio Paraná basin, Mato Grosso do Sul, Brazil. Both new species are members of the Melanorivulus pictus clade, diagnosed by having ventral process of angulo-articular vestigial and flanks intense greenish blue or greenish golden to purplish blue above anal fin base in males. Melanorivulus nigropunctatus, new species, from wetlands of a small drainage tributary of right side of the Rio Verde, differs from all other congeners by possessing black dots over the head and body in both sexes and pectoral fin orange with a dark grey margin in males. Melanorivulus ofaie, new species, is found in a similar environment, but at the opposite margin of the Rio Verde. It is distinguished by males presenting flank greenish blue to light blue, with seven to nine oblique chevron-like red bars, ventral portion of head whitish with dark brown spots, dorsal fin yellow with two to three transverse broad red oblique stripes and distal region red, anal fin light orangish yellow, basal area light blue with short red bars and distal portion with a dark red margin, and caudal fin yellow or orangish yellow with three to four vertical red bars in the dorsal and middle portions, sometimes with a orange distal margin. Both new species are considered endangered due to the loss and degradation of their habitat.

  13. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  14. Tectonic pattern of the Mendeleev Ridge and adjacent basins: results of joint analysis of potential fields and recent Russian seismic data

    NASA Astrophysics Data System (ADS)

    Chernykh, Andrey; Astafurova, Ekaterina; Korneva, Maria; Egorova, Alena; Redko, Anton; Glebovsky, Vladimir

    2014-05-01

    The work was performed under Russian Federation State Geological mapping at a scale of 1:1 000 000 and UNCLOS programs. The study area is located between 76N-84N and 156E-168W and covers the Mendeleev Ridge, adjacent Podvodnikov, Mendeleev, Chukchi Basins and northern part of the East-Siberian Sea shelf. It is characterized by very poor magnetic and gravity data coverage. Majority of airborne magnetic and on-ice gravity surveys were carried out in the region about 40 years ago and have low spatial resolution and poor navigation. Seismic data collected earlier in the study area are presented by sparse lines of historical seismic reflection soundings and by results of deep seismic refraction and reflection observations along several geotransects. Hence, conclusions concerning tectonic structure and spatial relation of the Mendeleev Ridge with adjacent geological structures up to present day remain speculative. Joint analysis of recent seismic reflection and refraction data collected during Russian expeditions «Arctic-2011» and «Arctic-2012» with mentioned above geophysical information allowed to clarify the contours of geological structures in the study area and reveal some new peculiarities of their tectonic pattern. Particularly complex tectonic structure of the Mendeleev Ridge, changing from it's southern to the northern part and represented by two main systems of tectonic displacements is discovered. The first fault system comprises horsts/graben-bounding faults oriented preferably in N-S direction. The second system is presented by faults of NW-SE direction disturbing the first one. In the southern part of the Mendeleev Ridge such faults are the strike-slip faults with small horizontal displacements. Starting from the central part of the ridge and further to the north, displacements along strike-slip faults become progressively more pronounced and have sinistral character. In the northern part of the ridge a pull-apart structures are recognized which

  15. Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade mountains

    SciTech Connect

    Drever, J.I.; Hurcomb, D.R.

    1986-03-01

    The most important weathering reaction that neutralizes incoming atmospheric acidity in the South Cascade Lake basin is weathering of calcite, which occurs in trace amounts in veins, on joint surfaces, and as a subglacial surficial deposit. Although the basin is underlain by igneous and high-grade metamorphic rocks, weathering of plagioclase is quantitatively negligible; the principal silicate weathering reaction is alteration of biotite to vermiculite. These conclusions are based on mass-balance calculations involving runoff compositions and on mineralogical observations. For predictive modeling of the effects of increased acid deposition, it is essential to identify the relevant weathering reactions. Feldspar weathering is commonly not an important source of solutes in alpine basins underlain by granitic rocks. 30 references, 2 figures, 1 table.

  16. Tectonic structure of Dokdo and adjacent area in the northeastern part of the Ulleung Basin of the East Sea using geophysical data

    NASA Astrophysics Data System (ADS)

    Kim, C.; Jeong, E.; Park, C.; Kwon, B.; Park, G.; Park, J.

    2008-12-01

    The northeastern part of the Ulleung Basin in the East Sea is composed of volcanic islands (Ulleungdo and Dokdo), seamounts (the Anyongbok Seamount, the Simheungtaek and the Isabu Tablemounts), and a deep pathway (Korea Gap). To understand tectonic structure and geophysical characteristics of Dokdo and adjacent area, We analysed geophysical potential data of KORDI(Korea Ocean Research and Development Institute), KIGAM(Korea Institute of Geoscience and Mineral Resources), and NORI(National Oceanographic Research Institute of Korea) around the Dokdo volcanic body except Ulleung Do because of empty data of its large island. Also, we eliminate the effect of water and sediments from the free-air gravity data to process 3D Moho depth inversion. 3D tectonic structure modelling of the study area was developed using Moho depth inversion result and sediment thickness data of NGDC(National Geophysical Data Center). The free-air gravity anomalies of the study area generally reflect bathymetric effects. Although the Dokdo seamounts have a similar topographic size, the decrease of free-air anomaly toward Isabu suggest that Isabu is oldest among the seaounts and have high degree of isostatic compensation. High Bouguer anomalies in the central part of the Ulleung Basin gradually decreases toward the Oki Bank. This feature suggests that the crust/mantle boundary is shallow in the central part of the Ulleung Basin. The complex magnetic pattern of Dokdo suggests that it might have erupted several times during its formation. The magnetic anomaly amplitude of Isabu is much smaller than that of Dokdo. Such low magnetic anomalies are attributed to a secondary change caused by the metamorphism or weathering of ferromagnetic minerals of the seamount during a long period of time after its formation. Analytic signals show high anomalous zones over volcanoes. Also, there are high analytic signal values in Korea Gap indicating magmatic intrusion in thick sediments. The power spectrum analysis

  17. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  18. Hydrologic, sediment, and biological data associated with irrigation drainage in the middle Green River basin, Utah and Colorado, water years 1991-2000

    USGS Publications Warehouse

    Rowland, Ryan C.; Allen, David V.; Stephens, Doyle W.; Yahnke, James W.; Darnall, Nathan L.; Waddell, Bruce

    2002-01-01

    Hydrologic, sediment, and biological data were collected in the middle Green River basin in eastern Utah from 1991 to 2000 in an effort to monitor the effects of irrigation drainage on wetland areas and streams, aid in the development of remediation plans, and evaluate the effectiveness of selenium remediation efforts at Stewart Lake Waterfowl Management Area (WMA). Data consist primarily of selenium concentrations in surface water, ground water, bottom sediment, and biological samples. Supporting hydrologic data include field measurements of temperature, pH, specific conductance, water levels in wells, and discharge at surface-water sites. Selected water samples also were analyzed for major ions, trace elements, nutrients, and gross alpha and beta radiation. The concentration of selected selenium species is reported for several bottom-sediment samples from Stewart Lake WMA and the concentration of total selenium in suspended-sediment samples from the area are included. Well logs for six wells installed at Stewart Lake WMA are presented along with trace-element data for several biological samples collected at selected sites throughout the middle Green River basin.

  19. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  20. Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer

    SciTech Connect

    Singleton, Michael J.; Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Dresel, P. EVAN

    2006-04-30

    Strontium isotope compositions measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. This article describes the evaluation of strontium geochemistry of a major aquifer.

  1. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  2. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures

  3. Drainage-area data for Wisconsin streams

    USGS Publications Warehouse

    Henrich, E.W.; Daniel, D.N.

    1983-01-01

    Drainage areas were delineated on U.S. Geological Survey topographic maps. Drainage areas are shown in tabular form under six headings : station number; stream name, rank, and location; township, range, and section ; county; type of site; and drainage area. Eleven major-river-basin maps show the location and station number of key sites .

  4. Scalable, massively parallel approaches to upstream drainage area computation

    NASA Astrophysics Data System (ADS)

    Richardson, A.; Hill, C. N.; Perron, T.

    2011-12-01

    Accumulated drainage area maps of large regions are required for several applications. Among these are assessments of regional patterns of flow and sediment routing, high-resolution landscape evolution models in which drainage basin geometry evolves with time, and surveys of the characteristics of river basins that drain to continental margins. The computation of accumulated drainage areas is accomplished by inferring the vector field of drainage flow directions from a two-dimensional digital elevation map, and then computing the area that drains to each tile. From this map of elevations we can compute the integrated, upstream area that drains to each tile of the map. Generally this last step is done with a recursive algorithm, that accumulates upstream areas sequentially. The inherently serial nature of this restricts the number of tiles that can be included, thereby limiting the resolution of continental-size domains. This is because of the requirements of both memory, which will rise proportionally to the number of tiles, N, and computing time, which is O(N2). The fundamental sequential property of this approach prohibits effective use of large scale parallelism. An alternate method of calculating accumulated drainage area from drainage direction data can be arrived at by reformulating the problem as the solution of a system of simultaneous linear equations. The equations define the relation that the total upslope area of a particular tile is the sum of all the upslope areas for tiles immediately adjacent to that tile that drain to it, and the tile's own area. Solving these equations amounts to finding the solution of a sparse, nine-diagonal matrix operating on a vector for a right-hand-side that is simply the individual tile areas and where the diagonals of the matrix are determined by the landscape geometry. We show how an iterative method, Bi-CGSTAB, can be used to solve this problem in a scalable, massively parallel manner. However, this introduces

  5. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  6. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  7. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  8. Potential Effects of a Warming Climate on Water Resources within the Lehman and Baker Creek Drainages, Great Basin National Park, Nevada

    NASA Astrophysics Data System (ADS)

    Volk, John M.

    Warming trends in near-surface air temperature across the Southwestern U.S. have been observed over the last century and are projected to continue over the 21st century. This warming trend will result in decreased snowpack and earlier snowmelt in mountainous basins throughout the West; however, predictions of future precipitation in the Southwest are much more uncertain among global climate models (GCMs). In this study, the objective was to quantitatively evaluate the impacts of projected warming on streamflow in the Lehman and Baker Creek drainages. The drainages are located in Great Basin National Park that encompasses the highest elevations in the southern part of the Snake Range in eastern Nevada. The Precipitation-Runoff Modeling System (PRMS) was used to evaluate impacts of warming on streamflow. Calibration and validation periods had total errors between 0.6 and 12 percent in simulated streamflow. Daily maximum and minimum temperatures for a future 90-year period were used in the model to evaluate how warming temperatures may affect streamflow. Daily temperatures were statistically downscaled and bias corrected using daily projections from the National Center for Atmospheric Research Community Climate System Model 4.0 for four representative greenhouse gas concentration trajectories. A 30-year record of historical precipitation was repeated three times over the 90-year simulation. Results from the 90-year simulation were divided into three 30-year periods (water years 2009--2038, 2039--2068, and 2069--2098) and were compared among the four greenhouse gas concentration trajectories such that volumes and variations in precipitation were identical and changes could be directly related to different projected warming temperatures. The study area was sensitive to small increases in temperature; results include shifts to earlier snowmelt timing for most warming trajectories from May to April with an increase in winter streamflow. For a temperature rise of 5.5°F by

  9. Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river's drainage basin.

