Science.gov

Sample records for adjacent fluvial systems

  1. Contrasting Patterns of Fine Fluvial Sediment Delivery in Two Adjacent Upland Catchments

    NASA Astrophysics Data System (ADS)

    Perks, M.; Bracken, L.; Warburton, J.

    2010-12-01

    Quantifying patterns of fine suspended sediment transfer in UK upland rivers is of vital importance in combating the damaging effects of elevated fluxes of suspended sediment, and sediment associated transport of contaminants, on in-stream biota. In many catchments of the UK there is still a lack of catchment-wide understanding of both the spatial patterns and temporal variation in fine sediment delivery. This poster describes the spatial and temporal distribution of in-stream fine sediment delivery from a network of 44 time-integrated mass flux samplers (TIMs) in two adjacent upland catchments. The two catchments are the Esk (210 km2) and Upper Derwent (236 km2) which drain the North York Moors National Park. Annual suspended sediment loads in the Upper Derwent are 1273 t, whereas in the Esk catchment they are greater at 1778 t. Maximum yields of 22 t km-2 yr -1 were measured in the headwater tributaries of the Rye River (Derwent), whereas peak yields in the Esk are four times greater (98 t km-2 yr-1) on the Butter Beck subcatchment. Analysis of the within-storm sediment dynamics, indicates that the sediment sources within the Upper Derwent catchment are from distal locations possibly mobilised by hillslope runoff processes, whereas in the Esk, sediment sources are more proximal to the channel e.g. within channel stores or bank failures. These estimates of suspended sediment flux are compared with the diffuse pollution potential generated by a risk-based model of sediment transfer (SCIMAP) in order to assess the similarity between the model predictions and observed fluxes.

  2. Energy, time, and channel evolution in catastrophically disturbed fluvial systems

    USGS Publications Warehouse

    Simon, A.

    1992-01-01

    Specific energy is shown to decrease nonlinearly with time during channel evolution and provides a measure of reductions in available energy at the channel bed. Data from two sites show convergence towards a minimum specific energy with time. Time-dependent reductions in specific energy at a point act in concert with minimization of the rate of energy dissipation over a reach during channel evolution as the fluvial systems adjust to a new equilibrium.

  3. Wilmington Submarine Canyon: a marine fluvial-like system.

    USGS Publications Warehouse

    McGregor, B.; Stubblefield, W.L.; Ryan, William B. F.; Twichell, D.C.

    1982-01-01

    Midrange sidescan sonar data show that a system of gullies and small channels feeds into large submarine canyons on the Middle Atlantic Continental Slope of the US. The surveyed canyons all have relatively flat floors, but they have different channel morphologies. Wilmington Canyon has a meandering channel that extends down the Continental Slope and across the Continental Rise, whereas two canyons south of Wilmington Canyon have straight channels that trend directly downslope onto the rise. The morphology of these submarine canyon systems is remarkably similar to that of terrestrial fluvial systems.-Authors

  4. Introduction to the special issue on discontinuity of fluvial systems

    NASA Astrophysics Data System (ADS)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  5. The response of a high sediment yield depositional system to episodic rises in sea level: The record from the Brazos fluvial system, central Texas coast

    SciTech Connect

    Bartek, L.R.; Anderson, J.B.; Abdulah, K.C. )

    1991-03-01

    High resolution seismic data, cores, and platform borings have been utilized to investigate the response of the Brazos fluvial system, a high sediment yield depositional system, to late Pleistocene-Holocene episodic rises in sea level. This investigation was conducted in order to provide control for a related study of the Trinity-Sabine fluvial system, a low sediment yield depositional system. The Brazos incised valley, which was carved during the Wisconsin eustatic lowstand, was abandoned during an interval of rapid eustatic rise. The fluvial-deltaic system occupied the adjacent interfluve following abandonment of the incised valley. This behavior contrasts sharply with the responses of the Trinity-Sabine low sediment yield depositional system to rapid base level rises. Stream piracy, triggered by the episodic eustatic rises, played an important role in diverting the fluvial system of the high sediment yield system out of the lowstand entrenched valley and onto the interfluve. The research presented in this paper suggests that exploration geologists working with up-dip portions of high sediments yield depositional systems in the transgressive systems tract may find prospects (slightly modified wave-dominated delta deposits encased in marine shales) by searching along strike, away from the abandoned incised valley, at positions along depositional dip that correspond to eustatic stillstands. Accretionary structures observed in recently acquired seismic data indicate that the down-dip portion of the high sediment yield incised valley also contains a large volume of sand.

  6. An Early Warning System for fluvial flooding in the Netherlands

    NASA Astrophysics Data System (ADS)

    Davids, Femke; Stam, Jasper; Sprokkereef, Eric; van Dijk, Marc

    2013-04-01

    Fluvial flooding is one of the major natural hazards in the modern world. In a densely populated area, such as The Netherlands, the possibility of flooding of the Rhine and Meuse poses a significant threat to society. There is a clear need for reliable and robust hydrological forecasting. The Water Management Centre for the Netherlands and Deltares have developed an early warning system that uses real-time data provided by a large number of European meteorological and hydrological gauging stations, weather forecasts from three different weather services, and rainfall-runoff and hydraulic models. Data assimilation techniques are used to update both model states and parameter outputs. In addition, a post processing method, quantile regression, is applied to hydrological ensemble output. This presentation will demonstrate the operational flood early warning system (based on Delft-FEWS) applied to these rivers. Recent challenges are, for example, the visualization of uncertainties on deterministic and probabilistic forecasts, the clear communication and visualization of the enormous amount of data available, and snow modelling.

  7. Evolution of fluvial systems in salt-walled mini-basins: A review and new insights

    NASA Astrophysics Data System (ADS)

    Banham, Steven G.; Mountney, Nigel P.

    2013-10-01

    The preserved sedimentary expression of fluvial successions accumulated in salt-walled mini-basins records the complex history of basin subsidence, the style of sediment supply, and the pattern of sediment distribution in response to a range of fluvial processes throughout the evolution of such basins. Temporal and spatial variations in the rate of basin subsidence govern the generation of accommodation space, whereas the rate and style of sediment supply govern how available accommodation is filled; together these parameters act as principal controls that dictate the gross-scale pattern of fluvial sedimentation. Additional factors that influence fluvial stratigraphic architecture in salt-walled mini-basins are: (i) the trend and form of inherited basement lineations and faults that control the geometry, orientation and spacing of salt walls that develop in response to halokinesis; (ii) salt thickness and composition that dictate both the maximum potential basin-fill thickness within a developing mini-basin and the rate of evacuation (migration) of salt from beneath evolving mini-basins, leading to the growth of confining salt walls, uplift of which may generate surface topographic expression that influences fluvial drainage patterns; (iii) climate that dictates fluvial style and the processes by which sediment is distributed; and (iv) the inherited direction of drainage relative to the trend of elongate salt walls and locus of sediment supply that dictates how sediments are distributed both within a single mini-basin and between adjacent basins. Examples of fluvial sedimentary architectures preserved in salt-walled mini-basins from a number of geographic regions are used to illustrate and document the primary controls that influence patterns of fluvial sediment accumulation. The distribution of fluvial architectural elements preserved within mini-basins follows a predictable pattern, both within individual basin depocentres and between adjoining basins: drainage

  8. Human impacts on fluvial systems in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Hooke, J. M.

    2006-09-01

    The long history of substantial human impacts on the landscape of the Mediterranean region, and their effects on fluvial systems, is documented. These effects have included impacts of deforestation and other land use changes, agricultural terracing on a wide scale, water transfers, and irrigation schemes. During the 20th century, major changes were made directly to channels through channelisation, construction of dams of various sizes, and extraction of gravel, and indirectly by reforestation. These changes have caused a major phase of incision on some rivers. Runoff and soil erosion have been affected by types of crops and agricultural practices as well as by the varying extent of cultivation and grazing. Some recent agricultural practices involve wholescale relandscaping of the topography and alteration of surface properties of material. The importance of analysing the connectivity within different land units and of the spatial position of human activity within a catchment is illustrated. The analysis of connectivity is the key to understanding the variability of impact and the extent of propagation of effects.

  9. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  10. The fluvial system response to abrupt climate change during the last cold stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK

    NASA Astrophysics Data System (ADS)

    Lewis, S. G.; Maddy, D.; Scaife, R. G.

    2001-02-01

    The last interglacial-glacial cycle (125-10 ka BP) is characterised by numerous rapid shifts in global climate on sub-Milankovitch timescales, recorded in the ocean and ice core records. These climatic fluctuations are clearly recorded in those European terrestrial sedimentary sequences that span this time period without interruption. In the UK, only fragmentary Upper Pleistocene sequences exist, mainly within the fluvial archive of the major river systems such as the Thames. The response of the upper River Thames to abrupt fluctuations in climate is documented in the fluvial sediments beneath the Floodplain Terrace (Northmoor Member of the Upper Thames Formation) at Ashton Keynes, Wiltshire. A number of criteria are set out by which significant changes in the fluvial system may be established from the sedimentological, palaeoecological and geochronological information contained within the succession. The sedimentary succession is divisible into four facies associations, on the basis of their sedimentology and bounding surface characteristics. These represent distinct phases of fluvial activity at the site and allow changes in fluvial style to be inferred. Palaeoecological reconstructions from pollen analysis of peats within the sequence provides an indication of the nature and direction of Late Glacial environmental change and optically stimulated luminescence and radiocarbon dating methods provide chronological control on the sequence. These data suggest that major changes in fluvial style are recorded within the succession, which can be related to the climatic fluctuations that took place on the oxygen isotope stage 5a/4 transition (approximately 70 ka BP) and the Devensian Late Glacial climatic warm-cold-warm oscillation (13-11 ka BP). The changes in fluvial style are a result of variations in sediment supply to the river resulting from changes in slope stability, vegetation cover and cold-climate mass movement processes and variations in discharge regime

  11. Pollutant fates in fluvial systems: on need of individual approach to each case study

    NASA Astrophysics Data System (ADS)

    Matys Grygar, Tomas; Elznicova, Jitka; Novakova, Tereza

    2015-04-01

    To outline the pollutant fates in fluvial systems it is necessary to combine two main kinds of knowledge: sedimentation and erosion patterns of each individual river with spatio-temporal resolution higher than in most fluvial geomorphology/sedimentology studies and timing and way how the pollutants have entered the fluvial system. Most of these aspects are commonly neglected in environmental geochemistry, a domain to which pollution studies apparently belong. In fact, only when these two main components are established (at least in a qualitative manner), we can start reading (interpretation) of the fluvial sedimentary archives, e.g., decipher the way how the primary pollution signal has been distorted during passing through the fluvial system. We conducted empirical studies on Czech rivers impacted by pollution (by risk elements). We learnt how individual (site-specific) are the main processes responsible for the primary pollution input, spread through each fluvial system and inevitable secondary pollution ("lagged pollution improvement signal"). We will discuss main features of the story on pollutant fates in three different fluvial systems, which have not been impacted by "hard" river engineering and still undergo natural fluvial processes: 1. the Ohre (the Eger) impacted by production of Hg and its compounds, historical mining of Pb and more recent U ore processing, 2. the Ploucnice impacted by U mining, and 3. the Litavka, impacted by Pb-Zn(-Sb) mining and smelting. The Ohre is specific by most pollution having been temporarily deposited in an active channel, only minor reworking of older fluvial deposits diluting pollution during downstream transport, and pollution archives existing practically only in the form of lateral accretion deposits. The deposits of archive value are rare and can be revealed by detailed study of historical maps and well-planned field analysis, best using portable analytical instruments (XRF). The Ploucnice is specific by only transient

  12. Palaeoenvironment of braided fluvial systems in different tectonic realms of the Triassic Sherwood Sandstone Group, UK

    NASA Astrophysics Data System (ADS)

    Medici, G.; Boulesteix, K.; Mountney, N. P.; West, L. J.; Odling, N. E.

    2015-11-01

    Fluvial successions comprising the fills of sedimentary basins occur in a variety of tectonic realms related to extensional, compressional and strike-slip settings, as well as on slowly subsiding, passive basin margins. A major rifting phase affected NW Europe during the Triassic and resulted in the generation of numerous sedimentary basins. In the UK, much of the fill of these basins is represented by fluvial and aeolian successions of the Sherwood Sandstone Group. Additionally, regions that experienced slow rates of Mesozoic subsidence unrelated to Triassic rifting also acted as sites of accumulation of the Sherwood Sandstone Group, one well-exposed example being the eastern England Shelf. The fluvial depositional architecture of deposits of the Sherwood Sandstone Group of the eastern England Shelf (a shelf-edge basin) is compared with similar fluvial deposits of the St Bees Sandstone Formation, eastern Irish Sea Basin (a half-graben). The two studied successions represent the preserved deposits of braided fluvial systems that were influenced by common allogenic factors (climate, sediment source, delivery style); differences in preserved sedimentary style principally reflect their different tectonics settings. Analysis of lithofacies and architectural elements demonstrates that both studied successions are characterized by amalgamated channel-fill elements that are recorded predominantly by downstream-accreting sandy barforms. The different tectonic settings in which the two braided-fluvial systems accumulated exerted a dominant control on preserved sedimentary style and long-term preservation potential. On the eastern England Shelf, the vertical stacking of pebbly units and the general absence of fine-grained units reflect a slow rate of sediment accommodation generation (18-19.4 m/Myr). In this shelf-edge basin, successive fluvial cycles repeatedly reworked the uppermost parts of earlier fluvial deposits such that only the lowermost channel lags tend to be

  13. Modeling Strike-Slip-Driven Stream Capture in Detachment- and Transport-Limited Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Rivers, especially those in mountainous settings, are known to respond to tectonic and climatic drivers through both gradual and abrupt changes in slope, hydraulic geometry, and planform. Modification of drainage network topology by stream capture, in which drainage area, and therefore water and sediment, is diverted suddenly from one catchment into another, represents the rapid end of the fluvial response spectrum. Such sudden drainage rearrangement affects the river's potential for incision and sediment transport, and thus has implications for the development of topography and for depositional histories in sedimentary basins. Despite recognition of the importance of this process in landscape evolution, the factors controlling the occurrence of stream capture are not well understood. Here we investigate the process of stream capture using strike-slip faults as a natural experiment. Lateral fault motion drives stream capture when offset is enough to juxtapose adjacent fault-perpendicular streams. In the simplest scenario, the capture events should occur regularly in space and time whenever two streams are juxtaposed, the frequency of capture depending only on drainage spacing and fault slip rate. However, in real-world settings such as the San Andreas Fault Zone of California and the Marlborough Fault System of New Zealand, such regularity is not always observed. We use the Channel-Hillslope Integrated Landscape Development Model (CHILD) to investigate the mechanisms and frequency of stream capture in a strike-slip setting. Models are designed to address the connection between the size (i.e. drainage area) of juxtaposed rivers and the likelihood that capture will occur between them. We also explore the role of sediment load in the capture process by modeling both detachment-limited and transport-limited systems. Comparison of these model results to case-study field sites will help us to interpret the landscape signature of strike-slip faulting, and to understand

  14. Fluvial depositional systems of Carrizo-Upper Wilcox in south Texas

    SciTech Connect

    Hamlin, H.S.

    1983-09-01

    In the Rio Grande embayment of south Texas, the Carrizo-upper Wilcox interval (Eocene) consists of two sand-rich coastal plain fluvial depositional systems that grade basinward into several deltaic complexes. The bedload channel system is dominated by multi-story, multi-lateral, fluvial, channel-fill sandstones. This system is typically > 90% sandstone. Shales are thin and laterally discontinuous, the remnants of abandoned channel fills. Bedload channel sandstones dominate the major fluvial axes and form the depositional framework of the interval. The mixed alluvial system consists of a more typical suite of coastal plain facies. Mixed-load channel-fill sandstones tend to be isolated and surrounded by overbank shales and thin sandstones. Crevasse splay and lacustrine facies occur in the flood-plain area. Total-interval isopach patterns, sandstone geometries, and depositional systems distributions indicate that fluvial sediment input was converging upon the embayment from the west, northwest, and north. Economically, the Carrizo-upper Wilcox of south Texas has a three-fold significance. The updip Carrizo sandstone is a major source of fresh groundwater, includes several large oil fields, and also contains deposits of uranium minerals. The downdip upper Wilcox trend is an area of active hydrocarbon exploration.

  15. Birth and evolution of the Rio Grande-Rio Chama fluvial system: The influence of magma-driven dynamic topography on fluvial systems over the last 8 Ma

    NASA Astrophysics Data System (ADS)

    Repasch, M. N.; Karlstrom, K. E.; Heizler, M. T.

    2015-12-01

    The Rio Grande-Rio Chama (RG-RC) fluvial system of southern Colorado and northern New Mexico preserves a record of southern Rocky Mountain erosion and sediment transport over the last 8 Ma. During this time the two rivers have evolved wildly, undergoing channel migrations, drainage capture and integration events, carving and refilling of paleocanyons, lake spill-overs, and reshaping of drainage divides. New 40Ar/39Ar basalt ages coupled with new detrital grain age population data for fluvial sediments are beginning to reconstruct the birth of the RG-RC fluvial system and elucidate the processes that drove its evolution over the last ~8 Ma. Twenty-three detrital grain samples have been collected from RG-RC river deposits ranging in age from ~8 Ma (RC) and 4.5 Ma (RG) to modern fluvial sediment. Detrital zircon age spectra for the RG reveal peaks at 25 Ma, 28 Ma, 30-35 Ma (San Juan volcanic), and 70-90Ma (San Juan Basin) in sediments deposited from 4.5 to 0 Ma. RC spectra are richer in San Juan Basin and San Juan volcanic detritus. A 2.6 Ma Totavi Lentil deposit downstream of today's RG-RC confluence is similar to the ancestral RG, while a 1.6 Ma Totavi Lentil is similar to the combined RG-RC, suggesting northward shift of the RG-RC confluence by 1.6 Ma due to Jemez Mountain volcanism. A 4.5 Ma basalt age from Black Mesa and occurrence of San Juan volcanic detritus in 3 to 5 Ma sediment suggests birth of an ancestral RG as early as 4.5 Ma. There is no record of an ancestral RG north of the Red River confluence for the 3.0 to 0.5 Ma time period, supporting prior work that northern San Luis Basin became integrated after 0.5 Ma spill-over of Lake Alamosa. We plan to add detrital sanidine dating to refine the age spectra and help further delineate drainage patterns. The RG-RC system drains a highly tectonically active region. Changes in the fluvial regime suggest: 1) long-lived source of detritus (some recycled) from the San Juan volcanic field, 2) downstream integration

  16. Geomorphic thresholds and complex response of fluvial systems - some implications for sequence stratigraphy

    SciTech Connect

    Wescott, W.A. )

    1993-07-01

    First-generation sequence stratigraphic models have dealt in a very rudimentary fashion with the response of fluvial systems to eustasy. A major element of presently accepted models is that rivers incise when sea level falls and aggrade during the ensuing rise. Geomorphic principles state that fluvial systems are complex, process-response systems that can adjust to internal and external changes in other ways besides incision and aggradation by modifying their stream patterns and channel geometries. Application of geomorphic principles to sequence stratigraphic models results in the following observations. During eustatic lowstands, rivers may adjust to lowered base levels and changes in slope by modifying channel patterns. Therefore, not all lowstands produce type 1 sequence boundaries. Type 1 sequence boundaries characterized by fluvial-valley incision are more likely to develop when sea level drops below the shelf-slope break, resulting in topological relief near the strandline in which headwardly eroding knickpoints form. Rate of eustatic change is sufficiently low that geomorphic systems can maintain their equilibrium during eustatic changes and migrate back and forth across the shelf without major modifications. Finally, under conditions of relatively static sea level, sequences and parasequences of the same scale in time and space can be deposited as the result of purely intrinsic causes and responses of a fluvial system. In general, eustasy controls the location of deposition and erosion, but the resultant stratal geometry is controlled by sediment supply and processes acting on the sediments as the shoreline moves across the shelf in response to eustasy. Sequence stratigraphy is frequently used in petroleum exploration and basin analysis. However, present models do not adequately in corporate modern principles of fluvial geomorphology and do not accurately predict sedimentary facies and surfaces in some basins. 33 refs., 14 figs., 4 tabs.

  17. Mixed fluvial systems of the Messak Sandstone, a deposit of the Nubian lithofacies, southwestern Libya

    NASA Astrophysics Data System (ADS)

    Lorenz, John C.

    1987-11-01

    The Messak Sandstone is a coarse-grained to pebbly, tabular-crossbedded deposit of the widespread nubian lithofacies. It was deposited during Late Jurassic and/or Early Cretaceous time at the northern edge of the Murzuq basin, in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to parts of the modern Ganga and Yamuna rivers. Because the sand waves were larger on the lower parts of the point bar, lateral migration created diagnostic thinning-upward cosets of tabular crossbeds, as well as fining-upward grain-size trends. Common thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in crossbed dispersion patterns, also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led to the proposal of an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned crossbeds in the Messak. However, most of the Messak characteristics are incompatible with a low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity channel patterns.

  18. Mixed fluvial systems of Messak Sandstone, a deposit of Nubian lithofacies, southwestern Libya

    SciTech Connect

    Lorenz, J.C.

    1987-05-01

    The Messak Sandstone is a coarse to pebbly, tabular cross-bedded, Lower Cretaceous deposit of the widespread Nubian lithofacies. It was deposited at the northern edge of the Murzuq basin in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to the pattern documented by Singh and Kumar on the modern Ganga and Yamuna Rivers. Because the sand waves were larger on the lower parts of the point bars, lateral migration created diagnostic thinning-upward, unidirectional cosets of tabular cross-beds as well as fining-upward, grain-size trends. Common, thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in cross-bed dispersion patterns also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led Harms et al to propose an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned cross-beds in the Messak. However, most of the Messak characteristics are incompatible with the low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity patterns.

  19. Estuarine fluvial floodplain formation in the Holocene Lower Tagus valley (Central Portugal) and implications for Quaternary fluvial system evolution

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Passmore, David G.; Rolão, Jose; Stevenson, Anthony C.

    2007-11-01

    We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes. This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (∼8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (∼5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (∼6400-5200 cal BP) and soil formation (∼5200-2200 cal BP). Localised renewed sedimentation (∼2200-200 cal BP) is linked to human activity.

  20. Climate and the erosional efficiency of fluvial systems

    NASA Astrophysics Data System (ADS)

    Rossi, M. W.; Whipple, K. X.; Dibiase, R. A.; Heimsath, A. M.

    2010-12-01

    stochastic distribution of discharge events and thresholds of erosion. Stream gauges with long instrumental records provide the best observations to calibrate these models. However, not all parts of the Earth are sufficiently gauged for this approach. Instead, other atmospheric data products, like the North American Regional Analysis (NARR), can be used to provide more uniform spatial and temporal coverage and generate outputs comparable to fluvial discharge. Specifically, we evaluate the utility of NARR for assessing discharge variability in: the semi-arid SGM; the arid SSPM; the very wet SNdD. Since hydrological and meteorological data are more widely available for SGM, we use that site to calibrate our NARR interpretations for the other locations. The results of this analysis are used to refine stream erosion model predictions of erosional efficiency for all three sites that are then compared to field observations.

  1. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    NASA Astrophysics Data System (ADS)

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng

    2016-04-01

    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  2. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  3. Fluvial drainage systems: Margaritifer Sinus and Agyre (NC, NE) quadrangles, Mars

    NASA Technical Reports Server (NTRS)

    Boothroyd, J. C.; Grant, J. A.

    1984-01-01

    Fluvial drainage systems, delineated by mapping on stereo pairs of Viking Orbiter images, have developed in various-sized basins in the Margaritifer Sinus (MC-19) and Agyre (MC-26) Quadrangles, Mars. The Ladon Valles system is the largest, draining into and through two multi-ringed impact basins. Smaller fluvial basins to the southeast of the Ladon structural basin appear to have internal drainage. An intermediate-scale fluvial basin containing Himera Vallis extends along a north-south axis at 22 W and opens northward toward outflow channels south of Margaritifer Chaos. Stereo-pair mapping was extended furhter to the east, in MC-19 Ne, Se, and MC-26 NE, to investigate sources of outflow to the Ares Vallis system. The direction of flow in the channel at the northeast quadrant of the Ladon Basin is unresolved at present because of the poor quality of images available to form stereo pairs. However, an easterly drainage basin boundary running north-south along longitude 9 W, and extending westward at latitude 32-35 S, encloses a series of longitudinal drainage systems. Both the Parana Valles-Loire Vallis system and the Samara Valles system appear to drain in a northwesterly direction. The Samara flows to the Himera drainage basin, and the Parana-Loire to the northeast Ladon channel area.

  4. The fluvial system — Research perspectives of its past and present dynamics and controls

    NASA Astrophysics Data System (ADS)

    Herget, Jürgen; Dikau, Richard; Gregory, Ken J.; Vandenberghe, Jef

    2007-12-01

    During the conference "The fluvial system — past and present dynamics and controls" held at the Department of Geography of Bonn University from 16 to 22 of May 2005 the participants organised in 12 international organisations working in the fluvial environment were asked about their opinions about the main aspects to be considered for sustainable progress in future research projects. The individual comments can be grouped by the following headlines: integration and application of experiences, considering system analytical approaches, considering effects of climate and global change, interdisciplinary work, regarding extreme events and their frequencies and quantification of human impact. Detailed explanations and selected references of previous studies initially considering the mentioned aspects are given as a review.

  5. Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems

    NASA Astrophysics Data System (ADS)

    Butler, David R.

    2006-09-01

    Humans have profoundly altered hydrological pathways and fluvial systems through their near-extirpation of native populations of animal species that strongly influenced hydrology and removal of surface sediment, and through the introduction of now-feral populations of animals that bring to bear a suite of different geomorphic effects on the fluvial system. In the category of effects of extirpation, examples are offered through an examination of the geomorphic effects and former spatial extent of beavers, bison, prairie dogs, and grizzly bears. Beavers entrapped hundreds of billions of cubic meters of sediment in North American stream systems prior to European contact. Individual bison wallows, that numbered in the range of 100 million wallows, each displaced up to 23 m 3 of sediment. Burrowing by prairie dogs displaced more than 5000 kg and possibly up to 67,500 kg of sediment per hectare. In the category of feral populations, the roles of feral rabbits, burros and horses, and pigs are highlighted. Much work remains to adequately quantify the geomorphic effects animals have on fluvial systems, but the influence is undeniable.

  6. Paleochannel and paleohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India

    NASA Astrophysics Data System (ADS)

    Khan, Z. A.; Tewari, R. C.

    2011-06-01

    Late Cenozoic fresh water molasses sediments (+6000 m thick) deposited all along the length of the Himalayan fore deep, form the Siwalik Supergroup. This paper reports the results of the paleodrainage and paleohydrology of the Middle Siwalik sub-group of rocks, deposited in non-marine basins adjacent to a rising mountain chain during Pliocene. Well-exposed sections of these rocks have provided adequate paleodrainage data for the reconstruction of paleochannel morphology and paleohydrological attributes of the Pliocene fluvial system. Cross-bedding data has been used as inputs to estimate bank full channel depth and channel sinuosity of Pliocene rivers. Various empirical relationships of modern rivers were used to estimate other paleohydrological attributes such as channel width, sediment load parameter, annual discharge, and channel slope and flow velocity. Computed channel depth, channel slope and flow velocity are supported independently by recorded data of scour depth, cross-bedding variability and Chezy's equation. The estimates indicate that the Middle Siwalik sequence corresponds to a system of rivers, whose individual channels were about 400 m wide and 5.2-7.3 m deep; the river on an average had a low sinuous channel and flowed over a depositional surface sloping at the rate of 53 cm/km. The 700-km-long Middle Siwalik (Pliocene) river drained an area of 42925 km2 to the north-northeast, with a flow velocity of 164-284 cm/s, as it flowed generally south-southwest of the Himalayan Orogen. Bed-load was about 15% of the total load of this river, whose annual discharge was about 346-1170 m3/s normally and rose to approximately 1854 m3/s during periodic floods. The Froude number of 0.22 suggests that the water flows in the Pliocene river channels were tranquil, which in turn account for the profuse development of cross-bedded units in the sandstone. The estimated paleochannel parameters, bedding characteristics and the abundance of coarse clastics in the lithic

  7. Preservation of distributive vs. tributive and other fluvial system deposits in the rock record (Invited)

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.

    2010-12-01

    A recent paper (Weissmann et al., 2010, Geology 38, 39-42) has suggested that deposits of distributive fluvial systems (DFS) “may represent the norm in the continental rock record, with axial and incised river deposits composing a relatively minor proportion of the succession”. Herein, I examine this hypothesis by reference to a number of well-exposed fluvial successions from a variety of basinal settings. The cited paper suggests that DFS dominate modern fluvial landscapes in subsiding sedimentary basins, while acknowledging that many merge into a trunk stream in the basin depocenter. Most of the modern World’s largest rivers, however, are tributive, and many of them preserve significant thicknesses of alluvium beneath and lateral to the modern channel belt. Because DFS are abundant on modern landscapes does not necessarily mean that they will be proportionately well-represented in the ancient. Consideration must also be given to the location within a basin where fluvial systems are most likely to be preserved (the depocenter), and to other factors. DFS (or fluvial/alluvial fans) are commonly developed on the tilted margins of asymmetric basins (hangingwalls of half-grabens and supradetachment basins, transtensional and foreland basins), but not in the depocenters. Symmetrically subsiding basins and long wavelength passive margin basins, however, facilitate development of extensive, very low-gradient plains where trunk streams with tributive or anabranching planforms are typical. Such basins, and the depocenters of asymmetric basins, are most likely to facilitate long-term establishment of trunk systems that have the greatest preservation potential. Incised and/or trunk stream deposits have, furthermore, been interpreted from a large number of ancient examples, some long-lived on timescales of millions of years. In the latter cases it has been argued that tectonic stability of the drainage basin is a key characteristic. A survey of the modern landscape

  8. The human role in changing fluvial systems: Retrospect, inventory and prospect

    NASA Astrophysics Data System (ADS)

    James, L. Allan; Marcus, W. Andrew

    2006-09-01

    Historical and modern scientific contexts are provided for the 2006 Binghamton Geomorphology Symposium on the Human Role in Changing Fluvial Systems. The 2006 symposium provides a synthesis of research concerned with human impacts on fluvial systems — including hydrologic and geomorphic changes to watersheds — while also commemorating the 50th anniversary of the 1955 Man's Role in Changing the Face of the Earth Symposium [Thomas, Jr., W. L. (Ed.), 1956a. Man's Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago. 1193 pp]. This paper examines the 1955 symposium from the perspective of human impacts on rivers, reviews current inquiry on anthropogenic interactions in fluvial systems, and anticipates future directions in this field. Although the 1955 symposium did not have an explicit geomorphic focus, it set the stage for many subsequent anthropogeomorphic studies. The 1955 conference provided guidance to geomorphologists by recommending and practicing interdisciplinary scholarship, through the use of diverse methodologies applied at extensive temporal and geographical scales, and through its insistence on an integrated understanding of human interactions with nature. Since 1956, research on human impacts to fluvial systems has been influenced by fundamental changes in why the research is done, what is studied, how river studies are conducted, and who does the research. Rationales for river research are now driven to a greater degree by institutional needs, environmental regulations, and aquatic restoration. New techniques include a host of dating, spatial imaging, and ground measurement methods that can be coupled with analytical functions and digital models. These new methods have led to a greater understanding of channel change, variations across multiple temporal and spatial scales, and integrated watershed perspectives; all changes that are reflected by the papers in this volume. These new methods also bring a set of technical demands for the

  9. Human impacts on headwater fluvial systems in the northern and central Andes

    NASA Astrophysics Data System (ADS)

    Harden, Carol P.

    2006-09-01

    South America delivers more freshwater runoff to the ocean per km 2 land area than any other continent, and much of that water enters the fluvial system from headwaters in the Andes Mountains. This paper reviews ways in which human occupation of high mountain landscapes in the Andes have affected the delivery of water and sediment to headwater river channels at local to regional scales for millennia, and provides special focus on the vulnerability of páramo soils to human impact. People have intentionally altered the fluvial system by damming rivers at a few strategic locations, and more widely by withdrawing surface water, primarily for irrigation. Unintended changes brought about by human activities are even more widespread and include forest clearance, agriculture, grazing, road construction, and urbanization, which increase rates of rainfall runoff and accelerate processes of water erosion. Some excavations deliver more sediment to river channels by destabilizing slopes and triggering processes of mass-movement. The northern and central Andes are more affected by human activity than most high mountain regions. The wetter northern Andes are also unusual for the very high water retention characteristics of páramo (high elevation grass and shrub) soils, which cover most of the land above 3000 m. Páramo soils are important regulators of headwater hydrology, but human activities that promote vegetation loss and drying cause them to lose water storage capacity. New data from a case study in southern Ecuador show very low bulk densities (median 0.26 g cm - 3 ), high organic matter contents (median 43%), and high water-holding capacities (12% to 86% volumetrically). These data document wetter soils under grass than under tree cover. Effects of human activity on the fluvial system are evident at local scales, but difficult to discern at broader scales in the regional context of geomorphic adjustment to tectonic and volcanic processes.

  10. Modelling Landscape Morphodynamics by Terrestrial Photogrammetry: AN Application to Beach and Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Sánchez-García, E.; Balaguer-Beser, A.; Taborda, R.; Pardo-Pascual, J. E.

    2016-06-01

    Beach and fluvial systems are highly dynamic environments, being constantly modified by the action of different natural and anthropic phenomena. To understand their behaviour and to support a sustainable management of these fragile environments, it is very important to have access to cost-effective tools. These methods should be supported on cutting-edge technologies that allow monitoring the dynamics of the natural systems with high periodicity and repeatability at different temporal and spatial scales instead the tedious and expensive field-work that has been carried out up to date. The work herein presented analyses the potential of terrestrial photogrammetry to describe beach morphology. Data processing and generation of high resolution 3D point clouds and derived DEMs is supported by the commercial Agisoft PhotoScan. Model validation is done by comparison of the differences in the elevation among the photogrammetric point cloud and the GPS data along different beach profiles. Results obtained denote the potential that the photogrammetry 3D modelling has to monitor morphological changes and natural events getting differences between 6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout of a fluvial system is tested by the performance of some modeling essays in a hydraulic pilot channel.

  11. Lakota Formation, southern Black Hills, South Dakota: an Early Cretaceous evolving fluvial system

    SciTech Connect

    Dahlstrom D.J.; Fox, J.E.

    1986-08-01

    The fluvial, Early Cretaceous Lakota Formation consists of four spatially and temporally distinct sandstone units in the southern Black Hills and southeastern Powder River basin. Three of these units crop out in proximity to an area of uranium roll-front development (Edgemont mining district) where approximately 2300 wells were drilled and logged. Comparison of the resistivity logs of several of these wells with continuous cores of the Lakota Formation confirms their lithologic sensitivity. These logs (utilized to assist in subsurface facies interpretations where cores were not available), cores, and outcrops are the basis for the following facies interpretations. The discharge, sediment load, and resulting sinuosity of this fluvial system varied substantially throughout the time of Lakota deposition. The oldest unit consists of tabular deposits with complex internal architecture comprised of cross-cutting lateral accretion deposits. Upward-fining grain size, upward-decreasing scale of sedimentary structures, and the angular relationship between lateral accretion surfaces and overlying crevasse-splay deposits support this conclusion. The intermediate unit of ephemeral stream sediments is characterized by abundant pebble- and cobble-strewn erosional surfaces with up to 1.5 m relief, very poor clast sorting, and trough and planar cross-bedding with concave-upward foresets. The youngest unit has a predominance of tabular cross-bedding with back flow climbing ripples and low dispersion of paleocurrent directions, suggesting a relatively straight, bed-load-type channel dominated by trains of sand waves.

  12. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  13. Tertiary fluvial systems within the Bear Creek coal field, northern Big Horn basin, Montana

    SciTech Connect

    Weaver, J.N. ); Gruber, J.R. Jr. )

    1991-06-01

    The Bear Creek coal field contains the 250-m-thick coal-bearing Paludal Member of the Paleocene Fort Union Formation in the northern Big Horn Basin, Montana. Detailed field and subsurface data show two contrasting geometries in alluvial strata, each bounded by an economic coal bed. The lower 50 m of the Paludal Member is dominated by sheet and ribbon sandstones. The sheet sandstones are as long as 1.5 km and fine upwards from medium to fine grained. Some sandstones are multistory with sharp upoper and lower contacts. The upper portion has convolute bedding, ripple lamination, and some horizontal and tabular crossbeds. Stratigraphically higher is a 12-m-thick fine-grained sequence, containing large tree trunks in growth position and extensively rooted mud rocks. Sandstone bodies, 6 m thick and 10 m wide, are enclosed within mudstones and siltstones. The sandstones are primarily ripple laminated and have stepped bases and internal erosion surfaces. This interval has previously been interpreted as deposits of an anastomosed fluvial system. The sandstones show little evidence of significant lateral migration. In contrast to the lower interval, the environment here consisted of well-developed vegetated islands separating fluvial channels. Subsurface data show that the major coal beds are laterally continuous within the study area. The cyclic development of the coals reflects intermittent periods of long-term basin stability. Alternating dominance of the sandstones suggests that influx and distribution were controlled through episodic uplift of the nearby Beartooth Mountains.

  14. Hydraulics are a first-order control on CO2 efflux from fluvial systems

    NASA Astrophysics Data System (ADS)

    Long, Hazel; Vihermaa, Leena; Waldron, Susan; Hoey, Trevor; Quemin, Simon; Newton, Jason

    2015-10-01

    Evasion of carbon dioxide (CO2) from fluvial systems is now recognized as a significant component of the global carbon cycle. However, the magnitude of, and controls on, this flux remains uncertain, and improved understanding of both is required to refine global estimates of fluvial CO2 efflux. CO2 efflux data show no pattern with latitude suggesting that catchment biological productivity is not a primary control and that an alternative explanation for intersite variability is required. It has been suggested that increased flow velocity and turbulence enhance CO2 efflux, but this is not confirmed. Here using contemporaneous measurements of efflux (range: 0.07-107 µmol CO2 m-2 s-1), flow hydraulics (mean velocity range: 0.03-1.39 m s-1), and pCO2 (range: 174-10712 µatm) at six sites, we find that flow intensity is a primary control on efflux across two climatically different locations (where pH is not a limiting factor) and that the relationship is refined by incorporating the partial pressure of CO2 (pCO2) of the water. A remaining challenge is how to upscale from point to reach or river basin level. Remote imaging or river surface may be worth exploring if subjectivity in interpreting surface state can be overcome.

  15. A new model for evaluating the duration of water flow in the Martian fluvial systems

    NASA Astrophysics Data System (ADS)

    Alemanno, G.; Orofino, V.; Di Achille, G.; Mancarella, F.

    To understand the formation mechanisms of Martian fluvial systems and consequently to determine the ancient climate of the planet, we have mapped a sample of Martian valleys longer than 20 km (covering at the moment 65% of the planet) and for a subset extracted among them, containing some of the widest and more developed systems, we have also determined the formation time. To estimate the duration of water flow in these valley networks we have used an original method based on the evaluation of erosion rate of the terrain. Our results, ranging from 105 to 108 years (depending on erosion rate), are in good agreement with those reported in literature and obtained through more detailed models of sediment transport. These results imply that Mars had at least short periods of clement conditions toward the end of the Noachian Era that supported a hydrologic cycle and potentially a biosphere.

  16. Case study of climatic changes in Martian fluvial systems at Xanthe Terra

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos

    2014-06-01

    An unnamed valley system was analyzed in Xanthe Terra south of Havel Vallis on Mars where three separate episodes of fluvial activity could be identified with different morphology, water source and erosional processes, inferring formation under different climatic conditions. The oldest scattered valleys (1. group) form interconnecting network and suggest areally distributed water source. Later two valley types formed from confined water source partly supported by possible subsurface water. The smaller upper reaches (2. group) with three separate segments and also a similar aged but areal washed terrain suggest contribution from shallow subsurface inflow. These valleys fed the main channel (3. group), which morphology (wide, theater shaped source, few tributaries, steep walls) is the most compatible with the subsurface sapping origin. While the first valley group formed in the Noachian, the other two, more confined groups are younger. Their crater density based age value is uncertain, and could be only 1200 million years. After these three fluvial episodes etch pitted, heavily eroded terrain formed possibly by ice sublimation driven collapse. More recently (60-200 million years ago) dunes covered the bottom of the valleys, and finally the youngest event took place when mass movements produced debris covered the valleys' slopes with sediments along their wall around 5-15 million years ago, suggesting wind activity finished earlier than the mass movements in the region. This small area represents the sequence of events probably appeared on global scale: the general cooling and drying environment of Mars. Comparing the longitudinal profiles here to other valleys in Xanthe Terra, convex shaped valley profiles are usually connected to steep terrains. The location of erosional base might play an important role in their formation that can be produced convex shapes where the erosional base descended topographically (by deep impact crater or deep outflow channel formation

  17. The demise of the Oligo-Miocene fluvial system of the Levant and its geodynamic significance

    NASA Astrophysics Data System (ADS)

    Vachtman, Dina; Mart, Yossi

    2015-04-01

    The Levant rift system is a linear assemblage of axial rifts and their mountainous flanks that comprises two structurally distinct sections. The southern segment is built of series of secondary axial grabens, which trend northwards and are separated from each other by poorly rifted threshold zones, which is the northern extension of the Red Sea continental break-up. The northern section comprises the SW-trending Karasu - Hatay rifts, from which the Ghab graben branches southwards, which is tectonically attributed to the westward migration of Anatolia. A system of large rivers transected the southern section of the Levant from central Arabia in the east to the Mediterranean Sea in the west during the Oligo-Miocene, leaving behind 5 km thick series of clastic deposits at sea, and sandstones and conglomerates of variable thickness on land. The demise of that fluvial system was gradual, stretching from the late Miocene to the early Pleistocene, where coastal rivers were truncated from their sources due to the growth of segmented rift. The geodynamic process that constrains the development of the rifts of the southern Levant and their elevated flanks is oblique rifting, where several small rifts start the evolution along a weakness zone concurrently, separated by wide and inactive threshold zones. Gradually the rifts grow along their long axes to interconnect, shrinking the threshold zone to their disappearence. Such geodynamic history best accounts for the observations of relicts of late Miocene fluvial deposits on mountaintops, large river beds dated to the late Miocene-early Pliocene, and large marine fan deposits of early Pliocene age, where rivers continued to flow in the threshold zones, but truncated by the emerging rifts.

  18. Fluvial systems response to rift margin tectonics: Makhtesh Ramon area, southern Israel

    NASA Astrophysics Data System (ADS)

    Ben-David, Ram; Eyal, Yehuda; Zilberman, Ezra; Bowman, Dan

    2002-06-01

    The geomorphic evolution of Makhtesh Ramon, a feather-shaped erosional valley, and the Nahal Neqarot drainage system to the south occurred largely in response to tectonic activity along the Dead Sea Rift and its western shoulder. Remnants of Miocene clastic sediments (Hazeva Formation) deposited on an erosional peneplain that formed over this area during the Oligocene epoch provide a datum plane for reconstructing subsequent fluvial evolution. These clastic remnants are presently located on the shoulders of Makhtesh Ramon at various elevations. The peneplain truncating the Makhtesh Ramon block has been tilted 0.7% northeastward since the Pliocene epoch (post-Hazeva Formation), whereas that of the Neqarot syncline, south of the Ramon, has been tilted 1.2%. The elliptical exposure of friable Lower Cretaceous sandstone, exposed in the core of the truncated Ramon structure, governed the development of a new ENE directed (riftward) drainage system through capture of streams that previously drained toward the Mediterranean Sea to the northwest. Incised fluvial gaps in the southern rim of Makhtesh Ramon and alluvial fan relicts within Makhtesh Ramon attest to original drainage into the Makhtesh from the south. Remnants of the Plio-Pleistocene Arava Conglomerate on the eastern end of the Neqarot syncline contain clasts from rocks exposed within Makhtesh Ramon, also indicating that streams flowed into the Makhtesh from the southern Neqarot block through the western gaps, then turning eastward and exiting the Makhtesh via the next (Sha'ar-Ramon) gap to the east. Further down-faulting of the Neqarot block during Mid-Late Pleistocene time led to westward retreat of the Neqarot valley and capture of the last stream flowing northward into the Ramon, leaving the modern Makhtesh Ramon isolated from the southern drainage system.

  19. Modern Landform Distribution of the Gilbert River Distributive Fluvial System (DFS) and Predictions Regarding Ancient Coastal Plain Progradational Successions

    NASA Astrophysics Data System (ADS)

    McNamara, K. C.; Weissmann, G. S.; Scuderi, L. A.; Owen, A.; Nichols, G. J.; Hartley, A. J.

    2011-12-01

    Distributive fluvial systems (DFSs) are modern fluvial deposits of radial distributive channel patterns and encompass a continuum from small-scale alluvial fans to large-scale fluvial megafans. Given that DFSs have been shown to comprise most continental regimes, we hypothesize that these systems form fluvial deposits in sedimentary basins at the fluvial-marine interface. Few modern examples of DFSs spanning this realm exist, as modern coastlines are presently flooded due to high-amplitude Quaternary sea level changes. The Gilbert River DFS of north Queensland, Australia, represents a modern example of a DFS terminating in the Gulf of Carpentaria. Remote sensing analyses on this system show the same recognizable depositional patterns as purely continental DFS: 1) a radial channel pattern originating from an apex, 2) a down-DFS decrease in both channel and grain size, 3) a lack of lateral channel confinement, 4) a broad fan shape, and 5) a down-DFS increase in floodplain/channel area ratio. The distal portion (influenced by sea level changes) exhibits: a) a sharp contact between DFS and marginal-marine deposits, b) channel incision, confinement and lateral movement, c) channel width increasing due to tidal influence, d) sediment redistribution (spits, small-scale deltas), and e) shoreline progradation (wave-cut platforms and beach ridges). These observations ultimately lead to sedimentologic and stratigraphic predictions regarding coastal DFS deposits in the geologic record. Data from the Gilbert system are compared with facies and facies transitions in Cordilleran foreland basin Cretaceous strata that cross the fluvial-marine interface, such as the John Henry Mbr. of the Straight Cliffs Formation and the Williams Fork Formations of Utah and Colorado, respectively. If these strata are DFS, then the following succession (in ascending order) should exist in a single progradational succession: 1) Distal channel deposits with evidence of tidal influence (herringbone

  20. Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monographStream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.

  1. Development and Implementation of a Bayesian Model for Sediment Transport in Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Schmelter, M. L.; Hooten, M.

    2010-12-01

    Recent studies in the field of sediment transport in fluvial systems underscore the difficulty in reliably estimating transport model parameters, collecting accurate observations, and making predictions due to measurement error and uncertainty in conceptual models. While much of the initial research in sediment transport recognized the process as being inherently statistical, developing a sediment transport model in a statistical framework that can manage and account for measurement error, process uncertainty, and provide credible intervals of parameter estimates and transport predictions still presents many opportunities for discovery. In this research, we propose a uni-size bedload sediment transport model in which inference on the critical Shields Number and measurement error along with credible intervals of transport prediction are sought. This model is realized through the application of a Bayesian framework in which posterior distributions of model parameters are evaluated given both simulated data and uni-size sediment transport observations pulled from the literature. Our model provides a sediment rating curve that is delineated in terms of credible intervals for prediction. Credible ranges of the critical Shields Number and process/measurement uncertainty are inferred from simulated and observed data as well. While the application of these methods are currently being tested using simulated and laboratory flume data, the proposed framework can be applied to fluvial systems of arbitrary size. Additionally, our model presents opportunities to evaluate the suitability of different transport relations. The initial findings of applying a sediment transport relation in a Bayesian framework show great promise for managing uncertainty and variability in associated process models and measurements.

  2. Lacustrine and fluvial-deltaic depositional systems, Fort Union Formation (Paleocene), Powder River basin, Wyoming and Montana

    SciTech Connect

    Ayers, W.B. Jr.

    1986-11-01

    The Powder River basin is a Laramide foreland basin that was filled by a combination of fluvial, deltaic, paludal, and lacustrine sediments. The depositional history of the Fort Union Formation was unraveled in a regional subsurface study using data from approximately 1400 geophysical well logs. The depositional model developed from the subsurface study was tested by selective fieldwork. The Powder River basin originated as a structural and depositional basin in earliest middle Paleocene. As a result of rapid subsidence, a lake (Lake Lebo) formed along the basin axis. Lake Lebo, documented in the mudstone of the Lebo Shale Member, spread rapidly to cover an area greater than 10,000 mi/sup 2/ (25,900 km/sup 2/). During the middle through late Paleocene, Lake Lebo was filled peripherally by fluvial-deltaic systems that are recorded in the coarser clastics of the Tongue River Member. Primary basin fill was from: (1) the eastern margin by elongate deltas fed by suspended to mixed-load fluvial systems issuing from the ancestral Black Hills, and (2) the southwestern margin by mixed to bed-load streams emanating from the Wind River basin. Secondary fill was from the northwest by an elongate delta system fed by a suspended to mixed-load fluvial system flowing from the Bull Mountain basin. 17 figures.

  3. Short-term post-wildfire dry-ravel processes in a chaparral fluvial system

    NASA Astrophysics Data System (ADS)

    Florsheim, Joan L.; Chin, Anne; O'Hirok, Linda S.; Storesund, Rune

    2016-01-01

    effects of wildfire on fine sediment delivery to fluvial systems in chaparral ecosystems.

  4. Geomorphic response to agricultural land use in small fluvial systems - The role of landscape connectivity

    NASA Astrophysics Data System (ADS)

    Poeppl, R.; Keiler, M.; Glade, T.; Engage-Geomorphological Systems; Risk Research

    2010-12-01

    Nearly all river catchments are affected directly or indirectly by human actions, e.g. varying agricultural land use or interventions into to river course and flow lead to significant geomorphic changes. The rates of fluvial change are accelerating in many river catchments and public and institutional awareness of these changes and their consequences has grown. This trend leads to an increasing need for a deeper understanding of how the system elements are interrelated (connected) and how fluvial systems respond to human activities. Most of the studies relating to such topics focus on extrinsic (e.g. climatic) factors, although vegetation cover is one of the primary intrinsic factors on sediment yield to a river and even the most susceptible factor for human alterations. Furthermore, nearly all of the published studies are dealing with large rivers, disregarding the much more abundant smaller ones, which in sum do also influence larger rivers. The presented study contributes to gain a deeper understanding of how river systems geomorphologically respond to human activities. The focus in this study is on the importance of hillslope-channel connectivity relationships, as well as on connectivity relationships between the channel reaches in catchments with agricultural land use. Therefore, aerial photograph and airborne laserscan-interpretations were used to create detailed land use and river maps in order to gather current land use and river planform geometry conditions. The land use data was integrated to a GIS-related spatial soil erosion model so as to determine sources of fine sediment from eroding top soil in agricultural areas. Furthermore, a DEM-based multiple-flow model was applied to examine hillslope-channel connectivity relationships. River bed sediment composition, sediment embeddedness and in-channel accumulation of fine sediments were surveyed as potential indicators for geomorphic system response to agricultural land-use, as well as to determine

  5. A comparison of factors controlling sedimentation rates and wetland loss in fluvial deltaic systems, Texas Gulf coast

    NASA Astrophysics Data System (ADS)

    White, William A.; Morton, Robert A.; Holmes, Charles W.

    2002-04-01

    Submergence of coastal marshes in areas where rates of relative sea-level rise exceed rates of marsh sedimentation, or vertical accretion, is a global problem that requires detailed examination of the principal processes that establish, maintain, and degrade these biologically productive environments. Using a simple 210Pb-dating model, we measured sedimentation rates in cores from the Trinity, Lavaca-Navidad, and Nueces bayhead fluvial-deltaic systems in Texas where more than 2000 ha of wetlands have been lost since the 1950s. Long-term average rates of fluvial-deltaic aggradation decrease southwestward from 0.514±0.008 cm year -1 in the Trinity, 0.328±0.022 cm year -1 in the Lavaca-Navidad, to 0.262±0.034 cm year -1 in the Nueces. The relative magnitudes of sedimentation and wetland loss correlate with several parameters that define the differing fluvial-deltaic settings, including size of coastal drainage basin, average annual rainfall, suspended sediment load, thickness of Holocene mud in the valley fill, and rates of relative sea-level rise. There is some evidence that upstream reservoirs have reduced wetland sedimentation rates, which are now about one-half the local rates of relative sea-level rise. The extant conditions indicate that fluvial-deltaic marshes in these valleys will continue to be lost as a result of submergence and erosion.

  6. A comparison of factors controlling sedimentation rates and wetland loss in fluvial-deltaic systems, Texas Gulf coast

    USGS Publications Warehouse

    White, W.A.; Morton, R.A.; Holmes, C.W.

    2002-01-01

    Submergence of coastal marshes in areas where rates of relative sea-level rise exceed rates of marsh sedimentation, or vertical accretion, is a global problem that requires detailed examination of the principal processes that establish, maintain, and degrade these biologically productive environments. Using a simple 210Pb-dating model, we measured sedimentation rates in cores from the Trinity, Lavaca-Navidad, and Nueces bayhead fluvial-deltaic systems in Texas where more than 2000 ha of wetlands have been lost since the 1950s. Long-term average rates of fluvial-deltaic aggradation decrease southwestward from 0.514 ?? 0.008 cm year -1 in the Trinity, 0.328 ?? 0.022 cm year -1 in the Lavaca-Navidad, to 0.262 ?? 0.034 cm year -1 in the Nucces. The relative magnitudes of sedimentation and wetland loss correlate with several parameters that define the differing fluvial-deltaic settings, including size of coastal drainage basin, average annual rainfall, suspended sediment load, thickness of Holocene mud in the valley fill, and rates of relative sea-level rise. There is some evidence that upstream reservoirs have reduced wetland sedimentation rates, which are now about one-half the local rates of relative sea-level rise. The extant conditions indicate that fluvial-deltaic marshes in these valleys will continue to be lost as a result of submergence and erosion. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Flood hazards analysis based on changes of hydrodynamic processes in fluvial systems of Sao Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Simas, Iury; Rodrigues, Cleide

    2016-04-01

    The metropolis of Sao Paulo, with its 7940 Km² and over 20 million inhabitants, is increasingly being consolidated with disregard for the dynamics of its fluvial systems and natural limitations imposed by fluvial terraces, floodplains and slopes. Events such as floods and flash floods became particularly persistent mainly in socially and environmentally vulnerable areas. The Aricanduva River basin was selected as the ideal area for the development of the flood hazard analysis since it presents the main geological and geomorphological features found in the urban site. According to studies carried out by Anthropic Geomorphology approach in São Paulo, to study this phenomenon is necessary to take into account the original hydromorphological systems and its functional conditions, as well as in which dimensions the Anthropic factor changes the balance between the main variables of surface processes. Considering those principles, an alternative model of geographical data was proposed and enabled to identify the role of different driving forces in terms of spatial conditioning of certain flood events. Spatial relationships between different variables, such as anthropogenic and original morphology, were analyzed for that purpose in addition to climate data. The surface hydrodynamic tendency spatial model conceived for this study takes as key variables: 1- The land use present at the observed date combined with the predominant lithological group, represented by a value ranging 0-100, based on indexes of the National Soil Conservation Service (NSCS-USA) and the Hydraulic Technology Center Foundation (FCTH-Brazil) to determine the resulting balance of runoff/infiltration. 2- The original slope, applying thresholds from which it's possible to determine greater tendency for runoff (in percents). 3- The minimal features of relief, combining the curvature of surface in plant and profile. Those three key variables were combined in a Geographic Information System in a series of

  8. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological

  9. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems.

    PubMed

    Pinay, Gilles; Clément, Jean Christophe; Naiman, Robert J

    2002-10-01

    Understanding the environmental consequences of changing water regimes is a daunting challenge for both resource managers and ecologists. Balancing human demands for fresh water with the needs of the environment for water in appropriate amounts and at the appropriate times are shaping the ways by which this natural resource will be used in the future. Based on past decisions that have rendered many freshwater resources unsuitable for use, we argue that river systems have a fundamental need for appropriate amounts and timing of water to maintain their biophysical integrity. Biophysical integrity is fundamental for the formulation of future sustainable management strategies. This article addresses three basic ecological principles driving the biogeochemical cycle of nitrogen in river systems. These are (1) how the mode of nitrogen delivery affects river ecosystem functioning, (2) how increasing contact between water and soil or sediment increases nitrogen retention and processing, and (3) the role of floods and droughts as important natural events that strongly influence pathways of nitrogen cycling in fluvial systems. New challenges related to the cumulative impact of water regime change, the scale of appraisal of these impacts, and the determination of the impacts due to natural and human changes are discussed. It is suggested that cost of long-term and long-distance cumulative impacts of hydrological changes should be evaluated against short-term economic benefits to determine the real environmental costs. PMID:12481915

  10. Meltwater pathways and grain size transformation in a Pleistocene Mediterranean glacial-fluvial system

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip

    2013-04-01

    The Pleistocene sedimentary records of Mount Orjen, western Montenegro, have been used to investigate changes in grain size characteristics of fine sediments transported from the glaciated mountains to the fluvial systems downstream. Understanding the particle size characteristics of the fine sediments transported by these cold stage river systems is important for several reasons. The braided rivers draining the glaciated mountains of the western Balkans may have been an important source of loess for example. It is also important to establish the grain size signature of suspended sediment delivered to the marine environment to aid land-marine correlations. The fine-grained component of the tills is dominated by glacially-comminuted limestone particles. Detailed particle size analysis of the fine sediment matrix component (<63 μm) of glacial till and alluvial deposits has been undertaken using multiple samples at 12 sites surrounding the Orjen massif. This limestone karst terrain includes a range of meltwater pathways and depositional contexts, including: river valleys, alluvial fans, poljes, and ice marginal settings. 35 U-series ages and soil development indices have been used to develop a robust geochronology for the Pleistocene records Two dominant surface meltwater and sediment pathways have been identified around Mount Orjen. The particle size distributions reveal that these transportation routes can have distinctive sedimentological signatures. Type 1 pathways deliver meltwater and sediments downstream via bedrock gorges. In these settings, the fine grained alluvial matrix presents a largely bimodal particle size distribution (PSD). Type 2 pathways represent meltwater channels draining directly from the ice margin. Alluvial sediments within these environments more closely resemble the normally distributed PSD of the glacial tills. The transition to bimodal PSDs, downstream of Type 1 meltwater routes, suggests that the glacially-comminuted sediments are

  11. Characterizing fluvial systems at basin scale by fuzzy signatures of hydromorphological drivers in data scarce environments

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Bizzi, S.; Castelletti, A.

    2014-06-01

    Despite the relevance of river hydromorphology (HYMO) for integrated water resource management, consistent geomorphic information at the scale of whole river basin is still scarce, especially in emerging economies. In this paper, we propose a new, scalable and globally applicable framework to analyze and classify fluvial systems in data-scarce environments. The framework is based on a data-driven analysis of a multivariate data set of 6 key hydro-morphologic drivers derived using freely available remote-sensing information and several in situ hydrological time series. Core of the framework is a fuzzy classifier that assigns a characteristic signature of HYMO drivers to individual river reaches. We demonstrate the framework on the Red River Basin, a large, trans-boundary river basin in Vietnam and China, where human-induced morphological change, concretely endangering local livelihoods, is contrasted by very limited HYMO information. The derived HYMO information covers spatial scales from the entire basin to individual reaches. It conveys relevant information on subbasin hydro-morphologic characteristic as well as on local geomorphologic forms and processes. The fuzzy classifier successfully distinguishes abrupt from continuous downstream change and spatially dissects the river system in segments with homogeneous hydro-morphologic forcings. Successful numerical modelling of morphologic forms and process rates based on the HYMO signatures indicates that the multivariate, basin-scale classification captures relevant morphological drivers, outperforms an analysis based on local drivers only, and can support river management from diverse, morphology related perspectives over a wide range of scales.

  12. Climate Controls on Sediment Discharge in Selected Fluvial Systems in Indonesia

    NASA Astrophysics Data System (ADS)

    Cecil, C. B.

    2004-12-01

    Sediment discharge was evaluated in selected rivers in Indonesia where catchment basin size, relief, and gradient are somewhat similar, but where tectonic setting, bedrock lithology, and atmospheric circulation and rainfall, are variables. Rivers were studied in humid to perhumid regions where the Intertropical Convergence Zone (ITCZ) is relatively stable and rainfall exceeds evapotranspiration for all or most months of the year (Sumatra, Borneo, Seram, and Irian Jaya). In contrast, fluvial sediment discharge was evaluated in rivers in Timor where 85 percent of all rainfall occurs during a four-month rainy season (dry subhumid climate) in response to the passage of the ITCZ. Stream sampling was conducted for solid suspended sediment concentrations, solute concentrations, and pH. In addition, the nature of stream channels (meandering or braided), streambed materials, the degree and source of estuarine fill, the degree of delta formation, and the nature of coastlines were used to evaluate fluvial sediment discharge. Very low sediment concentrations (10 mg/l suspended and 10mg/l solute) in rivers in the perhumid to humid regions are indicative of a very low fluvial sediment discharge. The absence of fluvially derived bed loads, river mouth deltas, the lack of fluvial fill of estuaries, and mud-dominated coastal zones are consistent with this observation. In contrast, very high sediment concentrations (2100 mg/l suspended and 340 mg/l dissolved) during rainy season discharge in dry-subhumid regions (Timor) are indicative of very high sediment discharge in dry subhumid climates. Coarse-grained braided streams, the complete fluvial fill of estuaries, the formation of river-mouth deltas, cobbles transported to the coast, and coarse-grained beaches are consistent with this observation. All factors indicate that fluvial sediment discharge is exceedingly low in humid and perhumid areas where denudation is dominated by chemical weathering, whereas fluvial sediment discharge

  13. Architectural analysis of a Triassic fluvial system: The Sherwood Sandstone of the East Midlands Shelf, UK

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Hough, Edward; Peatfield, Alex W.

    2015-08-01

    The Sherwood Sandstone Group of the northeast UK (East Midlands Shelf) has hitherto never been studied in detail to ascertain its palaeoenvironment of deposition, largely because it is poorly exposed. As such, this paper aims to provide the first modern sedimentological interpretation of the Sherwood Sandstone in the east of England based on a field outcrop at the disused quarry at Styrrup. This is in stark contrast to the western parts of England where the Sherwood Sandstone is well exposed and offshore in the North Sea Basin where it is represented by a substantial library of core material where it is also relatively well understood. The outcrop at Styrrup Quarry allows contrasts to be made with the style and expression of the Sherwood Sandstone between eastern and western England. Specifically, this highlights differences around the variation in fluvial discharge (between lowstand and highstand) and the absence of aeolian facies types. It is interpreted that these differences relate to discharge variations between ephemeral and perennial systems with a perennial model proposed for Styrrup Quarry. This model draws upon inferences of additional water input from more local areas, likely topographic uplands of the London-Brabant and Pennine Highs which supplement the primary source of the Variscan Mountains in France with additional water and sediment.

  14. Fluvial connectivity and climate: A comparison of channel pattern and process in two climatically contrasting fluvial sedimentary systems in South Africa

    NASA Astrophysics Data System (ADS)

    Grenfell, S. E.; Grenfell, M. C.; Rowntree, K. M.; Ellery, W. N.

    2014-01-01

    The aim of this research was to investigate the dynamics of valley formation, sediment delivery and channel pattern in two climatically contrasting fluvial sedimentary systems in South Africa. Each system comprised a network of headwater valley fills and floodplains underlain by sedimentary Karoo Supergroup rocks that are intersected by resistant dolerite dykes and sills. The Seekoei River Floodplain and Gordonville valley fill site in the Great Karoo, however, experience less than half the annual precipitation of the Nsonge River Floodplain and Hlatikhulu valley fill in the KwaZulu-Natal Drakensberg Foothills. Furthermore, rainfall is more variable in the Karoo. Despite climatic differences, headwater valley fills were geomorphically similar. In contrast, floodplains in the two regions were vastly different, even when the same downstream control (a resistant dolerite intrusion crossing the drainage line) was considered. Upstream of a dolerite dyke, the Nsonge River is highly sinuous and located in a wide floodplain that has been carved by lateral planation of the underlying bedrock. In comparison, the Seekoei River, located upstream of a dolerite sill, is discontinuous and characterized by floodouts and avulsing distributaries that undergo periods of bedrock incision, followed by infilling.It is likely that this disparity is caused by the inability of infrequent, unsustained flows to develop meanders and, thus, adjust the channel planform to changes in discharge, sediment load and valley slope. Flow variability, thus, exercises a strong control on channel pattern and causes floodouts in headwater settings and the semi-arid Karoo floodplain. As a result, sediment transport in the Seekoei River is likely to be episodic, and net retention of sediment in the semi-arid floodplain is greater than in the sub-humid Nsonge River Floodplain, where sediment depth is limited.

  15. Flashy Water and Sediment Delivery to Fluvial Megafan andFan Delta Systems on Opposing Shorelines of an Early Eocene Lake

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2015-12-01

    Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different

  16. Land Use and Climate Impacts on Fluvial Systems (LUCIFS): A PAGES - Focus 4 (PHAROS) research activity

    NASA Astrophysics Data System (ADS)

    Dearing, John; Hoffmann, Thomas

    2010-05-01

    LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.

  17. An objective approach to marginal benefit functions for environmental flows: an example for fluvial systems

    NASA Astrophysics Data System (ADS)

    Perona, P.; Burlando, P.

    2009-12-01

    Environmental flows can result from the economical competition for water allocation between traditional and non-traditional water uses. This requires the definition of convenient benefit functions (bf) associated with the use of the resource. Since the use of water by the riparian ecosystem is an intangible good, common ways based for instance on the “willingness to pay” have the dramatic weakness of not being objective with regard to the environmental rights. That is, water withdrawal from a given stream environment would depend on the importance and, in turn, on the economical value that people assign to this environment. In this work we discuss a possible objective criterion to establish benefit functions for the environmental uses of the water resource. Our approach is based on studying the optimal water allocation between the users as resulting from marginal economic analysis. That is, we show that the parameters of the marginal demand curve for the riparian ecosystem are intrinsically defined by knowing: (a) the ecological status of the riverine system in pristine conditions, and (b) the marginal benefit function of the potential competitor (e.g., exploitation activity). We solve analytically the water allocation problem for the simple case of water withdrawal from a fluvial system. We show the link between the parameters of the marginal benefit functions and the minimal environmental flow arising from classic engineering analysis, as well as their ecological meaning. This approach allows to restore a more natural variability of the streamflow regime in impounded reaches, to the cost of a profit reduction for the resource exploitation. However, on the long term, the overall idea is that the benefit for having preserved more natural environmental flow conditions since exploitation began would balance the future cost for potential restoration of the riverine corridor and the missing revenues.

  18. Remote sensing of rivers: an emerging tool to facilitate management and restoration of fluvial systems

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.; Overstreet, B. T.

    2013-12-01

    All phases of river restoration, from design to implementation to assessment, require spatially distributed, high-resolution data on channels and floodplains. Conventional field methods are cost prohibitive for large areas, but remote sensing presents an increasingly viable alternative for characterizing fluvial systems. For example, bathymetric maps useful for habitat assessment can be derived from readily available, free or low cost image data, provided depth measurements are available for calibration. In combination with LiDAR, spectrally-based bathymetry can be used to determine bed elevations for estimating scour and fill and/or to obtain topographic input data for morphodynamic modeling. New, water-penetrating green LiDAR systems that measure sub-aerial and submerged elevations could provide a single-sensor solution for mapping riparian environments. Our current research on the Snake River focuses on comparing optical- and LiDAR-based methods for retrieving depths and bed elevations. Multi-sensor surveys from 2012 and 2013 will allow us to evaluate each instrument's capabilities for measuring volumes of erosion and deposition in a dynamic gravel-bed river. Ongoing studies also suggest that additional river attributes, such as substrate composition and flow velocity, could be inferred from hyperspectral image data. In general, remote sensing has considerable potential to facilitate various aspects of river restoration, from site evaluation to post-project assessment. Moreover, by providing more extensive coverage, this approach favors an integrated, watershed perspective for planning, execution, and monitoring of sustainable restoration programs. To stimulate progress toward these objectives, our research group is now working to advance the remote sensing of rivers through tool development and sensor deployment. Bathymetric map of the Snake River, WY, derived from hyperspectral image data via optimal band ratio analysis. Flow direction is from right to left.

  19. Aram Dorsum, Candidate ExoMars Rover Landing Site: a Noachian Inverted Fluvial Channel System in Arabia Terra Mars

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Grindrod, Peter; Sefton-Nash, Elliot; Davis, Joel; Gupta, Sanjeev; Fawdon, Peter

    2016-04-01

    Much of Mars' Noachian-aged southern highlands is dissected by systems of fluvial channels and valleys > 3.7 Ga in age. Arabia Terra, lying between the southern highlands and the northern lowlands, is similarly ancient, yet apparently has few valley networks. This regional lack of valley networks only matches Noachian precipitation predictions from climate models if the Noachian climate was dry and cold [1]. In this scenario, highlands dissection was caused by transient flows of meltwater from large, regionally restricted ice-bodies. However, new results [2,3] show that Arabia Terra is not as poorly dissected as previously thought, and in fact there are extensive networks of inverted channel systems. Here, we describe an example of such a system - Aram Dorsum - which has been studied extensively as an ExoMars Rover candidate landing site. Aram Dorsum is an ~100 km long, 1-2 km wide, branching, flat-topped ridge system, in western Arabia Terra. We have mapped the system using CTX images, DEMs and other data. We interpret the ridge system to be fluvial in origin, preserved in positive relief due to infill and differential erosion; this working hypothesis is used as a conceptual framework for the study. Aram Dorsum is a branching, multi-level, contributory network, set in surrounding floodplains-like material. This demonstrates that it was a relatively long-lived, aggradational fluvial system, rather than an erosional outflow or bedrock-carved fluvial channel. Interestingly, the system shows little evidence for unconfined lateral channel migration, so there must have been significant bank stability. Aram Dorsum was therefore probably once a sizable river and, as just one example of many similar systems, is an exemplar for the middle part of a regional sediment transport system that could have extended from the southern highlands to the northern lowlands. Like Aram Dorsum, many of these other recently-recognized fluvial systems have an origin more consistent with

  20. Spatial analysis of the impacts of the Chaitén volcano eruption (Chile) in three fluvial systems

    NASA Astrophysics Data System (ADS)

    Ulloa, H.; Iroumé, A.; Picco, L.; Mohr, C. H.; Mazzorana, B.; Lenzi, M. A.; Mao, L.

    2016-08-01

    The eruption of the Chaitén volcano in May 2008 generated morphological and ecological disturbances in adjacent river basins, and the magnitude of these disturbances depended on the type of dominant volcanic process affecting each of them. The aim of this study is to analyse the morphological changes in different periods in river segments of the Blanco, El Amarillo and Rayas river basins located near the Chaitén volcano. These basins suffered disturbances of different intensity and spatial distribution caused by tephra fall, dome collapses and pyroclastic density currents that damaged hillslope forests, widened channels and destroyed island and floodplain vegetation. Changes continued to occur in the fluvial systems in the years following the eruption, as a consequence of the geomorphic processes indirectly induced by the eruption. Channel changes were analyzed by comparing remote images of pre and post-eruption conditions. Two periods were considered: the first from 2008 to 2009-2010 associated with the explosive and effusive phases of the eruption and the second that correspond to the post-eruption stage from 2009-2010 to 2013. Following the first phases channel segments widened 91% (38 m/yr), 6% (7 m/yr) and 7% (22 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively, compared to pre-eruption condition. In the second period, channel segments additionally widened 42% (8 m/yr), 2% (2 m/yr) and 5% (4 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively. In the Blanco River 62 and 82% of the islands disappeared in the first and second period, respectively, which is 6-8 times higher than in the El Amarillo approximately twice the Rayas. Sinuosity increased after the eruption only in the Blanco River but the three study channels showed a high braiding intensity mainly during the first post-eruption period. The major disturbances occurred during the eruptive and effusive phases of Chaitén volcano, and the intensity of these disturbances reflects the

  1. The Pliocene initiation and Early Pleistocene volcanic disruption of the palaeo-Gediz fluvial system, Western Turkey

    NASA Astrophysics Data System (ADS)

    Maddy, Darrel; Demir, Tuncer; Bridgland, David R.; Veldkamp, Antonie; Stemerdink, Chris; van der Schriek, Tim; Schreve, Danielle

    2007-11-01

    In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula and the subsequent lacustrine, volcaniclastic and fluvial deposits associated with the first phase of volcanism (∼1.2 Ma) in this area. Early development of an east-west drainage system in this area resulted from tectonic adjustments to north-south extension and the formation of east-west-oriented grabens. Headward erosion of drainage entering the main Alaşehir graben led to the progressive capture of pre-existing drainage systems as eastward (headward) erosion upstream tapped drainage networks previously formed in internally draining NNE-SSW-oriented basins. Within one of these, the Selendi Basin, part of this evolutionary sequence is preserved as a buried river terrace sequence. Eleven terraces are preserved beneath alluvial fan sediments that are, in turn, capped by basaltic lava flows. Using the available geochronology these terraces are considered to represent sedimentation-incision cycles which span the period ∼1.67-1.2 Ma. Although progressive valley incision is a fluvial system response to regional uplift, the frequency of terrace formation within this time period suggests that the terrace formation resulted from sediment/water supply changes, a consequence of obliquity-driven climate changes. The production of sub-parallel terraces suggests that during this period the river was able to attain a quasi-equilibrium longitudinal profile adjusted to the regional uplift rate. Thus, the incision rate of 0.16 mm a-1 during this period is believed to closely mirror the regional uplift rate. After the onset of volcanism at ∼1.2 Ma, there is a destruction of the dynamic link between fluvial system behaviour and climate change. The repeated damming of the trunk

  2. Sinus Meridiani Landing Site for Human Exploration —- A Mesoscale Fluvial System

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. J.; McGovern, P. J.

    2015-10-01

    SW Sinus Meridiani is proposed as an EZ as seen through the lens of the still poorly recognized large fluvial fan model. Hematite distribution, regional and Miyamoto Crater sedimentary stacks, sediment inundation of craters, and the rover traverse path are suggested ROIs.

  3. Evaluation of statistical models for predicting Escherichia coli particle attachment in fluvial systems.

    PubMed

    Piorkowski, Gregory; Jamieson, Rob; Bezanson, Greg; Hansen, Lisbeth Truelstrup; Yost, Chris

    2013-11-01

    Modeling surface water Escherichia coli fate and transport requires partitioning E. coli into particle-attached and unattached fractions. Attachment is often assumed to be a constant fraction or is estimated using simple linear models. The objectives of this study were to: (i) develop statistical models for predicting E. coli attachment and virulence marker presence in fluvial systems, and (ii) relate E. coli attachment to a variety of environmental parameters. Stream water samples (n = 60) were collected at four locations in a rural, mixed-use watershed between June and October 2012, with four storm events (>20 mm rainfall) being captured. The percentage of E. coli attached to particles (>5 μm) and the occurrences of virulence markers were modeled using water quality, particle concentration, particle size distribution, hydrology and land use factors as explanatory variables. Three types of statistical models appropriate for highly collinear, multidimensional data were compared: least angle shrinkage and selection operator (LASSO), classification and regression trees using the general, unbiased, interaction detection and estimation (GUIDE) algorithm, and multivariate adaptive regression splines (MARS). All models showed that E. coli particle attachment and the presence of E. coli virulence markers in the attached and unattached states were influenced by a combination of water quality, hydrology, land-use and particle properties. Model performance statistics indicate that MARS models outperform LASSO and GUIDE models for predicting E. coli particle attachment and virulence marker occurrence. Validating the MARS modeling approach in multiple watersheds may allow for the development of a parameterizing model to be included in watershed simulation models. PMID:24075474

  4. Use of Ground Imagery to Study Wood Raft and Ice Dynamics in Fluvial Systems: Potential and Challenges.

    NASA Astrophysics Data System (ADS)

    Benacchio, V.; Piegay, H.; Buffin-Belanger, T. K.; Vaudor, L.; Michel, K.

    2014-12-01

    Automatic cameras allow acquisition of large amounts of information at high resolution in both temporal and spatial dimensions, with a roughly close range. Recently, ground cameras have been used to study the morphological evolution of fluvial environments (e.g. bank erosion, bar mobility, braided pattern changes) or to quantify components of fluvial dynamics (e.g. flow velocity, wood transport or river ice development). As the amount of information increases, automation of the data processing becomes essential, but many challenges arise to improve features detection, taking into account light contrasts, shadow and reflection, or to calculate surfaces and volumes from image orthorectification. This study illustrates the high potential of ground cameras to observe and quantify rapid, stochastic or complex events in fluvial systems and the numerous challenges we have to face. In order to automatically monitor such key fluvial processes, two ground cameras were installed. The first one was placed on the Genissiat dam (Rhône River, France) focusing on the reservoir where pieces of wood are trapped, creating a large raft. The objective is to survey wood raft area over time as a surrogate of the basin wood production. The second camera was installed along the St Jean River (Gaspesia, Québec) focusing on a pool section. The objective here is to characterize the evolution of ice cover, in terms of growing rate and ice types. The snowy environment is particularly challenging because of brightness or fairly homogeneous radiometric conditions amongst ice types. In both cases, remote sensing technics, especially feature based classification are used. Radiometric and texture indexes are used to discriminate both wood and water and ice types.

  5. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    DOE Data Explorer

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  6. Distribution of palaeosols and deposits in the temporal evolution of a semiarid fluvial distributary system (Bauru Group, Upper Cretaceous, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; Bo, Patrick Führ Dal'; de Oliveira, Emerson Ferreira

    2016-07-01

    The stratigraphic and sedimentological knowledge of the Bauru Group (Upper Cretaceous, SE Brazil) is still generally insufficient and controversial. A sedimentological and palaeopedological study allowed to interpret the south-eastern portion of the Bauru Group according to the model of a fluvial distributary system. This work has two objectives: (1) to include palaeosols in the interpretation of a fluvial distributary system and (2) to give detailed information on the sedimentological and stratigraphic features of the SE portion of the Bauru Group in order to support biostratigraphical, taphonomic and palaeoecological studies. In the south-eastern portion of the Bauru Group, three genetic stratigraphic units were described and interpreted, here informally called lower, intermediate and upper units. The lower unit is constituted of muddy sandstone salt flat deposits and sandstone sheet deltas deposits and is interpreted as a basinal part of a fluvial distributary system. The intermediate unit is formed of very fine to fine-grained sandstone-filled ribbon channel and sandy sheet-shaped beds, suggesting a distal or medial portion of a fluvial distributary system. The upper unit does not match with the present models of the fluvial distributary system because mostly constituted of moderately developed, well-drained, medium- to fine-grained sandstone palaeosols, which testify pauses of sedimentation to the order of 104 years. Preserved features of sedimentary structures suggest that the parent material was formed by occasional catastrophic unconfined flows. This unit may represent the most distal portion of a fluvial distributary system generated by retrogradation of the alluvial system due to aridification of the climate. The upper unit may be interpreted also as proximal portion of fluvial distributary system if considering the coarser-grained and the well-drained palaeosols. However, the absence of channel deposits makes this interpretation unconvincing.

  7. Physical and chemical weathering in modern and Permian proximal fluvial systems

    NASA Astrophysics Data System (ADS)

    Keiser, Leslie Jo

    Chapter 1 Inferring paleoclimate from ancient fluvial strata can be challenging, and conflicting interpretations for a given system are common in the literature. This research uses a combination of physical and chemical weathering signals in an attempt to better define the paleoclimatic interpretations for the proximal Cutler Formation near Gateway, Colorado (Chapter 3) and the Post Oak Conglomerate in the Wichita Mountains, Oklahoma (Chapter 4), both Permian units. Chapter 4 includes a comparison of weathering signals from modern sediments in the Wichita Mountains. A methodology for pretreatment techniques used for grain-size analysis was evaluated during the course of the research and is the topic of Chapter 2. This dissertation is organized as three stand-alone manuscripts and a brief summary of each is presented below. Chapter 2 Pretreatment drying of mud-sized sediment (<63 im) resulted in clayrich (>39%) samples exhibiting more sensitivity to drying techniques than clay-poor (<39%) samples. This demonstrates an influence of the drying technique on the granulometric results. Employing freeze drying for sample drying yielded the most consistent results. However, for samples with <39% clay-sized material, all drying techniques are equally effective, and no apparent need exists for the extra effort (and expense) that accompanies freeze drying. Chapter 3 Scanning Electron Microscopy is a useful tool in the study of quartz grain microtextures. Microtextures on quartz grains from the proximal Cutler Formation near Gateway, CO were documented for the presence/absence of 18 distinct microtextures. Averaging of presence/absence data for the samples provided a means to use more quantitative techniques than previously employed for SEM microtextural analysis. These continuous quantitative variables were utilized for non-metric multidimensional scaling, a purely quantitative technique that does not rely on initial assumptions of what environments produce specific

  8. Coastal wetland response to sea level rise in a marine and fluvial estuarine system

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Hagen, S. C.; Morris, J. T.; Bilskie, M. V.; Passeri, D. L.; Medeiros, S. C.

    2014-12-01

    Coastal wetlands are at the risk of losing their productivity under increasing rates of sea level rise (SLR). Studies show that under extreme enough stressors, salt marshes will not have time to establish an equilibrium and may migrate landward (Donnelly and Bertness 2001; Warren and Niering 1993) or become open water. In order to investigate salt marsh productivity under SLR scenarios, an integrated hydrodynamic-marsh model was incorporated to dynamically couple physics and biology. The hydrodynamic model calculates mean high water (MHW) and mean low water (MLW) within the river and tidal creeks by analysis of simulated tidal constituents. The response of MHW and MLW is nonlinear due to local changes in the salt marsh platform elevation and biomass productivity. Spatially-varying MHW and MLW are utilized in a biologic model that is a two-dimensional application of the Marsh Equilibrium Model (Morris et al. 2002) to capture the effects of the hydrodynamics on biomass productivity and accretion. Including accurate marsh table elevations into the model is crucial to obtain accurate biomass productivity results. A lidar-derived Digital Elevation Model (DEM) is corrected by incorporating Real Time Kinematic (RTK) surveying elevation data. Additionally, salt marshes continually adapt themselves to reach an equilibrium, in which there are ideal ranges of relative SLR and depth of inundation to increase biomass productivity (Morris et al. 2002). The inputs of the model are updated using the biomass productivity results at each coupling time step to capture the interaction between the marsh and hydrodynamic models. The hydro-marsh model is used to assess the effects of four projections of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 for the marine dominated Grand Bay, MS estuary and the fluvial dominated Apalachicola, FL estuary. The results show higher productivity under a low SLR scenario and less productivity under the intermediate low SLR

  9. Integrated analysis of environmental drivers, spatiotemporal variability and rates of contemporary chemical and mechanical fluvial denudation in selected glacierized and non-glacierized cold climate catchment systems

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2016-04-01

    There is, by today, an impressive number of quantitative process geomorphic studies presenting contemporary chemical or mechanical fluvial denudation rates from a wide range of cold climate catchment geo-systems worldwide. However, the number of quantitative studies that actually considers and includes all three main components of fluvial transport, i.e. solute transport, suspended sediment transport and bedload transport, is actually rather small. Most of the existing studies include one or, at best, two of these main components. At the same time, it is generally accepted that a knowledge of the quantitative shares of fluvial solute, suspended sediment and bedload transport of the total fluvial transport, together with detailed information on sediment sources and sediment storage, is needed for the reliable quantitative construction and understanding of present-day sedimentary budgets. In this contribution, results from longer-term process geomorphic work conducted in selected glacierized and non-glacierized high-latitude and high-altitude cold climate catchment systems in Norway, Iceland, Sweden and Finland are compared. The size of the six studied catchment geo-systems ranges from 7.0 km2 to 79.5 km2. Contemporary chemical and mechanical fluvial denudation rates measured in the defined catchment systems with different cold climates, varying degrees of glacier coverage, different lithologies and general sediment availabilities, different catchment morphometries, and varying degrees of vegetation cover are presented. By direct comparisons between the six different catchments environmental controls of the computed annual denudation rates are detected and the spatial variability of the contemporary chemical and mechanical fluvial denudation rates found across the different cold climate catchment systems is explained. Annual fluvial denudation rates generally increase with increasing topographic relief, increasing mean slope angles, increasing annual precipitation

  10. A geomorphic-geochemical framework for quantifying the cycling of sediment-associated contaminants in fluvial systems

    NASA Astrophysics Data System (ADS)

    Byrne, Patrick; Lopez-Tarazon, Jose; Williams, Richard

    2016-04-01

    Recent high-profile contamination events linked to extreme floods have underlined the persistent environmental risk posed by legacy metals stored in fluvial systems worldwide. While we understand that the fate of sediment-associated metals is largely determined by the dynamics of the fluvial transport system, we still lack a process-based understanding of the spatial and temporal mechanisms that affect the physical and geochemical transfer of metals through catchments. This interdisciplinary project will exploit advances in geomorphic and geochemical analyses to develop a methodological approach and conceptual framework to answer key questions related to the dynamics and timescales of metal cycling in fluvial systems. The approach will be tested in two reaches of the mining-impacted Afon Twymyn, Wales. The main objectives are: (i) quantify the physical transport of sediment and metals over a range of river flows and model sediment pathways; (ii) establish the geochemical mobility and speciation of sediment-associated metals and how this is modified through the sediment pathways. To achieve these objectives a geomorphic-geochemical combined methodology will be applied. It includes: (i) Aerial imagery that will be acquired from UAV surveys pre- and post-high flows and transformed into high-resolution DEMs using Structure-from-Motion; (ii) suspended sediment flux will be estimated indirectly by field calibration with a logging turbidimeter; (iii) 2D hydraulic and sediment transport model (Delft3D) will be used to quantify the transport of sediment and associated metals and to map the source, pathway and sink of contaminated sediment; (iv) soil and sediment samples (including suspended sediment) will be collected pre- and post-high flows for geochemical (concentration, speciation) and mineralogical (XRD, SEM) analyses; (v) finally, a geochemical model (Geochemists Workbench) will be developed to generate hypotheses that explain observed geochemical change as a function

  11. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    NASA Astrophysics Data System (ADS)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  12. The linkage between hillslope vegetation changes and late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-03-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late Quaternary fluvial aggradation and incision. Perhaps the most well constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode, i.e. the paleo-vegetation change hypothesis (PVCH), posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis, i.e. the extreme-storm hypothesis, attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation and/or incision are consistent with the predictions of the PVCH if the time-transgressive nature of paleo-vegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e. a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  13. Understanding the Fluvial Critical Zone

    NASA Astrophysics Data System (ADS)

    Bätz, N.; Lane, S. N.; Temme, A. J. A. M.; Lang, F.

    2012-04-01

    Geomorphological modelling has evolved significantly the representation of the link between river morphology, flow processes and sediment transport; notably recently, with an emphasis upon the interactions between vegetation dynamics and morphodynamics. Nevertheless, vegetation dynamics have tended to be treated as a simplistic "black box" in which time replaces the more complex underlying processes. Thus, riparian vegetation dynamics not only result from interactions between surface-flow, topography and vegetation resistance to disturbance, but also soil development within the fluvial zone, which affects nutrient and water supply. More generally labeled the critical zone, there is a lack of considering the "critical fluvial zone" in geomorphological models. Understanding the key drivers of this system, thus the processes interrelating vegetation, topography, soil (formation), subsurface- and surface-flow, are crucial to understand how riverine landscapes respond to increasing human pressure and to climate change. In this poster, we consider the likely nature of a braided river critical fluvial zone. Braided rivers in deglaciated forelands provide an opportunity to study the fluvial critical zone due to their dynamic properties, the restricted physical size, the simple ecosystems and the space-for-time relation caused by glacier retreatment after the "Little Ice Age". The poster aims to commence a discussion on the fluvial critical zone, showing first results about: a) the system understanding of a braided river set in a recently deglaciated alpine foreland; b) methodological approaches to quantify the identified interrelating key processes; c) how quantitative understanding can be integrated into fluvial geomorphological modelling.

  14. Detection of fluvial sand systems using seismic attributes and continuous wavelet transform spectral decomposition: case study from the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Ahmad, Mirza Naseer; Rowell, Philip; Sriburee, Suchada

    2014-06-01

    Fluvial sands host excellent oil and gas reservoirs in various fields throughout the world. However, the lateral heterogeneity of reservoir properties within these reservoirs can be significant and determining the distribution of good reservoirs is a challenge. This study attempts to predict sand distribution within fluvial depositional systems by applying the Continuous Wavelet Transformation technique of spectral decomposition along with full spectrum seismic attributes, to a 3D seismic data set in the Pattani Basin, Gulf of Thailand. Full spectrum seismic attributes such as root mean square and coherency help to effectively map fluvial systems down to certain depth below which imaging is difficult in the intervals of interest in this study. However, continuous wavelet transform used in conjunction with other attributes by applying visualization techniques of transparency and RGB can be used at greater depths to extract from 3D seismic data useful information of fluvial depositional elements. This workflow may help to identify different reservoir compartments within the fluvial systems of the Gulf of Thailand.

  15. a Review of Late Holocene Fluvial Systems in the Karst Maya Lowlands with Focus on the Rio Bravo, Belize

    NASA Astrophysics Data System (ADS)

    Beach, T.; Luzzadder-Beach, S.; Krause, S.; Doyle, C.

    2015-12-01

    The Maya Lowlands is mostly an internally draining karst region with about 400 m of regional relief. Fluvial and fluviokarst systems drain the edges of this landscape either from low limestone uplands or igneous and metamorphic complexes. Thus far most fluvial research has focused around archaeology projects, and here we review the extant research conducted across the region and new research on the transboundary Rio Bravo watershed of Belize and Guatemala. The Rio Bravo drains a largely old growth tropical forest today, but was partly deforested around ancient Maya cities and farms from 3,000 to 1000 BP. Several studies estimate that 30 to 40 percent of forest survived through the Maya period. Work here has focused on soils and sediment movement along slope catenas, in floodplain sites, and on contributions from groundwater with high dissolved loads of sulfate and calcium. We review radiocarbon dates and present new dates and soil stratigraphy from these sequences to date slope and floodplain movement, and we estimate ancient land use from carbon isotopic and pollen evidence. Aggradation in this watershed occurred by flooding, gypsum precipitation, upland erosion, and ancient Maya canal building and filling for wetland farming. Soil erosion and aggradation started at least by 3,000 BP and continued through the ancient Maya period, though reduced locally by soil conservation, post urban construction, and source reduction, especially in Maya Classic period from 1700 to 1000 BP.

  16. Influence of growth faults on coastal fluvial systems: Examples from the late Miocene to Recent Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Armstrong, Christopher; Mohrig, David; Hess, Thomas; George, Terra; Straub, Kyle M.

    2014-03-01

    The details of how fluvial systems respond to spatial changes in land-surface subsidence produced by active faulting remain incompletely understood. Here, we examine the degree to which the positioning of individual channels and channel-belts is affected by local maxima in subsidence associated with the hanging walls of growth faults. The channel forms and faults are imaged using a seismic volume covering 1400 km2 of Breton Sound and Barataria Bay in southern Louisiana, USA. We look at the consequences of interactions between channels, channel-belts, and faults in late Miocene to Recent strata. More than fifty individual channels that crossed the traces of active growth faults were examined. Of these channels, only three appear to have been redirected by the faults. There also appeared to be no systematic change in the cross-sectional geometries of channels or channel-belts associated with crossing a fault, though the orientation of the channel-belts appears to be more influenced by faulting than the orientation of individual channels. Seven out of ten mapped channel-belts appear to have been steered by growth faults. We propose that channel belts are more likely to be influenced by faults than individual channels because channel-belts are longer lived features, unlikely to shift their overall position before experiencing a discrete faulting event. In addition, the style of influence in the few cases where an individual channel is affected by a fault is different from that of larger systems. While downstream of a fault channel-belts generally become oriented perpendicular to fault strike, the individual channels are directed along the hanging wall of the fault, running parallel to the fault trace. We relate this to the ratio of the length-scale of fault rollover relative to the channel or channel-belt width. Fluvial-fault interactions with higher values for this ratio are more likely to be carried parallel to the fault trace than systems with lower ratio values.

  17. Natural and anthropogenic indicators of fluvial system changes, the Bobrza Valley (Holy Cross Mts) as an example.

    NASA Astrophysics Data System (ADS)

    Rutkiewicz, Paweł; Gawior, Daniel

    2016-06-01

    Transformations of a fluvial system are caused both by natural factors and human pressure. These factors model the system independently at different times and with different intensities or they affect it simultaneously. The aim of this study is to identify the transformation of the Bobrza river valley system occurring under natural conditions and that occurring under the influence of human activity. The identification was based on specific indicators The study was conducted in the valley mouth of the Bobrza River (Holy Cross Mountains), where three research sites were located. The investigation concerned the relief of the valley and the mineral and organic deposits. A wide range of research methods were used during the study e.g. analysis of LiDAR data, macronutrient analysis, and radioactive dating. The analyses enabled the natural and anthropogenic transformations of the Bobrza river system to be distinguished using the following indicators: morphometric and sedimentological characteristics of the palaeomeander (natural transformation), the sequence of mineral and organic deposits in exposures on the contemporary floodplain (natural and anthropogenic transformation) and transformation associated with the operation of a water mill (anthropogenic transformation). In addition, it is worth mentioning that the Bobrza channel is the location which has provided the only fossils of Juncus subnodulosus in south-east Poland.

  18. Seismic Monitoring Capabilities of the Caribbean and Adjacent Regions Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Saurel, Jean-Marie; von Hillebrandt-Andrade, Christa; Crespo, Hector; McNamara, Dan; Huerfano, Victor

    2014-05-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions during the past 500 years. Since 1500, at least 4484 people are reported to have perished in these killer waves. Hundreds of thousands are currently threatened along the Caribbean coastlines. In 2005 the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) was established. It recommended the following minimum seismic performance standards for the detection and analysis of earthquakes: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. The implementation plan of the CARIBE EWS currently includes 115 seismic stations in the Caribbean and Adjacent Regions. The NOAA National Weather Service Caribbean Tsunami Warning Program prepares and distributes monthly reports on real time and archived seismic data availability of the contributing stations at the US Tsunami Warning Centers, the Puerto Rico Seismic Network and IRIS. As of early 2014, 99 of the proposed stations are being contributed by national, regional and international seismological institutions. Recent network additions (Nicaragua, Colombia, Mexico, Cayman Islands, and Venezuela) have reduced detection threshold, time and location error throughout much of the Caribbean region and Central America. Specifically, earthquakes (>M4.0) can be detected within 1 minute throughout much of the Caribbean. The remaining exceptions to this standard for detection are portions of northern South America and Mexico. Another performance criterion is 90% data availability. Currently 60-70% of the stations meet this standard. The presentation will further report on the status of the CARIBE EWS seismic capability for the timely and accurate detection and analysis of earthquakes for tsunami warning purposes for the Caribbean and Adjacent Regions.

  19. Predicting Facies Patterns within Fluvial Channel Belts

    NASA Astrophysics Data System (ADS)

    Willis, B. J.; Sech, R.; Sun, T.; Pyrcz, M.

    2014-12-01

    Reservoirs (aquifers) in fluvial channel belt sandstones can have very different subsurface flow behavior depending on the degree and distribution of internal heterogeneities. Fluvial channel belts are composed of multiple "storeys" formed as individual channel segments increase in sinuosity and then are cut off and abandoned. Heterogeneities are defined by depositional variations across storeys and inter-story connectivity patterns along the channel belt. Although commonly inferred to reflect the formative river pattern (sinuosity & braiding), the spatial arrangement of facies depend most directly on the relative preservation of deposits formed within different areas of the migrating channels and the lateral stacking arrangement of storeys due to style of bend cutoff. Grains are poorly sorted across the inner bank along upstream parts of channel bends and become better sorted laterally in downstream areas adjacent to a deeper thalweg scour. If deposition occurs evenly along the entire inner bank (bar), this grain size pattern leads to an elliptical body in planview with weak vertical grain size trends upstream and more fining-upward trend downstream. As channel bend segments migrate to a greater extent downstream, preserved inner-bank-bar deposits are increasingly dominated by upward-fining deposits and more outer-bank-deposits are preserved ("concave bank" deposits). Although concave bank deposits have highly variable character in different systems, vertical-grainsize trends tend to be weaker in straighter systems dominated by downstream-accretion, and more strongly upward-fining in higher sinuosity systems where these deposits form by eddy accretion or low flow aggradation. River cutoffs of straighter channel segments abandon slowly, leading to more gradual vertical fining. Subsurface heterogeneity prediction requires documentation of shape and character of deposits preserved in different zones within the channel (upstream and downstream inner bank, concave bank

  20. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to

  1. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    NASA Astrophysics Data System (ADS)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference

  2. Floods and Fluvial Wood

    NASA Astrophysics Data System (ADS)

    Comiti, F.

    2014-12-01

    Several studies have recently addressed the complex interactions existing at various spatial scales among riparian vegetation, channel morphology and wood storage. The majority of these investigations has been carried out in relatively natural river systems, focusing mostly on the long-term vegetation-morphology dynamics under "equilibrium" conditions. Little is still known about the role of flood events - of different frequency/magnitude - on several aspects of such dynamics, e.g. entrainment conditions of in-channel wood, erosion rates of vegetation from channel margins and from islands, transport distances of wood elements of different size along the channel network. Even less understood is how the river's evolutionary trajectory may affect these processes, and thus the degree to which conceptual models derivable from near-natural systems could be applicable to human-disturbed channels. Indeed, the different human pressures - present on most river basins worldwide - have greatly impaired the morphological and ecological functions of fluvial wood, and the attempts to "restore" in-channel wood storage are currently carried out without a sufficient understanding of wood transport processes occurring during floods. On the other hand, the capability to correctly predict the magnitude of large wood transport during large floods is now seen as crucial - especially in mountain basins - for flood hazard mapping, as is the identification of the potential wood sources (e.g. landslides, floodplains, islands) for the implementation of sound and effective hazard mitigation measures. The presentation will first summarize the current knowledge on fluvial wood dynamics and modelling at different spatial and temporal scales, with a particular focus on mountain rivers. The effects of floods of different characteristics on vegetation erosion and wood transport will be then addressed presenting some study cases from rivers in the European Alps and in the Italian Apennines featuring

  3. A regional ocean reanalysis system for coastal waters of China and adjacent seas

    NASA Astrophysics Data System (ADS)

    Han, Guijun; Li, Wei; Zhang, Xuefeng; Li, Dong; He, Zhongjie; Wang, Xidong; Wu, Xinrong; Yu, Ting; Ma, Jirui

    2011-05-01

    A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service (NMDIS). It produces a dataset package called CORA (China ocean reanalysis). The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system (POMgcs). The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations. Data assimilation is a sequential three-dimensional variational (3D-Var) scheme implemented within a multigrid framework. Observations include satellite remote sensing sea surface temperature (SST), altimetry sea level anomaly (SLA), and temperature/salinity profiles. The reanalysis fields of sea surface height, temperature, salinity, and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature, salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges, temperature profiles, as well as the trajectories of Argo floats. Some case studies offer the opportunity to verify the evolution of certain local circulations. These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.

  4. Groundwater recharge to the Gulf Coast aquifer system in Montgomery and Adjacent Counties, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Delin, Geoffrey N.

    2013-01-01

    Simply stated, groundwater recharge is the addition of water to the groundwater system. Most of the water that is potentially available for recharging the groundwater system in Montgomery and adjacent counties in southeast Texas moves relatively rapidly from land surface to surface-water bodies and sustains streamflow, lake levels, and wetlands. Recharge in southeast Texas is generally balanced by evapotranspiration, discharge to surface waters, and the downward movement of water into deeper parts of the groundwater system; however, this balance can be altered locally by groundwater withdrawals, impervious surfaces, land use, precipitation variability, or climate, resulting in increased or decreased rates of recharge. Recharge rates were compared to the 1971–2000 normal annual precipitation measured Cooperative Weather Station 411956, Conroe, Tex.

  5. Acceptable Toxicity After Stereotactic Body Radiation Therapy for Liver Tumors Adjacent to the Central Biliary System

    SciTech Connect

    Eriguchi, Takahisa; Takeda, Atsuya; Sanuki, Naoko; Oku, Yohei; Aoki, Yousuke; Shigematsu, Naoyuki; Kunieda, Etsuo

    2013-03-15

    Purpose: To evaluate biliary toxicity after stereotactic body radiation therapy (SBRT) for liver tumors. Methods and Materials: Among 297 consecutive patients with liver tumors treated with SBRT of 35 to 50 Gy in 5 fractions, patients who were irradiated with >20 Gy to the central biliary system (CBS), including the gallbladder, and had follow-up times >6 months were retrospectively analyzed. Toxicity profiles, such as clinical symptoms and laboratory and radiologic data especially for obstructive jaundice and biliary infection, were investigated in relation to the dose volume and length relationship for each biliary organ. Results: Fifty patients with 55 tumors were irradiated with >20 Gy to the CBS. The median follow-up period was 18.2 months (range, 6.0-80.5 months). In the dose length analysis, 39, 34, 14, and 2 patients were irradiated with >20 Gy, >30 Gy, >40 Gy, and >50 Gy, respectively, to >1 cm of the biliary tract. Seven patients were irradiated with >20 Gy to >20% of the gallbladder. Only 2 patients experienced asymptomatic bile duct stenosis. One patient, metachronously treated twice with SBRT for tumors adjacent to each other, had a transient increase in hepatic and biliary enzymes 12 months after the second treatment. The high-dose area >80 Gy corresponded to the biliary stenosis region. The other patient experienced biliary stenosis 5 months after SBRT and had no laboratory changes. The biliary tract irradiated with >20 Gy was 7 mm and did not correspond to the bile duct stenosis region. No obstructive jaundice or biliary infection was found in any patient. Conclusions: SBRT for liver tumors adjacent to the CBS was feasible with minimal biliary toxicity. Only 1 patient had exceptional radiation-induced bile duct stenosis. For liver tumors adjacent to the CBS without other effective treatment options, SBRT at a dose of 40 Gy in 5 fractions is a safe treatment with regard to biliary toxicity.

  6. Comment on “Human impacts on headwater fluvial systems in the northern and central Andes” (Carol P. Harden, Geomorphology 79, 249 263)

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert; Celleri, Rolando; Cisneros, Felipe; Wyseure, Guido; Deckers, Seppe

    2008-04-01

    The high altitude grasslands of the tropical Andes, known as páramo, are a very fragile and unique ecosystem. Despite increasing human activities, many of its geomorphological and hydrological processes are still very poorly understood. We therefore welcome the paper of Harden [Harden, C.P., 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79, 249-263.] about "Human impacts on headwater fluvial systems in the northern and central Andes" as a valuable contribution to a better understanding of this complex ecosystem. However, in view of the available literature, we would like to complement the interpretation of the presented results and discuss some of the claims made in the paper.

  7. Fluvial mudstone breccias and their petroleum significance

    SciTech Connect

    Putnam, P.E.