    PubMed

    Santschi, Peter H; Oktay, Sarah D; Cifuentes, Luis

    2007-04-01

    Sedimentary material from coastal and nearshore areas in the Mississippi Delta region are comprised of different organic carbon sources with diverse ages that require isotopic and elemental records for resolving the various sources of plant residues. Carbon isotopic ((13)C, (14)C) values were used to differentiate contributions from plants using the C3, C4, and/or CAM (crassulacean acid metabolism) carbon fixation pathways., and iodine concentrations indicated that wetland plant residues are a significant source of organic carbon in a sediment core from the Mississippi River delta region collected at a 60 m water depth. This sediment core had been extensively described in Oktay et al. [Oktay, S.D., Santschi, P.H., Moran, J.E., Sharma, P., 2000. The (129)Iodine Bomb Pulse Recorded in Mississippi River delta Sediments: Results from Isotopes of I, Pu, Cs, Pb, and C. Geochim. Cosmochim. Acta 64 (6), 989-996.] and significantly, includes unique features that had not previously been seen in the marine environment. These special features include a plutonium isotopic close-in fallout record that indicates a purely terrestrial source for these sediment particles and the elements associated with it, and a distinct iodine isotopic peak (as well as peaks for plutonium and cesium isotopes) that indicate little bioturbation in this core. Our carbon isotopic and iodine data can thus be compared to published records of changes in drainage basin land use, river hydrology, and hydrodynamic sorting of suspended particles to elucidate if these changes are reflected in nearshore sediments. This comparison suggests a significant contribution for organic carbon (OC) from C4 plants to these sediments during the 1950's to early 1960's. Relative older carbon isotopes, and episodically high iodine concentrations (up to 34 ppm) were observed during this time period that (1) indicate sediment deposition that is coincident with the times of major hydrological changes induced from dam and levee

  10. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  11. Cretaceous( )-Paleocene uplift, drainage, and depositional basins along the southwestern margin of the Colorado Plateau, NW Arizona

    SciTech Connect

    Young, R.A. . Dept. of Geological Sciences)

    1993-04-01

    The SW margin of the Colorado Plateau has over 1,200 m of paleorelief partially buried by arkosic sediments with intercalated fossiliferous limestones of middle Eocene or greater age, indicating a Laramide origin for nearly 1.5 km of uplift by late Cretaceous or Paleocene time. The arkosic sediments contain 30-cm clasts currently 100 to 150 km from potential source areas bordering the plateau margin. Clast studies of stratigraphic sequences 150+ m thick and at elevations from 975 to 2,010 m (3,200 to 6,600 ft) demonstrate an initial unroofing of upper Paleozoic rocks from source terranes to the south and west, followed by an increase in the percentages of Precambrian quartzites and older crystalline basement clasts. These basal gravels give way to an influx of exotic volcanic debris (exceeding 50% of total clasts) with measured ages in the 63 to 80 Ma range. The upward change to predominantly exotic volcanic clasts in some sections is interpreted to record Laramide tectonism, erosion, and syntectonic sedimentation along the Plateau margin, accompanying late Cretaceous volcanism. Erosional unroofing of plausible Laramide source terranes beginning after volcanism could not have produced the observed vertical distribution of clasts. Clast lithologies also demonstrate a convergence of several distinct drainages toward the Hurricane fault structural zone, paralleling the northward trends of other Laramide monoclines. Stratigraphic and paleogeographic field relations at three sites suggest some monoclinal deformation accompanied sedimentation and paleocanyon incision. Thus a strong case exists for syntectonic Laramide sedimentation following Cretaceous uplift.

  12. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin.

    PubMed

    Kiedrzyńska, Edyta; Jóźwik, Adam; Kiedrzyński, Marcin; Zalewski, Maciej

    2014-11-15

    The aim of the paper was to evaluate 23 catchment factors that determine total phosphorus and total nitrogen load to the Baltic Sea. Standard correlation analysis and clustering were used. Both phosphorus and nitrogen loads were found to be positively related to the number of pigs and the human population associated with wastewater treatment plants (WWTPs) per km(2), while the number of cattle and agricultural area were found to influence nitrogen rather than phosphorus load, and the area of forests is negatively related to loads of both nutrients. Clustering indicates an overall north-south pattern in the spatial co-occurrence of socio-ecological factors, with some exceptions discussed in the paper. Positive steps in the Baltic Sea region have already been taken, but much remains to be done. The development of coherent response policies to reduce eutrophication in the Baltic Sea should be based on a comprehensive knowledge base, an appropriate information strategy and learning alliance platform in each drainage river catchments.

  13. Land Resources Information for the Lake Erie Drainage Basin. Co-Occurrence of Land Resource Features. Volume II. Major River Basins.

    DTIC Science & Technology

    1979-03-01

    intrinsic erodability (high K factor) and hIgh slopes. Inventories such as these are used to describe watersheds and screen those which may have a high...intrinsic erodability tables inventory the acreage of each basin in each of the K factor soil erodability groups. The K factor is the soil erodabi- lity...is on soils with a slope of 0.5 percent and soil erodability of K = 0.10; 12.1 percent of the land having 0.5 percent slope has K a 0.1; 59.1 percent

  14. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  15. Effect of erosion-control structures on sediment and nutrient transport, Edgewood Creek drainage, Lake Tahoe basin, Nevada, 1981-83

    USGS Publications Warehouse

    Garcia, K.T.

    1988-01-01

    Three sites in the Edgewood Creek basin with a combined drainage area of about 1.2 sq mi were selected to assess the effect of erosion-control structures along Nevada State Highway 207, on sediment and nutrient transport. The flow at site one is thought to have been largely unaffected by urban development, and was completely unaffected by erosion control structures. The flow at site two was from a basin affected by urban development and erosion control structures. Site three was downstream from the confluence of streams measured at sites one and two. Most data on streamflow and water quality were collected between June 1981 and May 1983 to assess the hydrologic characteristics of the three sites. As a result of the erosion control structures, mean annual concentrations of total sediment were reduced from about 24,000 to about 410 mg/l at site two and from about 1,900 to about 190 ml/l at site three. Sediment loads were reduced from about 240 to about 10 tons/year at site two and from about 550 to about 110 tons/year at site three. At site one, in contrast, mean concentrations and loads remained low throughout the study period. At site two, sediment particle size changed from predominately coarse prior to construction, to predominately fine thereafter; at site three, it changed from about half coarse sediments to predominately fine. Mean concentration and loads of total iron also were significantly reduced after construction at sites two and three, whereas mean concentrations of nitrogen and phosphorus species did not change appreciably. (Author 's abstract)

  16. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  17. Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran.

    PubMed

    Rashki, A; Kaskaoutis, D G; Goudie, A S; Kahn, R A

    2013-10-01

    This study examines the influence of changes in the water coverage in the Hamoun dry-bed lakes on visibility, dust outbreaks, aerosol loading and land-atmospheric fluxes over the region covering the period 1985-2005. The Hamoun basin, located on the southeastern Iran and western Afghanistan borders, has been recognized as one of the major dust source regions in south Asia and is covered by shallow, marshy lakes that are fed by the Helmand and Farahrood rivers. When the water in watersheds that support the lakes is drawn down for natural or human-induced reasons, the end result is a decrease in the water coverage in the basin, or even complete dryness as occurred in 2001. Then, strong seasonal winds, mainly in summer, blow fine sand and silt off the exposed lakebed, enhancing dust activity and aerosol loading over the region. Satellite (Landsat) and meteorological observations reveal that the water levels in the Hamoun lakes exhibit considerable inter-annual variability during the period 1985-2005 strongly related to anomalies in precipitation. This is the trigger for concurrent changes in the frequency of the dusty days, aerosol loading and deterioration of visibility over the region, as satellite (TOMS, MODIS, MISR) observations reveal. On the other hand, soil moisture and latent heat, obtained via model (GLDAS_noah-10) simulations are directly linked with water levels and precipitation over the region. The desiccation of the Hamoun lakes in certain years and the consequent increase in frequency and intensity of dust storms are serious concerns for the regional climate, ecosystems and human health.

  18. Distribution and Diversity of Escherichia coli Populations in the South Nation River Drainage Basin, Eastern Ontario, Canada ▿

    PubMed Central

    Lyautey, Emilie; Lu, Zexun; Lapen, David R.; Wilkes, Graham; Scott, Andrew; Berkers, Tanya; Edge, Thomas A.; Topp, Edward

    2010-01-01

    We investigated the prevalence and diversity of Escherichia coli strains isolated from surface waters from multiple watersheds within the South Nation River basin in eastern Ontario, Canada. The basin is composed of mixed but primarily agricultural land uses. From March 2004 to November 2007, a total of 2,004 surface water samples were collected from 24 sampling sites. E. coli densities ranged from undetectable to 1.64 × 105 CFU 100 ml−1 and were correlated with stream order and proximity to livestock production systems. The diversity of 21,307 E. coli isolates was characterized using repetitive extragenic palindromic PCR (rep-PCR), allowing for the identification of as many as 7,325 distinct genotypes, without capturing all of the diversity. The community was temporally and spatially dominated by a few dominant genotypes (clusters of more than 500 isolates) and several genotypes of intermediary abundance (clustering between 10 and 499 isolates). Simpson diversity indices, assessed on a normalized number of isolates per sample, ranged from 0.050 to 0.668. Simpson indices could be statistically discriminated on the basis of year and stream order, but land use, discharge, weather, and water physical-chemical properties were not statistically important discriminators. The detection of Campylobacter species was associated with statistically lower Simpson indices (greater diversity; P < 0.05). Waterborne E. coli isolates from genotypes of dominant and intermediary abundance were clustered with isolates obtained from fecal samples collected in the study area over the same period, and 90% of the isolates tested proved to share genotypes with fecal isolates. Overall, our data indicated that the densities and distribution of E. coli in these mixed-use watersheds were linked to stream order and livestock-based land uses. Waterborne E. coli populations that were distinct from fecal isolates were detected and, on this basis, were possibly naturalized E. coli strains. PMID

  19. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  20. Susceptibility to Myxobolus cerebralis among Tubifex tubifex populations from ten major drainage basins in Colorado where Cutthroat Trout are endemic.

    PubMed

    Nehring, R Barry; Lukacs, P M; Baxa, D V; Stinson, M E T; Chiaramonte, L; Wise, S K; Poole, B; Horton, A

    2014-03-01

    Establishment of Myxobolus cerebralis (Mc) resulted in declines of wild Rainbow Trout Oncorhynchus mykiss populations in streams across Colorado during the 1990s. However, the risk for establishment and spread of this parasite into high-elevation habitats occupied by native Cutthroat Trout O. clarkii was unknown. Beginning in 2003, tubificid worms were collected from all major drainages where Cutthroat Trout were endemic and were assayed by quantitative PCR to determine the occurrence and distribution of the various lineages of Tubifex tubifex (Tt) oligochaetes. Over a 5-year period, 40 groups of Tt oligochaetes collected from 27 streams, 3 natural lakes, 2 private ponds, and a reservoir were evaluated for their relative susceptibility to Mc. Exposure groups were drawn from populations of pure lineage III Tt, mixed-lineage populations where one or more of the highly resistant (lineage I) or nonsusceptible lineages (V or VI) were the dominant oligochaete and susceptible lineage III worms were the subdominant worm, or pure lineage VI Tt. Experimental replicates of 250 oligochaetes were exposed to 50 Mc myxospores per worm. The parasite amplification ratio (total triactinomyxons [TAMs] produced / total myxospore exposure) was very high among all pure lineage III Colorado exposure groups, averaging 363 compared with 8.24 among the mixed-lineage exposure groups. Lineage III oligochaetes from Mt. Whitney Hatchery in California, which served as the laboratory standard for comparative purposes, had an average parasite amplification ratio of 933 among 10 exposed replicates over a 5-year period. Lineage I oligochaetes were highly resistant to infection and did not produce any TAMs. Lineages V and VI Tt did not become infected and did not produce any TAMs. These results suggest that the risk of establishment of Mc is high for aquatic habitats in Colorado where Cutthroat Trout and lineage III Tt are sympatric.

  1. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    USGS Publications Warehouse

    Cravotta, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  2. Assessment of patterns of water sharing of the Tigris-Euphrates drainage basin (Iraq, Turkey, Syria) from 1990 to 2010 with GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hasan, M.

    2012-12-01

    The Tigris-Euphrates drainage basin extends 1800 km from the mountainous area of eastern Turkey across three countries (Turkey, Syria, and Iraq) and empties into the Persian Gulf. The river system is one of the largest in the middle east with an average total volume of river flow of 31,820 MCM for Euphrates and 49,200 MCM for Tigris (Kolars, 1994), and with about 90% of the waters being consumed (agricultural, domestic, industrials, etc) along its course. In this study I used Landsat imagery to quantify the amount of water in the river system in 1990 and 2010 and how it was partitioned between the three countries at these two times in the past. GIS tools were applied to the Landsat imagery to quantify changes in all manmade reservoirs based on total fresh water surface area in the three countries. Results of the study showed a 84% increase in the surface area of water retained by dams and human activity in Turkey, vs. a 70 % increase for Syria, and a 38 % decline for Iraq. The decline in the Iraqi usage was a function of more water being impounded in 52 reservoirs in Turkey and 15 in Syria. Based on these data a more equitable water sharing plan can be adopted by the three countries.

  3. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    USGS Publications Warehouse

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  4. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2001 to June 30, 2002

    USGS Publications Warehouse

    Presley, Todd K.