    1987-05-01

    The classic fining-upward model of fluvial deposition places mudstone breccia fragments as basal channel lag deposits. Basal breccias can form by bank erosion and collapse by migrating channels and channel down-cutting into preexisting mudstones. However, mudstone breccias associated with fluvial sediments display much wider distributions and can be found at the top of channel fills. Some formative mechanisms for breccias found toward the tops of fluvial sequences are (1) gravity sliding down point bar surfaces; (2) bank erosion and collapse by migrating underfit streams found within abandoned channel reaches undergoing vertical accretion and; (3) oversteepening and collapse of channel banks in response to stage fluctuations. Thus, breccia deposits can be located above or adjacent to well-sorted porous and permeable sands. In the subsurface, fluvial breccias are difficult to recognize in core if individual clasts are larger than the borehole diameter and flat lying. Dense concentrations of clasts also influence log readings by displaying high gamma-ray and relatively positive spontaneous potential responses. Core analyses commonly give misleadingly low indications of porosity and permeability because of the relatively small sample sizes available. It is very easy to mistake thick, dense concentrations of mudstone breccia for the deposits of shale-filled channels. Breccias found at the top of fluvial sequences are commonly overlooked reservoirs because hydrocarbons will be found in zones characterized by very large impervious blocks formed of muddy sediment. Recognition of the presence and distribution of breccias is crucial in the exploration and development of channel reservoirs.

  8. The carbonate system of the amur estuary and the adjacent marine aquatic areas

    NASA Astrophysics Data System (ADS)

    Koltunov, A. M.; Tishchenko, P. Ya.; Zvalinskii, V. I.; Chichkin, R. V.; Lobanov, V. B.; Nekrasov, D. A.

    2009-10-01

    In July 2007, integrated studies of the Amur Estuary and the adjacent aquatic areas were performed on board R/V Professor Gagarinskii within the project of the Amur River basin exploration. On the basis of the data obtained during the cruise, the carbonate system of the Amur Estuary in the summer period was considered. It was shown that the distribution of the carbonate parameters in the Amur Estuary and the adjacent aquatic areas points to the high intensity of the bio-geochemical processes of production and mineralization of organic matter. It was found that the organic matter destruction is prevailing over the photosynthesis in the riverine part of the estuary. This aquatic area is a source of carbon dioxide for the atmosphere and rates as a heterotrophic basin. On the contrary, the surface waters at the outer boundaries of the estuary (the Gulf of Sakhalin and the Tatar Strait) act as a sink of the atmospheric carbon dioxide, which is caused by the intense photosynthesis in this area. This part of the estuary is treated as an autotrophic basin.

  9. Resource Documentation and Recharge Area Delineation of a Large Fluvial Karst System: Carroll Cave, Missouri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Located along Wet Glaize Creek in the central Missouri Ozarks, Toronto Spring is a distributary spring system where surface stream flow mixes with flow from the Carroll Cave system. Following recharge area delineations for Thunder River and Confusion Creek in Carroll Cave, flow from these rivers wa...

  10. Lower Triassic sequence stratigraphy of the western part of the Germanic Basin (west of Black Forest): Fluvial system evolution through time and space

    NASA Astrophysics Data System (ADS)

    Bourquin, Sylvie; Peron, Samuel; Durand, Marc

    2006-05-01

    The aim of this paper is to analyse the fluvial evolution of the Lower Triassic in the western part of the Germanic Basin through time and space, as well as the impact of the geodynamic and climatic setting on the preservation of fluvial deposits. The Lower Triassic crops out only in the Vosges Massif and the Black Forest, so well-log studies are required to realise sequence stratigraphy correlations and establish comparisons with others parts of the Germanic Basin. In a first step, we use well-log data analyses to characterise the electrofacies associations in the Triassic and then define the well-log signatures of each formation. In a second step, the characterisation and recognition of genetic sequences and their stacking pattern allow us to define seven minor cycles integrated into two major cycles. Finally, the quantification of the lithologies at different stages of basin evolution leads to the reconstruction of paleoenvironmental maps to illustrate facies evolution through space and time. A comparison with cycles defined in the Germanic Basin allows us to propose correlations of the Lower Triassic on either side of the Rhine Graben and leads to a discussion of the evolution of fluvial systems through time and space. During the Scythian, the fluvial style is characterised by braided fluvial systems evolving laterally into lake deposits towards the central part of the Germanic Basin. During this stage, the basin was a huge depression with very few marine connections in its extreme eastern part. The stratigraphic cycles represent rhythmic fluctuations in relative lake level that could be attributed to sediment supply and/or lake level variations in an arid setting. Four minor stratigraphic cycles are observed that are integrated within a single major stratigraphic cycle. During the period of the stratigraphic base-level rise of the major cycle, a maximum of 233 m of sediment would represent a duration of sedimentation in the Paris Basin of at least 1.8 m

  11. An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA*

    PubMed Central

    Fischer, Susan; Maier, Lisa-Katharina; Stoll, Britta; Brendel, Jutta; Fischer, Eike; Pfeiffer, Friedhelm; Dyall-Smith, Mike; Marchfelder, Anita

    2012-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum. PMID:22767603

  12. Spatial-temporal fluvial morphology analysis in the Quelite river: It's impact on communication systems

    NASA Astrophysics Data System (ADS)

    Ramos, Judith; Gracia, Jesús

    2012-01-01

    SummaryDuring 2008 and 2009 heavy rainfall took place around the Mazatlan County in the Sinaloa state, Mexico, with a return period (Tr) between 50 and 100 years. As a result, the region and its infrastructure, such as the railways and highways (designed for a Tr = 20 years) were severely exposed to floods and, as a consequence damage caused by debris and sediments dragged into the channel. One of the highest levels of damage to the infrastructure was observed in the columns of Quelite River railway's bridge. This is catastrophic as the railway is very important for trade within the state and also among other states in Mexico and in the USA. In order to understand the impact of the flooding and to avoid the rail system being damaged it is necessary to analyse how significant the changes in the river channel have been. This analysis looks at the definition of the main channel and its floodplain as a result of the sediment variability, not only at the bridge area, but also upstream and downstream. The Quelite River study considers the integration of Geographic Information Systems (GIS) and remote sensing data to map, recognise and assess the spatio-temporal change channel morphology. This increases the effectiveness of using different types of geospatial data with in situ measurements such as hydrological data. Thus, this paper is an assessment of a 20 years study period carried out using historical Landsat images and aerial photographs as well as recent Spot images. A Digital Elevation Model (DEM) of local topography and flow volumes were also used. The results show the Quelite River is an active river with a high suspended sediment load and migration of meanders associated to heavy rainfall. The river also has several deep alluvial floodplain channels which modified the geometry and other morphological characteristics of the channel in the downstream direction. After the identification of the channel changes, their causes and solutions to control, the channel

  13. Fluvial geomorphology and paleohydrology in Japan

    NASA Astrophysics Data System (ADS)

    Oguchi, Takashi; Saito, Kyoji; Kadomura, Hiroshi; Grossman, Michael

    2001-07-01

    An introduction to fluvial geomorphology and paleohydrology in Japan is provided for researchers who are unfamiliar with these topics. Studies by Japanese geomorphologists are reviewed including those published only in Japanese-language journals. Emphasis is placed upon the following aspects: (1) abundant sediment yields from steep watersheds subjected to frequent heavy rains despite heavily vegetated conditions, (2) extensive sedimentation in mountain piedmonts and coastal fluvial plains especially during the Holocene, (3) catastrophic hydro-geomorphological events associated with earthquakes and volcanic eruptions, and (4) the impacts of the increased heavy rainfall during the Pleistocene-Holocene transition on the post glacial development of hillslopes and alluvial fans. These geomorphological characteristics differ from those in continental regions, such as Europe and North America, indicating that research on Japanese fluvial systems can contribute a great deal to the understanding of the global variety of fluvial geomorphology. Recent work on paleohydrological reconstruction in Japan is also reviewed.

  14. The influence of volcanism on fluvial depositional systems in a Cenozoic strike-slip basin, Denali fault system, Yukon Territory, Canada

    SciTech Connect

    Cole, R.B.; Ridgway, K.D. )

    1993-01-01

    The depositional history of the Eocene-Oligocene Burwash strike-slip basin is characterized by a transition from non-volcanic clastic sedimentation of the Amphitheater Formation to deposition of lavas and volcaniclastic rocks of the overlying lower Wrangell volcanic sequence. The purpose of this paper is twofold: (1) to document the contemporaneous fluvial and volcanic depositional history of a nonmarine strike-slip basin, and (2) to discuss the transition from non-volcanic to volcanic deposition in the context of strike-slip basin evolution. The authors indicate that the onset of volcanism within strike-slip basins can result in major reorganizations of drainage systems as well as changes in sediment sources.

  15. Late tertiary and quaternary fluvial deposits in the Mesilla and Hueco bolsons, El Paso area, Texas

    NASA Astrophysics Data System (ADS)

    Stuart, Charles J.; Willingham, Daniel L.

    1984-03-01

    The late Tertiary to Quaternary Fort Hancock and Camp Rice Formations fill several extensional basins of the southern Rio Grande Rift. Interior drainage and central playa lakes characterize most of these rift basins. However, sedimentation in two basins located in the central part of the southern rift, the Mesilla and Hueco bolsons, was also greatly influenced by a northern segment of the ancestral Rio Grande river system. During the late Pliocene, a large-scale stream system entered the north end of the Mesilla bolson and deposited a south-sloping fluvial plain that overwhelmed playa lake and bolson-margin areas. The fluvial plain subsequently advanced across the eastern or southeastern margins of the Mesilla bolson then inundated a playa lake in the adjacent Hueco bolson. The Fort Hancock Formation was deposited during fluvial inundation of the bolsons. Four lithofacies of the Fort Hancock Formation are recognized: claystone, mudstone and sandstone, channelized sandstone, and conglomerate. The conglomerate and claystone facies were deposited in bolson-margin and playa depositional environments, respectively. The channelized sandstone facies formed the proximal fluvial plain of the ancestral Rio Grande system. The mudstone and sandstone facies formed in both playa-margin and distal fluvial-plain environments. By the middle Pleistocene, a major drainage basin south of the Hueco bolson, which formed the southern segment of the ancestral Rio Grande system, extended northward into the Hueco and Mesilla bolsons. At this time, the Rio Grande system was entirely integrated from southern Colorado to the Gulf of Mexico. Pebbly, coarse sand transported through this channel system formed the middle Pleistocene Camp Rice Formation.

  16. Laser Scanning Applications in Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Alho, P.

    2014-12-01

    During recent decades, the use of high-resolution laser scanning data in fluvial studies has rapidly increased. Airborne laser scanning (ALS) can be used to extensively map riverine topography. Laser scanning data have great potential to improve the effectiveness of topographical data acquisition and the accuracy and resolution of DTMs (Digital Terrain Models) needed in fluvial geomorphology. Airborne Laser Scanning (ALS) is applicable for mapping areas varying from reach to catchment scale and these data are, therefore, particularly suitable, especially for hydraulic modelling, mapping of flood inundation, and the detection of macro-scale fluvial geomorphology. With Terrestrial Laser Scanning (TLS) a spatial resolution of less than 1 mm and a range accuracy of few millimetres can be achieved. Mobile Laser Scanning (MLS) enables a remarkably faster survey approach compared to the conventional TLS method. One of the newest applications of MLS approaches involves a boat/cart/backpack -based mobile mapping system. This set-up includes laser scanning and imaging from a platform moving along a river course or floodplain and may be used to expand the spatial extent of terrestrial scanning. Detailed DTMs derived from laser scanning data can be used to improve the recognition of fluvial landforms, the geometric data of hydraulic modelling, and the estimation of flood inundation extents and the associated fluvial processes. Fluvial environments also offer challenges for the application of laser scanning techniques. Factors such as vegetation cover, terrain undulation, coarse surface materials and water surfaces may distort a laser scanning survey.

  17. Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng; Kimura, Nobuaki; Hsu, Ming-Hsi

    2010-09-01

    A three-dimensional hydrodynamic model was created to study the Danshuei River estuarine system and adjacent coastal ocean in Taiwan. The model was verified using measurements of the time-series water surface elevation, tidal current, and salinity from 1999. We conclude that our model is consistent with these observations. Our particle-tracking model was also used to explore the transport of particles released from the Hsin-Hai Bridge, an area that is heavily polluted. The results suggest that it takes a much longer time for the estuary to be flushed out under low freshwater discharge conditions than with high freshwater discharge. We conclude that the northeast and southwest winds minimally impact particle dispersion in the estuary. The particles fail to settle to the bottom in the absence of density-induced circulation. Our model was also used to simulate the ocean outfall at the Bali. Our experimental results suggest that the tidal current dominates the particle trajectories and influences the transport properties in the absence of a wind stress condition. The particles tend to move northeast or southwest along the coast when northeast or southwest winds prevail. Our data suggest that wind-driven currents and tidal currents play important roles in water movement as linked with ocean outfall in the context of the Danshuei River. PMID:19680754

  18. The linkages among hillslope-vegetation changes, elevation, and the timing of late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-08-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late-Quaternary fluvial-system aggradation and incision. Perhaps the most well-constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode - i.e., the paleovegetation-change hypothesis (PVCH) - posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis - i.e., the extreme-storm hypothesis - attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation are consistent with the predictions of the PVCH if the time-transgressive nature of paleovegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e., a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  19. Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt

    USGS Publications Warehouse

    Bown, T.M.

    1982-01-01

    The ichnofossils and rhizoliths of the Oligocene Jebel Qatrani Formation of Egypt are among the best preserved, most diverse in form, and most abundant of such structures yet recognized in fluvial rocks. Twenty-one forms are described. The ichnofauna contains traces (domichnia, fodinichnia, cubichnia) of probable annelid, insect, crustacean, and vertebrate origin. These include the first described fossil nest structures and gallery systems of subterranean termites (Isoptera), the first examples of Ophiomorpha from wholly fluvial rocks, and the first fossil vertebrate burrows from the African Tertiary. Rhizoliths associated with the ichnofauna and those occurring elsewhere document a variety of small, wetland plants, coastal mangroves, and much larger trees. The environment suggested by these traces is consistent with the coastal, tropical to subtropical, monsoonal rain forest, with adjacent more open areas, that is indicated by independent evidence of sedimentology, paleontology, and paleopedology. ?? 1982.

  20. Geomorphic processes and evolution of Buttermilk Valley and selected tributaries, West Valley, New York. Phase II. Fluvial systems and erosion study

    SciTech Connect

    Boothroyd, J.C.; Timson, B.S.; Dunne, L.A.

    1982-07-01

    Repetitive bar and channel mapping at several scales, clast size and movement measurements, suspended-sediment sampling, and stream gaging of a 5 km reach of Buttermilk Creek and selected tributaries at West Valley, New York, have been carried out to determine short-term depositional and erosional processes as well as long-term valley changes adjacent to the low-level nuclear waste disposal site and other areas of the Western New York Nuclear Service Center. Changes to bar-and-channel geometry in Buttermilk Creed are the result of migration of large transverse bars in equilibrium with large floods, such as occurred during Hurricane Fredric, September 1979. Large amounts of lower terrace gravel are also recycled during these events. Downslope movement of landslides by slumping and earthflow appears to be a continuous process (1.5 m/sup 3/yr/sup -1/). Volumetrically it is a small sediment source except when sudden failure by block gliding deposits a large mass in Buttermilk Creek. Quantitative values of bedload transport, suspended-load sediment transport, and reservoir infill rates compare well with a simple denudation rate (6600 m/sup 3/yr/sup -1/). The middle-to high-level fluvial terraces in Buttermilk Creek are either adjacent to tributary confluences and preserved by an excess of bedload over transport capacity, or survive because the channel is stable on the opposite side of the valley for unknown reasons. The convex longitudinal profile of Franks Creek/Erdman Brook suggests that it is unstable and will continue to downcut rapidly. Valley widening will occur by parallel retreat of slopes. The future lowering of Buttermilk Creek is controlled by bedrock floors in Cattaraugus Creek and lower Buttermilk Creek. However, tributary lowering and widening will continue independent of a change in base-level of Buttermilk Creek.

  1. Data mining of external and internal forcing of fluvial systems for catchment management: A case study on the Red River (Song Hong), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea

    2013-04-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a

  2. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  3. Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: Lessons from the Río Colorado, Altiplano endorheic basin, Bolivia

    NASA Astrophysics Data System (ADS)

    Donselaar, M. E.; Cuevas Gozalo, M. C.; Moyano, S.

    2013-01-01

    The Río Colorado dryland river system in the southeast of the endorheic Altiplano Basin (Bolivia) terminates on a very flat coastal plain at the edge of the Salar de Uyuni, the world's largest salt pan with an area of ca. 12,500 km2. Since the Pleistocene the basin has experienced several lake expansion and contraction cycles in response to wetter and drier climate periods, respectively. At present the basin is in a dry climate period which results in a lake level lowstand and progradation of fluvial systems such as the Río Colorado onto the former lake bottom. The present field study of the terminus of the Río Colorado shows that the river experiences a gradual downstream decrease of bankfull width and depth. This bankfull decrease is caused by the combined effects of: (1) extremely low gradient of the lake bottom and, hence, loss of flow energy, and (2) downstream transmission losses due to high evaporation potential and river water percolation through the channel floor. Peak water discharge in seasonal, short-duration rain periods causes massive overbank flooding and floodplain inundation. On satellite images the morphology of the river terminus has a divergent pattern and resembles a network of coeval sinuous distributary channels. However, field observations show that only one channel is active at low flow stage, and at high-flow stage an abandoned, partially infilled channel may be active as well. The active channel at its termination splits into narrow and shallow anastomosing streams before its demise on the lacustrine coastal plain. The rest of the channels which form the divergent network are older sediment-filled abandoned sinuous river courses with multiple random avulsion points. These channel deposits, together with extensive amalgamated crevasse-splay deposits, form an intricate network of fluvial sand deposits. Successive stages of progressively deeper crevasse-channel incision into the floodplain are the result of waning-stage return flow of

  4. The fluvial record of climate change.

    PubMed

    Macklin, M G; Lewin, J; Woodward, J C

    2012-05-13

    Fluvial landforms and sediments can be used to reconstruct past hydrological conditions over different time scales once allowance has been made for tectonic, base-level and human complications. Field stratigraphic evidence is explored here at three time scales: the later Pleistocene, the Holocene, and the historical and instrumental period. New data from a range of field studies demonstrate that Croll-Milankovitch forcing, Dansgaard-Oeschger and Heinrich events, enhanced monsoon circulation, millennial- to centennial-scale climate variability within the Holocene (probably associated with solar forcing and deep ocean circulation) and flood-event variability in recent centuries can all be discerned in the fluvial record. Although very significant advances have been made in river system and climate change research in recent years, the potential of fluvial palaeohydrology has yet to be fully realized, to the detriment of climatology, public health, resource management and river engineering. PMID:22474679

  5. An approach for aggregating upstream catchment information to support research and management of fluvial systems across large landscapes.

    PubMed

    Tsang, Yin-Phan; Wieferich, Daniel; Fung, Kuolin; Infante, Dana M; Cooper, Arthur R

    2014-01-01

    The growing quality and availability of spatial map layers (e.g., climate, geology, and land use) allow stream studies, which historically have occurred over small areas like a single watershed or stream reach, to increasingly explore questions from a landscape perspective. This large-scale perspective for fluvial studies depends on the ability to characterize influences on streams resulting from throughout entire upstream networks or catchments. While acquiring upstream information for a single reach is relatively straight-forward, this process becomes demanding when attempting to obtain summaries for all streams throughout a stream network and across large basins. Additionally, the complex nature of stream networks, including braided streams, adds to the challenge of accurately generating upstream summaries. This paper outlines an approach to solve these challenges by building a database and applying an algorithm to gather upstream landscape information for digitized stream networks. This approach avoids the need to directly use spatial data files in computation, and efficiently and accurately acquires various types of upstream summaries of landscape information across large regions using tabular processing. In particular, this approach is not limited to the use of any specific database software or programming language, and its flexibility allows it to be adapted to any digitized stream network as long as it meets a few minimum requirements. This efficient approach facilitates the growing demand of acquiring upstream summaries at large geographic scales and helps to support the use of landscape information in assisting management and decision-making across large regions. PMID:25392769

  6. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year−1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year−1 to about 200 Mt year−1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross

  7. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  8. Creation of the relevant next: How living systems capture the power of the adjacent possible through sign use.

    PubMed

    Favareau, Donald F

    2015-12-01

    Stuart Kauffman's revolutionary notion of the Adjacent Possible as an organizing principle in nature shares much in common with logician Charles S. Peirce's understanding of the universe as an ever-unfolding 'process ontology' of possibility space that is brought about through the recursive interaction of genuine possibility, transiently actualized order, and emergent (but never fully deterministic) lawfulness. Proceeding from these three fundamental categories of becoming-as-being, Peirce developed a complimentary logic of sign relations that, along with Estonian biologist Jakob von Uexküll's action-as-meaning-imprinting Umwelt theory, informs the work that is currently being undertaken under the aegis of Biosemiotics. In this paper, I will highlight the deep affinities between Kauffman's notion of the Adjacent Possible and Biosemiotics' hybrid Peircean/Uexküllian "sign" concept, by which living systems - both as individuals and in the aggregate (i.e., as co-actors, communities and lineages) - "capture" relevant aspects of their relations with the immediately given Adjacent Possible and preserve those recipes for future interaction possibilities as biologically instantiated signs. By so doing, living systems move into the Adjacent Possible by "collapsing the wave function" of possibility not just probabilistically, but guided by system-internal values arising from previously captured sign relations that are biologically instantiated as replicable system biases and generative constraints. The influence of such valenced and end-directed action in the world introduces into the universe the phenomenon of the Relevant (and not just deterministic, or even stochastic) Next. My argument in this paper is that organisms live out their lives perpetually confronted with negotiating the omnipresent Relevant Next, and are informed by the biological capture of their (and their lineage's) previous engagements in doing so. And because that "capture" of previous agent

  9. 2010 M=7.0 Haiti Earthquake Calculated to Increase Failure Stress on Adjacent Segments of the Enriquillo Fault and Adjacent Thrust Systems

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Stein, Ross S.; Sevilgen, Volkan; Toda, Shinji

    2010-05-01

    We calculate that the Haiti earthquake increased the failure stress on the adjacent segments of the Enriquillo Fault and other thrust faults. Of particular concern is the segment on the Enriquillo Fault immediately to the east of the 12 January rupture. This fault section, which comes within 5 km of Port-au-Prince, is calculated to have been brought about 2-5 bars closer to failure. The inference of stress increase on this eastern section is relatively robust regardless of the specific source models used from available seismic and geodetic inversions. The next most loaded section on the Enriquillo Fault lies to the west of the 12 January rupture, where stress is calculated to have been brought about 1 bar closer to failure. The calculated stress increases on this western section, however, are more sensitive to the source models used in the calculation. Thus far we have tested several teleseismic and InSAR-based models, all of which assume slip occurred on a single north-dipping planar surface. If significant coseismic slip took place on a reverse fault at the western end of the 12 January rupture, these models will need further revision. Previous GPS measurements have shown tectonic loading of 7 ± 2 mm/yr on the Enriquillo Fault, yielding about 1.7 m of accumulated loading since large quakes last struck this region in 1751 and 1770. One or both of these appear to be coupled events separated by days to months, but it is unclear if these struck on the Enriquillo Fault. Thus, there is at least a possibility of future large quakes on these segments of the Enriquillo Fault. We also calculate stress increase of about 0.1-0.5 bars on some surrounding thrust faults, as well as a small increase of 0.05 bars on the Septentrional Fault between Port-de-Paix and Cap-Haitien, which lie 155 km north of the 12 January rupture. Preliminary models are available at http://pubs.usgs.gov/of/2010/1019/.

  10. Aggradation of gravels in tidally influenced fluvial systems: Upper Albian (Lower Cretaceous) on the cratonic margin of the North American Western Interior foreland basin

    USGS Publications Warehouse

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.L.; Phillips, P.L.; White, T.S.; Ufnar, David F.; Gonzalez, Luis A.; Joeckel, R.M.; Goettemoeller, A.; Shirk, B.R.

    2003-01-01

    Alluvial conglomerates were widely distributed around the margin of the Early Cretaceous North American Cretaceous Western Interior Seaway (KWIS). Conglomerates, sandstones, and lesser amounts of mudstones of the upper Albian Nishnabotna Member of the Dakota Formation were deposited as fill-in valleys that were incised up to 80 m into upper Paleozoic strata. These paleovalleys extended southwestward across present-day northwestern Iowa into eastern Nebraska. Conglomerate samples from four localities in western Iowa and eastern Nebraska consist mostly of polycrystalline quartz with lesser amounts of microcrystalline (mostly chert), and monocrystalline quartz. Previous studies discovered that some chert pebbles contain Ordovician-Pennsylvanian invertebrate fossils. The chert clasts analyzed in this study were consistent with these findings. In addition, we found that non-chert clasts consist of metaquartzite, strained monocrystalline quartz and 'vein' quartz from probable Proterozic sources, indicating that parts of the fluvial system's sediment load must have travelled distances of 400-1200 km. The relative tectonic stability of this subcontinent dictated that stream gradients were relatively low with estimates ranging from 0.3 to 0.6 m/km. Considering the complex sedimentologic relationships that must have been involved, the ability of low-gradient easterly-sourced rivers to entrain gravel clasts was primarily a function of paleodischarge rather than a function of steep gradients. Oxygen isotopic evidence from Albian sphaerosiderite-bearing paleosols in the Dakota Formation and correlative units from Kansas to Alaska suggest that mid-latitude continental rainfall in the Albian was perhaps twice that of the modern climate system. Hydrologic fluxes may have been related to wet-dry climatic cycles on decade or longer scales that could account for the required water supply flux. Regardless of temporal scale, gravels were transported during 'high-energy' pulses, under

  11. pp iii The importance of high-resolution monitoring in erosion and deposition dynamics studies: examples from estuarine and fluvial systems

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2005-01-01

    Erosion and deposition processes lie at the centre of geomorphological explanation, but progress in understanding has been limited by a lack of appropriate high-resolution monitoring methodologies which permit detection of erosion and deposition dynamics. This paper presents a case for monitoring erosion and deposition at high temporal resolutions, and uses hypothetical approaches supported by example erosion and deposition events and analyses drawn from estuarine and fluvial systems. The paper first presents testable hypotheses to demonstrate the complexity of possible event combinations, sequences and juxtapositions for the erosion driving forces which underpin the need for high-resolution monitoring. Second, it summarises recent improvements to the Photo-Electronic Erosion Pin (PEEP) automatic erosion and deposition monitoring system, including the novel concept of Thermal Consonance Timing (TCT), which is particularly promising because it helps to define the timing of nocturnal events and through the entire hydrograph. Third, example results are discussed from high-resolution monitoring of bank erosion at a tidal site at Burringham on the River Trent in northern England. Tidal banks are revealed to be much more dynamic than previous conventional monitoring has indicated. A key result is that, because the high-resolution approach allows erosional and depositional activity to be assigned to specific periods of tidal inundation, it becomes possible for the first time routinely to produce 'event-based' erosion (36 mm h -1) and deposition rates (4.5 and 8.4 mm h -1). Such rate determinations are potentially very useful in the field validation of sedimentological and geomorphological models, including grain settling and resuspension theory. Fourth, through a longer term of aggregated daily data, a striking 2-week cycle of deposition and erosion emerges which correlates most strongly with spring-neap tidal cycling, but is moderated by wind stress effects. Sediment was

  12. Benthic polychaete diversity patterns and community structure in the Whittard Canyon system and adjacent slope (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Gunton, Laetitia M.; Neal, Lenka; Gooday, Andrew J.; Bett, Brian J.; Glover, Adrian G.

    2015-12-01

    We examined deep-sea macrofaunal polychaete species assemblage composition, diversity and turnover in the Whittard Canyon system (NE Atlantic) using replicate megacore samples from three of the canyon branches and one site on the continental slope to the west of the canyon, all at ~3500 m water depth. A total of 110 polychaete species were recorded. Paramphinome jeffreysii was the most abundant species (2326 ind. m-2) followed by Aurospio sp. B (646 ind. m-2), Opheliidae sp. A (393 ind. m-2), Prionospio sp. I (380 ind. m-2), and Ophelina abranchiata (227 ind. m-2). Species composition varied significantly across all sites. From west to east, the dominance of Paramphinome jeffreysii increased from 12.9% on the slope to 39.6% in the Eastern branch. Ordination of species composition revealed that the Central and Eastern branches were most similar, whereas the Western branch and slope sites were more distinct. High abundances of P. jeffreysii and Opheliidae sp. A characterised the Eastern branch of the canyon and may indicate an opportunistic response to a possible recent input of organic matter inside the canyon. Species richness and diversity indices were higher on the slope compared with inside the canyon, and the slope site had higher species evenness. Within the canyon, species diversity between branches was broadly similar. Despite depressed diversity within the canyon compared with the adjacent slope, the fact that 46 of the 99 polychaete species found in the Whittard Canyon were not present on the adjacent slope suggests that this feature may enhance the regional species pool. However, our sampling effort on the adjacent slope was insufficient to confirm this conclusion.

  13. A novel CT imaging system with adjacent double X-ray sources.

    PubMed

    An, Mou; Xie, Yaoqin

    2013-01-01

    Current computed tomography (CT) scanners rotate fast to reduce motion artifact. X-ray tube must work in a high power to make the image clear under short exposure time. However, the life span of such a tube may be shortened. In this paper, we propose a novel double sources CT imaging system, which puts two of the same X-ray sources closely with each other. The system is different from current dual source CT with orthogonal X-ray sources. In our system, each projection is taken twice by these two sources to enhance the exposure value and then recovered to a single source projection for image reconstruction. The proposed system can work like normal single source CT system, while halving down the working power for each tube. PMID:24348737

  14. A Novel CT Imaging System with Adjacent Double X-Ray Sources

    PubMed Central

    Xie, Yaoqin

    2013-01-01

    Current computed tomography (CT) scanners rotate fast to reduce motion artifact. X-ray tube must work in a high power to make the image clear under short exposure time. However, the life span of such a tube may be shortened. In this paper, we propose a novel double sources CT imaging system, which puts two of the same X-ray sources closely with each other. The system is different from current dual source CT with orthogonal X-ray sources. In our system, each projection is taken twice by these two sources to enhance the exposure value and then recovered to a single source projection for image reconstruction. The proposed system can work like normal single source CT system, while halving down the working power for each tube. PMID:24348737

  15. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of

  16. Dating fluvial archives of the Riverine Plain, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Daniela; Cohen, Tim; Reinfelds, Ivars; Jacobs, Zenobia; Shulmeister, James

    2016-04-01

    The Riverine Plain of Southeastern Australia is characterized by a multiplicity of relict river channels. Compared to the modern drainage system the most prominent of those distinct features are defined by large bankfull channel widths, large meander wavelengths and coarse sediment loads. Such morphological differences provide evidence for regimes of higher discharge, stemming from significant changes in runoff volumes, flood-frequency regimes and sediment supply. An existing geochronology for some of these channels is based on multi-grain thermoluminescence (Murrumbidgee River; Page et al., 1996) or radio-carbon dating (Goulburn River; Bowler, 1978) and indicates enhanced fluvial activity between 30 to 13 ka. The absence of exact Last Glacial Maximum (LGM, 21 ± 3 ka) ages of the Murrumbidgee palaeochannels was interpreted to indicate decreased fluvial activity during the peak of the LGM but was not inferred for the nearby Goulburn River. Recent developments in optical dating, especially measurements of individual grains of quartz, allow for an examination of these previous findings. Key sites along the Murrumbidgee and Goulburn Rivers have been revisited and new sites of the adjacent Murray River have been investigated. A revised, high-resolution geochronology based on single-grain optically stimulated luminescence dating is used to examine the precise occurrence of those massive channels and their implications for the Southern Hemisphere LGM. References: Page, K., Nanson, G., Price, D. (1996). Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11(4): 311-326. Bowler, J. (1978). Quaternary Climate and Tectonics in the Evolution of the Riverine Plain, Southeastern Australia. In: Davies, J. & Williams, M. (Editors). Landform Evolution in Australia, Australian National University Press: Canberra. p. 70-112.

  17. Ground-based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness

    USGS Publications Warehouse

    Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.

    2008-01-01

    Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.

  18. Depositional history of the Late Triassic Chinle fluvial system at the Petrified Forest National Park: U-Pb geochronology, regional correlation and insights into early dinosaur evolution

    NASA Astrophysics Data System (ADS)

    Ramezani, J.; Fastovsky, D. E.; Bowring, S. A.; Hoke, G. D.

    2010-12-01

    Understanding patterns of biotic evolution and climate change in deep time requires a reliable temporal framework. The Colorado Plateau contains a rich record of both, but is lacking in reliable age data. High-precision U-Pb geochronology has the power to resolve subtle differences among mixed populations of volcanic zircon contained in tuffaceous sedimentary rocks. We report maximum depositional ages for interbedded tuffaceous rocks collected within a highly refined stratigraphic context from the Late Triassic Chinle Formation as exposed in the Petrified Forest National Park, AZ, USA. The results provide unprecedented insights into the depositional history of the Chinle fluvial system, as well as key data on the biostratigraphy of Late Triassic land vertebrate faunas. Our geochronological results indicate that the Blue Mesa, Sonsela and Petrified Forest Members of Chinle Formation, with a cumulative thickness of ca. 293 meters, were deposited during a period in excess of 17 m.y. that spans nearly the entire Norian stage of the Late Triassic. The underlying Mesa Redondo Member may extend into Carnian and the overlying Owl Rock Member into Rhaetian. Different stratigraphic intervals within the section are characterized by drastically different average sediment accumulation rates; the highest rates are found in the Sonsela Member and most likely reflect missing time due to erosion associated with extensive channeling preserved in this unit. The new Chinle geochronology demonstrates that the common practice of basin-wide correlation of fluvial strata based on lithostratigraphic criteria is prone to serious errors. A mid-Norian age for the Adamanian to Revueltian land vertebrate faunachron boundary, as suggested by the revised Late Triassic timescale, is no longer compatible with the idea that the faunachron boundary is coincident with the Carnian-Norian Stage boundary. Our new temporal constraints for the Chinle along with limited available age data from the South

  19. Fluvial system response to abrupt climate change: sedimentary record example of the Paleocene-Eocene Thermal Maximum (PETM) in the South-Pyrenean foreland basin, Spain

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Castelltort, Sebastien; Foreman, Brady; Hassenruck-Gudipati, Hima J.

    2015-04-01

    The "Paleocene-Eocene Thermal Maximum" (PETM), is understood to be an extreme and short-lived (ca.150-220kya) global warming event that occurred 55.8 million years ago and during which global annual temperatures are estimated to have increased by ca. 5-8°C, with respect to sea surface temperatures and ca. 4-5°C, with respect to the deep sea. A remaining outstanding question is: in addition to the global increase in temperature, how was precipitation perturbed during the event, and how did fluvial surface processes respond to the perturbation? In the southern Spanish Pyrenees, the Paleocene succession of the Tremp-Graus Basin is made up of the Talarn (Danian) and Esplugafreda (Thanetian) red bed formations. The Esplugafreda section is composed of approximately 250m of reddish paleosols and contains numerous lenticular bodies of calcareous conglomerates, which are interpreted as braided channels. The Esplugafreda Formation is overlain by the Claret Conglomerate -- an extensive sheet-like unit which ranges in thickness between 1m and 4m of clast-supported calcareous conglomerate and pebbly calcarenites and is interpreted as marking the fluvial response to a dramatic climate change, in the form of the transformation of a braided river and floodplain system into an enormous conglomeratic braided plain (formed over at least 2000km2 conservatively) due to dramatic change in the hydrologic cycle. The conglomerate unit ends abruptly and is overlaid by fine-grained yellowish soils which are mainly made up of silty mudstones with abundant small size carbonate nodules suggesting another shift in the hydrological cycle after the PETM. Here we present paleo-channel geometry and grain size data collected in the southern Pyrenees (Tremp, Aren, and Serraduy sections) that we invert to reconstruct paleoflow conditions during the Paleocene and during the Paleocene-Eocene Thermal Event. We confront paleohydraulic results with sea level, isotope and lithological records in order to

  20. Contrasting andesitic magmatic systems in adjacent North Island volcanoes, New Zealand: implications for predicting eruptions

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Smith, I. E.; Gamble, J. A.; Moebis, A.; Cronin, S. J.

    2011-12-01

    For active or dormant andesite volcanoes, detailed, stratigraphically controlled, geochemical and petrological information enables an understanding of the magma supply and plumbing system feeding eruptions at the surface. This can establish a basis for predictive eruption models and thus for hazard prediction and management. The potential for petrography to inform volcanic hazard management is demonstrated by comparing two andesitic volcanoes located at the southern end of the Taupo Volcanic Zone in New Zealand's North Island. Ngauruhoe has been constructed over the past 3-5 ka and last erupted in 1975. Nearby Ruapehu has a much longer eruptive history extending back beyond 230 ka B.P. Despite their close spatial proximity, the two volcanoes show geochemical contrasts suggesting that each magmatic system has operated separately. The petrology and geochemistry (major and trace element chemistry, U-series isotopes, Sr and Nd isotopes) of eruptives from each volcano reflect magma evolution in a complex magma storage and plumbing system with magma chemistry strongly influenced by fractional crystallisation and crustal assimilation but in the case of Ngauruhoe there is evidence for cyclicity in the evolution of magma batches and this appears to be driven by periodic replenishment of the magmatic system from the mantle. In contrast, the past 2 ka of eruptive history at Ruapehu reflects random tapping of shallow, volume magma reservoirs.

  1. Mobile TLS application for fluvial studies

    NASA Astrophysics Data System (ADS)

    Alho, P.; Kukko, A.; Hyyppä, H.; Kaartinen, H.; Hyyppä, J.; Jaakkola, A.

    2009-04-01

    In fluvial studies, different survey and modelling approaches have been used to study the interaction of landscape and flow processes, including response thresholds, feedback elements and other such complexities, requiring both high-quality topographical and bathymetrical data at different scales. Currently, tachymetry and GPS surveys are widely used in fluvial geomorphology, while more sophisticated survey methods such as close-range photogrammetry and terrestrial laser scanning (TLS) are less common. Static TLS measurements provide a point density, ranging from 100-10000 points/m2 with a root mean square error of ±2 to ±25 mm. Although the TLS system allows the collection of data at a higher resolution and precision than ALS at a lower cost, its area is more limited than the latter method. This area limitation can be improved using mobile laser scanning. The typical requirements for a mobile mapping system (MMS) are that visible objects should be measured to an accuracy of a few centimetres with a maximum speed of 50-60 km h-1 and that desired objects should be collected within a radius of several tens of metres. Recently, it has been reported mobile mapping systems, which are based on laser scanning, the former work including an account of the FGI ROAMER system and a detailed description of its data processing. The boat-based, mobile mapping system (BoMMS, based on FGI ROAMER system) with a laser scanner for fluvial applications allows the derivation of detailed topographical data in river studies. Combined with data acquisition from static terrestrial laser scanning (TLS), boat-based laser scanning enables a totally new field mapping approach for fluvial studies. In this paper, we demonstrate a BoMMS with a laser scanner for fluvial applications. This system enables rapid field surveying with accuracy of approximately 2 cm (relatively sub-centimetre) for river banks, point-bars and other features of the riverine landscape. This application offers a highly

  2. A modern analog for carbonate source-to-sink sedimentary systems: the Glorieuses archipelago and adjacent basin (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Jorry, S.; Jouet, G.; Prat, S.; Courgeon, S.; Le Roy, P.; Camoin, G.; Caline, B.

    2014-12-01

    This study presents the geomorphological and sedimentological analysis of a modern carbonate source-to-sink system located north of Madagascar (SW Indian Ocean). The sedimentary system is composed of an isolated carbonate platform sited on top of a seamount rising steeply from the seabed located at 3000 m water depth. The slope of the seamount is incised by canyons, and meandering channels occur above lobbed sedimentary bodies at the foot of the slope. The dataset consists of dredges, sediment piston cores, swath bathymetry and seismic (sparker and 2D high-resolution) lines collected from inner platform (less than 5 m deep) to the adjacent deep sedimentary basin. Particle size analysis and composition of carbonate grains are used to characterize the distribution and heterogeneity of sands accumulated on the archipelago. Main results show that composition of carbonate sediments is dominated by segments of Halimeda, large benthic foraminifera, coral debris, molluscs, echinoderms, bryozoans and sponges. According to the shape and the position of sandwaves and intertidal sandbars developed in the back-barrier reef, the present organization of these well-sorted fine-sand accumulations appears to be strongly influenced by flood tidal currents. Seismic lines acquired from semi-enclosed to open lagoon demonstrate that most of the sediment is exported and accumulated along the leeward margin of the platform, which is connected to a canyon network incising the outer slope. Following the concept of highstand shedding of carbonate platforms (Schlager et al., 1994), excess sediment is exported by plumes and gravity flows to the adjacent deep sea where it feeds a carbonate deep-sea fan. Combined observations from platform to basin allow to explain how the Glorieuses carbonate source to sink system has evolved under the influence of climate and of relative sea-level changes since the last interglacial.

  3. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  4. Holocene and deglacial paleoenvironmental history of the Peru-Chile current system and adjacent continental Chile

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Kim, J.; Mohtadi, M.; Ruehlemann, C.

    2002-12-01

    A combined analysis of terrigenous and biogenic compounds in marine sediments from the Chilean continental slope allows detailed reconstructions of both the paleoclimatic and paleoceanographic history of this region during the last glacial and Holocene. Based on sediment cores recovered during two cruises with the German R/V Sonne, we found evidence for changes both in continental rainfall, most likely induced by latitudinal shifts of the Southern Westerlies, and marine productivity as well as sea surface temperature (SST) changes within the Peru-Chile Current system on time scales ranging from Milankovitch to centennial-scale. On Milankovitch time-scales, we found strong evidence for precession-controlled shifts of the Southern Westerlies implying e.g. more humid conditions during the LGM in the Chilean Norte Chico and a trend towards more arid climates during the deglaciation culminating in the early Holocene. These shifts are paralleled by paleoceanographic changes indicating generally higher productivity during the LGM mainly caused by increased advection of nutrients from the south through an enhanced Peru-Chile current. SSTs off central Chile were about 3.5 C lower than present during the LGM. On shorter time-scales, extremely high resolution sediment cores from the southern Chilean margin provide evidence of significant short-term Holocene climate changes with bands of variability centred at ca. 900 and 1500 years, periodicities also well known from Northern Hemisphere records. Our data point to strong interhemispheric connections of climate change both on multi-centennial to millennial and Milankovitch time-scales with a major role of the tropics for the interhemispheric transfer of climate signals involving changes within the Hadley circulation and/or probably long-term modifications of the El Ni¤o-Southern Oscillation system. The recently drilled ODP Sites 1233 (ca. 41S) and 1234/1235 (ca. 36S) at the southern Chilean margin have the potential to extent

  5. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity

    NASA Astrophysics Data System (ADS)

    Anchuela, Ó. Pueyo; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M. J.; Garbi, H. Gil

    2016-04-01

    The Quaternary Añavieja-Dévanos tufa system is located in the northern sector of the Iberia Chain. It has been previously tackled by means sedimentological studies focused on the available outcrops and some boreholes. They have permitted the proposal of a sedimentary scenario that fits with a pool-barrage fluvial tufa model. However a better knowledge of the characteristics and internal distribution of the usually non-outcropping pool deposits as well as of its relationship with barrage deposits has not been evaluated in detail yet. Palaeoenvironmental studies on tufas are usually biased because tufas are commonly delicate facies exposed to intense erosion during water level fall stages; for this reason outcrops are usually scarce and very often coincide with the most cemented barrage deposits. In order to analyse the internal characteristics of the tufa deposits under study, but also the lateral correlation among different facies, Ground Penetrating Radar (GPR) has been employed both for the evaluation of its applicability in such kind of environments and to improve, if possible, the sedimentary model using geophysical data in sectors without outcrops. A GPR survey including different antennas ranging from 50 to 500 MHz along different sectors and its comparison with natural outcrops has been carried out. GPR results have permitted to deduce clear differences between pool and barrage deposits and to recognise its internal structure and geometrical relationships. The survey also permitted an approach to different scales of heterogeneities in the radarfacies evaluation by using distinct antennas and therefore, reaching different resolutions and penetrations. The resulting integration from different antennas allows three different attenuant and eight reflective radarfacies to be defined permitting a better approach to the real extension of the pool areas. These results have permitted to decipher the horizontal and vertical facies changes and the identification of a

  6. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity

    NASA Astrophysics Data System (ADS)

    Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M. J.; Gil Garbi, H.

    2016-07-01

    The Quaternary Añavieja-Dévanos tufa system is located in the northern sector of the Iberian Chain. It has been previously tackled by means sedimentological studies focused on the available outcrops and some boreholes. They have permitted the proposal of a sedimentary scenario that fits with a pool-barrage fluvial tufa model. However a better knowledge of the characteristics and internal distribution of the usually non-outcropping pool deposits as well as of its relationship with barrage deposits has not been evaluated in detail yet. Palaeoenvironmental studies on tufas are usually biased because tufas are commonly delicate facies exposed to intense erosion during water level fall stages; for this reason outcrops are usually scarce and very often coincide with the most cemented barrage deposits. In order to analyse the internal characteristics of the tufa deposits under study, but also the lateral correlation among different facies, ground penetrating radar (GPR) has been employed both for the evaluation of its applicability in such kind of environments and to improve, if possible, the sedimentary model using geophysical data in sectors without outcrops. A GPR survey including different antennas ranging from 50 to 500 MHz along different sectors and its comparison with natural outcrops has been carried out. GPR results have permitted to deduce clear differences between pool and barrage deposits and to recognise its internal structure and geometrical relationships. The survey also permitted an approach to different scales of heterogeneities in the radarfacies evaluation by using distinct antennas and therefore, reaching different resolutions and penetrations. The resulting integration from different antennas allows three different attenuant and eight reflective radarfacies to be defined permitting a better approach to the real extension of the pool areas. These results have permitted to decipher the horizontal and vertical facies changes and the identification of

  7. Impacts of a Swine Manure Spill on Phosphorus Partitioning in a Fluvial System: Evaluation of an alternative Manure Spill Remediation Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the last decade there has been an international shift in livestock production that has resulted in an increased herd size per farm and a greater frequency of manure spills. Therefore, the objectives of this study were to determine the P partitioning between fluvial sediments following a manur...

  8. Non - continuous archive of climatic fluctuations of various order in slope and fluvial systems of C-E Europe during upper Quaternary

    NASA Astrophysics Data System (ADS)

    Starkel, Leszek

    2015-04-01

    On the continents the continuous deposition reflecting environmental changes is recorded only in sedimentary basins surrounded by barriers protecting them against supply of mineral matter from outside. Most frequently we analyse non- continuous sedimentation in vertical profile and the particular layers, units or complexes may represent time intervals of various time length starting from effect of heavy downpour to multiannual member formed by solifluction or dune and to soil profile created across millennia. The sequences of sediments have many breaks caused by erosion, which also may represent time units of various duration. To compare these time fragments recorded in particular profiles with continuous ice, sea and lake sequencies we should date these deposits and study them in the complex systems like longitudinal profile of slope or river valley. The reconstruction of degradation and deposition in the profile may help to fill the gap and put all factors in one sequence. The sequence of loess alternated with fossil soils or the interfingering of deluvial and congelifluction layers in slope profile reflect various length of climatic fluctuation. The correlation of erosional features upstream and depositional fills downstream help to reconstruct not only glacial-interglacial climatic variation but also recognise individual extreme events and their clusterings. The detail correlation of various localities and greater regions lead to the conclusions about the leading role of changes in temperature during cold stages in C-E Europe and leading role of humidity and its extreme events during the Holocene. The mechanism of these events and their clusters recorded at present time may be reconstructed in the deposits and erosional forms inherited from the past. On this way the reconstruction of climatic fluctuation is much more deeper and shows also spatial diversity. The discussed problems will be illustrated by examples of fluvial and slope sediments from several

  9. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  10. Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India

    NASA Astrophysics Data System (ADS)

    Dijk, W. M.; Densmore, A. L.; Singh, A.; Gupta, S.; Sinha, R.; Mason, P. J.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.; Kumar, D.; Rai, S. P.

    2016-02-01

    The Indo-Gangetic foreland basin has some of the highest rates of groundwater extraction in the world, focused in the states of Punjab and Haryana in northwest India. Any assessment of the effects of extraction on groundwater variation requires understanding of the geometry and sedimentary architecture of the alluvial aquifers, which in turn are set by their geomorphic and depositional setting. To assess the overall architecture of the aquifer system, we used satellite imagery and digital elevation models to map the geomorphology of the Sutlej and Yamuna fan systems, while aquifer geometry was assessed using 243 wells that extend to ˜200 m depth. Aquifers formed by sandy channel bodies in the subsurface of the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow heavy-tailed thickness distributions. These distributions, along with evidence of persistence in aquifer fractions as determined from compensation analysis, indicate persistent reoccupation of channel positions and suggest that the major aquifers consist of stacked, multistoried channel bodies. The percentage of aquifer material in individual boreholes decreases down fan, although the exponent on the aquifer body thickness distribution remains similar, indicating that the total number of aquifer bodies decreases down fan but that individual bodies do not thin appreciably, particularly on the Yamuna fan. The interfan area and the fan marginal zone have thinner aquifers and a lower proportion of aquifer material, even in proximal locations. We conclude that geomorphic setting provides a first-order control on the thickness, geometry, and stacking pattern of aquifer bodies across this critical region.

  11. Preparing for uncertainty: toward managing fluvial geomorphic assessment of Massachusetts rivers

    NASA Astrophysics Data System (ADS)

    Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.

    2014-12-01

    Climate scientists predict (and have already observed) that in the Northeastern U.S., individual storms may be more intense, and that there will be more precipitation on an annual basis. In steep post-glacial terrain, erosion caused by floodwaters is the largest destructive force during high-intensity storm events, and the force most likely to drive major morphological changes to riverbanks and channels. What remains uncertain is which watersheds or river reaches may be subjected to increased damage from more intense storms. This presents a challenge for scientific outreach and management. Many New England states have developed systems for delineating the potentially geomorphically active zones adjacent to rivers, and Vermont has an excellent assessment and land use management system informed by process-based fluvial geomorphologic science. To date, however, Massachusetts has neither. In this project we survey existing protocols for accurately predicting locations of fluvial erosion hazard, including using LiDAR and DEM models to extract basic morphologic metrics. Particularly in states or landscapes with high river density, and during a time of tight fiscal constraints, managers need automated methods that require a minimum of expert input. We test these methods in the Deerfield river watershed in Massachusetts and Vermont, and integrate our knowledge with that of the basin's agricultural and floodplain stakeholders. The results will inform development of a comprehensive river assessment and land use management system for the state of Massachusetts.

  12. Holocene to contemporary fluvial sediment fluxes and budgets of two glacier-fed valley-fjord systems in the Nordfjord area, western Norway

    NASA Astrophysics Data System (ADS)

    Liermann, S.; Beylich, A. A.; Hansen, L.

    2012-04-01

    This PhD project is part of the NFR funded Norwegian Individual Project within the ESF SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) TOPO-EUROPE program. Two neighboring glacier-fed valley-fjord systems (Erdalen & Bødalen) with a different topographic inheritance from Pleistocene glaciations are compared. It is of special interest how the different valley morphometries have influenced Holocene to contemporary sediment fluxes and budgets. To understand the spatial and temporal sediment flux variability during the Holocene the main focus lays on i) quantification and analysis of storage element volumes for estimation of Holocene sedimentation rates and sediment yields, ii) analysis of the spatial and temporal sediment flux variability, iii) analysis of the linkages between sediment transfer and storage, iv) analysis of controlling factors for postglacial, sub-recent and contemporary sediment fluxes and v) construction of Holocene to contemporary sediment budgets for Erdalen and Bødalen. The analysis of sedimentary fluxes and budgets as well as their controls at different timescales (Holocene to contemporary) is a basis for the assessment of complex landscape responses of Holocene to recent changes in temperature, precipitation and runoff. For constructing sediment budgets at a small-catchment scale (50-100 km2) it is necessary to integrate the temporal and spatial variations of supply of material from sediment sources, sediment transport and storage and to identify, how far the different system components are coupled to each other. Both valleys are instrumented with a year-round monitoring system (runoff, suspended and solute transport) for analyzing fluvial sediment fluxes. The results enable to link sediment transport and runoff (events) and the spatial and temporal variability of sediment transport processes. In addition, glacier sediment supply and its spatial variability in Erdalen and Bødalen is monitored

  13. Landscape variability explains spatial pattern of population structure of northern pike (Esox lucius) in a large fluvial system

    PubMed Central

    Ouellet-Cauchon, Geneviève; Mingelbier, Marc; Lecomte, Frédéric; Bernatchez, Louis

    2014-01-01

    A growing number of studies have been investigating the influence of contemporary environmental factors on population genetic structure, but few have addressed the issue of spatial patterns in the variable intensity of factors influencing the extent of population structure, and particularly so in aquatic ecosystems. In this study, we document the landscape genetics of northern pike (Esox lucius), based on the analysis of nearly 3000 individuals from 40 sampling sites using 22 microsatellites along the Lake Ontario – St. Lawrence River system (750 km) that locally presents diverse degrees of interannual water level variation. Genetic structure was globally very weak (FST = 0.0208) but spatially variable with mean level of differentiation in the upstream section of the studied area being threefold higher (FST = 0.0297) than observed in the downstream sector (FST = 0.0100). Beside interannual water level fluctuation, 19 additional variables were considered and a multiple regression on distance matrices model (R2 = 0.6397, P < 0.001) revealed that water masses (b = 0.3617, P < 0.001) and man-made dams (b = 0.4852, P < 0.005) reduced genetic connectivity. Local level of interannual water level stability was positively associated to the extent of genetic differentiation (b = 0.3499, P < 0.05). As water level variation impacts on yearly quality and localization of spawning habitats, our study illustrates how temporal variation in local habitat availability, caused by interannual water level fluctuations, may locally decrease population genetic structure by forcing fish to move over longer distances to find suitable habitat. This study thus represents one of the rare examples of how environmental fluctuations may influence spatial variation in the extent of population genetic structure within a given species. PMID:25614787

  14. Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: The Hudson Bay system

    NASA Astrophysics Data System (ADS)

    Azetsu-Scott, Kumiko; Starr, Michel; Mei, Zhi-Ping; Granskog, Mats

    2014-09-01

    The Hudson Bay system (HBS) is a shallow inland sea in the Arctic, composed of Hudson Strait, Foxe Basin/Channel, James Bay, and Hudson Bay. Dissolved inorganic carbon (DIC) and total alkalinity (TA) measurements were used to investigate the state of ocean acidification, specifically calcium carbonate saturation states (Ω) and pH. The freshwater sources were identified from the relationship between oxygen isotope composition (δ18O) and salinity to understand the role of freshwater in ocean acidification. The saturation state of seawater with respect to calcium carbonate (Ω) in surface water (<10 m) of the HBS was strongly influenced by river runoff. Aragonite under-saturation (Ωarg < 1) was observed in the surface water of the south-eastern Hudson Bay, where the river runoff fraction was high (>10%). The watershed characteristics, however, influenced the alkalinity of river runoff in different parts of Hudson Bay, which contributed to Ω variation in the coastal region. In southwestern Hudson Bay where the watershed is dominated by limestone, Ω was higher compared to eastern Hudson Bay, where the watershed consists of an igneous rock formation. In deeper waters, low Ω is caused by remineralization of organic matter. The highest DIC concentrations (>2300 µmol/kg) were observed in the depths of central Hudson Bay with a pHtotal of 7.49 and Ωarg of 0.37. Over 67% and 22% of the bottom water of Hudson Bay was undersaturated with respect to aragonite and calcite respectively, despite Hudson Bay being very shallow (less than 250 m deep). The aragonite saturation horizon in the central Hudson Bay was around 50 m.

  15. Adaptive traits to fluvial systems of native tree European black Poplar (Populus nigra L.) population in Southern Italy

    NASA Astrophysics Data System (ADS)

    Saulino, Luigi; Pasquino, Vittorio; Todaro, Luigi; Rita, Angelo; Villani, Paolo; Battista Chirico, Giovanni; Saracino, Antonio

    2015-04-01

    This work focuses on the morphological and biomechanical traits developed by the European black poplar (Populus nigra) to cope with the hydraulic force and prolonged submersion periods during floods. Two riverine environments of the Cilento sub-region (Southern Italy) have been selected for this experimental study. The two sites have the same climatic and hydrological regimes. The first site is located along the Ripiti stream, characterized by a braided channel with longitudinal and transverse bars and eroding banks. The second site is located along the Badolato stream, an entrenched meandering riffle/pool channel, with low gradients and high width/depth. P. nigra mixed with Salix alba and along the Badolato stream also Platanus orientalis, is the dominant wooden riparian vegetation in both sites. Cuttings from adult P. nigra trees originated by seeds were collected and planted in the 'Azienda Sperimentale Regionale Improsta' (Eboli-Salerno, Campania region). The experimental plantation was managed according to a multi-stem short rotation coppice with low external energy input and high disturbance regime generated by a 3 years rotation coppicing. The two sample stool sets exhibit statistically similar morphological traits, but different values of Young elasticity module of the shoots. A functional evaluation of the biomechanical differences was performed by measuring the bending of the individual stems under the hypothesis of complete submergence within a flow of different mean velocities, using a numerical model that predicts the bending of woody vegetation beams allowing for large deflections. The results suggest that plants with the same gene pool but coming from morphologically different riverine environments, may reflect different dominant biomechanical properties, which might be relevant for designing local sustainable management and restoration plans of rivers and riparian systems.

  16. Recent (Late Amazonian) Fluvial Features in Southeastern Elysium, Mars

    NASA Astrophysics Data System (ADS)

    Plescia, J.

    2002-12-01

    Cerberus Fossae, a major northwest trending tensional fracture in Elysium, has acted as a conduit for water in the very recent past (Late Amazonian). This same fracture system has also acted as a conduit for the release of the lavas that formed the Cerberus Plains. Water was released by the fracture in three locations in both catastrophic and non-catastrophic manners. At the northwest end of the fracture, two sources (Athabasca and Grjota' Valles) formed as the result of catastrophic flow away from the fracture carving channel systems hundreds of km long and tens of km wide. Both sources are at the same elevation -2.3 to -2.5 km suggesting they tapped the same reservoir beneath the Elysium rise. The third source is at the southeast end of Cerberus Fossae, southwest of Orcus Patera (Rahway Valles) which forms an extensive valley network. Some of these valleys begin at the fossae, others begin on the adjacent level plain to the north. This source is at a different elevation (-3.0 km) and apparently tapped a different, shallow reservoir. A shallow reservoir is suggested as there appear to be multiple sources over a broad area, possibly allowing headward erosion of some of the valleys by sapping, in addition to the larger (volume / rate) flows from the Cerberus Fossae fractures. Cerberus Fossae must have tapped two distinct reservoirs to release the water as the sources are restricted to a narrow elevation range, are at different elevations, and there are no release points between the two. Age relations suggest that all of the sources were active at the same point in geologic time. As faulting along the Cerberus Fossae trend has occurred repeatedly through time, the water must have been available for release only during the most recent episode of tectonism. Absolute timing, based on crater counts, is broadly constrained as only between 144 and 1700 Ma. These three fluvial channels can be integrated into a single fluvial system that exceeds 2500 km in length and extends

  17. Structural model of the lithosphere-asthenosphere system beneath the Qinghai-Tibet Plateau and its adjacent areas

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Teng, Jiwen; Sun, Ruomei; Romanelli, Fabio; Zhang, Zhongjie; Panza, Giuliano F.

    2014-11-01

    The deep structure of the lithosphere-asthenosphere system, as imaged from geophysical data, of the Qinghai-Tibet Plateau, the highest on the Earth, provides important clues in understanding its orogenic processes. Here we reconstruct the main features of the structure of the crust and upper mantle from surface wave tomography in the Qinghai-Tibet Plateau and its adjacent areas, in order to understand the modality of the convergence and collision process between the Indian and Eurasian plates. Based on Rayleigh waves dispersion theory, we collected long period and broad-band seismic data from the global and regional seismic networks surrounding the study area (20°N-50°N, 70°E-110°E). After applying instrument response calibration and filtering, group velocities of the fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN). Combining the published dispersion data, a 2-D surface-wave tomography method is applied to calculate the lateral variations of group velocity distribution at different periods, in the range from 8 s to 150 s. The Hedgehog non-linear inversion method is performed to obtain shear wave velocity (Vs) versus depth models of the crust and upper mantle for 181 cells, with size 2° × 2°. In order to identify the cellular representative models, we applied the local smoothness optimization method (LSO). Fairly detailed structural models of the lithosphere-asthenosphere system have been defined. The Vs models demonstrate the lateral variation of the thickness of the metasomatic lid between the south and north of the Bangong-Nujiang Suture (BNS) and the west and east of Tibet. The variation in thickness of the metasomatic lid may suggest that the leading edge of the subducting Indian slab reaches up to BNS.

  18. Quaternary fluvial history of the Delaware River, New Jersey and Pennsylvania, USA: The effects of glaciation, glacioisostasy, and eustasy on a proglacial river system

    NASA Astrophysics Data System (ADS)

    Stanford, Scott D.; Witte, Ron W.; Braun, Duane D.; Ridge, John C.

    2016-07-01

    Fluvial, glacial, and estuarine deposits in the Delaware Valley record the response of the Delaware River to glaciation, sea-level change, and glacioisostasy during the Quaternary. Incision following an early Pleistocene glaciation created the present valley, which is inset into a Pliocene strath and fluvial plain. Middle and upper Pleistocene and Holocene deposits were laid down in this inset valley. Estuarine terraces in the lower valley and bayshore at + 20 m (probably Marine Isotope Stage [MIS] 11), + 8 m (MIS 5e), and + 3 m (MIS 5a or c), and a fluvial deposit that correlates to offshore MIS 3 marine deposits at - 20 m are at elevations consistent with glacioisostatic models. Successive incisions during lowstands in the middle and late Pleistocene lengthened, deepened, and narrowed the channel in the lower valley and shifted the channel westward in Delaware Bay. During MIS 2 glaciation, from 25 to 18 ka, the Delaware was diverted to the Hudson Shelf Valley by glacioisostatic tilting. Most glacial sediment was trapped in fluvial-lacustrine valley fills north of the terminal moraine. Incision of the valley fill was accomplished during the early stage of rebound, between 17 and 12 ka. Drainage to the Delaware shelf was restored between 15 and 13 ka as the forebulge collapsed. During incision, multiple postglacial terraces formed where the valley was perpendicular to rebound contours and so was steepened and elevated northward; and a single terrace formed where the valley paralleled the contours, and there was no differential elevation or steepening. About 65% of the original volume of MIS 2 glacial sediment remains in the main valley, and most of the eroded volume is in the channel in the lower valley beneath Holocene estuarine fill. Little glacial sediment reached the Delaware or Hudson shelf. Overbank deposition on the lower postglacial terrace and modern floodplain spans the Holocene. The volume of Holocene sediment in the estuary and bay yields a basinwide

  19. Architecture and Channel-Belt Clustering in the Fluvial lower Wasatch Formation, Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Pisel, J. R.; Pyles, D. R.; Bracken, B.; Rosenbaum, C. D.

    2013-12-01

    The Eocene lower Wasatch Formation of the Uinta Basin contains exceptional outcrops of low net-sand content (27% sand) fluvial strata. This study quantitatively documents the stratigraphy of a 7 km wide by 300 meter thick strike-oriented outcrop in order to develop a quantitative data base that can be used to improve our knowledge of how some fluvial systems evolve over geologic time scales. Data used to document the outcrop are: (1) 550 meters of decimeter to half meter scale resolution stratigraphic columns that document grain size and physical sedimentary structures; (2) detailed photopanels used to document architectural style and lithofacies types in the outcrop; (3) thickness, width, and spatial position for all channel belts in the outcrop, and (4) directional measurements of paleocurrent indicators. Two channel-belt styles are recognized: lateral and downstream accreting channel belts; both of which occur as either single or multi-story. Floodplain strata are well exposed and consist of overbank fines and sand-rich crevasse splay deposits. Key upward and lateral characteristics of the outcrop documented herein are the following. First, the shapes of 243 channels are documented. The average width, thickness and aspect ratios of the channel belts are 110 m, 7 m, and 16:1, respectively. Importantly, the size and shape of channel belts does not change upward through the 300 meter transect. Second, channels are documented to spatially cluster. 9 clusters are documented using a spatial statistic. Key upward patterns in channel belt clustering are a marked change from non-amalgamated isolated channel-belt clusters to amalgamated channel-belt clusters. Critically, stratal surfaces can be correlated from mudstone units within the clusters to time-equivalent floodplain strata adjacent to the cluster demonstrating that clusters are not confined within fluvial valleys. Finally, proportions of floodplain and channel belt elements underlying clusters and channel belts

  20. Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California

    NASA Astrophysics Data System (ADS)

    Schumann, R. Randall; Pigati, Jeffrey S.; McGeehin, John P.

    2016-09-01

    Santa Rosa Island (SRI) is one of four east-west aligned islands forming the northern Channel Islands chain, and one of the five islands in Channel Islands National Park, California, USA. The island setting provides an unparalleled environment in which to record the response of fluvial systems to major changes of sea level. Many of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, leaving a relict floodplain as much as 12-14 m above the present channel. The period of falling sea level between the end of the last interglacial highstand at ~ 80 ka and the last glacial lowstand at ~ 21 ka was marked by erosion and incision in the uplands and by deposition of alluvial sediment on the exposed marine shelf. Sea level rose relatively rapidly following the last glacial lowstand of - 106 m, triggering a shift from an erosional to a depositional sedimentary regime. Accumulation of sediment occurred first through vertical and lateral accretion in broad, shallow channels on the shelf. Channel avulsion and delta sedimentation produced widespread deposition, creating lobes or wedges of sediment distributed across relatively large areas of the shelf during the latest Pleistocene. Backfilling of valleys onshore (landward of present sea level) appears to have progressed in a more orderly and predictable fashion throughout the Holocene primarily because the streams were confined to their valleys. Vertical aggradation locally reduced stream gradients, causing frequent overbank flooding and lateral channel shift by meandering and/or avulsion. Local channel gradient and morphology, short-term climate variations, and intrinsic controls also affected the timing and magnitudes of these cut, fill, and flood events, and are reflected in the thickness and spacing of the episodic alluvial sequences. Floodplain aggradation within the valleys continued until at least 500 years ago, followed by

  1. Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California

    USGS Publications Warehouse

    Schumann, R. Randall; Pigati, Jeffery S.; McGeehin, John P.

    2016-01-01

    Santa Rosa Island (SRI) is one of four east-west aligned islands forming the northern Channel Islands chain, and one of the five islands in Channel Islands National Park, California, USA. The island setting provides an unparalleled environment in which to record the response of fluvial systems to major changes of sea level. Many of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, leaving a relict floodplain as much as 12–14 m above the present channel. The period of falling sea level between the end of the last interglacial highstand at ~ 80 ka and the last glacial lowstand at ~ 21 ka was marked by erosion and incision in the uplands and by deposition of alluvial sediment on the exposed marine shelf. Sea level rose relatively rapidly following the last glacial lowstand of − 106 m, triggering a shift from an erosional to a depositional sedimentary regime. Accumulation of sediment occurred first through vertical and lateral accretion in broad, shallow channels on the shelf. Channel avulsion and delta sedimentation produced widespread deposition, creating lobes or wedges of sediment distributed across relatively large areas of the shelf during the latest Pleistocene. Backfilling of valleys onshore (landward of present sea level) appears to have progressed in a more orderly and predictable fashion throughout the Holocene primarily because the streams were confined to their valleys. Vertical aggradation locally reduced stream gradients, causing frequent overbank flooding and lateral channel shift by meandering and/or avulsion. Local channel gradient and morphology, short-term climate variations, and intrinsic controls also affected the timing and magnitudes of these cut, fill, and flood events, and are reflected in the thickness and spacing of the episodic alluvial sequences. Floodplain aggradation within the valleys continued until at least 500 years ago

  2. Multi-temporal topographic models in fluvial systems: are accuracies enough to change the temporal and spatial scales of our studies?

    NASA Astrophysics Data System (ADS)

    Vericat, Damià; Ramos, Ester; Brasington, James; Muñoz, Efrén; Béjar, María; Gibbins, Chris; Batalla, Ramon J.; Tena, Álvaro; Smith, Mark; Wheaton, Joe

    2015-04-01

    Recent advances in topography are offering a set of opportunities that deserve a critical evaluation before being successfully applied. Terrestrial Laser Scanning opened a new world by offering the opportunity to obtain topographic models at unprecedented resolutions. The time involved in data acquisition, although has substantially improved by means of fast scanners and new mobile platforms, limited the spatial and temporal scales in which such technique could be applied. Automatic Digital Photogrammetry or Structure from Motion is now offering a new set of opportunities and challenges. This technique possesses the trilogy a geomorphologist is looking to fully understand how landforms change and which are the main causes and consequences: speed, cost and resolution. But, a set of questions arise after all post-processing involved in these novel datasets: are accuracies enough to jump at large spatial scales? Can we repeat topographic surveys and depict small magnitude but relatively high frequent landform deformations overcoming the minimum level of detection of our comparisons? In this paper we present some of the preliminary results obtained in the background of MorphSed (www.morphsed.es). Morphsed is analysing the morpho-sedimentary dynamics of a fluvial system at multiple temporal scales. Multi-event topographic models (DEMs) are obtained by means of Structure from Motion using close range aerial photography obtained in a 12-km channel reach of the wandering Upper River Cinca (Southern Pyrenees, Iberian Peninsula). Topographic channel changes are critically analysed based on the quality of the developed models. DEMs obtained at different periods are compared (DoD). Two general comparisons are performed: (a) comparison of topographic models obtained before and after low magnitude channel changes, and (b) comparison of models acquired before and after major channel disturbances. Special attention is paid to the role of the ground control, data density and

  3. Fluvial dynamics of the Meuse-Rhine system at the SW-border of the Roer Valley Graben (Belgium-Netherlands) during the Early to Middle Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Beerten, Koen; Westerhoff, Wim E.; Menkovic, Armin

    2015-04-01

    The evolution of the Meuse-Rhine confluence area during the late Early and early Middle Pleistocene is still poorly understood. The key in unravelling the complex history of the confluence area during the time period mentioned is located along a segment of the southwestern bounding faults of the Roer Valley Graben, where the elevated (uplifted) Campine Plateau borders the subsiding graben. Traditionally, the central and eastern part of the plateau is thought to have been occupied by the Meuse (Zutendaal Formation) during some stages of the Early-Middle Pleistocene, while clear evidence is found for the presence of supposedly time-equivalent Rhine deposits (Sterksel Formation) in the graben (Gullentops et al., 2001). However, the stratigraphical relationship between both formations is very unclear. Here, we present results of detailed investigations of borehole cores distributed along the southwestern border of the graben that allow to develop a framework for the fluvial evolution in the area. New grain size, sedimentary petrology (microgravel) and pollen analyses are presented, and incorporated in the results of detailed mapping of the area that is based on borehole data from the subsurface databases of Flanders and the Netherlands. The time window of this study is set by pollen and heavy mineral data. The almost complete absence of pollen from heather and warm loving trees suggests a post-Bavelian age, while the absence of volcanic augite (Gullentops et al., 2001) suggests a pre-Elsterian age for the Rhine sediments. This limits most of the sedimentary record in that area to the Cromerian. The results show that initially, the Rhine deposited coarse-grained (mostly gravelly sand) material over large parts of the graben area, while sedimentation of the Meuse was restricted to the region south of the graben. In the lower part of the here studied sequence a fine-grained flood plain facies of the Rhine is preserved in the tectonically deeper part of the SW graben area

  4. Self-Association Is Required for Occupation of Adjacent Binding Sites in Pseudomonas aeruginosa Type III Secretion System Promoters

    PubMed Central

    Marsden, Anne E.; Schubot, Florian D.

    2014-01-01

    ExsA is a member of the AraC/XylS family of transcriptional regulators and is required for expression of the Pseudomonas aeruginosa type III secretion system (T3SS). All P. aeruginosa T3SS promoters contain two adjacent binding sites for monomeric ExsA. The amino-terminal domain of ExsA (NTD) is thought to mediate interactions between the ExsA monomers bound to each site. Threading the NTD onto the AraC backbone revealed an α-helix that likely serves as the primary determinant for dimerization. In this study, we performed alanine scanning mutagenesis of the ExsA α-helix (residues 136 to 152) to identify determinants required for self-association. Residues L137, C139, L140, K141, and L148 exhibited self-association defects and were required for maximal activation by ExsA. Disruption of self-association resulted in decreased binding to T3SS promoters, particularly loss of binding by the second ExsA monomer. Removing the NTD or increasing the space between the ExsA-binding sites restored the ability of the second ExsA monomer to bind the PexsC promoter. This finding indicated that, in the absence of self-association, the NTD prevents binding by a second monomer. Similar findings were seen with the PexoT promoter; however, binding of the second ExsA monomer in the absence of self-association also required the presence of a high-affinity site 2. Based on these data, ExsA self-association is necessary to overcome inhibition by the NTD and to compensate for low-affinity binding sites, thereby allowing for full occupation and activation of ExsA-dependent promoters. Therefore, ExsA self-association is indispensable and provides an attractive target for antivirulence therapies. PMID:25070741

  5. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  6. Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An In Vitro Study.

    PubMed

    Agarwal, Aakas; Ingels, Marcel; Kodigudla, Manoj; Momeni, Narjes; Goel, Vijay; Agarwal, Anand K

    2016-05-01

    Adjacent-level disease is a common iatrogenic complication seen among patients undergoing spinal fusion for low back pain. This is attributed to the postsurgical differences in stiffness between the spinal levels, which result in abnormal forces, stress shielding, and hypermobility at the adjacent levels. In addition, as most patients undergoing these surgeries are osteoporotic, screw loosening at the index level is a complication that commonly accompanies adjacent-level disease. Recent studies indicate that a rod with lower rigidity than that of titanium may help to overcome these detrimental effects at the adjacent level. The present study was conducted in vitro using 12 L1-S1 specimens divided into groups of six, with each group instrumented with either titanium rods or PEEK (polyetheretherketone) rods. The test protocol included subjecting intact specimens to pure moments of 10 Nm in extension and flexion using an FS20 Biomechanical Spine Test System (Applied Test Systems) followed by hybrid moments on the instrumented specimens to achieve the same L1-S1 motion as that of the intact specimens. During the protocol's later phase, the L4-L5 units from each specimen were segmented for cyclic loading followed by postfatigue kinematic analysis to highlight the differences in motion pre- and postfatigue. The objectives included the in vitro comparison of (1) the adjacent-level motion before and after instrumentation with PEEK and titanium rods and (2) the pre- and postfatigue motion at the instrumented level with PEEK and titanium rods. The results showed that the adjacent levels above the instrumentation caused increased flexion and extension with both PEEK and titanium rods. The postfatigue kinematic data showed that the motion at the instrumented level (L4-L5) increased significantly in both flexion and extension compared to prefatigue motion in titanium groups. However, there was no significant difference in motion between the pre- and postfatigue data in the PEEK

  7. Flow dynamics in lowland rivers and influence on fluvial-deltaic stratigraphy: Comparing the modern Mississippi River system to the Campanian Castlegate Sandstone

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.; Petter, A. L.

    2012-12-01

    for coarse sediment to reach the ocean receiving basin is related to channel bed aggradation, which enables downstream mobility of coarse sediment, but also facilitates channel abandonment through avulsions. Based on existing theory for sediment wave propagation, we derive a characteristic timescale for the downstream displacement of coarse sediment within a backwater channel, and compare this value to the theoretical timescale for an avulsion event. We test a wide-range of fluvial-deltaic systems for the likelihood that the coarse sediment load for each system will reach the ocean outlet. Our results demonstrate that that large (deep) and low-sloping rivers with long backwater lengths drastically impede the movement of coarse sediment, especially when compared to smaller and steeper river systems that have relatively short backwater lengths. This research has applicability for assessing the spatial partitioning of sediment in river deltas, as well as determining the stratigraphic framework and potential connectivity of sand and mud deposits preserved in ancient delta deposits.

  8. Meandering: fluvial versus tidal. (Invited)

    NASA Astrophysics Data System (ADS)

    Seminara, G.

    2009-12-01

    Tidal meanders (Marani et al, Water Resour Res, 2002) display similarities as well as important differences from fluvial meanders (Seminara, J Fluid Mech, 2006). Like fluvial meanders they have characteristic wavelengths scaling with channel width: this is why the convergent character of tidal channels leads to meander wavelengths decaying landward. Unlike fluvial meanders, the typical curvature spectra of tidal meanders contain even harmonics: hence, meander skewing does non display any distinct correlation with the flow direction and the known Kinoshita curve, which approximates the shape of fluvial meanders, is not appropriate to tidal meanders. Additional constraints are brought up by the spatial gradients of the basic bed profile connected to the finite length of tidal channels at equilibrium. In fact, it has been theoretically established (Schuttelaars and De Swart, Eur J Mech, B/Fluids, 1996, Seminara et al, J Fluid Mech submitted, 2009) and confirmed by controlled laboratory experiments (Tambroni et al., J Geoph Res, 2005) that tidal channels closed at one end and connected at the other end with a tidal sea, evolve towards an equilibrium configuration characterized by a ‘slow’ landward decay of the average flow depth. An equilibrium length of the channel is then determined by the formation of a shoreline. Channel curvature affects the lateral equilibrium topography and gives rise to a pattern of point bars and scour pools resembling that of fluvial channels. With some notable differences, though. In fact, Solari et al (J Fluid Mech, 2001) showed that long sequences of weakly sinuous identical meandering channels subject to a symmetrical tidal forcing develop a symmetrical bar-pool pattern with small symmetrical oscillations during the tidal cycle. However, in the laboratory investigations of Garotta et al. (Proceedings RCEM5,2007) the bar-pool pattern was somehow unexpected. In a first experiment, it was in phase with curvature only in the inner half of

  9. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; Edgar, Lauren A.; Dietrich, William E.

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  10. Fluvial processes on Mars: Erosion and sedimentation

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  11. Fluvial response to environmental perturbations: a perspective from physical experiments

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Tofelde, Stefanie; Wickert, Andrew; Schildgen, Taylor; Paola, Chris; Strecker, Manfred

    2016-04-01

    Fluvial terraces and alluvial fans that are perched above the modern base level testify to environmental conditions that were different from today. Sedimentological studies combined with chronological constraints can be used to reconstruct the evolution of these landforms in the context of past changes in regional to global forcing. Despite the improvements in the most commonly used dating techniques (e.g. cosmogenic nuclides, 14C, and OSL), field data from fluvial and alluvial archives often represent only a brief glimpse into the evolution of that particular landscape. As such, the challenge of interpreting landscape development and its relationship to external forcing in the remaining time gaps is often unclear. To gain more insight, we performed physical experiments to test how a fluvial system responds to changes in the boundary conditions. This approach allows us to continuously record the evolution of the fluvial system and to observe, step by step, the response of the fluvial system and the development of the landscape. Additionally, we can directly link the geomorphic modifications to a specific environmental perturbation. Starting with a simple model and a single channel, we changed the amount of discharge (Qw) and sediment supply (Qs) in the system. The most prominent response results from a sudden increase in water discharge. In general, changes in the Qs/Qw ratio control the fluvial morphology (particularly the height/width ratio), the channel's profile, the dynamics of the river, and its ability to modify the surrounding landscape. Responses get more complex with the introduction of a lateral tributary, which changes the dynamics of the main stem and creates feed-back mechanisms between the two systems. For example, a change in the main stem can influence the fluvial morphology and the steepness of the tributary (even with no perturbations in the tributary) and vice-versa, illustrating the potential for non-unique interpretations of fluvial landforms

  12. Exploring the Capacity of Water Framework Directive Indices to Assess Ecosystem Services in Fluvial and Riparian Systems: Towards a Second Implementation Phase

    NASA Astrophysics Data System (ADS)

    Vidal-Abarca, M. R.; Santos-Martín, F.; Martín-López, B.; Sánchez-Montoya, M. M.; Suárez Alonso, M. L.

    2016-06-01

    We explored the capacity of the biological and hydromorphological indices used in the Water Framework Directive (WFD) to assess ecosystem services by evaluating the ecological status of Spanish River Basins. This analysis relies on an exhaustive bibliography review which showed scientific evidence of the interlinkages between some ecosystem services and different hydromorphological and biological elements which have been used as indices in the WFD. Our findings indicate that, of a total of 38 ecosystem services analyzed, biological and hydromorphological indices can fully evaluate four ecosystem services. In addition, 18 ecosystem services can be partly evaluated by some of the analyzed indices, while 11 are not related with the indices. While Riparian Forest Quality was the index that was able to assess the largest number of ecosystem services ( N = 12), the two indices of macrophytes offered very poor guarantees. Finally, biological indices related to diatoms and aquatic invertebrates and the Fluvial Habitat Index can be related with 7, 6, and 6 ecosystem services, respectively. Because the WFD indices currently used in Spain are not able to assess most of the ecosystem services analyzed, we suggest that there is potential to develop the second phase of the WFD implementation taking this approach into consideration. The incorporation of the ecosystem services approach into the WFD could provide the framework for assess the impacts of human activities on the quality of fluvial ecosystems and could give insights for water and watershed management in order to guarantee the delivery of multiple ecosystem services.

  13. Exploring the Capacity of Water Framework Directive Indices to Assess Ecosystem Services in Fluvial and Riparian Systems: Towards a Second Implementation Phase.

    PubMed

    Vidal-Abarca, M R; Santos-Martín, F; Martín-López, B; Sánchez-Montoya, M M; Suárez Alonso, M L

    2016-06-01

    We explored the capacity of the biological and hydromorphological indices used in the Water Framework Directive (WFD) to assess ecosystem services by evaluating the ecological status of Spanish River Basins. This analysis relies on an exhaustive bibliography review which showed scientific evidence of the interlinkages between some ecosystem services and different hydromorphological and biological elements which have been used as indices in the WFD. Our findings indicate that, of a total of 38 ecosystem services analyzed, biological and hydromorphological indices can fully evaluate four ecosystem services. In addition, 18 ecosystem services can be partly evaluated by some of the analyzed indices, while 11 are not related with the indices. While Riparian Forest Quality was the index that was able to assess the largest number of ecosystem services (N = 12), the two indices of macrophytes offered very poor guarantees. Finally, biological indices related to diatoms and aquatic invertebrates and the Fluvial Habitat Index can be related with 7, 6, and 6 ecosystem services, respectively. Because the WFD indices currently used in Spain are not able to assess most of the ecosystem services analyzed, we suggest that there is potential to develop the second phase of the WFD implementation taking this approach into consideration. The incorporation of the ecosystem services approach into the WFD could provide the framework for assess the impacts of human activities on the quality of fluvial ecosystems and could give insights for water and watershed management in order to guarantee the delivery of multiple ecosystem services. PMID:26884142

  14. River Self-Restoration: Interactions between Plants and Fluvial Processes

    NASA Astrophysics Data System (ADS)

    Gurnell, Angela

    2014-05-01

    This paper presents evidence from European rivers of the nature and consequences of plant-fluvial process interactions. While the examples are representative of different climates, riparian and aquatic plant species, and river geomorphological types, they are linked by a general conceptual model of plant-fluvial process interactions that can be adapted to local conditions. Riparian and aquatic plants both affect and respond to fluvial processes. Their above ground biomass modifies the flow field and retains sediment, whereas their below-ground biomass affects the hydraulic and mechanical properties of the substrate and consequently the moisture regime and erodibility of the land surface. At the same time plants are disturbed, removed and buried by fluvial processes. Thus the margins of river systems provide a critical zone where plants and fluvial processes interact to produce a diverse mosaic of dynamic landforms that are characteristic of naturally-functioning river ecosystems. It is important to understand these interactions between aquatic and riparian plants and fluvial processes, and to recognize how they contribute to trajectories of natural river channel recovery from human interventions. The interactions have a significant influence on river systems across space scales from individual plants to entire river corridors. Plant-scale phenomena structure patch-scale geomorphological forms and processes. Interactions between patches contribute to larger-scale and longer-term river geomorphological phenomena. Furthermore, the influence of plants varies through time as above and below ground biomass alter within the annual growth cycle, over longer-term growth trajectories, and in response to drivers of change such as climatic and hydrological fluctuations and extremes. If river management and restoration works with these natural interactions and recovery processes, outcomes have the best chance of being cost-effective and sustainable.

  15. Change in dust and fluvial deposition variability in the Peruvian central continental coast during the last millennium: Response of the ocean atmospheric systems.

    NASA Astrophysics Data System (ADS)

    Sifeddine, A.; Briceño, F. J., Sr.; Caquineau, S.; Velazco, F.; Salvatecci, R.; Ortlieb, L.; Gutierrez, D.; Cardich, J.; Almeida, C.

    2014-12-01

    The particles from aeolian or fluvial origin are a useful proxy for the reconstruction of atmospheric condition patterns in the past. Changes in continental aridity and the atmospheric condition determine the composition and amount of lithogenic material and the way of transport from the continent. Here we present a record of laminated sediments (core B040506) retrieved in the continental shelf off Peru. Wind long-term suspension (regional) and local aeolian transport during the last millennium (transition from Medieval Climate Anomaly (MCA) to Little Ice Age (LIA) and the current warm period (CWP)) at centennial to decadal resolution are characterized. The particle provenance and grain size components are discussed using a mathematical model of fractionation. This model assumes that lithological composition of the sediment is an assemblage of several log-normally distributed particle populations. In this way, an interactive least square fitting routine is used to fit the particle grain size collected with the mathematical expression. This allows inferring the spatial and temporal variation of particle populations and thus the transport mechanisms involved. Our results showed a decrease in aeolian transport from the MCA - LIA transition and during the LIA with except of the local aeolian transport that shows peaks during the LIA. This decrease during LIA is accompanied by an enhanced fluvial transport. During the CWP the aeolian transport (Paracas dust storm and wind long-term suspension) display a high variability and tendency to increase in detriment of runoff. Comparison with other South American records indicates that those changes are linked to change in the shift of the ITCZ and Pacific high at the centennial time resolution. Finally the great increase of the fluvial transport within the transition of the LIA to the CWP is synchronous to severe drought period recorded in the Indo-Pacific region indicating higher frequency of El Niño events. Hence these

  16. Characterizing the Response of Fluvial Systems to Extreme Global Warming During the Early Eocene Climatic Optimum: An Analysis of the Wasatch and Green River Formations, Uinta Basin, UT

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2013-12-01

    The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued

  17. Spring Database for the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Pavelko, Michael T.

    2007-01-01

    A database containing nearly 3,400 springs was developed for the Basin and Range carbonate-rock aquifer system study area in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The spring database provides a foundation for field verification of springs in the study area. Attributes in the database include location, geographic and general geologic settings, and available discharge and temperature data for each spring.

  18. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  19. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.

    PubMed

    Evanson, Melissa; Ambrose, Richard F

    2006-02-01

    Coastal wetlands are receiving increased attention as a putative source of fecal indicator bacteria (FIB) in Southern California coastal waters. We examined temporal trends of water and sediment-associated FIB after rain events along with spatial sediment characteristics at two sites within the Santa Ana River wetlands and made comparisons to FIB levels observed in adjacent surf zone waters. During the first two rain events, total coliforms (TC), Escherichia coli (EC) and enterococci (ENT) in wetland water and sediment samples peaked either on the same day or within several days of the rain event, while the third resulted in elevated wetlands sediment TC levels only. TC in adjacent coastal waters consistently peaked on the same day as the rain event and decreased quickly thereafter (within 1 day). The TC/EC ratios of surf zone samples consistently fell below 10, indicating an increased probability of human fecal contamination whereas wetland TC/EC ratios were higher, averaging approximately 60 and 14 at each site. These results suggest sediment-associated FIB populations may be distinct from those found in the water samples, or at least have internal dynamics independent of water-borne populations. Increases in sediment-associated FIB may be due to in situ population growth and/or increased survival due to changes in environmental parameters (salinity, moisture and nutrient input) resulting from the rain events. Spatial differences in between the two sites may be due to sediment differences such as organic content and finer grain size and/or discrete sources of FIB. PMID:16386284

  20. Computation of fluvial-sediment discharge

    USGS Publications Warehouse

    Porterfield, George

    1972-01-01

    This report is one of a series concerning the concepts, measurement, laboratory procedures, and computation of fluvial-sediment discharge. Material in this report includes procedures and forms used to compile and evaluate particle-size and concentration data, to compute fluvial-sediment discharge, and to prepare sediment records for publication.

  1. Evaluating process origins of sand-dominated fluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large

  2. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    PubMed

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface. PMID:23128230

  3. Fluvial Processes in River Engineering

    NASA Astrophysics Data System (ADS)

    Osterkamp, W. R.

    Since 1971, when W. H. Grafs book, Hydraulics of Sediment Transport, was published, a number of other texts that also provide somewhat personal perspectives on water-sediment interactions in open-channel flows have appeared. The latest of these is Fluvial Processes in River Engineering, by Howard H. Chang. This text updates recent developments in the study of hydraulics and sediment transport of natural stream channels, but unlike the earlier books, it expands consideration to geomorphic processes and models of channel change. The author states that the book is intended as a text for senior and graduate-level engineering students. It appears that Chang has succeeded in tailoring the book for that audience, but it also appears that no fewer than two semesters of classroom time would be required to provide an adequate basis for understanding the considerable variety of subject matter covered.

  4. Epigenetic zonation and fluid flow history of uranium-bearing fluvial aquifer systems, south Texas uranium province. Report of Investigations No. 119

    SciTech Connect

    Galloway, W.E.

    1982-01-01

    The Oligocene-Miocene fluvial uranium host aquifers of the South Texas uranium province were deposited principally as syndepositionally oxidized sands and muds. Early intrusion of reactive sulfide-enriched waters produced large intrastratal islands of epigenetic sulfidic alteration, which contain isotopically heavy pyrite exhibiting unique replacement textures. The only known reservoir containing such sulfidic waters is the deeply buried Mesozoic carbonate section beneath the thick, geopressured Tertiary basin fill. Thermobaric waters were expulsed upward along major fault zones into shallow aquifers in response to a pressure head generated by compaction and dehydration in the abyssal ground-water regime. Vertical migration of gaseous hydrogen sulfide was less important. Repeated flushing of the shallow aquifers by oxidizing meteoric waters containing anomalous amounts of uranium, selenium, and molybdenum alternating with sulfidic thermobaric waters caused cyclic precipitation and oxidation of iron disulfide. Uranium deposits formed along hydrologically active oxidation interfaces separating epigenetic sulfidic and epigenetic oxidation zones. Multiple epigenetic events are recorded in imperfectly superimposed, multiple mineralization fronts, in regional and local geometric relations between different alteration zones, and in the bulk matrix geochemistry and mineralogy of alteration zones. The dynamic mineralization model described in this report may reflect processes active in many large, depositionally active basins.

  5. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: Implications for regional and global fluctuations in climate and ecosystems

    NASA Astrophysics Data System (ADS)

    Roberts, David L.; Sciscio, Lara; Herries, Andy I. R.; Scott, Louis; Bamford, Marion K.; Musekiwa, Chiedza; Tsikos, Harilaos

    2013-09-01

    High amplitude climate fluctuations have been inferred from marine isotope data in the early Neogene, but few well documented terrestrial records exist from this era to gauge the effects of these high latitude events on continental climates and ecosystems. The extensive, three-dimensional exposures of Miocene fluvial and fluvio-lacustrine sediments in the Rondeberg clay pit near Cape Town provide a unique window on this era. Palaeomagnetic data suggests that the deposits accumulated over a period of < 1 Ma. The presence of meso-megathermic palynoforms (Palmae, Ilex-type, Euphorb-type, Rhamnaceae) and mesothermic (Podocarpus-type) palynofloras suggests a humid subtropical/tropical climate. However, abundant charcoal, charred in situ tree stumps, overall poor preservation of organics, evidence for upward-drying lacustrine successions and an appreciable fynbos presence, point to cyclical periods of drought. We suggest that these climate fluctuations may have been influenced by the orbital pacing seen in the marine isotope record of the earlier Miocene, pointing to a high latitude link with mid-latitude terrestrial climate patterns. Earlier studies of pollen spectra from the nearby, slightly older Noordhoek deposits show cyclical alternations from tropical to cooler climates and more recent biogeochemical work has shown dramatic coincident fluctuations in depositional temperature. These vegetation changes were previously correlated with major global events embracing the entire Neogene from the Oligo-Miocene (late Oligocene to early Miocene) to the Pliocene. We offer a different interpretation, suggesting that the deposits represent a much shorter time interval in the earlier Miocene and that these climate fluctuations may have been influenced by orbital forcing evinced in the marine isotope record. Along the northern west coast, the Arrisdrift vertebrate fossil assemblage in Early-Middle Miocene terrace deposits of the Orange River indicate a tropical climate but

  6. Utility of a Computed Tomography-Based Navigation System (O-Arm) for En Bloc Partial Vertebrectomy for Lung Cancer Adjacent to the Thoracic Spine: Technical Case Report

    PubMed Central

    Kobayashi, Kazuyoshi; Ito, Zenya; Ando, Kei; Yokoi, Kohei; Ishiguro, Naoki

    2016-01-01

    We describe successful vertebrectomy from a posterior approach using a computed tomography (CT)-based navigation system (O-arm) in a 53-year-old man with adenocarcinoma of the posterior apex of the right lung with invasion of the adjacent rib, thoracic wall, and T2 and T3 vertebral bodies. En bloc partial vertebrectomy for lung cancer adjacent to the thoracic spine was planned using O-arm. First, laminectomy was performed from right T2 to T3, and pedicles and transverse processes of T2 to T3 were resected. O-arm was used to confirm the location of the cutting edge in the T2 to 3 right vertebral internal body, and osteotomy to the anterior cortex was performed with a chisel. Next, the patient was placed in a left decubitus position. The surgical specimen was extracted en bloc. This case shows that O-arm can be used reliably and easily in vertebrectomy from a posterior approach and can facilitate en bloc resection. PMID:27114780

  7. Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad

    SciTech Connect

    Goodman, E.D.; Koch, P.S.; Summa, L.L.

    1996-08-01

    The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zone of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.

  8. Interaction of fluvial and lacustrine/marine processes on Titan

    NASA Astrophysics Data System (ADS)

    Aharonson, O.; Lucas, A.; Hayes, A. G.; Cassini Radar Science Team

    2011-12-01

    Synthetic Aperture Radar images of Titan's surface acquired by Cassini reveal a host of lakes and seas at high latitudes, dominantly in the north. Channel systems are seen to drain into some bodies, while other shorelines appear relatively undissected at the resolution of the available data (≤300 m/pix). Digital Elevation Models derived from stereo SAR imagery allow quantitative analysis of near-shore topography, with improved accuracy due to an innovative de-noising algorithm (see also Lucas et al., AGU 2011). Here we consider the interaction of fluvial systems with lakes and seas, and their relative contribution to the liquid filling these as a function of size. We find evidence for the topographic effect of near-shore incision at the shorelines of Kraken Mare, at and near the island Mayda Insula. We identify a shoulder in the histogram (at an elevation of approximately -240 m in Figure 1) suggesting that fluvial and/or lacustrine processes redistributed near-shore material forming a topographic bench. Terrestrial examples show similar patterns in the hypsometric distribution, owing to fluvial erosion. These results are consistent with observations from SAR images and show that erosion and sediment transport have influenced the topography substantially, with their integrated action quantifiable volumetrically.

  9. Copepod communities, production and grazing in the Turkish Straits System and the adjacent northern Aegean Sea during spring

    NASA Astrophysics Data System (ADS)

    Zervoudaki, S.; Christou, E. D.; Assimakopoulou, G.; Örek, H.; Gucu, A. C.; Giannakourou, A.; Pitta, P.; Terbiyik, T.; Yϋcel, N.; Moutsopoulos, T.; Pagou, K.; Psarra, S.; Özsoy, E.; Papathanassiou, E.

    2011-06-01

    The Mediterranean and the Black Seas are connected through Bosphorus, Marmara Sea and Dardanelles (Turkish Straits System, TSS). In this study, we examined the spatial distribution of copepods and investigate their production and grazing. The aim was to understand the transfer of phytoplankton/microzooplankton production up the food chain in TSS and Aegean Sea during spring. The phytoplankton and microzooplankton biomass and production showed a clear decreasing trend from Bosphorus to the Aegean Sea, whereas copepod biomass did not reveal any distinct trend and only the number of copepod species increased from Bosphorus to the Aegean Sea. Production of copepods and egg production showed similar trends except for the Bosphorus, where production of copepods was very low due to the low copepod biomass in this area. In all areas, the copepod carbon demand was largely met by phytoplankton and microzooplankton production. However, only a low amount of primary production was consumed by copepods and production appeared to flow mostly through other pathways (microbial loop) and/or sediment on the bottom. The results of this study confirm the hypothesis that there is a substantial differentiation within pelagic food web structure and carbon flow from Bosphorus to the Aegean Sea.

  10. Precision, high dose radiotherapy. II. Helium ion treatment of tumors adjacent to critical central nervous system structures

    SciTech Connect

    Saunders, W.M.; Chen, G.T.Y.; Austin-Seymour, M.; Castro, J.R.; Collier, J.M.; Gauger, G.; Gutin, P.; Phillips, T.L.; Pitluck, S.; Walton, R.E.

    1985-07-01

    In this paper, the authors present a technique for treating relatively small, low grade tumors located very close to critical, radiation sensitive central nervous system structures such as the spinal cord and the brain stem. A beam of helium ions is used to irradiate the tumor. The nearby normal tissues are protected by exploiting the superb dose localization properties of this beam, particularly its well defined and controllable range in tissue, the increased dose deposited near the end of this range (i.e., the Bragg peak), the sharp decrease in dose beyond the Bragg peak, and the sharp penumbra of the beam. To illustrate the technique, the authors present a group of 19 patients treated for chordomas, meningiomas and low grade chondrosarcomas in the base of the skull or spinal column. They have been able to deliver high, uniform doses to the target volumes, while keeping the doses to the nearby critical tissues below the threshold for radiation damage. Follow-up on this group of patients is short, averaging 22 months (2 to 75 months). Currently, 15 patients have local control of their tumor. Two major complications, a spinal cord transsection and optic tract damage, are discussed in detail. Their treatment policies have been modified to minimize the risk of these complications in the future, and they are continuing to use this method to treat such patients.

  11. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  12. Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America

    NASA Astrophysics Data System (ADS)

    Lauerwald, Ronny; Hartmann, Jens; Ludwig, Wolfgang; Moosdorf, Nils

    2012-03-01

    Fluvial transport of dissolved organic carbon (DOC) is an important link in the global carbon cycle. Previous studies largely increased our knowledge of fluvial exports of carbon to the marine system, but considerable uncertainty remains about in-stream/in-river losses of organic carbon. This study presents an empirical method to assess the nonconservative behavior of fluvial DOC at continental scale. An empirical DOC flux model was trained on two different subsets of training catchments, one with catchments smaller than 2,000 km2 (n = 246, avg. 494 km2) and one with catchments larger than 2,000 km2 (n = 207, avg. 26,525 km2). A variety of potential predictors and controlling factors of fluvial DOC fluxes is discussed. The predictors retained for the final DOC flux models are runoff, slope gradient, land cover, and areal proportions of wetlands. According to the spatially explicit extrapolation of the models, in North America south of 60°N, the total fluvial DOC flux from small catchments (25.8 Mt C a-1, std. err.: 12%) is higher than that from large catchments (19.9 Mt C a-1, std. err.: 10%), giving a total DOC loss of 5.9 Mt C a-1 (std. err.: 78%). As DOC losses in headwaters are not represented in this budget, the estimated DOC loss is rather a minimum value for the total DOC loss within the fluvial network.

  13. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  14. Applied fluvial geomorphology. Report No. 31

    SciTech Connect

    MacBroom, J.G.

    1981-03-01

    The first portion of this report discusses the geologic properties and characteristics of natural rivers and floodplains. The second part outlines the influence of man on fluvial geomorphology, ecological considerations, and the natural characteristics of rivers that should be applied in the design of river and bridge projects.

  15. Applied fluvial geomorphology. Report No. 31

    SciTech Connect

    MacBroom, J.G.

    1981-03-01

    The first portion of this report discusse the geologic properties and characteristics of natural rivers and floodplains. The second part outlines the influence of man on fluvial geomorphology, ecological considerations, and the natural characteristics of rivers that should be applied in the design of river and bridge projects.

  16. A fluvial mercury budget for Lake Ontario.

    PubMed

    Denkenberger, Joseph S; Driscoll, Charles T; Mason, Edward; Branfireun, Brian; Warnock, Ashley

    2014-06-01

    Watershed mercury (Hg) flux was calculated for ten inflowing rivers and the outlet for Lake Ontario using empirical measurements from two independent field-sampling programs. Total Hg (THg) flux for nine study watersheds that directly drain into the lake ranged from 0.2 kg/yr to 13 kg/yr, with the dominant fluvial THg load from the Niagara River at 154 kg/yr. THg loss at the outlet (St. Lawrence River) was 68 kg/yr and has declined approximately 40% over the past decade. Fluvial Hg inputs largely (62%) occur in the dissolved fraction and are similar to estimates of atmospheric Hg inputs. Fluvial mass balances suggest strong in-lake retention of particulate Hg inputs (99%), compared to dissolved total Hg (45%) and methyl Hg (22%) fractions. Wetland land cover is a good predictor of methyl Hg yield for Lake Ontario watersheds. Sediment deposition studies, coupled atmospheric and fluvial Hg fluxes, and a comparison of this work with previous measurements indicate that Lake Ontario is a net sink of Hg inputs and not at steady state likely because of recent decreases in point source inputs and atmospheric Hg deposition. PMID:24783951

  17. A Field Exercise in Fluvial Sediment Transport.

    ERIC Educational Resources Information Center

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  18. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  19. Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach.

    PubMed

    Sainz, A; Ruiz, F

    2006-03-01

    A spatial and temporal analysis (period 1990-2003) of 15 sampling points distributed along the southwestern Spanish coast permits to delimitate the influence area of the extremely polluted discharges coming from the Tinto-Odiel system in the bottom sediments of the adjacent littoral area. As, Cu, Pb and Zn are the main heavy metals transported by the freshwater runoffs toward the shallow shelf and present very high negative (r < -0.7) and significant (p < 0.001) correlations with the distance to the estuarine mouth. The statistical analysis (index of geoaccumulation, Pearson correlation matrix, cluster analysis) of their concentrations in the littoral sediments located between the Guadiana and Guadalquivir mouths delimitates three zones: (a) Zone 1 (from the estuarine mouth to 6 km to the east), characterized by moderate to strongly polluted bottom sediments and main responsible of the mean annual variations of the former heavy metals in the area studied; (b) Zone 2 (from 21.2 km to the west to 29 km to the east), characterized by moderate pollution levels; and (c) Zone 3, located near the Guadiana and Guadalquivir mouths, with very low As-Cu-Pb contents and unpolluted to moderately levels of Zn due to urban sewages or the presence of local low mobility areas for this element. PMID:16122777

  20. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. PMID:25617998

  1. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  2. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  3. Detailed chronology of mid-altitude fluvial system response to changing climate and societies at the end of the Little Ice Age (Southwestern Alps and Cévennes, France)

    NASA Astrophysics Data System (ADS)

    Astrade, Laurent; Jacob-Rousseau, Nicolas; Bravard, Jean-Paul; Allignol, Françoise; Simac, L.