    2002-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall data were collected at two sites, and streamflow data were collected at 3 sites for the year July 1, 2001 to June 30, 2002. Water-quality data were collected at five sites, which include the three streamflow sites. Six storms were sampled during the year July 1, 2001 to June 30, 2002, for a total of 44 samples. For each storm event, grab samples were collected nearly simultaneously at all five sites, and flow-weighted, time-composite samples were collected at the three sites equipped with automatic samplers. Samples were analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids. Quality assurance samples were also collected to verify analytical procedures and insure proper cleaning of equipment.

  5. Physical, chemical, and biological data for detailed study of irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    MacCoy, D.E.

    1994-01-01

    Physical, chemical, and biological data were collected between 1990 and 1992 as part of a detailed study by the U.S. Department of Interior of the effects of irrigation drainage on aquatic resources in the Klamath Basin of California and Oregon. Most of the sites for data collection were in and around the upper and lower sump of Tule Lake, in the Tule Lake National Wildlife Refuge, and along major drains in Lower Klamath National Wildlife Refuge. The physical and chemical data consist of particle-size determinations and concentrations of carbon, mercury, arsenic, chlorophenoxy acid, and organochlorine, organophosphate, and carbamate pesticides in bottom sediment; and concentrations of organophosphate, carbamate, and pyrethroid pesticides, major and trace inorganic constituents, nitrogen, phosphorus, and organic carbon in water. Continuous dissolved oxygen, pH, specific conduc- tance, and temperature data from selected sites in 1991 and 1992 are presented in graphical form to summarize the diel water-quality conditions. The biological data consists of concentrations of inorganic constituents and organochlorine pesticides in tissue, invertebrate and fish population surveys, fish health surveys, frog call surveys, egg shell thickness of avian eggs, and in situ and static toxicity bioassay data collected in 1991 and 1992 using aquatic bacteria, plants, invertebrates, fish, and bird species as test organisms.

  6. Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.

    2001-01-01

    strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph

  7. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; environmental setting and water-quality issues

    USGS Publications Warehouse

    McMahon, Gerard; Lloyd, Orville B.

    1995-01-01

    The Albemarle-Pamlico drainage study unit is one of 60 units of the U.S. Geological Survey's National Water-Quality Assessment Program, and includes the large river basins which drain into the Albemarle and Pamlico Sounds-the Chowan, Roanoke, Tar-Pamlico, and Neuse River Basins. The study unit includes about 28,000 square miles and has an interrelated set of environmental characteristics which strongly influence water quality. The chemical and physical nature of these characteristics are the dominant controls on baseline water quality in the study area. About 50 percent of the study area is forested, slightly more than 30 percent is agricultural, about 15 percent is wetlands, and less than 5 percent is developed. Three million people live in the study area, and activities related to agriculture and development have caused increased concentrations of constituents such as nutrients, pesticides, and suspended sediment. About two-thirds of the 36 to 52 inches of precipitation in the area reenters the atmosphere by evapotranspiration. About one-third of the remaining precipitation reaches streams by overland runoff; the remainder recharges the water table aquifer, where much of the water eventually discharges to streams as ground water. Thus, ground-water quality has a substantial influence on surface-water quality, particularly during dry weather. In 1990, about 152,900 tons of elemental nitrogen and 10,500 tons of elemental phosphorus either were applied to crops as fertilizer or fixed by biological processes, and in 1987, about 43,500 tons of nitrogen and 12,200 tons of phosphorus were produced as animal wastes. In addition, about 1,300 tons of selected herbicides and 400 tons of selected insecticides were applied to crops in 1990. Some 249 permitted point sources discharged 410 million gallons per day, containing an annual load of 5,800 tons of nitrogen and 1,800 tons of phosphorus, to the study area in 1990. Data from 1970-79 indicate that mean annual suspended

  8. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  9. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  10. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  11. Geology of the Eel River basin and adjacent region: implications for late Cenozoic tectonics of the southern Cascadia subduction zone and Mendocino triple junction

    USGS Publications Warehouse

    Clarke, S.H.

    1992-01-01

    Two upper Cenozoic depositional sequences of principally marine strata about 4000m thick overlie accreted basement terranes of the Central and Coastal belts of the Franciscan Complex in the onshore-offshore Eel River basin of northwestern California. The older depositional sequence is early to middle Miocene in age and represents slope basin and slope-blanket deposition, whereas the younger sequence, late Miocene to middle Pleistocene in age, consists largely of forearc basin deposits. -from Author

  12. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs

    NASA Astrophysics Data System (ADS)

    Persendt, F. C.; Gomez, C.

    2016-05-01

    Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50 m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The 'maximum gradient deterministic eight (D8)' GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study

  13. Environmental evolution of the Rio Grande drainage basin and Nasca region (Peru) in 2003-2007 using ENVISAT ASAR and ASTER time series

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Tapete, Deodato; Lasaponara, Rosa; Masini, Nicola

    2013-04-01

    Recent palaeo-environmental studies and remote sensing investigations demonstrated that the Rio Grande drainage basin in Southern Peru is a still evolving landscape, and impacts due to its changes have implications for the preservation of both the natural and cultural features of the Nasca region, well-known for the evidences of the ancient Paracas and Nasca Civilizations, who flourished from the 4th century BC to the 6th century AD. To image the modifications occurred in the last decade, we exploited the entire 4year-long stack of ENVISAT ASAR C-band archive imagery available over the region, which was provided by the European Space Agency (ESA) via the Cat-1 project 11073. The latter supports the activities of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), which directly involve researchers from the Institute for Archaeological and Monumental Heritage (IBAM) and the Institute of Methodologies for Environmental Analysis (IMAA), National Research Council (CNR) of Italy. With the aim of reconstructing the temporal evolution of the Rio Grande drainage basin and its effects and implications for the heritage of the region, we processed 8 ASAR Image Mode IS2 scenes acquired in descending mode between 04/02/2003 and 15/11/2005 and 5 images in ascending mode between 24/07/2005 and 11/11/2007, and focused on SAR backscattering information, amplitude change detection methods and extraction of ASAR-derived time series of the backscattering coefficient over target areas of interest. The ASAR 2003-2007 analysis was coupled and integrated with NDVI-based soil moisture and vegetation change assessment performed by using ASTER multi-spectral data acquired during the same time frame of the ASAR stacks, on 30/05/2003, 01/06/2004 and 10/06/2007. The research was performed both at the regional scale over the entire Rio Grande drainage basin, with particular focus on its tributaries Rio Ingenio, Rio Nazca and Rio Taruga, and at the local scale over the

  14. Local climate differences between the adjacent Linxia and Xunhua basins, NE Tibet reveal 11 Ma history of relief in the intervening Jishi Shan

    NASA Astrophysics Data System (ADS)

    Hough, B.; Garzione, C.; Wang, Z.; Zheng, W.; Yuan, D.; Zhang, P.; Molnar, P.

    2008-12-01

    The 3500-4000 m high Jishi Shan located on the boarder between Gansu and Qinghai Provinces along the northeast margin of the Tibetan Plateau stands as an orographic barrier to easterly derived summer rainfall. Comparison of stable isotope compositions of modern rainfall (δ18O and δ2H) and paleo-soil carbonate (δ18O and δ13C) from the leeward Xunhua basin and the windward Linxia basin provides a method for the interpretation of changes in local climate related to the formation of relief in the intervening Jishi Shan. Rayleigh distillation models suggest that a vapor mass experiencing orographic rainout should be relatively depleted in 18O on the lee side of the range. However, increased aridity in the rain shadow of the Jishi Shan results in a net 2‰ enrichment in the δ18O values of modern rainfall in the Xunhua basin due to evaporative enrichment of 18O. Using the stable isotope compositions of pedogenic and lacustrine carbonates in the Xunhua and Linxia basins as a proxy for paleoclimate, we find that the aridity difference between these basins has existed throughout at least the past 11 Ma, implying the presence of the Jishi Shan. These data indicate that intra- basin comparisons of the stable isotope composition of sedimentary carbonates can be used to assess the timing of emergence of basin-segmenting mountain ranges between the sub-basins of northeastern Tibet.

  15. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    USGS Publications Warehouse

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  16. Major and trace-element analyses of acid mine waters in the Leviathan Mine drainage basin, California/Nevada; October, 1981 to October, 1982

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these

  17. Evaluating upper versus lower crustal extension through structural reconstructions and subsidence analysis of basins adjacent to the D'Entrecasteaux Islands, eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fitz, Guy; Mann, Paul

    2013-06-01

    The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded domes with ~2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites exhumed in an Oligocene-Miocene arc-continent collision and subduction zone subject to late Miocene to recent continental extension. Multichannel seismic reflection data and well data show the Trobriand basin formed as a fore-arc basin caused by southward Miocene subduction at the Trobriand trench. Subduction slowed at ~8 Ma as the margin transitioned to an extensional tectonic environment. Since then, the Trobriand basin has subsided 1-2.5 km as a broad sag basin with few normal faults deforming the basin fill. South of the DEI, the Goodenough rift basin developed after extension began (~8 Ma) as the hanging wall of the north-dipping Owen-Stanley normal fault that bounds the basin's southern margin. The lack of upper crustal extension accompanying subsidence in the Trobriand and Goodenough basins suggests depth-dependent lithospheric extension since 8 Ma has accompanied uplift of the DEI gneiss domes. Structural reconstructions of seismic profiles show 2.3-13.4 km of basin extension in the upper crust, while syn-rift basin subsidence values indicate at least 20.7-23.6 km of extension occurred in the entire crust since ~8 Ma. Results indicating thinning is preferentially accommodated in the lower crust surrounding the DEI are used to constrain a schematic model of uplift of the DEI domes involving vertical exhumation of buoyant, postorogenic lower crust, far-field extension from slab rollback, and an inverted two-layer crustal density structure.

  18. Reevaluation of the Bedford--Berea sequence on Ohio and adjacent states: New perspectives on sedimentation and tectonics in foreland basins

    SciTech Connect

    Pashin, J.C. ); Ettensohn, F.R. )

    1992-01-01

    The Late Devonian Bedford-Berea (BB) sequence provided an early basis for models of epeiric sedimentation, but controversy regarding its origin has arisen in recent years. This study was designed to resolve this controversy and to identify factors that control depositional architecture in foreland basins on the basis of outcrop and subsurface data. The BB is a siliciclastic succession that was deposited in the Appalachian foreland basin during a relaxational phase of the Acadian orogeny. Among the salient features of the BB are an eastern platform and a western basin. The platform was characterized largely by erosion of Catskill sediment and subsequent deposition of aggradational valley-fill sequences, whereas the basin was characterized mainly by progradational delta and shelf deposits that overlie conformably the distalmost part of the Catskill clastic wedge. BB depositional history and paleogeography is divided into two episodes: (1) basin filling and (2) delta destruction. Basin filling was characterized by regressive fluvial-deltaic systems that eroded the Catskill wedge and supplied prograding deltaic and shelf sediment to the western basin. Delta destruction began after the basin was full with sediment and was dominated by flexural relaxation, which gave rise to unusual facies patterns. Delta-front deposits in the western basin were uplifted and reworked, and a shelf silt blanket prograded back toward the incised valleys on the rapidly subsiding eastern platform where estuaries were forming. Reevaluation of the BB sequence demonstrates that the depositional architecture and paleogeographic history of foreland basins is much more elaborate than is commonly recognized. Tectonism, relict topography, differential compaction, and relative sea-level variation functioned collectively to determine the complex depositional history and paleogeography of the BB sequence.

  19. Hydrologic conditions in the Jacobs Creek, Stony Brook, and Beden Brook drainage basins, west-central New Jersey, 1986-88

    USGS Publications Warehouse

    Jacobsen, Eric; Hardy, M.A.; Kurtz, B.A.