    2011-10-01

    Over a historical timescale, landscapes have been strongly affected by fluctuations in climate and by the impact of human societies. This study examines the historical evolution of mid-altitude fluvial systems in the Western Alps and Cévennes (SE Massif Central) in the context of marked climate and anthropogenic change at the end of the Little Ice Age (late 19th century). This work contributes to the reconstruction of river paleodynamics by investigating the nature and chronology of geomorphological changes in upper river basins. In order to produce a detailed reconstruction of hydromorphological changes, we combined two approaches: the study of historical archives and the use of bioindicators (the dating of terraces using dendrochronology and of silt benches using lichenometry in order to reconstruct the evolution of the river channels). The 19th century is a particularly propitious period for the study of surface dynamics because archives have preserved a wealth of qualitative and quantitative data concerning rivers (economic statistics, meteorological and hydrological observations, illustrative documents, descriptions by contemporary observers). It is also a period for which reliable dating methods are available for detrital deposits in rivers. The period provides new information on how the transition between the Little Ice Age and current climate conditions affected the evolution of drainage basins and stream channels by highlighting a succession of phases in the erosive process (e.g., the preparatory role of the drought of 1830-1838 in the erosion crisis of 1855-1870) and refining the chronology of events (very early onset of riverbed incision). The results highlight the effect of climate (small hydroclimatic fluctuations), amplified by strong anthropization, on the rhythm of landscape change and on the relative stabilization of the landscape at the end of the 19th century. In addition, the synchronization of phenomena on the two sides of the Rhone Valley

  4. Western Mediterranean environmental changes: Evidences from fluvial archives

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Faust, Dominik

    2015-08-01

    When dealing with current and past landscape evolution, a key issue addresses responses of geomorphic systems to the large number of influencing variables. Identifying morphodynamic phases and revealing interrelations with specific driving forces are demanding tasks for Quaternary research. In this paper, we present late Pleistocene and Holocene fluvial sedimentation patterns of three Western Mediterranean river catchments, namely Jarama River, Guadalete River and Guadalquivir River that extent along a climatic transect from semi-humid SW-Spain to semi-arid central Spain. These studies are based on extensive fieldwork conducted on 36 exposures and 13 drillings in floodplain positions. Field data is supported by geochemical analyses, while the chronological framework was obtained from the analyses of 70 radiocarbon samples. Results show distinct patterns of fluvial sedimentation as well as soil formation linked to floodplain stability for each river catchment. On regional or catchment scale, pollen stratigraphical correlation and comparison with lacustrine records show that fluvial dynamics have a strong reaction to climatic shifts, with phases of high fragility characterized by catchment erosion and floodplain sedimentation in response to climatic aridification events and phases of climate change in general. The comparison of the examined river systems reveals that periods of supra-regional floodplain sedimentation in several catchments occurred from 8.0 to 7.0, 5.0 to 3.8, 2.2 to 1.5, and around 1.0 as well as 0.4 ka cal. BP, while we found periods of supra-regional soil formation from 13.3 to 12.7, 7.0 to 5.1 (with a short interruption around 6.0 to 5.5 ka), 2.8 to 2.3 ka, 1.4 to 1.2 ka, and 0.8 to 0.5 ka cal. BP. Beside these consistencies we found deviating dynamic patterns that are apparently expressed in terms of differing onset and offset, differing durations, or even the lack of fluvial system response. The main reasons for this can be seen in

  5. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  6. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  7. Temporal Evolution of Volcanic Eruption, Fluvial Drainage Systems and Faulting on the Northwest Flank of Alba Patera as Revealed by Photogeological Mapping

    NASA Astrophysics Data System (ADS)

    Chowdhury, Diya

    2013-01-01

    Although Alba Patera is the largest volcano in aerial extent in the solar system (˜6.8 km high and >1000 km in radius), the geologic processes responsible for shaping its exceedingly low-angle flanks remain poorly constrained. These flanks are covered in lava flows, valleys and both radial and annular grabens. Previous attempts, limited by the resolution of the satellite images, assume that the annular grabens formed during the terminal stage of volcanic development whereas surface water flow occurred in the early stage of volcanic construction. In this study, we analyze high-resolution CTX satellite images in conjunction with digital topographic data from MOLA. Our work reveals complex cross cutting relationships between faults, drainage network development and lava flows on the northwestern flank of Alba Patera. We observe a minimum of three generations of lava flows, three generations of drainage channels and three generations of faults. Mutual and successive cross-cutting relationships between drainage channels and faults indicate that the tectonic processes responsible for creating grabens on the volcano flank operated continuously and were coeval with drainage formation. The lava flows are observed to be the oldest geomorphic features and the third generation of faults as the youngest geomorphic features in our mapped region. Crater counting indicates that the surface within the mapped region is Amazonian in age. An analysis of the crater densities reveals a decline in crater densities from the south to the north section of the mapped region. This could be attributed to resurfacing in the north due to sediments deposited by northward flowing drainage channels. Crater counting age estimates for the south section yield a result of ˜ 1.74 Ga, +/- 0.12 Ga and ˜ 1.35 Ga, +/- 0.26 Ga for the north section. Hence, the younger age estimates of the northern surface could help further constrain the age of the drainage channels and faults on the northwest flank of

  8. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    USGS Publications Warehouse

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  9. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA

    NASA Astrophysics Data System (ADS)

    Heitmuller, Franklin T.; Hudson, Paul F.; Asquith, William H.

    2015-03-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial-bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (mostly ≥ 0.45) that develop at sites with unit stream power values in excess

  10. Martian Fluvial Conglomerates at Gale Crater

    NASA Astrophysics Data System (ADS)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  11. Martian fluvial conglomerates at Gale crater.

    PubMed

    Williams, R M E; Grotzinger, J P; Dietrich, W E; Gupta, S; Sumner, D Y; Wiens, R C; Mangold, N; Malin, M C; Edgett, K S; Maurice, S; Forni, O; Gasnault, O; Ollila, A; Newsom, H E; Dromart, G; Palucis, M C; Yingst, R A; Anderson, R B; Herkenhoff, K E; Le Mouélic, S; Goetz, W; Madsen, M B; Koefoed, A; Jensen, J K; Bridges, J C; Schwenzer, S P; Lewis, K W; Stack, K M; Rubin, D; Kah, L C; Bell, J F; Farmer, J D; Sullivan, R; Van Beek, T; Blaney, D L; Pariser, O; Deen, R G

    2013-05-31

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers. PMID:23723230

  12. Martian fluvial conglomerates at Gale Crater

    USGS Publications Warehouse

    Williams, Rebecca M.E.; Grotzinger, J.P.; Dietrich, W.E.; Gupta, S.; Sumner, D.Y.; Wiens, R.C.; Mangold, N.; Malin, M.C.; Edgett, K.S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, Horton E.; Dromart, G.; Palucis, M.C.; Yingst, R.A.; Anderson, Ryan B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M.B.; Koefoed, A.; Jensen, J.K.; Bridges, J.C.; Schwenzer, S.P.; Lewis, K.W.; Stack, K.M.; Rubin, D.; Kah, L.C.; Bell, J.F., III; Farmer, J.D.; Sullivan, R.; Van Beek, T.; Blaney, D.L.; Pariser, O.; Deen, R.G.

    2013-01-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  13. Optimality approaches to describe characteristic fluvial patterns on landscapes

    PubMed Central

    Paik, Kyungrock; Kumar, Praveen

    2010-01-01

    Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257

  14. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  15. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by

  16. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  17. Lowland fluvial phosphorus altered by dams

    NASA Astrophysics Data System (ADS)

    Zhou, Jianjun; Zhang, Man; Lin, Binliang; Lu, Pingyu

    2015-04-01

    Dams affect ecosystems, but their physical link to the variations in fluvial fluxes and downstream ecological consequences are inadequately understood. After estimating the current effects of the Three Gorges project and other reservoirs upstream on the Yangtze River on the fluvial phosphorus (P) in the middle and lower Yangtze River, we further investigated the long-term effects of dams on the fluvial regimes of P and P-enriched sediment (PES). Simultaneously measured P distributions with sediment size (PDSS) from the Three Gorges Reservoir (TGR) proved that the areal density of particulate P (PP) bound on graded sediment can be measured using the surface area concentration of the total sediment. A PDSS relationship is obtained and the selective transport and long-term sedimentation of P are simulated using a nonuniform suspended sediment model, which incorporates the PDSS formula. The computations revealed that a reservoir would significantly lower the downstream availability of P in the dry season and promote high pulses of P in summer when the reservoir is flushed as sedimentation accumulates. As a result, the P buffering and replenishing mechanism in the pristine ecosystem from upstream supplies and local re-suspension are permanently eliminated when a regulating reservoir is built upstream. This change is irreversible if reservoir regulation continues. Changes could potentially aggravate the existing P-limitation, decrease the water's ability to adjust nutrient/pollutant fluctuations, accumulate a greater surplus of carbon and nitrogen, and even exacerbate blooms in favorable conditions.

  18. Fluvial erosion of impact craters: Earth and Mars

    NASA Astrophysics Data System (ADS)

    Baker, V. R.

    1984-04-01

    Geomorphic studies of impact structures in central Australia are being used to understand the complexities of fluvial dissection in the heavily cratered terrains of Mars. At Henbury, Northern Territory, approximately 12 small meteorite craters have interacted with a semiarid drainage system. The detailed mapping of the geologic and structural features at Henbury allowed this study to concentrate on degradational landforms. The breaching of crater rims by gullies was facilitated by the northward movement of sheetwash along an extensive pediment surface extending from the Bacon Range. South-facing crater rims have been preferentially breached because gullies on those sides were able to tap the largest amounts of runoff. At crater 6 a probable rim-gully system has captured the headward reaches of a pre-impact stream channel. The interactive history of impacts and drainage development is critical to understanding the relationships in the heavily cratered uplands of Mars. Whereas Henbury craters are younger than 4700 yrs. B.P., the Gosses Bluff structure formed about 130 million years ago. The bluff is essentially an etched central peak composed of resistant sandstone units. Fluvial erosion of this structure is also discussed.

  19. Fluvial erosion of impact craters: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1984-01-01

    Geomorphic studies of impact structures in central Australia are being used to understand the complexities of fluvial dissection in the heavily cratered terrains of Mars. At Henbury, Northern Territory, approximately 12 small meteorite craters have interacted with a semiarid drainage system. The detailed mapping of the geologic and structural features at Henbury allowed this study to concentrate on degradational landforms. The breaching of crater rims by gullies was facilitated by the northward movement of sheetwash along an extensive pediment surface extending from the Bacon Range. South-facing crater rims have been preferentially breached because gullies on those sides were able to tap the largest amounts of runoff. At crater 6 a probable rim-gully system has captured the headward reaches of a pre-impact stream channel. The interactive history of impacts and drainage development is critical to understanding the relationships in the heavily cratered uplands of Mars. Whereas Henbury craters are younger than 4700 yrs. B.P., the Gosses Bluff structure formed about 130 million years ago. The bluff is essentially an etched central peak composed of resistant sandstone units. Fluvial erosion of this structure is also discussed.

  20. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  1. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of

  2. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    NASA Astrophysics Data System (ADS)

    Marks, S. D.; Rutt, G. P.

    As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  3. Geomechanical controls on fluvial erosion and sediment transport in a plate corner: Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Roy, Samuel; Koons, Peter; Boucher, Annie

    2016-04-01

    The mechanical properties of rock and soil play a critical role in orogenic landscape evolution by supporting a positive feedback between strain and erosion, localized within fault damage zones. Strain-induced damage can permanently reduce brittle rock strength by more than three orders of magnitude. As a result, faults can more efficiently localize tectonic strain, but fluvial processes of erosion and transport are also sensitive to a significant local increase in erodibility attributed to rock disaggregation and a comparatively smaller critical discharge required to transport fine grained fault gouge. We combine geomechanical, fluvial, and orographic climate models to investigate the influence of fault damage on the rates and patterns of landscape erosion and sediment transport in a tectonically active plate corner. Model results suggest a heterogeneous erosional response emerges, driving the rapid erosion of fault damage zones and the formation of deep structurally confined valleys buttressed by adjacent intact rock. The resulting topographic pattern amplifies strain localization by unloading the topographic stresses that resist shear failure right above the shear zones. The network of damaged rock associated with strain weakening also leads to faster landscape response times, but also longer sediment residence times. We compare model results to Southeast Alaska, where large glacial valleys, originally generated by fluvial incision, follow the complex pattern of deformation associated with plate corner collision.

  4. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  5. The estuarine geochemical reactivity of Zn isotopes and its relevance for the biomonitoring of anthropogenic Zn and Cd contaminations from metallurgical activities: Example of the Gironde fluvial-estuarine system, France

    NASA Astrophysics Data System (ADS)

    Petit, Jérôme C. J.; Schäfer, Jörg; Coynel, Alexandra; Blanc, Gérard; Chiffoleau, Jean-François; Auger, Dominique; Bossy, Cécile; Derriennic, Hervé; Mikolaczyk, Mathilde; Dutruch, Lionel; Mattielli, Nadine

    2015-12-01

    Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02‰ at 2 mg/L to +0.90‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43‰ in 1983 to 1.18‰ in 2010 and were offset by δ66Zn = 0.6-0.7‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03‰; 1SD, n = 15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the

  6. The fluvial history of Mars.

    PubMed

    Carr, Michael H

    2012-05-13

    River channels and valleys have been observed on several planetary bodies in addition to the Earth. Long sinuous valleys on Venus, our Moon and Jupiter's moon Io are clearly formed by lava, and branching valleys on Saturn's moon Titan may be forming today by rivers of methane. But by far the most dissected body in our Solar System apart from the Earth is Mars. Branching valleys that in plan resemble terrestrial river valleys are common throughout the most ancient landscapes preserved on the planet. Accompanying the valleys are the remains of other indicators of erosion and deposition, such as deltas, alluvial fans and lake beds. There is little reason to doubt that water was the erosive agent and that early in Mars' history, climatic conditions were very different from the present cold conditions and such that, at least episodically, water could flow across the surface. In addition to the branching valley networks, there are large flood features, termed outflow channels. These are similar to, but dwarf, the largest terrestrial flood channels. The consensus is that these channels were also cut by water although there are other possibilities. The outflow channels mostly postdate the valley networks, although most are still very ancient. They appear to have formed at a time when surface conditions were similar to those that prevail today. There is evidence that glacial activity has modified some of the water-worn valleys, particularly in the 30-50° latitude belts, and ice may also be implicated in the formation of geologically recent, seemingly water-worn gullies on steep slopes. Mars also has had a long volcanic history, and long, sinuous lava channels similar to those on the Moon and Venus are common on and around the large volcanoes. These will not, however, be discussed further; the emphasis here is on the effects of running water on the evolution of the surface. PMID:22474681

  7. Application of UAS photogrammetry for assessment of flood driven fluvial dynamics of montane stream. Case study - Roklansky creek, Sumava Mts.

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Miřijovský, Jakub; Hartvich, Filip; Kaiglová, Jana

    2014-05-01

    Current progress in hydrology and fluvial geomorphology is largely based on new field survey and analysis techniques, employing advanced technologies for monitoring the dynamics of the runoff process, field surveying and for remote monitoring of changes in riverbeds and of fluvial dynamics. Application of these techniques allows researchers to obtain information on a significantly higher qualitative level than using traditional methods of field survey and measurement, either in terms of spatial accuracy and resolution, frequency of sampling or qualitative characteristics of acquired data. The contribution demonstrates the potential of Unmanned Aerial Systems (UAS) for analysis of fluvial dynamics of montane stream, driven by flood in combination with other survey techniques, namely the ground LiDAR scanning, digital granulometry and automated water level monitoring. The UAS photogrammetry is employed in the study to acquire high precision DTMs, enabling reconstruction of riverbed and quantitative analysis of volumetric changes related to initial flood events. The hexacopter UAS platform has been used to acquire the data for photogrammetric analysis of complex stretch of stream with historically elevated fluvial dynamics. The photogrammetric reconstruction enabled to build accurate DTM of riverbed and floodplain before and after the initial event and to calculate the extent of volumetric changes. The potential of UAS photogrammetry for fluvio morphological study is in combination with other monitoring and survey techniques, enabling complex analysis of fluvial dynamics. The magnitude, duration and hydrological properties of initial flood event were derived from automated high frequency water level monitoring. The digital granulometry enabled to analyze the structure of sedimentary material in floodplain. The terrestrial LiDAR scanning allows construction of very detailed 3D models of selected fluvial forms, enabling deeper insight into the effects of fluvial

  8. Developing an Understanding of Vegetation Change and Fluvial Carbon Fluxes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Puttock, A. K.; Dungait, J.; Bol, R.; MacLeod, C. J.; Brazier, R.

    2011-12-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterized by the invasion of woody vegetation into grasslands. Transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events over six bounded plots with different vegetation coverage. The experiment takes advantage of a natural abundance stable 13C isotope shift from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentate). Data collected quantify fluvial fluxes of sediment and associated soil organic matter and carbon that is lost from across the grass-to-shrub and grass-to-woodland transition (where change in space is taken to indicate a similar change through time). Results collected during the 2010 and 2011 monsoon seasons will be presented, illustrating that soil and carbon losses are greater as the ecosystem becomes more dominated by woody plants. Additionally this project utilises novel

  9. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  10. Fluvial Degradation of the Highlands: The Terra Tyrrhena Region of Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. A.; Harbert, W.

    2002-01-01

    Geologic and geomorphic analyses of highland terrains reveal the effects of fluvial erosion by well-integrated valley networks. Hydrologic modeling using 128 pix/deg Mars Orbiting Laser Altimeter (MOLA) gridded topography is being done to quantitatively characterize these systems. Additional information is contained in the original extended abstract.

  11. A Chemical Treatment to Reduce P Desorption From Manure Exposed Fluvial Sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current remediation methods for manure spills that have reached surface waters give no attention to the P enriched ditch sediments that remain in the fluvial system and continue to impair the water column. Consequently, no method exists to treat P contaminated sediments to reduce their ability ...

  12. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  13. Weapon system interoperability testing between target acquisition systems and missile guidance sections utilizing adjacent hardware-in-the loop sensor test facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Burroughs, Eddie, Jr.; Robinson, Richard M.

    1997-07-01

    Laboratory Test and Evaluation of imaging infrared (I2R) systems is being greatly enhanced through the use of the Electro-Optics Sensor Flight Evaluation Laboratory (EOSFEL) and the Electro-Optics Target Acquisition Sensor Evaluation Laboratory (EOTASEL) at the US Army Redstone Technical Test Center. In addition to other standard and future test support, these laboratories will be utilized to support tactical I2R missile system interoperability testing. The EOSFEL is a state-of-the-art, performance grade, Hardware-In-the-Loop test capability for in-band, closed- loop test and evaluation of optically guided missile seekers, guidance sections, and control sections. The EOTASEL is a class 100,000 clean room laboratory, with state-of-the-art test capability for evaluating the performance of electro-optical target acquisition and fire control subsystems in a hardware/human-in-the-loop environment. With I2R missile systems being developed to work with electro-optical target acquisition subsystems, such as the second generation Forward Looking Infrared sights, the need arises for testing the interoperability of these sensor subsystems within the cost effective confines of the laboratory. Interoperability testing today is currently performed at the system level in real-world field environments, which is very expensive and costly to identify problems at this level. This paper describes a realistic technique for performing high fidelity laboratory interoperability testing which utilizes the EOSFEL and EOTASEL including two Dynamic Infrared Scene Projector systems, a five-axis flight motion simulator, a two-axis platform motion simulator, climatic chambers, supporting instrumentation, and computer control.

  14. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  15. Fluvial landscapes of the Harappan civilization.

    PubMed

    Giosan, Liviu; Clift, Peter D; Macklin, Mark G; Fuller, Dorian Q; Constantinescu, Stefan; Durcan, Julie A; Stevens, Thomas; Duller, Geoff A T; Tabrez, Ali R; Gangal, Kavita; Adhikari, Ronojoy; Alizai, Anwar; Filip, Florin; VanLaningham, Sam; Syvitski, James P M

    2012-06-26

    The collapse of the Bronze Age Harappan, one of the earliest urban civilizations, remains an enigma. Urbanism flourished in the western region of the Indo-Gangetic Plain for approximately 600 y, but since approximately 3,900 y ago, the total settled area and settlement sizes declined, many sites were abandoned, and a significant shift in site numbers and density towards the east is recorded. We report morphologic and chronologic evidence indicating that fluvial landscapes in Harappan territory became remarkably stable during the late Holocene as aridification intensified in the region after approximately 5,000 BP. Upstream on the alluvial plain, the large Himalayan rivers in Punjab stopped incising, while downstream, sedimentation slowed on the distinctive mega-fluvial ridge, which the Indus built in Sindh. This fluvial quiescence suggests a gradual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary to earlier assumptions that a large glacier-fed Himalayan river, identified by some with the mythical Sarasvati, watered the Harappan heartland on the interfluve between the Indus and Ganges basins, we show that only monsoonal-fed rivers were active there during the Holocene. As the monsoon weakened, monsoonal rivers gradually dried or became seasonal, affecting habitability along their courses. Hydroclimatic stress increased the vulnerability of agricultural production supporting Harappan urbanism, leading to settlement downsizing, diversification of crops, and a drastic increase in settlements in the moister monsoon regions of the upper Punjab, Haryana, and Uttar Pradesh. PMID:22645375

  16. Tipping points in Anthropocene fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert; Berger, Jean-François; Houbrechts, Geoffrey

    2016-04-01

    the river partially maintains its braided pattern. The Amblève River in the Belgian Ardennes uplands underwent less dramatic changes. Large parts of the catchment are deforested during the last 700 years, leading to an increase in floodplain sedimentation. Despite this major sediment pulse, change in floodplain morphology remained limited to an increase in bank height. We argue that a combination of floodplain and channel morphology, the fine texture of supplied sediment and the high stream power of channel forming events result is a system that is less sensitive to change. Also the relative short time of impact may play a role. These three examples demonstrate the varying impact of human deforestation on floodplain geomorphology. For the Dijle and Valdaine region this lead to dramatic changes once a certain tipping point is reached. In contrast the Amblève river is more resilient to human impact due to its specific morphological setting. The morphology of the catchments and the nature of supplied sediments plays a major role in the sensitivity of fluvial systems to environmental impact. Once the tipping points are reached, it is difficult for the river to revert to its original state and floodplains remain highly impacted.

  17. Geomorphology of portions of western Kentucky and adjacent areas

    SciTech Connect

    Dilamarter, R.C.

    1982-07-01

    The geomorphology of portions of western Kentucky and adjacent areas in Indiana, Illinois and Tennessee is presented as a background for interpreters evaluating the present land surface using remotely sensed imagery. Eight physiographic units were analyzed and are briefly discussed with reference to topography and surface deposits. Great diversity was found to be characteristic of the region, the result of different structural influences and geomorphic processes. The landscape bears the marks of fluvial, glacial, eolian, lacustrine and karstic environments, so a regional geomorphic history was compiled from the literature as an aid to understanding the land surface. Three smaller zones in Kentucky were analyzed in greater detail regarding topography and geomorphic development because of their potential importance in subsurface exploration.

  18. Meta-ecosystem metabolism across fluvial networks

    NASA Astrophysics Data System (ADS)

    Ulseth, A. J.; Singer, G. A.; Battin, T. J.

    2013-12-01

    Freshwater ecosystems store, transform, and export terrestrial carbon and play an important role for regional and global carbon fluxes. Ecosystem metabolism is a measure of how and how much carbon is produced and transformed and - for streams and rivers - is typically estimated at the reach scale (typically tens to hundreds of meters). Due to methodological constraints we so far lack an understanding of metabolism of the fluvial meta-ecosystem continuum, i.e. at the scale of a fluvial network. To address this issue, we measured metabolism in multiple reaches across a 254 km2 catchment in Lower Austria, capturing both temporal dynamics and the spatial scale of the whole fluvial network. Stream metabolism was estimated from diel changes in oxygen and corrected for reaeration; continuously in 15 streams and during a short-term ';snap-shot' campaign across 42 streams. Across the network, the streams varied in catchment size (0.1 to 254 km2) and water chemistry (DOC: 1.0 to 2.7 mg L-1, NO3: 259 to 1277 μg L-1, NH4:<0.1 to 30 μg L-1, and PO4:<0.1 to 20 μg L-1) as a consequence of subcatchment landuse, elevation and geology. Gross primary production (GPP) and ecosystem respiration (ER) were suppressed across the network by high stream discharge events such as snow melt and heavy rains. Larger streams (catchment size > 35 km2) had higher GPP and tended to be more autotrophic than lower order streams. However, streams located above 1000 m elevation had higher GPP than streams of equivalent size found elsewhere in the stream network. During the winter months, all streams across the network were net heterotrophic, with GPP typically <1.0 g 02 m-2 d-1. The degree of autotrophy versus heterotrophy across the network was driven in part by light, which is contingent on location within the stream network. We will discuss scaling GPP and ER from the reach to the network scale in order to elucidate patterns of meta-ecosystem metabolism across fluvial networks.

  19. Influence of composition and temperature on hydrocarbon migration through Morrow fluvial reservoirs, Las Animas Arch, Colorado

    SciTech Connect

    Bolyard, D.W.

    1995-06-01

    Precipitation of wax in pores may impair permeability and prohibit the flow of oil. Crude oil composition and temperature are the most important controlling factors. Oils are chemically complex, may contain up to 45 wax compounds and may vary significantly even in the same pool. High-wax oils are common in the Morrow of eastern Colorado. Narrow fluvial sandstones provide migration paths toward the Las Animas Arch from adjacent basins. Temperatures range from less than 110{degrees}F. on the top of the arch to 180{degrees}F at a structural position only 1,400 feet lower. A range of 30{degrees}F has been observed in individual pools. Wax has precipitated in the 120-140{degrees}F range, creating relative permeability barriers which cut across the sandstones. Wax barriers are impermeable to oil, but may be permeable to gas and water. They account for certain dry holes with high porosity, permeability and oil saturation (and low water saturation) in both core and electrical log analysis. They explain why some oil wells with impaired permeability are adjacent to structurally lower gas wells with good permeability. A network of wax barriers around the Las Animas Arch accounts for approximately 300 feet of variation in the structural position of a line separating oil from gas fields. Since the low temperature bands may be short and discontinuous, wax barriers are more effective in narrow fluvial reservoirs than in blanket reservoirs.

  20. Holocene to contemporary fluvial sediment budgets in small glacier-fed valley-fjord systems (ESF-NRF SedyMONT - Norway Project, SedyMONT, TOPO-EUROPE)

    NASA Astrophysics Data System (ADS)

    Liermann, Susan; Beylich, Achim A.; Rubensdotter, Lena; Hansen, Louise

    2010-05-01

    A sediment budget study contains analysis and quantification of the processes of sediment production, storage and transfer. For constructing a sediment budget at a small-catchment scale (50-100 km2) it is necessary to integrate the temporal and spatial variations of supply of material from sediment sources, sediment transport and storage and to identify how far the different system components are coupled to each other. The analysis of sedimentary fluxes and budgets as well as their controls at different timescales (Holocene to contemporary) is a basis for the assessment of complex landscape responses to Holocene to recent changes in temperature, precipitation and runoff. This PhD project is part of the NFR funded Norwegian Individual Project within the ESF SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) TOPO-EUROPE Programme. Two neighbouring glacier-fed valley-fjord systems (Erdalen & Bødalen) with a different topographic inheritance from Pleistocene glaciations are compared. It is of special interest how the different valley morphometries have influenced Holocene to contemporary sediment fluxes and budgets. Different approaches for sediment budget studies are used to interpret and understand the spatial and temporal sediment flux variability during the Holocene with the main focus on i) the quantification and analysis of storage element volumes for estimation of Holocene sedimentation rates and sediment yields, ii) the analysis of the spatial and temporal sediment flux variability, iii) the analysis of the linkages between sediment transfer and storage, iv) the analysis of controlling factors for postglacial, subrecent and contemporary sediment fluxes and v) the construction of Holocene to contemporary sediment budgets for Erdalen and Bødalen. Both valleys are instrumented with a year-round monitoring system (runoff, suspended and solute transport) for analysing fluvial sediment fluxes. The results enable to

  1. Normal and Anomalous Dispersion in Fluvial Sediment Transport

    NASA Astrophysics Data System (ADS)

    Bradley, D. N.; Tucker, G. E.

    2005-12-01

    Understanding the rate of motion and pattern of dispersion in fluvial sediment transport is essential for a variety of applications, including predicting the fate and transport of solid-phase contaminants and modeling the cosmogenic-nuclide inheritance of water-borne sediment. In order to create a probabilistic model of sediment particle motion, it is necessary to characterize the statistical properties of fluvial sediment dispersion. In general, two modes of behavior have been observed in advective-diffusive transport systems: normal and anomalous dispersion. Normal dispersion is characterized by a well-defined mean position and spatial variance and the time evolution of particle concentration is described by a simple advection-diffusion equation. In contrast, a transport system that exhibits anomalous dispersion will tend to have a heavy-tailed spatial distribution, a mean position that is different from the peak concentration, and a large variance. The fundamental difference lies in the probability distribution of individual particle velocities. When the distribution is sufficiently heavy-tailed, the resulting dispersion pattern will be anomalous. Anomalous dispersion has been observed in geophysical systems ranging from turbulent flow to transport in heterogeneous porous media. Several lines of evidence from the sediment transport literature suggest that fluvial sediment may undergo anomalous dispersion. Tracer experiments show a preference for right-skewed travel distance distributions, a characteristic of anomalous diffusion. Studies suggest that large inputs of sediment to rivers (such as a landslide) tend to disperse in place rather than translate downstream. In addition, the fact that sediment grains can become trapped in flood plains and bars for long periods of time and then move long distances in rare, short duration events such as floods suggests a potential for anomalous dispersion due to a broad distribution of particle residence times. We develop a

  2. Probabilistic approaches to the modelling of fluvial processes

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2013-04-01

    Fluvial systems generally exhibit sediment dynamics that are strongly stochastic. This stochasticity comes basically from three sources: (a) the variability and randomness in sediment supply due to surface properties and topography; (b) from the multitude of pathways that sediment may take on hillslopes and in channels, and the uncertainty in travel times and sediment storage along those pathways; and (c) from the stochasticity which is inherent in mobilizing sediment, either by heavy rain, landslides, debris flows, slope erosion, channel avulsions, etc. Fully deterministic models of fluvial systems, even if they are physically realistic and very complex, are likely going to be unable to capture this stochasticity and as a result will fail to reproduce long-term sediment dynamics. In this paper I will review another approach to modelling fluvial processes, which grossly simplifies the systems itself, but allows for stochasticity in sediment supply, mobilization and transport. I will demonstrate the benefits and limitations of this probabilistic approach to fluvial processes on three examples. The first example is a probabilistic sediment cascade which we developed for the Illgraben, a debris flow basin in the Rhone catchment. In this example it will be shown how the probability distribution of landslides generating sediment input into the channel system is transposed into that of sediment yield out of the basin by debris flows. The key role of transient sediment storage in the channel system, which limits the size of potential debris flows, is highlighted together with the influence of the landslide triggering mechanisms and climate stochasticity. The second example focuses on the river reach scale in the Maggia River, a braided gravel-bed stream where the exposed sediment on gravel bars is colonised by riparian vegetation in periods without floods. A simple autoregressive model with a disturbance and colonization term is used to simulate the growth and decline in

  3. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    PubMed

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  4. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    PubMed Central

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  5. Fluvial supraglacial landscape evolution on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Yang, Kang

    2016-03-01

    Supraglacial stream networks incise via thermal erosion of underlying ice, reflecting a balance between localized fluvial incision and dynamic topography from underlying ice flow. We analyze high-resolution digital elevation models of the ice surface and bedrock in the southwest Greenland Ice Sheet from 1000-1600 m elevation to quantify the importance of fluvial erosion. At wavelengths greater than ice thickness, bedrock dominates surface topography so supraglacial drainage basins are fixed spatially. At smaller wavelengths, fluvial erosion significantly affects topography. Stream longitudinal profiles exhibit positive mean curvature and consistent power law scaling between local channel slope and drainage area, suggestive of adjustment toward topographic steady state. We interpret these observations with a model for fluvial thermal erosion on top of a flowing ice substrate that predicts concave up steady state longitudinal profiles, where average concavity is most sensitive to melt rate and the relative magnitudes of ice flow and fluvial erosion.

  6. Fluvial terraces of the lower Susquehanna River

    NASA Astrophysics Data System (ADS)

    Pazzaglia, Frank J.; Gardner, Thomas W.

    1993-11-01

    Fluvial terraces of the lower Susquehanna River offer a unique opportunity to investigate the late stage geologic and geomorphic evolution of the U.S. Atlantic passive margin. Petrography and elevation distinguish and provide a basis for correlation of two groups of terraces, the upland terraces and lower terraces, through the Piedmont, Newark Basin, and Great Valley. Downstream correlation to dated upper Coastal Plain and Fall Zone fluvial deposits, relative weathering, and soil profile development characteristics establish terrace age. Upland terraces (Tg1, Tg2, and Tg3), middle to late Miocene strath terraces 80 to 140 m above the present channel, occur only along the Piedmont reach. They are underlain by unstratified, texturally-mature, quartz-dominated roundstone diamictons. Lower terraces (QTg, Qt1-Qt6), Pliocene and Pleistocene strath and thin aggradational terraces within 45 m of the present channel, are underlain by stratified and unstratified, texturally and compositionally immature sand, gravel, and pebbly silt. Terrace age and longitudinal profiles suggest complex interactions among relative base level, long-term flexural isostatic processes, climate, and river grade. Our model for terrace genesis requires the Susquehanna River to attain and maintain a characteristics graded longitudinal profile over graded time. For the U.S. Atlantic margin, we propose that straths are continually cut along this graded profile during periods of relative base level stability, achieved by slow, steady, isostatic continental uplift acting in concert with eustatic rise. Change in an external modulating factor, such as eustatic fall or climate change, results in fluvial incision and subsequent genesis of strath terraces. Longitudinal profiles of lower Susquehanna River terraces, which converge at the river mouth, diverge through the Piedmont, and reconverge north of the Piedmont, contrast with their hypothesized, original concave-up profiles. Progressive and cumulative

  7. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    NASA Astrophysics Data System (ADS)

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ∼1 Ga, (2) emplacement of Tharsis lava flows in the valley from ∼700 to 1000 Ma, (3) a megaflooding event at ∼700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ∼400-500 Ma, (5) another megaflooding event from ∼400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ∼300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ∼300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  8. Facies architecture and sequence stratigraphy of an early post-rift fluvial succession, Aptian Barbalha Formation, Araripe Basin, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Scherer, Claiton M. S.; Goldberg, Karin; Bardola, Tatiana

    2015-06-01

    The Barbalha Formation (Aptian) records deposition in a fluvial and lacustrine environment accumulated in an early post-rift sag basin. Characterization of the facies architecture and sequence stratigraphic framework of the alluvial succession was carried out through detailed description and interpretation of outcrops and cored wells. The development of depositional sequences in this unit reflects variation in the accommodation-to-sediment supply (A/S) ratio. Two depositional sequences, showing an overall fining-upward trend, are preserved within the succession. The sequences are bounded by regional subaerial unconformities formed during negative A/S ratio, and may be subdivided in Low-accommodation Systems Tracts (LAST) (positive A/S ratio close to zero) and High accommodation Systems Tracts (HAST) (A/S ratio between 0.5 and 1). Sequence 1, with a minimum thickness of 100 m, is characterized by amalgamated, multi-storey, braided fluvial channel sand bodies, defining a LAST. These are interlayered with crevasse splay and floodplain deposits toward the top, passing to open lacustrine deposits, defining a HAST. Sequence 2, with minimum thickness ranging from 50 to 90 m, overlies the organic-rich lacustrine deposits. At the base, this sequence is composed of amalgamated, multistorey braided fluvial channel sand bodies (LAST), similar to Sequence 1, overlain by well-drained floodplain with fixed fluvial channel deposits, interpreted as an anastomosed fluvial system, which are in turn capped by lacustrine deposits, both grouped in a HAST. Paleocurrent data on fluvial deposits of sequences 1 and 2 show a consistent paleoflow to the SE. Sedimentological evidence indicates humid to sub-humid climatic conditions during deposition of sequences 1 and 2. Accumulation of fluvial sequences 1 and 2 was mainly controlled by tectonics. Variation in A/S ratios must be related to tectonic subsidence and uplift of the basin.

  9. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    SciTech Connect

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  10. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    USGS Publications Warehouse

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  11. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Lerner, David N.

    2012-10-01

    New understanding of fluvial geomorphological processes has successfully informed flood mitigation strategies and rehabilitation schemes in recent years. However well established geomorphological assessments are location-specific and demanding in terms of resource and expertise required, and their routine application for regional or national river characterization, although desirable, is unlikely at present. This paper proposes a framework based on GIS procedures, empirical relationships and the self organized map for the analysis and classification of map-derived drivers of fluvial morphological processes. The geomorphic controls analysed are: channel gradient and hydrology, specific stream power, river order and floodplain extent. The case study is a gravel bed river in England. Using the self organized map, we analyse patterns of these controls along the river longitudinal profile and identify clusters of similar configuration. The reciprocal relationships that emerge amongst the geomorphic controls reflect the hierarchical nature of fluvial systems and are consistent with the current theoretical understanding of fluvial processes. Field observations from the River Habitat Survey are used to prove the influence of geomorphic drivers on reach-scale morphological forms. Six clusters are identified which describe six distinctive channel types. These proved to be characterized by distinctive configurations of geomorphic drivers and specific sets of physical habitat features. The method successfully characterizes the notable transitions in channel character along the river course. The framework is suitable for regional or national scale assessments through automatic GIS and statistical procedures with moderate effort.

  12. Practical Enhancement of Terrestrial Laser Scanning for Fluvial Geomorphology Surveys

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.

    2014-12-01

    Accurate measurement of microtopography plays an important role in fluvial geomorphology. Whereof the surface is obscured by vegetation or landform, airborne remote sensing can be impractical and ground-based surveys using terrestrial laser scanning (TLS) show promise. TLS provides high resolution observations of the land surface for relatively low cost and with simple setup. However, the scanning range is effectively limited to less than 100 m, requiring individual scenes to be merged in software to represent larger landforms. For studies requiring several scenes, an efficient scanning strategy should be established in advance to optimize for time, resolution and spatial coverage. This requires careful consideration of scanner placement to merge scenes. We address problems encountered with blind spots. TLS is generally conducted on a 2-m (or shorter) tripod and the low scanning angle to the land surface at long distance inevitably causes blind spots in rugose or complex terrain. Similarly, the distance between TLS placement points is limited by the ability to resolve matching targets from sequential surveys. Here we present a simple geometry-based scanning plan regardless of the type and range of the instrument, with modification of the survey instrument platform. The half of a minimum range is used to make at least 18% of a superposed area with the next scan. Since scanning height barely affects the scanning range, the tripod was substituted to a 3-m stepladder and the platform of the scanner was modified to level and adjust the device easily with one hand. The results show that the new scanning plan performs well regardless of the topography and figure of the area of interest, with sufficient superposed area for combination with other adjacent scans. The modification of the platform also turned out to be more efficient to secure the observing angle and improve usability. The physical enhancement for TLS will provide valuable opportunity to conduct a standardized

  13. Five common mistakes in fluvial morphodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mosselman, Erik; Le, Thai Binh

    2016-07-01

    Recent years have seen a marked increase in the availability of morphodynamic models and a proliferation of new morphodynamic codes. As a consequence, morphodynamic models are increasingly developed, used and evaluated by non-experts, possibly leading to mistakes. This paper draws attention to five types of common mistakes. First, new morphodynamic codes are developed as extensions of existing hydrodynamic codes without including all essential physical processes. Second, model inputs are specified in a way that imposes morphodynamic patterns beforehand rather than letting them evolve freely. Third, detailed processes are parameterized inadequately for application to larger spatial and temporal scales. Fourth, physical and numerical phenomena are confused when interpreting model results. Fifth, the selection of modeling approaches is driven by the belief that complete data are a prerequisite for modeling and that the application of 2D and 3D models requires more data than the application of 1D models. Examples from fluvial morphodynamics are presented to illustrate these mistakes.

  14. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel; Egholm, David

    2015-04-01

    Surface erosion and sediment production accelerated dramatically in most parts of the world as the climate cooled in the Late Cenozoic, (e.g. Molnar, Annu. Rev. Earth Planet. Sci. 32, 2004). In many high mountain ranges, glaciers emerged for the first time during the Quaternary, and they represent a likely explanation for the accelerated erosion in such places. Still, observations and measurements point to increases in erosion rate also in landscapes where erosion is driven mainly by fluvial processes (e.g. Lease and Ehlers, Science 341, 2013). Why fluvial incision responds to climate change remains enigmatic, in particular because the obvious links to variations in precipitation, and hence water flux, are not generally supported by erosion rate measures (Stock et al., GSA Bulletin 117, 2005). This study explores potential links between accelerating rates of river incision and sediment production on hillslopes that surround the channel network. Hillslope soil production and soil transport are processes that are likely to respond to decreasing temperatures, because the density of vegetation and for example the occurrence of frost influence rates of weathering and sediment flow. We perform computational landscape evolution experiments where a sediment-flux-dependent model for fluvial incision (e.g. Sklar and Dietrich, Geology 29, 2001) is coupled to models for sediment production and transport on hillslopes. The resulting coupled landscape dynamics is of a highly nonlinear nature, where even small changes in hillslope sediment production far up in a drainage network propagate all the way through the downstream fluvial system. Dependent on the total sediment load, the fluvial system may respond with increased incision that steepens the hillslopes and starts a positive feedback loop that accelerates overall erosion.

  15. Modeling post-wildfire fluvial incision and terrace formation

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; Tucker, G. E.

    2013-12-01

    Wildfires often lead to rapid erosion, sedimentation, and morphologic change. One of the challenges in developing quantitative models of post-fire landscape dynamics is a lack of high-quality datasets that document fluvial system evolution in the years to decades following a destructive fire. This study takes advantage of a natural experiment in post-fire fluvial incision to explore how the magnitude and timing of large flow events following a wildfire can change fluvial channel patterns. The study site is the Spring Creek watershed located in the foothills of central Colorado approximately 26 miles southwest of Denver, Colorado. The site burned during the Buffalo Creek wildfire, which was contained in May 1996. Within the Spring Creek watershed, 79% of the basin was burned and 63% of the burned area was considered high severity (Moody and Martin, 2001). In July 1996 a large rain storm hit the burned watershed and 110 mm of rain fell in one hour (Jarrett, 2001). This storm was larger than the estimated 100-year rainfall intensity of 60 mm/hr. Due to the increased surface erodibility after the wildfire, rapid erosion occurred within the watershed, while the main valley of Spring Creek aggraded with up to 2 m of sediment after this storm. Spring Creek has been incising through this post-wildfire sediment since the 1996 storm, and the terraces from this initial storm are still prevalent and identifiable along the valley. Repeated measurements of valley cross-sections since 1996 provide a comprehensive dataset for testing models of fluvial-system evolution on a decadal time scale. We hypothesize that the current channel pattern results from the specific sequence of rain events that occurred within the four years after the initial 1996 storm filled the valley with sediment. This hypothesis was tested using a two-dimensional coupled model of shallow-water flow, sediment transport, and topographic evolution. Discharge data were obtained from a stream gage installed at

  16. Neotectonics and fluvial geomorphology of the Northern Sinai Peninsula

    NASA Astrophysics Data System (ADS)

    Kusky, T.; El-Baz, F.

    2000-08-01

    Large anticlinal ridges of Jurassic-Tertiary limestone in the northern Sinai Peninsula are part of the Syrian Arc Fold Belt, parts of which have been active intermittently from Late Cretaceous through the present. Recent uplift of the Syrian Arc Fold Belt is supported by quantitative indices of active tectonics including low values of mountain front sinuosity and, by recent seismicity, extending southwest past Cairo into the Fayoum Depression. The northern Sinai Desert has a climate similar to that of the adjacent part of the eastern Sahara. Sand sheets and dune fields cover its northwestern part, which is a depression extending from the Suez Canal to Wadi El-Arish. Numerous dry channels of palaeorivers and streams lead into this depression, where several temporary palaeolakes and flood overbank deposits have been identified. Some of the temporary pluvial palaeolakes developed behind natural dams formed by folds of the Syrian Arc, whereas others filled deeply-eroded fault traces. Migration of sand dunes may have blocked some channels, but the location of the dunes seems to be controlled by Recent uplift of parts of the fold belt, with the dunes residing in synclinal depressions and adjacent to fault scarps. The palaeolakes are correlated more with structures than with active dune fields. Wadi El-Arish abandoned a channel west of its present-day course, perhaps because of recent growth and uplift of the Gebel Halal Fold. This abandonment was synchronous with down-cutting of a gorge through Gebel Halal, which follows conjugate faults formed during uplift of an anticline. The presence of standing water during wetter climates in the past is supported by silt deposits and archaeological evidence of previous human habitation. The newly identified lake margin and fluvial sediments could be important targets for studying early-modern human and Neanderthal activities. In the eastern Sahara, cycles of pluvial periods that date back 320,000 years appear to correspond to

  17. Dynamic Flocculation of Muds in Fluvial to Marine Transitions

    NASA Astrophysics Data System (ADS)

    Keyvani, A.; Strom, K. B.

    2012-12-01

    Rivers are the primary conduits for delivery of sediment and organic matter to the sea. The sediments from river plumes may deposit and be preserved in estuarine and deltaic zones, or may be carried and mixed by ocean currents to deposit elsewhere on the shelf or basin. The sediment settling velocity is the most important parameter in terms of controlling and predicting depositional patterns in river mouths and coastal shelves. Settling velocity greatly impacts the distribution of muds in deltas and turbidity currents, and is largely controlled by grain size and density. The flocculation process yields mud aggregates of variable size and density as a function of turbulent energy and salt levels. Since turbulent energy and salinity both change during the fluvial to marine transition, dynamic flocculation processes may have a significant control to the eventual distribution of sediment through these zones. The purpose of this study is to quantify the evolution of floc size distribution and fractal dimension of suspended flocs with time as a function of time and space as turbulent shear and salinity levels vary in the fluvial to marine transition (river jet/plume and turbidity currents). To do this, experiments are carried out in a laboratory chamber where turbulent shear and salinity levels are varied to mimic a fixed volume of fluid being advected through the transition zone, and floc size distribution properties are measured within the mixing chamber using a specially designed floc imaging system and a set of image processing routines that allows us to measure floc size distributions of suspended flocs. Results demonstrate that floc properties and floc settling velocity change due to the dynamic flocculation and are dependent on the turbulent time history the mud suspension was exposed to under constant concentration. Results from the study are then used to frame a discussion on the relative importance of accounting for these dynamic effects in numerical models of

  18. Models of marine transgression —Example from Lower Cretaceous fluvial and paralic deposits, north-central Kansas

    NASA Astrophysics Data System (ADS)

    Franks, Paul C.

    1980-01-01

    Transgression of the Early Cretaceous Kiowa sea in north-central Kansas led to deposition and preservation of fluvial, estuarine, and lagoon or bay deposits behind Kiowa barrier systems. The fluvial, estuarine, and part of the lagoon or bay deposits compose the Longford Member of the Kiowa Formation. The member is thickest in broad valleys that were eroded into Permian bed rock prior to deposition of the Cretaceous strata. Overlying Kiowa beds include open-sea deposits of shale., and barrier-system deposits of sandstone. Transgression was not accompanied by near-shore erosion of barrier, paralic, or fluvial deposits, nor by development of transgressive disconformities within the transgressive sequence, nor by deposition of transgressive sand sheets. Progradational pulses that might account for the generation and preservation of the barrier, paralic, and fluvial deposits are not apparent in the Longford-Kiowa record. An upward gradation from fluvial deposits at the base of the member to lagoonal deposits at the top and an apparently scattered distribution of Kiowa open-sea and barrier deposits above the member indicate that rising sea level or basin subsidence was accompanied by vertical growth, eventual submergence, and stepwise landward shift of barrier systems across expanding lagoons or bays. *Temporary address, until August 1980: c/o Amoco Production Company, P.O. Box 591, Tulsa, Oklahoma 74102

  19. Controls on bacterial gas accumulations in thick Tertiary coal beds and adjacent channel sandstones, Powder River basin, Wyoming and Montana

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1991-03-01

    Coal beds, as much as 250 ft thick, and adjacent sandstones in the Paleocene Tongue River Member of the Fort Union Formation are reservoirs for coal-derived natural gas in the Powder River basin. The discontinuous coal beds were deposited in raised, ombrotrophic peat bogs about 3 mi{sup 2} in size, adjoining networks of fluvial channels infilled by sand. Coal-bed thickness was controlled by basin subsidence and depositional environments. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub o} values of 0.4 to 0.5%). Although the coals are relatively low rank, they display fracture systems. Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amount of Co{sub 2} ({lt}10%). The methane is isotopically light and enriched in deuterium. The gases are interpreted to be generated by bacterial processes and the fermentation pathway, prior to the main phase of thermogenic methane generation by devolatilization. Large amounts of bicarbonate water generated during early stages of coalification will have to be removed from the fracture porosity in the coal beds before desorption and commercial gas production can take place. Desorbed amounts of methane-rich, bacterial gas in the Powder River basin are relatively low ({lt}60 Scf/ton) compared to amounts of thermogenic coal-bed gases (hundreds of Scf/ton) from other Rocky Mountain basins. However, the total coal-bed gas resource in both the coal beds and the adjacent sandstones is considered to be large (as much as 40 Tcf) because of the vast coal resources (as much as 1.3 trillion tons).

  20. Fluvial sensitivity to Late Quaternary climate changes in NW Romania

    NASA Astrophysics Data System (ADS)

    Perşoiu, Ioana; Rădoane, Maria; Robu, Delia; Tanţău, Ioan

    2013-04-01

    straightforward one, with a phase of few hundred years during the Early Holocene when the river became a slightly incised braided/wandering channel, with finer in-channel materials. The conservative response of Someşu Mic river to the climatic amelioration, without channel type change during the BA and delayed reaction during the Early Holocene, is probably the consequence of the higher general slope of the valley which maintain an increased solid discharge. This threshold is surpassed only in the Holocene, when deciduous forest arrived in the area and imposed a compact belt at mid altitudes, causing a drastic reduction of solid discharge. Contrary, the small tributary seems to be highly responsive to all important climatic changes during the LG and the Holocene. The two cases confirm the variable sensitivity (depending on geologic and hydrologic factors) of fluvial systems to climate changes and highlight the complexity of their temporal and spatial response to these changes.

  1. A Novel Filter Construction Utilizing HTS Reaction-Type Filter to Improve Adjacent Channel Leakage Power Ratio of Mobile Communication Systems

    NASA Astrophysics Data System (ADS)

    Futatsumori, Shunichi; Hikage, Takashi; Nojima, Toshio; Akasegawa, Akihiko; Nakanishi, Teru; Yamanaka, Kazunori

    We propose a new band selective stop filter construction to decrease the out of band intermodulation distortion (IMD) noise generated in the transmitting power amplifier. Suppression of IMD noise directly improves the adjacent channel leakage power ratio (ACLR). A high-temperature superconducting (HTS) device with extremely high-Q performance with very small hybrid IC pattern would make it possible to implement the proposed filter construction as a practical device. To confirm the effectiveness of the HTS reaction-type filter (HTS-RTF) in improving ACLR, investigations based on both experiments and numerical analyses are carried out. The structure of a 5-GHz split open-ring resonator is investigated; its targets include high-unload Q-factor, low current densities, and low radiation. A designed 5-GHz HTS-RTF with 4MHz suppression bandwidth and more than 40dB MHz-1 sharp skirt is fabricated and experimentally investigated. The measured ACLR values are improved by a maximum of 12.8dB and are constant up to the passband signal power of 40dBm. In addition, to examine the power efficiency improvement offered by noise suppression of the HTS-RTF, numerical analyses based on measured results of gallium nitride HEMT power amplifier characteristics are conducted. The analyzed results shows the drain efficiency of the amplifier can be improved to 44.2% of the amplifier with the filter from the 15.7% of the without filter.

  2. Fluvial and glacial implications of tephra localities in the western Wind River basin, Wyoming, U. S. A

    SciTech Connect

    Jaworowski, C. . Dept. of Geology)

    1993-04-01

    Examination of Quaternary fluvial and glacial deposits in the western Wind River Basin allows a new understanding of the Quaternary Wind River fluvial system. Interbedded fluvial sediments and volcanic ashes provide important temporal information for correlation of Quaternary deposits. In the western Wind River Basin, six mid-Pleistocene localities of tephra, the Muddy Creek, Red Creek, Lander, Kinnear, Morton and Yellow Calf ashes are known. Geochronologic studies confirm the Muddy Creek, Red Creek, Kinnear and Lander ashes as the 620--650ka Lava Creek tephra from the Yellowstone region in northwestern Wyoming. The stratigraphic position and index of refraction of volcanic glass from the Morton and Yellow Calf ashes are consistent with identification as Lava Creek tephra. Approximately 350 feet (106 meters) above the Wind River and 13 miles downstream from Bull Lake, interbedded Wind River fluvial gravels, volcanic glass and pumice at the Morton locality correlate to late (upper) Sacajawea Ridge gravels mapped by Richmond and Murphy. Associated with the oxygen isotope 16--15 boundary, the ash-bearing terrace deposits reveal the nature of the Wind River fluvial system during late glacial-early interglacial times. The Lander and Yellow Calf ashes, are found in terrace deposits along tributaries of the Wind River. Differences in timing and rates of incision between the Wind River and its tributary, the Little Wind River, results in complex terrace development near their junction.

  3. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    NASA Astrophysics Data System (ADS)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry

  4. The potential of hydrodynamic analysis for the interpretation of Martian fluvial activities

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Schumann, Guy; Neal, Jeffrey; Lin, Shih-Yuan

    2014-05-01

    After liquid water was identified as the agent of ancient Martian fluvial activities, the valley and channels on the Martian surface were investigated by a number of remote sensing and in-situ measurements. In particular, the stereo DTMs and ortho images from various successful orbital sensors are being effectively used to trace the origin and consequences of Martian hydrological channels. For instance, to analyze the Martian fluvial activities more quantitatively using the topographic products, Burr et al. (2003) employed 1D hydrodynamic models such as HEC-RAS together with the topography by MOLA to derive water flow estimates for the Athabasca Valles area on Mars [1]. Where extensive floodplain flows or detailed 2D bathymetry for the river channel exist, it may be more accurate to simulate flows in two dimensions, especially if the direction of flow is unclear a priori. Thus in this study we demonstrated a quantitative modeling method utilizing multi-resolution Martian DTMs, constructed in line with Kim and Muller's (2009) [2] approach, and an advanced hydraulics model LISFLOOD-FP (Bates et al., 2010) [3], which simulates in-channel dynamic wave behavior by solving for 2D shallow water equations without advection. Martian gravitation and manning constants were adjusted in the hydraulic model and the inflow values were iteratively refined from the outputs of the coarser to the finer model. Then we chose the target areas among Martian fluvial geomorphologies and tested the effectiveness of high resolution hydraulic modeling to retrieve the characteristics of fluvial systems. Test sites were established in the Athabasca Valles, Bahram Vallis, and Naktong Vallis respectively. Since those sites are proposed to be originated by different fluvial mechanisms, it is expected that the outputs from hydraulics modeling will provide important clues about the evolution of each fluvial system. Hydraulics modeling in the test areas with terrestrial simulation parameters was also

  5. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high

  6. Application of Uav Photogrammetry for Assessment of Fluvial Dynamics of a Montane Stream. Case Study - Roklanský Creek, Šumava Mts., Europe.

    NASA Astrophysics Data System (ADS)

    Langhammer, J.; Miřijovský, J.; Hartvich, F.; Kaiglová, J.

    2014-12-01

    Current progress in hydrology and fluvial geomorphology is largely driven by the newly emerging survey and detection techniques, employing advanced technologies for remote sensing and monitoring of the runoff processes and fluvial dynamics. The contribution demonstrates the potential of the fusion of experimental survey methods for analysis of fluvial dynamics of a montane stream. The UAV photogrammetry, optical granulometry, ground LiDAR scanning and sensor network monitoring were applied as a base for building hydrodynamic model for simulation of fluvial dynamics. The UAV photogrammetry is employed to acquire high precision DTM and especially for quantitative analysis of volumetric changes related to initial flood events. The hexacopter platform has been used to acquire the data for photogrammetric analysis of complex stretch of stream with historically elevated fluvial dynamics. The SfM algorithm was used to extract accurate DTM of the channel and to consequently analyze the volumetric changes after a flood event. The sensor network with automated high frequency water level monitoring was used to derive information on hydrological properties of initial flood event. The digital granulometry enabled to analyze the structure of sedimentary material in floodplain. The terrestrial LiDAR scanning allows construction of very detailed 3D models of selected fluvial forms, enabling deeper insight into the effects of fluvial dynamics and to verify the spatial information acquired using UAS photogrammetry. The results of above mentioned techniques are applied to build hydrodynamic model explaining threshold conditions for initiation of changes in fluvial morphology of the riverbed in relation to known and theoretical flood magnitude. The results achieved in the study enabled us to discuss the synergic potential of coupling the UAV photogrammetry, sensor networks and other high precision survey techniques to enhance significantly our knowledge on the dynamics of fluvial

  7. Fluvial architecture variations linked to changes in accommodation space: Río Chico Formation (Late Paleocene), Golfo San Jorge basin, Argentina

    NASA Astrophysics Data System (ADS)

    Foix, Nicolás; Paredes, José M.; Giacosa, Raúl E.

    2013-08-01

    The Upper Paleocene Río Chico Formation is a 50-180 m thick fluvial succession developed in a passive-margin setting, Golfo San Jorge basin, Central Patagonia, Argentina. A detailed description and interpretation of outcrops was carried out, analyzing exposures from the northern basin margin to the most complete successions at the southern depocenter. The unit is characterized by a regional fluvial system that flowed to the south-east. Five main lithofacies associations were defined: (I) active fluvial channels, with three sub-types: braided, meandering and low-sinuosity, (II) sheet-flood deposits, (III) proximal floodplain (natural levee and crevasse-splay), (IV) distal floodplain, and (V) abandoned channels. Lateral/vertical changes in fluvial architecture of the Río Chico Formation were recognized by variations in preserved thickness, fluvial styles, geometry of fluvial channels, regional paleoflow directions, and channel/floodplain ratios. Close to the northern basin margin, the fluvial succession is 50-60 m thick, composed of braided channels, sheet-flow deposits, and high channel/floodplain ratio. In a basinward direction, the alluvial succession increases to 180 m in thickness, the dominant fluvial styles change to low-sinuosity and meandering channels and channel/floodplain ratio reduces. The fluvial architecture of the Río Chico Formation shows two main depositional trends that resulted from changes in accommodation space across the basin. The interpreted break-point coincides with the underlying Cretaceous basin-boundary, thus the synsedimentary extensional reactivation of the pre-existing tectonic lineament generated differential subsidence, delimiting two different accommodation settings.

  8. Dating of Malaysian fluvial tin placers

    NASA Astrophysics Data System (ADS)

    Batchelor, Daud A. F.

    The richest tin placers in Malaysia—fluviatile and piedmont fan placers—formed mainly within the "Boulder Beds" (BB fan facies), "Old Alluvium" (OA alluvial plain facies) and "Transitional Unit" (TU) which are regional lithostratigraphic units that can be correlated throughout western Peninsular Malaysia. Palaeomagnetic studies show that the TU was deposited during the early part of the Brunhes Normal Polarity Epoch (0-0.73 Ma) whereas the OA and BB mainly formed during the Matuyama Reversed Epoch (0.73-2.48 Ma). Present environments are mostly unfavorable for tin placer formation. Economic placers are generally covered on land by Young Alluvium (YA) overburden or are submerged offshore. As many of the rich OA/BB near-source placers are now largely worked out, the transported TU fluvial placers are becoming more important economically. The latest Pliocene to Mid Pleistocene period represented the principal phase of economic tin placer formation. Evidence from palaeomagnetism and the stratigraphic context of placers, and the relationship between sea level change, climatic change and placer genesis, suggest that the bulk of OA placers formed during a Lower Pleistocene interglacial period. A Mid Pleistocene age for TU placers is indicated by vertebrate fossils, palaeomagnetism, and their stratigraphic position below Upper Quaternary YA and above OA which is older than 0.73 Ma.

  9. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    SciTech Connect

    Graf, W.L.

    1996-10-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab.

  10. Fluvial erosion on Mars: Implications for paleoclimatic change

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Baker, Victor R.

    1993-01-01

    Fluvial erosion on Mars has been nonuniform in both time and space. Viking orbiter images reveal a variety of different aged terrains exhibiting widely different degrees of erosion. Based on our terrestrial analog studies, rates of fluvial erosion associated with the formation of many of the valleys on Mars is probably on the order of hundreds of meters per million years, while rates of erosion associated with the formation of the outflow channels probably ranged from tens to hundreds of meters in several weeks to months. However, estimated rates of erosion of the Martian surface at the Viking Lander sites are extremely low, on the order of 1 micron/yr or less. At most this would result in a meter of material removed per million years, and it is unlikely that such an erosion rate would be able to produce the degree of geomorphic work required to form the fluvial features present elsewhere on the surface. In addition, single terrain units are not eroded uniformly by fluvial processes. Instead fluvial valleys, particularly in the cratered highlands, typically are situated in clusters surrounded by vast expanses of uneroded surfaces of the same apparent lithologic, structural, and hydrological setting. Clearly throughout its geologic history, Mars has experienced a nonuniformity in erosion rates. By estimating the amount of fluvial erosion on dissected terrains and by studying the spatial distribution of those locations which have experienced above normal erosion rates, it should be possible to place further constraints on Mars' paleoclimatic history.

  11. Bar morphodynamics in the tidally-influenced fluvial zone

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel; Ashworth, Philip; Best, James; Nicholas, Andrew; Prokocki, Eric; Sambrook-Smith, Greg; Keevil, Claire; Sandbach, Steve

    2015-04-01

    The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the morphodynamic response the bed morphology and bar stratigraphy to fluvial-tidal flows. A 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. Initial results from the programme suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.

  12. Fluvial Drainage Basins and Valley Networks: Eastern Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Boothroyd, J. C.; Grant, J. A.

    1985-01-01

    The fluvial drainage of the eastern Margaritifer Sinus (MC-19NE, SE) and northeastern Argyre (MC-26NE) Quadrangles is dominated by two major longitudinal valley networks, the Parana/Loire system on the east, and the Samara Himera system to the west. It is believed that both of these drainages are through-going to the northwest and debouch into Margaritifer Chaos (general location: 12S, 22.5W). The Parana/Loire drainage is bounded on the east in part by an ancient multi-ringed impact basin. The Parana multi-digitate network drains northwest into a depositional basin, and impact basin floor, characterized by positive relief chaos. It is believed that Loire Vallis heads in the basin; thus Parana and Loire Valles may be treated as one system. Samara Valles heads in the northeastern Argyre Quadrangle and extends as a major truck valley to the northwest. Samara Valles cuts through the hills forming one of the concentric rings of the Ladon impact basin and joins the Himera drainage to trend in a more northerly direction to Margaritifer Chaos. The downstream portion of Himera is considered to be part of the Samara

  13. Fluvial Placement of Radioactive Contaminants a Weldon Spring Case Study

    SciTech Connect

    Meier, J.

    2002-02-26

    The operation of the Weldon Spring Uranium Feed Materials Plant in St. Charles, MO between 1958 and 1966 resulted in the migration and emplacement of radioactive contaminants into surface water drainage systems. Multiple drainage systems, receiving from a variety of waste discharge points, combined to create unique and unexpected depositional environment. Discovery and investigation of the depositional environments was a significant technical challenge due to the complex nature of sediment movement and emplacement. The objective of this investigation was to show that application of the knowledge of geomorphic processes is an essential element of a complete stream characterization, pursuant to risk analysis and remediation. This paper sets out to describe many of the expected and unexpected findings of the investigations by the Weldon Spring Site Remedial Action Project (WSSRAP) into the placement and rework of contaminated sediments in stream systems. Information from this paper will be useful to other agencies and contractor personnel faced with the challenge of locating and quantifying contaminated sediments in seemingly haphazard fluvial depositional conditions.

  14. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  15. The fluvial sediment budget of the proglacial Fagge River derived from repeated laser scanning surveys

    NASA Astrophysics Data System (ADS)

    Morche, D.; Bryk, A.; Baewert, H.

    2013-12-01

    Alpine regions are strongly affected by the global climate change. Alpine glaciers have had a negative net balance since the end of the Little Ice Age (LIA). Proglacial areas with freshly exposed subglacial sediments are expanding due to the retreat of glaciers. These sediments (moraines, tills, glaciofluvial deposits, etc.) are unconsolidated, unvegetated and are therefore highly unstable. During heavy rainfall events, glacial and glaciofluvial deposits are often remobilized and transported down the fluvial system. This study is focused on rapidly changing surfaces in the proglacial fluvial system of the Fagge River, which drains the Gepatschferner, one of the largest glaciers in Austria. . The field site is located in the Kaunertal/Austria and covers an area from the snout of the glacier (2206 m a.s.l.) to the outlet of the Fagge River at the Gepatsch Reservoir at (1750 m a.s.l.). The main goals of this study are to measure surface changes and calculate mass balances of major sediment sources (alluvial plains, bars) in the proglacial area that are directly connected to the fluvial system. Towards this end, multiple terrestrial laser scans were performed with an Optech ILRIS-36D laser scanner during the field season in 2011 and 2012. Significant surface changes occurred during the investigation period, mainly caused by an extreme flood event occurred after heavy rain on August 26, 2012. Large amounts of sediment (>70000 m^3) were remobilized, especially in the upper parts of the proglacial area, and were redeposited further downstream during this extraordinary event.

  16. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    PubMed

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. PMID:26657380

  17. What can we learn from fluvial incision in high mountains?

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000

  18. Fluvial entrainment of low density peat blocks (block carbon)

    NASA Astrophysics Data System (ADS)

    Warburton, Jeff

    2014-05-01

    In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift

  19. Analysis of Ancient Fluvial Patterns on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Jethani, Henna; Williams, M. E.

    2010-01-01

    This project involves the study of ancient fluvial patterns on the surface of Mars, including raised curvilinear features (RCFs) and negative relief channels. It requires the use of geological images provided by the Mars Reconnaissance Orbiter to determine how water shaped the surface of Mars in the form of rivers, lakes and/or oceans approximately 3.5 billion years ago, during the Noachian period. The role of the intern is to examine the images and record the corresponding measurements of ancient river systems in an Excel spreadsheet to assist in determining the Noachian water cycle on Mars. Resources used to make these measurements include the Arena software, hand-drawn sketch maps, Microsoft Word, Microsoft Excel and the images provided by the Mars Reconnaissance Orbiter. The Context Imager (CTX) returns black and white images at a resolution of six meters per pixel. The camera can take images with a width of 30 km and a length of 160 km. Seventeen images were observed in total. Images are analyzed and notes are taken concerning their terminal deposits, stream ordering and drainage pattern. The Arena software is utilized to make the images more visible by allowing control of contrast and magnification. Once the image is adjusted, measurements: length, average width, drainage basin area, sinuous ridge area are recorded, at a magnification of one, through using the line segment and polygon tools. After an image has been analyzed and measured, a sketch map is drawn in order to clearly identify the various segments, basins and terminal deposits the intern observed. Observations are used to further classify the fluvial patterns; their drainage pattern is defined as dendritic, parallel, trellis, rectangular, radial, centripetal, deranged or discordant. Once observational notes are completed, mathematical relations are used to determine drainage density, stream frequency, theoretic basin area and sinuosity index. These data will be added to a larger data set that will

  20. Estimating the fluvial sediment input to the coastal sediment budget: A case study of Ghana

    NASA Astrophysics Data System (ADS)

    Boateng, Isaac; Bray, Malcolm; Hooke, Janet

    2012-02-01

    Knowledge of fluvial sediment supply to the coastal sediment budget is important for the assessment of the impacts on coastal stability. Such knowledge is valuable for designing coastal engineering schemes and the development of shoreline management planning policies. It also facilitates understanding of the connection between rivers in the hinterland and adjoining coastal systems. Ghana's coast has many fluvial sediment sources and this paper provides the first quantitative assessments of their contributions to the coastal sediment budget. The methods use largely existing data and attempt to cover all of Ghana's significant coastal rivers. Initially work was hindered by insufficient direct measured data. However, the problem was overcome by the application of a regression approach, which provides an estimated sediment yield for non-gauged rivers based on data from gauged rivers with similar characteristics. The regression approach was effective because a regional coherence in behaviour was determined between those rivers, where direct measured data were available. The results of the assessment revealed that Ghana's coast is dissected by many south-draining rivers, stream and lagoons. These rivers, streams and lagoons supply significant amounts of sediment to coastal lowlands and therefore contribute importantly to beaches. Anthropogenic impoundment of fluvial sediment, especially the Akosombo dam on the Volta River, has reduced the total fluvial sediment input to the coast from about 71 × 10 6 m 3/a before 1964 (pre-Akosombo dam) to about 7 × 10 6 m 3/a at present (post-Akosombo dam). This sharp reduction threatened the stability of the east coast and prompted an expensive ($83 million) defence scheme to be implemented to protect 8.4 km-long coastline at Keta. Sections of Ghana's coast are closely connected to the hinterland through the fluvial sediment input from local rivers. Therefore, development in the hinterland that alters the fluvial sediment input from

  1. Rock slope response to fluvial incision in the central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2016-04-01

    The longitudinal profile of rivers intersecting the Rhone Valley in the central Swiss Alps suggests the development of topography throughout much of this region has been dominated by interglacial fluvial incision and ongoing tectonic uplift with only minimal glacial erosion since the mid-Pleistocene transition. Evidence indicates bedrock river incision during this period reflects a base level fall of between 500 m and 800 m (depending on the degree of overdeepening following an early period of enhanced glacial incision). This observation raises important questions regarding the preservation, or development of hillslope morphologies through multiple glacial-interglacial cycles. Since the pioneering works of Richter (1900) and Penck and Brückner (1909), Alpine geomorphologists have commented on a sequence of between three and five moderately dipping matched terraces that converge toward inferred paleo-river channels up to 800 m above the axis of many valleys. Here, we use a combination of integral analysis, forward streampower models, and a new method of topographic analysis based on high resolution LiDAR DEMs in order to test the correspondence of valley morphologies in this formerly glaciated landscape, with hillslope processes initiated by fluvial incision up to 700,000 years ago. Results indicate topography adjacent to reaches subjected to transient fluvial incision is characterized by a coherent region of consistently steep slopes, while narrow gorges correspond to rapid incision close to the Rhone valley since MIS 5. A majority of hillslopes converge to our initial fluvial valley floor, or the location of propagating knickpoints. The correspondence between intermediate-level terraces and modeled stages of river incision is, however, currently unclear. These results offer a unique insight into the long-term response of bedrock slopes to varying rates of base level fall, and the cumulative impact of glacial erosion on Alpine valley walls since MIS 11. Penck, A

  2. Identification, Mapping, and Measurement of Titan Fluvial Features

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Roth, D. L.; Burr, D. M.; Phillips, C. B.; Mitchell, K. L.

    2008-12-01

    Data from the Cassini-Huygens mission show various individual and networked curvilinear features on Titan's surface interpreted to have been formed by the flow of liquid methane. These inferred fluvial features are seen in the three Cassini surface imaging instrument datasets (from the Imaging Subsystem for Science, the Visual and Infrared Mapping Spectrometer, and the Cassini Titan RADAR Mapper). Such features are also seen in the Huygens Probe Descent Imager/Spectral Radiometer images, in which they have been classified as fluvial valleys. The features are visible at all latitudes, although the characteristics that suggest formation by fluvial flow change with latitude. To investigate the formation of Titan's fluvial features, we mapped out their locations in Synthetic Aperture Radar (SAR) images from the Cassini Titan RADAR Mapper and quantified their network parameters. First, released Cassini SAR images from flybys Ta, T3, T7, T13, and T23 were processed and reprojected using ISIS2 into the best map projections for obtaining accurate measurements, depending on the characteristics to be measured. Equidistant sinusoidal map projections were used to measure feature lengths and widths, whereas conformal mercator projections were used to measure junction angles at the confluence of fluvial features. Next, criteria were devised based on radar reflectance, illumination, and morphology with which to consistently identify the fluvial features. These criteria were then applied to the reprojected Cassini SAR images to create maps of the fluvial features. Finally, measurements were made of these mapped features to calculate their sizes, sinuosities, and junction angle. Using a published algorithm to classify terrestrial drainage network type from measured morphologic parameters, we found that the equatorial network of fluvial features over western Xanadu observed in the T13 radar swath would be classified as rectangular. On Earth, rectangular drainage networks are

  3. The efficacy of the well of the well (WOW) culture system on development of bovine embryos in a small group and the effect of number of adjacent embryos on their development.

    PubMed

    Kang, Sung-Sik; Ofuji, Sosuke; Imai, Kei; Huang, Weiping; Koyama, Keisuke; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2015-06-01

    The aim of the present study was to clarify the efficacy of the well of the well (WOW) culture system for a small number of embryos and the effect of number of adjacent embryos in a WOW dish on blastocyst development. In conventional droplet culture, embryos in the small-number group (5-6 embryos/droplet) showed low blastocyst development compared with a control group (25-26 embryos/droplet). However, small and large numbers of embryos (5-6 and 25 embryos, respectively) in a WOW dish showed no significant differences in cleavage, blastocyst rates, and mean cell number in blastocysts compared with the control group (25-30 embryos/droplet). In addition, the number of adjacent embryos in a WOW dish did not affect the development to blastocysts and cell number in blastocysts. In conclusion, a WOW dish can provide high and stable blastocyst development in small group culture wherever embryos are placed in microwells of the WOW dish. PMID:24598303

  4. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  5. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  6. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  8. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  9. A linear dune dam - a unique late Pleistocene aeolian-fluvial archive bordering the northwestern Negev Desert dunefield, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2016-04-01

    Interactions between aeolian and fluvial processes, known as aeolian-fluvial (A-F) interactions, play a fundamental role in shaping the surface of the Earth especially in arid zones. The blocking of wadis by dunes (dune-damming) is an A-F interaction that is perceived to be an archive of periods of aeolian 'superiority' on fluvial transport power and has had a strong impact on arid landscapes and prehistoric man since the late Quaternary. The southern fringes of the northwestern Negev dunefield are lined with discontinuous surfaces of light-colored, playa-like, low-energy, fine-grained fluvial deposits (LFFDs). Abundant Epipalaeolithic camp sites mainly border the LFFDs. The LFFDs are understood to be reworked loess-like sediment deposited in short-lived shallow water bodies during the late Pleistocene. These developed adjacently upstream of hypothesized dune dams of wadis that drain the Negev highlands. However, no dune dam structures by the LFFDs have been explicitly identified or analyzed. This paper presents for the first time the morphology, stratigraphy and sedimentology of a hypothesized dune dam. The studied linear-like dune dam structure extends west-east for several hundred meters, has an asymmetric cross-section and is comprised of two segments. In the west, the structure is 3-5 m high, 80 m wide, with a steep southern slope, and is covered by pebbles. Here, its morphology and orientation resembles the prevailing vegetated linear dunes (VLDs) of the adjacent dunefield though its slope angles differ from VLDs. To the south of the structure extends a thick LFFD sequence. In the east the structure flattens and is covered by nebkhas with its southern edge overlapped by LFFD units. The structures' stratigraphy is found to be comprised of a thick LFFD base, overlaid by aeolian and fluvially reworked sand, a thin middle LFFD unit, and a crest comprised of LFFDs, fluvial sand and pebbles. Carbonate contents and particle size distributions of the sediments easily

  10. Approximating the largest eigenvalue of network adjacency matrices

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.

    2007-11-01

    The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.

  11. Rapid anthropogenic response to short-term aeolian-fluvial palaeoenvironmental changes during the Late Pleistocene-Holocene transition in the northern Negev Desert, Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Agha, Nuha; Goring-Morris, A. Nigel; Porat, Naomi; Barzilai, Omry

    2014-09-01

    Archaeological investigations along Nahal Sekher on the eastern edge of Israel's northwestern Negev Desert dunefield revealed concentrations of Epipalaeolithic campsites associated respectively with ancient water bodies. This study, aimed at better understanding the connections between these camps and the water bodies, is concerned with a cluster of Natufian sites. A comprehensive geomorphological study integrating field mapping, stratigraphic sections, sedimentological analysis and optically stimulated luminescence (OSL) ages was conducted in the vicinity of a recently excavated Natufian campsite of Nahal Sekher VI whose artifacts directly overlay aeolian sand dated by OSL to 12.4 ± 0.7 and 11.7 ± 0.5 ka. Residual sequences of diagnostic silty sediments, defined here as low-energy fluvial fine-grained deposits (LFFDs), were identified within the drainage system of central Nahal Sekher around the Nahal Sekher VI site. LFFD sections were found to represent both shoreline and mid-water deposits. The thicker mid-water LFFD deposits (15.7 ± 0.7-10.7 ± 0.5 ka) date within the range of the Epipalaeolithic campsites, while the upper and shoreline LFFD units that thin out into the sands adjacent to the Nahal Sekher VI site display slightly younger ages (10.8 ± 0.4 ka-7.6 ± 0.4 ka). LFFD sedimentation by low-energy concentrated flow and standing-water developed as a result of proximal downstream dune-damming. These water bodies developed as a result of encroaching sand that initially crossed central Nahal Sekher by 15.7 ± 0.7 ka and probably intermittently blocked the course of the wadi. LFFD deposition was therefore a response to a unique combination of regional sand supply due to frequent powerful winds and does not represent climate change in the form of increased precipitation or temperature change. The chronostratigraphies affiliate the Natufian sites to the adjacent ancient water bodies. These relations reflect a rapid, but temporary anthropogenic response to a

  12. Alternating Wind and Fluvial Erosion during the Quaternary in the Qaidam Basin (NE Tibetan Plateau) and its tectonic and climatic significance

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xiao, A.

    2014-12-01

    The Qaidam Basin is located in the NE Tibetan Plateau, and trapped by the Altyn Tagh Fault system to the northwest, the Qilian Mts. to the northeast and the East Kunlun Mts. - Qiman Tagh to the south. It forms one of the driest regions on earth with severe wind erosion since ca. 3.0 Ma (Heermance et al., 2013). Whether the Qaidam Basin is one of the major sources of the Chinese Loess Plateau is still debating: study on U-Pb ages of zircon crystals favored the positive answer (Pullen et al., 2011), whereas chemical and mineralogical analysis (Sun, 2002), together with observation on dust storms over the past 50 years (Sun et al., 2001), preferred the negative one. Kapp et al. (2011) reconciled the two contrasting viewpoints by numerical modeling based on the assumption that the Qaidam Basin underwent strong wind erosion during glacial periods but weak wind erosion even fluvial deposition during interglacial periods. However, no geological evidences have been found to back up the assumption. In this contribution, we reported geological evidence indicating that alternating wind erosion and fluvial deposition do exist in the western Qaidam Basin. The evidence consists of an isolated alluvial fan overlying old yardangs forming prior to the fan. The fan, as well as the underlying old yardangs, is now tens of meters higher than adjacent area which is full of young yardangs, suggesting that the fan was deposited between the two wind erosion events. We obtained high resolution (<10cm) DEM data of the fan and adjacent area by terrestrial LiDAR scanning and the age of the fan by 10Be exposure dating (test in process). We will use the results to calculate the long-term wind erosion rate in the Qaidam Basin, which is the first wind erosion rate obtained from accurate geological evidence. We believe that the result is significant to evaluate the impact of wind erosion on folding inside the basin, and of the global glacial - interglacial cycles on surface processes in the

  13. Timescales of fluvial response to climate and tectonic perturbations

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2015-04-01

    Earth's landscapes are composed of connected elements such as hillslopes, bedrock and alluvial rivers, alluvial fans and floodplains for example. Because these entities are dominated by different processes, they might respond in different ways and at different rates to external forcings depending on the nature, magnitude and time scale of changes. Knowledge of those response times is fundamental if we want to extract past climate and tectonics from landscape forms and sedimentary archives. Moreover, the interactions between different landscape elements and their response times also control the response of the landscape as a whole, and the delivery of sediment flux to the basins. Here we review the timescales of fluvial response to perturbations in bedrock and alluvial rivers and discuss the implications for delivery of sediment to basins over multi-millenial timescales. We first use existing relationships for bedrock rivers to study their response to climatic and tectonic perturbations. For alluvial rivers, we consider a simple 1D alluvial reach with a single grain size and an equilibrium slope determined by classical bedload relations. Upstream perturbations of grain size, sediment concentration and water discharge induce river aggradation or degradation according to their effect on river equilibrium slope. While minimum aggradation time can be computed analytically as a function of slope change and sediment supply, the time necessary to degrade to a lower equilibrium slope may be only a function of the timescale of the perturbation in a transport-limited system. We explore the field of natural rivers and their possible response to upstream perturbations.

  14. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-01-01

    Valley-fill aquifers are modest resources within the area, as indicated by the common practice of completing supply wells in the underlying bedrock rather than the overlying glacial deposits. Groundwater turbidity problems curtail use of the resource. However, additional groundwater resources have been identified by test drilling, and there are remaining untested areas. New groundwater supplies that stress localized aquifer areas will alter the groundwater flow system. Considerations include potential water-quality degradation from nearby land use(s) and, where withdrawals induce infiltration of surface-water, balancing withdrawals with flow requirements for downstream users or for maintenance of stream ecological health.

  15. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  16. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  17. Fluvial erosion as a mechanism for crater modification on Titan

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Molaro, J. L.; Lora, J. M.; Howard, A. D.; Kirk, R. L.; Schenk, P.; Bray, V. J.; Lorenz, R. D.

    2016-05-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan's crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan's drier equatorial regions.

  18. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  19. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.

    2007-12-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.

  20. Modelling Multidecadal Fluvial Sediment Fluxes to Deltas Under Future Environmental Change

    NASA Astrophysics Data System (ADS)

    Dunn, F. E.; Darby, S. E.; Nicholls, R. J.

    2015-12-01

    As low lying coastal regions deltas are prone to land loss, degradation, and flooding due to relative sea level rise. These processes endanger delta populations and infrastructure, a situation which is increasingly exacerbated by anthropogenic activities. The flux of fluvial sediment to deltas is a first order control on delta aggradation and thus the potential for the surface elevation of a delta to be maintained or rise relative to sea level. Aggradation may occur without anthropogenic interference, but it can also be induced by controlled flooding. This research investigates how future environmental changes through to 2100 will influence fluvial sediment delivery to a selection of 10 vulnerable deltas, thereby contributing to the understanding of relative sea level change projections for these fragile coastal systems. The key environmental changes investigated in this study include anthropogenic climate change, reservoir construction, and land cover changes induced by changes in agricultural practices and vegetation cover. The effects of these environmental changes on fluvial sediment delivery are being evaluated using the catchment numerical model WBMsed, which is being calibrated for the selection of deltas using historical reference data. As a test case, the inputs for modelling current and future sediment fluxes to the Ganges-Brahmaputra-Meghna delta are refined using economic and population projections as proxies for anthropogenic influences on delta catchments. This research will contribute to the prognosis for vulnerable deltas and inform their short- and long-term management by indicating the consequences of anthropogenic activities which affect delta elevation and sustainability via altering fluvial sediment processes. While this could give forewarning for the residents and managers of unsustainable deltas, it could also be used as an argument for or against various anthropogenic activities.

  1. Fluvial Wetland Nitrogen Removal in Shallow Sloped, Coastal New England Watersheds

    NASA Astrophysics Data System (ADS)

    Whitney, C. T.; Wollheim, W. M.; Mulukutla, G.; Lightbody, A.

    2015-12-01

    Excess nitrogen (N) in the environment contributes to eutrophication that can result in "dead zones" and fish kills. Most of the anthropogenic N is retained or removed by terrestrial and aquatic systems within watersheds, preventing this N from reaching the coast. Much research has focused on N removal in channelized stream reaches but recent studies have suggested that fluvial wetlands may play a larger role in the removal of anthropogenic N from aquatic ecosystems. We use the "Tracer Additions for Spiraling Curve Characterization" (TASCC) method coupled with deployment of new in situ nitrate analyzer technology to conduct experiments in long residence time, wetland dominated stream reaches (e.g. beaver ponds, flood plains, natural wetlands). These sensor based TASCC experiments were performed in three headwater fluvial wetlands in the spring and early summer and repeated in the fall and early winter during the 2014 field season. Preliminary results from a beaver pond reach show that N removal (as a percentage of inputs) was greater than in similar length channelized streams in the same region, but that most of this was due to longer residence time rather than increased biological uptake rates. This suggests that increased abundance of fluvial wetlands due to beaver activity will enhance network-scale retention. Use of the in situ sensor allows us to capture fine-scale variability, allowing for a better understanding of different flow paths taken by water parcels traversing a wetland and providing a better estimate of N removal compared to the discrete grab sampling method.

  2. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  3. The Volta Grande do Xingu: reconstruction of past environments and forecasting of future scenarios of a unique Amazonian fluvial landscape

    NASA Astrophysics Data System (ADS)

    Sawakuchi, A. O.; Hartmann, G. A.; Sawakuchi, H. O.; Pupim, F. N.; Bertassoli, D. J.; Parra, M.; Antinao, J. L.; Sousa, L. M.; Sabaj Pérez, M. H.; Oliveira, P. E.; Santos, R. A.; Savian, J. F.; Grohmann, C. H.; Medeiros, V. B.; McGlue, M. M.; Bicudo, D. C.; Faustino, S. B.

    2015-12-01

    The Xingu River is a large clearwater river in eastern Amazonia and its downstream sector, known as the Volta Grande do Xingu ("Xingu Great Bend"), is a unique fluvial landscape that plays an important role in the biodiversity, biogeochemistry and prehistoric and historic peopling of Amazonia. The sedimentary dynamics of the Xingu River in the Volta Grande and its downstream sector will be shifted in the next few years due to the construction of dams associated with the Belo Monte hydropower project. Impacts on river biodiversity and carbon cycling are anticipated, especially due to likely changes in sedimentation and riverbed characteristics. This research project aims to define the geological and climate factors responsible for the development of the Volta Grande landscape and to track its environmental changes during the Holocene, using the modern system as a reference. In this context, sediment cores, riverbed rock and sediment samples and greenhouse gas (GHG) samples were collected in the Volta Grande do Xingu and adjacent upstream and downstream sectors. The reconstruction of past conditions in the Volta Grande is necessary for forecasting future scenarios and defining biodiversity conservation strategies under the operation of Belo Monte dams. This paper describes the scientific questions of the project and the sampling surveys performed by an international team of Earth scientists and biologists during the dry seasons of 2013 and 2014. Preliminary results are presented and a future workshop is planned to integrate results, present data to the scientific community and discuss possibilities for deeper drilling in the Xingu ria to extend the sedimentary record of the Volta Grande do Xingu.

  4. 8. Exterior view, showing tank and associated piping adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Deciphering the Late Quaternary fluvial dynamics at the foothill of an active orogen - the example of the Transcaucasian depression in eastern Georgia

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Faust, Dominik

    2013-04-01

    Generally, the dynamics of fluvial systems can be triggered by climate, tectonics, anthropogenic activity or internal mechanisms. The lowland of the Transcaucasian depression is located between the Greater Caucasus in the north and the Lesser Caucasus in the south. Both mountainous massifs form a part of the Alpidic orogenic belt and are thus characterized by a high tectonic activity. During the Weichselian glaciation, due to their altitude >3000 m the massifs were strongly glaciated. During the last years, we investigated fluvial sediment sequences of several rivers that originate from the mountain belts and cross the eastern semi-arid part of the Transcauscasian depression towards the Caspian Sea (e.g. Algeti, Khrami, Kura, Alazani), in order to decipher changes of their fluvial dynamics during the past. The investigated sediments of Late Pleistocene and Holocene age show thicknesses up to 50 m and are mostly well outcropped. Our morphologic, sedimentologic and chronostratigraphic investigations of different sediment sequences demonstrate distinctive changes of the fluvial dynamics between the Late Pleistocene and the Holocene, and show that high-frequent Holocene changes of the fluvial pattern of the rivers are probably linked to climatic and/or anthropogenic triggers. Additionally, on a longer time scale the fluvial dynamics of the rivers is obviously controlled by ongoing tectonic processes.

  6. Fluvial network organization imprints on microbial co-occurrence networks

    PubMed Central

    Widder, Stefanie; Besemer, Katharina; Singer, Gabriel A.; Ceola, Serena; Bertuzzo, Enrico; Quince, Christopher; Sloan, William T.; Rinaldo, Andrea; Battin, Tom J.

    2014-01-01

    Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity. PMID:25136087

  7. Fluvial network organization imprints on microbial co-occurrence networks.

    PubMed

    Widder, Stefanie; Besemer, Katharina; Singer, Gabriel A; Ceola, Serena; Bertuzzo, Enrico; Quince, Christopher; Sloan, William T; Rinaldo, Andrea; Battin, Tom J

    2014-09-01

    Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity. PMID:25136087

  8. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    USGS Publications Warehouse

    Anderson, P.B.; Chidsey, T.C., Jr.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  9. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis

    NASA Astrophysics Data System (ADS)

    Matte, Pascal; Secretan, Yves; Morin, Jean

    2014-09-01

    Predicting tides in upstream reaches of rivers is a challenge, because tides are highly nonlinear and nonstationary, and accurate short-time predictions of river flow are hard to obtain. In the St. Lawrence fluvial estuary, tide forecasts are produced using a one-dimensional model (ONE-D), forced downstream with harmonic constituents, and upstream with daily discharges using 30 day flow forecasts from Lake Ontario and the Ottawa River. Although this operational forecast system serves its purpose of predicting water levels, information about nonstationary tidal-fluvial processes that can be gained from it is limited, particularly the temporal changes in mean water level and tidal properties (i.e., constituent amplitudes and phases), which are function of river flow and ocean tidal range. In this paper, a harmonic model adapted to nonstationary tides, NS_TIDE, was applied to the St. Lawrence fluvial estuary, where the time-varying external forcing is directly built into the tidal basis functions. Model coefficients from 13 analysis stations were spatially interpolated to allow tide predictions at arbitrary locations as well as to provide insights into the spatiotemporal evolution of tides. Model hindcasts showed substantial improvements compared to classical harmonic analyses at upstream stations. The model was further validated by comparison with ONE-D predictions at a total of 32 stations. The slightly lower accuracy obtained with NS_TIDE is compensated by model simplicity, efficiency, and capacity to represent stage and tidal variations in a very compact way and thus represents a new means for understanding tidal rivers.

  10. Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley, the northeastern Tibetan Plateau, China

    USGS Publications Warehouse

    Miao, X.; Lu, H.; Li, Z.; Cao, G.

    2008-01-01

    Gravel deposits on fluvial terraces contain a wealth of information about the paleofluvial system. In this study, flow direction and provenance were determined by systematic counts of more than 2000 clasts of imbricated gravel deposits in the Xining Region, northeastern Tibetan Plateau, China. These gravel deposits range in age from the modern Huangshui riverbed to Miocene-aged deposits overlain by eolian sediments. Our major objectives were not only to collect first-hand field data on the fluvial gravel sediments of the Xining Region, but also to the reconstruct the evolution of the fluvial system. These data may offer valuable information about uplift of the northeastern Tibetan Plateau during the late Cenozoic era. Reconstructed flow directions of the higher and lower gravel deposits imply that the river underwent a flow reversal of approximately 130-180??. In addition, the lithological compositions in the higher gravel deposits differ significantly from the lower terraces, suggesting that the source areas changed at the same time. Eolian stratigraphy overlying the gravel deposits and paleomagnetic age determination indicate that this change occurred sometime between 1.55??Ma and 1.2??Ma. We suggest that tectonic activity could explain the dramatic changes in flow direction and lithological composition during this time period. Therefore, this study provides a new scenario of fluvial response to tectonic uplift: a reversal of flow direction. In addition, field observation and statistical analyses reveal a strong relationship between rock type, size and roundness of clasts. ?? 2007 Elsevier B.V. All rights reserved.

  11. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  12. Marine intervals in Neogene fluvial deposits of western Amazonia

    NASA Astrophysics Data System (ADS)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  13. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos; Pena, Jose- Luis

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  14. Fluvial fan evolution during Late Quaternary climate changes: field and chronological constraints from the Indo-Gangetic basin

    NASA Astrophysics Data System (ADS)

    Singh, A.; Gupta, S.; Sinha, R.; Densmore, A.; Thomsen, K. J.; Nayak, N.; Joshi, S. K.; van Dijk, W. M.; Buylaert, J. P.; Mondal, S.; Kumar, D.; Mason, P. J.; Murray, A. S.; Kumar, M.; Shekhar, S.; Rai, S. P.

    2015-12-01

    The stratigraphic evolution of fluvial fans is to a large extent governed by channel avulsion. Spatial variations in alluvial architecture are influenced by avulsion magnitude and frequency. However due to the absence of long-term chronostratigraphic records of fan stratigraphy, it has proved difficult to test patterns of fan evolution against records of climate variability. In order to understand the processes of channel avulsion during fan evolution, it is important to determine the spatio-temporal pattern of fluvial channel aggradation, incision, and migration. In this study, we reconstruct the shallow sub-surface alluvial stratigraphy of fluvial fan systems formed by the major Himalayan rivers, the Sutlej and Yamuna, in the northwestern Indo-Gangetic basin. We map the spatial distribution of channel sand bodies deposited by these rivers and develop a chronostratigraphic model for the fluvial succession in a depositional dip perpendicular transect. Sediment cores up to ~50 m deep along two transects are used to reconstruct the shallow stratigraphy of the fan systems. Discontinuous channel sand bodies are separated by floodplain fines which occasionally show weak pedogenesis that mark the end of episodes of channel aggradation. Optically stimulated luminescence (OSL) dating is used to bracket the timing of channel-filling episodes, and their spatial distribution. Mapping of sand bodies coupled with chronostratigraphic constraints allows reconstruction of channel migration patterns and their timing across the Sutlej-Yamuna fans. Chronostratigraphy permits temporal correlation with published measures of monsoon variability. We find that fluvial aggradation at the western end of studied transects, near the middle of the Sutlej fan, terminated around ~20 ka. We also show that abandonment of the paleo-Sutlej and major fan-scale avulsion occurred after ~15 ka, and was followed by formation of incised valleys that confined the modern fluvial system in northwestern Indo

  15. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  16. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan, Tara

    2015-01-01

    move through the system. Herein, we present analyses of the “first flush” sediment pulse that occurred on the Sacramento River in December 2012, documenting the transport pathways as well as the effects of advection and dispersion on the sediment as it moved through the fluvial-tidal transition in the Delta. The analyses identified an important transport pathway through the interior of the Delta toward the large pumping facilities in the south Delta, which has important implications for native fish (because their movements are triggered by sediment/turbidity). The results also reveal the dramatic transition from fluvial-dominated transport (advection) to tidal-dominated transport (dispersion) as the sediment pulse approaches the estuary.

  17. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply < transport rate). We found that the hydraulic and sediment flux responses during sediment equilibrium represented a balance between abiotic and biotic factors and was sensitive to increasing flow rates and plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  18. Turbidity in the fluvial Gironde Estuary (S-W France) based on 10 year continuous monitoring: sensitivity to hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.

    2015-03-01

    Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in the southwest France, the Gironde fluvial-estuarine systems has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low-water, inter-annual changes). Turbidity shows hysteresis loops at different time scales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the TMZ installation in the fluvial stations. Hydrological indicators of the persistence and turbidity level of the TMZ are also defined. The long-term evolution of these indicators confirms the influence of discharge decrease on the intensification of the TMZ in tidal rivers, and provides a tool to evaluate future scenarios.

  19. Architectural studies of Jurassic-Cretaceous fluvial units, Colorado Plateau

    SciTech Connect

    Miall, A.D.; Bromley, M.H.; Cowan, E.J.; Turner-Peterson, C.E.

    1989-03-01

    A sixfold hierarchy of architectural elements and bounding surfaces evolved from outcrop studies of three fluvial units: Westwater Canyon member (WCM), Morrison Formation, Upper Jurassic; Torrivio sandstone member (TSM), Gallup Sandstone, Upper Cretaceous, northwestern New Mexico; and Kayenta Formation (KF), Lower Jurassic, southwestern Colorado. This hierarchy is discussed.

  20. Interannual variability of snow and fluvial regimes in Andorra

    NASA Astrophysics Data System (ADS)

    Pesado, Cristina; Riba, Sergi; Pons, Marc; Lopez-Moreno, Juan Ignacio

    2016-04-01

    Highlands in Andorra are snow-dominated areas during all the winter and most of the spring season. Interannual snow variability in these areas has a strong and straight influence on the amount and seasonality of river regimes at the bottom of the valley where most of the population and water requirements are concentrated. The present study analyzes the temporal and spatial variability of the fluvial regimes in Andorra and seeks to understand the interplay of different topographic and climatic variables on this variability. For example, in mountainous regions temperature determines the state of precipitation and this state can significantly affect runoff formation. The interannual temporal and spatial variability of temperatures, pluviometry and different snow indices such as snow heights and days with snow on the ground has been studied for the last decade and correlated with the fluvial dynamics and its variability using discharge measurements. This study focus especially in the assessment of the role of snow and its seasonality in the fluvial regime dynamics and the influence in the torrential flows and flood hazard. Flood hazard, force to take protection measures, which need information about flood frequency and magnitude. For this, flow instrumental series are used, but usually they do not consider phenomena like snowmelt. This study contributes intends to better understand the interplay between snow and fluvial dynamics and improve the assessment of the availability of water resources as well as the requirements in terms of protection measures.

  1. Bank stability analysis for fluvial erosion and mass failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...

  2. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  3. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    USGS Publications Warehouse

    Ford, Grace L.; David R. Pyles; Dechesne, Marieke

    2016-01-01

    Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.

  4. Insight on watershed development along the actively uplifting Mount Lebanon range (Lebanon) from marine and fluvial terraces

    NASA Astrophysics Data System (ADS)

    Lepley, S.; Gomez, F.; Nader, F.

    2005-12-01

    Active uplift in the Mt. Lebanon range results from regional transpression along a ~200-km-long restraining bend within the Dead Sea fault system. Thus, the resultant landscape is characterized by the combined influences of tectonic, eustatic, and climatic controls. Marine terraces in northern Mt. Lebanon range provide significant constraints on regional uplift and, consequently, base level control on watershed development. Detailed geologic mapping reveals at least six coastal terrace levels between the cities of Tripoli and Batroun in northern Lebanon, ranging in elevation from 5 m to 113 m above sea level. The marine terraces are primarily abrasional platforms with little to no sediment cover. However, at certain locations, the terraces comprise of a thick (up to 20 m towards the coast) sedimentary cover that are the result of episodic periods of cut and fill into older Pliocene deposits. The majority of these sediments are well-rounded, cobble-size clasts of limestone cemented by a calcite matrix with occasional clasts of basalt and marine fossils. Travertine formations, fossil remnants, and limestone clasts are available to constrain ages on terrace formations and, in turn, coastal uplift rates. Correlation of terrace heights with Pleistocene sea level variations suggests an average, regional uplift rate of 0.3 m/ka. Fluvial terraces in the northern Mt. Lebanon allow reconstruction of longitudinal profiles that grade into base levels represented by the corresponding marine terraces. Hence, this correlation constrains the ages of fluvial terraces and consequently permits estimates of fluvial erosion. Temporal variations in fluvial transport capacity are suggested by episodic aggradation of massive boulder-size clasts of basalt and dolomite that originate over 20 km upstream. Furthermore, knickpoints in the present-day drainage also appear to correlate with the former base levels. Hence, the retreat of these knickpoints permits assessing the lag time in the

  5. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  6. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  7. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...

  8. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  9. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  10. Fluvial inheritances of the Cher River floodplain (region Centre, France) as elements of characterization of hydrological dynamics and their past evolutions

    NASA Astrophysics Data System (ADS)

    Vayssière, Anaëlle; Castanet, Cyril; Gautier, Emmanuèle; Virmoux, Clément

    2015-04-01

    -mineral clayey deposits, characteristic of a swampy environment disconnected most of the time from the main river. (3) Finally, the upper part is constituted by a silty layer that may be attributed to an increase in fluvial activity or in erosion dynamics (slope of the catchment, local filling processes …) These first results show a good record of palaeo-environnemental changes in the Cher valley. The comparison with similar works conducted in other catchments of the "Bassin de Paris" shows that these records may describe environmental evolutions during the Pleniglacial, Lateglacial and Holocene. The perspectives of this work is to provide relevant data on the readjustment of the river related with climate changes since the LGM and on the part played by climate changes and ancient societies on the fluvial system during the Holocene.

  11. Multidecadal Fluvial Sediment Fluxes to Deltas under Environmental Change Scenarios

    NASA Astrophysics Data System (ADS)

    Dunn, Frances; Darby, Stephen; Nicholls, Robert

    2016-04-01

    Sediment delivery is vital to sustain delta environments on which over half a billion people live worldwide. Due to factors such as subsidence and sea level rise, deltas sink relative to sea level if sediment is not delivered to and retained on their surfaces. Deltas which sink relative to sea level experience flooding, land degradation and loss, which endangers anthropogenic activities and populations. The future of fluvial sediment fluxes, a key mechanism for sediment delivery to deltas, is uncertain due to complex environmental changes which are predicted to occur over the coming decades. This research investigates fluvial sediment fluxes under environmental changes in order to assess the sustainability of delta environments under potential future scenarios up to 2100. Global datasets of climate change, reservoir construction, and population and GDP as proxies for anthropogenic influence through land use changes are used to drive the catchment numerical model WBMsed, which is being used to investigate the effects of these environmental changes on fluvial sediment delivery. This process produces fluvial sediment fluxes under multiple future scenarios which will be used to assess the future sustainability of a selection of 8 vulnerable deltas, although the approach can be applied to deltas worldwide. By modelling potential future scenarios of fluvial sediment flux, this research contributes to the prognosis for delta environments. The future scenarios will inform management at multiple temporal scales, and indicate the potential consequences for deltas of various anthropogenic activities. This research will both forewarn managers of potentially unsustainable deltas and indicate those anthropogenic activities which encourage or hinder the creation of sustainable delta environments.

  12. Patterns and processes of fluvial discontinuity and sediment residence times on the lower Macquarie River, Murray-Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Larkin, Zacchary; Ralph, Timothy; Hesse, Paul

    2014-05-01

    The supply, transport and deposition of fine-grained sediment are important factors determining the morphology of lowland rivers that experience channel breakdown and have wetlands on their lower reaches. Sediment supply and residence time determine whether reaches accumulate sediment (wetland areas) or erode sediment (channelised areas). This research investigated how processes of sedimentation and erosion drive channel breakdown and reformation in the Macquarie Marshes, a large anastomosing wetland system in the Murray-Darling Basin, Australia. Channel breakdown is attributed to a dominance of in-stream sedimentation that leads to a point where single-thread river channels cannot be maintained and so avulsion and floodout processes create smaller distributary channels and wetlands. Avulsions may reconnect channels, changing the sediment supply regime in those particular channels. Channel reformation occurs on the trunk stream where the floodplain gradient steepens enough to allow convergence of small tributaries, locally increasing stream power (and erosive energy in channels). As each river reach reforms following channel breakdown, the channel is smaller, shallower and straighter than the previous reach. One reach in this system recently (in the 1970s) became connected with a parallel channel through avulsion and has morphological characteristics that indicate a significant change in flow and sediment supply. In a pilot study using uranium-series disequilibrium methods and OSL dating, a sediment residence time of 58 +/- 2 ka was determined for sediment in the base of the active channel and a sediment residence time of 153 +/- 5 ka was determined for sediment buried in an adjacent meander that was cut off from the main channel 1,000 years ago. The apparent dramatic decrease in sediment residence time to this active channel poses an interesting question about the role of relatively new channels in transporting and depositing sediment more rapidly than the

  13. Analysis on the Characteristics of Fluvial Evolution with Climate Changes from Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yan, Zhenzhen

    2014-05-01

    Landform evolution is one part of the Earth system behaviors. Products from the landform evolution are faithful records for the global change. They are created by complex interaction between geomorphic processes and environmental factors, and be able to provide the most important and intuitive evidences for investigating the interaction between the Earth's tectonic processes and climate changes. Because of very limited geodetic and geological data, we need a profound understanding of how landscapes respond and erode in response to changes in tectonic or climate boundary conditions. Quantitative study on landform evolution in different spatial and temporal scales using numerical simulation has important scientific interest and practical significance for investigating the nonlinear coupling relationship and response mechanism between tectonic activity, climate change, and surface processes. Under background of the global climate change, rivers have been a major focus of research in landform evolution because they are patently sensitive to tectonic and climate forcing via their channel characteristics. According to the existing research on the channel profiles, in this study, we employ numerical method incorporated with remote sensing techniques to investigate the surface process response to climate-tectonic-landscape through analysis and verification exploration. We build a numerical model based on the theory of geomorphic evolution, and take study on dynamical processes of the channel profile evolution with tectonic and climate boundary. Primary simulation results show that the linear diffusion is not enough to demonstrate the whole evolution. The analyses show that erosion plays a major role in fluvial evolution. Analysis on the dynamic processes of fluvial evolution, clarification its morphological characteristics, and exploration its formation and evolution is helpful for thorough study and understanding the relationship between the various factors of fluvial

  14. Fluvial particle characterization using artificial neural network and spectral image processing

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  15. Biomarkers in Transit Reveal the Nature of Fluvial Integration

    NASA Astrophysics Data System (ADS)

    Ponton, C.; West, A.; Feakins, S. J.; Galy, V.