    1993-01-01

    Data on the quantity and quality of groundwater and surface water in the drainage basins of Jacobs Creek, Stony Brook, and Beden Brook upstream from U.S. Route 206 in west-central New Jersey were collected from October 1, 1986, through September 30, 1988. Water levels measured in 74 wells ranged from 49 to 453 ft above sea level. The water-table surface generally mimicked topography; however, the water-level altitude in one well indicates the possibility of local interbasin groundwater flow. Calcium and bicarbonate were the most abundant cation and anion in most of the 25 groundwater samples. With one exception, concentrations of nutrients, trace elements, organic carbon, and volatile organic compounds in groundwater samples were less than U.S. Environmental Protection Agency primary drinking-water regulations. Stream low-flow measurements made twice at each of 63 sites indicate that both discharge and runoff increased downstream for most reaches of Jacobs Creek, Stony Brook, and Beden Brook. For main-stem sites, the highest base-flow runoff occurred at site 01462733 on Jacobs Creek; the greatest discharge was measured at site 01401100 on Stony Brook. The flow-duration curve for Stony Brook for 1987-88 indicates a wetter- than-normal period for the area. Results of surface-water-quality analyses indicate that calcium and sodium plus potassium were the dominant or codominant cations, and bicarbonate and chloride were the dominant or codominant anions in most samples. Concentrations of nutrients typically exceeded those needed to support surplus algal growth. Concentrations of trace elements generally were less than U.S. Environmental Protection Agency primary drinking-water regulations. Bottom-sediment samples contained several persistent organic compounds. Significant downstream variations were found in concentrations of copper and lead in Jacobs Creek and Stony Brook. Results of macroinvertebrate community sampling indicate an input of nutrients to several stream

  20. Streamflow and Suspended-Sediment Loads Before and During Highway Construction, North Halawa, Haiku, and Kamooalii Drainage Basins, Oahu, Hawaii, 1983-91

    USGS Publications Warehouse

    Hill, Barry R.

    1996-01-01

    Concern over potential effects from construction of the H-3 highway on Oahu, Hawaii, prompted a long-term study of streamflow and suspended-sediment transport at a network of five stream-gaging stations along the highway route. This report presents results for 1983-91, which included pre-construction and construction periods at all stream-gaging stations. Annual rainfall, streamflow, and suspended-sediment loads were generally higher during construction than before construction. Data collected before and during construction were compared using analysis of covariance to determine whether streamflow and suspended-sediment loads changed significantly during construction after accounting for effects of increased rainfall. Streamflow at stream-gaging stations was compared with streamflow at an index stream-gaging station unaffected by construction. Streamflow data were divided into low- and high-flow classes, and the two flow classes were analyzed separately. Low flows increased 117 percent during construction at one station. This increase probably was related to the removal of vegetation for highway construction. Low flows decreased 28 percent at another station, probably as a result of increased ground-water withdrawals and highway construction activities. No significant changes in low flows were detected at the other stations, and no significant changes in high flows were detected at any stations. Suspended-sediment loads increased significantly during construction at three stations. Highway construction contributed between 56 and 76 percent of the suspended-sediment loads measured at these stations during construction. Loads did not change significantly at a station downstream of a reservoir, and loads decreased at a station downstream of a drainage basin that was heavily used for agriculture before construction. Suspended-sediment concentrations were used to assess compliance with applicable State water-quality standards. State water-quality standards for suspended

  1. Impact of Drainage Basin Geology and Geomorphology on Detrital Thermochronometric Data from Modern River Sands: A Case Study in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Coutand, I.; Whipp, D. M., Jr.; Bookhagen, B.; Grujic, D.

    2015-12-01

    Detrital thermochronology has become an important tool to quantify the erosional history of mountainous regions. Despite an increasing number of studies utilizing detrital records, it remains unclear how the record of spatially variable erosion of upstream drainage basins is preserved in the thermochronologic signal contained in the sediments. This important spatiotemporal problem is a first-order unknown that limits the interpretation of the geological significance of the detrital signal. To improve our understanding of detrital records in terms of spatiotemporal erosion rates, we use a three-step approach to study modern fluvial sediments from the Bhutan Himalaya. First, based on a preferred tectonomorphic scenario extracted by inversion of in situ multi-thermochronological ages, we predict apatite fission-track (AFT) age distributions in 18 catchments using the Pecube software. Second, we compare AFT age distributions from modern sand bars collected at each catchment outlet to distributions extracted from Monte Carlo sampling of the predicted catchment ages. We find that observed and predicted age distributions are statistically equivalent for only ~75% of the catchments. Third, we calculate predicted detrital age distributions by scaling the prevalence of ages in the catchment in proportion to topographic and climatic metrics (e.g., local relief, steepness index, specific stream power weighted by precipitation rate) or landslide-driven erosion to quantify their effects and relationships to the observed detrital AFT age distributions. Preliminary results suggest erosion in proportion to the topographic metrics cannot reproduce the observed age distributions, but bedrock landsliding may provide sufficient age variability to reproduce the observations. Ongoing work is determining whether variable target mineral concentrations in bedrock geological units or non-uniform sediment sourcing from moraine- or glacier-covered regions can reproduce the observed ages.

  2. Water-quality characteristics of streams in the Piceance Creek and Yellow Creek drainage basins, northwestern Colorado, water years 1977-81

    USGS Publications Warehouse

    Tobin, R.L.; Stranathan, H.E.; Covay, K.J.

    1985-01-01

    Physical and chemical data for streams in the Piceance Creek and Yellow Creek drainage basins, Colorado collected during the 1977-81 water years are summarized. Stream temperatures ranged from -0.5 to 35.0 degrees Celsius and were warmest near the downstream reaches of Piceance and Yellow Creeks. Minimum concentrations of dissolved oxygen were greater than 3.0 milligrams per liter in Piceance and Yellow Creeks, and concentrations of dissolved oxygen exceeded saturation during periods of active photosynthesis. Values of pH in streams ranged from 6.9 to 9.0 and were least during snowmelt runoff and greatest in low flows in the lower reaches of Piceance and Yellow Creeks. Concentrations of suspended sediment exceeded 100 ,000 milligrams per liter in localized runoff. Specific conductance varied inversely with discharge. Sodium, magnesium, bicarbonate, and sulfate ions and concentration ranges of dissolved solids between 400 and 1,700 milligrams per liter were characteristic of the water quality of the perennial streams. Calcium and bicarbonate dominated the major ions, and concentrations of dissolved solids normally were less than 600 milligrams per liter in the intermittent streams during storm and snowmelt runoff. Augmentation to Piceance and Yellow Creeks from ground-water sources in the lower reaches of both streams increased concentrations of dissolved solids several thousand milligrams per liter during medium and low flows and caused a change in water-quality type from sodium magnesium bicarbonate to a high-percentage sodium bicarbonate. Increases in dissolved concentrations of arsenic, boron, fluoride, lithium, strontium, and sulfate were related to ground-water sources or discharges from areas of energy resource development. (USGS)

  3. GIS and MCDM analysis to evaluate and zoning of soil erosion in Junaghan drainage sub-basin in Karun , SW-Iran

    NASA Astrophysics Data System (ADS)

    Rezaei, Khalil; Yavari, Shahla; Khodabakhsh, Saeid; Mohseni, Hasan; Bozorgzadeh, Eisa

    2010-05-01

    Problems involving the processing of spatial data such as soil erosion are multi-facetted challenges. Recently, absolute determination of sediment production with using quality and quantity data of drainage basins is one of the most important factors in soil protection management. In this research, we use MPSIAC method for calculating of annually sediment production and then we compare results with other methods. Results showed 21.93% difference with field observations. As there are many agents affecting on erosion and they depend on geographical location, soil, topography, climate, land use, geology and hydrology of selected area, solutions for these problems involve highly complex spatial data analysis processes and frequently require advanced means to address physical suitability conditions, while considering the multiple ecological and geological variables. Geographic Information Systems (GIS) and Multi-Criteria Decision-Making techniques (MCDM) are two common tools employed to solve these problems. However, each suffers from serious shortcomings. GIS, which deals mainly with physical suitability analysis, has very limited capability of incorporating the decision maker's preferences into the problem solving process. MCDM, which deals mainly with analyzing decision problems and evaluating the alternatives based on a decision maker's values and preferences, lacks the capability of handling spatial data (e. g., buffering and overlay) that are crucial to spatial analysis. The need for combining the strengths of these two techniques has prompted researchers to seek integration of GIS and MCDM. Also, in this research, MCDM methods have been integrated with a GIS to provide a map for soil erosion based upon a variety of different choice criteria (agent) and on the importance (weight) a decision maker might attach to these. This integration could benefit environmental, soil and water planners and decision makers. Key words: soil erosion, MPSIAC, GIS, MCDM.

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  5. Climate, Landscape, and Management Effects on Nitrate and Soluble Phosphorus concentrations in subsurface drainage discharge in the western Lake Erie basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. The magnitude of NO3 and soluble P losses in subsurface drainage varies greatly by landscape, climate, and field management f...

  6. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2012

    USGS Publications Warehouse

    Beman, Joseph E.

    2013-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22 percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2012), the network consists of 126 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (ABCWUA), currently (2012) measures and reports water levels from the 126 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 126 sites through water year 2012.

  7. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2010

    USGS Publications Warehouse

    Beman, Joseph E.

    2011-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and about a 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2010), the network consists of 124 wells and piezometers (a piezometer is a small-diameter subwell usually nested within a larger well). To better help the Albuquerque Bernalillo County Water Utility Authority manage water use, this report presents water-level data collected by U.S. Geological Survey personnel at those 124 sites through water year 2010.

  8. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2011

    USGS Publications Warehouse

    Beman, Joseph E.

    2012-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and of about 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2011), the network consists of 126 wells and piezometers (a piezometer is a specialized well open to a specific depth in the aquifer and is often of small diameter and nested with other piezometers open to different depths). This report presents water-level data collected by U.S. Geological Survey personnel at those 126 sites through water year 2011 to better help the Albuquerque Bernalillo County Water Utility Authority manage water use.

  9. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2013

    USGS Publications Warehouse

    Beman, Joseph E.

    2014-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when treatment and distribution of surface water from the Rio Grande began. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22-percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2013), the network consists of 123 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2013) measures and reports water levels from the 123 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 123 sites through water year 2013.

  10. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  11. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2009

    USGS Publications Warehouse

    Beman, Joseph E.; Torres, Leeanna T.

    2010-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2009), the network consists of 131 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 123 sites through water year 2009. In addition, data from four wells (Sites 140, 147, 148, and 149) owned, maintained, and measured by Sandia National Laboratories and three from Kirtland Air Force Base (Sites 119, 125, and 126) are presented in this report.

  12. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2008

    USGS Publications Warehouse

    Beman, Joseph E.

    2009-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2008) obtained soley from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in ground-water levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2008), the network consists of 144 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 125 sites through water-year 2008. In addition, data from 19 wells (Sites 127-30, 132-134, 136, 138-142 and 144-149) owned, maintained, and measured by Sandia National Laboratories are presented in this report.

  13. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  14. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Shamokin Creek Basin, Northumberland and Columbia Counties, Pennsylvania, 1999-2001

    USGS Publications Warehouse

    Cravotta, Charles A.; Kirby, Carl S.

    2003-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the upper Shamokin Creek Basin in east-central Pennsylvania. The upper Shamokin Creek Basin encompasses an area of 54 square miles (140 square kilometers) within the Western Middle Anthracite Field, including and upstream of the city of Shamokin. Elevated concentrations of acidity, metals, and sulfate in the AMD from flooded underground anthracite coal mines and (or) unreclaimed culm (waste rock) piles degrade the aquatic ecosystem and water quality of Shamokin Creek to its mouth and along many of its tributaries within the upper basin. Despite dilution by unpolluted streams that more than doubles the streamflow of Shamokin Creek in the lower basin, AMD contamination and ecological impairment persist to its mouth on the Susquehanna River at Sunbury, 20 miles (32 kilometers) downstream from the mined area. Aquatic ecological surveys were conducted by the U.S. Geological Survey (USGS) in cooperation with Bucknell University (BU) and the Northumberland County Conservation District (NCCD) at six stream sites in October 1999 and repeated in 2000 and 2001 on Shamokin Creek below Shamokin and at Sunbury. In 1999, fish were absent from Quaker Run and Shamokin Creek upstream of its confluence with Carbon Run; however, creek chub (Semotilus atromaculatus) were present within three sampled reaches of Carbon Run. During 1999, 2000, and 2001, six or more species of fish were identified in Shamokin Creek below Shamokin and at Sunbury despite elevated concentrations of dissolved iron and ironencrusted streambeds at these sites. Data on the flow rate and chemistry for 46 AMD sources and 22 stream sites throughout the upper basin plus 1 stream site at Sunbury were collected by the USGS with assistance from BU and the Shamokin Creek Restoration Alliance (SCRA) during low base-flow conditions in August 1999 and high baseflow

  15. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    USGS Publications Warehouse

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  16. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  17. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  18. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Mariethoz, Gregoire; Schrank, Christoph; Cox, Malcolm; Timms, Wendy

    2016-12-01

    Coal-seam gas production requires groundwater extraction from coal-bearing formations to reduce the hydraulic pressure and improve gas recovery. In layered sedimentary basins, the coalbeds are often separated from freshwater aquifers by low-permeability aquitards. However, hydraulic connection between the coalbed and aquifers is possible due to the heterogeneity in the aquitard such as the existence of conductive faults or sandy channel deposits. For coal-seam gas extraction operations, it is desirable to identify areas in a basin where the probability of hydraulic connection between the coalbed and aquifers is low in order to avoid unnecessary loss of groundwater from aquifers and gas production problems. A connection indicator, the groundwater age indictor (GAI), is proposed, to quantify the degree of hydraulic connection. The spatial distribution of GAI can indicate the optimum positions for gas/water extraction in the coalbed. Depressurizing the coalbed at locations with a low GAI would result in little or no interaction with the aquifer when compared to the other positions. The concept of GAI is validated on synthetic cases and is then applied to the north Galilee Basin, Australia, to assess the degree of hydraulic connection between the Aramac Coal Measure and the water-bearing formations in the Great Artesian Basin, which are separated by an aquitard, the Betts Creek Beds. It is found that the GAI is higher in the western part of the basin, indicating a higher risk to depressurization of the coalbed in this region due to the strong hydraulic connection between the coalbed and the overlying aquifer.

  19. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  20. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  1. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Lobkovsky, L. I.; Kononov, M. V.; Dobretsov, N. L.; Vernikovsky, V. A.; Sokolov, S. D.; Shipilov, E. V.

    2013-01-01

    The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.

  2. New data on mammoth fauna mammals in the central Lena River basin (Yakutia, Lenskie Stolby National Nature Park and adjacent areas)

    NASA Astrophysics Data System (ADS)

    Boeskorov, G. G.; Nogovitsyn, P. R.; Mashchenko, E. N.; Belolyubsky, I. N.; Stepanov, A. D.; Plotnikov, V. V.; Protopopov, A. V.; Shchelchkova, M. V.; van der Plicht, J.; Solomonov, N. G.

    2016-07-01

    This paper considers the data on new findings of mammoth fauna remains in the Middle Lena basin used to specify the species composition of large Late Neopleistocene mammals represented by eleven species. The obtained range of radiocarbon dates made it possible to state that mass burials of Pleistocene mammal remains were formed in the region during the Karginsk Interstadial (24 000-55 000 years ago).

  3. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers, 1992-93

    USGS Publications Warehouse

    Ruhl, P.M.; Smith, K.E.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.

  4. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    PubMed

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  5. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and

  6. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  7. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994-95

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn

    1999-01-01

    The influence of land use on the water quality of four tributaries to the Toms River, which drains nearly one-half of the Barnegat Bay wateshed, was studied during the initial phase of a multiyear investigation. Water samples were collected from and streamflows were measured in Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Creek during periods of base flow and stormflow in the growing and nongrowing seasons during May 1994 to October 1995. The drainage areas upstream from the seven measurement sites were characterized as highly developed, moderately developed, slightly developed, or undeveloped. Concentrations were determined and area-normalized instantaneous loads (yields) were estimated for total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthosphosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria in the water samples. Specific conductance, pH, temperature, and dissolved oxygen were measured. Yields of total nitrogen, nitrate, and organic nitrogen at sites on Wrangel Brook, which drains moderately developed areas, were either larger than or similar to yields at the site on Long Swamp Creek, which drains a highly developed area. The magnitude of these yields probably was not related directly to the intensity of land development, but more likely was influenced by the type of development, the amount of base flow, and historical land use in the basin. The large concentrations of total nitrogen and nitrate in base flow in Wrangel Brook could have resulted from fertilizers that were applied to high-maintenance lawns and from agricultural runoff that has remained in the ground water since the 1950's and eventually was discharged to streams. Yields of ammonia appear to be partly related to the intensity of land development and storm runoff. Yields of ammonia at the site on Long Swamp Creek (a highly developed area) were either larger than or similar to yields at sites on Wrangel Brook (moderately

  8. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  9. Paleogeographic and paleotectonic setting of sedimentary basins in the Sevier thrust belt and hinterland, eastern Great Basin

    SciTech Connect

    Schmitt, J.G. . Dept. of Earth Sciences); Vandervoort, D.S. . Dept. of Geological Sciences); Suydam, J.D. . Dept. of Geology)

    1993-04-01

    The eastern Great Basin contains a sparse record of broadly distributed Cretaceous sedimentary rocks which record: evolution of intermontane basins during development of the Sevier (Sv)contractional orogen and incipient extensional collapse of the elevated Sv hinterland (east-central NV), and complex tectono-sedimentary interactions between frontal thrust belt structures and the western margin of the adjacent foreland basin. Palinspastic restoration of these strata and associated structures to pre-Tertiary extension positions reveals a clearer pictures of Cretaceous basin paleogeography and allows comparison with the Puna/Altiplano plateau and precordillera thrust belt of the Neogene Andean orogen. Two syntectonic stratal assemblages are present in east-central NV. Lower Cretaceous alluvial strata (Newark Canyon Fm) record basin development coeval with emergence of contractional structures in the Sv hinterland. Localized early Cretaceous basins were possibly piggyback immature; periods of open drainage to the to the east and south suggest connection with the nascent Sv foreland basin to the east (Cedar Mountain/Sanpete Fms) prior to major thrust loading in central Utah. Development of hinterland structures is almost recorded by Aptian-Albian foreland basin alluvial deposits in SW Utah (Dakota Fm) and southern Nevada (Willow Tank Fm). Upper Cretaceous to Eocene strata (Sheep Pass Fm) record inception of regionally abundant alluvial-lacustrine basins which developed in response to onset of latest Cretaceous extension and associated collapse of the Sv hinterland. Evolution of the structurally complex western margin of the Sv foreland basin is recorded in Cretaceous through Eocene strata deposited in: piggyback basins which were at times hydrologically connected to the adjacent foreland basins, and thrust-proximal portions of the foreland basin. These proximal areas are characterized by folding and faulting of basin fill and development of intrabasinal unconformities.

  10. Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, B.; Sage, F.; Abtout, A.; Klingelhoefer, F.; Yelles-Chaouche, K.; Schnürle, P.; Marok, A.; Déverchère, J.; Arab, M.; Galve, A.; Collot, J. Y.

    2015-06-01

    We determine the deep structure of the eastern Algerian basin and its southern margin in the Annaba region (easternmost Algeria), to better constrain the plate kinematic reconstruction in this region. This study is based on new geophysical data collected during the SPIRAL cruise in 2009, which included a wide-angle, 240-km-long, onshore-offshore seismic profile, multichannel seismic reflection lines and gravity and magnetic data, complemented by the available geophysical data for the study area. The analysis and modelling of the wide-angle seismic data including refracted and reflected arrival travel times, and integrated with the multichannel seismic reflection lines, reveal the detailed structure of an ocean-to-continent transition. In the deep basin, there is an ˜5.5-km-thick oceanic crust that is composed of two layers. The upper layer of the crust is defined by a high velocity gradient and P-wave velocities between 4.8 and 6.0 km s-1, from the top to the bottom. The lower crust is defined by a lower velocity gradient and P-wave velocity between 6.0 and 7.1 km s-1. The Poisson ratio in the lower crust deduced from S-wave modelling is 0.28, which indicates that the lower crust is composed mainly of gabbros. Below the continental edge, a typical continental crust with P-wave velocities between 5.2 and 7.0 km s-1, from the top to the bottom, shows a gradual seaward thinning of ˜15 km over an ˜35-km distance. This thinning is regularly distributed between the upper and lower crusts, and it characterizes a rifted margin, which has resulted from backarc extension at the rear of the Kabylian block, here represented by the Edough Massif at the shoreline. Above the continental basement, an ˜2-km-thick, pre-Messinian sediment layer with a complex internal structure is interpreted as allochthonous nappes of flysch backthrusted on the margin during the collision of Kabylia with the African margin. The crustal structure, moreover, provides evidence for Miocene

  11. Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013

    USGS Publications Warehouse

    Eash, David A.

    2015-01-01

    An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1-4 from the 1987 single-variable RREs and for flood regions 1-3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.

  12. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  13. Walled Sedimentary Basins of China: Perpetrators or Victims of Plateau Growth?

    NASA Astrophysics Data System (ADS)

    Carroll, A. R.; Graham, S. A.; Smith, M. E.

    2004-12-01

    Western China and adjacent areas of central Asia are characterized by low relief, internally drained sedimentary basins that are divided by actively uplifting mountain ranges. The margins of these basins often show evidence for extensive contractional deformation, yet their interiors are surprisingly stable. Basins such as the Tarim and Junggar also exhibit long and apparently continuous histories of closed drainage in the same approximate location (over 250 my in the case of Junggar). In contrast to traditional foreland basins, these basins are not uniquely associated with a specific thrust belt, nor do they show evidence for underlying decollements. We therefore propose the new term "walled basin", in recognition of the essential role of peripheral orogenic walls in creating and maintaining closed drainage and impounding sediments. Walled basins in Asia currently are restricted to areas that receive less than 40 cm/yr precipitation, suggesting that aridity plays a role in preventing fluvial breach of the basin walls (cf., Sobel et al., 2003). Entrapment of sediment within the closed Qaidam basin in the northeast Tibetan plateau has been implicated as a potential mechanism of plateau growth, based on the observations that the basin retains mass within the orogen and creates level topography. However, we propose that the Qaidam instead represents a walled basin that has been elevated due to underplating of the plateau, and is fated to eventual destruction as deformation continues. Several lines of reasoning support this conclusion. First, DEM analysis shows that modern drainage divides for the Qaidam and other walled basins never rise more than 1-2 km above the basin floors, limiting the amount of possible topgraphic infill. Second, the Tarim and Junggar basins presently remain well below 2000 m and probably have never been higher, despite receiving large influxes of detritus from adjacent ranges. Third, the Qaidam basin, like the Tarim and Junggar basins, has an

  14. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2014

    USGS Publications Warehouse

    Beman, Joseph E.

    2015-10-21

    An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. The network currently (2014) consists of 125 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2014) measures and reports water levels from the 125 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 125 sites through water year 2014 (October 1, 2013, to September 30, 2014).

  15. Patterns of deep-water coral diversity in the Caribbean Basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions.

    PubMed

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200-2000 m depth) than on the upper continental shelf (60-200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges.

  16. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  17. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welborn, Toby L.; Moreo, Michael T.

    2007-01-01

    Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.

  18. Estimation of Agricultural Pesticide Use in Drainage Basins Using Land Cover Maps and County Pesticide Data. National Water-Quality Assessment Program

    DTIC Science & Technology

    2005-01-01

    2001, the NAWQA Program completed interdisciplinary assessments in 51 of the Nation’s major river basins and aquifer systems, referred to as Study Units...others, 1995). To meet these goals, water-quality investigations are conducted in major river basins and aquifers referred to as “study units.” The...Creek near Monetta, South Carolina 02174250 02174250 62 Cow Castle Creek near Bowman, South Carolina 02175000 02175000 7,077 Edisto River near Givhans

  19. Effects of Coal-Mine Drainage on Stream Water Quality in the Allegheny and Monongahela River Basins-Sulfate Transport and Trends

    USGS Publications Warehouse

    Sams, James I.; Beer, Kevin M.

    2000-01-01

    In 1980, the Allegheny and Monongahela Rivers transported a sulfate load of 1.2 million and 1.35 million tons, respectively, to the Ohio River at Pittsburgh. The Monongahela River Basin had a sulfate yield of 184 tons per square mile per year compared to 105 tons per square mile per year for the Allegheny River Basin. Within the large Allegheny and Monongahela River Basins, the subbasins with the highest sulfate yields in tons per square mile per year were those of Redstone Creek (580), Blacklick Creek (524), Conemaugh River (292), Buffalo Creek (247), Stonycreek River (239), Two Lick Creek (231), Dunkard Creek (212), and Loyalhanna Creek (196). These basins have been extensively mined. The sulfate yields of Brokenstraw and Conewango Creeks, which are outside the area underlain by coal and thus contain no coal mines, were 25 and 24 tons per square mile per year, respectively. Within the Allegheny and Monongahela River Basins, seven sites showed significant trends in sulfate concentration from 1965 to 1995. Dunkard Creek and Stonycreek River show significant upward trends in sulfate concentration. These trends appear to be related to increases in coal production in the two basins from 1965 to 1995. Blacklick Creek at Josephine and Loyalhanna Creek at Loyalhanna Dam show significant downward trends in sulfate concentration between 1965 and 1995. Blacklick Creek had a 50-percent decrease in sulfate concentration. Coal production in the Blacklick Creek Basin, which reached its peak at almost 4 million tons per year in the 1940's, dropped to less than 1 million tons per year by 1995. In the Loyalhanna Creek Basin, which had a 41-percent decrease in sulfate concentration, coal-production rates dropped steadily from more than 1.5 million tons per year in the 1940's to less than 200,000 tons per year in 1995.

  20. Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Smith, J. LaRue; Laczniak, Randell J.; Moreo, Michael T.; Welborn, Toby L.

    2007-01-01

    Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range carbonate-rock aquifer system study area. One common method used throughout the southwestern United States is to estimate ground-water discharge from evapotranspiration (ET). ET is a process by which water from the Earth's surface is transferred to the atmosphere. The volume of water lost to the atmosphere by ET can be computed as the product of the ET rate and the acreage of vegetation, open water, and moist soil through which ET occurs. The procedure used in the study groups areas of similar vegetation, water, and soil conditions into different ET units, assigns an average annual ET rate to each unit, and computes annual ET from each ET unit within the outer extent of potential areas of ground-water discharge. Data sets and the procedures used to delineate the ET-unit map used to estimate ground-water discharge from the study area and a qualitative assessment of the accuracy of the map are described in this report.

  1. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin.

    PubMed

    Wang, Huaxin; Jiao, Ruyuan; Wang, Fang; Zhang, Lu; Yan, Weijin

    2016-12-01

    Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO2 using high-performance size-exclusion chromatography (HPSEC) with UV254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO2. The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1-2.5 kDa); intermediate MW (IMW, 2.5-3.5 kDa); high MW (HMW, 3.5-6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMWp) was particularly high in wetlands. We found that pCO2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMWp. These data improve our understanding of the MW of bioavailable DOC and its conversion to CO2. The present results demonstrate that both the content and characteristics of DOC significantly affect pCO2. pCO2 and DOC must be studied further to help understanding the role of the wetland on the regional CO2 budget.

  2. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico

    NASA Astrophysics Data System (ADS)

    Carrillo-Rivera, J. J.

    2000-09-01

    An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une

  3. Reconnaissance of the chemical quality of water in western Utah, Part I: Sink Valley area, drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area

    USGS Publications Warehouse

    Waddell, K.M.

    1967-01-01

    This report presents data collected during the first part of an investigation that was started in 1963 by the U.S. Geological Survey in cooperation with the Utah Geological and Mineralogical Survey. The investigation has the purpose of providing information about the chemical quality of water in western Utah that will help interested parties to evaluate the suitability of the water for various uses in a broad area of Utah where little information of this type previously has been available. The area studied includes the Sink Valley area, the drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area (fig. 1). Osamu Hattori and G. L. Hewitt started the investigation, and the author completed it and prepared the report.

  4. Landscape resistance: using drainage networks as deformation markers

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien; Champagnac, Jean-Daniel

    2010-05-01

    Fluvial networks determine to a large extent the structure and geometry of erosive landscapes in mountain ranges. As a consequence it is fundamental to understand how they develop and evolve in order to reconstruct and predict landscape evolution in orogens. A particularly important problem is the degree to which fluvial networks and basin boundaries evolve and change through their existence. Two end members may be invoked. On one hand, river networks are rather dynamic, changing and reorganizing frequently during orogen evolution. In this view, landscapes mostly reflect the present stage of the tectonic forcing, with a minor component of "memory". On the other hand, river networks may also be largely static in the landscape, resistant to deformation, thus acting as potentially useful passive markers of the crustal strain. In this view, networks develop in the foreland, and are then passively advected into the relief by outward growth of the orogen [1]. The "dynamic" view has long found support in a variety of observations evoking river captures and drainage network changes (wind gaps, some hanging valleys, sinuous shape of water divides, inferred changes of detrital sources), and is reproduced in some analogue and numerical models [2]. However, there are also a large number of observations which support a contrary view according which drainage network are resistant to deformation. Some notorious examples are antecedent rivers and drainage systems cutting through lithological and geological structures (folds and faults), drainage systems extending behind the main drainage divide in large mountain ranges, and preservation of superficial cover rocks adjacent to valleys deeply incised into the basement. Some spectacular plane deformation of large river basins also points to the large resistance of river networks to plane deformation and their difficulty to reorganize [3]. We present a novel conceptual framework that allows distinguishing the different cases of

  5. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  6. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity

    PubMed Central

    Robalo, Joana I.; Pereira, Ana M.; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  7. Quaternary Stratigraphy, Drainage-Basin Development, and Geomorphology of the Lake Manix Basin, Mojave Desert: Guidebook for Fall Field Trip, Friends of the Pleistocene, Pacific Cell, October 4-7, 2007

    USGS Publications Warehouse

    Reheis, Marith C.; Miller, David M.; Redwine, Joanna L.

    2007-01-01

    The 2007 field trip of the Pacific Cell, Friends of the Pleistocene, visited features of the Quaternary geology and geomorphology of the Lake Manix basin in the Mojave Desert. This report is the guidebook for this trip and includes some discussion of relations observable along the road and at various field trip stops. The Mojave River originates in the San Bernardino Mountains and in high-water years flows north and east to its terminus in Silver Lake playa north of Baker, Calif. Along this course, the river passes through or near several basins that were internally drained prior to integration by the Mojave River, including the Victorville, Harper, Manix, and Soda Lake basins. Sediments in the Lake Manix basin record Mojave River discharge and lake fluctuations that began during the middle Pleistocene and continued through most of the late Pleistocene.

  8. Response of ground-water levels of flood control operations in three basins, south-eastern Florida

    USGS Publications Warehouse

    Pitt, William A.J.

    1974-01-01

    Three basins in southeastern Florida were investigated to determine the changes in ground-water levels and canal flows that occurred in response to operation of coastal water-control structures in each canal. All three basins are underlain by the Biscayne aquifer. They are, Snapper Creek Canal basin, where the Biscayne aquifer is of high permeability; the Snake Creek Canal basin, where the aquifer is of moderate permeability; and the Pompano-Cypress Canal basin, where the aquifer is of low permeability. In each basin, drainage is a function of permeability; thus, where the permeability of the aquifer is high, drainage is excellent. The coastal water-conrol structures are intended to afford flood protection in the three basins. In general the control operation criteria for flood control in newly developing areas in southeastern Florida do not provide adequate protection from flooding because of the time required for the aquifer to respond to changes in the controls. Adequate protection would require increasing the density of secondary drainage canals, but this could achieved only by reducing the quantity of water available for recharging those segments of the Biscayne aquifer adjacent to the canals. (Woodrad-USGS)

  9. Big River Reservoir Project. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Volume I. Main Report.

    DTIC Science & Technology

    1981-07-01

    of the nation’s output of goods and services and by increasing the national economic efficiency. EQ is to be achieved by the management, preservation...PROBLEM IDENTIFICATION 7 NATIONAL OBJECTIVES 7 EXISTING CONDITIONS 7 WITHOUT CONDITION PROFILE 17 PROBLEMS, NEEDS AND OPPORTUNITIES 21 PLANNING...Basin and for water supply planning to the legislated service area of the Pro":idence Water Supply Board. Not all areas were investigated to the same

  10. Structural and Hydrologic Implications of Joint Orientations in the Warner Creek and Stony Clove Drainage Basins, Catskill Mountains, Eastern New York

    NASA Astrophysics Data System (ADS)

    Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.

    2010-12-01

    To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.

  11. U-Pb ages on single detrital zircon grains from the Witwatersrand Basin, South Africa: Constraints on the age of sedimentation and on the evolution of granites adjacent to the basin

    SciTech Connect

    Robb, L.J. ); Davis, D.W.; Kamo, S.L. )

    1990-05-01

    U-Pb ages of single detrital zircon grains from various stratigraphic horizons in the Dominion and Witwatersrand sequences provide constraints on the maximum age of sedimentation as well as indicating the pattern of age distribution in the (granitoid) source area providing detritus into the basin. Zircon ages in the Dominion sediments range from 3,191-3,105 Ma with a geometric mean ({bar X}) t 3,153 Ma. Those from the lower Witwatersrand sediments (West Rand Group) range from 3,305-3,044 Ma with {bar X} = 3,097 Ma, and zircons in the upper Witwatersrand sediments (Central Rand Group) are between 3,207-2,894 Ma old with {bar X} = 3,053 Ma. Ages of detrital zircons generally decrease upward in the stratigraphic record, and <3,000 Ma old zircons are only found in the Central Rand Group. This trend implies that younger granites may have formed at some time subsequent to lower Witwatersrand deposition, or that continued erosion of the hinterland resulted in the unroofing of successively younger granites. The wide spread of zircon ages (411 Ma) evident in the data set indicates that granites formed virtually continuously between circa 3,300-2.900 Ma in the Witwatersrand source area. Of the zircon ages 45% fall within 30 m.y. of the geometric mean of the total data set, suggesting that a major crust-forming event occurred at 3,073 {plus minus} 30 Ma. Granitoids in the source area can be divided into (i) pre-Dominion basement; (ii) Dominion granites, whose emplacement coincided with the extrusion of Dominion volcanics, and (iii) Randian granites, which were emplaced synchronously with Witwatersrand deposition. This sequence of events supports recent tectonic models that view the Witwatersrand sequence as having been deposited in a foreland basin.

  12. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.

    PubMed

    Hibbs, Barry J; Darling, Bruce K

    2005-01-01

    Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic

  13. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos

    2011-12-01

    During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage.

  14. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  15. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    NASA Astrophysics Data System (ADS)

    Gilchrist, Sivajini; Gates, Alexander; Szabo, Zoltan; Lamothe, Paul J.

    2009-03-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  16. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  17. Water-quality assessment of the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia; organochlorine compounds in Asiatic clam (Corbicula fluminea) soft tissues and whole redbrest sunfish (Lepomis auritus) 1992-93

    USGS Publications Warehouse

    Smith, K.E.; Ruhl, P.M.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, Asiatic clam (Corbicula fluminea) soft tissues and whole redbreast sunfish (Lepomis auritus) samples were collected and analyzed to obtain information about the occurrence and distribution of organochlorine compounds in the Albemarle-Pamlico drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. Relatively few organochlorine compounds were detected and of the compounds detected, all were detected in relatively low concentrations. The organochlorine compounds detected were p,p'-DDD, p,p'-DDE, p,p'-DDT, dieldrin, trans-nonachlor, PCB's, and toxaphene. Multiple compounds were detected at 16 of 19 sites sampled. Compared to Asiatic clams, redbreast sunfish appear to be better bioindicators of organochlorine contamination in aquatic systems. Except for one detection of toxaphene, pesticide concentrations are well below the National Academy of Sciences and National Academy of Engineering (NAS/NAE) guidelines for the protection of fish-eating wildlife.

  18. Hydrologic conditions and water-quality conditions following underground coal mining in the North Fork of the Right Fork of Miller Creek drainage basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed.During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus–Plateau Mining Corporation from 1992 through 2001.Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999–2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by

  19. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the

  20. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect

    Gustavson, T.C. ); Holliday, V.T. )

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  1. Effects of surface mining on streamflow, suspended-sediment, and water quality in the Stony Fork drainage basin, Fayette County, Pennsylvania

    USGS Publications Warehouse

    Stump, D.E.; Mastrilli, T.M.

    1985-01-01

    A study of the Stony Fork basin in southern Fayette County, Pennsylvania, from 1977 through 1980 determined the impacts of surface coal mining on surface-water quality. Stony Fork was sampled at six sites, during which time the area of surface mines increased from 0.5 to 5.5 percent of the study area. Streamflow, suspended-sediment, and water quality data were collected at gaging stations upstream and downstream of mining. The total runoff between the upstream and downstream stations differed by one percent; this small difference could not be attributed to the effects of mining. The suspended-sediment yield increased during storms due to erosion from the mining sites. The suspended-sediment yield doubled at the downstream site following mining. Specific conductance was highly variable during storm runoff but generally varied inversely with flow and increased slightly during the study period. The pH ranged between 4.8 and 7.9 with values below 6.0 usually occurring during storm runoff. Concentrations of dissolved zinc and sulfate increased between the upstream and downstream sampling sites. Laboratory analysis of a precipitation sample indicates that acid precipitation may be partly responsible for pH depressions during storm runoff periods. (USGS)

  2. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  3. Urine drainage bags

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000142.htm Urine drainage bags To use the sharing features on this page, please enable JavaScript. Urine drainage bags collect urine. Your bag will attach ...

  4. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  5. Evolution of fluvial systems in salt-walled mini-basins: A review and new insights

    NASA Astrophysics Data System (ADS)

    Banham, Steven G.; Mountney, Nigel P.

    2013-10-01

    The preserved sedimentary expression of fluvial successions accumulated in salt-walled mini-basins records the complex history of basin subsidence, the style of sediment supply, and the pattern of sediment distribution in response to a range of fluvial processes throughout the evolution of such basins. Temporal and spatial variations in the rate of basin subsidence govern the generation of accommodation space, whereas the rate and style of sediment supply govern how available accommodation is filled; together these parameters act as principal controls that dictate the gross-scale pattern of fluvial sedimentation. Additional factors that influence fluvial stratigraphic architecture in salt-walled mini-basins are: (i) the trend and form of inherited basement lineations and faults that control the geometry, orientation and spacing of salt walls that develop in response to halokinesis; (ii) salt thickness and composition that dictate both the maximum potential basin-fill thickness within a developing mini-basin and the rate of evacuation (migration) of salt from beneath evolving mini-basins, leading to the growth of confining salt walls, uplift of which may generate surface topographic expression that influences fluvial drainage patterns; (iii) climate that dictates fluvial style and the processes by which sediment is distributed; and (iv) the inherited direction of drainage relative to the trend of elongate salt walls and locus of sediment supply that dictates how sediments are distributed both within a single mini-basin and between adjacent basins. Examples of fluvial sedimentary architectures preserved in salt-walled mini-basins from a number of geographic regions are used to illustrate and document the primary controls that influence patterns of fluvial sediment accumulation. The distribution of fluvial architectural elements preserved within mini-basins follows a predictable pattern, both within individual basin depocentres and between adjoining basins: drainage

  6. Hygienic drainage for healthcare.

    PubMed

    Jennings, Peter

    2012-08-01

    Peter Jennings, technical director for ACO Building Drainage, which specialises in the development of corrosion-resistant drainage systems and building products, looks at the key issues to consider when specifying and installing pipework and drainage for hygiene-critical environments such as hospitals and other healthcare facilities.

  7. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  8. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  9. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  10. Alburnoides manyasensis (Actinopterygii, Cyprinidae), a new species of cyprinid fish from Manyas Lake basin, Turkey

    PubMed Central

    Turan, Davut; Ekmekçi, F. Güler; Kaya, Cüneyt; Güçlü, S. Serkan

    2013-01-01

    Abstract Alburnoides manyasensis, sp. n., is described from the Koca Stream (Lake Manyas drainage, Marmara Sea basin) in Anatolia. It is distinguished from all species of Alburnoides in Turkey and adjacent regions, Alburnoides tzanevi (Rezovska [Rezve], Istranca and Terkos streams in the western Black Sea drainage), Alburnoides cf. smyrnae (Banaz Stream, a drainage of Büyük Menderes River, Aegean Sea basin), Alburnoides fasciatus (streams and rivers in the eastern Black Sea drainage) and Alburnoides eichwaldii (Kura and Aras rivers [a drainage of Kura River], Caspian Sea basin) by a combination of the following characters (none unique to the species):marked hump at nape, especially in specimens larger than 60 mm SL; partly developed ventral keel between pelvic fin and anal fin, scaleless 1/2 to 2/3 its length; body depth at dorsal-fin origin 29−32% SL; caudal peduncle depth 11−12% SL; 45–52+ 2–3 lateral-line scales; 9–12 scale rows between lateral line and dorsal-fin origin; 4–5 scale rows between lateral line and anal-fin origin, 10½–12½ branched anal-fin rays; 40–42 total vertebrae. PMID:23794819

  11. Hydrologic Response Differences Between Drainage Network Classifications

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Gironas, J. A.; Niemann, J. D.

    2013-12-01

    Basin drainage networks have been grouped into classifications such as dendritic, parallel, pinnate, rectangular and trellis based on their planform structures. While it has long been known that the size and shape of a drainage basin affect its hydrologic response to precipitation events, the effects of the network organization have not been investigated as extensively. The objective of this work is to simulate and analyze the instantaneous unit hydrographs (IUHs) and hydrologic responses of networks from different classifications for potential systematic differences between the classifications. That goal is accomplished by calculating the IUH for ten previously-classified basins of each network type listed above using a spatially-distributed travel time (SDTT) model applied to the outlet flow length distributions (i.e., width functions) of each drainage network. We find that the width functions, IUHs and the resulting hydrologic responses of the different network classifications are each largely distinguishable from one another based on statistical tests of their moments. Additionally, we find that the differences in hydrologic responses are at least partially independent of the differences in the basin vertical characteristics, as represented by the slope-area relationships. The results indicate that network classification-dependent inputs to semi-distributed rainfall-runoff models could improve model performance.

  12. WATER DRAINAGE MODEL

    SciTech Connect

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  13. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    SciTech Connect

    Newell, K.D.; Watney, W.L.; Hatch, J.R.; Xiaozhong, G.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. When estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.

  14. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  15. Assessment of groundwater quality of the Tatlicay aquifer and relation to the adjacent evaporitic formations (Cankiri, Turkey).

    PubMed

    Apaydın, Ahmet; Aktaş, Sibel Demirci

    2012-04-01

    One of the most important hydrogeologic problems in and adjacent areas of evaporitic formations is severe quality degradation of groundwaters. These kinds of groundwaters contain high content of dissolved solids and generally have some limitations for use. Tatlicay basin (north-central Turkey) is an example to effects of the evaporites on groundwater quality in the adjacent alluvium aquifer. Gypsum and anhydrites in the two evaporite formations (Bayindir and Bozkir) effect of the groundwater quality in the alluvium adversely, by dissolution of the evaporites by surface drainage and infiltration into the alluvium aquifer (widespread effect) and by infiltration of low quality gypsum springs (local effect) into the aquifer. Evaporitic formations significantly increased EC, TDS, Ca and SO(4) parameters in the alluvium aquifer in the central and downstream regions. EC has increased roughly from 500-800 to 1,700-2,000 μS/cm, Ca has roughly increased from 3-4 to 10 meq/l, SO(4) has increased 0.5-1 to 11-12 meq/l. Consequently, three clusters were distinguished in the basin; (1) nonevaporitic waters in low TDS, Na, Ca, Mg, Cl and SO(4), (2) diluted waters in high TDS and relatively high Cl, moderate-relatively high Na, Ca, Mg, SO(4), (3) gypsum springs in highest TDS, Ca, SO(4), but moderate Mg and low Na, Cl.

  16. Drainage water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  17. Percutaneous Abscess Drainage

    MedlinePlus

    ... the local anesthetic is injected. Most of the sensation is at the skin incision site which is numbed using local anesthetic. ... open surgical drainage. Risks Any procedure where the skin is penetrated ... organ may be damaged by percutaneous abscess drainage. Occasionally ...

  18. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  19. Foam consolidation and drainage.

    PubMed

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  20. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink

    NASA Astrophysics Data System (ADS)

    Su, Ming; Hsiung, Kan-Hsi; Zhang, Cuimei; Xie, Xinong; Yu, Ho-Shing; Wang, Zhenfeng

    2015-11-01

    Using bathymetric and seismic data, this study describes the morpho-sedimentary features in Qiongdongnan basin and southwest Taiwan collision basin, northern South China Sea and reveals the linkages between sediment routing system and basin types. The modern Central Canyon in the Qiongdongnan basin is located along the rift margin, and subparallel to the shelf-break southeast of Hainan Island. The modern Central Canyon develops along the basin axis (i.e., Xisha Trough) and longitudinally transports sediments eastward which are mainly supplied by northern continental slope. The Penghu Canyon in the southwest Taiwan collision basin is located along the collision boundary parallel to the strike of the adjacent uplifted Taiwan orogen. The Penghu Canyon develops along the tilting basin axis transporting sediments longitudinally southward to the deep-sea basin and Manila Trench. The Penghu Canyon is supplied with sediments from both flank Kaoping and South China Sea slopes where tributary canyons and channels transport sediments down-slope and feed the axial canyon. The certain basin types may be occupied by particular styles of sediment routing system. By comparing the morpho-sedimentary features and basin characteristics associated with the modern Central Canyon to that of the Valencia Channel in NW Mediterranean Sea, the longitudinal sediment routing system in rift basin type can be determined. In contrast, the longitudinal sediment routing systems in collision setting can be represented by the comparable examples of Penghu Canyon in southwest Taiwan collision basin and Markham Canyon in western Solomon Sea. The rift type sediment routing system is characterized by an axial canyon with a single sediment supply from land drainage margin. In contrast, sediment routing system in collision type basins consists of an axial canyon and dual sediment supplies from flank adjacent slopes. The axial canyons in collision basins are more active than that of the rift basin due to

  1. Coastal marine basins as records of continental palaeoenvironments (Gulf of Guinea and Iullemmeden cretaceous and tertiary basins)

    NASA Astrophysics Data System (ADS)

    Rat, P.; Lang, J.; Alzouma, K.; Dikouma, M.; Johnson, A.; Laurin, B.; Mathey, B.; Pascal, A.

    Deposits in nearshore marine basins provide data about the adjacent emerged lands. Examples are taken from the Togo coastal basin, on an ocean margin, and the Iullemmeden intracratonic basin (Niger). A continental landscape is fossilized by the onlapping layers of the transgressions: an eroded crystalline basement (Togo) or a broad and complex alluvial plain (Iullemmeden). Clastics, trapped in the marine deposits, provide information on the source area. Two types of information can be obtained from the sands: the nature of the parent rocks, and the environment at the time of genesis, storage and transportation (tectonic and climatic stability or change). The significance of clays is more complex; they can be formed or modified in the marine environment. However their elastic or chemical components originate from biochemical weathering and provide information on climate, morphology, vegetation cover and drainage of the emerged lands. In the Iullemmeden basin, the important change between Maastrichtian and Paleocene probably reflects a change to a drier climate in accordance with a slight shift of the equator to the south. The properties of marine waters are dependent on climate and morphology of the emergent lands which determines runoff. These properties may be inferred from the analysis of the clastic/carbonate conflict and indicators of salinity (mangrove). In conclusion, the Togo and Iullemmeden basins were located downstream of tectonically quiecent, large continental areas of gentle relief. Transgressions were migrations of a broad littoral system upon very flat continental surfaces caused by erosion or river-dominated deposition.

  2. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  3. Airport Pavement Drainage

    DTIC Science & Technology

    1990-06-01

    drainage layer and trench drains can be found in Cedergren (10). 4.2 COMPONENTS OF SUBSURFACE DRAINAGE SYSTEM 4.2.1 Outflow Once the water has found...According to Cedergren (10) the open graded aggregate can replace the normally used dense graded materials on an inch-for-inch basis. A main problem in...the perforated pipe to prevent fines from entering, Figure 4.24 (11). Cedergren (10) suggests that collector pipes should be 42 laid with the

  4. Endoscopic ultrasound-guided drainage of pancreatic fluid collections.

    PubMed

    Fabbri, Carlo; Luigiano, Carmelo; Maimone, Antonella; Polifemo, Anna Maria; Tarantino, Ilaria; Cennamo, Vincenzo

    2012-11-16

    Pancreatic fluid collections (PFCs) develop secondary to either fluid leakage or liquefaction of pancreatic necrosis following acute pancreatitis, chronic pancreatitis, surgery or abdominal trauma. Pancreatic fluid collections include acute fluid collections, acute and chronic pancreatic pseudocysts, pancreatic abscesses and pancreatic necrosis. Before the introduction of linear endoscopic ultrasound (EUS) in the 1990s and the subsequent development of endoscopic ultrasound-guided drainage (EUS-GD) procedures, the available options for drainage in symptomatic PFCs included surgical drainage, percutaneous drainage using radiological guidance and conventional endoscopic transmural drainage. In recent years, it has gradually been recognized that, due to its lower morbidity rate compared to the surgical and percutaneous approaches, endoscopic treatment may be the preferred first-line approach for managing symptomatic PFCs. Endoscopic ultrasound-guided drainage has the following advantages, when compared to other alternatives such as surgical, percutaneous and non-EUS-guided endoscopic drainage. EUS-GD is less invasive than surgery and therefore does not require general anesthesia. The morbidity rate is lower, recovery is faster and the costs are lower. EUS-GD can avoid local complications related to percutaneous drainage. Because the endoscope is placed adjacent to the fluid collection, it can have direct access to the fluid cavity, unlike percutaneous drainage which traverses the abdominal wall. Complications such as bleeding, inadvertent puncture of adjacent viscera, secondary infection and prolonged periods of drainage with resultant pancreatico-cutaneous fistulae may be avoided. The only difference between EUS and non-EUS drainage is the initial step, namely, gaining access to the pancreatic fluid collection. All the subsequent steps are similar, i.e., insertion of guide-wires with fluoroscopic guidance, balloon dilatation of the cystogastrostomy and insertion of

  5. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  6. Late Mesozoic and Cenozoic thermotectonic evolution of the central Brooks Range and adjacent North Slope foreland basin, Alaska: Including fission track results from the Trans-Alaska Crustal Transect (TACT)

    USGS Publications Warehouse

    O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.

    1997-01-01

    Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.

  7. Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures

    NASA Astrophysics Data System (ADS)

    Hayashi, Masaki; Quinton, William L.; Pietroniro, Alain; Gibson, John J.

    2004-08-01

    The hydrology of subarctic, discontinuous permafrost regions is sensitive to the effects of climatic warming, because pronounced changes in water storage and runoff pathways could occur with small additional ground heating. The objective of this study is to understand the hydrologic functions of unique land-cover types in this region (channel fens, flat bogs, and peat plateaus) using isotopic and chemical signatures of surface and subsurface water, as well as hydrometric measurements. The study was conducted in a 152-km 2 basin of Scotty Creek, located in the central part of the Mckenzie River basin in northern Canada. The headwater of Scotty Creek, Goose Lake had a strongly enriched isotopic composition due to evaporation. The stream water composition changed downstream, as the lateral drainage from the active layer of peat plateaus contributed isotopically light and chemically dilute water to channel fens that are part of the drainage network. Flat bogs received drainage from peat plateau in addition to direct precipitation, and were internally drained or drained water to adjacent channel fens. Average evapotranspiration estimated from the chloride-balance method was 280-300 mm/yr, which was consistent with the hydrometric estimate (precipitation minus runoff) of 275 mm/yr indicating a potential applicability of this method to ungauged basins. Tracer-based hydrograph separation showed that the direct snowmelt contribution to spring runoff was less than half of total discharge, suggesting an importance of the water stored over winter in lakes and wetlands. The total amount of water stored over winter in the basin was estimated to be 140-240 mm, which was comparable to the average annual basin discharge (149 mm).

  8. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.

    2014-07-01

    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  9. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  10. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of

  11. 46 CFR 32.52-5 - Bilge piping for pump rooms and adjacent cofferdams on tank vessels constructed or converted on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Bilge Systems § 32.52-5 Bilge piping for pump rooms and adjacent cofferdams on tank vessels... 46 Shipping 1 2011-10-01 2011-10-01 false Bilge piping for pump rooms and adjacent cofferdams on... drainage from the pumproom bilges and adjacent cofferdams. A separate bilge pump, ejector, or bilge...

  12. Population subdivision in Siamese mud carp Henicorhynchus siamensis in the Mekong River basin: implications for management.

    PubMed

    Adamson, E A S; Hurwood, D A; Baker, A M; Mather, P B

    2009-10-01

    A molecular approach was employed to investigate stock structure in Siamese mud carp Henicorhynchus siamensis populations collected from 14 sites across mainland south-east Asia, with the major focus being the lower Mekong River basin. Spatial analysis of a mitochondrial DNA fragment (ATPase 6 and 8) identified four stocks in the Mekong River basin that were all significantly differentiated from a population in the nearby Khlong River, Thailand. In the Mekong River basin, populations in northern Lao People's Democratic Republic and northern Thailand represent two independent stocks, and samples from Thai tributaries group with those from adjacent Mekong sites above the Khone Falls to form a third stock. All sites below the Khone Falls constituted a single vast stock that includes Cambodia and the Mekong Delta in Vietnam. While H. siamensis is considered currently to undertake extensive annual migrations across the Mekong River basin, the data presented here suggest that natural gene flow may occur over much more restricted geographical scales within the basin, and hence populations may need to be managed at finer spatial scales than at the whole-of-drainage-basin level.

  13. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  14. [Drainage in thyroid surgery].

    PubMed

    Ardito, G; Revelli, L; Guidi, M L; Murazio, M; Lucci, C; Modugno, P; Di Giovanni, V

    1999-01-01

    Bleeding represents a rare complication of thyroid surgery but when it occurs it may be life-threatening. To prevent this complication drainage is widely used. However no study has demonstrated the drains' value and recent reports have questioned its benefits. Therefore we have analyzed our experience of a 10 year-period in which 1.217 thyroidectomies were performed by the same surgical team and prophylactic routine drainage was always adopted. In 13 patients (1.06%) a benign hematoma occurred with spontaneous remission. In 6 patients the bleeding was severe and compressive hematoma occurred; it required surgical re-exploration. Such a complication is unusual in the neck surgery (0.49% in the authors' series) performed by experienced surgeons and when life-threatening hematomas do occur they depend on various uncontrolled factors and drainage is often not helpful. Otherwise a meticulous haemostatic technique is necessary and patients should be observed very closely during the few first hours following surgery on the thyroid gland. Therefore on the basis of the analysis of their series, although it is not always possible to prove the benefit of the drainage, the authors suggest its indication in the neck surgery, as in other fields with dead space, to remove blood and secretions reducing postoperative complications. They have never observed wound infections and patients were discharged within 72 hours.

  15. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  16. Determination of the Relationship between Hydrologic Processes and Basin Morphometry - The Lamos Basin (Mersin, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldırım, Ümit; Güler, Cüneyt

    2016-04-01

    This study has been carried out to determine the relationship between hydrologic processes and basin morphometry in the Lamos Basin, which is located at the northern part of the Mersin (SE Turkey). The morphometric parameters of the basin was derived from the 1:25K scale topographic map sheets that were digitized using ArcGIS 9.3.1 geographic information system (GIS) software. Morphometric parameters considered in this study include basin area, basin length, basin perimeter length, stream order, stream number, stream length, mean stream length, basin relief, drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio, and hypsometric integral. The results have shown that there are 1252 individual stream reaches with a total length of 1414.1 km in the Lamos basin, which covers an area of 1358 km2 and has a length of 103 km in the N-S direction. Furthermore, the basin has a medium drainage density of 1.04 1/km with a stream frequency and drainage texture values of 0.92 and 4.33, respectively. The basin can be classified as elongated because of the low values of elongation ratio (0.48) and form factor (0.12). The hypsometric integral of the basin (0.58) indicates that it is in the youth period and thus reasonably sensitive to erosion. The values of drainage texture, drainage density, and stream frequency indicate that the Lamos basin is moderately well drained, therefore overland flow in the basin is not expected to be so quick. Thus, in case of occurrence of sudden peak flows, sensitivity to the land sliding and erosion may increase further. As a result, it is suggested that human activities in the basin should be limited in areas in fairly close proximity to the present day stream network to prevent or reduce the risk to life and property.

  17. Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Bierman, P. R.; Reusser, L.; Portenga, E.

    2011-12-01

    The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion

  18. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    NASA Astrophysics Data System (ADS)

    Morton, Douglas M.; Alvarez, Rachel M.; Ruppert, Kelly R.; Goforth, Brett

    2008-04-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel

  19. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the

  20. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  1. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México)

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio

    2016-05-01

    The 28,300 year BP (cal 32,300 BP) El Caracol tuff cone complex is one of the few phreatomagmatic volcanoes in the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF). It displays a shallow circular crater of ~ 1 km in diameter that is filled with several meter-thick lava flows and is located between two NE-SW trending normal faults dipping NW. It lies directly on top of Pliocene lavas of the San Lorenzo shield volcano that forms part of a tectonic horst (topographic high) separating the Zacapu lake basin (1980 m) in the south from the Río Angulo river valley (1760 m) to the north. Detailed study of the tephra sequence indicates that the eruption occurred in two stages: 1) Weak phreatomagmatic, in which about 0.1-0.5 km3 dense rock equivalent (DRE) of magma was issued within ~ 1 to 3 months at the rate of 4-40 m3/s, and 2) purely magmatic (Strombolian-effusive) during which the vent shifted slightly its position toward the NW, forming a small scoria cone (~ 100 m high) on the crater rim of the tuff cone. From this scoria cone lava flows were issued, first into the tuff cone crater occupying its bottom, and subsequently toward the NW, down the outer flank of the tuff cone and into the plain, where they reached a distance of ~ 3.5 km. During this stage ~ 0.6 km3 DRE of magma was produced at the rate of ~ 4 m3/s in a period of ~ 5 months. Although El Caracol displays many features that are characteristic for a phreatomagmatic vent, its morphology, types of deposits, and its complex process of formation makes it strikingly different from the more typical case of the ~ 21,000 year BP (cal 25,300 BP) Alberca de Guadalupe maar volcano, situated not far at the SE margin of the Zacapu basin. The latter was solely phreatomagmatic during the course of its eruption and is formed in its entirety by surge and fallout breccias consisting largely of xenolithic material. In contrast, at El Caracol the hydrogeological environment (namely the low

  2. Quaternary Reorganization of North American Mid-continent Drainage Systems

    NASA Astrophysics Data System (ADS)

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.

    2013-12-01

    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental

  3. Statistical summaries of streamflow in Montana and adjacent areas, water years 1900 through 2002

    USGS Publications Warehouse

    McCarthy, Peter M.

    2005-01-01

    In response to the need to have more current information about streamflow characteristics in Montana, the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality, Confederated Salish and Kootenai Tribes, and Bureau of Land Management, conducted a study to analyze streamflow data. Updated statistical summaries of streamflow characteristics are presented for 286 streamflow-gaging sites in Montana and adjacent areas having 10 or more years of record for water years 1900 through 2002. Data include the magnitude and probability of annual low and high flow, the magnitude and probability of low flow for three seasons (March-June, July-October, and November-February), flow duration of the daily mean discharge, and the monthly and annual mean discharges. For streamflow-gaging stations where 20 percent or more of the contributing drainage basin is affected by dams or other large-scale human modification, streamflow is considered regulated. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for sites with sufficient data.

  4. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A What's in this article? ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  5. Physical modeling of transverse drainage mechanisms

    NASA Astrophysics Data System (ADS)

    Douglass, J. C.; Schmeeckle, M. W.

    2005-12-01

    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  6. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  7. Advection and evolution of river basins in mountain ranges.

    NASA Astrophysics Data System (ADS)

    Castelltort, S.; Simpson, G.; Willett, S.

    2009-04-01

    Fluvial networks determine to a large extent the structure and geometry of erosive landscapes in mountain ranges. As a consequence it is fundamental to understand how they develop in order to reconstruct and predict landscape evolution in orogens. A particularly important problem with relevance for our future ability of "inverting" landscapes is the degree to which fluvial networks and basin boundaries evolve and change with time. The key question is: are river valleys and basins largely static in the landscape or are they rather dynamic, changing and reorganizing frequently during orogen evolution? A "dynamic" view has long found support in a variety of observations (wind gaps, hanging valleys, inferred changes of sources of clastics) interpreted as evidences of river captures and drainage network changes, and has been reproduced in certain analogue and numerical models. It also seems intuitively reasonable when considered in parallel with the high magnitude and frequency of cenozoic climatic changes combined with the very high rates of vertical and horizontal movements of rocks in active orogens which suggest that landscapes may have changed congruently. However, support for a "static" view has also long existed based on the ubiquitous observation of antecedent rivers and drainage systems cutting through lithological and geological structures (folds and faults), extending behind the main drainage divide in large mountain ranges, or the preservation of superficial cover rocks adjacent to valleys deeply incised into the basement. Spectacular plane deformation of large river basins in the East Himalayan syntaxis also illustrates the possible difficulty encountered by river systems to reorganize (Hallet and Molnar 2001). In the debate over the mechanisms responsible for the consistent width-to-length aspect of the main transverse river basins observed in linear mountain belts of different ages, width and tectonic and climatic regimes (Hovius, 1996), Castelltort and

  8. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; a summary of selected trace element, nutrient, and pesticide data for bed sediments, 1969-90

    USGS Publications Warehouse

    Skrobialowski, S.C.

    1996-01-01

    Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen

  9. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  10. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  11. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  12. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  13. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  14. Storm water management: Potential for lower cost & more benefits if farmers & municipalities cooperate on tile drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common approach to protect communities from the ravages of stream flooding is to construct storm water retention basins upstream from the property to be protected. Retention basins are an expensive solution and often take valuable agricultural land out of production. Improved