    2013-12-01

    The carbon and hydrogen isotopic composition of vascular plant leaf waxes are common proxies for hydrologic and vegetation change. Sedimentary archives off major river systems are prime targets for continental paleoclimate studies under the assumption that rivers integrate changes in terrestrial organic carbon (OC) composition over their drainage basin. However, the proportional contribution of sources within the basin (e.g. head waters vs. floodplain) and the transit times of OC through the fluvial system remain largely unknown. This lack of quantifiable information about the proportions and timescales of integration within large catchments poses a challenge for paleoclimate reconstructions. To examine the sources of terrestrial OC eroded and supplied to a river system and the spatial distribution of these sources, we use compound specific isotope analysis (i.e. δ13C, Δ14C, and δD) on plant-derived leaf waxes, filtered from large volumes of river water (20-200L) along a major river system. We selected the Kosñipata River that drains the western flank of the Andes in Peru, joins the Madre de Dios River across the Amazonian floodplain, and ultimately contributes to the Amazon River. Our study encompassed an elevation gradient of >4 km, in an almost entirely forested catchment. Precipitation δD values vary by >50‰ due to the isotopic effect of elevation, a feature we exploit to identify the sources of plant wax n-alkanoic acids transported by the river. We used the δD plant wax values from tributary rivers as source constrains and the main stem values as the integrated signal. In addition, compound specific radiocarbon on individual chain length n-alkanoic acids provide unprecedented detail on the integrated age of these compounds. Preliminary results have established that 1) most of the OC transport occurs in the wet season; 2) total carbon transport in the Madre de Dios is dominated by lowland sources because of the large floodplain area, but initial data

  16. Spatio-temporal variability and rates of fluvial bedload transport in steep mountain catchments in western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2014-05-01

    The timing and rate of fluvial bedload transport are of central importance within sediment budget studies and in many applications in river science and engineering. Bedload transport rates are very difficult to measure and, in many sites, only suspended load and solute data are included in sediment budget studies. During four years (2010 - 2013) detailed field measurements with portable impact sensors as a non-invasive technique for indirectly determining fluvial bedload transport intensity were conducted at several selected channel stretches within two instrumented and supply-limited drainage basin systems (Erdalen and Bødalen) in the steep fjord landscape in western Norway. The selected stream test stretches where impact sensor field measurements were conducted were located (i) downstream of steep channels in headwater areas of the two drainage basin systems Erdalen and Bødalen, (ii) downstream of selected stream channel segments with temporary in-channel storage of bedload material in Erdalen and Bødalen and (iii) at the outlets of the two drainage basin systems Erdalen and Bødalen. The collected impact sensor field data were calibrated with laboratory flume experiments and were combined with field data from continuous discharge monitoring, repeated surveys of channel morphometry and sediment texture, particle tracer measurements, Helley-Smith samplings, underwater videofilming and biofilm analyses. The combination of methods and techniques applied provides detailed insights into the spatio-temporal variability and rates of fluvial bedload transport within Erdalen and Bødalen. Fluvial bedload transport in steep headwater streams is strongly related to sediment delivery from slopes, especially through fluvial transfers in small creeks draining the slope systems and through snow avalanches in spring and debris flows in fall. Channel reaches with temporary in-channel storage of bedload material in the middle parts of the Erdalen and Bødalen drainage basin

  17. Sedimentology of an intra-montane rift-controlled fluvial dominated succession: The Upper Triassic Oukaimeden Sandstone Formation, Central High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Fabuel-Perez, I.; Redfern, J.; Hodgetts, D.

    2009-06-01

    Triassic successions in the High Atlas of Marrakech (Morocco) provide excellent outcrop analogues for continental fluvial systems within an intra-montane rift basin and allow the study of facies distribution and controls on deposition. This paper focuses on the analysis of the Oukaimeden Sandstone Formation (F5), a fluvial dominated formation deposited in an active rift setting. Combination of traditional sedimentological field analysis with modern digital data capture techniques (e.g. spectral gamma-ray, LIDAR terrestrial scanner imaging) allows a detailed description and interpretation of the facies. The Oukaimeden Sandstone Formation is composed of channel sandstone bodies alternating with lenticular shaped fluvial bar sandstones and overbank mudstone deposits. Alternating with the fluvial facies, aeolian sandstones and alluvial fan deposits are also observed. Changes in architectural style are used to subdivide the formation into three members. The lower member (Lower Oukaimeden ) was deposited by an ephemeral braided system. The middle member (Middle Oukaimeden) records a change to perennial braided fluvial conditions in response to tectonics combined with a change in climate towards more humid conditions. The upper member (Upper Oukaimeden) is characterized by the return to ephemeral conditions, which combined with the occurrence of aeolian dunes, is interpreted to record increased aridity. The upper part of the member exhibits tidal influence, related to the first marine incursion into the basin. The Oukaimeden Sandstone Formation provide a well documented outcrop example of deposition within an intra-montane setting influenced by a combination of tectonic and climatic controls.

  18. Fluvial sedimentology of a Mesozoic petrified forest assemblage, Shishu Formation, Junggar foreland basin, Xinjiang, China

    SciTech Connect

    McKnight, C.L.; Gan, O.; Carroll, A.R.; Dilcher, D.; Zhao, M.; Liang, Y.H.; Graham, S.A.

    1988-02-01

    The Upper Jurassic(.) Shishu Formation of the eastern Junggar basin, Xinjiang, northwest China, is a fluvial sand unit containing an important assemblage of well-preserved, silicified tree trunks and rooted stumps. Numerous logs, up to 83 ft (25.5 m) long, occur at several levels within a 33.6-ft (10.3 m) stratigraphic section of fluvial sand, gravel, and mud and several paleosol horizons. The uppermost logbearing layer includes a number of rooted tree stumps in growth position, with diameters of up to 8 ft (2.5 m). The maximum root length observed is 40 ft (12.3 m). The trees have been identified by Chinese paleontologists as Cupressinoxylon. The petrified forest assemblage is preserved on the northeast margin of the Mesozoic Junggar foreland basin, a large continental basin subsiding under thrust loading from the south. Logs found within channel gravel units are oriented with their log axes parallel to the channel axis. Sedimentary structures, including epsilon and trough cross-stratification and imbricated channel gravels, indicate paleocurrent flow generally to the south, toward the basin center. The size of the logs suggests the presence of a major fluvial system. The epsilon cross-sets suggest a channel depth of 26 ft (8 m). The oriented silicified logs and their enclosing clastic sediments provide important information on the depositional systems active on the northeastern margin of the Junggar basin in the Late Jurassic(.) time. Hopefully, further detailed study of the fossil trees, including the spacing of the rooted stumps, will provide new information on the paleoecology of Mesozoic forests and the climatic conditions prevailing in the region at the time of deposition.

  19. External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees

    NASA Astrophysics Data System (ADS)

    Stange, Kurt Martin; van Balen, Ronald; Vandenberghe, Jef; Peña, Jose Luis; Sancho, Carlos

    2013-08-01

    Focusing on climatic- and structural (tectonic) controls, we aim to determine their relative importance for the (Pliocene to Quaternary) fluvial landscape evolution in the Southern Pyrenees foreland. We investigate the Segre River, which is one of the major streams of the Southern Pyrenees that drains the elevated chain towards the Ebro foreland basin. Along its course, the Segre River has a flight of fluvial cut-and-fill (and strath-type) terraces preserved that have been mapped based on DEM's and geomorphological fieldwork. This paper presents the first results of our study and reports on the Segre terrace staircase, which is characterized by seven major Quaternary terrace levels with elevations up to more than 110 m above the modern floodplain. At the upper and middle reaches, the semi-parallel terraces of the Segre River occasionally show anomalies featuring extensive gravel thickness and deformation caused by faulting, folding and local subsidence. The longitudinal correlations of terrace levels reveal increased vertical terrace spacing in the foreland, which could originate from enhanced fluvial erosion after the Mid-Pleistocene climate transition in combination with base level lowering controlled by the progressive downcutting of the Catalan Coastal Range. Since the Ebro Basin opening (Late Miocene), the Catalan Coastal Range, which borders the Ebro foreland basin to the Mediterranean Sea, was progressively cut down and the exorheic drainage system gradually adjusted to sea level. The Segre longitudinal terrace profiles and the Ebro gorge morphology at the Catalan Coastal Range indicate a base-level of about 200 m.s.l. at the beginning of (Pleistocene) terrace formation, which implies that the Catalan Coastal Range might have functioned as a local base-level upstream of the sea outlet, presumably until the Late Pleistocene. Alternatively, a yet unknown tectonic process might have caused base level lowering and the preservation of terrace staircases at the

  20. OSL and Cosmogenic 10Be Dating of Fluvial Terraces on the Northeast Pamir Margin, Northwest China

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Chen, J.; Yang, H.; Li, T.; Bookhagen, B.; Burbank, D. W.; Bufe, A.

    2015-12-01

    Along the northeast Pamir margin in northwest China, flights of late Pleistocene fluvial terraces span actively deforming structures. We present detailed results on three terraces that we dated using optically stimulated luminescence (OSL) and cosmogenic 10Be techniques. Quartz OSL dating of two different grain sizes (4-11 and 90-180 μm) revealed the fine-grain quartz fraction overestimates the terrace ages by up to an order of magnitude. Two-mm, small-aliquot, coarse-grain quartz OSL ages, calculated using the finite mixture model, yielded stratigraphically consistent ages within error and dated times of terrace deposition to ~15 ka, ~18.5 ka, and ~75 ka. We speculate the observed grain-size dependence of OSL ages is likely related to the mode of transport of the grains in the fluvial system, with coarser grains sizes spending more time on sand bars where they are more thoroughly bleached than grains in the turbid, commonly episodic flows that carry the silt fraction. Our study suggests that, in flashy, turbid fluvial systems, coarse-grain OSL samples are likely to yield more reliable depositional ages than will fine-grain samples. Cosmogenic 10Be depth profiles date the times of terrace abandonment to ~8 ka, ~15 ka, and ~75 ka, yielding ages in overall agreement with the coarse-grain OSL ages. These ages are generally consistent with other dated terraces in the region that place their deposition and subsequent abandonment during the last deglaciation (13-18 ka) and suggest the formation of these terraces on the margins of the Tarim Basin and along the flanks of the Tian Shan is climatically controlled.

  1. Quantifying fluvial topography using UAS imagery and SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Woodget, Amy; Carbonneau, Patrice; Visser, Fleur; Maddock, Ian; Habit, Evelyn

    2014-05-01

    The measurement and monitoring of fluvial topography at high spatial and temporal resolutions is in increasing demand for a range of river science and management applications, including change detection, hydraulic models, habitat assessments, river restorations and sediment budgets. Existing approaches are yet to provide a single technique for rapidly quantifying fluvial topography in both exposed and submerged areas, with high spatial resolution, reach-scale continuous coverage, high accuracy and reasonable cost. In this paper, we explore the potential of using imagery acquired from a small unmanned aerial system (UAS) and processed using Structure-from-Motion (SfM) photogrammetry for filling this gap. We use a rotary winged hexacopter known as the Draganflyer X6, a consumer grade digital camera (Panasonic Lumix DMC-LX3) and the commercially available PhotoScan Pro SfM software (Agisoft LLC). We test the approach on three contrasting river systems; a shallow margin of the San Pedro River in the Valdivia region of south-central Chile, the lowland River Arrow in Warwickshire, UK, and the upland Coledale Beck in Cumbria, UK. Digital elevation models (DEMs) and orthophotos of hyperspatial resolution (0.01-0.02m) are produced. Mean elevation errors are found to vary somewhat between sites, dependent on vegetation coverage and the spatial arrangement of ground control points (GCPs) used to georeference the data. Mean errors are in the range 4-44mm for exposed areas and 17-89mm for submerged areas. Errors in submerged areas can be improved to 4-56mm with the application of a simple refraction correction procedure. Multiple surveys of the River Arrow site show consistently high quality results, indicating the repeatability of the approach. This work therefore demonstrates the potential of a UAS-SfM approach for quantifying fluvial topography.

  2. Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene

    NASA Astrophysics Data System (ADS)

    Meybeck, Michel; Vörösmarty, Charles

    2005-02-01

    The evolution of river systems and their related fluxes is considered at various time scales: ( i) over the last 18 000 years, under climatic variability control, ( ii) over the last 50 to 200 years (Anthropocene) due to direct human impacts. Natural Holocene variations in time and space depend on ( i) land-to-ocean connections (endorheism, glacial cover, exposure of continental shelf); ( ii) types of natural fluvial filters (e.g., wetlands, lakes, floodplains, estuaries). Anthropocene changes concern ( i) land-ocean connection (e.g., partial to total runoff reduction resulting from water management), ( ii) modification and removal of natural filters, ( iii) creation of new filters, particularly irrigated fields and reservoirs, ( iv) acceleration and/or development of material sources from human activities. The total river basin area directly affected by human activities is of the same order of magnitude ( >40 Mkm) as the total area affected over the last 18 000 years. A tentative analysis of 38 major river systems totaling 55 Mkm is proposed for several criteria: ( i) trajectories of Holocene evolution, ( ii) occurrence of natural fluvial filters, ( iii) present-day fluvial filters: most river basins are unique. Riverine fluxes per unit area are characterized by hot spots that exceed the world average by one order of magnitude. At the Anthropocene (i.e., since 1950), many riverine fluxes have globally increased (sodium, chloride, sulfate, nitrogen, phosphorous, heavy metals), others are stable (calcium, bicarbonate, sediments) or likely to decrease (dissolved silica). Future trajectories of river fluxes will depend on the balance between increased sources of material (e.g., soil erosion, pollution, fertilization), water abstraction for irrigation and the modification of fluvial filters, particularly the occurrence of reservoirs that already intercept half of the water and store at least 30% of river sediment fluxes. In some river systems, retention actually

  3. LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ROOM; THE PIPES AT THE BOTTOM ARE PART OF THE RADIANT HEATING SYSTEM USED FOR HEATING THE FACTORY DURING COLD WEATHER. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA

  4. Modern analogs for the importance of seaward migration of the equilibrium point and Bayline and production of subareal accommodation space and widespread fluvial reservoirs and stratigraphic traps: Late highstand systems tracts on the broad continental margin of the East China Sea

    SciTech Connect

    Bartek, L.R.; Wellner, R.

    1996-12-31

    Geopulse seismic reflection (2,825 km) data collected during a survey of the East China Sea (ECS) in September of 1993 have been used to reconstruct the shallow stratigraphic architecture of the ECS continental margin. This area is characterized by a broad continental shelf and has extremely high sediment supply relative to other margins. On the inner to middle portions of the ECS margin we identified extensive areas outside of several incised valleys that contain channelized seismic facies that are interpreted as fluvial sequences deposited as sea level fell prior to the last low-stands. These deposits lie above highstand silts and clays and beneath a transgressive surface, above which sediments appear to have been extensively reworked. Historical records suggest that the tremendous sediment load of the Yellow River caused the river to avulse over an area of hundreds of kilometers during the Holocene and deposition of thick sheet of fluvial sands in {open_quotes}interfluvial{close_quotes} areas. We suggest that as sea level fall in this area, the equilibrium point and bayline synchronously migrated seaward, and subareal accommodation was created during the latter stages of highstands, in a manner similar to that proposed in published models. The high sediment supply of the area and increasing subareal accommodation space provided an opportunity for deposition of the laterally extensive fluvial facies we observe on the seismic data. The upper portions of these {open_quotes}interfluvial{close_quotes} fluvial deposits were reworked during the ensuing transgression and downlapped upon by muddy highstand deposits, but the lower fluvial sheet-sand facies, are preserved in place. This situation creates a laterally extensive, braided fluvial sand type reservoir with a potential for a stratigraphic seal that is within close proximity to hydrocarbon source rocks.

  5. Modern analogs for the importance of seaward migration of the equilibrium point and Bayline and production of subareal accommodation space and widespread fluvial reservoirs and stratigraphic traps: Late highstand systems tracts on the broad continental margin of the East China Sea

    SciTech Connect

    Bartek, L.R.; Wellner, R. )

    1996-01-01

    Geopulse seismic reflection (2,825 km) data collected during a survey of the East China Sea (ECS) in September of 1993 have been used to reconstruct the shallow stratigraphic architecture of the ECS continental margin. This area is characterized by a broad continental shelf and has extremely high sediment supply relative to other margins. On the inner to middle portions of the ECS margin we identified extensive areas outside of several incised valleys that contain channelized seismic facies that are interpreted as fluvial sequences deposited as sea level fell prior to the last low-stands. These deposits lie above highstand silts and clays and beneath a transgressive surface, above which sediments appear to have been extensively reworked. Historical records suggest that the tremendous sediment load of the Yellow River caused the river to avulse over an area of hundreds of kilometers during the Holocene and deposition of thick sheet of fluvial sands in [open quotes]interfluvial[close quotes] areas. We suggest that as sea level fall in this area, the equilibrium point and bayline synchronously migrated seaward, and subareal accommodation was created during the latter stages of highstands, in a manner similar to that proposed in published models. The high sediment supply of the area and increasing subareal accommodation space provided an opportunity for deposition of the laterally extensive fluvial facies we observe on the seismic data. The upper portions of these [open quotes]interfluvial[close quotes] fluvial deposits were reworked during the ensuing transgression and downlapped upon by muddy highstand deposits, but the lower fluvial sheet-sand facies, are preserved in place. This situation creates a laterally extensive, braided fluvial sand type reservoir with a potential for a stratigraphic seal that is within close proximity to hydrocarbon source rocks.

  6. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  7. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  8. Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C

    1998-01-01

    Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.

  9. Reservoir heterogeneity in middle Frio fluvial sandstones: Case studies in Seeligson field, Jim Wells County, Texas

    SciTech Connect

    Jirik, L.A. )

    1990-09-01

    Detailed evaluation of middle Frio (Oligocene) fluvial sandstones reveals a complex architectural style potentially suited to the addition of gas reserves through recognition of poorly drained reservoir compartments and bypassed gas zones. Seeligson field is being studied as part of a Gas Research Institute/US Department of Energy/State of Texas-sponsored program, with the cooperation of Oryx Energy Company and Mobil Exploration and Producing US, Inc. Four reservoirs, Zones 15, 16D, 16E, and 19C, were studied in a 20 mi{sup 2} area within Seeligson field. Collectively, these reservoirs have produced more than 240 bcf of gas from wells within the study area. Detailed electric log correlation of individual reservoirs enabled subdivision of aggregate producing zones into component genetic units. Cross sections, net-sandstone maps, and log-facies maps were prepared to illustrate depositional style, sand-body geometry, and reservoir heterogeneity. Zones 15 and 19C are examples of laterally stacked fluvial architecture. Individual channel-fill sandstones range from 10 to 50 ft thick, and channel widths are approximately 2,500 ft. Crevasse-splay sandstones may extend a few thousand feet from the main channel system. Multiple, overlapping channel and splay deposits commonly form sand-rich belts that result in leaky reservoir compartments that may be incompletely drained. Zones 16D and 16E are examples of vertically stacked fluvial architecture, with discrete, relatively thin and narrow channel and splay sandstones generally encased within floodplain muds. This architectural style is likely to form more isolated reservoir compartments. Although all of these reservoirs are currently considered nearly depleted, low-pressure producers, recent well completions and bottomhole pressure data indicate that untapped or poorly drained compartments are being encountered.

  10. Modelling river bank retreat by combining fluvial erosion, seepage and mass failure

    NASA Astrophysics Data System (ADS)

    Dapporto, S.; Rinaldi, M.

    2003-04-01

    Streambank erosion processes contribute significantly to the sediment yielded from a river system and represent an important issue in the contexts of soil degradation and river management. Bank retreat is controlled by a complex interaction of hydrologic, geotechnical, and hydraulic processes. The capability of modelling these different components allows for a full reconstruction and comprehension of the causes and rates of bank erosion. River bank retreat during a single flow event has been modelled by combining simulation of fluvial erosion, seepage, and mass failures. The study site, along the Sieve River (Central Italy), has been subject to extensive researches, including monitoring of pore water pressures for a period of 4 years. The simulation reconstructs fairly faithfully the observed changes, and is used to: a) test the potentiality and discuss advantages and limitations of such type of methodology for modelling bank retreat; c) quantify the contribution and mutual role of the different processes determining bank retreat. The hydrograph of the event is divided in a series of time steps. Modelling of the riverbank retreat includes for each step the following components: a) fluvial erosion and consequent changes in bank geometry; b) finite element seepage analysis; c) stability analysis by limit equilibrium method. Direct fluvial shear erosion is computed using empirically derived relationships expressing lateral erosion rate as a function of the excess of shear stress to the critical entrainment value for the different materials along the bank profile. Lateral erosion rate has been calibrated on the basis of the total bank retreat measured by digital terrestrial photogrammetry. Finite element seepage analysis is then conducted to reconstruct the saturated and unsaturated flow within the bank and the pore water pressure distribution for each time step. The safety factor for mass failures is then computed, using the pore water pressure distribution obtained

  11. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation

    NASA Astrophysics Data System (ADS)

    Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy

    2015-03-01

    Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera

  12. Use of an intact core and stable-metal isotopes to examine leaching characteristics of a fluvial tailings deposit

    USGS Publications Warehouse

    Ranville, James F.; Smith, Kathleen S.; Lamothe, Paul J.; Jackson, Brian P.; Walton-Day, Katie

    2003-01-01

    In this paper, we use Cd as an example of the utility of stable-metal isotopes in geochemical studies. In the case of Cd, after the core was partially saturated, the 111Cd spike was released as evidenced by a change in the Cd isotope ratios in the effluent. This release continued during the fully saturated leaching phase, however, the total Cd concentration did not increase. These results suggest that the 111Cd spike was retained inside the core during the unsaturated leaching phase, and only partially released as reducing conditions developed. Results from this core-leaching experiment indicate there is a large reservoir of water-soluble material within the fluvial tailings deposit, which yields elevated metal concentrations and high acidity, and which may degrade adjacent ground- and surface-water quality. Use of stable metal isotopes in this study facilitated the determination of different metal-retention processes, metal-release processes, and metal sources in the fluvial tailings deposit in response to changing geochemical conditions.

  13. Interaction between adjacent lightning discharges in clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Zhang, Guangshu; Zhang, Tong; Li, Yajun; Wu, Bin; Zhang, Tinglong

    2013-07-01

    Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.

  14. Headwaters are critical reservoirs of microbial diversity for fluvial networks

    PubMed Central

    Besemer, Katharina; Singer, Gabriel; Quince, Christopher; Bertuzzo, Enrico; Sloan, William; Battin, Tom J.

    2013-01-01

    Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks. PMID:24089333

  15. Does deposition depth control the OSL bleaching of fluvial sediment?

    NASA Astrophysics Data System (ADS)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2014-07-01

    The Optically Stimulated Luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could potentially provide insights into geomorphic processes. However, comparison of bleaching between samples is complicated by sample-to-sample variation in aliquot size and luminescence sensitivity. Here we develop an age model to account for these effects. With measurement data from multi-grain aliquots, we use Bayesian computational statistics to estimate the burial dose and bleaching parameters of the single-grain dose distribution. We apply the model to 46 samples taken from fluvial sediment of Rhine branches in the Netherlands, and compare the results with environmental predictor variables (depositional energy and environment, sample depth, depth relative to mean water level, dose rate). We find no significant correlations between any predictor variable and the bleaching parameters, although large uncertainties may be obscuring relationships. However, the best bleached samples are found close to the mean water level. Based on these results, we hypothesize that bleaching occurs mainly during fluvial transport rather than upon deposition, with extra bleaching possible for sediments near the transition of channel to overbank deposits due to local reworking after deposition either by wind or water.

  16. Comparing OSL and CN techniques for dating fluvial terraces and estimating surface process rates in Pamir

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Pohl, Eric; Sulaymonova, Vasila; Merchel, Silke; Rugel, Georg

    2014-05-01

    The quantification of surface process rates is crucial for understanding the topographic evolution of high mountains. Spatial and temporal variations in fluvial incision and basin-wide erosion enable to decipher the role of tectonic and climatic drivers. The Pamir is peculiar in both aspects because of its location at the western end of the India-Asia collision zone, and its position at the edge of two atmospheric circulation systems, the Westerlies and the Indian Summer Monsoon. The architecture of the Panj river network indicates prominent variations across the main tectonic structures of the Pamir. The trunk stream, deflects from the predominantly westward river orientation and cuts across the southern and central Pamir domes before doubling back to the west and leaving the orogen. Optically stimulated luminescence (OSL) dating of fluvial terraces reveals short-term sedimentation along the trunk stream during the last ~25 kyr. The agreement of OSL results to new exposure ages based on the cosmogenic nuclide (CN) 10Be confirms accurate terrace age modelling and treatment of incomplete bleaching. The consistent terrace sedimentation and exposure ages suggest also fast terrace abandonment and rapid onset of incision. Considerable differences in terrace heights reflect high spatial variations of fluvial incision, independent of time interval, change in rock type or catchment increase. Highest rates of (5.9 ± 1.1) mm/yr to (10.0 ± 2.0) mm/yr describe the fluvial dynamic across the Shakhdara Dome and that related to the Darvaz Fault Zone. Lower rates of (3.9 ± 0.6) mm/yr to (4.5 ± 0.7) mm/yr indicate a transient stage north of the Yazgulom Dome. Fluvial incision decreases to rates ranging from (1.7 ± 0.3) mm/yr to (3.9 ± 0.7) mm/yr in graded river reaches associated to southern dome boundaries. The pattern agrees to the interpretation of successive upstream river captures across the southern and central Pamir domes inferred from morphometric analyses of river

  17. Cyclical fluvial response caused by rechannelization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yalobusha River system in northwestern Mississippi was channelized ca. 1967 to enhance channel capacity and alleviate flooding. Design of the channelization project allowed the enlarged, straightened channel to discharge into an unmodified sinuous reach, and the junction between these two geomet...

  18. Fluvial processes in Ma'adim Vallis and the potential of Gusev crater as a high priority site

    NASA Technical Reports Server (NTRS)

    Cabrol, Nathalie; Landheim, Ragnild; Greeley, Ronald; Farmer, Jack

    1994-01-01

    According to exobiology site selection criteria for Mars, the search for potential extinct/extant water dependent life should focus on sites were water flowed and ponded. The Ma'adim Vallis/Gusev crater system is of high priority for exobiology research, because it appears to have involved long term flooding, different periods and rates of sedimentation, and probable episodic ponding. The topics covered include the following: evidence of nonuniform fluvial processes and early overflooding of the plateau and ponding.

  19. Stream capture and piracy recorded by provenance in fluvial fan strata

    NASA Astrophysics Data System (ADS)

    Mikesell, Leslie R.; Weissmann, Gary S.; Karachewski, John A.

    2010-03-01

    Stream capture and piracy in tectonically active regions have been described in geomorphic systems worldwide; however, few studies show the influence stream capture has on the rock record. We present an analysis of fluvial fan stratigraphy that developed as a result of multiple stream capture events, building a complex stratigraphic succession beneath the Lawrence Livermore National Laboratory (LLNL), California. The LLNL site is located in the southeast portion of the tectonically active Livermore Basin, a transpressional basin in the California Coast Ranges. Geomorphic evidence for this stream capture include: (1) the Arroyo Seco enters the basin from the south through an uplifted fault block, (2) south of this fault block lies an abandoned Arroyo Seco fluvial fan, (3) north of the fault block, in the Livermore Basin, Arroyo Seco built a 7-km 2 fluvial fan, apparently forcing the Arroyo Las Positas, a smaller stream that enters the basin from the east, northward around the Arroyo Seco fan, and (4) a knickpoint exists near the point of capture on Arroyo Seco. Stratigraphic evidence reflecting this shift in the Arroyo Seco position into the Livermore Basin was evaluated through a provenance study of 215 gravel units from 34 boreholes spaced evenly over the 2.6 km 2 LLNL site. The Arroyo Seco derives its sediment from both the Jurassic-Cretaceous Franciscan Assemblage and the Altamont Hills (which are comprised of Mesozoic Great Valley Group and Tertiary continental sediments). The Arroyo Las Positas drains only the Altamont Hills and thus lacks the Franciscan Assemblage-derived clasts. The origin of the individual gravel units was determined by the percentage of Franciscan Assemblage indicator pebbles (red chert, green chert and blueschist) in the samples. Through this analysis, we determined that high-percentage Franciscan Assemblage-derived clasts were present below a depth of approximately 35 m below the surface, low-percentage Franciscan Assemblage

  20. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  1. Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal

    NASA Astrophysics Data System (ADS)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr‑1 and peak rates as high as 1,000 mm yr‑1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr‑1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km‑2 yr‑1, that by far outweigh bedrock

  2. A sedimentary model for early Palaeozoic fluvial fans, Alderney Sandstone Formation (Channel Islands, UK)

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro; Ghinassi, Massimiliano

    2016-08-01

    Fluvial fans in the rock record are inferred based on critical criteria such as: downstream grain-size fining; evidence for drainage fractionation along bifurcating channels; increasing fluvial-aeolian interaction in the basinward direction; and radial palaeoflow dispersion. Since pre-vegetation fluvial rocks often lack heterolithic alluvium and channelisation at the outcrop scale, the recognition of pre-Silurian fluvial fans has, so far, not been straightforward. This research proposes a sedimentary model for the Alderney Sandstone Formation of Channel Islands (UK), so far considered as a fine record of early Palaeozoic axial-fluvial sedimentation. Here, outcrop-based and remote-sensing analysis of the formation's type-section reveal the interaction of fluvial and aeolian processes, expressed by the alternation of: compound fluvial bars enclosing macroform surfaces, related to phases of perennial discharge; fluvial sandsheets containing antidunal forms and soft-sediment deformations, related to seasonal (i.e. flashy) discharge; and aeolian bedforms overlying thin stream-flow deposits. An up-section increase in aeolian deposits is accompanied by the shrinking of fluvial bars and minor-channel cuts, suggesting that drainage was fractioned along smaller channels terminating into marginal aeolian environments. Together with a propensity towards more dispersed values of fluvial cross-set thickness up-section (again due to discharge fractionation along intermittently active channels), these features depict an aeolian-influenced fluvial fan. This work discusses a set of criteria for the identification of fluvial fans in pre-vegetation environments. In doing so, it also explores possible parallels to modern environments, and underscores the potential of integrated outcrop and remotely sensed observations on ancient fluvial rocks and modern sedimentary realms.

  3. Infiltration in unsaturated layered fluvial deposits at Rio Bravo : photo essay and data summary.

    SciTech Connect

    Brainard, James Robert; Glass, Robert John, Jr.

    2007-08-01

    An infiltration and dye transport experiment was conducted to visualize flow and transport processes in a heterogeneous, layered, sandy-gravelly fluvial deposit adjacent to Rio Bravo Boulevard in Albuquerque, NM. Water containing red dye followed by blue-green dye was ponded in a small horizontal zone ({approx}0.5 m x 0.5 m) above a vertical outcrop ({approx}4 m x 2.5 m). The red dye lagged behind the wetting front due to slight adsorption thus allowing both the wetting front and dye fronts to be observed in time at the outcrop face. After infiltration, vertical slices were excavated to the midpoint of the infiltrometer exposing the wetting front and dye distribution in a quasi three-dimensional manner. At small-scale, wetting front advancement was influenced by the multitude of local capillary barriers within the deposit. However at the scale of the experiment, the wetting front appeared smooth with significant lateral spreading {approx} twice that in the vertical, indicating a strong anisotropy due to the pronounced horizontal layering. The dye fronts exhibited appreciably more irregularity than the wetting front, as well as the influence of preferential flow features (a fracture) that moved the dye directly to the front, bypassing the fresh water between.

  4. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Turner, Falko; Tolksdorf, Johann Friedrich; Viehberg, Finn; Schwalb, Antje; Kaiser, Knut; Bittmann, Felix; von Bramann, Ullrich; Pott, Richard; Staesche, Ulrich; Breest, Klaus; Veil, Stephan

    2013-01-01

    Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (˜14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.

  5. Land use and climate impacts on fluvial system during the ancient agriculture (VII-VII B.C.- I-II A.D.) in the Hadhamaut Province of the South Arabia.

    NASA Astrophysics Data System (ADS)

    Levkovskaya, Galina

    2010-05-01

    The report is based on the paleobotanical studies and palynological evidences from the Raibun settlement (VIII-VII cc. B.C. - I-II cc. A.D.). It is located in Hadhramaut province of the South Yemen and is connected with the buried valley of the ancient river. At the present the town is almost entirely buried under the eolithic sediments with no vegetation on the surface. The complicated vegetation dynamics for Raibun is shown in the report. The features of the cultivated flora and two stages of the anthropogenic influence on the phytocoenoses are considered. The remains of the cultivated plants are illustrated by SEM-micrographs. The ancient agriculture was connected with the irrigation system. After the destruction of the site and irrigation system, under the conditions of the hot and very dry climate of Yemen, renewal of the natural vegetation cover did not take place and open communities appeared.

  6. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  7. Structural control of fluvial drainage in the western domain of the Cape Fold Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Manjoro, Munyaradzi

    2015-01-01

    The purpose of the study was to examine the extent to which drainage morphology has been influenced by faulting, folding and bedrock lithology in the Cape Fold Belt (CFB) of South Africa. This region was formed during Paleozoic-Mesozoic convergence along the south-western margin of Gondwana. An extensive structural geology database, terrain characteristics and stream network data were analysed using Geographical Information Systems (GIS) to examine the possible linkages between structure and fluvial drainage. Results indicated that the contemporary geomorphology of the area reflects the influence of folding and faulting as well as differential erosion. The following drainage anomalies suggestive of strong structural control were identified: orientation of flow direction of major streams corresponding to structural lineaments, abrupt changes in stream direction influenced by anticline fold axes, faults and joints, and fault-aligned streams. Drainage development in the study area responded noticeably to the underlying structure. The study raises questions with regard to the implications of one major or multiple dominant structural controls on drainage morphology and pattern. The findings have relevance with regard to the understanding fluvial drainage development and landform evolution in tectonically deformed regions.

  8. Seismic monitoring of torrential and fluvial processes

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Turowski, Jens M.

    2016-04-01

    In seismology, the signal is usually analysed for earthquake data, but earthquakes represent less than 1 % of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to the development of new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor mass transfer throughout the landscape. Surface processes vary in nature, mechanism, magnitude, space and time, and this variability can be observed in the seismic signals. This contribution gives an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and to improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  9. The Morphology and Sedimentology of Fluvial Megascours

    NASA Astrophysics Data System (ADS)

    Bull, J. M.; Vardy, M. E.; Sambrook Smith, G.; Best, J.; Dixon, S. J.; Goodbred, S. L., Jr.

    2015-12-01

    Scour zones in the World's largest rivers, or so-called "megascours", are extensive and dynamic features that are currently poorly understood in terms of their morphology and kinematics. Such scours can erode c. 50-60 metres below the water surface, extend laterally for 100s metres to kilometres, and may migrate kilometres in a single year. Understanding the evolution of such scour zones has important implications for improved flood and bank erosion prediction, better infrastructure planning (e.g. bridges, embankments), and differentiating between autocyclic and allocyclic erosion in the geological record (e.g. sequence stratigraphic applications). Here, we present results from two field seasons using geophysical techniques (high-resolution multibeam bathymetry and seismic reflection data using Chirp and Boomer sources) to study six scour zones in the Ganges-Jamuna-Padma-Meghna river system of Bangladesh. These scours include some of the World's largest confluences, as well as smaller distributaries, and those with varying levels of tidal influence. Seismic data from repeat surveys permit an accurate characterization of short-term scour evolution and associated deposits across two monsoonal flood peaks. Meanwhile, the bathymetric data reveals widespread deep scours (30-40 m) even in small, downstream distributary tidal channels, illustrating that megascours are present all the way to the subaerial delta fringe. Bathymetric analysis also shows a complex relationship between these scours and bedform distribution and orientation. This suggests the need for a new scaling for sand dune dimensions at such sites, and the need for substantial revisions to current ideas on the use of dune-scale cross-stratification to infer palaeoflow depths in the ancient sedimentary record.

  10. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain)

    NASA Astrophysics Data System (ADS)

    Vázquez-Urbez, M.; Pardo, G.; Arenas, C.; Sancho, C.

    2011-01-01

    The Pleistocene deposits of the valley of the River Piedra (NE Spain) are represented by thick tufas with small amounts of detrital material; the development of these deposits correlates with marine isotopic stages 9, 7, 6, and 5. The sedimentary scenario in which they formed mostly corresponded to stepped fluvial systems with barrage-cascade and associated dammed areas separated by low gradient fluvial stretches. Mapping and determining the sedimentology and chronology of these deposits distinguished two main episodes of fluvial diffluence that originated as a result of the temporary blockage of the river — a consequence of the vertical growth of tufa barrages in the main channel. In both episodes, water spilt out toward a secondary course from areas upstream of barrages where the water level surpassed the height of the divide between the main and secondary course. As a consequence, extensive and distinct tufa deposits with very varied facies formed over a gently inclined area toward and, indeed, within the secondary course. The hydrology of this secondary course was episodic, fed only by surface water. The two diffluence episodes detected occurred during MIS 7 and 7-6 and were interrupted by incision events, reflected by detrital deposits at the base of each tufa sedimentation stage in the main channel. Incision, which caused the breakage of the barrages, allowed water to again flow through the main channel. No evidence of diffluence was seen in any younger (MIS 5 to present-day) tufa deposits. The proposed diffluence model might help explain other carbonate fluvial systems in which (1) tufas appear in areas with no permanent water supply, and (2) tufas are absent over extensive areas despite conditions favourable to their formation.

  11. The Origin of Warrego Valles: A Case Study for Fluvial Valley Formation on Early Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Dohm, James; Tanaka, Ken; Hare, Trent

    2000-01-01

    Warrego Valles is one of the best examples of a well integrated fluvial valley system that formed early in the geological history of Mars, the lack of similar erosion elsewhere along the edge of Thaumasia plateau is not consistent with a formation by rainfall. Instead the radial pattern of this valley system centered on a region of localized uplift argues for a more localized water source. We conclude that this uplift was most likely the result of a subsurface magmatic intrusion and that the estimated volume of this intrusion is sufficient to cause enough hydrothermal ground-water outflow to form the valley system. A possible alternative to this scenario is hydrothermal ground-water outflow combined with a melting snow pack.

  12. Fluvial and deltaic facies and environments of the late permian back-reef shelves of the Permian Basin of Texas and New Mexico

    SciTech Connect

    Mazzullo, J. )

    1993-02-01

    The Artesia Group is a sequence of carbonates, evaporites, and clastics that was deposited across the back-reef shelves of the Permian Basin during late Permian time. There has been some controversy over the depositional environments of the clastic members of the Artesia Group and the role of sea level fluctuations in their accumulation. However, the results of a regional core study of the Queen Formation of the Artesia Group indicate that they were largely deposited in desert fluvial and deltaic environments during low-stands of sea level. Three fluvial-deltaic facies are recognized within the clastic members of the Queen. The first consists of medium to very find sandstones and silty sandstones with cross-beds, ripple cross-laminae, and planar and wavy laminae. This facies forms wavy sheets that thicken and thin along linear trends, and was deposited in sandy braided streams. The second facies consists of very find to fine sandstones, silty sandstones, and siltstones with ripple cross-laminae, planar and wavy laminae, cross-beds, clay drapes and pedogenetic cutans, as well as siltstones and silty mudstones with haloturbation structures and evaporite nodules. This facies forms thick planar sheets, and was deposited in fluvial sandflats and adjacent fluvial-dominated continental sabkhas. The third facies consists of cyclic deposits of haloturbated silty mudstones that grade into siltstones and very fine sandstones with crossbeds, planar and wavy laminae, haloturbation structures and evaporite nodules. Each cycle forms a lobate body that is bounded by carbonates or evaporites and which was deposited in sheet deltas that formed along the landward margins of a back-reef lagoon.

  13. Fluvial geomorphology: where do we go from here?

    NASA Astrophysics Data System (ADS)

    Smith, Derald G.

    1993-07-01

    The evolution of geomorphology and in particular, fluvial geomorphology, is at a crossroads. Currently, the discipline is dismally organized, without focus or direction, and is practised by individualists who rarely collaborate in numbers significant enough to generate major research initiatives. If the discipline is to mature and to prosper, we must make some very difficult decisions that will require major changes in our ways of thinking and operating. Either the field stays in its current operational mode and becomes a backwater science, or it moves forward and adopts the ways of the more competitive sectors of the earth and biosciences. For the discipline to evolve, fluvial geomorphologists must first organize an association within North America or at the international level. The 3rd International Geomorphology Conference may be a start, but within that organization we must develop our own divisional and/or regional organizations. Within the Quaternary geology/geomorphology divisions of the Geological Socieity of America (GSA), Association of American Geographers (AAG), American Geophysical Union (AGU) and British Geomorphology Research Group (BGRG) the voice of fluvial geomorphology is lost in a sea of diverse and competitive interests, though there is reason for hope resulting from some recent initiatives. In Canada, we have no national geomorphology organization per se; our closest organization is Canqua (Canadian Quaternary Association). Next, fluvial researchers must collaborate, by whatever means, to develop "scientific critical mass" in order to generate ideas and long-range goals of modest and major scientific importance. These projects will help secure major research funding without which, research opportunities will diminish and initiating major new research will become nearly impossible. Currently, we are being surpassed by the glaciologists, remote sensors, ecologists, oceanographers, climatologists-atmospheric researchers and some Quaternary

  14. Fluvial Morphology and Bedform Migration in the Ebb Tidal Dominated Duplin River, Georgia

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Hill, J. C.; Viso, R. F.; Peterson, R. N.; Carter, M. L.

    2014-12-01

    The Duplin River is an ebb-domintated, salt marsh drainage system west of Sapelo Island, Georgia. With no riverine input, flow in the Duplin is dependent on local surface run off, groundwater discharge and tidal flushing. Repeat multibeam bathymetry surveys within this system provide insight into sediment transport, current dynamics, and the migration of bottom features. Examination of bathymetric changes and the rate of bedform migration can be used to help estimate net sediment transport in fluvial and tidal systems. The swath bathymetry data presented here were collected during December 2009, March 2013, and June 2013 (high and low tide) aboard a small survey vessel, using a pole-mounted Kongsberg EM3002d multibeam bathymetry system. Along-stream profiles from bathymetry data collected during a single spring tidal cycle show little bedform migration, while the more temporally distant profiles record significant shifts in both small (cm-scale) and large (m-scale) bedform position, as well as changes in the morphology of large erosional scour depressions. Previous work has suggested the larger bedforms, which maintain an ebb-oriented geometry through both ebb and flood tide, are indicative of sediment transport rates that are an order of magnitude greater during the ebb tide (Zarillo, 1985). The new data suggest punctuated events, such as storm surges, may also play an important role in the fluvial transport, although more analysis is needed to determine how sediment storage changes in the Duplin river system over multiple tidal cycles. Integration of topographic LiDAR data, vegetation patterns, sediment composition, groundwater inputs and planform river morphology will also provide insight into sediment storage and transport within the system.

  15. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  16. Large Fluvial Fans: Aspects of the Attribute Array

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  17. Border separation for adjacent orthogonal fields

    SciTech Connect

    Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )

    1991-06-01

    Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.

  18. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.

    PubMed

    Kim, Christopher S; Stack, David H; Rytuba, James J

    2012-07-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash. PMID:22718027

  19. Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.

    2015-06-01

    Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in southwest France, the Gironde fluvial-estuarine system has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low discharge, interannual changes). Turbidity shows hysteresis loops at different timescales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the upstream migration of TMZ in the fluvial stations. Whereas the duration of the low discharge period mainly determines the TMZ persistence, the freshwater volume during high discharge periods explains the TMZ concentration at the following dry period. The evolution of these two hydrological indicators of TMZ persistence and turbidity level since 1960 confirms the effect of discharge decrease on the intensification of the TMZ in tidal rivers; both provide a tool to evaluate future scenarios.

  20. Fluvial transport potential of shed and root-bearing dinosaur teeth from the late Jurassic Morrison Formation

    PubMed Central

    Coenen, Jason J.; Noto, Christopher R.

    2014-01-01

    Shed dinosaur teeth are commonly collected microvertebrate remains that have been used for interpretations of dinosaur feeding behaviors, paleoecology, and population studies. However, such interpretations may be biased by taphonomic processes such as fluvial sorting influenced by tooth shape: shed teeth, removed from the skull during life, and teeth possessing roots, removed from the skull after death. As such, teeth may behave differently in fluvial systems due to their differences in shape. In order to determine the influence of fluvial processes on the preservation and distribution of shed and root-bearing dinosaur teeth, the hydrodynamic behaviors of high-density urethane resin casts of shed and root-bearing Allosaurus and Camarasaurus teeth were experimentally tested for relative transport distances at increasing flow velocities in an artificial fluviatile environment. Results show that tooth cast specimens exhibited comparable patterns of transport at lower velocities, though the shed Camarasaurus teeth transported considerably farther in medium to higher flow velocities. Two-Way ANOVA tests indicate significant differences in the mean transport distances of tooth casts oriented perpendicular to flow (p < 0.05) with varying tooth morphologies and flow velocities. The differences exhibited in the transportability of shed and root-bearing teeth has important implications for taphonomic reconstructions, as well as future studies on dinosaur population dynamics, paleoecology, and feeding behaviors. PMID:24765581

  1. 20. Interior view of fuel storage pit or vault adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Detecting allocyclic signals in volcaniclastic fluvial successions: Facies, architecture and stacking pattern from the Cretaceous of central Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Umazano, Aldo M.; Bellosi, Eduardo S.; Visconti, Graciela; Melchor, Ricardo N.

    2012-12-01

    The Castillo Formation and the overlying lower member of the Bajo Barreal Formation (Cretaceous) are the principal hydrocarbon-producing units of the San Jorge Basin, Patagonia, Argentina. They are mainly composed of sandstone lenses interbedded with finer-grained, tuffaceous, sheet-like strata. Both units record fluvial systems influenced by voluminous pyroclastic influx via ash-falls mainly from a western source. These fluvial systems drained from the west toward a non-marine depocenter located in the eastern part of the basin. The units were studied in the Sierra de San Bernardo, a NNW-SSE oriented fold and thrust belt located in the western sector of the basin. The objectives of this study were: (i) to assess the influence of allocyclic factors on fluvial dynamics and sedimentation, and (ii) to determine the possible link between changes in tephra reworking and configuration of channel belts. The methodology included facies and architectural analyses, as well as determination of the stacking pattern of the channel deposits. The Castillo Formation represents permanent single-channel rivers with channel-margin bars. Floodplains were commonly constructed from aqueous reworking of pyroclastic substrates (sheet-floods, debris-flows and shallow lacustrine sedimentation) and, to a lesser extent, by preservation of ash-fall deposits. The lower member of the Bajo Barreal Formation generally records braided fluvial channel belts with a more variable water discharge and, in one locality, single-channeled rivers. Constructive processes of the floodplains were similar to the underlying Castillo Formation, although other types of deposits were detected in lower proportions including hyperconcentrated flows and crevasse-splays. The different pyroclastic sediment supply between both units explains the general evolution of the fluvial systems. The stacking patterns, which are a response to base-level changes, are probably associated with the common tectonic activity recorded in

  3. Quantifying the transition from fluvial- to wave-dominance for river deltas with multiple active channels

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.

    2012-12-01

    The plan-view morphologies of fluvial- and wave-dominated deltas are clearly distinctive, but transitional forms are numerous. A quantitative, process-based description of this transition remains unexplored, particularly for river deltas with multiple active channels. Previous studies focused on general attributes of the fluvial and marine environment, such as the balance between wave energy and river discharge. Here, we propose that the transition between fluvial and wave dominance is directly related to the magnitude of the fluvial bedload flux to the nearshore region versus the alongshore sediment transport capacity of waves removing sediment away from the mouth. In the case of a single-channel delta, this balance can be computed for a given distribution of waves approaching shore. Fluvial dominance occurs when fluvial sediment input exceeds the wave-sustained maximum alongshore sediment transport for all potential shoreline orientations both up- and downdrift of the river mouth. However, deltaic channels have the tendency to bifurcate with increasing fluvial strength. Initial bifurcation splits the fluvial sediment flux among individual channels, while the potential sediment transport by waves remains constant for both river mouths. At higher bifurcation orders, multiple channels interact with each other alongshore, a situation more complicated than the single channel case and one that cannot be simple addressed analytically. We apply a model of plan-view shoreline evolution to simulate the evolution of a deltaic environment with multiple active channels. A highly simplified fluvial domain is represented by deposition of sediment where channels meet the coast. We investigate two scenarios of fluvial delivery. The first scenario deposits fluvial sediment alongshore on a self-similar predefined network of channels. We analyze the effects of different network geometrical parameters, such as bifurcation length, bifurcation angle, and sediment partitioning. In the

  4. Fluvial sediment fingerprinting: literature review and annotated bibliography

    USGS Publications Warehouse

    Williamson, Joyce E.; Haj, Adel E., Jr.; Stamm, John F.; Valder, Joshua F.; Prautzch, Vicki L.

    2014-01-01

    The U.S. Geological Survey has evaluated and adopted various field methods for collecting real-time sediment and nutrient data. These methods have proven to be valuable representations of sediment and nutrient concentrations and loads but are not able to accurately identify specific source areas. Recently, more advanced data collection and analysis techniques have been evaluated that show promise in identifying specific source areas. Application of field methods could include studies of sources of fluvial sediment, otherwise referred to as sediment “fingerprinting.” The identification of sediment is important, in part, because knowing the primary sediment source areas in watersheds ensures that best management practices are incorporated in areas that maximize reductions in sediment loadings. This report provides a literature review and annotated bibliography of existing methodologies applied in the field of fluvial sediment fingerprinting. This literature review provides a bibliography of publications where sediment fingerprinting methods have been used; however, this report is not assumed to provide an exhaustive listing. Selected publications were categorized by methodology with some additional summary information. The information contained in the summary may help researchers select methods better suited to their particular study or study area, and identify methods in need of more testing and application.

  5. Fluvial deposits as an archive of early human activity

    NASA Astrophysics Data System (ADS)

    Mishra, S.; White, M. J.; Beaumont, P.; Antoine, P.; Bridgland, D. R.; Limondin-Lozouet, N.; Santisteban, J. I.; Schreve, D. C.; Shaw, A. D.; Wenban-Smith, F. F.; Westaway, R. W. C.; White, T. S.

    2007-11-01

    River terraces are well established as an important source of Lower and Middle Palaeolithic artefacts in Europe, large collections having been assembled there during the years of manual gravel extraction. Now that many terrace sequences can be reliably dated and correlated with the oceanic record, potentially useful patterns can be recognized in the distribution of artefacts. The earliest appearance of artefacts in terrace staircases, marking the arrival of the first tool-making hominins in the region in question, is the first of several archaeological markers within fluvial sequences. The Lower to Middle Palaeolithic transition, with the appearance of Levallois, is another. Others may be more regional in significance: the occurrences of Clactonian (Mode 1) industry, twisted ovate handaxes and bout coupé handaxes, for example. IGCP Project no. 449 instigated the compilation of fluvial records from all over the 'old world'. Comparison between British and Central European sequences confirms the established view that there is a demarcation between handaxe making in the west and flake/core industries in the east. Other centres of activity reported here have been in the Middle East (Syria), South Africa and India. Data from such areas will be key in deciphering the story of the earlier 'out-of-Africa' migration, that by pre-Homo sapiens people. There is clear evidence for diachroneity between the first appearances of different industries, in keeping with the well-established idea of northward migration.

  6. Fluvial channels on Titan: Initial Cassini RADAR observations

    USGS Publications Warehouse

    Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.

    2008-01-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.

  7. Fluvial process and the establishment of bottomland trees

    USGS Publications Warehouse

    Scott, Michael L.; Friedman, Jonathan M.; Auble, Gregor T.

    1996-01-01

    The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood (Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri River in Montana.

  8. Legitimizing fluvial ecosystems as users of water: an overview.

    PubMed

    Naiman, Robert J; Bunn, Stuart E; Nilsson, Christer; Petts, Geoff E; Pinay, Gilles; Thompson, Lisa C

    2002-10-01

    We suggest that fluvial ecosystems are legitimate users of water and that there are basic ecological principles guiding the maintenance of long-term ecological vitality. This article articulates some fundamental relationships between physical and ecological processes, presents basic principles for maintaining the vitality of fluvial ecosystems, identifies several major scientific challenges and opportunities for effective implementation of the basic ecological principles, and acts as an introduction to three specific articles to follow on biodiversity, biogeochemistry, and riparian communities. All the objectives, by necessity, link climate, land, and fresh water. The basic principles proposed are: (1) the natural flow regime shapes the evolution of aquatic biota and ecological processes, (2) every river has a characteristic flow regime and an associated biotic community, and (3) aquatic ecosystems are topographically unique in occupying the lowest position in the landscape, thereby integrating catchment-scale processes. Scientific challenges for the immediate future relate to quantifying cumulative effects, linking multidisciplinary knowledge and models, and formulating effective monitoring and assessment procedures. Additionally, forecasting the ecological consequences of changing water regimes is a fundamental challenge for science, especially as environmental issues related to fresh waters escalate in the next two to three decades. PMID:12481913

  9. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Zhuo, Haiteng; Wang, Yingmin; Shi, Hesheng; He, Min; Chen, Weitao; Li, Hua; Wang, Ying; Yan, Weiyao

    2015-12-01

    Multiple successions of buried fluvial channel systems were identified in the Quaternary section of the mid-shelf region of the northern South China Sea, providing a new case study for understanding the interplay between sea level variations and climate change. Using three commercial 3D seismic surveys, accompanied by several 2D lines and a few shallow boreholes, the sequence stratigraphy, seismic geomorphology and stratal architecture of these fluvial channels were carefully investigated. Based on their origin, dimensions, planform geometries and infill architectures, six classes of channel systems, from Class 1 to Class 6, were recognized within five sequences of Quaternary section (SQ1 to SQ5). Three types of fluvial systems among them are incised in their nature, including the trunk incised valleys (Class 1), medium incised valleys (Class 2) and incised tributaries (Class 3). The other three types are unincised, which comprise the trunk channels (Class 4), lateral migrating channels (Class 5) and the stable channels (Class 6). The trunk channels and/or the major valleys that contain braided channels at their base are hypothesized to be a product of deposition from the "big rivers" that have puzzled the sedimentologists for the last decade, providing evidence for the existence of such rivers in the ancient record. Absolute age dates from a few shallow boreholes indicate that the landscapes that were associated with these fluvial systems changed significantly near the completion of the mid-Pleistocene climate transition (MPT), which approximately corresponds to horizon SB2 with an age of ˜0.6 Ma BP. Below SB2, the Early Pleistocene sequence (SQ1) is dominated by a range of different types of unincised fluvial systems. Evidence of incised valleys is absent in SQ1. In contrast, extensive fluvial incision occurred in the successions above horizon SB2 (within SQ2-SQ5). Although recent studies call for increased incision being a product of climate-controlled increase

  10. Divergent viral presentation among human tumors and adjacent normal tissues.

    PubMed

    Cao, Song; Wendl, Michael C; Wyczalkowski, Matthew A; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J; Gay, Hiram; Chen, Ken; Rader, Janet S; Dipersio, John F; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  11. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  12. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  13. Estuary Turbidity Maxima -- Connections between the Tidal-Fluvial and Estuarine Regimes

    NASA Astrophysics Data System (ADS)

    Jay, D. A.; Talke, S. A.; Hudson, A. S.; Twardowski, M.

    2015-12-01

    An Estuary turbidity maximum or zone (ETM or ETZ) is an area of elevated sediment concentration that often occurs in coastal plain, salt wedge, and river-dominated estuaries. ETMs influence the morphodynamic development, biogeochemical cycling, and contaminant distribution of the many systems in which they occur. In developed estuaries, they are often created or augmented by dredging. Material of either fluvial or marine origin may be trapped, but fluvial supply is dominant in most river-estuary ETMs. An ETM can be described in terms of the type of particle trapping mechanisms that concentrate or trap suspended particulate matter (SPM). Convergent alongchannel SPM fluxes are required to create an ETM, and for a steady-state to pertain, seaward fluxes related to river flow must be balanced by landward mean, tidal or overtide fluxes. Horizontal and vertical salinity and/or sediment gradients often enhance trapping by concentrating SPM near the bed and cause near-bed landward flow and SPM transport. Also, lateral processes can concentrate or disperse SPM, and lags between SPM concentration and velocity are often a dominant factor in systems with fine grained sediment. The settled bed in an ETM may be fine grained, but ETM also occur in sand-bedded systems where no long-term deposition of ETM material occurs. We summarize results of theoretical models that provide a conceptual understanding of how ETM fluxes trap material and how ETM properties vary in response to external forcing. Remote sensing images provide a spatial view of ETM phenomena, and analyses of 15 years of ocean color data for the Columbia River Estuary validate theoretical results. Recent advances in acoustic and optical instrumentation in other environments should facilitate a new generation of ETM measurements, providing better time-space coverage and better flux estimates. Accordingly, we suggest ETM research questions for the coming decade.

  14. Epithelial dysplasia immediately adjacent to oral squamous cell carcinomas.

    PubMed

    Wright, A; Shear, M

    1985-08-01

    A number of workers have attempted to identify dysplastic features which may be predictors of malignant change, by prospective studies of dysplastic lesions. In the present study we have looked at dysplastic changes immediately adjacent to established squamous carcinomas in an attempt to determine whether any predictors can be identified in this way. Eighty cases were included in the study for whom information on tobacco usage was known. Clinical details were recorded. Histological features in epithelium immediately adjacent to the carcinoma were studied in representative sections. Eighteen specific histological characteristics were noted as present or absent. Data were transferred by Conversational Monitoring System (CMS) terminal, processed and analyzed by the Statistical Analysis System (SAS) Computer package. Only 8 patients were non-smokers (10%). Dysplastic changes in adjacent epithelium were frequently multicentric. Changes appear to occur first in the basal layer in the form of disturbance of polarity or basal cell hyperplasia, while other dysplastic features are absent. The feature referred to as basal cell hyperplasia appears, in fact, to represent disturbed epithelial maturation. In 80% of cases increased nucleo-cytoplasmic ratio appears to result from a decrease in cytoplasmic volume rather than increased nuclear size. A defect in RNA synthesis may be a factor. A sharp decrease in inflammatory cells in the lamina propria of adjacent epithelium, compared with that of the carcinoma, was observed. Russell bodies were noted in 5 of the 8 lesions in non-smokers (63%) and in 16 of 72 lesions in smokers (22%) (p less than 0.001; Chi2 17.65). PMID:3928850

  15. Revegetation of Fluvial Mine Tailing Deposits: The Use of Five Riparian Shrub Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluvial deposition of mine tailings has caused extensive damage to riparian ecosystems throughout the West. Willows are often used for revegetation of fluvial mine tailing deposits but some species accumulate toxic concentrations of metals in leaves and stems. A greenhouse experiment was conducted ...

  16. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  17. Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma

    USGS Publications Warehouse

    Bednar, Gene A.; Waldrep, Thomas E.

    1973-01-01

    A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.

  18. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  19. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  20. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments

    USGS Publications Warehouse

    Friedman, Linda C.; Erdmann, David E.

    1982-01-01

    This chapter contains practices used by the U.S. Geological Survey to assure the quality of analytical data for water, fluvial sediment, and aquatic organisms. These practices are directed primarily toward personnel making water quality measurements. Some detail specific quality control techniques, others document quality assurance procedures being used by the Central Laboratories System of the U.S. Geological Survey, and still others describe various statistical techniques and give examples of their use in evaluating and assuring the quality of analytical data. The practices are arranged into eight sections: Analytical Methods Development Procedures, Standard Quantitative Analysis Techniques, Instrumental Techniques, Reference Material, Laboratory Quality Control; Quality Assurance Monitoring; Documentation, Summary, and Evaluation of Data, Materials Evaluation. Each section is preceded by a brief description of the material covered. Similarly within each section, each practice is preceded by a description of its application or scope.

  1. New aspects of deformed cross-strata in fluvial sandstones: Examples from Neoproterozoic formations in northern Norway

    NASA Astrophysics Data System (ADS)

    Røe, Signe-Line; Hermansen, Marita

    2006-05-01

    Extensive (20-200 m long) exposures of tabular cross-sets in Neoproterozoic fluvial sandstone in Northern Norway demonstrate that deformed cross-strata, in the form of recumbently folded cross-strata with associated massive sand, are localized features passing in both up- and down-current direction into undeformed, concave-upward or sigmoidal cross-strata. The deformation occurs in down-current inclined, tangential wedge-shaped zones beneath reactivation surfaces, and less commonly as flat-topped lenticular zones. The localized nature of the sediment deformation is attributed to local liquefaction below the top of the bed in the case of the flat-topped lenses and at the dune front in the case of the more common tangential wedges. The position of the flat-topped lenses suggests deformation by the shear stress of high-velocity, suspension-laden currents. Although liquefaction of the dune front implies the action of gravity forces, it is argued that the fluvial currents were the main driving force at the instant of bed liquefaction. Post-folding gravitational shearing probably enhanced the deformation within the upper part of the wedges, with their long, flat-lying toeset resulting from redeposition of downslope-moving liquefied sand. The down-current alternation of deformed tangential wedges and undeformed cross-strata suggests that the mechanism that triggered the liquefaction of the dune lee side was related to the fluvial system itself and hence was of autokinetic origin. The tabular cross-sets have previously been interpreted as a product of the dune upper-stage plane-bed flow regime. In this flow context, it can be speculated that the liquefaction and deformation occurred when the flow conditions approached the plane-bed phase, probably inducing a highly differential turbulent pattern and pressure fluctuations sufficient to liquefy the fine/medium sand. The small flat-topped deformation lenses also suggest liquefaction by cyclic loading, whereas the solitary

  2. "Who's been feeding in my bed?" Benthivorous fish affect fluvial sediment transport - fact or fairy tale?

    NASA Astrophysics Data System (ADS)

    Rice, Stephen; Pledger, Andrew; Smith, James; Toone, Julia

    2016-04-01

    Many species of fish are benthivorous - they forage for food in the river bed - and their foraging disturbs, displaces and sorts bed materials with implications for fluvial sediment transport. Flume experiments have confirmed that benthic foraging by Barbel (Barbus barbus (L.)) and Chub (Squalius cephalus (L.)) modifies the structure and topography of water-worked gravels, thereby increasing particle entrainment probabilities and the quantity of sediment mobilised during experimental high flows. Field experiments and observations have demonstrated the impact of foraging on patch-scale bed disturbance, gravel structure, grain displacements and grain-size sorting. Initial ex-situ experiments support the suggestion that in low gradient rivers, shoals of fish like Bream (Abramis brama (L.)) entrain fine bed sediments, adding a biotic surcharge to the suspended sediment flux and modifying bed topography. These results underpin a novel proposal: that there is an aggregate, cumulative effect of benthic foraging on fluvial sediment transport at larger scales, including at scales where the contribution to sediment movement and river channel behaviour generates management concerns. Evaluating this proposal is a long-term goal, which is based on two intermediate objectives: to develop deeper mechanistic understanding of foraging impacts and to establish the spatial and temporal extent of geomorphologically significant feeding behaviours in river systems. The latter is crucial because field data are currently limited to a single reach on one UK river. It is reasonable to hypothesise that foraging impacts are spatially and temporally widespread because obligate and opportunistic benthic feeding is common and fish feed throughout their life. However, the effectiveness of foraging as a geomorphological process is likely to vary with factors including substrate size, fish community composition, food availability, water temperature, river flows and seasonal changes in fish

  3. Late Quaternary fluvial incision rates in a marine terraced landscape, southeastern Crete, Greece

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Papanastassiou, Dimitris; Valkanou, Kanella; Gaki-Papanastassiou, Kalliopi

    2014-05-01

    Along the southern coast of the island of Crete, a series of five east-west oriented Late Pleistocene marine terraces exist, demonstrating the significant coastal uplift of this area. These terraces, ranging in elevation from 10 to 160m, are deformed by the vertical movements of the NNE-SSW trending and dipping west normal fault of Ierapetra. This study focuses on defining rates of fluvial incision for the last 410 Ka along valley systems that drain the tectonically uplifting area of Ierapetra, south Crete. The studied streams have a N-S flow direction and discharge into the Libyan Sea. Some of them are developed on the uplifted block of the Ierapetra normal fault whereas others drain the subsiding area west of the fault. The lower reaches of the study streams cut down through these marine terraces, which have been recognized, mapped in detail and correlated with Late Pleistocene Oxygen-Isotope Stages of high sea-level stands following the global sea-level fluctuations. These terraces of known age were used as reference surfaces in order to determine fluvial incision rates as the lower reaches of the streams cut down through these platforms. To evaluate incision rates, thirty five topographic valley cross-sections were drawn through fieldwork measurements as well as using a digital elevation model (DEM) produced by detailed topographic diagrams at the scale of 1:5,000. Cross valley profiles were constructed at specific locations where streams cut down the inner edges of the marine terraces because these points correspond precisely to the age of the palaeo-shoreline during the interglacial stage. For each cross-section the ratio of valley floor width to valley height (Vf) and long-term mean stream incision rates were estimated for the last 410 Ka. The geomorphic evolution of the valleys has been mainly affected by the lithology of the bedrock, sea level fluctuations during the late Quaternary, the head-ward erosion and incision of the channels, as well as both the

  4. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  5. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    NASA Astrophysics Data System (ADS)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (<50 years) despite drainage. Boreal and temperate fens and raised bogs in Finland and the Czech Republic showed intermediate sensitivity. We attribute observed differences to physical and climatic differences between peatlands, in particular, hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  6. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  7. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display

  8. Water soluble cations and the fluvial history of Mars

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1975-01-01

    The electrical conductivity and water soluble Na, K, Ca, and Mg of aqueous solutions of terrestrial soils and finely divided igneous and metamorphic rocks were determined. Soils from dry terrestrial basins with a history of water accumulation as well as soils from the topographic lows of valleys accumulated water soluble cations, particularly Na and Ca. These soils as a group can be distinguished from the rocks or a second group of soils (leached upland soils and soils from sites other than the topographic lows of valleys) by significant differences in their mean electrical conductivity and water-soluble Na + Ca content. Similar measurements on multiple samples from the surface of Mars, collected by an automated long-range roving vehicle along a highlands-to-basin transect at sites with morphological features resembling dry riverlike channels, are suggested to determine the fluvial history of the planet.

  9. The grain size of fluvial and hillslope sediments across an erosion gradient in the Feather River Basin, California

    NASA Astrophysics Data System (ADS)

    Mudd, Simon; Attal, Mikael; Hurst, Martin; Yoo, Kyungsoo; Weinman, Beth; Naylor, Mark

    2016-04-01

    Grain size in hillslope sediments is conditioned by erosion rates and processes, and these sediments are then delivered to channels. How the channels respond to and modify these characteristics dictate whether rivers aggrade or erode their substrate. We investigate how the grain size of hillslope and fluvial sediments respond to an erosion gradient within the Feather River basin in northern California. Studied basins are underlain exclusively by tonalite lithology. Erosion rates vary over an order of magnitude, from >250 mm ka‑1 in the Feather River canyon to <15 mm ka‑1 on an adjacent low-relief plateau. Hillslope particle size increases with increasing steepness, a proxy for erosion rate. We hypothesise that, in our soil samples, the measured 10-fold increase in D50 and doubling of the amount of fragments larger than 1 mm when slope increases from 0.38 to 0.83 m m‑1 is due to a decrease in the residence time of rock fragments, causing particles to be exposed for shorter periods of time to processes that can reduce grain size. For slopes in excess of 0.7 m m‑1, landslides and scree cones supply much coarser sediment to rivers, with D50 and D84 more than one order of magnitude larger than in soils. In the tributary basins of the Feather River, a prominent knickpoint separates the rapidly eroding canyon from the slowly eroding plateau. Downstream of the break in slope, fluvial sediment grain size increases, due to an increase in flow competence (mostly driven by channel steepening) as well as a change in sediment source and in sediment dynamics: on the plateau, rivers transport easily mobilized fine-grained sediment derived exclusively from soils. In the Feather River Canyon, mass wasting processes supply a wide range of grain sizes that rivers entrain selectively, depending on the competence of their flow.

  10. Fluvial process and the establishment of bottomland trees

    NASA Astrophysics Data System (ADS)

    Scott, Michael L.; Friedman, Jonathan M.; Auble, Gregor T.

    1996-01-01

    The effects of river regulation on bottomland tree communities in western North America have generated substantial concern because of the important habitat and aesthetic values of these communities. Consideration of such effects in water management decisions has been hampered by the apparent variability of responses of bottomland tree communities to flow alteration. When the relation between streamflow and tree establishment is placed in a geomorphic context, however, much of that variability is explained, and prediction of changes in the tree community is improved. The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood ( Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri

  11. Applications of structure-from-motion photogrammetry to fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    Dietrich, James Thomas

    Since 2011, Structure-from-Motion Multi-View Stereo Photogrammetry (SfM or SfM-MVS) has gone from an overlooked computer vision technique to an emerging methodology for collecting low-cost, high spatial resolution three-dimensional data for topographic or surface modeling in many academic fields. This dissertation examines the applications of SfM to the field of fluvial geomorphology. My research objectives for this dissertation were to determine the error and uncertainty that are inherent in SfM datasets, the use of SfM to map and monitor geomorphic change in a small river restoration project, and the use of SfM to map and extract data to examine multi-scale geomorphic patterns for 32 kilometers of the Middle Fork John Day River. SfM provides extremely consistent results, although there are systematic errors that result from certain survey patterns that need to be accounted for in future applications. Monitoring change on small restoration stream channels with SfM gave a more complete spatial perspective than traditional cross sections on small-scale geomorphic change. Helicopter-based SfM was an excellent platform for low-cost, large scale fluvial remote sensing, and the data extracted from the imagery provided multi-scalar perspectives of downstream patterns of channel morphology. This dissertation makes many recommendations for better and more efficient SfM surveys at all of the spatial scales surveyed. By implementing the improvements laid out here and by other authors, SfM will be a powerful tool that will make 3D data collection more accessible to the wider geomorphic community.

  12. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  13. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank. Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank. Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine. Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  14. Reconstructing genome mixtures from partial adjacencies.

    PubMed

    Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J

    2012-01-01

    Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028

  15. Weathering, erosion and fluvial transfers of particulate and dissolved materials from the Taiwan orogen

    NASA Astrophysics Data System (ADS)

    Hovius, Niels; Galy, Albert; Hilton, Robert; West, Joshua; Chen, Hongey; Horng, Ming-Jame; Chen, Meng-Chiang

    2010-05-01

    Systematic monitoring of river loads helps refine and extend the map of internal dynamics and external feedbacks in Earth's surface and near-surface system. Our focus is on Taiwan where hillslope mass wasting and fluvial sediment transport are driven by earthquakes and cyclonic storms. The biggest trigger events cause instantaneous erosion and seed a weakness in the landscape that is removed over time in predictable fashion. This gives rise to patterns of erosion that can not be understood in terms of bulk characteristics of climate, such as average annual precipitation. Instead, these patterns reflect the distribution and history of seismicity and extreme precipitation. For example, the 1999 Mw 7.6 Chi-Chi earthquake has resulted in elevated rates of sediment transport that decayed to normal values over seven years since the earthquake. Very large typhoons, with enhanced precipitation due to a monsoonal feed, have caused a similar, temporary deviation from normal catchment dynamics. Crucially, these events do not only mobilize large quantities of clastic sediment, but they also harvest particulate organic carbon (POC) from rock mass, soils and the biosphere. In Taiwan, most non-fossil POC is carried in hyperpycnal storm floods. This may promote rapid burial and preservation of POC in turbidites, representing a draw down of CO2 from the atmosphere that is potentially larger than that by silicate weathering in the same domain. Oxidation of fossil POC during exhumation and surface transport could offset this effect, but in Taiwan the rate of preservation of fossil POC is extremely high, due to rapid erosion and short fluvial transfer paths. Meanwhile, coarse woody debris flushed from the Taiwan mountains is probably not buried efficiently in geological deposits, representing a concentrated flux of nutrients to coastal and marine environments instead.

  16. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Alonso-Zarza, Ana M.; Rodríguez-Berriguete, Álvaro; Meléndez, Alfonso

    2015-12-01

    The Pleistocene Tortajada fluvial deposit occurs in the eastern active margin of the Teruel Basin. It developed in the early stages of opening of the basin and at present is disconnected to the Alfambra River. The preserved deposits show that the fluvial system consisted in three different sub-environments including: Upper Terraces, Ponds and Cascades. The main facies are framestones of stems, phytoclastic rudstone, framestone of bryophytes, peloidal and filamentous stromatolites, mudstone and detrital (conglomerates and slope-breccias) facies. These facies are arranged in three different sequence types, all of them showing a lower detrital term followed by pond and, in cases, cascade deposits. The microfacies analyses reveal that both biotic and abiotic processes performed an important role in the deposition within the river. Isotopic analyses (δ18O from - 8.58‰ to - 6.70‰ VPDB and δ13C from - 7.44‰ to - 3.97‰ VPDB) are indicative of meteoric water within a hydrologically open system. The carbonate hinterland rocks, together with a semi-arid to sub-humid climate favored carbonate accumulation within the river. Our results point out that the location, morphology and sedimentary sequences of the Tortajada fluvial system had an important tectonic control. The situation of the main and secondary faults controlled the paleomorphology of the river floor. Thus cascades are found in areas of important step faults, whereas the spaces between faults were occupied by fluviatile/lacustrine areas. In addition the development of the different sedimentary sequences was also a reflection of movements of these faults. In short, our study may confirm that tectonism is an important control on tufa development.

  17. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  18. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID

  19. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins.

    PubMed

    Starcevich, Steven J; Howell, Philip J; Jacobs, Steven E; Sankovich, Paul M

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5-6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID

  20. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  1. Radon in the fluvial aquifers of the White River Basin, Indiana, 1995

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moore, Rhett C.

    1996-01-01

    Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin

  2. Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms.

    USGS Publications Warehouse

    Hupp, C.R.; Osterkamp, W.R.

    1985-01-01

    Persistent distribution patterns of woody vegetation within the bottomland forest of Passage Creek, Virginia, were related to fluvial landforms, channel geometry, streamflow characteristics, and sediment-size characteristics. Distinct species distributional patterns were found on four common fluvial geomorphic landforms: depositional bar, active-channel shelf, floodplain, and terrace. Independent hydrologic characteristics (flow duration and flood frequency) were determined for each of the landforms. Vegetation patterns appear to develop more as a result of hydrologic processes associated with each fluvial landform rather than from sediment-size characteristics. -from Authors

  3. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    PubMed

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  4. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or

  5. Exchange coupling between laterally adjacent nanomagnets.

    PubMed

    Dey, H; Csaba, G; Bernstein, G H; Porod, W

    2016-09-30

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing. PMID:27535227

  6. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  7. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  8. Lateglacial fluvial activity in an upland basin following deglaciation, River Tyne, Northumberland, UK: drivers, complications and chronology

    NASA Astrophysics Data System (ADS)

    Yorke, L.; Rumsby, B. T.

    2010-12-01

    In contrast to the well-dated and documented Holocene valley floor sequences, understanding of Lateglacial fluvial activity in upland Britain is poor. In part, this is due to the fragmentary nature of the Lateglacial fluvial record and problems of establishing dating control, and part due to the complications caused by local ice histories, the effects of neotectonics (glacio-isostatic) and base level change (sea level rise). In order to fully understand and utilise the postglacial fluvial record, we need to improve our understanding of the critical Lateglacial period when the Holocene fluvial systems first started to develop as ice sheets retreated and decayed, and disentangle the the linkages between river development and glaciation, climate and sea level change. Here, we present the results of a recent study on the pre-Holocene terraces of the River Tyne, a major river system in North East England. The River Tyne drains the greater part of Northumberland, UK, with an area encompassing approximately 2, 927 km2. The Tyne is fed by two major rivers: the River South Tyne and the River North Tyne, and it ranges in elevation from headwater peaks of 893 m OD in the South Tyne to sea level. Recent investigation of the Lateglacial glacigenic environments in North East England (Yorke, 2008) has highlighted new evidence of postglacial fluvial sequences that have been preserved between the glacigenic and Holocene valley floor infills. This has provided the opportunity to better understand the Lateglacial evolution of the valley and its incised valley fills. We present evidence for Lateglacial fluvial activity along a 40 km reach of the Tyne valley corridor between Haltwhistle (South Tyne) and Blaydon (Tyne), where the most complete sequence is preserved. To identify the extent and distribution of terraces, valley floor mapping between was undertaken, based upon interpretation of NEXTMap™ Digital Surface Model (DSM) data. Sediment sequences were accessed at actively eroding

  9. Fluvial sedimentary styles and associated depositional environments in the buntsandstein west of river rhine in saar area and pfalz (F.R. Germany) and vosges (France)

    NASA Astrophysics Data System (ADS)

    Dachroth, Wolfgang

    individual sand storms operating in the erg are recorded in a mm-scale graded grain-size lamination. The desert-type setting is divided into depositional sand ergs where aeolian bedforms migrate, and deflationary gravel serirs where pebbly fluvial sediments are winnowed, resulting in concentration of the gravel to residual lags and in abundant grinding of clasts to ventifacts. During time of flooding of the chotts by atmospheric precipitation, fluvial incursions or rising ground water level, lacustrine playa deposits settle out in shallow stagnant water. The fluvial Felsbänke originate in wadi-type braided river systems intersecting the erg and serir zones and often redepositing aeolian sand which is derived from undercutting during abandonment and displacement of the watercourses. The stream complexes are partially fed at their proximal ends by runoff from local alluvial fans which are aligned along parts of the margins of the basin. The Upper Buntsandstein comprises the third magnacycle which is split into three megacycles that in turn are divided into several phases. A change from generally arid to primarily semi-arid climate along with tectonical up-lift in the source area results in extinction of aeolian deposition and gives rise to formation of Violette Horizonte calcrete palaeosols which are widespread throughout the Upper Buntsandstein, if their origin was not inhibited by the dynamics of the fluvial systems. The palaeosols occur in different evolutionary stages and are mainly characterized by the typical blue-violet colour, presence of root tubes, carbonate nodules and carbonate crusts, destratification and polyedric jointing. The fluvial fining-upwards cyclothems are formed in braided river systems which partially pass into meandering stream complexes. At the top of the Upper Buntsandstein, the alluvial inland plain is converted into a delta complex in the coastal plain along the approaching sea, and with a sequence of alternating progradation and recession events

  10. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  11. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  12. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  13. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  14. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  15. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  16. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  17. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  18. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  19. Quantification of fluvial sediment transport and geomorphic change in a glacier forefield: Gepatschferner, Ötztaler Alps, Austria

    NASA Astrophysics Data System (ADS)

    Morche, D.; Baewert, H.; Bryk, A.

    2012-12-01

    Glacial retreat has persisted in Alpine catchments since the end of the Little Ice Age (ca. 1850). The unconsolidated sediments (moraines, tills, glaciofluvial deposits, etc.) immediately left behind are highly subject to remobilization and export via mass wasting and fluvial processes. Despite the prevalence of fluvial remobilization in proglacial areas, field site inaccessibility and inadequate measurement techniques have historically disallowed geomorphologists to appropriately quantify sediment transport rates in these regions. The result is that the interaction between sediment fluxes and associated geomorphic processes in proglacial areas remains poorly understood. A new joint research project "High resolution measurements of the morphodynamics in rapidly changing PROglacial Systems of the Alps" (PROSA), centered in the Kaunertal valley, Austria is directed towards an integrated understanding of sediment fluxes in the proglacial setting. The PROSA project specifically focuses on quantification of recent and subrecent sediment transport processes throughout the entire catchment (approx. 65 sqkm) with the ultimate goal of developing a catchment-scale sediment budget.The channel system in the Kaunertal valley is fed continuously with fine sediment by glacial melt water (glacial milk) and intermittently (e.g. during storm events) with coarser sediment via landslides, debris flows, and rock falls from various areas in the catchment. These lateral sediment sources (also subject to fluvial excavation) are numerous and widespread. However, the temporary along-channel sediment sinks (braided alluvial plains, bars, etc.) are relatively discrete - connected only by narrow bedrock reaches. The main goal of this contribution is to investigate the sediment transport dynamics in the Gepatschferner glacier forefield and furthermore to assess the relative influence of coupled sediment sources/sinks on fluvial mass export in the Kaunertal valley. This is accomplished using a

  20. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve.

    PubMed

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    influence of the hydrology of this large river on the Delta fluvial water quality emphasizes the relevance of changes in its flow regime in recent decades, such as the seasonality attenuation. Considering that the effects of extreme events differ among and within fluvial systems, specific ecohydrological evaluations and powerful appropriate statistics are key tools to gain knowledge on these systems and to provide bases for suitable management measures in a scenario of climate change and increasing human alterations and demands. PMID:26590056

  1. Mediterranean fluvial response to long-term Quaternary climate change: Improving chronologies by coupling OSL and U-series techniques

    NASA Astrophysics Data System (ADS)

    Candy, Ian; Pope, Richard

    2010-05-01

    Many studies have attempted to understand the relationship between Late Quaternary climate change and Mediterranean river activity over the last 200,000 years (Macklin et al., 2002). The long-terrace records associated with most large river systems and the thick aggradation of fan sediments associated with smaller catchments in southern Europe and north Africa make the Mediterranean an ideal region to test this relationship. Such studies have been further enhanced by recent improvements in optically stimulated luminescence (OSL) and U-series dating techniques which are widely applicable in this region. Despite the fact that combining these two techniques provides the best potential method for constructing high precision chronologies this has rarely been done. In this paper we discuss the problems and advantages of producing "coupled" chronologies with reference to examples from southern Spain and Crete. In both of these examples the use of U-series and OSL dating has allowed the age of terrace aggradation and terrace abandonment (incision) to be constrained, consequently our understanding of fluvial "response" is greatly improved. The paper concludes by discussing further problems in terms of constructing fluvial chronologies which need to be considered and the problems of understanding the climate history of the region in which the catchment is found. Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., Rose, J., Woodward, J.C., Black, S., Hamlin, R.H.B., Rowan, J.S., 2002. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quaternary Science Reviews, 21, 1633 - 1641.

  2. Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study

    SciTech Connect

    Stricker, G.D.; Flores, R.M. )

    1996-01-01

    Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R[sub o] ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally [open quotes]cool[close quotes] basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally [open quotes]cool[close quotes] basin.

  3. Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study

    SciTech Connect

    Stricker, G.D.; Flores, R.M.

    1996-12-31

    Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R{sub o} ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally {open_quotes}cool{close_quotes} basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally {open_quotes}cool{close_quotes} basin.

  4. CO2 Trapping in Reservoirs with Fluvial Architecture: Sensitivity to Heterogeneity and Hysteresis in Characteristic Relationships for Different Rock Types

    NASA Astrophysics Data System (ADS)

    Gershenzon, N. I.; Ritzi, R. W., Jr.; Dominic, D. F.; Mehnert, E.; Okwen, R. T.

    2015-12-01

    Naum I. Gershenzona, Robert W. Ritzi Jr.a, David F. Dominica, Edward Mehnertb, and Roland T. OkwenbaDepartment of Earth and Environmental Sciences, Wright State University, 3640 Col. Glenn Hwy., Dayton, OH 45435, USAbIllinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 615 East Peabody Drive, Champaign, IL 61820, USA A number of important candidate CO2 reservoirs exhibit sedimentary architecture reflecting fluvial deposition. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to CO2 injection and storage, led to new geocellular modelling approaches for representing this architecture, and led to new computational studies of CO2 plume dynamics during and after injection. The processes of CO2 trapping depend upon a complex system of non-linear and hysteretic characteristic relationships including how relative permeability and capillary pressure vary with brine and CO2 saturation. New computational studies of capillary trapping in conglomeratic reservoirs strongly suggest that representing small-scale (decimeter to meter) textural facies among different rock types, including their organization within a hierarchy of larger-scale stratification, representing differences in characteristic relationships between rock types, and representing hysteresis in characteristic curves can all be critical to understanding trapping processes. In this context, CO2trapping was evaluated in conglomeratic reservoirs with fluvial architecture including different rock types with different and hysteretic characteristic curves and with capillary pressure defined for each rock type using two different conventional approaches, i.e. Brooks-Corey and van Genuchten. The results show that in these reservoirs the capillary trapping rates are quite sensitive to differences between the Brooks-Corey and van Genuchten approaches, and that

  5. Geologic Mapping to Constrain the Sources and Timing of Fluvial Activity in Western Ladon Basin, Mars

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Wilson, S. A.; Irwin, R. P.; Grant, J. A.

    2016-06-01

    We are mapping two quadrangles in Margaritifer Terra (-15032 and -20032) to define the evolution of the western Ladon basin region as it relates to fluvial/alluvial events occurring on surrounding surfaces.

  6. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-28

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek is being described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. For the second field season, detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas.

  7. Impact of adjacent land use on coastal wetland sediments.

    PubMed

    Karstens, Svenja; Buczko, Uwe; Jurasinski, Gerald; Peticzka, Robert; Glatzel, Stephan

    2016-04-15

    Coastal wetlands link terrestrial with marine ecosystems and are influenced from both land and sea. Therefore, they are ecotones with strong biogeochemical gradients. We analyzed sediment characteristics including macronutrients (C, N, P, K, Mg, Ca, S) and heavy metals (Mn, Fe, Cu, Zn, Al, Co, Cr, Ni) of two coastal wetlands dominated by Phragmites australis at the Darss-Zingst Bodden Chain, a lagoon system at the Southern Baltic Sea, to identify the impact of adjacent land use and to distinguish between influences from land or sea. In the wetland directly adjacent to cropland (study site Dabitz) heavy metal concentrations were significantly elevated. Fertilizer application led to heavy metal accumulation in the sediments of the adjacent wetland zones. In contrast, at the other study site (Michaelsdorf), where the hinterland has been used as pasture, heavy metal concentrations were low. While the amount of macronutrients was also influenced by vegetation characteristics (e.g. carbon) or water chemistry (e.g. sulfate), the accumulation of heavy metals is regarded as purely anthropogenic influence. A principal component analysis (PCA) based on the sediment data showed that the wetland fringes of the two study sites are not distinguishable, neither in their macronutrient status nor in their concentrations of heavy metals, whereas the interior zones exhibit large differences in terms of heavy metal concentrations. This suggests that seaside influences are minor compared to influences from land. Altogether, heavy metal concentrations were still below national precautionary and action values. However, if we regard the macronutrient and heavy metal concentrations in the wetland fringes as the natural background values, an accumulation of trace elements from agricultural production in the hinterland is apparent. Thus, coastal wetlands bordering croplands may function as effective pollutant buffers today, but the future development has to be monitored closely to avoid

  8. Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings

    PubMed Central

    Wielinga, Bruce; Lucy, Juliette K.; Moore, Johnnie N.; Seastone, October F.; Gannon, James E.

    1999-01-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated. PMID:10103249

  9. Fluvial organic carbon losses from a Bornean blackwater river

    NASA Astrophysics Data System (ADS)

    Moore, S.; Gauci, V.; Evans, C. D.; Page, S. E.

    2010-11-01

    The transport of carbon from terrestrial ecosystems such as peatlands into rivers and out to the oceans plays an important role in the carbon cycle because it provides a link between the terrestrial and marine carbon cycles. Concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) were analysed from the source to the mouth of the River Sebangau in Central Kalimantan, Indonesia during the dry and wet seasons in 2008/2009 and an annual total organic carbon (TOC) flux estimated. DOC concentrations were higher and POC concentrations lower in the wet season compared to the dry season. As seen in other tropical blackwater rivers, DOC concentration is consistently around 10 times greater than POC concentration. We estimate the annual TOC flux discharged to the Java Sea to be 0.46 Tg year-1 comprising of 93% (0.43 Tg) DOC and 7% (0.03 Tg) POC. This equates to a fluvial TOC loss flux per unit area over the entire Sebangau catchment of 88 g C m-2 yr-1. When extrapolating this TOC loss flux to the peat covered area of Indonesia (206 950 km2), we estimate a TOC loss of 18.2 Tg C yr-1 or ~10% of current estimates of the global annual riverine DOC discharge into the ocean.

  10. Fluvial organic carbon losses from a Bornean blackwater river

    NASA Astrophysics Data System (ADS)

    Moore, S.; Gauci, V.; Page, S.; Evans, C.; Limin, S.

    2010-12-01

    The transport of carbon from terrestrial ecosystems such as peatlands into rivers and out to the oceans plays an important role in the carbon cycle because it provides a link between the terrestrial and marine carbon cycles. Concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) were analysed from the source to the mouth of the River Sebangau in Central Kalimantan, Indonesia during the dry and wet seasons in 2008/2009 and an annual total organic carbon (TOC) flux estimated. DOC concentrations were higher and POC concentrations lower in the wet season compared to the dry season. As seen in other tropical blackwater rivers, DOC concentration is consistently around 10 times greater than POC concentration. We estimate the annual TOC flux discharged to the Java Sea to be 0.46 Tg year-1 comprising of 93% (0.43 Tg) DOC and 7% (0.03 Tg) POC. This equates to a fluvial TOC loss flux per unit area over the entire Sebangau catchment of 88g C m-2 yr-1. When extrapolating the Sebangau catchment TOC loss flux (88g C m-2 yr-1) to the peat covered area of Indonesia (206,950 km2), we calculate a TOC loss of 18.2 Tg C yr-1 or ~10% of current estimates of the global annual riverine DOC discharge into the ocean.

  11. Fluvial organic carbon losses from a Bornean blackwater river

    NASA Astrophysics Data System (ADS)

    Moore, S.; Gauci, V.; Evans, C. D.; Page, S. E.

    2011-04-01

    Concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) were analysed from the source to the mouth of the River Sebangau in Central Kalimantan, Indonesia during the dry and wet seasons in 2008/2009 and an annual total organic carbon (TOC) flux estimated. DOC concentrations were higher and POC concentrations lower in the wet season compared to the dry season. As seen in other tropical blackwater rivers, DOC concentration is consistently around 10 times greater than POC concentration. We estimate the annual TOC flux discharged to the Java Sea to be 0.46 Tg year-1 comprising of 93% (0.43 Tg) DOC and 7% (0.03 Tg) POC. This equates to a fluvial TOC loss flux per unit area over the entire Sebangau catchment of 88 g C m-2 yr-1. When extrapolating the River Sebangau DOC loss flux (83 g C m-2 yr-1) to the peat covered area of Indonesia (206 950 km2), we estimate a DOC loss of 17.2 Tg C yr-1 or ~10% of current estimates of the global annual riverine DOC discharge into the ocean.

  12. Geomorphic evolution of the Martian highlands through ancient fluvial processes

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Maxwell, Ted A.

    1993-01-01

    The evolution of crater degradation in the Martian highlands based on variations in crater morphology is traced. The timing of this process related to geology, elevation, and latitude is examined, the nature of fluvial resurfacing is studied, and the approximate rate of denudation is determined. The obtained data make it possible to understand the early geologic history of Mars, the interaction between the atmosphere and surface processes through time, and the nature of highland surface materials. Degradation was found to begin with sheet-flooding and the formation of runoff channels in both the interior and exterior of the craters. Progressive stripping of the ejecta material led to craters with incised rims. Erosion and infilling led to flat doors. With time, continued erosion removed ejecta and rim materials completely. Timing of degradation based on cumulative size-frequency distribution curves of highland crater population indicates that the process ceased completely in the late Hesperian. Global average denudation rates were found to be between 0.0001 and 0.005 mm/yr.

  13. Progress in and prospects for fluvial flood modelling.

    PubMed

    Wheater, H S

    2002-07-15

    Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis. PMID:12804257

  14. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  15. Spirosoma fluviale sp. nov., isolated from river water.

    PubMed

    Hatayama, Kouta; Kuno, Teruaki

    2015-10-01

    A bacterial strain, designated MSd3T, was isolated from a freshwater sample collected from the Hosoda River in Japan. The cells of strain MSd3T were Gram-stain-negative, non-spore-forming, aerobic, non-motile, curved rods forming rings, coils and undulating filaments. The 16S rRNA gene sequence of strain MSd3T showed closest similarity to that of Spirosoma linguale DSM 74T (97.6 % similarity) and similarity to other members of the genus Spirosoma ranged from 90.3 to 95.9 %. Strain MSd3T contained menaquinone 7 as the sole respiratory quinone. The major cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 1ω5c. The polar lipids were phosphatidylethanolamine, three unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content was 53.3 mol%. The DNA-DNA relatedness between strain MSd3T and S. linguale DSM 74T was 19 % or 25 % (reciprocal value). From the chemotaxonomic and physiological data and the levels of DNA-DNA relatedness, strain MSd3T should be classified as the representative of a novel species of the genus Spirosoma, for which the name Spirosoma fluviale sp. nov. (type strain MSd3T = JCM 30659T = DSM 29961T) is proposed. PMID:26297023

  16. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings

    SciTech Connect

    Wielinga, B.; Lucy, J.K.; Moore, J.N.; Seastone, O.F.; Gannon, J.E.

    1999-04-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.

  17. Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains

    NASA Astrophysics Data System (ADS)

    Matoshko, A.; Gozhik, P.; Semenenko, V.

    2009-09-01

    Late Cenozoic terrestrial deposits are widespread across the northern coastal regions of the Black Sea and the Sea of Azov and represent diverse fluvial, estuarine and deltaic environments. The dating and correlation of these deposits rely on stratigraphically-associated marine index beds, mammalian and molluscan faunas and magnetostratigraphy. In detail the geometries of these sediment bodies are extremely complex, typically varying between localities and representing many cycles of incision and aggradation. However, the overall disposition of the sediments reflects the transition from the uplifting sediment source region to the north and the subsiding depocentre in the interior of the Black Sea to the south. Since the Middle Miocene the area of the Paratethys/Black Sea depocentre has decreased significantly, but since the Middle Pliocene the hinge zone between uplift and subsidence has been located close to the modern coastline. A combination of regional and local differential crustal movements has given rise to the great variety of fluvial sediment bodies, to the erosion-aggradation cycles, different phases and river activity and to the various fluvial landforms that have all been important in landscape development in this region during the past 12 Ma. The fluvial erosion-accumulation cycles (during the upper Serravillian-Messinian, the Zanclean-late Gelasian, and the Pleistocene) and corresponding cycles of relief dissection and planation are reconstructed against a background of local sea-level changes and climatic variations determined from palaeobotanical data. The maximum fluvial incision occurred in the early Zanclean time with alluvial coastal plains, unique in this area, developing in the Gelasian. Increased climatic aridity during the Pleistocene caused a reduction of fluvial activity in comparison with the Late Miocene and Pliocene. The sea-level oscillations and Pleistocene glaciations affected fluvial processes in different ways. The most remarkable

  18. Fluvial-marine transitional depositional environment influencing the diagenesis in the buntsandstein of thuringia (German Democratic Republic)

    NASA Astrophysics Data System (ADS)

    Langbein, Rolf

    The Buntsandstein in Thuringia (German Democratic Republic) consists predominantly of sandy and gravelly fluvial sediments which in parts of the sequence pass into marine deposits. Extensive braided-river systems produced vast stream sand bar and sand sheet sediments which coalesced by lateral amalgamation and vertical stacking to persisting complexes that permit the stratigraphical connection of the Folgen megacycles. In the marginal parts of the basin, a higher amount of channel conglomerates occurs, whereas towards the centre of the depression, fine-grained overbank deposits become more abundant and thicker. Marine influences are frequent in the estuarine reach, and the fluvial magnacycle is terminated by the major transgression of the R'ot sea. The palaeocurrent directions reflect three main sources of sediment material, with the flows deriving from Gallian Massif, western part of Bohemian Massif and northern border of Bohemian Massif (Western Erzgebirge) and being directed towards northnortheast, northwest and westnorthwest, respectively. The infilling of the depositional area results in a seaward migration of facies being typical for progradation. The geological framework for the diagenetic alterations of the sediments comprises a large epicontinental basin with platform deposition, resulting in low total thickness of the sequence and shallow depth of burial due to thin overburden. Progressive burial diagenesis is terminated by uplift and weathering descending from the surface during Cretaceous and Tertiary, resulting in overprinting effects of a retrograde or diaphthoritic weathering diagenesis. The postsedimentary phenomena and processes in sandstones include formation of rim cements comprising hematite, feldspar, quartz and chalcedony; growth of basal cements being dolomite and calcite, gypsum and anhydrite, and kaolinite; phase changes and transformations representing mainly illitic, kaolinitic and carbonatic degradation of feldspars; and authigenesis of

  19. Creating High Quality DEMs of Large Scale Fluvial Environments Using Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Javernick, L. A.; Brasington, J.; Caruso, B. S.; Hicks, M.; Davies, T. R.

    2012-12-01

    During the past decade, advances in survey and sensor technology have generated new opportunities to investigate the structure and dynamics of fluvial systems. Key geomatic technologies include the Global Positioning System (GPS), digital photogrammetry, LiDAR, and terrestrial laser scanning (TLS). The application of such has resulted in a profound increase in the dimensionality of topographic surveys - from cross-sections to distributed 3d point clouds and digital elevation models (DEMs). Each of these technologies have been used successfully to derive high quality DEMs of fluvial environments; however, they often require specialized and expensive equipment, such as a TLS or large format camera, bespoke platforms such as survey aircraft, and consequently make data acquisition prohibitively expensive or highly labour intensive, thus restricting the extent and frequency of surveys. Recently, advances in computer vision and image analysis have led to development of a novel photogrammetric approach that is fully automated and suitable for use with simple compact (non-metric) cameras. In this paper, we evaluate a new photogrammetric method, Structure-from-Motion (SfM), and demonstrate how this can be used to generate DEMs of comparable quality to airborne LiDAR, using consumer grade cameras at low costs. Using the SfM software PhotoScan (version 0.8.5), high quality DEMs were produced for a 1.6 km reach and a 3.3 km reach of the braided Ahuriri River, New Zealand. Photographs used for DEM creation were acquired from a helicopter flying at 600 m and 800 m above ground level using a consumer grade 10.1mega-pixel, non-metric digital camera, resulting in object space resolution imagery of 0.12 m and 0.16 m respectively. Point clouds for the two study reaches were generated using 147 and 224 photographs respectively, and were extracted automatically in an arbitrary coordinate system; RTK-GPS located ground control points (GCPs) were used to define a 3d non

  20. Contribution of allochthonous organic carbon across the Serrano River Basin and the adjacent fjord system in Southern Chilean Patagonia: Insights from the combined use of stable isotope and fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Lafon, Alejandra; Silva, Nelson; Vargas, Cristian A.

    2014-12-01

    Chilean Patagonia is characterized by an irregular geography involving many islands, peninsulas, channels, sounds and fjords, that prevent direct interaction between oceanic water masses and freshwater river discharges at the head of the continental fjords. In this paper, we evaluate the potential sources and composition of organic matter along the Serrano River basin and the adjacent channels and fjords in Southern Chilean Patagonia (51-52°S), as well as their importance for marine planktonic organisms. In spring of 2009, evidence of C:N ratio, δ13C, δ15N and fatty acids composition in particulate organic carbon (POC), surface sediment, soil, plankton, and vegetal tissue, as well some physical and chemical characteristics (i.e. salinity, dissolved oxygen, NO3-, NH4+, PO4-3, Si(OH)4), were measured in samples collected during the CIMAR 14 Fiordos oceanographic cruise. Significant differences in δ13C-POC were found between the terrestrial and marine environments but not within fjord stations. Along the fjord region, the high C:N ratio and depleted δ13C values in POC samples suggest that particulate organic matter (POM) in the upper level of the water column (0-10 m depth) is supported by different sources. Terrestrial organic carbon exported by rivers may constitute a significant subsidy, up to 70% based on two end-member mixing model, to the fjord ecosystem. Furthermore, terrestrial carbon might account for a significant percentage of the zooplankton body carbon, estimated both by using isotopic (∼24-61%) and fatty acid analysis (∼14-61%). Isotopic analyses in marine sediment samples suggest that POC seems to be decoupled from terrestrial-influenced surface sources at the fjord stations, and the contribution of surrounding vegetation seemingly unimportant for carbon export to the benthos. Local hydrographic and geomorphological characteristics might determine the presence of oceanographic frontal zones, which in turn might explain differences in carbon

  1. Paraglacial fluvial bedrock incision in postglacial landscapes: the NW Scottish Highlands

    NASA Astrophysics Data System (ADS)

    Whitbread, Katie; Jansen, John; Bishop, Paul; Fabel, Derek

    2010-05-01

    Glacial landscape forms are inherited by rivers following deglaciation. Hillslopes and valley floors configured by glacial erosion control the distribution of bedrock channels and potential sites for fluvial incision. The importance of 'stream power' parameters, channel slope and drainage area (discharge), in controlling the rate of incision is widely accepted, but the rate, timing and mechanisms of incision have yet to be quantified in these settings. The dual controls of glacially conditioned bedrock slopes and sediment supply set two of the key boundary conditions for temporally and spatially dynamic fluvial bedrock incision. Measurement of incision rates in these settings is key to understanding the influence of controls on fluvial erosion, and the role of the process in long-term evolution of deglaciated landscapes. In tectonically-passive, hard-rock terrains, such as the Scottish Highlands, incisional fluvial features such as bedrock channels, gorges and waterfalls are common on glacially carved valley steps. Here we report preliminary data on fluvial incision rates measured with cosmogenic 10Be. Our results confirm a postglacial age of bedrock straths in the NW Scottish Highlands and indicate a vertical incision rate of 0.3 mm/yr into resistant quartzites. Further work will explore erosion mechanisms and rates of incision across the Scottish Highlands, and assess controls on fluvial incision, including the potential role of paraglacial sediment.

  2. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    process. Results suggest a longitudinal decrease of sedimentation rates from the apex towards the distal section of the delta plain. Differences in rates are also found within each cross-section (e.g. channel-levée: higher rates; interdistributary depression: lower rates), suggesting an asymmetric growth of the floodplain. A GIS paleosurfaces model was executed to calculate the fluvial sediment storage, which was subdivided in 300-year time slices, thus contributing to identify temporal trends in floodplain aggradation. The results were analyzed with regard to external drivers that control the sedimentation processes in the Haslital delta, such as climate and/or anthropogenic factors (land-use changes, hydraulic management), as well as the influence of the internal system settings. The facies-based approach provides an explanation of both the spatial and temporal components of delta plain formation; and produces valid information for local flood risk management, concerning the problem of alpine floodplains aggradation.

  3. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    NASA Astrophysics Data System (ADS)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood c