Science.gov

Sample records for adjacent geological formations

  1. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  2. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due

  3. Reconnaissance geologic map of Kodiak Island and adjacent islands, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2013-01-01

    Kodiak Island and its adjacent islands, located on the west side of the Gulf of Alaska, contain one of the largest areas of exposure of the flysch and melange of the Chugach terrane of southern Alaska. However, in the past 25 years, only detailed mapping covering small areas in the archipelago has been done. This map and its associated digital files (Wilson and others, 2005) present the best available mapping compiled in an integrated fashion. The map and associated digital files represent part of a systematic effort to release geologic map data for the United States in a uniform manner. The geologic data have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The map data are presented for use at a nominal scale of 1:500,000, although individual datasets (see Wilson and others, 2005) may contain data suitable for use at larger scales.

  4. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  5. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  6. Geologic framework of the offshore region adjacent to Delaware

    USGS Publications Warehouse

    Benson, R.N.; Roberts, J.H.

    1989-01-01

    Several multichannel, common depth point (CDP) seismic reflection profiles concentrated in the area of the entrance to Delaware Bay provide a tie between the known onshore geology of the Coastal Plain of Delaware and the offshore geology of the Baltimore Canyon Trough. The data provide a basis for understanding the geologic framework and petroleum resource potential of the area immediately offshore Delaware. Our research has focused on buried early Mesozoic rift basins and their geologic history. Assuming that the buried basins are analogous to the exposed Newark Supergroup basins of Late Triassic-Early Jurassic age, the most likely possibility for occurrence of hydrocarbon source beds in the area of the landward margin of the Baltimore Canyon Trough is presumed to be lacustrine, organic-rich shales probably present in the basins. Although buried basins mapped offshore Delaware are within reach of drilling, no holes have been drilled to date; therefore, direct knowledge of source, reservoir, and sealing beds is absent. Buried rift basins offshore Delaware show axial trends ranging from NW-SE to NNE-SSW. Seismic reflection profiles are too widely spaced to delineate basin boundaries accurately. Isopleths of two-way travel time representing basin fill suggest that, structurally, the basins are grabens and half-grabens. As shown on seismic reflection profiles, bounding faults of the basins intersect or merge with low-angle fault surfaces that cut the pre-Mesozoic basement. The rift basins appear to have formed by Mesozoic extension that resulted in reverse motion on reactivated basement thrust faults that originated from compressional tectonics during the Paleozoic. Computer-plotted structure contour maps derived from analysis of seismic reflection profiles provide information on the burial history of the rift basins. The postrift unconformity bevels the rift basins and, in the offshore area mapped, ranges from 2000 to 12,000 m below present sea level. The oldest

  7. Quaternary geology of the Channeled Scabland and adjacent areas

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    The quaternary history of the channeled scabland is characterized by discrete episodes of catastrophic flooding and prolonged periods of loess accumulation and soil formation. The loess sequence was correlated with Richmond's Rocky Mountain glacial chronology. At least five major catastrophic flood events occurred in the general vicinity of the channeled scabland. The earliest episode occurred prior to the extensive deposition of the Palouse formation. The last major episode of flooding occurred between about 18,000 and 13,000 years ago. It probably consisted of two outbursts from glacial Lake Missoula.

  8. Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower

  9. Geologic Study of the Coso Formation

    SciTech Connect

    D. L. Kamola; J. D. Walker

    1999-12-01

    There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history. While strata in both depocenters is disrupted by faults, these faults show modest displacement, and the intensity and magnitude of faulting does no t record significant extension. For this reason, the extension between the Sierran and Coso blocks is interpreted as minor in comparison to range bounding faults in adjacent areas of the Basin and Range.

  10. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOEpatents

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  11. Method of fracturing a geological formation

    DOEpatents

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  12. Outcrop descriptions and fossils from the Upper Cretaceous Frontier Formation, Wind River Basin and adjacent areas, Wyoming: Chapter 11 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.

    2007-01-01

    The index maps used to show locations of outcrop sections and fossil collections are from scanned versions of U.S. Geological Survey topographic maps of various scales and were obtained from TerraServer®. The portion of each map used depended on the areal distribution of the localities involved. The named quadrangles used for locality descriptions, however, all refer to 7½-minute, 1:24,000-scale quadrangles (for example, “Alcova”). The aerial photographs also are from TerraServer®; http://www.terraserver.com/.

  13. Geological and Geographical Atlas of Colorado and portions of adjacent territory

    USGS Publications Warehouse

    Hayden, Ferdinand Vandeveer; Bien, Julius

    1877-01-01

    Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.

  14. Geological and Geographical Atlas of Colorado and portions of adjacent territory

    USGS Publications Warehouse

    Hayden, Ferdinand Vandeveer; Bien, Julius

    1881-01-01

    Sheets I-IV are triangulations, drainage, land classification, and geologic maps of Colorado west of longitude 102°, on the scale of 12 miles to the inch. Sheets V-XVI are topographic (contour) and geologic maps of Colorado and adjacent States, between meridians 104° 30' and 109° 30' and parallels 36° 45' and 40° 30', on the scale of 4 miles to the inch. Sheets XVII and XVIII contain three geologic sections across the State, west of the longitude 104° 30'. Sheets XIX and XX are panoramic views of the Pikes Peak group, Sawatch Range, central portion of West Elk Mountains, Twin Lakes, southwestern border of the Mesa Verde, San Juan Mountains, and La Plata Mountains.

  15. Field guide to geologic excursions in southwestern Utah and adjacent areas of Arizona and Nevada

    USGS Publications Warehouse

    Lund, William R.; Lund, William R.

    2002-01-01

    This field guide contains road logs for field trips planned in conjunction with the 2002 Rocky Mountain Section meeting of the Geological Society of America held at Southern Utah University in Cedar City, Utah. There are a total of eight field trips, covering various locations and topics in southwestern Utah and adjacent areas of Arizona and Nevada. In addition, the field guide contains a road log for a set of Geological Engineering Field Camp Exercises run annually by the University of Missouri at Rolla in and around Cedar City. Two of the field trips address structural aspects of the geology in southwestern Utah and northwestern Arizona; two trips deal with ground water in the region; and along with the Field Camp Exercises, one trip, to the Grand Staircase, is designed specifically for educators. The remaining trips examine the volcanology and mineral resources of a large area in and around the Tusher Mountains in Utah; marine and brackish water strata in the Grand Staircase-Escalante National Monument; and the Pine Valley Mountains, which are cored by what may be the largest known laccolith in the world. The "Three Corners" area of Utah, Arizona, and Nevada is home to truly world-class geology, and I am confident that all of the 2002 Rocky Mountain Section meeting attendees will find a field trip suited to their interests.

  16. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  17. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. PMID:17997209

  18. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  19. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, W.B. III

    1996-10-29

    Methods of operation are disclosed for different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced-apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced-apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced-apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity. 13 figs.

  20. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, III, William B.

    1996-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity.

  1. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F.

    1996-12-31

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  2. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F. )

    1996-01-01

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  3. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  4. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect

    Carter, E.E.; Carter, P.E.; Cooper, D.C.

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  5. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  6. Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta

    NASA Astrophysics Data System (ADS)

    Scully, Jennifer E. C.; Yin, A.; Russell, C. T.; Buczkowski, D. L.; Williams, D. A.; Blewett, D. T.; Ruesch, O.; Hiesinger, H.; Le Corre, L.; Mercer, C.; Yingst, R. A.; Garry, W. B.; Jaumann, R.; Roatsch, T.; Preusker, F.; Gaskell, R. W.; Schröder, S. E.; Ammannito, E.; Pieters, C. M.; Raymond, C. A.

    2014-12-01

    Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta's low surface gravity (0.25 m/s2) has led to the continual absence of a protective atmosphere and consequently impact cratering and impact-related processes are prevalent. Previous work has shown that the formation of the Rheasilvia impact basin induced the equatorial Divalia Fossae, whereas the formation of the Veneneia impact basin induced the northern Saturnalia Fossae. Expanding upon this earlier work, we conducted photogeologic mapping of the Saturnalia Fossae, adjacent structures and geomorphic units in two of Vesta's northern quadrangles: Caparronia and Domitia. Our work indicates that impact processes created and/or modified all mapped structures and geomorphic units. The mapped units, ordered from oldest to youngest age based mainly on cross-cutting relationships, are: (1) Vestalia Terra unit, (2) cratered highlands unit, (3) Saturnalia Fossae trough unit, (4) Saturnalia Fossae cratered unit, (5) undifferentiated ejecta unit, (6) dark lobate unit, (7) dark crater ray unit and (8) lobate crater unit. The Saturnalia Fossae consist of five separate structures: Saturnalia Fossa A is the largest (maximum width of ∼43 km) and is interpreted as a graben, whereas Saturnalia Fossa B-E are smaller (maximum width of ∼15 km) and are interpreted as half grabens formed by synthetic faults. Smaller, second-order structures (maximum width of <1 km) are distinguished from the Saturnalia Fossae, a first-order structure, by the use of the general descriptive term 'adjacent structures', which encompasses minor ridges, grooves and crater chains. For classification purposes, the general descriptive term 'minor ridges' characterizes ridges that are not part of the Saturnalia Fossae and are an order of magnitude smaller (maximum width of <1 km vs

  7. Field Guide to the Geology of Parts of the Appalachian Highlands and Adjacent Interior Plains.

    ERIC Educational Resources Information Center

    McKenzie, Garry D.; Utgard, Russell O.

    This field guide is the basis for a five-day, 1000-mile trip through six states and six geomorphic provinces. The trip and the pre- and post-trip exercises included in the guide constitute a three credit course at The Ohio State University entitled "Field Geology for Science Teachers." The purpose of the trip is to study the regional geology,…

  8. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  9. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  10. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  11. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  12. Additions and corrections to the bibliography of geologic studies, Columbia Plateau (Columbia River Besalt) and adjacent Areas, in Idaho, 1980

    SciTech Connect

    Strowd, W.

    1980-01-01

    This bibliography is an update to Idaho Bureau of Mines and Geology Open-File Report 78-6, Bibliography of Geological Studies, Columbia Plateau (Columbia River Basalt Group) and adjacent areas in Idaho (also known as Rockwell Hanford Operations' contractor report RHO-BWI-C-44). To keep the original document current, this additions and corrections report was prepared for the Basalt Waste Isolation Project of Rockwell Hanford Operations. This update is supplementary; therefore, references cited in the original document have not been included here. What is included are materials that have become available since the original publication and pertinent literature that had originally been overlooked. Accompany this updated bubliography are index maps that show locations of geologic studies and geochemical petrographic, remanent paleomagnetic, and radiometric age-dated sites within the Columbia River Basalt Group field within Idaho; also identified are archeological sites, test wells, mines, quarries, and other types of excavations. References on the index maps are keyed to the bibliography and cover the Spokane, Pullman, Hamilton, Grangeville, Elk City, Baker, Boise, and Jordan Valley Army Map Service two-degree quadrangles.

  13. Determining resistivity of a formation adjacent to a borehole having casing with an apparatus having all current conducting electrodes within the cased well

    DOEpatents

    Vail, III, William Banning

    2001-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.

  14. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    SciTech Connect

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs.

  15. Geology of the Lawrence Livermore National Laboratory site and adjacent areas

    SciTech Connect

    Carpenter, D W; Sweeney, J J; Kasameyer, P W; Burkhard, N R; Knauss, K G; Shlemon, R J

    1984-08-01

    LLNL is underlain by a thick sequence of late Tertiary and Quaternary alluvial deposits overlying a complex basement of Mesozoic metamorphic rocks of the Franciscan Assemblage and late Mesozoic and Tertiary marine sedimentary rocks. The ancestral Greenville Fault separates the Franciscan basement terrain from the late Mesozoic and Tertiary basement. The late Tertiary and Quaternary alluvial deposits include lacustrine, alluvial fan, and stream channel deposits. Soil profiles and relative and absolute age data demonstrate that most of the near-surface materials beneath LLNL range in age from latest Pleistocene to 100,000 y or greater. A low net sedimentation rate is indicated by the data. Depths to groundwater beneath LLNL vary from about 13 m beneath the northeast corner of the laboratory to about 49 m beneath the southeast corner. Depths to water beneath portions of the laboratory where major buildings are located range from 18 to 30 m. LLNL is located in a seismically active region. Deformation of Quaternary materials and periodic seismicity support this conclusion. Historic seismicity has been experienced along the Calaveras and Greenville Faults that bound the Livermore Valley on the west and east, respectively, and also appears associated with the Las Positas Fault Zone. The Calaveras Fault is located approximately 17 km west of LLNL, and recently active strands of the Greenville Fault Zone are located approximately 1.1 km northeast of the laboratory. Geologic evidence demonstrates Holocene activity along strands of the Las Positas Fault Zone that lie about 90 m southeast of LLNL at their point of closest approach. Pavement fracturing at the intersection of Greenville Road and East Avenue suggests that a strand of the Las Positas Fault may be located about 15 m southeast of the southeast corner of the laboratory. Other potential sources of seismicity could affect LLNL. 126 references, 71 figures, 18 tables.

  16. Geology of the Stroudsburg quadrangle and Adjacent areas, Pennsylvania--New Jersey

    USGS Publications Warehouse

    Epstein, Jack Burton

    1971-01-01

    The Stroudsburg area is within the Valley and Ridge and Great Valley physiographic provinces, Northampton and Monroe Counties, Pennsylvania, and Warren County, New Jersey. The northeast-trending subparallel valleys and ridges resulted from erosion of folded heterogeneous sedimentary rocks. These are Middle Ordovician to Middle Devonian in age and are more than 17,000 feet thick. Deposition of a thick flysch sequence (Martinsburg Formation of Ordovician age) accompanied onset of Taconic orogenesis. It was followed by deposition of a thick molasse sequence of Silurian and Early Devonian age (continental and marginal-marine clastics--Shawangunk Formation and Bloomsburg Red Beds--overlain by predominantly marginal-marine and subtidal limestone, dolomite, shale, and sandstone--Poxono Island Formation through Oriskany Group). Basin deepening and gradual shallowing occurred during Esopus through Mahantango deposition, heralding the Acadian clastic wedge exposed north of the Stroudsburg area. Interpretation of sedimentary structures and regional stratigraphic relations suggest that the Silurian and Devonian rocks were deposited in the following environments: A1luviated coastal plain (meandering and braided streams), tidal flats (supratidal and intertidal), barrier zone, and neritic zone (upper and lower). The rock stratigraphic units have been grouped into four lithotectonic units, each having a different style of deformation. Folds produced in these rocks are disharmonic, and it is believed that each rock sequence is set off from units above and below by decollements, or zones of detachment. Movement was northwest into the Appalachian basin, primarily by gravitational sliding. The contact between the Shawangunk Formation of Silurian age and Martinsburg Formation of Ordovician age, is one zone of detachment as well as an angular unconformity. Deformational effects of the Middle to Late Ordovician Taconic orogeny are elusive, but it appears that the folds and most minor

  17. Geological pattern formation by growth and dissolution in aqueous systems

    SciTech Connect

    Paul Meakin

    2010-03-01

    Although many geological processes take place on time scales that are very long compared with the human experience, essentially all geological processes, fast or slow, are far from equilibrium processes. Surprisingly often, geological processes lead to the formation of quite simple and distinctive patterns, which hint at an underlying simplicity in many complex geological systems.. The ability to predict the seasons was critically important to early human society, and Halley’s prediction of the return of the comet that bears his name is still considered to be a scientific milestone. Spatial patterns have also attracted attention because of their aesthetic appeal, which depends in subtle ways on a combination of regularity and irregularity. In recent decades, rapid growth in the capabilities of digital computers has facilitated the simulation of pattern formation processes, and computer simulations have become an important tool for evaluating theoretical concepts and for scientific discovery. Computer technology in combination with other technologies such as high resolution digital cameras, scanning microprobes (atomic force microscopy AFM), confocal microscopy, and scanning tunneling microscopy (STM), for example) has facilitated the quantitative characterization of patterns over a wide range of scales and has enabled rapid advances in our ability to understand the links between large scale pattern formation and microscopic processes. The ability to quantitatively characterize patterns is important because it enables a more rigorous comparison between the predictions of computer models and real world patterns and their formation.In some cases, the idea that patterns with a high degree of regularity have simple origins appears to be justified, but in other cases, such as the formation of almost perfectly circular stone rings due to freeze-thaw cycles simple patterns appear to be the consequence of quite complex processes. In other cases, it has been shown that

  18. Spatiotemporal morphometry of adjacent tissue layers with application to the study of sulcal formation.

    PubMed

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, François; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2011-01-01

    The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063

  19. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  20. Geology, hydrogeology, and potential of intrinsic bioremediation at the National Park Service Dockside II site and adjacent areas, Charleston, South Carolina, 1993-94

    USGS Publications Warehouse

    Campbell, B.G.; Petkewich, M.D.; Landmeyer, J.E.; Chapelle, F.H.

    1996-01-01

    A long history of industrial and commercial use of the National Park Service property and adjacent properties located in downtown Charleston, South Carolina, has caused extensive contamination of the shallow subsurface soils and water-table aquifer. The National Park Service property is located adjacent to a former manufactured-gas plant site, which is the major source of the contamination. Contamination of this shallow water-table aquifer is of concern because shallow ground water discharges to the Cooper River and contains contaminants, which may affect adjacent wildlife or human populations. The geology of the National Park Service property above the Ashley Formation of the Cooper Group consists of two Quaternary lithostratigraphic marine units, the Wando Formation and Holocene deposits, overlain by artificial fill. The Wando Formation overlies the Ashley Formation, a sandy calcareous clay, and consists of soft, organic clay overlain by gray sand. The Holocene deposits are composed of clayey to silty sand and soft organic-rich clay. The artificial fill, which was placed at the site to create dry land where salt marsh existed previously, is composed of sand, silt, and various scrap materials. The shallow hydrogeology of the National Park Service property overlying the Ashley Formation can be subdivided into two sandy aquifers separated by a leaky, black, organic-rich clay. The unconfined upper surficial aquifer is primarily artificial fill. The lower surficial aquifer consists of the Wando sand unit and is confined by the leaky organic-rich clay. Aquifer tests performed on the wells screened in these aquifers resulted in hydraulic conductivities from 0.1 to 10 feet per day for the upper surficial aquifer, and 16 feet per day for the lower surficial aquifer. Vertical hydraulic gradients at the site are typically low. A downward gradient from the upper surficial aquifer to the lower surficial aquifer occurs throughout most of the year. A brick-lined storm

  1. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The

  2. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  3. Digital geologic map data for the Ozark National Scenic Riverways and adjacent areas along the Current River and Jacks Fork, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Harrison, Richard W.; Weems, Robert E.

    2016-09-23

    The geology of the Ozark National Scenic Riverways (ONSR) in southern Missouri has been mapped at 1:24,000 scale. This endeavor was achieved through the combined efforts of U.S. Geological Survey and Missouri Geological Survey individual quadrangle mapping and additional fieldwork by the authors of this report. Geologic data covering the area of the ONSR and a 1-mile (1.6-kilometer) buffer zone surrounding the park, as well as geologic data from a few key adjoining areas, have been compiled into a single, seamless geographic information system database. The intent is to provide base geologic information for natural science research and land management in the park and surrounding areas. The data are served online at ScienceBase (https://www.sciencebase.gov/catalog/), where they are provided in Environmental Systems Research Institute (ESRI) file geodatabase format, and are accompanied by metadata files. These data can be accessed at: http://dx.doi.org/10.5066/F7CJ8BKB. Additional detailed geologic information about the ONSR and surrounding areas is available in the separate 1:24,000-scale quadrangle maps and in a 1:100,000-scale map and report on the regional geology.

  4. Characteristics of soil radon transport in different geological formations

    NASA Astrophysics Data System (ADS)

    Ershaidat, N. M.; Al-Bataina, B. A.; Al-Shereideh, S. A.

    2008-07-01

    Soil radon concentration levels in Deir Abu-Said District, Irbid, Jordan were measured for several depths using CR-39 detectors, in the summer 2004 for six geological formations, namely, Wadi umm ghudran (WG), Wadi esSir “massive” limestone, Amman silicified limestone (ASL), Al-Hisa phosphatic limestone (AHP), Muwaqqar chalky-marl (MCM), and Basalt. Using a model (Yakovleva in Ann Geophys 48(1):195 198, 2005) based on the solution of the diffusion equation in the quasi-homogenous approximation, the characteristics of radon transport were calculated. Radon flux density from the Earth’s surface, the depth Z eq, at which the equilibrium value of soil radon concentration is reached and the convective radon flux velocity ( v) for the different soils are calculated and found to be consistent with similar values presented elsewhere. Calculations indicate that the soil covering WG has a low radon risk while, on the contrary, AHP has a higher radon risk as expected, since AHP has higher content of uranium. The other formations have intermediate values. The results of the present study confirm the statement by Yakovleva (Ann Geophys 48(1):195 198, 2005) that two measurements suffice in order to estimate the characteristics of soil radon transport.

  5. Geologic framework of pre-Cretaceous rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico

    USGS Publications Warehouse

    Condon, Steven M.

    1992-01-01

    This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through

  6. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J., III

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  7. Hydraulic relationships between buried valley sediments of the glacial drift and adjacent bedrock formations in northeastern Ohio, USA

    NASA Astrophysics Data System (ADS)

    Seyoum, Wondwosen Mekonnen; Eckstein, Yoram

    2014-08-01

    Buried valleys are ancient river or stream valleys that predate the recent glaciation and since have been filled with glacial till and/or outwash. Outwash deposits are known to store and transmit large amounts of groundwater. In addition to their intrinsic hydraulic properties, their productivity depends on their hydraulic relationships with the adjacent bedrock formations. These relationships are examined using a steady-state three-dimensional groundwater flow model through a section of a buried valley in northeastern Ohio, USA. The flow domain was divided into five hydrostratigraphic units: low-conductivity (K) till, high-K outwash, and three bedrock units (Pottsville Formation, Cuyahoga Group and Berea Sandstone). The model input was prepared using the data from well logs and drilling reports of residential water wells. The model was calibrated using observed heads with mean residual head error of 0.3 m. The calibrated model was used to quantify flux between the buried valley and bedrock formations. Mass balance was calculated to within an error of 2-3 %. Mass balance of the buried valley layer indicates that it receives 1.6 Mm3/year (≈40 % of the total inflow) from the adjacent bedrock aquifers: Pottsville Formation contributes 0.96 Mm3/year (60 %) while the Berea Sandstone 0.64 Mm3/year (40 %).

  8. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  9. Viscoplastic Deformation of the Bakken and Adjacent Formations and Its Relation to Hydraulic Fracture Growth

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Zoback, Mark

    2016-02-01

    We report laboratory studies of the time-dependent deformation of core samples from four different formations in the Williston Basin—the Lodgepole Formation, the Middle and Lower Bakken Formations, and Three Forks Formation. The laboratory tests reveal varying amounts of viscoplastic deformation in response to applied differential stress. The time-dependent deformation is generally greater in rocks with higher clay and organic content and can be described by a power-law function. Because the magnitude of the creep strain is linearly proportional to the applied differential stress, we can utilize viscoelastic theory and geophysical logs to estimate the degree to which tectonic stress is affected by viscoplastic stress relaxation. We suggest that viscoplastic stress relaxation results in the Upper and Lower Bakken Formations acting as frac barriers during hydraulic fracture stimulation in the Middle Bakken, but the Lodgepole and the Three Forks Formations are not frac barriers.

  10. Assessment of groundwater quality of the Tatlicay aquifer and relation to the adjacent evaporitic formations (Cankiri, Turkey).

    PubMed

    Apaydın, Ahmet; Aktaş, Sibel Demirci

    2012-04-01

    One of the most important hydrogeologic problems in and adjacent areas of evaporitic formations is severe quality degradation of groundwaters. These kinds of groundwaters contain high content of dissolved solids and generally have some limitations for use. Tatlicay basin (north-central Turkey) is an example to effects of the evaporites on groundwater quality in the adjacent alluvium aquifer. Gypsum and anhydrites in the two evaporite formations (Bayindir and Bozkir) effect of the groundwater quality in the alluvium adversely, by dissolution of the evaporites by surface drainage and infiltration into the alluvium aquifer (widespread effect) and by infiltration of low quality gypsum springs (local effect) into the aquifer. Evaporitic formations significantly increased EC, TDS, Ca and SO(4) parameters in the alluvium aquifer in the central and downstream regions. EC has increased roughly from 500-800 to 1,700-2,000 μS/cm, Ca has roughly increased from 3-4 to 10 meq/l, SO(4) has increased 0.5-1 to 11-12 meq/l. Consequently, three clusters were distinguished in the basin; (1) nonevaporitic waters in low TDS, Na, Ca, Mg, Cl and SO(4), (2) diluted waters in high TDS and relatively high Cl, moderate-relatively high Na, Ca, Mg, SO(4), (3) gypsum springs in highest TDS, Ca, SO(4), but moderate Mg and low Na, Cl.

  11. Assessment of groundwater quality of the Tatlicay aquifer and relation to the adjacent evaporitic formations (Cankiri, Turkey).

    PubMed

    Apaydın, Ahmet; Aktaş, Sibel Demirci

    2012-04-01

    One of the most important hydrogeologic problems in and adjacent areas of evaporitic formations is severe quality degradation of groundwaters. These kinds of groundwaters contain high content of dissolved solids and generally have some limitations for use. Tatlicay basin (north-central Turkey) is an example to effects of the evaporites on groundwater quality in the adjacent alluvium aquifer. Gypsum and anhydrites in the two evaporite formations (Bayindir and Bozkir) effect of the groundwater quality in the alluvium adversely, by dissolution of the evaporites by surface drainage and infiltration into the alluvium aquifer (widespread effect) and by infiltration of low quality gypsum springs (local effect) into the aquifer. Evaporitic formations significantly increased EC, TDS, Ca and SO(4) parameters in the alluvium aquifer in the central and downstream regions. EC has increased roughly from 500-800 to 1,700-2,000 μS/cm, Ca has roughly increased from 3-4 to 10 meq/l, SO(4) has increased 0.5-1 to 11-12 meq/l. Consequently, three clusters were distinguished in the basin; (1) nonevaporitic waters in low TDS, Na, Ca, Mg, Cl and SO(4), (2) diluted waters in high TDS and relatively high Cl, moderate-relatively high Na, Ca, Mg, SO(4), (3) gypsum springs in highest TDS, Ca, SO(4), but moderate Mg and low Na, Cl. PMID:21573710

  12. Contrasting Phylogeography of Sandy vs. Rocky Supralittoral Isopods in the Megadiverse and Geologically Dynamic Gulf of California and Adjacent Areas

    PubMed Central

    Hurtado, Luis A.; Lee, Eun Jung; Mateos, Mariana

    2013-01-01

    Phylogeographic studies of animals with low vagility and restricted to patchy habitats of the supralittoral zone, can uncover unknown diversity and shed light on processes that shaped evolution along a continent’s edge. The Pacific coast between southern California and central Mexico, including the megadiverse Gulf of California, offers a remarkable setting to study biological diversification in the supralittoral. A complex geological history coupled with cyclical fluctuations in temperature and sea level provided ample opportunities for diversification of supralittoral organisms. Indeed, a previous phylogeographic study of Ligia, a supralittoral isopod that has limited dispersal abilities and is restricted to rocky patches, revealed high levels of morphologically cryptic diversity. Herein, we examined phylogeographic patterns of Tylos, another supralittoral isopod with limited dispersal potential, but whose habitat (i.e., sandy shores) appears to be more extensive and connected than that of Ligia. We conducted Maximum Likelihood and Bayesian phylogenetic analyses on mitochondrial and nuclear DNA sequences. These analyses revealed multiple highly divergent lineages with discrete regional distributions, despite the recognition of a single valid species for this region. A traditional species-diagnostic morphological trait distinguished several of these lineages. The phylogeographic patterns of Tylos inside the Gulf of California show a deep and complex history. In contrast, patterns along the Pacific region between southern California and the Baja Peninsula indicate a recent range expansion, probably postglacial and related to changes in sea surface temperature (SST). In general, the phylogeographic patterns of Tylos differed from those of Ligia. Differences in the extension and connectivity of the habitats occupied by Tylos and Ligia may account for the different degrees of population isolation experienced by these two isopods and their contrasting phylogeographic

  13. The geologic mapping of Venus using C-1 format: Sheets 75N254, 60N263

    NASA Technical Reports Server (NTRS)

    Shalimov, I. V.

    1992-01-01

    The results of geologic mapping of Venus, produced on the base of Magellan images, are presented. We submit two C-1 format geologic maps with the appropriate legend. The mapping territory was taken from Venera 15 and 16 missions and geologic maps were composed. Magellan images allow us to divide some types of the plains units to determine the lava flow direction and to map with better accuracy.

  14. Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes.

    PubMed

    Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2016-06-28

    Duplication of existing sequences is a major mechanism of genome evolution. It has been previously shown that duplications can occur by replication slippage, unequal sister chromatid exchange, homologous recombination, and aberrant double-strand break-induced synthesis-dependent strand annealing reactions. In a recent study, the abundant presence of short direct repeats was documented by comparative bioinformatics analysis of different rice genomes, and the hypothesis was put forward that such duplications might arise due to the concerted repair of adjacent single-strand breaks (SSBs). Applying the CRISPR/Cas9 technology, we were able to test this hypothesis experimentally in the model plant Arabidopsis thaliana Using a Cas9 nickase to induce adjacent genomic SSBs in different regions of the genome (genic, intergenic, and heterochromatic) and at different distances (∼20, 50, and 100 bps), we analyzed the repair outcomes by deep sequencing. In addition to deletions, we regularly detected the formation of direct repeats close to the break sites, independent of the genomic context. The formation of these duplications as well as deletions may be associated with the presence of microhomologies. Most interestingly, we found that even the induction of two SSBs on the same DNA strand can cause genome alterations, albeit at a much lower level. Because such a scenario reflects a natural step during nucleotide excision repair, and given that the germline is set aside only late during development in plants, the repair of adjacent SSBs indeed seems to have an important influence on the shaping of plant genomes during evolution. PMID:27307441

  15. The Shublik Formation and adjacent strata in northeastern Alaska description, minor elements, depositional environments and diagenesis

    USGS Publications Warehouse

    Tourtelot, Harry Allison; Tailleur, Irvin L.

    1971-01-01

    The Shublik Formation (Middle and Late Triassic) is widespread in the surface and subsurface of northern Alaska. Four stratigraphic sections along about 70 miles of the front of the northeastern Brooks Range east of the Canning giver were examined and sampled in detail in 1968. These sections and six-step spectrographic and carbon analyses of the samples combined with other data to provide a preliminary local description of the highly organic unit and of the paleoenvironments. Thicknesses measured between the overlying Kingak Shale of Jurassic age and the underlying Sadlerochit Formation of Permian and Triassic age range from 400 to more than 800 feet but the 400 feet, obtained from the most completely exposed section, may be closer to the real thickness across the region. The sections consist of organic-rich, phosphatic, and fossiliferous muddy, silty, or carbonate rocks. The general sequence consists, from the bottom up, of a lower unit of phosphatic siltstone, a middle unit of phosphatic carbonate rocks, and an upper unit of shale and carbonate rocks near the Canning River and shale, carbonate rocks, and sandstone to the east. Although previously designated a basal member of the Kingak Shale (Jurassic), the upper unit is here included with the Shublik on the basis of its regional lithologic relation. The minor element compositions of the samples of the Shublik Formation are consistent with their carbonaceous and phosphatic natures in that relatively large amounts of copper, molybdenum, nickel, vanadium and rare earths are present. The predominantly sandy rocks of the underlying Sadlerochit Formation (Permian and Triassic) have low contents of most minor elements. The compositions of samples of Kingak Shale have a wide range not readily explicable by the nature of the rock: an efflorescent sulfate salt contains 1,500 ppm nickel and 1,500 ppm zinc and large amounts of other metals derived from weathering of pyrite and leaching of local shale. The only recorded

  16. Volcanic rises on Venus: Geology, formation, and sequence of evolution

    NASA Technical Reports Server (NTRS)

    Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.

    1993-01-01

    Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.

  17. Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.

    NASA Astrophysics Data System (ADS)

    Hunter, Chyren

    The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin

  18. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the

  19. Geological Evidence That Resolves the Baja-BC Controversy: Detrital Zircons Indicate That Vancouver Island Was Adjacent to Southern California in the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Guest, B.; Matthews, W.; Coutts, D. S.; Bain, H.; Hubbard, S. M.

    2015-12-01

    The Baja-BC hypothesis is at the center of a great earth sciences controversy. It stems from paleomagnetic observations that require large-scale displacements of continental crust from low latitudes (Baja, California) to moderate latitudes (British Columbia). Many geologists dispute the scale of the displacements due to a lack of corroborating geological evidence. We provide a robust, geological dataset that confirms the paleomagnetic observations. Detrital zircons from Cretaceous to Paleocene sandstone of the Nanaimo Group, which crops out in western Vancouver Island and the Gulf Islands of southwest British Columbia, are analyzed. The data show a clear transition from local <300 Ma western Coast Plutonic Complex sources in the Campanian, to sources that include a significant component of >300 Ma grains in the Maastrichtian-Paleogene. An identical pattern is observed in detrital zircon datasets from southern California forearc basin deposits, and schists interpreted as the subducted remnants of forearc deposits. With a high-n dataset (n=3041) we are able to rule out possible >300 Ma source regions in Canada and the northern United States, and uniquely tie Nanaimo Group rocks to the Mojave-Sonora region of SW United States. This implies that at the end of the Cretaceous, Vancouver Island and western mainland BC were adjacent to southern California and northwestern Mexico, requiring 1900 km of displacement during the latest Cretaceous and Paleocene, consistent with paleomagnetic results. An implication of this result is that the western Coast Batholith of southwest BC was positioned between the northern Peninsular Ranges and southern Sierra Nevada batholiths in the late Cretaceous, and likely represents a displaced segment of a once continuous Cordilleran arc batholith. These results have broad implications for our understanding of episodic arc magmatism in the Cordillera, the tectonic evolution of western North America, Laramide orogenesis, the development and

  20. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  1. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  2. Cretaceous evolution of the Indian Plate and consequences for the formation, deformation and obduction of adjacent oceanic crust

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Van Hinsbergen, D. J.; Spakman, W.

    2012-12-01

    As part of the gradual Gondwana dispersion that started in the Jurassic, the Indian tectonic block was rifted away from the Antarctica-Australian margins, probably in the Early-Mid Cretaceous and started its long journey to the north until it collided with Eurasia in the Tertiary. In this contribution first we will revise geophysical and geological evidences for the formation of oceanic crust between India and Antarctica, India and Madagascar, and India and Somali/Arabian margins. This information and possible oceanic basin age interpretation are placed into regional kinematic models. Three important compressional events NW and W of the Indian plate are the result of the opening of the Enderby Basin from 132 to 124 Ma, the first phase of seafloor spreading in the Mascarene basin approximately from 84 to 80 Ma, and the incipient opening of the Arabian Sea and the Seychelles microplate formation around 65 to 60 Ma. Based on retrodeformation of the Afghan-Pakistan part of the India-Asia collision zone and the eastern Oman margin, the ages of regional ophiolite emplacement and crystallization of its oceanic crust, as well as the plate tectonic setting of these ophiolites inferred from its geochemistry, we evaluate possible scenarios for the formation of intra-oceanic subduction zones and their evolution until ophiolite emplacement time. Our kinematic scenarios are constructed for several regional models and are discussed in the light of global tomographic models that may image some of the subducted Cretaceous oceanic lithosphere.

  3. Use and Features of Basalt Formations for Geologic Sequestration

    SciTech Connect

    McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.

    2003-01-01

    Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

  4. Maps showing formation temperatures and configurations of the tops of the Minnelusa Formation and the Madison Limestone, Powder River basin, Wyoming, Montana, and adjacent areas

    USGS Publications Warehouse

    Head, William J.; Kilty, Kevin Thomas; Knottek, Richard K.

    1978-01-01

    This report is part of a study to describe the hydrogeologic framework needed to evaluate the water resources of the Paleozoic age aquifers in the Northern Great Plains coal region. Preliminary studies by the U.S. Geological Survey and State agencies in Wyoming, Montana, and South Dakota have indicated that these aquifers might provide a significant percentage of the water requirements for coal development. Geologic and water-temperature data for the Minnelusa Formation of Permian and Pennsylvanian age and for the Madison Limestone (Group where it is subdivided) of Mississippian and locally late Devonian age , and their equivalents, were compiled and interpreted. Maps were produced showing the altitude and ground-water temperatures of the top of these formations. The altitude (configuration) maps show the depth and position of the formations throughout the area. Temperature maps can be used to calculate changes in the viscosity of water caused by large temperature differences. The viscosity differences will be useful in adjusting calculated transmissivity aquifer values (the rate at which water can be transmitted through an aquifer). (Woodard-USGS)

  5. Geological History of a Light-toned Formation Draping the Plateaus in the Region of Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Mège, D.; Le Mouélic, S.; Massé, M.; Hauber, E.; Jaumann, R.; Bibring, J.-P.

    2009-03-01

    We perform a geological analysis of layered deposits cropping out on the plateaus around Valles Marineris in order to determine their possible formation scenario and the role of water in their geological history.

  6. Bacterial interactions and transport in geological formation of alumino-silica clays.

    PubMed

    Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang

    2015-01-01

    Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. PMID:25437062

  7. GEODYN: A geological formation/drillstring dynamics computer program

    SciTech Connect

    Baird, J.A.; Caskey, B.C.; Stone, C.M.; Tinianow, M.A.

    1984-09-01

    This paper describes the initial development phase of a finite element computer program, GEODYN, capable of simulating the three-dimensional transient dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-uniform formation. The ability of GEODYN to simulate response variations attributable to hole size, hole bottom surface shapes, and formation material non-uniformities is demonstrated. Planned developmental phases will address the detailed response of a bottom-hole assembly (BHA), a drill ahead (rock penetration and removal) simulation, and ultimately, the response of the entire string.

  8. GEOGYN - a geological formation/drill string dynamics computer program

    SciTech Connect

    Caskey, B.

    1984-09-16

    This paper describes the initial development phase of a finite element computer program, GEODYN, capable of simulating the three-dimensional transient, dynamic response of a polycrystalline diamond compact (PDC) bit interacting with a non-uniform formation. The ability of GEODYN to simulate response variations attributable to hole size, hole bottom surface shapes, and formation material non-uniformities is demonstrated. Planned developmental phases will address the detailed response of a bottom-hole assembly (BHA), a drill ahead (rock penetration and removal) simulation, and ultimately, the response of the entire string.

  9. Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2010-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.

  10. Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2009-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.

  11. Geology and physical properties of the Monterey Formation, California

    SciTech Connect

    Isaacs, C.M.

    1984-04-01

    Original sediments of the Monterey Formation have diverse compositions reflecting both paleobasin setting (fine detritus) and oceanographic productivity (silica/carbonate). Varying stages of diagenesis, which includes silica phase transformations and dolomitization, have produced fractured reservoirs characterized by a complex array of rock types with a wide range of physical properties.

  12. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  13. Geology of Cedar Creek anticline in Baker, Wibaux, and Glendive 30 x 60-min quadrangles, eastern Montana and adjacent North Dakota

    SciTech Connect

    Vuke-Foster, S.M.

    1986-08-01

    Geology of the asymmetrical, northwest-trending Cedar Creek anticline, a major oil- and gas-producing structure of the Williston basin, was mapped in the Wibaux and Glendive Quadrangles as part of the USGS-funded Coal Lands Mapping Program. Thinning of stratigraphic units, unconformities, and relationships between tectonic structures provide suggestive evidence for the timing of Late Cretaceous and Tertiary uplift in this area. The Colgate Member of the Fox Hills Formation (Maestrichtian) pinches out toward the axis of the anticline. The contact between the Hell Creek Formation (Maestrichtian) and the underlying Colgate Member is disconformable near the axis of the anticline and becomes conformable about 8 km (5 mi) east of it. This suggests Late Cretaceous uplift during or after deposition of the Colgate Member. The Hell Creek Formation also thins by up to 40 m (131.2 ft) toward the axis. Part of the Fort Union Formation is not present on the eastern limb of the anticline and in an area southwest of the anticline, suggesting that these areas were uplifted at the time of or just following deposition of this part of the section during the middle Paleocene. The present anticline developed following deposition of the Fort Union Formation in the late Paleocene. Several associated faults and folds developed subparallel to the axial trend, including a pronounced synclinal flexure along much of the western limb of the anticline. Subsequently, northeast-trending faults with a component of right-lateral slip offset the northwest-trending linear features associated with the anticline.

  14. Geologic constraints on kinematic models and age of formation of the Amerasia Basin of the Arctic

    NASA Astrophysics Data System (ADS)

    Miller, E. L.

    2015-12-01

    A wealth of new geologic and geophysical data now exist for the Amerasia Basin, but the details of its age and the nature/kinematics of events that resulted in its formation remain elusive. Basement rock ages, detrital zircon signatures of sedimentary rocks, and sediment dispersal systems have been used to show how parts of the southern margin(s) of the Amerasia Basin (Arctic Alaska-Chukotka, AAC) match their rifted margin counterparts on the Eurasia and Canada side of the Amerasia Basin. Thus we know the approximate finite translations needed to restore the paleogeography of the Arctic, but not the kinematics involved. Important features of the Amerasia Basin that need to be explained in a model for its opening are the age and extent of the high Arctic LIP, the linearity of the strip of continental crust represented by the Lomonosov Ridge, its right angle intersection with the Canadian Arctic margin, and the directional fault patterns mapped bathymetrically and seismically across the Alpha-Lomonosov Ridge and surrounding seafloor. Across AAC, post-Early Cretaceous oroclinal bends provide insight into strike-slip components of deformation involved in opening of the Amerasia Basin: The Chukchi syntax offsets the Brooks Range in a right-lateral sense from Wrangel Island along the Herald Arch; right-lateral motion of Arctic Alaska with respect to the Chukchi Borderland during opening of the Canada Basin; right-lateral shear in Chukotka during 100 Ma magmatism; the tight bend in the northern Verkhoyansk, result of Cretaceous right-lateral shear. The land-based relationships imply a post-Early Cretaceous, younger than Barremian (~130 Ma) age for onset of magmatism and extension related to rifting and formation of the Amerasia Basin. At least two stages of extension are documented, with older E-W extension characterizing the longitude of the New Siberian Islands to Pevek, Russian Arctic, (ca.125 Ma to 100 Ma), with younger N-S extension superimposed on this system (ca

  15. Geology and hydrogeology of the Dammam Formation in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Awadi, E.; Mukhopadhyay, A.; Al-Senafy, M. N.

    The Dammam Formation of Middle Eocene age is one of the major aquifers containing useable brackish water in Kuwait. Apart from the paleokarst zone at the top, the Dammam Formation in Kuwait consists of 150-200m of dolomitized limestone that is subdivided into three members, on the basis of lithology and biofacies. The upper member consists of friable chalky dolomicrite and dolomite. The middle member is mainly laminated biomicrite and biodolomicrite. The lower member is nummulitic limestone with interlayered shale toward the base. Geophysical markers conform to these subdivisions. Core analyses indicate that the upper member is the most porous and permeable of the three units, as confirmed by the distribution of lost-circulation zones. The quality of water in the aquifer deteriorates toward the north and east. A potentiometric-head difference exists between the Dammam Formation and the unconformably overlying Kuwait Group; this difference is maintained by the presence of an intervening aquitard. Résumé La formation de Damman, d'âge Éocène moyen, est l'un des principaux aquifères du Koweit, contenant de l'eau saumâtre utilisable. A part dans sa partie supérieure où existe un paléokarst, la formation de Damman au Koweit est constituée par 150 à 200m de calcaires dolomitisés, divisés en trois unités sur la base de leur lithologie et de biofaciès. L'unité supérieure est formée d'une dolomicrite crayeuse et friable et d'une dolomie. L'unité médiane est pour l'essentiel une biomicrite laminée et une biodolomicrite. L'unité inférieure est un calcaire nummulitique avec des intercalations argileuses vers la base. Les marqueurs géophysiques sont conformes à ces subdivisions. Les analyses de carottes montrent que l'unité supérieure est la plus poreuse et la plus perméable des trois. La répartition des zones d'écoulement souterrain confirment ces données. La qualité de l'eau dans l'aquifère se dégrade en direction du nord et de l'est. Une

  16. Method and device with adjustable focusing for measuring the electric resistivity of geological formations

    SciTech Connect

    Desbrandes, R.

    1983-10-25

    The method of the invention comprises determining the variation of the electric potential on both sides of a central electrode in a borehole, detecting the two levels of the borehole where the potential gradient is zero, and measuring the electric resistivity of the geological formation between these two levels.

  17. Identification of Geologic and Anthropogenic Sources of Phosphorus to Streams in California and Portions of Adjacent States, U.S.A., Using SPARROW Modeling

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2013-12-01

    The SPARROW (Spatially Referenced Regressions On Watershed Attributes) model allows for the simulation of nutrient transport at un-gauged catchments on a regional scale. The model was used to understand natural and anthropogenic factors affecting phosphorus transport in developed, undeveloped, and mixed watersheds. The SPARROW model is a statistical tool that allows for mass balance calculation of constituent sources, transport, and aquatic decay based upon a calibration of a subset of stream networks, where concentrations and discharge have been measured. Calibration is accomplished using potential sources for a given year and may include fertilizer, geological background (based on bed-sediment samples and aggregated with geochemical map units), point source discharge, and land use categories. NHD Plus version 2 was used to model the hydrologic system. Land to water transport variables tested were precipitation, permeability, soil type, tile drains, and irrigation. For this study area, point sources, cultivated land, and geological background are significant phosphorus sources to streams. Precipitation and clay content of soil are significant land to water transport variables and various stream sizes show significance with respect to aquatic decay. Specific rock types result in different levels of phosphorus loading and watershed yield. Some important geological sources are volcanic rocks (andesite and basalt), granodiorite, glacial deposits, and Mesozoic to Cenozoic marine deposits. Marine sediments vary in their phosphorus content, but are responsible for some of the highest natural phosphorus yields, especially along the Central and Southern California coast. The Miocene Monterey Formation was found to be an especially important local source in southern California. In contrast, mixed metamorphic and igneous assemblages such as argillites, peridotite, and shales of the Trinity Mountains of northern California result in some of the lowest phosphorus yields. The

  18. Status report on the geology of the Lawrence Livermore National Laboratory site and adjacent areas. Volume I. Text and appendices A-E

    SciTech Connect

    Carpenter, D.W.; Puchlik, K.P.; Ramirez, A.L.; Wagoner, J.L.; Knauss, K.G.; Kasameyer, P.W.

    1980-10-01

    In April, 1979, geoscience personnel at Lawrence Livermore National Laboratory (LLNL) initiated comprehensive geologic, seismologic, and hydrologic investigations of the LLNL site and nearby areas. These investigations have two objectives: 1. to obtain data for use in preparing a Final Environmental Impact Report for LLNL, pursuant to the National Environmental Policy Act; 2. to obtain data for use in improving the determination of a design basis earthquake for structural analysis of LLNL facilities. The first phases of these investigations have been completed. Work completed to date includes a comprehensive literature review, analyses of three sets of aerial photographs, reconnaissance geophysical surveys, examination of existing LLNL site borehole data, and the logging of seven exploratory trenches, segments of two sewer trenches, a deep building foundation excavation, a road cut, and an enlarged creek bank exposure. One absolute age date has been obtained by the /sup 14/C method and several dates of pedogenic carbonate formation have been obtained by the /sup 230/Th//sup 234/U method. A seismic monitoring network has been established, and planning for a site hydrologic monitoring program and strong motion instrument network has been completed. The seismologic and hydrologic investigations are beyond the scope of this report and will be discussed separately in future documents.

  19. Strategies for CO2 Sequestration in Geologic Formations and the Role of Geophysics

    NASA Astrophysics Data System (ADS)

    Klara, S. M.; Cohen, K.; Byrer, C.; Srivastava, R. D.

    2003-12-01

    Among proposed options for CO2 emissions mitigation, capture and sequestration is a promising solution that has the advantage of being able to cope with the large volume of CO2 involved, which will increase because of a growing energy demand. Consequently, an important component of the United States Department of Energy's (DOE) research and development program is dedicated to reducing CO2 emissions from power plants by developing technologies for capturing CO2 and for subsequent utilization and/or sequestration. Capture technologies target novel, low-cost approaches for separation and capture of CO2 from energy production and conversion facilities. Injection of CO2 into geologic formations is being practiced today by the petroleum industry for enhanced oil recovery, but it is not yet possible to predict with confidence storage volume, formation integrity and storage permanence over long time periods. Many important issues dealing with geologic storage, monitoring, and verification of fluids (including CO2) in underground oil and gas reservoirs, coal beds, and saline formations are now being addressed. Preliminary field tests are being conducted to confirm practical considerations, such as economics, safety, stability, permanence, and public acceptance. This paper presents an overview of DOE's research program in the area of CO2 sequestration and storage in geologic formations and specifically addresses the status of new knowledge, improved tools and enhanced technology for cost optimization, monitoring, modeling and capacity estimation. This paper also highlights those fundamental and applied studies, including field tests, sponsored by DOE that are measuring the degree to which CO2 can be injected and remain safely and permanently sequestered in geologic formations while concurrently assuring no adverse long term ecological impacts. Field geophysical techniques are playing a major role in these demonstrations, such as the Weyburn project in North Dakota and Canada

  20. Geologic Observations and Numerical Modeling: A Combined Approach to Understanding Crater and Basin Formation and Structure

    NASA Astrophysics Data System (ADS)

    Potter, R. W. K.; Head, J. W., III

    2014-12-01

    Impact cratering is a fundamental geological process throughout the Solar System. The Moon is an ideal location to document the impact cratering process due to the number and excellent state of preservation of large craters and basins, and the wide range of geological, geophysical, topographic, mineralogic, remote sensing and returned sample data. Despite the number and excellent preservation state of many large complex craters and basins, their formation and the origin of their structural features and the stages in their evolution remain contentious. To more comprehensively document the final stage of lunar impact basin formation, we have compiled detailed topographic, geological and mineralogic maps of several type examples of peak-ring and multi-ring basins, including the Orientale basin. These data include the mineralogic characteristics of basin ring structures and assist in the interpretation of the target stratigraphy, and the depth of origin of basin rings. Data for the current structure of basins is compared to numerical model outputs of basin-forming impacts, which track formation to the conclusion of dynamic processes (2 to 3 hours after impact). We use the Orientale basin as an example and provide combined correlations and interpretations that assign rings to various stages in the numerical models, and compare these candidates to crustal stratigraphy, with the ultimate aim of producing a consistent model for large crater/basin formation. The shock physics code iSALE is used to numerically model the basin-scale impacts. Constitutive equations and equations of state for materials analogous to the lunar crust (gabbroic anorthosite) and mantle (dunite) are used. Aspects of the numerically-produced lunar basins (e.g., material distribution and accumulated stress) are compared and contrasted to remote observations and geological maps of the Orientale rings and geological units, including ejecta and impact melt deposits.

  1. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  2. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    PubMed

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information.

  3. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    PubMed

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. PMID:26142818

  4. The digital geologic map of Colorado in ARC/INFO format, Part B. Common files

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  5. The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  6. The digital geologic map of Colorado in ARC/INFO format

    USGS Publications Warehouse

    Green, Gregory N.

    1992-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050

  7. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect

    Goodman, Angela L.; Bromhal, Grant S.; Strazisar, Brian; Rodosta, Traci D.; Guthrie, William J.; Allen, Douglas E.; Guthrie, George D.

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  8. Method for controlling a producing zone of a well in a geological formation

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)

    2005-01-01

    System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.

  9. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  10. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOEpatents

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  11. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Not Available

    1986-01-01

    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  12. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2012-02-01

    The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

  13. Estimation of Geologic Storage Capacity of Carbon Dioxide in the Bukpyeong Basin, Korea Using Integrated Three-Dimensional Geologic Formation Modeling and Thermo-Hydrological Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic

  14. Stratigraphic cross section of measured sections and drill holes of the Neslan Formation and adjacent formations, Book Cliffs Area, Colorado and Utah

    USGS Publications Warehouse

    Kirshbaum, Mark A.; Spear, Brianne D.

    2012-01-01

    This study updates a stratigraphic cross section published as plate 2 in Kirschbaum and Hettinger (2004) Digital Data Series 69-G (http://pubs.usgs.gov/dds/dds-069/dds-069-g/). The datum is a marine/tidal ravinement surface within the Cozzette Sandstone Member of the Iles Formation and the Thompson Canyon Sandstone and Sulphur Canyon Sandstone Beds of the Neslen Formation. One of the cores shown was included on the original cross section, and new core descriptions have been added to the upper part of the cored interval. A new core description (S178) is included in this report. Cores are stored in the U.S. Geological Survey Core Research Facility at the Denver Federal Center, Colorado. The following information has also been added to help define the stratigraphic framework: 1) At least five claystones interpreted as altered volcanic ashes have been identified and may give future workers a correlation tool within the largely continental section. 2) Thickness and general geometry of the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone have been added to provide additional stratigraphic context. 3) The geometry in the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone has been added to provide additional stratigraphic context. 4) Ammonite collections are from Gill and Hail. The zone of Didymoceras nebrascense projected into the East Salt Wash area is based on correlation of the flooding surface at the base of the Cozzette Member to this point as shown in Kirschbaum and Hettinger. 5) A leaf locality of the Denver Museum of Nature and Science is shown in its approximate stratigraphic position near Thompson Canyon. 6) A dinosaur locality of the Natural History Museum of Utah is shown in the Horse Canyon area measured section at the stratigraphic position where it was extracted.

  15. Intrinsic formation of nanocrystalline neptunium dioxide under neutral aqueous conditions relevant to deep geological repositories.

    PubMed

    Husar, Richard; Hübner, René; Hennig, Christoph; Martin, Philippe M; Chollet, Mélanie; Weiss, Stephan; Stumpf, Thorsten; Zänker, Harald; Ikeda-Ohno, Atsushi

    2015-01-25

    The dilution of aqueous neptunium carbonate complexes induces the intrinsic formation of nanocrystalline neptunium dioxide (NpO2) particles, which are characterised by UV/Vis and X-ray absorption spectroscopies and transmission electron microscopy. This new route of nanocrystalline NpO2 formation could be a potential scenario for the environmental transport of radionuclides from the waste repository (i.e. under near-field alkaline conditions) to the geological environment (i.e. under far-field neutral conditions).

  16. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  17. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2011-11-29

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

  18. Effects of Lithology of Deep Layered Geologic Formations on Trapping of Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Agartan, E.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.; Illangasekare, T. H.

    2014-12-01

    Secure and long-term trapping of supercritical CO2 (scCO2) in deep geological formations is important for the reduction of leakage risk. Agartan et al. [2014] through controlled laboratory experiments in a test tank using surrogate fluids for scCO2 and brine showed that the dissolved scCO2 can be stored in geological formations containing low permeability layers, thus effectively enhancing dissolution trapping. As this finding was limited to a few test configurations, its validity was evaluated using a numerical modeling study focusing on the influence of different permeabilities and thicknesses of low permeability layers on trapping of dissolved scCO2. A Finite Volume Method (FVM)-based, single-phase, density and viscosity-dependent flow and transport model was employed to determine the effects of porosity and permeability perturbations, and numerical grid resolution on model results and density-dependent finger formations. The experimental data, generated by Agartan et al. [2014], was used to demonstrate the ability of the model to capture the observed transport behaviors. To demonstrate the role of heterogeneity characterized by layering on dissolution trapping at field-scale, a two-dimensional numerical model containing a geological structure similar to the Utsira formation in the Sleipner field was used in a set of test simulations. This formation provided a good test setting as it has the similar features with shale layers interbedded in-between composite sand layers that were used in the experiments. The results highlight that the thicker and lower permeability layers are able to store significant amounts of dissolved scCO2 for a long time. On the other hand, although the thinner and higher permeability layers slow down the vertical spreading, they cannot trap dissolved mass long enough to contribute the storage through immobilization. These findings have practical implications as effective strategies can be developed to enhance trapping by taking the

  19. Geologic Mapping Applications Using THEMIS Data for the Medusae Fossae Formation, Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Bender, K. C.; Harris, J. C.

    2003-01-01

    The Medusae Fossae Formation (MFF) is a regionally extensive deposit located along the equator of Mars between roughly 130 and 240 E longitude, the origin of which has stimulated a host of published hypotheses. A volcanic or aeolian origin appear most consistent with Viking and MGS data, but other hypotheses remain viable and new data, as from the Mars Odyssey spacecraft, is likely to stimulate additional hypotheses of origin. NASA is supporting geologic mapping of portions of the MFF deposits, but it is now quite clear that this on-going mapping will need considerable revision as data from the Thermal Emission Imaging System (THEMIS) on Mars Odyssey become available. The daytime IR THEMIS images hold particularly strong potential for providing a new base on which geologic mapping can be carried out, as illustrated by the examples discussed.

  20. Evidence for an additional uppermost geological unit in the Medusae Fossae Formation, Equatorial Mars

    NASA Astrophysics Data System (ADS)

    Harrison, Samantha; Balme, Matt; Hagermann, Axel

    2013-04-01

    The Medusae Fossae Formation (MFF) is a geological formation comprising three geological units (members) spread across five principal outcrops. The MFF dominates roughly a quarter of the longitudinal extent of the equatorial region of Mars, extending east-west across a distance of ~ 5,500 km between the southern Elysium Planitia and the Tharsis region. The nature of these materials is often referred to as enigmatic, as their exact origin remains unknown. Harrison et al. (Icarus, 2010) presented new observations of outlying occurrences of MFF materials on the southern highlands, atop the dichotomy boundary. They presented two hypotheses to explain these observation: 1) the MFF had a much larger pre-erosional extent than previously thought or 2) these materials had initially been eroded from the main outcrops of the formation, then transported southward by wind and subsequently reworked. A subsequent extension of this work provided evidence for an even larger extent of outlying MFF materials, particularly around and south of the easternmost portions of the MFF. Here we present these new outlier data, together with new textural classification and facies mapping of this region of the MFF. These data show that MFF outlier textures, whilst external to the main MFF outcrops in many places, are also found superposing large areas of the "main" MFF formations. These data support the first of the two working hypotheses presented, but also suggest that these so-called outlying materials represent a previously unmapped, stratigraphically uppermost unit of the Medusae Fossae Formation. We also suggest that, based upon our own morphometric study of yardangs across members and analogue studies by de Silva et al. (Icarus, 2010), these represent a less indurated material than other units of the formation. In the overall context of the origins of the MFF, we find that our data are consistent with the Medusae Fossae materials being a large-scale ignimbrite complex, perhaps with

  1. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  2. Geology and ground-water resources of the Two Medicine unit and adjacent areas, Blackfeet Indian Reservation, Montana, with a section on chemical quality of water

    USGS Publications Warehouse

    Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.

    1965-01-01

    The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.

  3. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    SciTech Connect

    Mitchell, J.C.

    1981-12-01

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  4. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOEpatents

    White, Curt; Wells, Arthur; Diehl, J. Rodney; Strazisar, Brian

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  5. Paleogene mammals from the Iwaki Formation in Japan: Their implications for the geologic age and paleobiogeography of this formation

    NASA Astrophysics Data System (ADS)

    Tsubamoto, Takehisa; Koda, Yoshiki; Hasegawa, Yoshikazu; Nabana, Satoshi; Tomida, Yukimitsu

    2015-08-01

    The mammalian fauna and geologic age of the Iwaki Formation of the Paleogene Shiramizu Group (Iwaki, southern Fukushima, northeastern Japan) are reviewed and previously undescribed specimens are described. The Iwaki mammalian fauna consists of three artiodactyl species: Bothriogenys sp. cf. B. hui (Anthracotheriidae), Entelodon gobiensis (Entelodontidae), and cf. Notomeryx sp. (Ruminantia). These three genera indicate an Ergilian Asian Land Mamma Age (=late Eocene [Priabonian] equivalent) correlation for the Iwaki Formation, demonstrating that the Eocene-Oligocene boundary exists within the Shiramizu Group. These three genera have never co-occurred in a single formation, although in Asia they have been recorded only in the late Eocene. In Asia, Bothriogenys has been recorded in the southern and middle regions, Entelodon has been mostly recorded in the northern and middle regions with one exception from the southern region, and Notomeryx has been recorded in the southern region. The co-occurrence of these three genera in the Iwaki Formation implies that Bothriogenys, Entelodon, and perhaps also Notomeryx can be useful late Eocene indicators in terrestrial eastern Asia. It also suggests that the Iwaki mammalian fauna is paleobiogeographically located between the northern and southern late Eocene faunas of eastern Asia, showing some faunal mixture. The Iwaki fauna is also unique in comprising diverse faunas of marine sharks and seashore birds together with terrestrial mammals. The Iwaki vertebrate fauna is key for reconstructing the faunas of the eastern coastal margin of the Asian Continent during the late Eocene.

  6. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  7. Large-scale characterization of geologic formations for CO2 injection using Compressed State Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Li, J. Y.; Zhou, Q.; Birkholzer, J. T.; Kitanidis, P. K.

    2014-12-01

    Carbon dioxide (CO2) storage in deep geologic formations is gaining ground as a potential measure for climate change mitigation. Such storage projects typically operate at large scales (~km), but their performance is often governed by smaller-scale (~m) heterogeneities. The large domain sizes prohibit detailed site characterization and dense monitoring networks, leading to predictions of CO2 migration and trapping based on rough geologic models that cannot capture preferential flow. Kalman Filtering can be used to improve these prior models by assimilating available monitoring data, thereby tracking system performance and reducing prediction uncertainty. However, for large systems with fine discretization, the number of unknowns is in the order of tens of thousands or more, in which case the textbook version of the Kalman Filter has prohibitively expensive computation and storage costs. We present the Compressed State Kalman Filter (CSKF) that can be effectively used for systems with a large number of unknowns to estimate the underlying heterogeneity and to predict the state of interest (e.g., pressure and CO2 saturation). The algorithm's computational efficiency is achieved by using a low-rank approximation of the covariance matrix, as well as a Jacobian-free approach. We demonstrate the estimation and computational performance of our method in a typical CO2 storage scenario with a spatially sparse monitoring network, but with multiple datasets obtained before and during CO2 injection. Our data assimilation framework provides an efficient and practical way to characterize geological formations intended for CO2 injection and storage using monitoring data commonly collected in field applications, as well as to quantify the reduction in uncertainty brought by different types of monitoring data.

  8. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect

    Tew, B.H.; Mancini, E.A. ); Mink R.M.; Mann, S.D. ); Mancini, E.A.

    1993-09-01

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  9. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  10. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  11. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  12. Formation and evolution of Lakshmi Planum, Venus: Assessment of models using observations from geological mapping

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.

    2008-12-01

    Detailed geological analysis of the Lakshmi Planum region of western Ishtar Terra results in the establishment of the sequence of major events during the formation and evolution of western Ishtar Terra, an important and somewhat unique area on Venus characterized by a raised volcanic plateau surrounded by distinctive folded mountain belts, such as Maxwell Montes. These mapping results and the stratigraphic and structural relationships provide a basis for addressing the complicated problem of Lakshmi Planum formation and for testing the suite of models previously proposed to explain this structure. We review and classify previous models of formation for western Ishtar Terra into "downwelling" models (generally involving convergence and underthrusting) and "upwelling" models (generally involving plume-like upwelling and divergence). The interpreted nature of units and the sequence of events derived from geological mapping are in contrast to the predictions of the divergent models. The major contradictions are as follows: (1) The very likely presence of an ancient (craton-like) tessera massif in the core of Lakshmi, which is inconsistent with the model of formation of Lakshmi due to rise and collapse of a mantle diapir; (2) The absence of rift zones in the interior of Lakshmi that are predicted by the divergent models; (3) The apparent migration of volcanic activity toward the center of Lakshmi, whereas divergent models predict the opposite trend; (4) The abrupt cessation of ridges of the mountain ranges at the edge of Lakshmi Planum and propagation of these ridges over hundreds of kilometers outside Lakshmi; the divergent models predict the opposite progression in the development of major contractional features. In contrast, convergent models of formation and evolution of Lakshmi Planum appear to be more consistent with the observations and explain this structure by collision and underthrusting/subduction of lower-lying plains with the elevated and rigid block of

  13. The formation of acid rain in the atmosphere, adjacent to the TTP with the joint-condensing of sulfur dioxide and water vapor

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.; Matveeva, A. A.

    2014-08-01

    Presents the results of mathematical simulation of the condensation process of sulphur dioxide and water vapor on the condensation nuclei surface under the action of natural factors. Numerical investigations were carried out for the summer at a moderate speed of the wind. The influence of the parameter of condensation on the speed of the process of sulfuric acid drops formation in the air space was analyzed. Time ranges, sufficient for the formation of the acid rain sedimentation in the atmosphere, adjacent to the areas of thermal power station work were established. It is shown that the speed of air masses movement effects on the process of acid anthropogenic admixtures dispersion in the atmosphere. Approbation of the obtained results was carried out by checking the difference scheme conservative and solution of test problems.

  14. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study

  15. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  16. Timing of hydrocarbon maturation and trap formation in the Cordillera Oriental and adjacent petroleum provinces of Colombia

    SciTech Connect

    Schamel, S.; Richardson, A.; Carlos, A.A.P.

    1996-08-01

    The timing of hydrocarbon generation relative to the closure of migration pathways and trap formation is key to characterization of the petroleum systems of the Cordillera Oriental and the prolific petroleum provinces of the Llanos and Magdalena. The exceptionally thick and organic rich Cretaceous source rock successions of the Cordillera Oriental had the potential to have generated vast quantities of liquid hydrocarbons. Yet due to unfavorable timing of hydrocarbon maturation vs. regional deformation, only a small portion of this oil may have migrated into traps beyond the limits of the Cordillera Oriental. Maturation modeling based on detailed stratigraphic and structural data for sites in the Cordillera Oriental, Llanos, and the Middle and Upper Magdalena basins reveal the essential temporal features of the petroleum system. Virtually all of the Cretaceous source rock succession was generating liquid hydrocarbons in the Late Cretaceous and Paleocene, long before the development of the main structural traps within and along the foothills belts marginal to the Cordillera Oriental. Only in the northeast quarter and extreme south of the Cordillera Oriental and in the deeper parts of the flanking basins was oil being generated simultaneous with trap formation. The maturation modeling serves as a basis for understanding the known distribution of oil pools and a guide to future discoveries.

  17. Strontium isotope tracking of groundwater-CO2 interactions in Chimayo, New Mexico, and implications for carbon storage in geologic formations

    NASA Astrophysics Data System (ADS)

    Gardiner, J.; Stewart, B. W.; Capo, R.; Hakala, J.

    2009-12-01

    James Gardiner1, Brian Stewart1, Rosemary Capo1, J. Alexandra Hakala2 1Department of Geology and Planetary Sciences, University of Pittsburgh 2National Energy Technology Laboratory, Pittsburgh, PA The storage of carbon dioxide in geologic formations requires sensitive monitors of the geochemical and mineralogical interactions of storage units, their formation waters, and associated aquifers potentially affected by subsurface CO2. High CO2 subsurface environments can serve as natural analogues for conditions following CO2 injection and provide sites to develop and optimize geochemical tools that can characterize subsurface reactions and identify and track brine and groundwater interactions. Wells in Chimayó, NM tap groundwater from the Tesuque sandstone aquifer, which is crosscut by faults that act as conduits for naturally occurring, deeply sourced CO2. This provides an opportunity for geochemical and isotopic characterization of groundwaters potentially influenced by interaction with CO2. Well waters in the region have 87Sr/86Sr ratios ranging from 0.7176 for CO2-charged brackish water to 0.7098 for a low-TDS groundwater, making the Sr isotope system a potentially sensitive tracer for groundwater-rock interactions. Preliminary strontium isotopic and geochemical data lead to the following observations: (1) Strontium isotope ratios and Sr concentrations in groundwaters sampled within the basin suggest a complex mixing between deep- and shallow-sourced waters, possibly combined with reactions of aquifer carbonate cement or local limestone. (2) Adjacent wells with identical 87Sr/86Sr but significantly different CO2 and alkaline earth concentrations imply CO2 migration from depth into a shallow aquifer, followed by dissolution of carbonate cement. (3) Sr isotope mixing models, when used in conjunction with other geochemical data, can be a strong indicator of decoupling between CO2 and its carrier fluid. Conservative isotope tracers such as 87Sr/86Sr could be an

  18. Sudbury project (University of Muenster-Ontario Geological Survey): Petrology, chemistry, and origin of breccia formations

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Deutsch, A.; Avermann, M.; Brockmeyer, P.; Lakomy, R.; Mueller-Mohr, V.

    1992-01-01

    Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.

  19. Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations

    SciTech Connect

    Benson, Dr. Sally; Cole, David R

    2008-01-01

    Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

  20. Geologic and Fossil Locality Maps of the West-Central Part of the Howard Pass Quadrangle and Part of the Adjacent Misheguk Mountain Quadrangle, Western Brooks Range, Alaska

    USGS Publications Warehouse

    Dover, James H.; Tailleur, Irvin L.; Dumoulin, Julie A.

    2004-01-01

    The map depicts the field distribution and contact relations between stratigraphic units, the tectonic relations between major stratigraphic sequences, and the detailed internal structure of these sequences. The stratigraphic sequences formed in a variety of continental margin depositional environments, and subsequently underwent a complexde formational history of imbricate thrust faulting and folding. A compilation of micro and macro fossil identifications is included in this data set.

  1. Geologic and hydrogeologic characteristics of the Ogallala Formation and White River Group, Belvoir Ranch near Cheyenne, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Diehl, Sharon F.; Hallberg, Laura L.; Webster, Daniel M.

    2014-01-01

    The geologic and hydrogeologic characteristics of Tertiary lithostratigraphic units (Ogallala Formation and White River Group) that typically compose or underlie the High Plains aquifer system in southeastern Wyoming were described physically and chemically, and evaluated at a location on the Belvoir Ranch in Laramie County, Wyoming. On the basis of this characterization and evaluation, three Tertiary lithostratigraphic units were identified using physical and chemical characteristics determined during this study and previous studies, and these three units were determined to be correlative with three identified hydrogeologic units composing the groundwater system at the study site—a high-yielding aquifer composed of the entire saturated thickness of the heterogeneous and coarse-grained fluvial sediments assigned to the Ogallala Formation (Ogallala aquifer); an underlying confining unit composed primarily of very fine-grained volcaniclastic sediments and mudrocks assigned to the Brule Formation of the White River Group and some additional underlying sediments that belong to either the Brule or Chadron Formation, or both (Brule confining unit); and an underlying low-yielding aquifer composed primarily of poorly sorted fluvial sediments assigned to the Chadron Formation of the White River Group (Chadron aquifer). Despite widely varying sediment heterogeneity and consolidation, some limited hydraulic connection throughout the full vertical extent of the Ogallala aquifer was indicated but not conclusively proven by interpretation of similar chemical and isotopic characteristics, modern apparent groundwater ages, and similar hydraulic-head responses measured continuously in two Ogallala aquifer monitoring wells installed for this study at two different widely separated (83 feet) depth intervals. Additional work beyond the scope of this study, such as aquifer tests, would be required to conclusively determine hydraulic connection within the Ogallala aquifer. Groundwater

  2. Geology and geochemistry of the La Luna Formation type sections in the Maracaibo basin, Venezuela

    SciTech Connect

    Baptista, N.; Scherer, W.

    1996-08-01

    The Upper Cretaceous La Luna Formation is the most important source rock of hydrocarbons in Western Venezuela. Curiously enough it has two type sections, the formation was first defined in 1926 in Perija on the western flank of the Maracaibo basin; 30 years later the La Aguada, Chejende and Timbetes members were defined 260 km toward the east, on the shelf of the basin. The purpose of this study is to compare these sections and to define the vertical and horizontal variability of geological and geochemical characteristics that might have influenced the generation of hydrocarbons. The study consisted of detailed, bed level sampling, macroscopic sedimentary descriptions, petrography of 168 thin sections with 40 variables recorded in a statistical data matrix for determination of lithomicrofacies, as well as geochemical analysis of total organic carbon (TOC), visual kerogen, Rock-Eval pyrolysis and gas chromatography. The western type section is characterized by alternating thinly laminated and massive bedded limestones. Thermally immature, amorphous organic matter of marine origin is abundant in this section; TOC values range from 0.23% to 8.56%, generally increasing toward the top. Hydrogen index values range from 327 to 1078, indicating good to excellent oil generating potential. The eastern type sections have a higher level of thermal maturity; they show increasing amounts of clastic material, less authigenic minerals and abundant Favreina sp crab fecal pellets. The mainly terrestrially derived organic matter concentrations are considerably less, ranging from 0.07 to 3.39, again increasing toward the top of the section.

  3. Geology of the Molina Member of the Wasatch Formation, Piceance Basin, Colorado

    SciTech Connect

    Lorenz, J.; Nadon, G.; LaFreniere, L.

    1996-06-01

    The Molina Member of the Wasatch Formation has been cored in order to assess the presence/absence and character of microbial communities in the deep subsurface. Geological study of the Molina Member was undertaken in support of the microbiological tasks of this project, for the purposes of characterizing the host strata and of assessing the potential for post-depositional introduction of microbes into the strata. The Molina Member comprises a sandy fluvial unit within a formation dominated by mudstones. Sandy to conglomeratic deposits of braided and meandering fluvial systems are present on the western and eastern margins of the basin respectively, although the physical and temporal equivalence of these systems cannot be proven. Distal braided facies of planar-horizontal bedded sandstones are recognized on the western margin of the basin. Natural fractures are present in all Molina sandstones, commonly as apparent shear pairs. Core from the 1-M-18 well contains natural fractures similar to those found in outcrops, and has sedimentological affinities to the meandering systems of the eastern margin of the basin. The hydrologic framework of the Molina, and thus any potential post-depositional introduction of microbes into the formation, should have been controlled by approximately east-west flow through the natural fracture system, the geometries and extent of the sandstones in which the fractures occur, and hydraulic gradient. Migration to the well site, from outcropping recharge areas at the edge of the basin, could have started as early as 40 million years ago if the cored strata are connected to the eastern sedimentary system.

  4. Geology and hydrocarbon reservoir potential of the Pituil and Barreal Formations, Calingasta Valley, western Argentina

    SciTech Connect

    Janks, J.S. ); Lopez-Gamundi, O.R.; Siegele, P.K. )

    1990-05-01

    The Calingasta basin is one of the north-south-trending intermontane basins informally known as the Bolsones. The stratigraphy consists of lower Paleozoic metamorphic basement overlain by sediments and volcanics of upper Paleozoic through Cenozoic age. Three distinct geological provinces are recognized within the Bolsones region: Sierras Pampeanas, Precordillera, and Cordillera Frontal. Outcrop samples from the Permian Pituil and Triassic Barreal formations from the Tamberias region of the Sierras Pampeanas province were analyzed to determine the composition, porosity type, and diagenetic modification. The Pituil formation is a shallow marine sequence overlying Carboniferous glaciomarine sediments. They grade eastward into nonmarine lacustrine, deltaic, and fluvial sandstones. The rocks are fine- to medium-grained litharenites with porosities of 6-10 %. Diagenetic modifications include quartz overgrowths, unstable grain dissolution, carbonate cements, pyrite, and kaolinite. Triassic deposits occur on the western flank of the Precordillera, overlying a basement of volcanics and metasedimentary rocks. The Triassic sediments can be several hundreds of meters thick; deposition occurred in fluvial to lacustrine environments. These clastic sediments are considered to be northern extensions of the hydrocarbon-productive sediments in the Cuyo basin. The Barreal formation ranges from clay-rich lithic wackes and shales to conglomeratic, volcaniclastic litharenites and sublitharenites. Framework grains consist of quartz, feldspars, rock fragments, and, rarely, glass shards. Cements include zeolites, carbonates, chalcedony, pyrite, and clays. Tuffs are found at certain intervals within the section; alteration to iron-rich smectite is common. Reservoir potential is highly variable. Porosities range from as low as 5% to greater than 25%.

  5. Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations

    SciTech Connect

    Cole, David R; Chialvo, Ariel A; Rother, Gernot; Vlcek, L.; Cummings, Peter T

    2010-01-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. A key aspect of this process is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We report the behavior of pure CO2 interacting with simple substrates, i.e. SiO2 and mica, that act as proxies for more complex mineralogical systems. Modeling of small-angle neutron scattering (SANS) data taken from CO2- silica aerogel (95% porosity; 6 nm pores) interactions indicates the presence of fluid depletion for conditions above the critical density. A theoretical framework, i.e. integral equation approximation (IEA), is presented that describes the fundamental behavior of near-critical adsorption onto a non-confining substrate that is consistent with SANS experimental results. Structural and dynamic behavior for supercritical CO2 interaction in K-mica slit pores was assessed by classical molecular dynamics (CMD). These results indicate the development of distinct layers of CO2 within slit pores, reduced mobility by one to two orders of magnitudes compared to bulk CO2 depending on pore size and formation of bonds between CO2 oxygens and H from mica hydroxyls. Analysis of simple, well-characterized fluid-substrate systems can provide details on the thermodynamic, structural and dynamic properties of CO2 at conditions relevant to sequestration.

  6. A Study of Geological Formation on Different Sites in Batu Pahat, Malaysia Based On HVSR Method Using Microtremor Measurement

    NASA Astrophysics Data System (ADS)

    Noor, M. A. M.; Madun, A.; Kamarudin, A. F.; Daud, M. E.

    2016-07-01

    Geological formation is a one of information need to know during site reconnaissance. Conventional method like borehole has been known is very accurate to identify the formation of geology of a site. However, the problem of this technique is very expensive and not economical for large area. In the last decade, microtremor measurement has been introduced as an alternative technique and widely used in the geological formation study. Therefore, the aim in this study is to determine the geological formation underneath of surface in Batu Pahat district using microtremor measurement. There are two parameters have been carried out from microtremor measurement in term of natural frequency and HVSR curves images. Microtremor measurements are done conducted at 15 sites surrounding of Batu Pahat. Horizontal to vertical spectral ratio (HVSR) method was used for analyzing microtermor measurement data, to determine the natural frequency and also HVSR curves image. In this study, values of natural frequencies are used to classify the soil types with range in the between 0.93 to 5.35 Hz, meanwhile the pattern of HVSR curve images has been shown exists a few groups of soil types surrounding Batu Pahat district. Hence, microtremor measurement indirectly can be used as a one technique to add value in the site reconnaissance in the future.

  7. Process and device for injecting a liquid agent used for treating a geological formation in the vicinity of a well bore traversing this formation

    SciTech Connect

    Colonna, J.; Fitremann, Jm.; Genin, R.; Sarda, Jp.

    1984-02-14

    A technique is disclosed for liquid treating a geological formation. It comprises spraying the liquid with a pressurized carrier gas, using a spraying pipe whose length and diameter are adjusted as a function of the pressure prevailing at the level of the formation and of the characteristics of the injected liquid and the pressurized carrier gas, so that the size of the liquid droplets at the outlet of the spraying pipe has a narrow range of distribution about a single preselected value.

  8. Comparison of Publically Available Methodologies for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Strazisar, B. R.; Guthrie, G. D.; Bromhal, G.

    2012-12-01

    High-level estimates of CO2 storage potential at the national, regional, and basin scale are required to assess the potential for carbon capture, utilization, and storage (CCUS) technologies to reduce CO2 emissions for application to saline formations. Both private and public entities worldwide rely on CO2 storage potential estimates for broad energy-related government policy and business decisions. High-level estimates of CO2 geologic storage potential, however, have a high degree of uncertainty because the assessments rely on simplifying assumptions due to the deficiency or absence of data from the subsurface associated with areas of potential storage in saline formations and the natural heterogeneity of geologic formations in general, resulting in undefined rock properties. As site characterization progresses to individual CO2 storage sites, additional site-specific data will likely be collected and analyzed that will allow for the refinement of high-level CO2 storage resource estimates and development of CO2 storage capacities. Until such detailed characterization can be documented, dependable high-level CO2 storage estimates are essential to ensure successful widespread deployment of CCUS technologies. Initiatives for assessing CO2 geologic storage potential have been conducted since 1993. Although dependable high-level CO2 storage estimates are essential to ensure successful deployment of CCUS technologies, it is difficult to assess the uncertainty of these estimates without knowing how the current methodologies targeted at high-level CO2 storage resource estimates for saline formations compare to one another. In this study, we compare high-level CO2 methodologies for development of geologic storage estimates for CO2 in saline formations to assess the uncertainty associated with various methodologies. The methodologies applied are listed as follows: (1) U.S. DOE Methodology: Development of Geologic Storage Potential for Carbon Dioxide at the National and

  9. Nuclear Waste Disposal in Deep Geological Formations: What are the Major Remaining Scientific Issues?

    SciTech Connect

    Toulhoat, Pierre

    2007-07-01

    For more than thirty years, considerable efforts have been carried out in order to evaluate the possibility of disposing of high level wastes in deep geological formations. Different rock types have been examined, such as water-under-saturated tuffs (USA), granites or crystalline rocks (Canada, Sweden, and Finland), clays (France, Belgium, and Switzerland), rock-salt (Germany). Deep clays and granites, (provided that the most fractured zones are avoided in the second case) are considered to fulfill most allocated functions, either on short term (reversibility) or long term. Chemically reducing conditions favor the immobilization of actinides and most fission products by precipitation, co-precipitation and sorption. If oxidizing conditions prevail, the safety demonstration will mostly rely on the performance of artificial confinement systems. Rock-salt offers limited performance considering the issue of reversibility, which is now perceived as essential, mostly for ethical and sociological reasons. However, several issues would deserve additional research programs, and as a first priority, a clear description of time/space succession of processes during the evolution of the repository. This will allow a better representation of coupled processes in performance assessment, such as the influence of gases (H{sub 2}) generated by corrosion, on the long term dynamics of the re-saturation. Geochemical interactions between the host formation and the engineered systems (packages + barriers) are still insufficiently described. Additional gains in performance could be obtained when taking into account processes such as isotopic exchange. Imaginative solutions, employing ceramic- carbon composite materials could be proposed to replace heavy and gas-generating overpacks, or to accommodate the small but probably significant amount of 'ultimate' wastes that will be inevitably produced by Generation IV reactor systems. (author)

  10. Mercury's hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance

    NASA Astrophysics Data System (ADS)

    Blewett, David T.; Vaughan, William M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Ernst, Carolyn M.; Helbert, JöRn; D'Amore, Mario; Maturilli, Alessandro; Head, James W.; Solomon, Sean C.

    2013-05-01

    unique to Mercury, hollows are shallow, flat-floored irregular depressions notable for their relatively high reflectance and characteristic color. Here we document the range of geological settings in which hollows occur. Most are associated with impact structures (simple bowl-shaped craters to multiring basins, and ranging from Kuiperian to Calorian in age). Hollows are found in the low-reflectance material global color unit and in low-reflectance blue plains, but they appear to be absent from high-reflectance red plains. Hollows may occur preferentially on equator- or hot-pole-facing slopes, implying that their formation is linked to solar heating. Evidence suggests that hollows form because of loss of volatile material. We describe hypotheses for the origin of the volatiles and for how such loss proceeds. Intense space weathering and solar heating are likely contributors to the loss of volatiles; contact heating by melts could promote the formation of hollows in some locations. Lunar Ina-type depressions differ from hollows on Mercury in a number of characteristics, so it is unclear if they represent a good analog. We also use MESSENGER multispectral images to characterize a variety of surfaces on Mercury, including hollows, within a framework defined by laboratory spectra for analog minerals and lunar samples. Data from MESSENGER's X-Ray Spectrometer indicate that the planet's surface contains up to 4% sulfur. We conclude that nanophase or microphase sulfide minerals could contribute to the low reflectance of the low-reflectance material relative to average surface material. Hollows may owe their relatively high reflectance to destruction of the darkening agent (sulfides), the presence of alteration minerals, and/or physical differences in particle size, texture, or scattering behavior.

  11. Geological factors controlling the utility of refractory dolomite: The Cambrian Ledger Formation dolomite, a case study

    SciTech Connect

    Furman, F.C.; Gregg, J.M.; Ablin, V.C.; Moore, R.E. )

    1993-03-01

    The Middle Cambrian Ledger Formation in eastern Pennsylvania is a high purity, single-stage-sintering dolomite. It yields high quality, direct bonded, environmentally clean, doloma bricks for steel, cement and lime industries use. Geological properties are controlled by the depositional environment, diagenesis, metamorphism, deformation, and rifting. The Middle Cambrian was a time of high sea level stand, high evaporation, low volcanism, and absence of land plants. This produced carbonates low in SiO[sub 2], Al[sub 2]O[sub 3], and Fe[sub 2]O[sub 3] (< 1%). Uniform oolite shoals developed on fault blocks. Early diagenesis dolomitized the [approx]1 mm oolites. The Taconic-Acadian Orogeny greenschist-metamorphism annealed the dolomite by heating it to 300--400 C, at [approx]2 kbar, for [approx]200 million years. This produced a homogeneous coarse crystalline, nonporous, nonplanar dolomite with uniform grain chemistry. Alleghenian overthrusting strained the dolomite, producing deformed oolite ghosts, and minor strain twins. Time, temperature, pressure, and strain increases sinterability and thus suitability of the dolomite for refractory purposes. Near Triassic faults the quality of the brickstone grade dolomite has been degraded to fettling and agricultural grade dolomite. Faulting produced dolomite twinning, polymictic brecciation, and fracture porosity. Karstification generated quartz, feldspar and hematite that filled the porosity. Triassic intrusions partial recrystallized the dolomite incorporating the impurities and thereby degrading it.

  12. Microbial characterization of basalt formation waters targeted for geological carbon sequestration.

    PubMed

    Lavalleur, Heather J; Colwell, Frederick S

    2013-07-01

    Geological carbon sequestration in basalts is a promising solution to mitigate carbon emissions into the Earth's atmosphere. The Wallula pilot well in Eastern Washington State, USA provides an opportunity to investigate how native microbial communities in basalts are affected by the injection of supercritical carbon dioxide into deep, alkaline formation waters of the Columbia River Basalt Group. Our objective was to characterize the microbial communities at five depth intervals in the Wallula pilot well prior to CO2 injection to establish a baseline community for comparison after the CO2 is injected. Microbial communities were examined using quantitative polymerase chain reaction to enumerate bacterial cells and 454 pyrosequencing to compare and contrast the diversity of the native microbial communities. The deepest depth sampled contained the greatest amount of bacterial biomass, as well as the highest bacterial diversity. The shallowest depth sampled harbored the greatest archaeal diversity. Pyrosequencing revealed the well to be dominated by the Proteobacteria, Firmicutes, and Actinobacteria, with microorganisms related to hydrogen oxidizers (Hydrogenophaga), methylotrophs (Methylotenera), methanotrophs (Methylomonas), iron reducers (Geoalkalibacter), sulfur oxidizers (Thiovirga), and methanogens (Methermicocccus). Thus, the Wallula pilot well is composed of a unique microbial community in which hydrogen and single-carbon compounds may play a significant role in sustaining the deep biosphere.

  13. Geologic reservoir model for the Triassic Doig Formation, northeast British Columbia, Canada

    SciTech Connect

    Moslow, T.F. ); Munroe, H.D. )

    1991-03-01

    A subsurface investigation of the mid-Triassic Doig formation in northeastern British Columbia documented two main reservoir facies. Both are a product of mass movement and sediment gravity flow processes on a progradational, tectonically active continental shelf margin. Substrate instability was likely a product of sediment loading, perhaps in concert with seismic activity. Sedimentary facies and reservoir parameters were determined from analysis of approximately 150 cores and 900 well logs. Laterally discontinuous Doig sandstones are up to 60 m thick and trend northeasterly within the study area. The main reservoir facies are incised density flow deposits and laterally extensive slump deposits. Reservoir quality within these sands is extremely variable with porosity ranging from less than 5% to 15%. In core, these deposits consist of moderately well sorted, very fine grained sandstones with no vertical grain size variation. The best production to date is in the Buick Creek field with initial flows of 346 BOPD. The slump deposits are thinner and tend to be more elongate parallel to paleoshoreline. These sands were subject to some wave or current reworking. Modern analogs where similar processes and products of deposition are known to occur include the Gulf of Alaska continental shelf and the Fraser River Delta slope. Doig sandstones usually are enclosed in fine-grained shelf deposits that provide a good stratigraphic trapping mechanism. Successful development of Doig reservoirs must incorporate geologic modes that assist in understanding the complex and highly variable reservoir quality of sandstones units.

  14. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    SciTech Connect

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  15. Mineral-resource assessments in Alaska; background information to accompany maps and reports about the geology and undiscovered-mineral-resource potential of the Mount Katmai Quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula

    USGS Publications Warehouse

    Riehle, J.R.; Church, S.E.; Detterman, R.L.; Miller, J.W.

    1994-01-01

    Geologic and geochemical field studies were carded out from 1983 to 1987 in the Mount Katmai l?x2 ? quadrangle and adjoining region, at the northeast end of the Alaska Peninsula. The region is nearly entirely within Katmai National Park and Preserve and has had almost no mineral production, so prior to this study there were few data by which to assess the mineral potential of the region. This report describes the folio of publications that have resulted from the study: geologic maps, geochemical results, fossil identifications, radiometric rock ages, and an assessment of the undiscovered-mineral-resource potential of the region. The Katmai region is inferred to potentially have three types of undiscovered mineral deposits: porphyry copper (molybdenum), precious-metal vein, and hot-springs gold. These deposit types occur elsewhere on the Alaska Peninsula in similar geologic units. Evidence suggesting their occurrence in the Katmai region is the presence of trace amounts of metals typically associated with these kinds of deposits in bedrock of certain tracts and in sediments of streams draining those tracts. Magma to provide heat, fractures to provide pathways for mineralizing fluids, and altered rock are required by genetic models of these deposit types. Such features do occur in the Katmai tracts. Confirmation of any mineral deposit in the Katmai region requires detailed follow-up sampling and acquisition of subsurface information, which is beyond the scope of this study. However, producing porphyry deposits are unknown elsewhere on the Alaska Peninsula in similar rocks, so if any such deposits occur in the Katmai region, they are likely to be few in number. Conversely, vein deposits are typically small in size so there may be several of such deposits. The properties and thermal history of the sedimentary rocks that could serve as reservoirs for oil or gas are unfavorable in adjacent regions. Thus the potential of the Katmai region for producible quantities of

  16. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  17. New geological aspects for freshwater seepage and formation in Eckernförde Bay, western Baltic

    NASA Astrophysics Data System (ADS)

    Jensen, Jørn B.; Kuijpers, Antoon; Bennike, Ole; Laier, Troels; Werner, Friedrich

    2002-10-01

    The subsurface geology relevant to the submarine freshwater seepage in Eckernförde Bay has been investigated using shallow seismic instruments and vibrocoring. Detailed surveying revealed that the pockmarks are aligned like pearls on a string or densely clustered in furrow-like structures depending on the glacial and postglacial setting of the underlying strata. Two possible aquifers have been verified: The older Miocene sand aquifer is partly sealed by a till unit forming the central part of the Mittelgrund. The younger aquifer consists of a mixture of glacial till and meltwater sediments partly sealed by till and partly by lateglacial galciolacustrine silt and clay sediments. The investigations imply that connections exist between the aquifers and that groundwater leakage takes place in the marginal zones of the bay due to thinning and coarsening of the sediment composition of the lateglacial seal. Within the seepage areas, the pockmarks are restricted to areas covered by unconsolidated Holocene mud of low thickness' that are easy to penetrate by artesian groundwater. Macrofossil studies and AMS 14C dating of the lateglacial and Holocene units reveal that the Mittelgrund shoal of glacial origin has been modified by coastal processes and formation of cuspate foreland deposits during the subsequent palaeo-lake phases of 15-20 m below the present sea level (b.s.l.). The lake phases correlate in time with the regional Baltic Ice Lake highstand about 10,000 14C years BP and the Ancylus Lake highstand about 9200 14C years BP. This means that local contemporary lakes existed or the western margin of the regional lakes can be moved considerably further west than expected hitherto. In the earliest phase of the Littorina Sea transgression, the Mittelgrund shoal was exposed to coastal erosion once more before the final drowning and the initiation of mud sedimentation in the surrounding basins took place.

  18. Effects of hydrologic modifications on salinity and formation of hypoxia in the Mississippi River-Gulf Outlet and adjacent waterways, southeastern Louisiana, 2008 to 2012

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Mize, Scott V.

    2014-01-01

    The Mississippi River-Gulf Outlet (MRGO) was constructed between 1958 and 1968 to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for ocean-going vessels. In 2006, the U.S. Congress directed the U.S. Army Corps of Engineers (USACE) to develop and implement a plan to deauthorize a portion of the MRGO ship channel from its confluence with the Gulf Intracoastal Waterway to the Gulf of Mexico. In 2009, in accordance with plans submitted to Congress, the USACE built a rock barrier across the MRGO near Hopedale, Louisiana. Following Hurricane Katrina, Congress also authorized the USACE to implement the Hurricane Storm Damage Risk Reduction System (HSDRRS) by building structures in the MRGO and adjacent surface waters, to reduce vulnerability of this area to storm surge. The HSDRRS includes the Gulf Intracoastal Waterway-Lake Borgne Surge Barrier and Gate Complex near mile 58 of the deauthorized portion of the MRGO and the Seabrook Gate Complex on the Inner Harbor Navigation Canal (IHNC). By blocking or limiting tidal exchange in the MRGO, these barriers could affect water quality in the MRGO and nearby waters including Lake Pontchartrain, the IHNC, and Lake Borgne. In 2008, the U.S. Geological Survey, in cooperation with the USACE, began a study to document the effects of the construction activities on salinity and dissolved oxygen in these surface waters. Data were collected from August 2008 through October 2012. Completion of the rock barrier in the vicinity of mile 35 in July 2009 reduced hydrologic circulation and separated the MRGO into two distinct salinity regimes, with substantially fresher conditions prevailing upstream from the rock barrier. The rock barrier also contributed to a zone of hypoxia (dissolved oxygen less than 2 milligrams per liter) that formed along the channel bottom during the warmer summer months in each year of this monitoring; the zone was much more developed downstream from the rock barrier. The most

  19. Multispectral Thermal Imagery and Its Application to the Geologic Mapping of the Koobi Fora Formation, Northwestern Kenya

    SciTech Connect

    Green, Mary K.

    2005-12-01

    The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixel in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic classes

  20. Assessment of the Geologic Carbon Dioxide Storage Resources of the Clinton, Medina, and Tuscarora Formations in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Doolan, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has completed an assessment of the geologic carbon dioxide (CO2) storage potential within the Appalachian Basin. This assessment was performed as part of the USGS national assessment of geologic CO2 storage resources in which individual sedimentary basins are divided into storage assessment units (SAUs) based on geologic characteristics such as lithology, porosity, permeability, reservoir depth, formation water salinity, and the presence of a regional sealing formation. This study focuses on the assessment of the Clinton, Medina and Tuscarora Formations storage assessment unit (SAU) that covers an area of 48.9 million acres in eastern Kentucky and Ohio, West Virginia, northern and western Pennsylvania, and southwestern New York. The areal extent of the SAU is defined on the western boundary by the 100 foot isopach contour of the combined Rochester and Rose Hill Shales that acts as the regional sealing formation and is defined by the 3,000 foot depth to top contour of the Clinton and Tuscarora Formations elsewhere. Depth-to-top and isopach contours were derived from IHS Energy Group, 2011 data for over 25,000 unique boreholes located throughout the area of the SAU. The Clinton, Medina and Tuscarora Formations SAU is composed of the porous intervals of the Lower to Middle Silurian strata that is bounded by the underlying Ordovician age Queenston Shale, and the overlying Silurian age Rochester and Rose Hill Shales. Porous intervals were deposited in a variety of wave and tidal dominated environments as a result of a Lower Silurian shoreline that prograded southeast to northwest. Porous units in the Tuscarora Formation in southwestern and central Pennsylvania and West Virginia are predominantly fine to medium grained sands of alluvial plain facies and those of the Clinton and Medina Formations in southwestern New York, northeastern Pennsylvania, eastern Ohio and northeastern Kentucky are typically fine grained quartzarenites deposited

  1. Numerical Simulation of Impacts of Hydrological Properties of Geologic Storage Formations on Injection Efficiency of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kihm, J.; Kim, J.

    2010-12-01

    A series of numerical simulations using a multiphase thermo-hydrological numerical model is performed to analyze groundwater flow, carbon dioxide flow, and heat transport due to geologic storage of carbon dioxide in a geologic storage formation (sandstone aquifer) and to evaluate impacts of its saturated (i.e., porosity and intrinsic permeability) and unsaturated (i.e., residual water saturation, residual gas saturation, gas-entry pressure, and van Genuchten’s exponent) hydrological properties on the injection efficiency of carbon dioxide. The numerical simulation results show that the hydrological properties of the storage formation have significant effects on the injection efficiency of carbon dioxide. Under a constant injection pressure of carbon dioxide, the injection rate and injectivity of carbon dioxide increase rapidly during the early period of carbon dioxide injection (about 2 weeks) and then increases monotonously until the end of carbon dioxide injection. The injection rate and injectivity of carbon dioxide are most sensitive to variations in the intrinsic permeability and van Genuchten’s exponent of the storage formation. They increase significantly as the intrinsic permeability and van Genuchten’s exponent of the storage formation increase, whereas they decrease slightly as the porosity and the residual gas saturation of the storage formation increase. However, they are most insensitive to variations in the residual water saturation and the gas-entry pressure of the storage formation. These results indicate that the injection efficiency of carbon dioxide is significantly dependent on the relative permeability, which is a function of the unsaturated hydrological properties (i.e., residual water saturation, residual gas saturation, gas-entry pressure, and van Genuchten’s exponent) of the storage formation, as well as its saturated hydrological properties (i.e., porosity and intrinsic permeability) in different degrees. Therefore it may be

  2. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple

  3. Numerical Study of Artificial Seal Formation to Remedy Leakage from Geological CO2 Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Ito, T.; Tanaka, H.; Xu, T.

    2011-12-01

    In the Carbon dioxide Capture and Storage (CCS), the CO2 is captured from emission source and stored into geological reservoirs at a depth below 800 m. The injected CO2 is less dense than water, and as a result, it tends to migrate upward. For trapping to inhibit the upward migration of CO2, the reservoirs should be covered with a sufficiently impermeable seal, i.e. caprock. However, the caprock may contain imperfections such as faults and fractures which will play a role of a high permeability path to arise leakage of the injected CO2 from the reservoirs. Pressurization with the injected CO2 can create fissures that may transmit CO2 through the caprock (Zoback and Zinke, 2002). Preparing for such risk of CO2 leakage through pre-existing and/or induced fractures, the International Energy Agency (IEA) has pointed out the importance of establishing a ready-to-use strategy for remediation of leakage from CO2 storage reservoirs (IEA, 2007). As one possibility to realize the strategy, we have proposed a concept to use an aqueous solution (Ito et al., 2006). The solution will have a sufficiently-low viscosity for passing through even small aperture, and it will not impact formation permeability as long as the solution is left as it is. When the solution encounters dissolved CO2, precipitation will occur due to chemical reaction. As a result, the permeability will be reduced by filling the pores and fractures in the rocks with the precipitates. In the present study, we demonstrated first this idea through laboratory experiments simulating subsurface condition at 1000 m deep, i.e. 10 MPa and 40 deg. C, and using a silicate solution reacting with CO2. In this case, the solution - CO2 reaction will produce precipitates of amorphous silica. The results of laboratory experiments show that the present method led to a 99 % permeability reduction in a glass-bead artificial rock even its initially-high permeability of few darcy. Such reduction of permeability was reproduced

  4. Geophysical investigation for the evaluation of the long-time safety of repositories and underground disposals in deep geological formations

    NASA Astrophysics Data System (ADS)

    Just, A.; Salinar Group

    2003-04-01

    The performance assessment of underground disposal facilities is an indispensable premise to ensure that repositories fulfil the requirements for permanent and safe disposal of hazardous waste. The geological barrier is supposed to be a virtually impermeable host formation like rock salt. The efficiency of the barrier is endangered by the presence of risk zones such as faults or fractures particularly with regard to water-bearing host rocks. Thus the evaluation of the long-time safety of the geological barrier has to be carried out with a minimum of invasion of the future host formation and a maximum of spatial coverage and resolution. Especially geophysical methods are suitable to investigate the geological barrier due to their non-destructive character and spatial information content. Three research projects supported by the German Federal Ministry of Education and Research (BMBF) are engaged in the design and enhancement of a complex geophysical measuring and evaluation system for the investigation of problem zones of the geological barrier in rock salt. The benefit of the combination of high-performance geophysical measuring techniques as seismics, DC-geoelectrics, ground penetrating radar (GPR), electromagnetics and sonar together with strong knowledge of regional salt geology is to increase essentially the reliability of the interpretation of underground measurements. The measuring methods and interpretation tools for host rock characterisation were applied, developed and improved in a flat salt seam structure of an inoperative salt mine in the Lower Harz region. The joint interpretation of the underground geophysical measurements revealed a by-then unknown wet zone, which was tectonically affected. With the scope of refining the complex geophysical measuring and evaluation system and transferring the precedingly acquired experiences to another type of host formation, an operating potassium salt mine in the vicinity of Hannover/Germany was chosen as a new

  5. Relation between methane hydrate-bearing formations and geological phenomena on the seafloor in the eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Nagakubo, S.; Kobayashi, T.; Inamori, T.; Saeki, T.; Shimoda, N.; Fujii, T.; Morita, S.; Tanahashi, M.

    2007-12-01

    In 2002, a series of high-resolution 3D seismic surveys was conducted in the Tokai-Oki, the Daini-Atsumi Knoll, the Kumano-nada in the eastern Nankai Trough, Japan. Research Consortium for Methane Hydrate Resources in Japan (MH21) conducted resource assessment of methane hydrate in the eastern Nankai Trough by various seismic data analyses combining results of the exploratory wells conducted in 2005. By these analyses, occurrence of methane hydrate in the eastern Nankai Trough is coming to light. The MH21 has also interpreted the relation between methane hydrate-bearing formations and various geological phenomena on the seafloor, such as pockmarks and carbonate outcrops, using the 3D seismic data in the three survey areas. Bathymetric maps and seafloor amplitude maps constructed by the high-resolution 3D data provided lots of information on the seafloor. Some areas show very high intensity on the seafloor amplitude maps. It is expected that the areas showing strong amplitude correspond to the distribution of carbonate outcrops which are likely precipitated by methane seep activities. By checking the seafloor amplitude maps, seismic sections and methane seep sites observed by the previous submersible dives, some significant correlations are recognized between methane hydrate-bearing formations and various phenomena on the seafloor. It may be likely that the occurrence of methane hydrate and the geological phenomena on the seafloor have a strong implication with some typical geologic structures, e.g. shallow fault, highly-permeable sediments and hydraulic fractures, which may control the fluid migration. Besides, in this study we learnt that bathymetric map and seafloor amplitude map constructed by the high- resolution 3D seismic data are very useful not only for interpretation of relation between methane hydrate-bearing formation and various phenomena on the seafloor but also for designing the following seafloor investigations. This study is conducted by the MH21.

  6. Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.

  7. Geology of East Egypt greenstone field in Neoproterozoic isoand arc: Reconstruction of Iron formation sedimentary environment.

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Suzuki, T.

    2015-12-01

    Geology of East Egypt greenstone-granit belt which is northern part of Nubia shield was identified neoproterozoic island arc amalgamated sections. There are several iron formation within these greenstone belt. Age data shows this iron formation may be overlaped during 700 Ma Snowball period, how ever, there is no detail report of well preserved ice related evidences. We now started detail field work for identified tectonic reconstruction, original stratigraphy around Iron formation and sedimentary environment during the iron formation sedimentation area. East Egyptian shield was divided three geology, Proterozoic greenstone complex, 700-600 Granitic domes and cover sequence (Hammamet Group). We focus three area to identified sedimentary environment of iron sedimentation. Along the north-south trend of Wadi EL Dabban area are, we named Wadi branch as West site is RW-0 ~ 12, East site is RE-0 ~ 12 from north to south. Northern area is structurally moderate, southern portion is north dipping. Southern portion was intruded by granite and several place contain granitic dikes. Northeast to eastern area are identified younger sedimentary sequence (Hammamat Group) which is unconformablly overlay on the other iron formation bearing greenstone belt. Structurally these area is divided four units. Wadi was divided by right-lateral strike-ship fault. The displacement are more than 3 km. Also north dipping faults are identified.East-West trend fault are divided two units. It is divided NE, SE, NW and NS units.SW unit is most well preserved thick sequence of the Iron formation. SW unit is well preserved iron formation sequence within thick volcaniclastics. This unit mostly north dipping around 40-60 degree. Structural repetition in not well understand. Reconstract stratigraphy in this unit is at least 4000m in thickness. 5 member is identified in this sequence. Several thin iron formations are observed with in pillow lava and volcaniclastic sequence. These very thick

  8. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin

    USGS Publications Warehouse

    Demir, I.; Seyler, B.

    1999-01-01

    Seventy-six samples of formation waters were collected from oil wells producing from the Aux Vases or Cypress Formations in the Illinois Basin. Forty core samples of the reservoir rocks were also collected from the two formations. Analyses of the samples indicated that the total dissolved solids content (TDS) of the waters ranged from 43,300 to 151,400 mg/L, far exceeding the 35,400 mg/mL of TDS found in typical seawater. Cl-Br relations suggested that high salinities in the Aux Vases and Cypress formation waters resulted from the evaporation of original seawater and subsequent mixing of the evaporated seawater with concentrated halite solutions. Mixing with the halite solutions increased Na and Cl concentrations and diluted the concentration of other ions in the formation waters. The elemental concentrations were influenced further by diagenetic reactions with silicate and carbonate minerals. Diagenetic signatures revealed by fluid chemistry and rock mineralogy delineated the water-rock interactions that took place in the Aux Vases and Cypress sandstones. Dissolution of K-feldspar released K into the solution, leading to the formation of authigenic illite and mixed-layered illite/smectite. Some Mg was removed from the solution by the formation of authigenic chlorite and dolomite. Dolomitization, calcite recrystallization, and contribution from clay minerals raised Sr levels significantly in the formation waters. The trend of increasing TDS of the saline formation waters with depth can be explained with density stratification. But, it is difficult to explain the combination of the increasing TDS and increasing Ca/Na ratio with depth without invoking the controversial 'ion filtration' mechanism.

  9. Mechanical and hydrological characterization of the near-field surrounding excavations in a geologic salt formation

    SciTech Connect

    Howard, Clifford L.

    2014-09-01

    The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are impermeable. Upon mining, the salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called the disturbed rock zone (DRZ).

  10. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  11. Geologic structure and altitude of the top of the Minnelusa Formation, northeastern Black Hills, South Dakota

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, Kathy R.

    1988-01-01

    This map shows the altitude of the top of the Permian--and Pennsylvanian age Minnelusa Formation, the deepest aquifer in the northeastern Black Hills for which there is sufficient data available to construct a structural map. The Minnelusa Formation outcrops in the western part of the map area and is more than 3 ,600 ft below land surface in the northeastern corner of the area. The formation consists of interbedded sandstone, sandy dolomite and limestone, shale, siltstone, gypsum, and anhydrite. The upper beds are an aquifer and the lower beds are a confining or semi-confining unit. Small anticlines and synclines parallel the Minnelusa outcrop. Domal structures and peaks in the study area are the result of Tertiary-age intrusions. (USGS)

  12. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    SciTech Connect

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  13. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    SciTech Connect

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  14. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  15. Geological formation - drill string dynamic interaction finite-element program (GEODYN). Phase 1. Theoretical description

    SciTech Connect

    Baird, J.A.; Apostal, M.C.; Rotelli, R.L. Jr.; Tinianow, M.A.; Wormley, D.N.

    1984-06-01

    The Theoretical Description for the GEODYN interactive finite-element computer program is presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit-Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates nonlinear, time-dependent, loading and boundary conditions.

  16. Phase 1 user instruction manual. A geological formation - drill string dynamic interaction finite element program (GEODYN)

    SciTech Connect

    Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.

    1984-06-01

    User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.

  17. Numerical Modeling of CO2 Sequestration in Geologic Formations -Recent Results and Open Challenges

    SciTech Connect

    Pruess, Karsten

    2006-03-08

    Rising atmospheric concentrations of CO2, and their role inglobal warming, have prompted efforts to reduce emissions of CO2 fromburning of fossil fuels. An attractive mitigation option underconsideration in many countries is the injection of CO2 from stationarysources, such as fossil-fueled power plants, into deep, stable geologicformations, where it would be stored and kept out of the atmosphere fortime periods of hundreds to thousands of years or more. Potentialgeologic storage reservoirs include depleted or depleting oil and gasreservoirs, unmineable coal seams, and saline formations. While oil andgas reservoirs may provide some attractive early targets for CO2 storage,estimates for geographic regions worldwide have suggested that onlysaline formations would provide sufficient storage capacity tosubstantially impact atmospheric releases. This paper will focus on CO2storage in saline formations.Injection of CO2 into a saline aquifer willgive rise to immiscible displacement of brine by the advancing CO2. Thelower viscosity of CO2 relative to aqueous fluids provides a potentialfor hydrodynamic instabilities during the displacement process. Attypical subsurface conditions of temperature and pressure, CO2 is lessdense than aqueous fluids and is subject to upward buoyancy force inenvironments where pressures are controlled by an ambient aqueous phase.Thus CO2 would tend to rise towards the top of a permeable formation andaccumulate beneath the caprock. Some CO2 will also dissolve in theaqueous phase, while the CO2-rich phase may dissolve some formationwaters, which would tend to dry out the vicinity of the injection wells.CO2 will make formation waters more acidic, and will induce chemicalrections that may precipitate and dissolve mineral phases (Xu et al.,2004). As a consequence of CO2 injection, significant pressurization offormation fluids would occur over large areas. These pressurizationeffects will change effective stresses, and may cause movement alongfaults

  18. Geology and hydrocarbon potential of Dawson Bay Formation carbonate unit (Middle Devonian), Williston basin, North Dakota

    SciTech Connect

    Pound, W.

    1988-07-01

    The Middle Devonian Dawson Bay Formation carbonate unit is present in the subsurface of North Dakota except where truncated by postdepositional erosion. The carbonate unit thickens from the erosional limit to a maximum thickness of 47.5 m (156 ft) in Renville County and reaches a maximum depth of 3798 m (12,460 ft) below the surface in McKenzie County. In North Dakota, a submarine hardground separates the carbonate unit from the underlying second red bed member of the Dawson Bay Formation. The upper contact with the Souris River Formation is conformable except in those areas where the Dawson Bay Formation was exposed to subaerial erosion prior to deposition of the Souris River sediments. The Dawson Bay carbonate unit is predominantly dolomitic and fossiliferous limestone or fossiliferous dolostone. The carbonate unit can be subdivided into five lithofacies on the basis of characteristic fossil fauna, flora, and other lithologic features. Lithofacies analysis of the Dawson Bay carbonates suggests a shallowing-upward succession of depositional environments and associated energy zones as follows: shallow epeiric sea (very low energy), stromatoporoid biostrome/bioherm (low energy), very shallow epeiric sea (very low energy), restricted shallow epeiric sea (extremely low energy), and shallow epeiric sea shoreline (variable energy). Eogenetic diagenesis includes color-mottling, dolomitization of micrite to microcrystalline dolomite with penecontemporaneous anhydrite replacement of cryptalgal mudstones and boundstones, cementation by sparry calcite, and vuggy porosity development. Mesogenetic diagenesis includes formation of mosaic dolomites, cementation by blocky equant calcite, neomorphism, pressure-solution, fracturing, halite cementation, and hydrocarbon emplacement.

  19. Geology of the oil and gas bearing Permian formation in the Polish Lowlands

    SciTech Connect

    Pokorski, J.; Wagner, R. )

    1993-09-01

    Permian rocks occur over more than 80% of the Polish territory and, in middle Poland, they occur at considerable depth, from 2 to 6 km. The Early Permian was a period of long-lasting intensive volcanic activity. The Late Permian and Zechstein began with desert deposition which was followed by evaporitic deposition of a shallow epicontinental sea. The middle Polish trough (MPT) constituted the central part of the late Permian basin and was the site of the earliest and longest deposition with the most intensive periodical subsidence not compensated by sedimentation. Subsidence rate and syndepositional faulting substantially controlled the paleogeographic pattern. The final structure of the oil and gas fields was caused by late diagenesis and Upper Cretaceous structural remodeling. The upper Rotliegendes have the biggest natural gas fields. Reservoir rocks are sandstone and sandstones interfingering with conglomerates in tectonically active zones. The most promising areas for hydrocarbon exploration are the marginal parts of the basin (UPL) and the contact zone between MPT and the adjacent platforms. In the central part of the basin, the most promising are sandstone complexes on elevated tectonic blocks. Zechstein hydrocarbon fields occur in carbonate horizons of the first three cycles (PZ1, PZ2, and PZ3). In some areas, the Zechstein limestones (Cal), constitute the natural gas reservoir. Main dolomite (Ca2), oil, gas, and condensate fields are connected with the carbonate platform or its slope. Source rocks for oil occur in the Ca2 basinal facies or in the deeper parts of the platform-type lagoons. Oil migration is short and lateral, from either the basin or lagoon, toward the carbonate platform. Gas in Ca2 derived from the sub-Zechstein basement and migrated vertically along fault zones. The most prospective areas are reservoir horizons of the carbonate platform occurring in the near source rocks. The play dolomite Ca3 is not very promising.

  20. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.

    PubMed

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-03-07

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.

  1. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  2. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements

    NASA Astrophysics Data System (ADS)

    Davis, Caroline A.; Atekwana, Estella; Atekwana, Eliot; Slater, Lee D.; Rossbach, Silvia; Mormile, Melanie R.

    2006-09-01

    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies.

  3. The geology and mineralogy of Ritchey crater, Mars: Evidence for post-Noachian clay formation

    NASA Astrophysics Data System (ADS)

    Sun, Vivian Z.; Milliken, Ralph E.

    2014-04-01

    Widespread detection of phyllosilicates (clay minerals) in Noachian (>3.5 Ga) terrains on Mars and their paucity in younger terrains have led to the hypothesis that Noachian conditions were more clement than the colder, drier conditions that have since followed. However, recent clay detections in several Hesperian impact craters suggest that fluvial transport and alteration were possible after the posited early era of phyllosilicate formation. Here we present evidence that rocks within Hesperian age Ritchey crater (28.5°S, 51°W) record a period of post-Noachian fluvial transport and in situ alteration. This resulted in the transport of clays from the crater wall to the crater floor and the formation of hydrated silica and Fe/Mg smectite in Ritchey's central uplift. Clay minerals associated with central uplifts are commonly interpreted to represent preexisting clays excavated from depth, potentially providing insight into older crustal clay-forming processes. Here we present detailed geomorphic and mineralogic maps and show that the clays in Ritchey's central peak formed after or as a direct result of the impact and are thus Hesperian or younger. Clays on the crater wall were either preexisting clays exposed by the impact or formed in situ through postimpact water-rock interaction. In either scenario, some of these clays were likely subsequently transported to the crater floor by fluvial-alluvial processes in a source-to-sink system. In this context, the hydrated phases in Ritchey indicate several different formation and transport mechanisms and provide further evidence that near-surface clay mineral formation, and thus habitable conditions, existed on Mars after the Noachian.

  4. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  5. Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations

    SciTech Connect

    Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

    2014-03-01

    Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

  6. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  7. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  8. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  9. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  10. 30 CFR 784.22 - Geologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., at a minimum, the following: (1) A description of the geology of the proposed permit and adjacent... mining. This description shall include the areal and structural geology of the permit and adjacent areas... structural geology may affect the occurrence, availability, movement, quantity and quality of...

  11. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    SciTech Connect

    Neeraj Gupta

    2009-09-30

    Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

  12. Geologic map of the Peach Orchard Flat quadrangle, Carbon County, Wyoming, and descriptions of new stratigraphic units in the Upper Cretaceous Lance Formation and Paleocene Fort Union Formation, eastern Greater Green River Basin, Wyoming-Colorado

    USGS Publications Warehouse

    Honey, J.D.; Hettinger, R.D.

    2004-01-01

    This report provides a geologic map of the Peach Orchard Flat 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. In addition, four lithostratigraphic units were named: the Red Rim Member of the Upper Cretaceous Lance Formation, and the China Butte, Blue Gap, and Overland Members of the Paleocene Fort Union Formation.

  13. Evaluation of Injection Efficiency of Carbon Dioxide Using an Integrated Injection Well and Geologic Formation Numerical Simulation Scheme

    NASA Astrophysics Data System (ADS)

    Kihm, J.; Park, S.; Kim, J.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A series of integrated injection well and geologic formation numerical simulations was performed to evaluate the injection efficiency of carbon dioxide using a multiphase thermo-hydrological numerical model. The numerical simulation results show that groundwater flow, carbon dioxide flow, and heat transport in both injection well and sandstone formation can be simultaneously analyzed, and thus the injection efficiency (i.e., injection rate and injectivity) of carbon dioxide can be quantitatively evaluated using the integrated injection well and geologic formation numerical simulation scheme. The injection rate and injectivity of carbon dioxide increase rapidly during the early period of time (about 10 days) and then increase slightly up to about 2.07 kg/s (equivalent to 0.065 Mton/year) and about 2.84 × 10-7 kg/s/Pa, respectively, until 10 years for the base case. The sensitivity test results show that the injection pressure and temperature of carbon dioxide at the wellhead have significant impacts on its injection rate and injectivity. The vertical profile of the fluid pressure in the injection well becomes almost a hydrostatical equilibrium state within 1 month for all the cases. The vertical profile of the fluid temperature in the injection well becomes a monotonously increasing profile with the depth due to isenthalpic or adiabatic compression within 6 months for all the cases. The injection rate of carbon dioxide increases linearly with the fluid pressure difference between the well bottom and the sandstone formation far from the injection well. In contrast, the injectivity of carbon dioxide varies unsystematically with the fluid pressure difference. On the other hand, the reciprocal of the kinematic viscosity of carbon dioxide at the well bottom has an excellent linear relationship with the injectivity of carbon dioxide. It indicates that the above-mentioned variation of the injectivity of carbon dioxide can be corrected using this linear relationship. The

  14. Geology of the reading prong

    SciTech Connect

    Schutz, D.

    1987-03-01

    For over a billion years the geological terrain now called New Jersey has been the site of unusually high uranium concentrations. Although the highest of these concentrations occurs in the Reading Prong, the area is itself only part of a larger geologic province extending to the northeast and southwest. The rocks in the Reading Prong are not uniformly radioactive. High uranium concentrations tend to be associated with magnetite deposits - metamorphic equivalents of iron-rich formations - and with pegmatites - rocks formed by precipitation from mineralizing solutions in the late phases of granite emplacement. Because of the way they were formed, the uranium-bearing magnetite and pegmatite bodies tend to be long and narrow, and the resulting patterns of radon occurrence can be expected to be the same. This may explain why, in some places, adjacent houses have very different radon concentrations.

  15. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  16. Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations

    SciTech Connect

    Bandara, Uditha C.; Tartakovsky, Alexandre M.; Palmer, Bruce J.

    2011-11-01

    Geological sequestration of CO{sub 2} gas emerged as a promising solution for reducing amount of green house gases in atmosphere. A number of continuum scale models are available to describe the transport phenomena of CO{sub 2} sequestration. These models rely heavily on a phenomenological description of subsurface transport phenomena and the predictions can be highly uncertain. Pore-scale models provide a better understanding of fluid displacement processes, nonetheless such models are rare. In this work we use a Smoothed Particle Hydrodynamics (SPH) model to study pore-scale displacement and capillary trapping mechanisms of super-critical CO{sub 2} in the subsurface. Simulations are carried out to investigate the effects of gravitational, viscous, and capillary forces in terms of Gravity, Capillary, and Bond numbers. Contrary to the other published continuum scale investigations, we found that not only Gravity number but also Capillary number plays an important role on the fate of injected CO{sub 2}. For large Gravity numbers (on the order of 10), most of the injected CO{sub 2} reaches the cap-rock due to gravity segregation. A significant portion of CO{sub 2} gets trapped by capillary forces when Gravity number is small (on the order of 0.1). When Gravity number is moderately high (on the order of 1), trapping patterns are heavily dependent on Capillary number. If Capillary number is very small (less than 0.001), then capillary forces dominate the buoyancy forces and a significant fraction of injected CO{sub 2} is trapped by the capillary forces. Conversely, if Capillary number is high (higher than 0.001), capillary trapping is relatively small since buoyancy dominates the capillary forces. In addition, our simulations reveal different types of capillary trapping and flow displacement mechanisms during and after injection. In gravity dominated cases leave behind was the widespread trapping mechanism. Division was the primary trapping mechanism in viscous

  17. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  18. Geological setting of oil shales in the Permian phosphoria formation and some of the geochemistry of these rocks

    USGS Publications Warehouse

    Maughan, E.K.

    1983-01-01

    Mountains. The basin is composed of land areas in Colorado, the Humboldt highland in northeastern Nevada and intervening carbonate shelves in Utah and Wyoming. The phosphorites and the carbonaceous mudstones were deposited on the foreslope between the carbonate and littoral sand deposits on the shelf and the dominantly cherty mudstone sediments in the axial part of the basin. Paleomagnetic evidence indicates that in the Permian the region would have been within the northern hemispheric trade wind belt; and wind-direction studies determined from studies of sand dunes, indicate that the prevailing winds from the Milk River uplift would have blown offshore across the Phosphoria sea. Offshore winds would have carried surface water away from the shore and generated upwelling in the sea in eastern Idaho and adjacent areas in Montana, Wyoming and Utah. Prior to deposition of the Phosphoria, the region was the site of extensive deposition of shallow-water carbonate sediments. Equivalent rocks in the northern part of the basin are dominantly sandstone derived from the adjacent Milk River uplift and similar sandstone strata in the southeastern sector were derived from the ancestral Rocky Mountains uplift. Tectonic subsidence of the Sublett basin in part of the region seems to have provided a sea-floor profile favorable for upwelling circulation and the shift in deposition from regional carbonates and local sandstone into a more complex depositional pattern that included the accumulation of the mudstone-chert-phosphorite facies that comprises the Phosphoria Formation. High biological productivity and the accumulation of sapropel on the sea floor is associated with contemporary coastal upwelling (1) and similar environmental and depositional conditions are attributed to the rich accumulations of organic matter in the Phosphoria Formation. Sapropelic mudstone and phosphorite composing the Meade Peak Member are approximately 60 m thick near the center of the Sublett basin. The Meade

  19. Formation of flower structures in a geological layer at a strike-slip displacement in the basement

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.

    2015-07-01

    Formation of dislocations in a geological layer at a strike-slip displacement in its basement is studied by three-dimensional (3D) numerical modeling. It is shown that the pattern of strain localization is determined by the initial stress state or thickness of the deformed layer as well as by the Poisson ratio and strength of the medium. Three types of fracture zones are observed. Shear bands of the first type are dominated by the propeller-like surfaces of Riedel R-shears, which merge into a single main fault with feathering structures. In the second type of dislocation zones, the primary role is played by the surfaces oriented at an angle of ˜40° to the shear axis in the horizontal projections. After reaching the free surface, these discontinuities are cut by a V-shaped fault. In this case, the pattern of dislocations most closely corresponds to the flower structures. The third type is a trough, which may accommodate the formation of yet another strain localization zone along its axial part—a vertical fault.

  20. The upper Bow Island (Blackleaf) Formation of southwestern Alberta: Geological aspects and exploration approaches

    SciTech Connect

    Putnam, P.E.; Christensen, S.L. )

    1991-06-01

    The upper parts of the Bow Island Formation (Albian) of southwestern Alberta are significant gas reservoirs. The main westernmost reservoir zone is part of a complex package of interbedded lenticular sandstones, mudstones, and localized chert pebble conglomerates. The depositional setting for these sediments comprised a wave-dominated shoreline with conglomerates found proximal to drowned river mouths. The coarse nature of the upper Bow Island is related to tectonic movements associated with Crowsnest (Vaughn) volcanism. Conglomerates form the most impressive Bow Island reservoirs because of their thickness (up to 25 m) and petrophysical properties (17% porosity, 24 d permeability). Diagenesis dominantly comprises compaction features within grain-supported conglomerates. Increasing quartz content is related to decreasing grain size and is associated with porosity occlusion by quartz overgrowths. Bow Island reservoirs in southwestern Alberta are cool (under 50C) and significantly underpressured (0.2 psi). The high permeabilities and low pressures at depths of 1,000 to 1,500 m suggest the potential for formation damage is high, and many wells in the region were targeted for deeper, high-pressure zones. In spite of the low pressures, however, many Bow Island wells are capable of excellent gas deliveries with individual well recoveries of up to 10 bcf. All significant Bow Island porosity in the deepest, undisturbed parts of southwestern Alberta is gas saturated with updip aquifers flanking the gas. Seismic definition of the thickest Bow Island targets is feasible but has been hampered, in part, by difficult surface conditions and a prior emphasis on deeper targets.

  1. Geologic controls on the formation of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.; Pitman, Janet K; Carroll, Alan R.

    1998-01-01

    Fluid exchange between surficial waters and groundwater, as well as the processes that control this exchange, are of critical concern to water management districts and planners. Digital high-resolution seismic systems were used to collect geophysical data from 30 lakes of north-central Florida. Although using seismic profile data in the past has been less than successful, the use of digital technology has increased the potential for success. Seismic profiles collected from the lakes of north-central Florida have shown the potential application of these techniques in understanding the formation of individual lakes. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: 1) karstification or dissolution of the underlying limestone, and 2) me collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Lake size and shape are a factor of the thickness of overburden and size of the collapse or subsidence and/or clustering of depressions allowing for lake development. Lake development is through progressive sequence stages to maturity that can be delineated into geomorphic types. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young) - the open to partially filled collapse structures typically associated with sink holes; (2) transitional phase (middle age) - the sinkhole is plugged as the voids within the collapse are filled with sediment, periodic reactivation may occur; (3) baselevel phase (mature) - active sinkholes are progressively plugged by the continual erosion of material into the basin, and eventually sediment fills the basins; and (4) polje (drowned prairie) - broad flat-bottom basins located within the epiphreatic zone that are inundated at high

  2. Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas: A future shale gas resource?

    USGS Publications Warehouse

    Hackley, Paul C.

    2012-01-01

    As part of an assessment of undiscovered hydrocarbon resources in the northern Gulf of Mexico onshore Mesozoic section, the U.S. Geological Survey (USGS) evaluated the Lower Cretaceous Pearsall Formation of the Maverick Basin, south Texas, as a potential shale gas resource. Wireline logs were used to determine the stratigraphic distribution of the Pearsall Formation and to select available core and cuttings samples for analytical investigation. Samples used for this study spanned updip to downdip environments in the Maverick Basin, including several from the current shale gas-producing area of the Pearsall Formation.The term shale does not adequately describe any of the Pearsall samples evaluated for this study, which included argillaceous lime wackestones from more proximal marine depositional environments in Maverick County and argillaceous lime mudstones from the distal Lower Cretaceous shelf edge in western Bee County. Most facies in the Pearsall Formation were deposited in oxygenated environments as evidenced by the presence of biota preserved as shell fragments and the near absence of sediment laminae, which is probably caused by bioturbation. Organic material is poorly preserved and primarily consists of type III kerogen (terrestrial) and type IV kerogen (inert solid bitumen), with a minor contribution from type II kerogen (marine) based on petrographic analysis and pyrolysis. Carbonate dominates the mineralogy followed by clays and quartz. The low abundance and broad size distribution of pyrite are consistent with the presence of oxic conditions during sediment deposition. The Pearsall Formation is in the dry gas window of hydrocarbon generation (mean random vitrinite reflectance values, Ro = 1.2–2.2%) and contains moderate levels of total organic carbon (average 0.86 wt. %), which primarily resides in the inert solid bitumen. Solid bitumen is interpreted to result from in-situ thermal cracking of liquid hydrocarbon generated from original type II kerogen

  3. Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado

    SciTech Connect

    Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. )

    1996-01-01

    Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

  4. Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado

    SciTech Connect

    Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

    1996-12-31

    Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

  5. Timing of chaotic terrain formation in Argadnel Regio, Europa, and implications for geological history

    NASA Astrophysics Data System (ADS)

    Parro, Laura M.; Ruiz, Javier; Pappalardo, Robert T.

    2016-10-01

    Chaos terrains are among the most prominent landforms of Europa, and are generally among the youngest features recorded on the surface. Chaos units were formed by to endogenic activity, maybe related to solid-state convection and thermal diapirism in the ice shell, perhaps aided by melting of salt-rich ice bodies below the surface. In this work, we analyze the different units of chaotic terrain in a portion of Argadnel Regio, a region located on the anti-Jovian hemisphere of Europa, and their possible timing in the general stratigraphic framework of this satellite. Two different chaos units can be differentiated, based on surface texture, morphology, and cross-cutting relationships with other units, and from interpretations based on pre-existing surface restoration through elimination of a low albedo band. The existence of two stratigraphically different chaos units implies that conditions for chaos formation occurred during more than a single discreet time on Europa, at least in Argadnel Regio, and perhaps in other places. The existence of older chaos units on Europa might be related to convective episodes possibly favored by local conditions in the icy shell, such as variations in grain size, abundance of non-water ice-components, or regional thickness of the brittle lithosphere or the entire ice shell.

  6. Geochemical Characteristics and its Geological Significance of Oil Shale from the Youganwo Formation, Maoming Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Yuanyuan; Qiu, Nansheng

    2016-04-01

    Geochemical elements of oil shale in the Maoming Basin were analyzed to discuss provenance attribute and depositional environment of the Youganwo formation. Experimental date of the major elements, trace elements and rare earth elements of 24 samples from the Maoye 1 well were examined.The analyzed oil shale samples were characterized by enrichment of Th, U, Pb and LREE, depleted of Zr, Cr and Hf,negative Eu and Ce anomalies, indicating that these samples were originated from continental crust. The chemical index of alteration (CIA) values and the Zr/Sc-Th/Sc diagrams indicate that source rocks had undergone intense chemical weathering and deposition recirculation. Based on the La/Th-Hf and La/Yb-∑REE diagrams and the negative anomaly of Eu element, the oil shale in the Maoming Basin has diverse sources, which mainly came from felsic source region of the upper crust or the mixture of felsic volcanic rocks, granite and sedimentary rocks. Ratios of the Sr/Cu, MgO/CaO suggest that oil shale was formed in fresh water under warm and humid climate, shallow water column became deeper during the middle and late sedimentary period. The depositional environment is interpreted to be limnetic with weak reduction at the early stage and gradually turned into semi-deep to deep lacustrine.

  7. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect

    Not Available

    1985-01-01

    During the reported year we have enhanced our knowledge on and gained considerable experience in assessment of the gas hydrate resources in the offshore environments. Specifically, we have learned and gained experience in the following: Efficiently locating data sources, including published literature and unpublished information. We have established personal communication extremely critical in data accessability and acquisition. We have updated information pertinent to gas hydrate knowledge, also based on thorough study and evaluation of most Russian literature and additional publications in languages other than English. Besides critical evaluation of widely spread literature, in many cases our reports include previously unpublished information (e.g. BSRs from the Gulf of Mexico). The assessment of the gas resources potential associated with the gas hydrates, although in most cases at a low level of confidence, appears also very encouraging for further, more detailed, study. We are also confident that, because of the present reports' format, new data and a concept-oriented approach, the result of our study will be of strong interest to various industries, research institutions and numerous governmental agencies.

  8. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  9. Geologic uses of formation microscanner (FMS) in Antelope Shale Cymric field, San Joaquin Valley, California

    SciTech Connect

    White, R.E.

    1989-04-01

    A comparison between formation microscanner (FMS) log and core from the Cymric field was made to determine the effectiveness of the FMS in characterizing the Antelope Shale. Comparisons of the FMS log and core were based on a detailed core description, petrography, scanning electron microscopy (SEM), and mineralogical analysis. Results indicate that the FMS log in the Antelope Shale is useful for (1) distinguishing between certain rock types, (2) determining bed thickness and bedding-plane orientations, and (3) detecting some fractures and determining some fracture-plane orientations. However, the FMS log shows some ambiguous responses that can be interpreted only by comparison with the core or other wireline logs. Based on resistivity contrasts, three rock-type groups can be distinguished. From least to most resistive, they are (1) mudstone, (2) argillaceous diatomite/Porcelanite, and (3) sandstone, dolostone, clay-poor porcelanite, and chert. A bed thickness of 1 cm or greater can be resolved using the FMS. Bedding-plane orientations can also be determined and provide a means to orient the core. Detection of fractures in the Antelope Shale is generally limited to those fractures within rock type that display intermediate ranges of resistivity and to the large-scale fractures. Fracture-plane orientations of some fractures can be determined; however, because of poor fracture development in the majority of Antelope Shale rock types, fractures are commonly not visible on both FMS-pad images. This makes determination of fracture-plane orientation difficult, if not impossible, for many of these fractures.

  10. Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain).

    PubMed

    Arrieta, N; Goienaga, N; Martínez-Arkarazo, I; Murelaga, X; Baceta, J I; Sarmiento, A; Madariaga, J M

    2011-10-01

    Beachrocks are coastal sedimentary formations resulting from a relative rapid cementation of beach sediments by the precipitation of carbonate cements. These lithified structures are not usually observed at temperate settings. The present work is focused on the occurrence of a significant intertidal cementation in sand-gravel beaches formed among 43°N latitude coastline, close to the Nerbioi-Ibaizabal estuary (Bilbao, Bay of Biscay, North of Spain). Raman micro-spectroscopy combined with SEM-EDX analyses and petrographic descriptions have been applied for the determination of the cement generations and the cemented materials compositions of the beachrock outcrops. In general terms, the cements described were: Cement Generation 1 (CG 1, aragonite, high-magnesium calcite and silicate mixtures), Cement Generation 2 (CG 2, aragonite) and Cement Generation 3 (CG 3, mixtures of CaCO(3) polymorphs and iron oxides). The rest of the interstitial porosity of the rocks appeared either empty or filled with heterogeneous cemented mixtures of previously reworked compounds. The mineralogy, the regular distribution and the isopachous character of the carbonate cements together with the accurate cementation at advanced seaward bands propose a possible marine-phreatic context for the beachrock formation. However, the impure cements and the materials covering the interstitial porosity seem to be the result of both, the weathering actions consequences and the surface alterations of specific grains. Moreover, the presence of modern cemented materials (e.g. slag, bricks and pebbles) suggest a recent formation of the phenomenon. PMID:21420895

  11. Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain).

    PubMed

    Arrieta, N; Goienaga, N; Martínez-Arkarazo, I; Murelaga, X; Baceta, J I; Sarmiento, A; Madariaga, J M

    2011-10-01

    Beachrocks are coastal sedimentary formations resulting from a relative rapid cementation of beach sediments by the precipitation of carbonate cements. These lithified structures are not usually observed at temperate settings. The present work is focused on the occurrence of a significant intertidal cementation in sand-gravel beaches formed among 43°N latitude coastline, close to the Nerbioi-Ibaizabal estuary (Bilbao, Bay of Biscay, North of Spain). Raman micro-spectroscopy combined with SEM-EDX analyses and petrographic descriptions have been applied for the determination of the cement generations and the cemented materials compositions of the beachrock outcrops. In general terms, the cements described were: Cement Generation 1 (CG 1, aragonite, high-magnesium calcite and silicate mixtures), Cement Generation 2 (CG 2, aragonite) and Cement Generation 3 (CG 3, mixtures of CaCO(3) polymorphs and iron oxides). The rest of the interstitial porosity of the rocks appeared either empty or filled with heterogeneous cemented mixtures of previously reworked compounds. The mineralogy, the regular distribution and the isopachous character of the carbonate cements together with the accurate cementation at advanced seaward bands propose a possible marine-phreatic context for the beachrock formation. However, the impure cements and the materials covering the interstitial porosity seem to be the result of both, the weathering actions consequences and the surface alterations of specific grains. Moreover, the presence of modern cemented materials (e.g. slag, bricks and pebbles) suggest a recent formation of the phenomenon.

  12. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  13. Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations

    DOEpatents

    Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.

    1998-10-27

    A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

  14. Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen—Examples from the Qinghai-Tibet Plateau and Adjacent Basins

    NASA Astrophysics Data System (ADS)

    LI, Dewei; XIA, Yiping; XU, Ligui

    There are very close relationships between orogenic belts and their peripheral sedimentary basins: they are spatially interdependent in structure, mutually compensatory in material, interactive in tectonics, simultaneous in tectonic evolution. The relationships indicate a unified formation mechanism for the continental orogenic belts and the sedimentary basins, which can be presented as follows: lower crustal ductile lateral flow from the basin to the orogen, driven by thermal energy related to upwelling mantle plume in the intracontinental crust and by vertical diaper movement of dehydration and magma of the subduction plate on the active continental margin, results in the circulative movement of crust materials between basins and orogens. The coupling between the Qinghai-Tibet Plateau and its peripheral basins is a typical basin-orogen coupling occurring in the intraplate tectonic setting. The formation of the Qinghai-Tibet Plateau is not a result of collision between the India plate and the Eurasia plate, but rather the result of intraplate basin-orogen formation process driven by lower crustal flow. The tectonic evolution of intraplate basin-orogen system in the Qinghai-Tibet Plateau can be divided into two stages: (1) intraplate orogen-basin formation stage. During this stage, the spatial and temporal evolution of the intraplate orogens and basins in the Qinghai-Tibet Plateau is indicated by the successive geographic movement of the locations of the new basin-orogen systems from the northern and eastern, to the central, and finally to the southern Qinghai-Tibet Plateau, corresponding geochronologically to periods from 180-120 Ma, to 65-30 Ma, and finally to 23-7 Ma. This stage was manifested by extensive intraplate faulting, folding, block movement, magmatism and metallogeny. (2) isostatic mountain building and basin margin subsidence stage. In this stage, there were rapid uplift and strong erosion of the entire Qinghai-Tibet Plateau and rapid subsidence and

  15. Geologic Map of Upper Cretaceous and Tertiary Strata and Coal Stratigraphy of the Paleocene Fort Union Formation, Rawlins-Little Snake River Area, South-Central Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.

    2008-01-01

    This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.

  16. History of Geology.

    ERIC Educational Resources Information Center

    Bork, Kennard B.

    1983-01-01

    Highlights geological history activities during 1982. These include formation of The History of Earth Sciences Societies, publication of a new journal ("Earth Sciences History: The Journal of the History of Earth Sciences Societies"), and presentation of the first history of geology award. Comments on geological history publications are also…

  17. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect

    Jones, L.S.; Blakey, R.C. . Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  18. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    USGS Publications Warehouse

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  19. Preliminary geologic mapping of Cretaceous and Tertiary formations in the eastern part of the Little Snake River coal field, Carbon County, Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.

    2016-09-30

    In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.

  20. Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars

    NASA Astrophysics Data System (ADS)

    Fuller, Elizabeth R.; Head, James W.

    2002-10-01

    Amazonis Planitia, located between the two main volcanic provinces on Mars (Tharsis and Elysium), is characterized by extremely smooth topography at several scale lengths, as smooth as oceanic abyssal plains topography on Earth. We use Mars Global Surveyor (MGS) data (primarily very high resolution Mars Orbiter Laser Altimeter (MOLA) topography and derivative slope maps, gradient maps, and detrended maps) to examine the surface morphology of Amazonis Planitia and the stratigraphic relationships among previously mapped and newly defined units. These new data reveal the presence of a 1300 km diameter Noachian impact basin in northwest Amazonis Planitia and an extensive Late Hesperian lava flow unit that appears to have originated from the Olympus Mons source area prior to aureole formation. The presence of this previously unrecognized flow unit strongly suggests that Olympus Mons activity dates back to at least the Hesperian, as did activity on the Tharsis Montes. Emplacement of this ~100 meter thick flow unit formed a barrier along the northern margin of Amazonis Planitia which had a profound influence on the subsequent geologic history of the region. Formation of Olympus Mons aureole deposits created an eastern topographic barrier, and subsequent Tharsis Montes lava flows entered the basin from the south, flowing around the aureole. These three barriers (degraded Noachian crater rim, proto-Olympus Mons flow unit, and Olympus Mons aureole) caused subsequent lava flows and outflow channel effluents, primarily from the Elysium region to the west, to pond on the floor of Amazonis Planitia, preferentially smoothing the terrain there. Mars Orbiter Camera (MOC) images substantiate that at least two very fluid lava flows alternated with fluvial episodes from Elysium Planitia, flowing through Marte Valles onto the floor of the Amazonis Planitia basin. Within Amazonis Planitia, MOC images show flow-like textures heavily mantled by sediments, and radar data reveal the

  1. Regional geology of the low-permeability, gas-bearing Cleveland Formation, western Anadarko Basin, Texas Panhandle: Lithologic and depositional facies, structure, and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Hentz, Tucker F.

    1992-09-01

    The Upper Pennsylvania (lower Missourian) Cleveland formation produces gas from low-permeability ('tight') sandstone reservoirs in the western Anadarko Basin of the northeastern Texas Panhandle. In the six-county region, these reservoirs had produced more than 412 Bcf of natural gas through December 31, 1989. Because of their typically low permeability, the Cleveland sandstones require acidizing and hydraulic fracture treatment to produce gas at economic rates. Since 1982, the Gas Research Institute has supported geological investigations throughout the United States to develop the scientific and technological knowledge for producing from low-permeability, gas-bearing sandstones. As part of the program and the GRI Tight Gas Sands project, the Bureau of Economic Geology has been conducting research on low-permeability sandstones in the Cleveland formation and on several other sandstone units of similar character in Texas and Wyoming.

  2. Evaluation of the geological relationships to gas hydrate formation and stability. Second annual technical progress report, October 1, 1985--September 30, 1986

    SciTech Connect

    Not Available

    1986-12-31

    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  3. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  4. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  5. The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2)

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Ivanov, M. A.

    2010-01-01

    Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?

  6. Early Triassic geologic history of northeastern Nevada

    SciTech Connect

    Paull, R.K.; Paull, R.A.

    1986-08-01

    Conodont biostratigraphic and lithostratigraphic studies of Lower Triassic rocks in northeastern Elko County, Nevada, and adjacent parts of Idaho and Utah provide new information about regional geologic history. A sequential summary of Early Triassic events in this area follows: (1) rapid transgression of the Griesbachian sea to limiting barriers on the south (Oquirrh-Uinta axis) and west (Humboldt highland.). (2) Although the initial Triassic transgression may have persisted farther south and west than present-day evidence indicates, a period of progradation during the Dienerian limited marine sedimentation to northeastern-most Nevada and adjacent states. (3) In Smithian time, a widespread transgression spilled south and west over the earliest Triassic basin margin. (4) The southward flood is characterized by locally spectacular basal conglomerates followed by shallow marine deposits of the Thaynes Formation. (5) The transgression to the west was facilitated by tectonic removal of the restrictive barrier during the Smithian. This resulted in a slope-basin environment that accumulated a thick sequence of shale and calcareous siltstone with interbeds of turbidite conglomerates, olistostromes, and exotic blocks derived from Permian formations in northern Nevada or adjacent Idaho. (6) During a regional progradation in early Spathian time, marine conditions persisted in northeastern Nevada. (7) A final depositional episode is documented by the progressive westward spread of carbonate rocks of the Thaynes Formation. (8) Withdrawal of Triassic seas from northeast Nevada occurred post-latest Early Triassic, since a carbonate sequence of more than 300 m overlies the youngest dated interval.

  7. Geology of the Early Arikareean sharps formation on the Pine Ridge Indian Reservation and surrounding areas of South Dakota and Nebraska.

    PubMed

    McConnell, Thomas H; Dibenedetto, Joseph N

    2012-01-01

    Based on geologic mapping, measured sections, and lithologic correlations, the local features of the upper and lower type areas of the Early Arikareean (30.8-20.6 million years ago) Sharps Formation are revised and correlated. The Sharps Formation above the basal Rockyford Member is divided into two members of distinct lithotypes. The upper 233 feet of massive siltstones and sandy siltstones is named the Gooseneck Road Member. The middle member, 161 feet of eolian volcaniclastic siltstones with fluvially reworked volcaniclastic lenses and sandy siltstone sheets, is named the Wolff Camp Member. An ashey zone at the base of the Sharps Formation is described and defined as the Rockyford Ash Zone (RAZ) in the same stratigraphic position as the Nonpareil Ash Zone (NPAZ) in Nebraska. Widespread marker beds of fresh water limestones at 130 feet above the base of the Sharps Formation and a widespread reddish-brown clayey siltstone at 165 feet above the base of the Sharps Formation are described. The Brown Siltstone Beds of Nebraska are shown to be a southern correlative of the Wolff Camp Member and the Rockyford Member of the Sharps Formation. Early attempts to correlate strata in the Great Plains were slow in developing. Recognition of the implications of the paleomagnetic and lithologic correlations of this paper will provide an added datum assisting researchers in future biostratigraphic studies. Based on similar lithologies, the Sharps Formation, currently assigned to the Arikaree Group, should be reassigned to the White River Group.

  8. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México)

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio

    2016-05-01

    The 28,300 year BP (cal 32,300 BP) El Caracol tuff cone complex is one of the few phreatomagmatic volcanoes in the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF). It displays a shallow circular crater of ~ 1 km in diameter that is filled with several meter-thick lava flows and is located between two NE-SW trending normal faults dipping NW. It lies directly on top of Pliocene lavas of the San Lorenzo shield volcano that forms part of a tectonic horst (topographic high) separating the Zacapu lake basin (1980 m) in the south from the Río Angulo river valley (1760 m) to the north. Detailed study of the tephra sequence indicates that the eruption occurred in two stages: 1) Weak phreatomagmatic, in which about 0.1-0.5 km3 dense rock equivalent (DRE) of magma was issued within ~ 1 to 3 months at the rate of 4-40 m3/s, and 2) purely magmatic (Strombolian-effusive) during which the vent shifted slightly its position toward the NW, forming a small scoria cone (~ 100 m high) on the crater rim of the tuff cone. From this scoria cone lava flows were issued, first into the tuff cone crater occupying its bottom, and subsequently toward the NW, down the outer flank of the tuff cone and into the plain, where they reached a distance of ~ 3.5 km. During this stage ~ 0.6 km3 DRE of magma was produced at the rate of ~ 4 m3/s in a period of ~ 5 months. Although El Caracol displays many features that are characteristic for a phreatomagmatic vent, its morphology, types of deposits, and its complex process of formation makes it strikingly different from the more typical case of the ~ 21,000 year BP (cal 25,300 BP) Alberca de Guadalupe maar volcano, situated not far at the SE margin of the Zacapu basin. The latter was solely phreatomagmatic during the course of its eruption and is formed in its entirety by surge and fallout breccias consisting largely of xenolithic material. In contrast, at El Caracol the hydrogeological environment (namely the low

  9. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Hai

    2014-05-01

    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  10. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    SciTech Connect

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Vargas-Johnson, Javier; Gonzalez-Nicolas, Ana; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods

  11. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  12. Geologic mapping as a method for the construction of a detailed and testable lithostratigraphic model for the Upper Triassic Chinle Formation of Petrified Forest National Park, Arizona

    NASA Astrophysics Data System (ADS)

    Skinner, L. A.; Martz, J. W.; Parker, W.; Raucci, J.; Umhoefer, P. J.

    2010-12-01

    The Upper Triassic Chinle Formation in Petrified Forest National Park represents some of the most intensively studied Upper Triassic strata in western North America. Five stratigraphic members are exposed within the park, from oldest to youngest: the Mesa Redondo, Blue Mesa, Sonsela, Petrified Forest, and Owl Rock Members. Despite numerous stratigraphic studies of the Chinle Formation and two attempts at mapping the park over the past sixty years, sandstone marker beds in the Sonsela Member at the north and south ends of the park were still poorly mapped and correlated. Studies in the years 2002 and 2006 claimed that two sandstones which previous workers had considered to lie at different stratigraphic levels (the Jasper Forest Bed and the Flattops One sandstones in the Martha’s Butte beds) were actually correlative. This correlation resulted in a three-part division of the Sonsela Member and had a major impact on vertebrate biostratigraphy. In a recent attempt to resolve confusions regarding Chinle Formation lithostratigraphy and biostratigraphy, we have completely walked out lithologic contacts through most of the park. The resulting new geologic map, revised lithostratigraphic model, and associated data resolves the 2002 and 2006 miscorrelations by demonstrating that the Jasper Forest Bed capping Blue Mesa and Agate Mesa and Flattops One sandstones (Martha’s Butte beds) are stratigraphically distinct, resulting in a thicker and more complex five-part model for the Sonsela Member, and considerably modifying the vertebrate biostratigraphy. New geologic mapping also resulted in a detailed lithostratigraphic framework for the northern park which has previously been poorly understood, and several important new marker beds, including a purple-gray bed that represents the base of the Owl Rock Member. The revised geologic map is an ArcGIS product that includes an updated lithostratigraphic model for the Chinle Formation, fossil localities, and hyperlinks to labeled

  13. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  14. Capacity investigation of brine-bearing sands of the Fwwm formation for geologic sequestration of CO{sub 2}

    SciTech Connect

    Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Hovorka, Susan D.; Knox, Paul R.; Green, Christopher T.

    2001-05-01

    The capacity of fluvial brine-bearing formations to sequester CO{sub 2} is investigated using numerical simulations of CO{sub 2} injection and storage. Capacity is defined as the volume fraction of the subsurface available for CO{sub 2} storage and is conceptualized as a product of factors that account for two-phase flow and transport processes, formation geometry, formation heterogeneity, and formation porosity. The space and time domains used to define capacity must be chosen with care to obtain meaningful results, especially when comparing different authors' work. Physical factors that impact capacity include permeability anisotropy and relative permeability to CO{sub 2}, brine/CO{sub 2} density and viscosity ratios, the shape of the trapping structure, formation porosity and the presence of low-permeability layering.

  15. Bedrock geology of the northern Columbia Plateau and adjacent areas

    NASA Technical Reports Server (NTRS)

    Swanson, D. A.; Wright, T. L.

    1978-01-01

    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism.

  16. Geological summary of the Busidima Formation (Plio-Pleistocene) at the Hadar paleoanthropological site, Afar Depression, Ethiopia.

    PubMed

    Campisano, Christopher J

    2012-03-01

    The Hadar paleoanthropological site in Ethiopia preserves a record of hominin evolution spanning from approximately 3.45 Ma to 0.8 Ma. An angular unconformity just above the ca. 2.95 Ma BKT-2 complex divides the sediments into the Hadar Formation (ca. 3.8-2.9Ma) and the Busidima Formation (ca. 2.7-0.15 Ma). The unconformity is likely a response to a major tectonic reorganization in the Afar Depression, and activation of the As Duma fault near the Ethiopian Escarpment (west of Hadar) created a half-graben in which the Busidima Formation was deposited. The pattern and character of sedimentation in the region changed dramatically above the unconformity, as cut-and-fill channel conglomerates and silt-dominated paleosols that comprise the Busidima Formation stand in sharp contrast to the underlying deposits of the Hadar Formation. Conglomerate deposition has been related to both the perennial, axial paleo-Awash and ephemeral, escarpment-draining tributaries. Overbank silts have yielded fossils attributed to early Homo and Oldowan stone tools. Numerous tuffaceous deposits exist within the Busidima Formation, but they are often spatially limited, fine-grained, and reworked. Recent work on the tephrostratigraphic framework of the Busidima Formation at Hadar has identified at least 12 distinct vitric tephras and established the first geochemical-based correlations between Hadar and the neighboring project areas of Gona and Dikika. Compared to Gona and Dikika, where Busidima Formation sediments are exposed over large areas, the highly discontinuous sediments at Hadar comprise less than 40 m in composite section and are exposed over an area of <20 km(2), providing only snapshots into the 2.7-0.15 Ma window. The stratigraphic record at Hadar confirms the complex depositional history of the Busidima Formation, and also provides important details on regional stratigraphic correlations and the pattern of deposition and erosion in the lower Awash Valley reflective of its tectonic

  17. Geologic Framework, Age, and Lithologic Characteristics of the North Park Formation in North Park, North-Central Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.

    2016-10-18

    Deposits of the North Park Formation of late Oligocene and Miocene age are locally exposed at small, widely spaced outcrops along the margins of the roughly northwest-trending North Park syncline in the southern part of North Park, a large intermontane topographic basin in Jackson County in north-central Colorado. These outcrops suggest that rocks and sediments of the North Park Formation consist chiefly of poorly consolidated sand, weakly cemented sandstone, and pebbly sandstone; subordinate amounts of pebble conglomerate; minor amounts of cobbly pebble gravel, siltstone, and sandy limestone; and rare beds of cobble conglomerate and altered tuff. These deposits partly filled North Park as well as a few small nearby valleys and half grabens. In North Park, deposits of the North Park Formation probably once formed a broad and relatively thick sedimentary apron composed chiefly of alluvial slope deposits (mostly sheetwash and stream-channel alluvium) that extended, over a distance of at least 150 kilometers (km), northwestward from the Never Summer Mountains and northward from the Rabbit Ears Range across North Park and extended farther northwestward into the valley of the North Platte River slightly north of the Colorado-Wyoming border. The maximum preserved thickness of the formation in North Park is about 550 meters near the southeastern end of the North Park syncline.The deposition of the North Park Formation was coeval in part with local volcanism, extensional faulting, development of half grabens, and deposition of the Browns Park Formation and Troublesome Formation and was accompanied by post-Laramide regional epeirogenic uplift. Regional deposition of extensive eolian sand sheets and loess deposits, coeval with the deposition of the North Park Formation, suggests that semiarid climatic conditions prevailed during the deposition of the North Park Formation during the late Oligocene and Miocene.The North Park Formation locally contains a 28.1-mega-annum (Ma

  18. Geologic framework, age, and lithologic characteristics of the North Park Formation in North Park, north-central Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.

    2016-10-18

    Deposits of the North Park Formation of late Oligocene and Miocene age are locally exposed at small, widely spaced outcrops along the margins of the roughly northwest-trending North Park syncline in the southern part of North Park, a large intermontane topographic basin in Jackson County in north-central Colorado. These outcrops suggest that rocks and sediments of the North Park Formation consist chiefly of poorly consolidated sand, weakly cemented sandstone, and pebbly sandstone; subordinate amounts of pebble conglomerate; minor amounts of cobbly pebble gravel, siltstone, and sandy limestone; and rare beds of cobble conglomerate and altered tuff. These deposits partly filled North Park as well as a few small nearby valleys and half grabens. In North Park, deposits of the North Park Formation probably once formed a broad and relatively thick sedimentary apron composed chiefly of alluvial slope deposits (mostly sheetwash and stream-channel alluvium) that extended, over a distance of at least 150 kilometers (km), northwestward from the Never Summer Mountains and northward from the Rabbit Ears Range across North Park and extended farther northwestward into the valley of the North Platte River slightly north of the Colorado-Wyoming border. The maximum preserved thickness of the formation in North Park is about 550 meters near the southeastern end of the North Park syncline.The deposition of the North Park Formation was coeval in part with local volcanism, extensional faulting, development of half grabens, and deposition of the Browns Park Formation and Troublesome Formation and was accompanied by post-Laramide regional epeirogenic uplift. Regional deposition of extensive eolian sand sheets and loess deposits, coeval with the deposition of the North Park Formation, suggests that semiarid climatic conditions prevailed during the deposition of the North Park Formation during the late Oligocene and Miocene.The North Park Formation locally contains a 28.1-mega-annum (Ma

  19. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  20. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  1. Structural and stratigraphic evolution of the central Mississippi Canyon area: Interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards

    NASA Astrophysics Data System (ADS)

    Brand, John Richard

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from shallow-emplaced salt sheets. The transition from regional to local salt tectonics was identified through structural deformation of the stratigraphic section on the seismic data and occurred no later than ˜450,000 years ago. From ˜450,000 years to present, slope depositional processes have become the dominant geologic process in the study area. Six stratigraphic sequences (I-VI) were identified in the study area and found to correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed sections were the key to the correlation. The sequence stratigraphy for the Eastern Mississippi Fan can be extended ˜28 miles west, adding another ˜720 square miles to the interpreted Fan. A previously defined channel within the Eastern Fan was identified in the study area and extended the channel ˜28 miles west. Previous work on the Eastern Fan identified the source of the Fan to be the Mobile River; however, extending the channel west suggests the sediment source to be from the Mississippi River, not the Mobile River. Further evidence for this was found in ponded turbidites whose source has been previously established as the Mississippi River. Ages of the stratigraphic sequences were compared to changes in eustatic sea level. The formation stratigraphic sequences appear decoupled from sea level change with "pseudo-highstands" forming condensed sections during pronounced Pleistocene sea level lowstands. Miocene and Pleistocene depositional analogues

  2. Geologic controls on the formation and evolution of quaternary coastal deposits of the northern Gulf of Mexico

    USGS Publications Warehouse

    Williams, S.J.; Penland, S.; Sallenger, A.H.; McBride, R.A.; Kindlinger, J.L.

    1991-01-01

    A study of the barrier islands and wetlands in the deltaic plain of Louisiana is presented. Its purpose was to document rapid changes and to learn more about the processes responsible and the geologic framework within which they operate. It included systematic collection and analysis of precision nearshore hydrographic data, high resolution seismic profiles, surface sediment samples, continuous vibracores, digital shoreline plots, records of storm overwash events, and analysis of tide gage records to quantify the rise in relative sea level. Results from these studies demonstrate that deltaic progradation, river channel switching, and subsequent rapid erosion accompanying the marine transgression are regular and predictable events along the Mississippi River delta plain and will likely continue in the future. Mitigation measures, such as shoreline nourishment and barrier restoration, that mimic the natural processes may slow the land loss.

  3. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin From Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    NASA Astrophysics Data System (ADS)

    Busch, Melanie M. D.

    2011-12-01

    An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1--1 mm/yr) and have relatively shallow hanging wall basins (˜500--3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials

  4. Digital depth horizon compilations of the Alaskan North Slope and adjacent Arctic regions

    USGS Publications Warehouse

    Saltus, Richard W.; Bird, Kenneth J.

    2003-01-01

    Data have been digitized and combined to create four detailed depth horizon grids spanning the Alaskan North Slope and adjacent offshore areas. These map horizon compilations were created to aid in petroleum system modeling and related studies. Topography/bathymetry is extracted from a recent Arctic compilation of global onshore DEM and satellite altimetry and ship soundings offshore. The Lower Cretaceous Unconformity (LCU), the top of the Triassic Shublik Formation, and the pre-Carboniferous acoustic basement horizon grids are created from numerous seismic studies, drill hole information, and interpolation. These horizons were selected because they mark critical times in the geologic evolution of the region as it relates to petroleum. The various horizons clearly show the major tectonic elements of this region including the Brooks Range, Colville Trough, Barrow Arch, Hanna Trough, Chukchi Platform, Nuwuk Basin, Kaktovik Basin, and Canada Basin. The gridded data are available in a variety of data formats for use in regional studies.

  5. An integrated multi-scale hydrogeological model for performance and safety assessment of French geological high level and long live radwaste disposal in clay formation

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, H.; Cornaton, F. J.; Kerrou, J.

    2009-12-01

    A deep geological repository of high level and long live radwaste requires sound understanding of the far field and near field groundwater flow and transport properties. Andra, French National radioactive waste management Agency is developing since last 15 years, an integrated multi-scale hydrogeological model of whole Paris basin of 200'000 Km2 area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse / Haute Marne clay site of about 250 Km2 area in the eastern part of Paris basin that was chosen for the emplacement of a repository. Callovo-Oxfordian as host formation is a clay layer characterized by very low permeability, a mean thickness of 130 m at about 500 m depth and is embedded by calcareous formations as aquifers (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petrophysic modeling of the Paris basin and is accounting for the sound structural, geological, hydrogeological and geochemical data in an integrated way. At Paris basin scale, the model is a multilayer system of 27 layers (hydrogeological units) from Trias to Tertiary. A refinement at local scale of the site defines 27 hydro-geological units from Trias to Portlandian within an area of 1800 Km2. Based on sound data acquisition from borehole and seismic campaigns performed by Andra, regional faults, minor and diffuse fractures are considered. A structural and petrophysical representation of the transition zone between the Paris basin scale and site scale, as well as a better handling of surface flow boundary conditions are considered. Finite element flow and transport simulator Ground Water code (GW) is used to solve for groundwater flow at steady-state in a 1.8 Million nodes model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 5

  6. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    SciTech Connect

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  7. Feldspathic Rock Spectral Detections on Mars: Geologic Context, Possible Formation Mechanisms, and the TES/Themis Perspective

    NASA Astrophysics Data System (ADS)

    Rogers, D.; Nekvasil, H.

    2014-12-01

    Spectral detections from VNIR imaging spectrometers OMEGA and CRISM suggest feldspar-bearing rocks with <5% mafic minerals in restricted locations on Mars. The detections have been interpreted as anorthositic, or alternatively, felsic lithologies such as granite. The detections occur in a variety of contexts, including crater central peaks, walls, and floors, intercrater plains of Noachis Terra, and the Nili patera caldera floor. Here we focus on the Noachis Terra feldspathic rock detections, and present constraints from geologic context and complementary thermal infrared measurements. We also examine mechanisms for forming feldspar-rich lavas from crystal fractionation at the base of thick Martian crust. Noachis Terra exposures exhibit high thermal inertias and deep spectral contrast, consistent with competent, non-porous rock. They commonly overlie olivine basaltic bedrock and are ~20-25 m thick. THEMIS spectra from these units are inconsistent with quartz abundances > 5%, ruling out felsic compositions. THEMIS spectra are consistent with both anorthositic and basaltic lithologies; laboratory spectra of these lithologies are indistinguishable at THEMIS resolution. TES spectra do not match library anorthosites, with ~20-30% modeled pyroxene and ~5-10% olivine. Strong contribution from basaltic sediment to the TES spectra is unlikely given the deeper spectral contrast associated with the feldspathic units than underlying olivine basaltic bedrock. Future work will include spectral comparison with other low silica, feldspathic rocks to determine if there is an analog material that is consistent with both the VNIR and TIR observations. The geologic context of the Noachis units suggests volcanic, rather than plutonic origins, although shallow sills or subglacial eruptive units are possible. Previous experimental and modeling work by Nekvasil showed that feldspar-rich (up to 75 wt%), low-silica lavas may be produced from known Martian basalt by shallow crystallization

  8. The geological significance of the boundary between the Fort Sill and Signal Mountain Formations in the lower Arbuckle Group (Cambrian)

    SciTech Connect

    Hosey, R.; Donovan, R.N. . Geology Dept.)

    1993-02-01

    During the upper Cambrian, a transgression inundated the Southern Oklahoma aulacogen enveloping a landscape that consisted of hills of Cambrian-aged rhyolite up to 350 m in height. Initial deposits on this topography--the Reagan Formation--consist of siliciclastics that were deposited as alluvium and succeeding tidally-influenced marine sandstones and shales. The siliciclastics grains are made up of local rhyolite, quartz and authigenic glauconite. The overlying Honeycreek Formation is defined by the addition of carbonated detritus in the form of tidally-influenced pelmatozoan grainstones. The passage from the Honeycreek to the overlying Fort Sill Formation of the Arbuckle Group is marked by the incoming of beds of lime mudstone and the gradual disappearance of grainstones and siliciclastics. The contact between the Fort Sill and the overlying thinly-bedded dark grey bioclastic limestones of the Signal Mountain Formation is one of the most distinctive horizons in the Arbuckle Group. The contact evidently marks a substantial change in depositional environment. In detail the contact is sharp and shows evidence of minor erosion, although no karsting has been detected. The authors suggest that the contact surface records a regression, perhaps associated with dolomitization and followed by some erosion. A regression is also indicated by the local occurrence of a laminated tidal flat unit with traces of evaporites that outcrops in the far west of the Slick Hills immediately below the formation contact. They suggest that the Signal Mountains as a transgressive unit, incorporating siliciclastics transported into the area during the regression. It has been suggested that the unconformity reflects localized tectonism associated with the evolution of the Southern Oklahoma aulacogen. On the other hand the surface may correlate with a craton--wide Sauxian' hiatus.

  9. Geology of the reservoirs from interval I of the Oficina formation, Greater Oficina area, eastern Venezuela Basin

    SciTech Connect

    Rivero, C.A.; Scherer, W.

    1996-08-01

    In order to determine the geologic features of the reservoirs and their areal statistical distribution and geometry, a study was made of a selected interval where the sands present less coalescence and the reservoirs are clearly defined. The study area comprises 1900 km{sup 2} of the Greater Oficina area; core samples, logs and reservoir maps were used. It was found that interval I consists of interbedded sandstones, shales, some siltstone, and occasionally lignites. Based upon lithologic mesoscopic features, eight (8) characteristic lithofacies could be defined. Rocks classified as sub-litharenites, sub-arkoses, arkoses lithic sandstones and graywackes could be inferred as belonging to a fluvio-deltaic system sourced on the Pre-Cambrian Guayana shield. The diagenetic level reached by the sequence corresponds to the intermediate stage, where significant processes of cementation by oxides, carbonates and silica are of equal intensity and magnitude to the lixiviation of feldspars and other detritic particles, giving these rooks good potential reservoir qualities. Descriptive statistical evaluation was performed on 140 reservoirs representing all lithofacies populations in this interval. Based on this analysis reservoirs were statistically grouped in classes which are a function of their geometry, spatial location and type of hydrocarbon content.

  10. Axisymmetric analysis of multilayered thermoelastic media with application to a repository for heat-emitting high-level nuclear waste in a geological formation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Datcheva, Maria; Schanz, Tom

    2016-08-01

    Comprehensive analytical solutions to 3-D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.

  11. Axisymmetric Analysis of Multilayered Thermoelastic Media with Application to a Repository for Heat-Emitting High-Level Nuclear Waste in a Geological Formation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Datcheva, Maria; Schanz, Tom

    2016-05-01

    Comprehensive analytical solutions to 3D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.

  12. Geological and geochemical controls on the formation and distribution of supergiant gas fields in the Russian sedimentary basins

    SciTech Connect

    Lopatin, N.

    1996-12-31

    The West Siberian, Barents Sea and Northern Caspian sedimentary basins are the most prolific Russian gas producing regions and include 15 supergiant gas fields each of them content identified gas reserves between 1 x 10{sup 12} m{sup 3} to 11 x 10{sup 12} m{sup 3}. They are Urengoi, Yarnburg, Bovanenkov, Zapoljarnoye, Medvezhie, Charasavey, Kruzenshtern, N.Urengoi, S.Tambey, S.Russkoye, Rusanov, Shtockmanov, Lunin, Astrachan and Orenburg. The gas reserves in these basins exceed 70 x 10{sup 12} m{sup 3} and about 65% of them concentrated in supergiant fields. Among the geological prerequisites for largest gas accumulations note big size of trap (Urengoi 40x300 km{sup 2}; Astrachan l80x200 km{sup 2}), anticline type of tectonic structure (swell, megaswell, dome, arch) with amplitude from 110 m to 800 in. These tectonic structure were active long time include the latest period. The main gas productive reservoirs are slightly consulted non-marine sandstones of Cenomanian or Middle Jurassic ages (West Siberia and Barents Sea) or Middle Carboniferous reef carbonate buildups (Northern Caspian basin). The next geochemical parameters controlled of the gas accumulation histories: (1) West Siberia and Barents Sea regions gas genetically connect with dispersed or concentrated non-marine coal type kerogen distributed into productive complex under lower maturity conditions (before or early oil window zone). This is dry gas almost pure methane with {delta}{sup 13} C{sub 1} between -44,40{per_thousand}. In this case we observe widely distributed mainly sandstones reservoirs at same time gas source rocks also; (2) the Northern Caspian basin found supergiant wet gas-condensate accumulations into local distributed reef carbonate buildups. Gas source rocks is marine kerogen type II, which has a low concentration in marlaceous facies. It is gas high maturity zone.

  13. Geological and geochemical controls on the formation and distribution of supergiant gas fields in the Russian sedimentary basins

    SciTech Connect

    Lopatin, N. )

    1996-01-01

    The West Siberian, Barents Sea and Northern Caspian sedimentary basins are the most prolific Russian gas producing regions and include 15 supergiant gas fields each of them content identified gas reserves between 1 x 10[sup 12] m[sup 3] to 11 x 10[sup 12] m[sup 3]. They are Urengoi, Yarnburg, Bovanenkov, Zapoljarnoye, Medvezhie, Charasavey, Kruzenshtern, N.Urengoi, S.Tambey, S.Russkoye, Rusanov, Shtockmanov, Lunin, Astrachan and Orenburg. The gas reserves in these basins exceed 70 x 10[sup 12] m[sup 3] and about 65% of them concentrated in supergiant fields. Among the geological prerequisites for largest gas accumulations note big size of trap (Urengoi 40x300 km[sup 2]; Astrachan l80x200 km[sup 2]), anticline type of tectonic structure (swell, megaswell, dome, arch) with amplitude from 110 m to 800 in. These tectonic structure were active long time include the latest period. The main gas productive reservoirs are slightly consulted non-marine sandstones of Cenomanian or Middle Jurassic ages (West Siberia and Barents Sea) or Middle Carboniferous reef carbonate buildups (Northern Caspian basin). The next geochemical parameters controlled of the gas accumulation histories: (1) West Siberia and Barents Sea regions gas genetically connect with dispersed or concentrated non-marine coal type kerogen distributed into productive complex under lower maturity conditions (before or early oil window zone). This is dry gas almost pure methane with [delta][sup 13] C[sub 1] between -44,40[per thousand]. In this case we observe widely distributed mainly sandstones reservoirs at same time gas source rocks also; (2) the Northern Caspian basin found supergiant wet gas-condensate accumulations into local distributed reef carbonate buildups. Gas source rocks is marine kerogen type II, which has a low concentration in marlaceous facies. It is gas high maturity zone.

  14. Engineering geological characteristics and the hydraulic fracture propagation mechanism of the sand-shale interbedded formation in the Xu5 reservoir

    NASA Astrophysics Data System (ADS)

    Lu, Cong; Li, Mei; Guo, Jian-Chun; Tang, Xu-Hai; Zhu, Hai-Yan; Yong-Hui, Wang; Liang, Hao

    2015-06-01

    In the Xu5 formation the sandstone reservoir and the shale reservoir are interbedded with each other. The average thickness of each formation is about 8 m, which increases the difficulty of the hydraulic fracturing treatment. The shale thickness ratio (the ratio of shale thickness to formation thickness) is 55-62.5%. The reservoir is characterized by ultra-low porosity and permeability. The brittleness index of sandstone is 0.5-0.8, and the brittleness index of shale is 0.3-0.8. Natural fractures are poorly developed and are mainly horizontal and at a low angle. The formation strength is medium and the reservoir is of the hybrid strike-slip fault and reverse fault stress regime. The difference between the minimum principal stress and the vertical stress is small, and the maximum horizontal principal stress is 20 MPa higher than the minimum horizontal principal stress and vertical stress. A mechanical model of a hydraulic fracture encountering natural fractures is built according to geological characteristics. Fracture mechanics theory is then used to establish a hydraulic fracturing model coupling the seepage-stress-damage model to simulate the initiation and propagation of a fracture. The hydraulic fracture geometry is mainly I-shaped and T-shaped, horizontal propagation dominates the extension, and vertical propagation is limited. There is a two to three meter stress diversion area around a single hydraulic fracture. The stress diversion between a hydraulic fracture and a natural fracture is advantageous in forming a complex fracture. The research results can provide theoretical guidance for tight reservoir fracturing design.

  15. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations

    NASA Astrophysics Data System (ADS)

    Schneising, Oliver; Burrows, John P.; Dickerson, Russell R.; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich

    2014-10-01

    In the past decade, there has been a massive growth in the horizontal drilling and hydraulic fracturing of shale gas and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock formations with low permeability. In North America, these unconventional domestic sources of natural gas and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions when displacing coal as a source of energy in power plants. However, fugitive methane emissions in the production process may counter the benefit over coal with respect to climate change and therefore need to be well quantified. Here we demonstrate that positive methane anomalies associated with the oil and gas industries can be detected from space and that corresponding regional emissions can be constrained using satellite observations. On the basis of a mass-balance approach, we estimate that methane emissions for two of the fastest growing production regions in the United States, the Bakken and Eagle Ford formations, have increased by 990 ± 650 ktCH4 yr-1 and 530 ± 330 ktCH4 yr-1 between the periods 2006-2008 and 2009-2011. Relative to the respective increases in oil and gas production, these emission estimates correspond to leakages of 10.1% ± 7.3% and 9.1% ± 6.2% in terms of energy content, calling immediate climate benefit into question and indicating that current inventories likely underestimate the fugitive emissions from Bakken and Eagle Ford.

  16. Geology of the Deer Butte Formation, Malheur county, Oregon: faulting, sedimentation and volcanism in a post-caldera setting

    NASA Astrophysics Data System (ADS)

    Cummings, Michael L.

    1991-11-01

    The Deer Butte Formation accumulated during the middle Miocene in fault-controlled basins in an extensional setting. The basins developed as regional faults asserted influence after eruption of ash-flow sheets and collapse of calderas of the Lake Owyhee volcanic field. The sequences of Hurley Flat, Dry Creek, and Oxbow Basin contain a lower basalt tephradominated unit formed by basalt hydrovolcanism overlain by fine-grained fluvial and lacustrine volcaniclastic sedimentary units. The sequence of Freezeout Creek was deposited in an erosional valley that was incised into older units and cut across the concurrently active Wall Rock Ridge fault zone. The sequence of Hurley Flat and Dry Creek contain alkaline tholeiitic basalt flows and tephra deposits, whereas the sequences of Freezeout Creek and Oxbow Basin contain subalkaline calcalkaline basaltic andesite. The compositional change occurred after local uplift due to faulting along the Wall Rock Ridge fault zone. The youngest unit, well-sorted, medium-grained, muscovite-bearing arkose of the arkose of Dry Creek Buttes, was deposited in a large river that drained westward from source areas in western Idaho. The Deer Butte Formation was deposited between approximately 15 and 12.6 Ma, while basin and range-type faulting dominated regional structural patterns.

  17. Geology and taphonomy of the base of the Taquaral Member, Irati Formation (Permian, Paraná Basin), Brazil

    NASA Astrophysics Data System (ADS)

    Chahud, Artur; Petri, Setembrino

    2015-09-01

    The taphonomy of Early Permian vertebrates from a sandy facies at the base of the Taquaral Member, Irati Formation, was surveyed in order to acquire data for the interpretation of the sedimentary processes and paleoenvironment of deposition. Six outcrops from the Rio Claro municipality and surrounding areas, from the Brazilian State of São Paulo, were investigated. The vertebrate groups are Chondrichthyes (Xenacanthiformes, Ctenacanthiformes and Petalodontiformes), Osteichthyes (Actinopterygii and Sarcopterygii) and Tetrapodomorpha. They occur as loose teeth, scales, spines and bone remains. The sandy facies is characterized by fining upward deposition. The coarser sandstone immediately above the underlying Tatuí Formation is rich in Chondrichthyes. However, the fine sandstone above, immediately beneath the silty shale facies, is devoid of Chondrichthyes, though Osteichthyes scales, teeth and bones were present. The taphonomy is important for inferring sedimentary processes and then the paleoenvironments. The poor sorting of the sandstone and the presence of fossils that are mostly abraded or worn are indicative of a high energy environment. In contrast, the presence of fossils in a good state of preservation, some without abrasion and breakages are indicative of only limited transport. Differences of fossil spatial density, numbers of specimens and taxa may be explained by the dynamics of deposition, from details of the palaeoenvironment can be obtained.

  18. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  19. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  20. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    The area of the Meskhent Tessera quadrangle (V-3, 50-75degN, 60-120degE, Fig. 1) corresponds to a transition zone from the uplands of Ishtar Terra to the west to the lowlands of Atalanta Planitia to the east. The topographic configuration, gravity signature, and presence of large tesserae in Ishtar Terra are consistent with extensive areas of thickened crust and tectonically stabilized lithosphere representing ancient and now extinct regimes of mantle convection. The gravity and topographic characteristics of Atalanta Planitia have been cited as evidence for large-scale mantle downwelling. Thus, the region of Meskhent Tessera quadrangle represents an important sample for the study of the regional history of long-wavelength topography (highlands, midlands, and lowlands), interaction between the downwelling and areas of thickened crust/lithosphere, formation of associated tectonic features, and emplacement of volcanic plains.

  1. Geology and petrology of the Hormuz dolomite, Infra-Cambrian: Implications for the formation of the salt-cored Halul and Shraouh islands, Offshore, State of Qatar

    NASA Astrophysics Data System (ADS)

    Nasir, Sobhi; Al-Saad, Hamad; Alsayigh, Abudlrazak; Weidlich, Oliver

    2008-08-01

    Geological investigations of the Halul and the Shraouh islands, offshore Qatar, indicate that most of their calcareous rocks, which display abundant stromatolitic bedding, belong to the Infra-Cambrian Hormuz Series. Mineralogical, petrological, and geochemical analyses show that these calcareous rocks consist dominantly of dolomite and have formed in a reducing depositional environment. Faint laminations and small streaks of organic matter furnish evidence for the involvement of algal mats in their genesis and indicate their formation in an intertidal to supratidal setting. The Halul and Shraouh dolomites experienced extensive recrystallization and sulfatization during the emplacement of the Halul and Shraouh salt domes that form the cores of the islands. During mobilization and ascent of the salt, the dolomite recrystallized, and its Sr initial ratios were abnormally enhanced by the incorporation of 87Sr from a source, which is more radiogenic than the attendant seawater at the time of the dolomite formation near the Proterozoic-Cambrian boundary. Geochemical analysis show that Si, Al, Ti Zr, and % of insoluble residue are highly correlative, suggesting the presence of detrital minerals such as rutile and zircon. A paleosabkha model may well agree with this chemical signature. However, the Infra-Cambrian age of the Hormuz rocks and the presence of stromatolitic layers containing organic materials in the studied rocks, suggest that organogenic dolomitization could be an alternative dolomitization model.

  2. GeoTemp™ 1.0: A MATLAB-based program for the processing, interpretation and modelling of geological formation temperature measurements

    NASA Astrophysics Data System (ADS)

    Ricard, Ludovic P.; Chanu, Jean-Baptiste

    2013-08-01

    The evaluation of potential and resources during geothermal exploration requires accurate and consistent temperature characterization and modelling of the sub-surface. Existing interpretation and modelling approaches of 1D temperature measurements are mainly focusing on vertical heat conduction with only few approaches that deals with advective heat transport. Thermal regimes are strongly correlated to rock and fluid properties. Currently, no consensus exists for the identification of the thermal regime and the analysis of such dataset. We developed a new framework allowing the identification of thermal regimes by rock formations, the analysis and modelling of wireline logging and discrete temperature measurements by taking into account the geological, geophysical and petrophysics data. This framework has been implemented in the GeoTemp software package that allows the complete thermal characterization and modelling at the formation scale and that provides a set of standard tools for the processing wireline and discrete temperature data. GeoTempTM operates via a user friendly graphical interface written in Matlab that allows semi-automatic calculation, display and export of the results. Output results can be exported as Microsoft Excel spreadsheets or vector graphics of publication quality. GeoTemp™ is illustrated here with an example geothermal application from Western Australia and can be used for academic, teaching and professional purposes.

  3. Studies of disseminated gold deposits near Carlin, Nevada: Evidence for a deep geologic setting of ore formation

    SciTech Connect

    Kuehn, C.A.

    1989-01-01

    The Carlin gold deposit occurs in the upper 175 meters of the Siluro-Devonian Roberts Mountains Formation in Eureka County, Nevada. Pre-, syn- and post-gold episodes are distinguished by (1) hydrocarbon maturation, (2) gold mineralization and alteration and (3) subsequent oxidation. Mineralization post-dates Early Cretaceous dikes which cut zones of thermally mature petroleum residue. Preore P-T conditions of 155 {+-} 20 C and 0.6 to 1.4 kb are defined by coexisting saline aqueous and methane-rich fluid inclusions. Main Gold Ore Stage (MGOS) alteration of pyrite-bearing unaltered calcareous carbonaceous argillaceous siltstones progresses from K-feldspar silt and calcite destruction, then dolomite dissolution, and finally illite conversion to dickite/kaolinite in intensely altered silicified zones near hydrothermal conduits. MGOS fluids are acid from elevated CO{sub 2} contents (5-10 mole percent), and also contain appreciable H{sub 2}S, 3 {+-} 1 wt% NaCl and {delta}{sup 18}O{sub H2O} values +5{per thousand} to {gt} +9{per thousand}. CO{sub 2}-exsolution occurs at 215 {+-} 30{degree}C and 800 {+-} 400 bars during portions of MGOS time and constrains ore formation to minimum depths of 4.4 {+-} 2.2 km. Late Gold Ore Stage (LGOS) fluids are non-boiling and gas-poor with {lt}1.5 wt% NaCl and {delta}{sup 18}O{sub H2O} values {le}-4{per thousand} to -3{per thousand}. As LGOS fluids flood the system, calcite {delta}{sup 18}O values shift from near whole-rocks at +12 {+-} 3{per thousand} to 0 {+-} 1{per thousand} in veinlets containing unoxidized As {+-} Sb-phases. Gas-rich MGOS fluids may result from buried intrusions, contact aueroles, or deeper low-grade metamorphism. Deposition may occur in throttling zones where conditions change abruptly from lithostatic to hydrostatic.

  4. Geology and geochemistry of the Macheng Algoma-type banded iron-formation, North China Craton: Constraints on mineralization events and genesis of high-grade iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Niu, Xianglong; Zhang, Lianchang; Pirajno, Franco; Luo, Huabao; Qin, Feng; Cui, Minli; Wang, Changle; Qi, Min

    2015-12-01

    The Macheng iron deposit is located in the eastern Hebei province of the North China Craton (NCC). It is hosted in Neoarchean metamorphic rocks of Baimiaozi formation in the Dantazi Group, consisting of biotite-leptynite, plagioclase-gneiss, plagioclase-amphibolite, migmatite, migmatitic granite and quartz schist. Geochemical analyses of the host biotite leptynite and plagioclase amphibolites show that their protoliths are both volcanics, inferred to be trachytic basalt and basaltic andesite, respectively. Based on the geochemical signature of the host rocks, together with geology of the iron deposit, it is inferred that the Macheng BIF is an Algoma-type iron exhalative formation, formed in an arc-related basin in the Neoarchean. Post-Archean Australian Shale (PAAS)-normalized rare earth elements (REEs) plus yttrium (Y) concentrations of different BIF ores with gneissic, striated and banded structure in the Macheng deposit, show similar patterns with depletions in light rare earth elements (LREEs) and middle rare earth elements (MREEs) relative to heavy rare earth elements (HREEs) and with apparently positive La, Y and Eu anomalies. Y/Ho ratios of the gneissic, striated and banded BIF ores vary from 37 to 56. These geochemical features of the BIF ores reveal their affinity with the sea water and the presence of a high-temperature hydrothermal component, indicating that both the seawater and high temperature hydrothermal fluids derived from alteration of oceanic basalts and komatiites may contribute to formation of the Macheng BIF. Geological, mineralogical and geochemical studies of the Macheng deposit recognized two kinds of high-grade iron ores. One is massive oxidized high-grade ore (Fe2O3T = 74.37-86.20 wt.%), mainly consisting of hematite with some magnetite, which shows geochemical characteristics of the gneissic, striated and banded BIF ores. The other type is magnetite high-grade ore, also massive and consisting of magnetite, with distinct characteristics

  5. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    USGS Publications Warehouse

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  6. Geologic Reconnaissance of the Antelope-Ashwood Area, North-Central Oregon: With Emphasis on the John Day Formation of Late Oligocene and Early Miocene Age

    USGS Publications Warehouse

    Peck, Dallas L.

    1964-01-01

    This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been

  7. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    PubMed

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  8. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  9. Geologic assessment of undiscovered oil and gas resources: Oligocene Frio and Anahuac Formations, United States Gulf of Mexico coastal plain and State waters

    USGS Publications Warehouse

    Swanson, Sharon M.; Karlsen, Alexander W.; Valentine, Brett J.

    2013-01-01

    The Oligocene Frio and Anahuac Formations were assessed as part of the 2007 U.S. Geological Survey (USGS) assessment of Tertiary strata of the U.S. Gulf of Mexico Basin onshore and State waters. The Frio Formation, which consists of sand-rich fluvio-deltaic systems, has been one of the largest hydrocarbon producers from the Paleogene in the Gulf of Mexico. The Anahuac Formation, an extensive transgressive marine shale overlying the Frio Formation, contains deltaic and slope sandstones in Louisiana and Texas and carbonate rocks in the eastern Gulf of Mexico. In downdip areas of the Frio and Anahuac Formations, traps associated with faulted, rollover anticlines are common. Structural traps commonly occur in combination with stratigraphic traps. Faulted salt domes in the Frio and Anahuac Formations are present in the Houston embayment of Texas and in south Louisiana. In the Frio Formation, stratigraphic traps are found in fluvial, deltaic, barrier-bar, shelf, and strandplain systems. The USGS Tertiary Assessment Team defined a single, Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) for the Gulf Coast basin, based on previous studies and geochemical analysis of oils in the Gulf Coast basin. The primary source rocks for oil and gas within Cenozoic petroleum systems, including Frio Formation reservoirs, in the northern, onshore Gulf Coastal region consist of coal and shale rich in organic matter within the Wilcox Group (Paleocene–Eocene), with some contributions from the Sparta Sand of the Claiborne Group (Eocene). The Jurassic Smackover Formation and Cretaceous Eagle Ford Formation also may have contributed substantial petroleum to Cenozoic reservoirs. Modeling studies of thermal maturity by the USGS Tertiary Assessment Team indicate that downdip portions of the basal Wilcox Group reached sufficient thermal maturity to generate hydrocarbons by early Eocene; this early maturation is the result of rapid sediment accumulation in the early

  10. Geologic assessment of undiscovered oil and gas resources: Oligocene Frio and Anahuac Formations, United States Gulf of Mexico coastal plain and State waters

    USGS Publications Warehouse

    Swanson, Sharon M.; Karlsen, Alexander W.; Valentine, Brett J.

    2013-01-01

    The Oligocene Frio and Anahuac Formations were assessed as part of the 2007 U.S. Geological Survey (USGS) assessment of Tertiary strata of the U.S. Gulf of Mexico Basin onshore and State waters. The Frio Formation, which consists of sand-rich fluvio-deltaic systems, has been one of the largest hydrocarbon producers from the Paleogene in the Gulf of Mexico. The Anahuac Formation, an extensive transgressive marine shale overlying the Frio Formation, contains deltaic and slope sandstones in Louisiana and Texas and carbonate rocks in the eastern Gulf of Mexico. In downdip areas of the Frio and Anahuac Formations, traps associated with faulted, rollover anticlines are common. Structural traps commonly occur in combination with stratigraphic traps. Faulted salt domes in the Frio and Anahuac Formations are present in the Houston embayment of Texas and in south Louisiana. In the Frio Formation, stratigraphic traps are found in fluvial, deltaic, barrier-bar, shelf, and strandplain systems. The USGS Tertiary Assessment Team defined a single, Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) for the Gulf Coast basin, based on previous studies and geochemical analysis of oils in the Gulf Coast basin. The primary source rocks for oil and gas within Cenozoic petroleum systems, including Frio Formation reservoirs, in the northern, onshore Gulf Coastal region consist of coal and shale rich in organic matter within the Wilcox Group (Paleocene–Eocene), with some contributions from the Sparta Sand of the Claiborne Group (Eocene). The Jurassic Smackover Formation and Cretaceous Eagle Ford Formation also may have contributed substantial petroleum to Cenozoic reservoirs. Modeling studies of thermal maturity by the USGS Tertiary Assessment Team indicate that downdip portions of the basal Wilcox Group reached sufficient thermal maturity to generate hydrocarbons by early Eocene; this early maturation is the result of rapid sediment accumulation in the early

  11. Sudbury project (University of Muenster-Ontario Geological Survey): Origin of the polymict, allochthonous breccias of the Onaping Formation

    NASA Technical Reports Server (NTRS)

    Avermann, M. E.

    1992-01-01

    The Sudbury structure has been interpreted as a deeply eroded remnant of a peak-ring basin. The polymict, allochthonous breccias of the Onaping Formation (OF) occur in the central part of the Sudbury structure, which is surrounded by the 1.85-Ga-old 'Sudbury Igneous Complex' (SIC). From bottom to top the OF can be divided into Basal, Gray, Green, and lower and upper Black members. The breccias were mapped in detail in the east range of the structure. The SIC and the lower part of the OF (Basal Member) are interpreted as the impact melt system. The overlying Gray Member is a breccia unit with a clastic matrix and has a sharp contact to the Basal Member. The Green Member is considered as a continuous uniform breccia layer on top of the Gray Member and comprises the former 'chlorite shard horizon'. The uppermost unit of the OF (Black Member) can be subdivided into a lower and an upper Black Member unit. The lower part (100-150 m thick) still shows petrographic features of suevitic breccias, small fragments of basement rocks, melt particles, chloritized particles, and breccia fragments in a dark, clastic matrix.

  12. K?Ar dating and geological significance of clastic sediments of the Paleocene Sepultura Formation, Baja California, México

    NASA Astrophysics Data System (ADS)

    Téllez Duarte, Miguel Agustín.; López Martínez, Margarita

    2002-12-01

    At its type locality, the Paleocene Sepultura Formation consists of two members: a lower glauconitic-rich clastic section and an upper calcareous section. Three samples of authigenic glauconite pellets from two localities with good clastic sediment exposures were dated using K-Ar. At the type locality of Mesa La Sepultura, pellets from the middle of the clastic section yield a date of 60±1 Ma (weighted average of four experiments), and pellets from the top of the clastic unit give a date of 60±1 Ma (weighted average of two experiments). Pellets from the base of the section at La Mesa, 60 km distant, give a date of 59±1 Ma (one experiment). Dates obtained are in good agreement with those reported by biostratigraphy and confirm a Late Danian age. Our results differ from those reported elsewhere, in which low potassium content glauconites yield younger K-Ar ages than expected. An explanation for our observed agreement in ages could be related to the tectonic setting of forearc basins, where the low geothermal gradient prevents argon loss and reliable dates can be obtained.

  13. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  14. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  15. Dolomitization and neomorphism of Mississippian (Visean) upper debolt formation, Blueberry field, northeastern British Columbia: Geologic, petrologic, and chemical evidence

    SciTech Connect

    Durocher, S.; Al-Aasm, I.S.

    1997-06-01

    Petrographic, chemical, and isotopic studies of the Mississippian (Visean) upper Debolt Formation in the Blueberry field, British Columbia, Canada, reveal that dolomitization was the result of several diagenetic events and that neomorphic alteration of these dolomites significantly modified their original chemical signatures. These studies also demonstrate how tectonics play an important role in controlling and modifying reservoir dolomites in the area. Petrographic investigations have documented two early dolomite phases, (1) early matrix dolomite and (2) pervasive dolomite, and two later generations, (3) coarse cement and (4) pseudomorphic replacement of crinoids. Early matrix dolomite occurs as small (average 25 {mu}m) subhedral to euhedral crystals that replace the matrix of carbonate mudstones, wackestones, and packstones. Petrographic evidence suggests that early matrix dolomite had a relatively early, precompaction origin, possibly from marine fluids. However, geochemical evidence indicates that later fluids have altered their original geochemical signatures. Pervasive dolomite, which forms the reservoir intercrystalline porosity, occurs with planar-s and planar-e textures. Planar-s crystals typically have a dirty appearance and exhibit homogeneous dull brown/red cathodoluminescence colors. Planar-e crystals may appear with a cloudy core and a clear rim, and under cathodoluminescence display an irregular dull brown/red core and a thin, bright red rim. Due to the spatial distribution pattern of pervasive dolomite with respect to the overlying unconformity surface, its paleogeographic distribution and close temporal relationship with meteoric diagenetic events, pervasive dolomite formed from a mixture of seawater and meteoric fluids. However, alteration of their primary chemistry by later fluids is indicated by their depleted {delta}{sup 18}O values and radiogenic {sup 87}Sr/{sup 86}Sr ratios.

  16. Neoproterozoic Cana Brava chrysotile deposit (Goiás, Brazil): Geology and geochemistry of chrysotile vein formation

    NASA Astrophysics Data System (ADS)

    Biondi, João Carlos

    2014-01-01

    The Cana Brava chrysotile asbestos deposit of Goiás, Brazil, contains approximately 150 Mt of ore with an average of 3.5 wt.% of cross-fiber chrysotile and lies in the differentiated, mafic-ultramafic Neoproterozoic Cana Brava complex. This complex was formed at approximately 0.79 Ga and metamorphosed at 0.77 to 0.76 and 0.63 Ga. The 0.77 to 0.76 Ga metamorphic event was a high-grade one that transformed the mafic and ultramafic rocks into meta-peridotites and meta-pyroxenites. The low-grade 0.63 Ga metamorphism allowed the formation of black, red and brown serpentinite, graphitic, magnesite-rich talc serpentinite, and rodingite, which became folded and foliated. At the end of the 0.63 Ga metamorphism, black serpentinites were oxidized to form red serpentinites, the main type of serpentinite that outcrops today at the Cana Brava mineralized region. Post-metamorphic fluids reactivated the process of serpentinization, thereby generating massive green serpentinite from the red. Green formed on the most fractured zones, and double red and green reaction rims formed on the sides of the veins located outside the green serpentinite zones. This process did not cause significant variation in the volume of the rocks and resulted in a strongly reducing system thanks to the loss of Fe2O3 and iron and the subsequent crystallization of magnetite within veinlets and altered rocks. Low angle shear, developed under brittle conditions, caused hydraulic fracturing and the generation of oversaturated, oxidizing fluids that crystallized the cross-fiber chrysotile inside open fractures. Very densely fractured zones with fractures filled with cross-fiber chrysotile constitute the ore that is mined at present.

  17. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  18. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  19. Experimentation in planetary geology

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.

    1987-01-01

    Laboratory simulations of geological processes on the terrestrial planets are described, summarizing results published during the period 1983-1986. Included are studies of wind-driven processes on Mars and Venus (using the special wind-tunnel facilities at NASA Ames); simulations of shock-induced loss of volatiles from solids; equation-of-state determinations; impact experiments simulating cratering, spallation, regolith formation, and disruption; fluid-flow simulations of channel formation on Mars; and dust studies. The use of the microgravity environment of the Space Station for planetary-geology experiments is briefly considered.

  20. Geological, petrologic, isotopic, and geochemical constraints of geodynamic models simulating formation of the archean tonalite-trondhjemite-granodiorite associations in ancient cratons

    NASA Astrophysics Data System (ADS)

    Vrevsky, A. B.; Lobach-Zhuchenko, S. B.; Chekulaev, V. P.; Kovalenko, A. V.; Arestova, N. A.

    2010-07-01

    The geological setting, geochemistry, and Nd isotopic systematics of tonalite-trondhjemite-granodiortite (TTG) series in ancient cratons are considered. It is shown that the TTG series were formed from ˜4.2 to 2.6 Ga ago in the oldest continental cores; many TTG series do not reveal chronological links to greenstone belts. This follows from the evolution of the Slave Craton in the Canadian Shield, the Vodlozero Craton in the Baltic Shield, and the Pilbara and Yilgarn cratons in the Australian Shield, where greenstone associations postdated TTG series. As has been established at the Baltic Shield, the primary melts of the Mesoarchean TTG associations were formed at a shallower depth ( P < 15 kbar) compared to the Neoarchean TTG, likely, due to the increasing thickness of the continental crust beneath the Baltic Shield over time. The Nd isotopic composition of worldwide TTG associations indicates that most of them are characterized by a substantial time interval (>150 Ma) that separates the formation of the TTG melts from the age of the source involved in melting. Taking into account the calculated rate of cooling of the lithospheric plates, these data indicate that most Archean TTG series likely were not formed in the convergent subduction-related and accretionary geodynamic settings. The isotopic and geochemical data constrain compositions of the sources that produced Archean TTG series. Petrologic modeling of the formation conditions and Nd isotopic composition of the metabasalts in greenstone belts show that these rocks could not have been the source of TTG series. The most plausible isotopic and geochemical analogue of this source are the Archean amphibolites (ENd mafic rocks), which differ from the metabasalts of greenstone belts by their lower Sm/Nd ratio and enrichment in some lithophile elements. The available data suggest that the primary TTG melts were generated as products of melting of amphibolites and granulites forming the lower crust.

  1. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  2. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  3. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  4. Geologic Time.

    ERIC Educational Resources Information Center

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  5. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  6. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  7. The topology of geology 1: Topological analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  8. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls

    USGS Publications Warehouse

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.

    2009-01-01

    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting

  9. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    PubMed

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  10. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  11. Geological Field Trip Guidebooks

    ERIC Educational Resources Information Center

    Wallace, Harriet E.

    1978-01-01

    Geological field trip guidebooks, developed for use during a field trip or field conference, are considered ephemeral publications by their compilers and publishers. Too few copies are printed and little attention is paid to bibliographic format and information. These difficulties are discussed and recommendations are made to alleviate the…

  12. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  13. Environmental geology of Harrison Bay, northern Alaska

    USGS Publications Warehouse

    Craig, J.D.; Thrasher, G.P.

    1982-01-01

    The surficial and shallow subsurface geology of Harrison Bay on the Beaufort Sea coast was mapped as part of the U.S. Geological Survey's prelease evaluation for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 71. During the 1980 summer season, approximately 1600 km of multisensored, high-resolution geophysical profile data were collected along a rectangular grid with 4.8 km line spacing. Interpretation of these data is presented on five maps showing bathymetry, sea-floor microrelief, ice-gouge characteristics, Holocene sediment thickness, and geologic structure to depths of approximately 1000 m. On a broad scale, the seafloor is shallow and almost flat, although microrelief features produced by sediment transport and ice-gouge processes typically vary up to several meters in amplitude. Microrelief bedforms related to hydraulic processes are predominant in water depths less than 12 m. Microrelief caused by ice gouging generally increases with water depth, reaching a maximum of 2 m or more in water depths beyond the 20 m isobath. This intensely gouged area lies beneath the shear zone between the seasonal landfast ice and the mobile polar ice pack. The thickness of recent (Holocene) sediment increases offshore, from 2 m near the Colville River delta to 30 m or more on the outer shelf. The thin Holocene layer is underlain by a complex horizon interpreted to be the upper surface of a Pleistocene deposit similar in composition to the present Arctic Coastal Plain. The base of the inferred Pleistocene section is interpreted to be a low-angle unconformity 100 m below sea level. Beneath this Tertiary-Quaternary unconformity, strata are interpreted to be alluvial fan-delta plain deposits corresponding to the Colville Group and younger formations of Late Cretaceous to Tertiary age. Numerous high-angle faults downthrown to the north trend across the survey area. With few exceptions, these faults terminate at or below the 100 m unconformity, suggesting that most tectonism

  14. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  15. Practical Geology

    ERIC Educational Resources Information Center

    Sutton, Ian

    1975-01-01

    Geology is an ideal subject in which to introduce the "discovery" method of learning. Available from: National Institute of Adult Education (England and Wales), 35 Queen Anne St., London W1M OBL England. (BP)

  16. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  17. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    USGS Publications Warehouse

    ,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  18. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  19. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Serrano, Lina; Ferrari, Luca; Martínez, Margarita López; Petrone, Chiara Maria; Jaramillo, Carlos

    2011-09-01

    The genesis of the Caribbean Large Igneous Province (CLIP) has been associated to the melting of the Galapagos plume head at ~ 90 Ma or to the interaction between the plume and the Caribbean slab window. Gorgona Island, offshore western Colombia, is an accreted fragment of the CLIP and its highly heterogeneous igneous suite, ranging from enriched basalts to depleted komatiites and picrites, was assumed to have formed at ~ 89 Ma from different part of the plume. Here we present new geologic, geochronologic and geochemical data of Gorgona with significant implications for the formation of the CLIP. A new set of 40Ar- 39Ar ages documents a magmatic activity spanning the whole Late Cretaceous (98.7 ± 7.7 to 64.4 ± 5 Ma) followed by a shallower, picritic pyroclastic eruption in the Paleocene. Trace element and isotope geochemistry confirm the existence of an enriched (EDMM: La/Sm N ≥ 1 and ɛNd i of 5.7 to 7.8) and a depleted (DMM: La/Sm N < 1 and ɛNd i of 9.5 to 11.3) mantle sources. A progressive increase in the degree of melting and melt extraction with time occurred in both groups. Petrologic modeling indicates that low but variable degrees of wet melting (< 5%) of an EDMM can produce the LREE-enriched rocks. Higher degree of melting (> 10%) of a mixed DMM + EDMM (40 to 60%) may reproduce the more depleted rocks with temperatures in the range of ambient mantle in absence of plumes. Our results contradict the notion that the CLIP formed by melting of a plume head at ~ 90 Ma. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, also recognized in other CLIP areas, suggest a long period of diffuse magmatism without a clear pattern of migration. The age span of this magmatism is broadly concurrent with the Caribbean slab window. During this time span the Farallon oceanic lithosphere (later becoming the Caribbean plate) advanced eastward ~ 1500 km, overriding the astenosphere feeding the proto-Caribbean spreading ridge. This hotter mantle

  20. Destination: Geology?

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  1. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  2. GOAT ROCKS WILDERNESS AND ADJACENT ROADLESS AREAS, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Close, T.J.

    1984-01-01

    The Goat Rocks Wilderness and adjacent roadless areas are a rugged, highly forested, scenic area located on the crest of the Cascade Range in south-central Washington. Several mineral claims have been staked in the area. Mineral surveys were conducted. Geochemical, geophysical, and geologic investigations indicate that three areas have probable mineral-resource potential for base metals in porphyry-type deposits. Available data are not adequate to permit definition of the potential for oil and gas. There is little likelihood for the occurrence of other kinds of energy resources in the area. Evaluation of resource potential in the three areas identified as having probable mineral-resource potential could be improved by more detailed geochemical studies and geologic mapping.

  3. Digital solar system geology

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Kozak, R. C.; Isbell, Nancy K.

    1991-01-01

    All available synoptic maps of the solid-surface bodies of the Solar System were digitized for presentation in the planned Atlas of the Solar System by Greeley and Batson. Since the last report (Batson et al., 1990), preliminary Uranian satellite maps were replaced with improved versions, Galilean satellite geology was simplified and digitized, structure was added to many maps, and the maps were converted to a standard format, with corresponding standing colors for the mapped units. Following these changes, the maps were re-reviewed by their authors and are now undergoing final editing before preparation for publication. In some cases (for Mercury, Venus, and Mars), more detailed maps were digitized and then simplified for the Atlas. Other detailed maps are planned to be digitized in the coming year for the Moon and the Galilean satellites. For most of the remaining bodies such as the Uranian satellites, the current digitized versions contain virtually all the detail that can be mapped given the available data; those versions will be unchanged for the Atlas. These digital geologic maps are archived at the digital scale of 1/16 degree/ pixel, in sinusoidal format. The availability of geology of the Solar System in a digital database will facilitate comparisons and integration with other data: digitized lunar geologic maps have already been used in a comparison with Galileo SSI observations of the Moon.

  4. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  5. Barriers to rotation adjacent to double bonds. 3. The C-O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance

    SciTech Connect

    Wiberg, K.B.; Laidig, K.E.

    1987-09-30

    The structures of the rotamers about the C-O bonds of formic acid, methyl formate, acetic acid, and methyl acetate were calculated by using the 6-31G* basis set and complete geometrical relaxation. Large basis sets (6-311+G**) and correction for electron correlation were needed in order to obtain calculated barriers that were in good agreement with the available experimental data. The factors that control the geometry at a carbonyl group are considered, and it is shown that an analysis in terms of bond path angles leads to a direct connection with electronegativity. The nature of the interaction between an amino group and a carbonyl, as in an amide, is examined and shown not to involve charge transfer from the nitrogen to the carbonyl oxygen, but rather it involves charge transfer between carbon and nitrogen. The origin of the rotational barrier in esters and of the difference in energy between the E and Z conformers is discussed.

  6. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  7. City Geology.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    This article provides information on the evolution of the building material, concrete, and suggests hands-on activities that allow students to experience concrete's qualities, test the heat absorbency of various ground surface materials, discover how an area's geology changes, and search for city fossils. A reproducible activity sheet is included.…

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  9. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (Inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  10. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  11. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  12. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  13. Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian

    2003-01-01

    Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group

  14. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect

    Not Available

    1983-03-01

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  15. Mesozoic tectonics and paleogeography of the western U. S. and the adjacent Pacific basin

    SciTech Connect

    Dilek, Y. )

    1990-06-01

    Recent geological, geochemical, and geochronological information from Jurassic and older ophiolite complexes and arc rocks in northern California provides new interpretations for Mesozoic tectonics of the western US and the adjacent Pacific basin. This information is discussed in conjunction with the Mesozoic tectonics and paleogeography of the western United States and the Pacific Ocean.

  16. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  17. Geological Processes and Evolution

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Greeley, R.; Golombek, M. P.; Hartmann, W. K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L. E.; Carr, M. H.

    2001-04-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  18. Osmium complex binding to mismatched methylcytosine: effect of adjacent bases.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-01-01

    We investigated the efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes depended on the 5'-neighboring base of the 5-methylcytosine. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique side reaction was observed. However, the mismatched base pairs did not influence the selectivity of osmium complexation with methylated DNA.

  19. Integrating geology and perforating

    SciTech Connect

    Araujo, P.F. de; Souza Padilha, S.T.C. de

    1997-02-01

    Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

  20. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  1. Geologic nozzles

    USGS Publications Warehouse

    Werner, Kieffer S.

    1989-01-01

    The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by the debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. -from Author

  2. Biochemical evolution III: polymerization on organophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues.

    PubMed

    Smith, J V; Arnold, F P; Parsons, I; Lee, M R

    1999-03-30

    Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal-chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al-OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich "soup." Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments.

  3. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory?Determination of Trihalomethane Formation Potential, Method Validation, and Quality-Control Practices

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Fram, Miranda S.; Bush, Noel

    2004-01-01

    An analytical method for the determination of the trihalomethane formation potential of water samples has been developed. The trihalomethane formation potential is measured by dosing samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine, and then analyzing the resulting trihalomethanes by purge and trap/gas chromatography equipped with an electron capture detector. Detailed explanations of the method and quality-control practices are provided. Method validation experiments showed that the trihalomethane formation potential varies as a function of time between sample collection and analysis, residual-free chlorine concentration, method of sample dilution, and the concentration of bromide in the sample.

  4. The cost of meeting increased cooling-water demands for CO2 capture and storage utilizing non-traditional waters from geologic saline formations

    NASA Astrophysics Data System (ADS)

    Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.

    2013-05-01

    Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.

  5. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  6. Geology of a cretaceous subduction complex, Western Chicagoof Island, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Decker, J. E., Jr.

    1981-08-01

    The geology of the Chugach terrane on Chichagof and Baranof Islands in southeastern Alaska is described and mapped in detail. The Goon Dip Greenstone and the Whitestripe Marble are pre-Late Jurassic in age and possibly correlate with Triassic rocks in the Wrangell Mountains. The Kelp Bay Group is a chaotic metasedimentary and metavolcanic terrane correlative with Lower Cretaceous complexes in the Chugach Mountains and adjacent islands. The Ford Arm Formation consists mainly of flyschoid rocks continuous with Upper Cretaceous rocks of the Valdez Group in the Chugach Mountains and correlative with the Kodiak and Shumagin Formations in southwest Alaska. The Sitka Graywacke consists mainly of massive sandstone petrographically similar to the Ford Arm Formation. The occurrence, geochemistry, and petrology of metavolcanic rocks from Chichagof Island indicate that basaltic ocean floor volcanism was contemporaneous with deposition of continental sediment.

  7. Semantic Web-based digital, field and virtual geological

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.

    2012-12-01

    in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.

  8. Marine Geology

    NASA Astrophysics Data System (ADS)

    van Andel, Tjeerd H.

    Marine geology was blessed early, about 30 years ago, with two great textbooks, one by P.H. Kuenen, the other by Francis P. Shepard, but in more recent years, no one has dared synthesize a field that has become so diverse and is growing so rapidly. There are many texts written for the beginning undergraduate student, mostly by marine geologists, but none can be handed conveniently to a serious advanced student or given to a colleague interested in what the field has wrought. The reason for this regrettable state is obvious; only an active, major scholar could hope to write such a book well, but the years would pass, his students dwindle, his grants vanish. He himself might be out of date before his book was. Kennett has earned a large measure of gratitude for his attempt to undertake this task. His personal price must have been high but so are our rewards.

  9. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  10. Biochemical evolution III: Polymerization on organophilic silica-rich surfaces, crystal–chemical modeling, formation of first cells, and geological clues

    PubMed Central

    Smith, Joseph V.; Arnold, Frederick P.; Parsons, Ian; Lee, Martin R.

    1999-01-01

    Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments. PMID:10097060

  11. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  12. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  13. Geologic structure and altitude of the top of the Minnelusa Formation, northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.

    1987-01-01

    Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)

  14. Detailed geologic field mapping and radiometric dating of the Abanico Formation in the Principal Cordillera, central Chile: Evidence of protracted volcanism and implications for Cenozoic tectonics

    NASA Astrophysics Data System (ADS)

    Mosolf, J.; Gans, P. B.; Wyss, A. R.; Cottle, J. M.

    2011-12-01

    Many aspects of the long-term evolution of intra-arc processes remain poorly understood, including temporal trends in magmatism, temporal and spatial patterns of volcanism, and styles of arc deformation. The Abanico Formation in the Principal Cordillera of central Chile is a thick, well-exposed section of volcanogenic strata providing a superb locale for the investigation of continental arc dynamics over a 60+ myr timescale. In this study, eight new litho-stratigraphic members of the Abanico Formation are described and mapped in the Río Tinguiririca river area. Mapping and field observations show the Abanico Formation measures up to ~2.5 km in composite stratigraphic thickness. The lower ~1.1 km of the section (> 46 Ma) is dominated by andesitic breccias interbedded with andesite, basaltic andesite, and olivine basalt lavas. The upper 1.4 km of the section (< 46 Ma) consists of volcaniclastic sandstone interbedded with abundant dacitic tuffs and minor andesite, basaltic andesite, and basalt flows. Nineteen new LA-MC-ICPMS U-Pb zircon ages and ten new 40Ar/39Ar whole rock and plagioclase ages obtained for the Abanico Formation clarify ambiguous field relationships and provide a robust chrono-stratigraphic framework spanning ~72 to 11 Ma; these new ages significantly revise the maximum mid-Tertiary age for the Abanico Formation previously established by the mammal fossil record. The map units are cut by numerous dacitic to gabbroic dikes and sills with ages spanning the Eocene to Pliocene. The Abanico Formation is overlain in angular unconformity by Pliocene and Quaternary volcanics composed mainly of andesite, basaltic andesite, and basalt lavas. A strong deformational overprint has tilted, folded, and faulted the Abanico map units. Fold axes and reverse faults, both east and west directed, are generally N-S trending. Reverse faults achieve up to ~50 Ma of stratigraphic separation, placing Campanian strata on Miocene rocks with up to ~2 km of vertical throw. The

  15. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in

  16. Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15)

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2008-01-01

    This report summarizes the status of a mapping project supported by NASA grant NNX07AP42G, funding for which became available on July 18, focusing on the mapping of the Medusae Fossae Formation (MFF) on Mars. The report also briefly discusses the status of maps of Venus and Ascraeus Mons, begun under previous NASA grants but which are still in progress.

  17. The geology and geochemistry of the Espungabera Formation of central Mozambique and its tectonic setting on the eastern margin of the Kalahari Craton

    NASA Astrophysics Data System (ADS)

    Moabi, Neo G.; Grantham, Geoffrey H.; Roberts, James; Roux, Petrus le; Matola, Rogerio

    2015-01-01

    Whole rock major and trace element chemistry as well as radiogenic isotope data from the Espungabera Formation of central Mozambique are compared with published data from the Umkondo Formation lavas in SE Zimbabwe and Straumsnutane Formation lavas in western Dronning Maud Land, Antarctica. These formations form part of the ∼1100 Ma Umkondo Igneous Province in southern Africa and are now preserved on the Grunehogna (in Antarctica) and Zimbabwe (in Zimbabwe) Cratons. The chemical data indicate that the Espungabera Formation lavas are dominantly tholeiitic and basaltic to basaltic andesitic in composition. The Espungabera lavas are dominated by plagioclase, clinopyroxene and Fe-Ti oxides. Metamorphic mineral assemblages indicate the lavas have been metamorphosed under mid-greenschist facies on a retrograde path to prehnite-pumpellyite facies conditions. The decrease in FeOt with increasing MgO content in the Espungabera lavas and the slight decrease in TiO2 with increasing MgO indicates fractionation of Fe-Ti oxides. The lavas are characterised by negative Nb anomalies; enriched LILE's and high 87Sr/86Sr isotopic ratios. The 87Sr/86Sr data calculated at 1100 Ma suggest contamination by continental crust during the petrogenesis of the lavas. The Espungabera volcanics have negative εNd values (-2.83 to -3.49) also suggesting that the magma was contaminated by older crust. Comparison of the chemical data from the Espungabera Formation with data from the Umkondo Group basalts from SE Zimbabwe and the Straumsnutane Formation lavas from Dronning Maud Land, Antarctica shows that they are similar. These similarities, along with similarities in the available geochronological data suggest that these rocks are comagmatic. Both units are also geochemically similar to some rock units that form part of the Umkondo Large Igneous Province (i.e. Zimbabwe basalts that were regarded as Umkondo basalts by Munyanyiwa (1999), Waterberg sills, Umkondo sills and Type III Mutare and Guruve

  18. Briefing on geological sequestration (Tulsa)

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  19. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2016-01-01

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  20. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  1. Allogenic and authigenic clays of the Lower Palæozoic sandstones of the Naqus Formation at Gebel Gunna, central Sinai, Egypt: their recognition and geological significance

    NASA Astrophysics Data System (ADS)

    Wanas, H. A.; Soliman, H. E.

    2001-01-01

    The Lower Palæozoic Naqus Formation of Gebel Gunna in the Sinai Peninsula is conformably underlain by the Araba Formation and unconformably overlain by the Cenomanian Malha Formation. It consists mainly of fine- to medium-grained pebbly sandstones with a few siltstone and granulestone interbeds. Petrographical, X-ray diffraction, scanning electron microscope and chemical analyses of the sandstones revealed that they are mainly quartzarenite, containing allogenic and authigenic clays. The allogenic clays were found in small amounts. Such clays exhibit some of the characteristic features of infiltration clay coats. The clays coat a few grain surfaces and form meniscus-shaped pore bridges at points of grain contact. In addition, the clays were observed on the surfaces of crystalline authigenic minerals and in-filled elongated pores of partially dissolved feldspar grains. The recorded authigenic clays are mainly kaolinite with a minor amount of illite. The kaolinite exhibits three morphological habits: vermicular, blocky and fan-shaped. The vermicular kaolinite is dominant and was interpreted to have formed by dissolution of feldspar grains. The blocky kaolinite was observed with a textural relationship, indicating that it was neomorphosed after vermicular kaolinite. The fan-shaped kaolinite was found to be a result of mica alteration. Study of both allogenic and authigenic clays has helped in understanding the sedimentological history of the studied sandstones. The sandstones were deposited in a braided stream, buried at depth of about 1-3 km, and afterwards subjected to surface exposure.

  2. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  3. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  4. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  5. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    -Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.

  6. The Necessity of Geologic Disposal

    SciTech Connect

    R. Linden

    2004-07-01

    Nuclear wastes are the radioactive byproducts of nuclear power generation, nuclear weapons production, and other uses of nuclear material. Experts from around the world agree that deep geologic disposal of nuclear waste in a mined repository is the most environmentally sound means of removing these potential sources of radiation from interaction with the biosphere. Of the 360 millirem of background radiation received annually by the average American, from both natural and man-made sources, less than 1 millirem results from the nuclear fuel cycle. Spent nuclear fuel and high-level radioactive waste, destined for geologic disposal, are located at 126 sites in 39 states. The proposed repository site at Yucca Mountain, Nevada, is far more isolated from the general population than any sites where these radioactive materials are presently located. Only solid forms of high-level wastes will be transported for disposal in a geologic repository. For more than 50 years, nuclear materials have been safely transported in North America, Europe, and Asia, without a single significant radiation release. Since the 1950s, select panels from the National Academy of Sciences-National Research Council and interagency advisory groups, and international experts selected by the OECD/Nuclear Energy Agency, have examined the environmental, ethical, and intergenerational aspects of nuclear waste disposal, plus alternatives to geologic disposal. All have concluded that deep geologic disposal in a mined repository is clearly the preferred option. The concept of deep geologic disposal is based on the analogy to ore deposits, which are formed deep within the Earth's crust, commonly remain isolated from the biosphere for millions to billions of years, and are, generally, extremely difficult to detect. Before selecting the unsaturated tuffs at Yucca Mountain, DOE evaluated salt formations, basalts, and both crystalline and sedimentary rocks. Other nations generating nuclear power also plan to use

  7. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  8. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  9. Geology, coal resources, and chemical analyses of coal from the Fruitland Formation, Kimbeto EMRIA study site, San Juan County, New Mexico

    USGS Publications Warehouse

    Schneider, Gary B.; Hildebrand, Rick T.; Affolter, Ronald H.

    1979-01-01

    The Kimbeto EMRIA study site, an area of about 20 square miles (52 km2), is located on the south margin of the San Juan Basin on the gently northward-dipping strata of the Upper Cretaceous Fruitland Formation and the Kirtland Shale. The coal beds are mainly in the lower 150 feet (45 m) of the Fruitland Format ion. Coal resources--measured, indicated, and inferred--with less than 400 feet (120 m) of overburden in the site are 69,085,000 short tons (62,660,100 metric tons), 369,078,000 short tons (334,754,000 metric tons), and 177,803,000 short tons (161,267,000 metric tons) respectively. About 68 percent of these resources are overlain by 200 feet (60 m) or less of overburden. The apparent rank of the coal ranges from subbituminous B to subbituminous A. The average Btu/lb value of 14 core samples from the site on the as-received basis is 8,240 (4580 Kcal/kg), average ash content is 23.4 percent, and average sulfur content is 0.5 percent. Analyses of coal from the Kimbeto EMRIA study site show significantly higher ash content and significantly lower contents of volatile matter, fixed carbon, carbon, and a significantly lower heat of combustion when compared with other coal analyses from the Rocky Mountain province.

  10. Godiva Rim Member: A new stratigraphic unit of the Green River Formation in southwest Wyoming and northwest Colorado. Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) Formations, Greater Green River Basin, Wyoming, Utah, and Colorado. Professional paper

    SciTech Connect

    Roehler, H.W.

    1991-01-01

    The report names and describes the Godiva Rim Member of the Green River Formation in the eastern part of the Washakie basin in southwest Wyoming and the central part of the Sand Wash basin in northwest Colorado. The Godiva Rim Member comprises lithofacies of mixed mudflat and lacustrine origin situated between the overlying lacustrine Laney Member of the Green River Formation and the underlying fluvial Cathedral Bluffs Tongue of the Wasatch Formation. The Godiva Rim Member is laterally equivalent to and grades westward into the LaClede Bed of the Laney Member. The Godiva Rim Member of the Green River Formation was deposited along the southeast margins of Lake Gosiute and is correlated to similar lithologic units that were deposited along the northeast margins of Lake Uinta in the Parachute Creek Member of the Green River Formation. The stratigraphic data presented provide significant evidence that the two lakes were periodically connected around the east end of the Uinta Mountains during the middle Eocene.

  11. Venus geology

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1991-05-01

    The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

  12. Simulation model analysis of the most promising geological sequestration formation candidates in the Rocky Mountain region, USA, with focus on uncertainty assessment

    SciTech Connect

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-12-31

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  13. Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    SciTech Connect

    Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

    2008-11-01

    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

  14. Explosive lava-water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups

    NASA Astrophysics Data System (ADS)

    Hamilton, Christopher W.; Fagents, Sarah A.; Wilson, Lionel

    2010-09-01

    Volcanic rootless constructs (VRCs) are the products of explosive lava-water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age-dating of their host lava surfaces, and thermodynamic modeling of lava-substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near-surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25-27°N, 170-171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ˜2000 km2. These VRCs preferentially occur where lava is ˜60 m thick. Crater size-frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near-surface substrate was partially desiccated, but that the depth to the midlatitude ice table was $\\lesssim$42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (˜35°) between 75 and 250 Ma, with obliquity excursions descending to ˜25-32°. For lava thicknesses ranging from 30 to 60 m and ground ice fractions ranging from 0.1 to 0.3, an ice volume of ˜4-23 km3 could have been melted and/or vaporized by the time the lava solidified, and the associated hydrothermal systems could have retained temperatures >273 K for up to ˜1300 years.

  15. History of Geology.

    ERIC Educational Resources Information Center

    Greene, Mott T.

    1985-01-01

    Discusses: (1) geologists and the history of geology; (2) American historians and the history of geology; (3) history of geology in the 1980s; (4) sources for the history of geology (bibliographies, dictionaries, encyclopedias, handbooks, periodicals, public/official histories, compilations, and books); (5) research opportunities; and (6) other…

  16. Practical petroleum geology

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the scope and content of the field of petroleum geology from the standpoint of the practicing petroleum geologist. Includes chapters on basic geological concepts, the sedimentation process, accumulation of hydrocarbons, exploration, economic examination, drilling of exploratory wells, recovering oil and gas (reservoir geology), and the relationship of geology to the petroleum industry as a whole.

  17. MINARETS WILDERNESS AND ADJACENT AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Huber, N. King; Thurber, Horace K.

    1984-01-01

    A mineral survey of the Minarets Wilderness and adjacent areas in the central Sierra Nevada, California was conducted. The results of the survey indicate that the study area has a substantiated resource potential for small deposits of copper, silver, zinc, lead, and iron, and a probable mineral-resource potential for molybdenum. No energy-resource potential was identified in the study.

  18. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  19. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  20. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  1. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  2. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are located in salt formations. The WIPP is a U.S. Department of Energy geological repository being used for the permanent disposal of defense-related transuranic waste (TRU waste). The repository is 655 m below the surface, and is situated in the Salado Formation, a Permian salt bed mainly composed of halite, and of lesser amounts of polyhalite, anhydrite, gypsum, magnesite, clays and quartz. The WIPP Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine, is associated with the Salado Formation. The previous vendor for MgO for the WIPP was Premier Chemicals and the current vendor is Martin Marietta Materials. Experimental studies of both Premier MgO and Martin Marietta MgO with the GWB at SNL indicate the formation of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5:4H2O, termed as phase 5. However, this important phase is lacking in the existing thermodynamic database. In this study, the solubility constant of phase 5 is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant at 25 oC for the following reaction, Mg3Cl(OH)5:4H2O + 5H+ = 3Mg2+ + 9H2O(l) + Cl- is recommended as 43.21±0.33 (2σ) based on the Specific Interaction Theory (SIT) model for extrapolation to infinite dilution. The log K obtained via the Pitzer equations is identical to the above value within the quoted uncertainty. The Gibbs free energy and enthalpy of formation for phase 5 at 25 oC are derived as -3384±2 (2σ) kJ mol-1 and -3896±6 (2σ) kJ mol-1, respectively. The standard entropy and heat capacity of phase 5 at 25 oC are estimated as 393±20 J mol-1 K-1 and 374±19 J mol-1 K

  3. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    . Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  4. Evaluation of the geological relationships to gas hydrate formation and stability. Annual technical progress report, October 1, 1984--September 30, 1985

    SciTech Connect

    Not Available

    1985-12-31

    During the reported year we have enhanced our knowledge on and gained considerable experience in assessment of the gas hydrate resources in the offshore environments. Specifically, we have learned and gained experience in the following: Efficiently locating data sources, including published literature and unpublished information. We have established personal communication extremely critical in data accessability and acquisition. We have updated information pertinent to gas hydrate knowledge, also based on thorough study and evaluation of most Russian literature and additional publications in languages other than English. Besides critical evaluation of widely spread literature, in many cases our reports include previously unpublished information (e.g. BSRs from the Gulf of Mexico). The assessment of the gas resources potential associated with the gas hydrates, although in most cases at a low level of confidence, appears also very encouraging for further, more detailed, study. We are also confident that, because of the present reports` format, new data and a concept-oriented approach, the result of our study will be of strong interest to various industries, research institutions and numerous governmental agencies.

  5. Excerpts from selected LANDSAT 1 final reports in geology

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Smith, A.; Baker, R.

    1976-01-01

    The standard formats for the summaries of selected LANDSAT geological data are presented as checklists. These include: (1) value of LANDSAT data to geology, (2) geologic benefits, (3) follow up studies, (4) cost benefits, (5) optimistic working scales, (6) statistical analysis, and (7) enhancement effects.

  6. Geochemistry, geology, and isotopic (Sr, S, and B) composition of evaporites in the Lake St. Martin impact structure: New constraints on the age of melt rock formation

    NASA Astrophysics Data System (ADS)

    Leybourne, Matthew I.; Denison, Rodger E.; Cousens, Brian L.; Bezys, Ruth K.; Gregoire, D. Conrad; Boyle, Dan R.; Dobrzanski, Ed

    2007-03-01

    We report new Sr, S, and B isotopic data for evaporites (gypsum, anhydrite), carbonates, melt rocks, gneisses, and groundwaters recovered in and around the Lake St. Martin (LSM) impact structure, Interlake Region, Manitoba, Canada. The LSM meteorite impacted Devonian to Ordovician carbonates and sandstones of the eastern Williston Basin, resulting in partial melting of underlying Superior Province (~2.5 Ga) gneisses of the Canadian Shield. Overlying the LSM melt rocks are red beds and evaporites (anhydrite/gypsum/glauberite) previously inferred to have been deposited during the Jurassic. The 87Sr/86Sr (lowest values cluster at 0.70836) and δ 34SCDT (+23.7 +/- 0.9‰) of the evaporites, combined with B isotope compositions of associated groundwaters (δ 11BNBS951 = +25 to +28‰), are consistent with evaporite deposition within the impact structure near the edge of an ocean-connected salina. The establishment of a marine origin for the evaporites offers a method of age assignment using the secular variation of S and Sr isotopes in seawater. Comparison of Sr and S isotope results with the seawater curves precludes Jurassic deposition for the evaporites or correlation with Watrous and Amaranth formation evaporites, previously considered correlative with those at LSM. The lowest Sr and mean of S isotope values from the LSM evaporites are similar to seawater in the latest Devonian, consistent with conodonts recovered from carbonate breccia overlying melt rocks, and we suggest this as an alternative age of the evaporites. Data presented here preclude a Jurassic age for the evaporites and therefore for the impact event.

  7. Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation

    SciTech Connect

    Doughty, C.

    2009-04-01

    The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

  8. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data

    NASA Astrophysics Data System (ADS)

    Khanchuk, A. I.; Kemkin, I. V.; Kruk, N. N.

    2016-04-01

    The Sikhote-Alin orogenic belt, Russian South East, consists of folded terranes made up of Jurassic and Early Cretaceous accretionary prisms, turbidite basins, and island arc terranes that are overlapped unconformably by undeformed upper Cenomanian to Cenozoic volcanic deposits. The Jurassic and Early Cretaceous accretionary prisms, together with the Early Cretaceous island arc, are related to subduction of the Paleo-Pacific plate. The turbidite basin, which began to form at the beginning of the Early Cretaceous, is related to left-lateral movement of the Paleo-Pacific plate along the Paleo-Asian continental margin. The collage of terranes that make up the Sikhote-Alin orogenic belt was amalgamated in two stages. The first began after Jurassic subduction beneath the Asian continent was terminated, and the second took place in the late Albian, when the Early Cretaceous island arc collided with the continental margin. Intense deformation of the terranes took place along the continental margin in the form of large-scale translations from south to north, together with oroclinal folding. The deformation resulted in rapid thickening of sediments in the upper crust, resulting in turn in the formation of granitic-metamorphic material in the continental lithosphere. In the southwestern part of the Sikhote-Alin orogen, granites were intruded during the Hauterivian-Aptian, while the entire orogenic belt was affected by intrusions in the late Albian-early Cenomanian. Synorogenic intraplate volcanic rocks and alkaline ultramafic-mafic intrusions also testify to the fact that the orogenic processes in the Sikhote-Alin were related to a transform continental margin, and not to subduction. Geochemical and Nd isotopic data indicate, the primary continental crust of the Sikhote-Alin was of a "hybrid" nature, consisting of juvenile basic components accreted from an oceanic plate and recycled sedimentary material derived from the erosion of ancient blocks.

  9. A benchmark-multi-disciplinary study of the interaction between the Chesapeake Bay and adjacent waters of the Virginian Sea

    NASA Technical Reports Server (NTRS)

    Hargis, W. J., Jr.

    1981-01-01

    The social and economic importance of estuaries are discussed. Major focus is on the Chesapeake Bay and its interaction with the adjacent waters of the Virginia Sea. Associated multiple use development and management problems as well as their internal physical, geological, chemical, and biological complexities are described.

  10. Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona

    USGS Publications Warehouse

    Anderson, S.R.

    1987-01-01

    This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern

  11. Geology and paleoecology of the Cottonwood Creek delta in the Eocene Tipton Tongue of the Green River Formation and a mammalian fauna from the Eocene Cathedral Bluffs Tongue of the Wasatch Formation, Southeast Washakie Basin, Wyoming

    SciTech Connect

    Roehler, H.W.; Hanley, J.H.; Honey, J.G.

    1988-01-01

    Nonmarine mollusks are used to interpret paleoenvironments and patterns of sedimentation of a fan delta on the east margin of Eocene Lake Gosiute. The delta is composed of a lens of quartzose sandstone intertongued with oil shale. Delta morphology is illustrated by cross sections and paleogeographic maps. A fossil fauna representing five mammalian orders is described and used to establish the age of parts of the Wasatch and Green River formations. There are three chapters in this bulletin.

  12. Geologic map of the north polar region of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Fortezzo, Corey M.

    2012-01-01

    The north polar region of Mars occurs within the central and lowest part of the vast northern plains of Mars and is dominated by the roughly circular north polar plateau, Planum Boreum. The northern plains formed very early in Martian time and have collected volcanic flows and sedimentary materials shed from highland sources. Planum Boreum has resulted from the accumulation of water ice and dust particles. Extensive, uncratered dune fields adjacent to Planum Boreum attest to the active and recent transport and accumulation of sand. Our geologic map of Planum Boreum is the first to record its entire observable stratigraphic record using the various post-Viking image and topography datasets released before 2009. We also provide much more detail in the map than previously published, including some substantial revisions based on new data and observations. The available data have increased and improved immensely in quantity, resolution, coverage, positional accuracy, and spectral range, enabling us to resolve previously unrecognized geomorphic features, stratigraphic relations, and compositional information. We also employ more carefully prescribed and effective mapping methodologies and digital techniques, as well as formatting guidelines. The foremost aspect to our mapping approach is how geologic units are discriminated based primarily on their temporal relations with other units as expressed in unit contacts by unconformities or by gradational relations. Whereas timing constraints of such activity in the north polar region are now better defined stratigraphically, they remain poorly constrained chronologically. The end result is a new reconstruction of the sedimentary, erosional, and structural histories of the north polar region and how they may have been driven by climate conditions, available geologic materials, and eolian, periglacial, impact, magmatic, hydrologic, and tectonic activity.

  13. Superfund GIS - 1:250,000 Geology of Tennessee

    USGS Publications Warehouse

    Greene, D.C.; Wolfe, W.J.

    2000-01-01

    This data set is a digital representation of the printed 1:250,000 geologic maps from the Tennessee Department of Environment and Conservation, Division of Geology. The coverage was designed primarily to provide a more detailed geologic base than the 1:2,500,000 King and Beikman (1974). 1:24,000 scale coverage of the state is available for about 40 percent of the state. Formation names and geologic unit codes used in the coverage are from the Tennessee Division of Geology published maps and may not conform to USGS nomenclature. The Tennessee Division of Geology can be contacted at (615) 532-1500

  14. Sedimentary dynamic processes of a contourite drift formation in the South China Sea: from long-term in situ observations to geological records

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhao, Y.; Zhang, Y.; Li, J.; Wen, K.; Li, X.; Tuo, S.; Zhong, G.

    2015-12-01

    Contourites are sediments deposited or substantially reworked by thermohaline-induced deepwater bottom currents. The study of contourites with growing interests is widely conducted in seismic stratigraphy, paleoceanography, paleoclimatology, and hydrocarbon exploration. However, the sedimentary dynamic process producing contourites in the deepwater environment is still poorly understood. This research presents an interdisciplinary approach from long-term in situ mooring and tripod observations, multi-beam seabed morphology, seismic stratigraphy, to IMAGES (Marion Dufresne) piston coring and ODP (JOIDES Resolution) drilling studies on the formation of a contourite drift on the lower slope of the northern South China Sea. The contourite drift with ~520 m thick is distributed in water depths ranging from 1650 m to 2500 m and has been accumulated since 1.5 Ma in early Pleistocene. The nowadays contour currents in the northern South China Sea were observed with velocities generally ranging in 0-2 cm/s with a dominant flow direction of ~250º (southwestward/along-slope). However, the relatively stable contour currents were disturbed by several bursts of increased velocities up to 8-11 cm/s, each lasting 2-3 weeks and followed by a direction reversal, which were caused by passing-through of deep-reaching mesoscale eddies. The along-slope sediment transport is induced by both mesoscale eddy and contour currents, and these suspended sediments are mainly derived from Taiwan according to provenance analysis of sediments traps equipped on moorings. Seismic stratigraphy and core sample analysis (oxygen isotope stratigraphy, clay mineralogy, and grain size) reveal a long sedimentary history with strong influence of deepwater currents that have carried the majority of Taiwan-sourced sediments moving westward since early Pleistocene. The glacial-cyclic terrigenous input from various surrounding drainage systems and their transport processes from fluvial source to deep-sea sink are

  15. Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: Implications for its geological history

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Bourgeois, O.; Mège, D.; Hauber, E.; Le Mouélic, S.; Massé, M.; Jaumann, R.; Bibring, J.-P.

    2010-08-01

    An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ˜42,300 km 2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ˜1.4 μm, and ˜1.9 μm and a large deep band between ˜2.21 and ˜2.26 μm that are consistent with previous spectral analysis in other regions

  16. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  17. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  18. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  19. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  20. Adjacent Segment Pathology after Lumbar Spinal Fusion

    PubMed Central

    Lee, Jae Chul

    2015-01-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  1. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion.

  2. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  3. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    Linked geological, geomorphological and tectonic features of Fennoscandia with adjacent regions of East-European plain and Barents-Kara shelf indirectly influenced the history of glacial grows and decays. The first-order bedrock landscape elements (often created or exhumed during pre-glacial Cenozoic stages) were the major factors that could partly control centers of ice nucleation and basal velocities, serve natural barriers shaping ice sheet margin during some time intervals, etc. On the hand, many landforms were powerfully modified by glacial and periglacial processes, in particular by strong glacial erosion with lithological and structural control. Quantitative estimation of Plio-Pleistocene erosion and deposition was performed combining regional geological-geomorphological analysis (GA) and modeling with rate-based time-scale reconstructions (RR), and mass-balance control. Of special GA importance was to compare and extract changes of preserved elements of pre-glacial Neogene topography from areas that underwent different duration of glacial activity, in comparison with bordering non-glaciated ones. More distinct radial glacial erosion pattern and larger basal ice velocities seem likely at the beginning of the early ice-age stage, with partial widening of pre-glacial drainage elements. Few wide lowlands with meandering rivers in permafrost condition could provoke early stage onset of topographic ice-streams. Over time, further complication of the pattern from radial to "spider web" is expected due to developing of topographic ice-streams. Worth to mention is progressive exhumation of resistant formations, additional complications of the pattern by fluvioglacial activity and glacial sedimentation, "pendulum" principle, with increasing amount of glacial and interglacial sedimentation in eroded material. Approximated variable permafrost distribution seems to be additional weighty aspect, changing erosion rates at some time intervals. To estimate mean annual

  4. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    USGS Publications Warehouse

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  5. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg 3Cl(OH) 5·4H 2O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations

    NASA Astrophysics Data System (ADS)

    Xiong, Yongliang; Deng, Haoran; Nemer, Martin; Johnsen, Shelly

    2010-08-01

    In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg 3Cl(OH) 5·4H 2O, termed as phase 5, is determined from a series of solubility experiments in MgCl 2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction, MgCl(OH)·4HO+5H=3Mg+9HO(l)+Cl is calculated as 43.21 ± 0.33 (2 σ) based on the specific interaction theory (SIT) model for extrapolation to infinite dilution. The Gibbs free energy and enthalpy of formation for phase 5 at 25 °C are derived as -3384 ± 2 (2 σ) kJ mol -1 and -3896 ± 6 (2 σ) kJ mol -1, respectively. MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH) 2-based engineered barrier (bulk, pure Mg(OH) 2 corresponding to brucite) is to be employed in the Asse repository in Germany. Phase 5, and its similar phase, phase 3 (Mg 2Cl(OH) 3·4H 2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.94 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application Performance Assessment Baseline Calculations indicate that phase 5, instead of phase 3, is indeed a stable phase when the WIPP Generic Weep Brine (GWB), a Na-Mg-Cl-dominated brine associated with the Salado Formation, equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. Therefore, phase 5 is important to the WIPP, and potentially important to other repositories in salt formations.

  6. Geologic Map of the Shenandoah National Park Region, Virginia

    USGS Publications Warehouse

    Southworth, Scott; Aleinikoff, John N.; Bailey, Christopher M.; Burton, William C.; Crider, E.A.; Hackley, Paul C.; Smoot, Joseph P.; Tollo, Richard P.

    2009-01-01

    The geology of the Shenandoah National Park region of Virginia was studied from 1995 to 2008. The focus of the study was the park and surrounding areas to provide the National Park Service with modern geologic data for resource management. Additional geologic data of the adjacent areas are included to provide regional context. The geologic map can be used to support activities such as ecosystem delineation, land-use planning, soil mapping, groundwater availability and quality studies, aggregate resources assessment, and engineering and environmental studies. The study area is centered on the Shenandoah National Park, which is mostly situated in the western part of the Blue Ridge province. The map covers the central section and western limb of the Blue Ridge-South Mountain anticlinorium. The Skyline Drive and Appalachian National Scenic Trail straddle the drainage divide of the Blue Ridge highlands. Water drains northwestward to the South Fork of the Shenandoah River and southeastward to the James and Rappahannock Rivers. East of the park, the Blue Ridge is an area of low relief similar to the physiography of the Piedmont province. The Great Valley section of the Valley and Ridge province is west of Blue Ridge and consists of Page Valley and Massanutten Mountain. The distribution and types of surficial deposits and landforms closely correspond to the different physiographic provinces and their respective bedrock. The Shenandoah National Park is underlain by three general groups of rock units: (1) Mesoproterozoic granitic gneisses and granitoids, (2) Neoproterozoic metasedimentary rocks of the Swift Run Formation and metabasalt of the Catoctin Formation, and (3) siliciclastic rocks of the Lower Cambrian Chilhowee Group. The gneisses and granitoids mostly underlie the lowlands east of Blue Ridge but also rugged peaks like Old Rag Mountain (996 meter). Metabasalt underlies much of the highlands, like Stony Man (1,200 meters). The siliciclastic rocks underlie linear

  7. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    SciTech Connect

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  8. Marine geology: A planet earth perspective

    SciTech Connect

    Anderson, R.N.

    1986-01-01

    This text provides coverage of the basic geology of the marine development. It starts with the formation of the oceans using plate tectonics, continues with discussions of the mid-ocean ridges, and concludes with coverage of the formation and deformation of the continents.

  9. A geologic study of the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Peterson, R. E.

    1982-05-01

    The Michigan Basin contains sediments from Cambrian through Pennsylvanian age. The geologic basin is of greatest depth in Central Michigan with approximately 15,000 ft of strata. To assess efficiently which formations have suitable reservoir characteristics to be included in the Gas Research Institute tight gas sands program, a catalog of the lower-permeability formations and their characteristics was required. The lack of geologic units that were considered to have sufficient extent reservoir characteristics or gas reserves to be of interest as blanket-like gas sands precluded a more detailed inventory and characterization. An overview of all gas productive formations in the Michigan Basin is given.

  10. Summary of Quaternary geology of the Municipality of Anchorage, Alaska

    USGS Publications Warehouse

    Schmoll, H.R.; Yehle, L.A.; Updike, R.G.

    1999-01-01

    Quaternary geology of the Upper Cook Inlet region is dominated by deposits of glacier retreats that followed repeated advances from both adjacent and more distant mountains. At several levels high on the mountains, there are remnant glacial deposits and other features of middle or older Pleistocene age. Late Pleistocene lateral moraines along the Chugach Mountain front represent successively younger positions of ice retreat from the last glacial maximum. As the trunk glacier retreated northeastward up the Anchorage lowland, Cook Inlet transgressed the area, depositing the Bootlegger Cove Formation and Tudor Road deposits. The glacier then readvanced to form the latest Pleistocene Elmendorf Moraine, a prominent feature that trends across the Anchorage lowland. Extensive alluvium was deposited both concurrently and somewhat later as Cook Inlet regressed. Mountain valleys contain (1) locally preserved moraines possibly of early Holocene age; (2) poorly preserved moraine remnants of older late Holocene age; and (3) well-preserved moraines formed mainly during the Little Ice Age. Glaciers still occupy large parts of the mountains, the upper ends of some mountain valleys, and small cirques. Holocene landslide deposits, including those formed during the great Alaska earthquake of 1964, occur throughout the area, especially along bluffs containing the Bootlegger Cove Formation.

  11. Applied velocity versus offset (VVO) to validated & characterized fracturing zone in intra Baturaja Formation, South Sumatera Basin

    NASA Astrophysics Data System (ADS)

    Mardiyan, Hilman; Rusli, Saifatur

    2016-01-01

    The velocity versus offset (VVO) as new geophysical method can be applied to detect some geological phenomenon, such as hydrocarbon trap, structural-fracture anomaly, facies changes, etc. The VVO method is data driven, based on the normal move out equation (NMO) and measuring the local event correlation between adjacent traces to get velocity gradient attributes which is derived from cross-plotting the velocity versus offset (VVO). This paper is describing applied VVO model that controlled by well data which indicated fracture from logs data, especially Resistivity Imager Logs or Formation Micro Imager (FMI). Images FMI logs data at Intra-Baturaja Carbonate Formation (BRF) in South Palembang Sub-basin (SPB), South Sumatera, shows vugs with fractures which orientation is roughly NNW-SSE. Meanwhile, the 2D NMO seismic gathers indicated those all as hockey stick at far offset. By applying VVO method, hockey stick can be identified and then used to validated, characterized and localized where the fracturing zone in intra-Baturaja Formation is. Laterally, VVO quantified as velocity gradient attribute which associated with geological model as the fracturing zone in study area. Characterization fracturing zone in Intra Baturaja Formation as geological lateral model by design is a challenging task for most exploration and production. In term of exploration where limited data is available, it can be used step ahead as carbonate fracture reservoir candidate in proven area and adjacent, especially in SPB South Sumatra.

  12. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  13. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  14. North Dakota geology school receives major gift

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    Petroleum geology and related areas of study at the University of North Dakota (UND) received a huge financial boost with the announcement on 24 September of $14 million in private and public partnership funding. The university announced the naming of the Harold Hamm School of Geology and Geological Engineering, formerly a department within the College of Engineering and Mines, in recognition of $10 million provided as a gift by oilman Harold Hamm and Continental Resources, Inc. Hamm is the chair and chief executive officer of Continental, the largest leaseholder in the Bakken Play oil formation in North Dakota and Montana, and he is also an energy policy advisor to Republican presidential candidate Mitt Romney. UND also received $4 million from the Oil and Gas Research Program of the North Dakota Industrial Commission to support geology and geological engineering education and research.

  15. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  16. Seismotectonic Map of Afghanistan and Adjacent Areas

    USGS Publications Warehouse

    Wheeler, Russell L.; Rukstales, Kenneth S.

    2007-01-01

    Introduction This map is part of an assessment of Afghanistan's geology, natural resources, and natural hazards. One of the natural hazards is from earthquake shaking. One of the tools required to address the shaking hazard is a probabilistic seismic-hazard map, which was made separately. The information on this seismotectonic map has been used in the design and computation of the hazard map. A seismotectonic map like this one shows geological, seismological, and other information that previously had been scattered among many sources. The compilation can show spatial relations that might not have been seen by comparing the original sources, and it can suggest hypotheses that might not have occurred to persons who studied those scattered sources. The main map shows faults and earthquakes of Afghanistan. Plate convergence drives the deformations that cause the earthquakes. Accordingly, smaller maps and text explain the modern plate-tectonic setting of Afghanistan and its evolution, and relate both to patterns of faults and earthquakes.

  17. Coastal Studies in a Comprehensive Summer Field Geology Course.

    ERIC Educational Resources Information Center

    Cameron, Barry; Jones, Richard J.

    1979-01-01

    Describes a college geology course that incorporates a coastal segment. Field studies are done on Plum Island and include examining beaches, dune fields, and an adjacent marsh and spit. Topics include sedimentation, coastal geomorphology, botanical effects, and coastal studies methodology. (MA)

  18. Geology of the Göçükdibi Cu-Pb-Zn Mineralization, Gökçedoǧan, Çorum (Turkey): Preliminary Findings on Its Formation

    NASA Astrophysics Data System (ADS)

    Yalçin, Cihan; Hanilçi, Nurullah; Kumral, Mustafa; Abdelnasser, Amr

    2016-04-01

    Göçükdibi Cu-Pb-Zn mineralization is located 3 km north west of Gökçedoǧan village where is 30 km east of the Kargı, Çorum. The geology of the mineralization area is represented by Mesozoic and Upper Pliocene lithostratigraphic units in different origin. These units with respect to their structural locations have identified as autochthonous and allachtonous. The autochthonous units which are the basement of the region are represented by Bekirli Metamorphites (Triassic-Liassic) and Beşpınar formation (Upper Cretaceous-Lower Eocene) which overlies the Bekirli Metamorphites as angular discordance. The allachtonous units are represented by Saraycık formation belongs to Kargı Ophioltic Melange, and located on the autochthonous units as tectonically. These allocthonous units are the product of the Neotethyan Ocean. The autochthonous and allachtonous units are overlaid by Upper Pliocene Ilgaz Formation and Plio-Quaternary stream sediments. The Cu-Pb-Zn mineralization is located in northwest of the Gökçedoǧan village within the Bekirli Metamorphites. The ore zone has N80E direction, 5 m wide and 120 m in length. The mineralizations which follow NE-SW trending structural line occurred as alternation with quartz-chlorite schists of the Bekirli Metamorphites. The mineralization is generally concordant to the foliation of schist's and also occurred as disseminated in the wall rocks. The ore paragenesis comprises with pyrite, chalcopyrite, sphalerite and galenit as the main sulphide minerals, and the malachite, azurite and limonite as the production of the oxidation. Preliminary data such as relationship between the ore and host rock, inner-structure of the ore and indicate that the Gökçedoǧan Cu-Pb-Zn mineralization was likely to have originated syngenetic. In addition, the geochemical behaviour of rare earth elements (REE) of the altered and mineralized samples collected from the alteration zone show that light REE enrichment with fair depletion of heavy REE

  19. Subsurface geology of upper Tertiary and Quaternary deposits, coastal Louisiana and adjacent Continental Shelf

    SciTech Connect

    McFarlan, E. Jr.; Leroy, D.O.

    1988-09-01

    Upper Tertiary and Quaternary deposits thicken seaward from a feather edge on the outcrop in the uplands of southern Louisiana to more than 7000 ft (2134 m) beneath the middle continental shelf. Through a study of cores and cuttings from 100 control wells and electric-log pattern correlations from 350 water and petroleum industry wells with seismic corroboration in the offshore area, these deposits have been divided into six major time-stratigraphic units, four of which correlate to outcropping terraces. This investigation presents a regional stratigraphic framework of the major upper Tertiary and Quaternary units from their updip pinch-outs in and beneath the terraced uplands, into the subsurface, across the coastal plain to the Louisiana offshore area.

  20. Geologic map of the Latir Volcanic Field, and adjacent areas, northern New Mexico

    USGS Publications Warehouse

    Lipman, P.W.; Reed, J.C.

    1989-01-01

    Development of the Rio Grande Rift beginning at about 15 Ma was accompanied by development of the north-south trending normal faults along the western foot of the Taos Range. The rift is filled with thousands of meters of clastic sediments interleaved with basalt flows, some as young as 3.6 Ma. The bounding faults of the rift cut the Questa Caldera so that the western part of the original structure is now deeply buried beneath the rift fill.

  1. Volcanic geology of Tyrrhena Patera, Mars

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Crown, D. A.

    1990-05-01

    Consideration is given to the geology of Tyrrhena Patera, a large low-relief volcano in the southern cratered highlands of Mars. The general geology of Tyrrhena Patera is outlined and models for the formation of the volcano are described. Models derived from studies of terrestrial pyroclastic flows are applied to deposits at Tyrrhena Patera, showing that the characteristics of the deposits are consistent with an origin by the emplacement of gravity-driven ash flows generated by hydromagmatic or magmatic explosive eruptions.

  2. Late cenozoic uplift of the southwestern colorado plateau and adjacent lower colorado river region

    USGS Publications Warehouse

    Lucchitta, I.

    1979-01-01

    Rocks deposited near sea level under marine, estuarine, and lacustrine conditions, and located along the course of the lower Colorado River from the mouth of the Grand Canyon as far as the Mexican border, have been displaced to present positions as high as 880 m a.s.l. and as low as 1600 m b.s.l. The rocks include the marine and estuarine Bouse Formation and the lacustrine or marine Hualapai Limestone Member of the Muddy Creek Formation. A profile joining spot elevations that represent the highest erosional remnants of these rocks preserved at any one locality gives an approximation (in most cases a minimum value) for the uplift or downdropping of the region relative to sea level since about 5.5 m.y. ago, the K/Ar age of the most widespread and critical unit. The profile shows that most of the lower Colorado region has risen at least 550 m through broad and rather uniform upwarping and at an average rate of about 100 m/m.y. In addition to these 550 m, the nearby Colorado Plateau has risen by discrete movement along Wheeler fault, which is parallel to and about 8 km west of the plateau's edge, to a total uplift of at least 880 m, at a rate that may be as high as 160 m/m.y. Before warping and faulting, the top of the plateau was about 1100 m above the fill of adjacent basins; the top of this fill probably was at or a little below sea level. p]The profile shows two major south-facing rises in slope. The bigger one, near Yuma, occurs where the profile intersects the northwest-trending San Andreas-Salton trough system of faults; it is interpreted as rifting resulting from transcurrent movement along the faults. At the Mexican border, the base of the Bouse Formation is 1600 m b.s.l., which corresponds to a rate of subsidence since the beginning of Bouse time that may be as high as 290 m/.m.y. The top of the Bouse is at 1000 m b.s.l., corresponding to a rate of subsidence of about 180 m/m.y. In this area, the "older marine sedimentary rocks" of Olmsted et al., (1973

  3. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    USGS Publications Warehouse

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  4. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  5. OneGeology: Making the World’s Geological Map Data Accessible Online

    NASA Astrophysics Data System (ADS)

    Broome, H.; Jackson, I.; Robida, F.; Thorleifson, H.

    2009-12-01

    OneGeology (http://onegeology.org) is a successful international initiative of the geological surveys of the world and the flagship project of the ‘International Year of Planet Earth’. Its aim is to provide dynamic web access to geological map data covering the world, creating a focus for accessing geological information for everyone. Thanks to the enthusiasm and support of participating nations the initiative has progressed rapidly and geological surveys and the many users of their data are excited about this ground-breaking project. Currently 10 international geoscience organizations have endorsed the initiative and more than 109 countries have agreed to participate. OneGeology works with whatever digital format is available in each country. The target scale is 1:1 million, but the project is pragmatic and accepts a range of scales and the best available data. The initiative recognizes that different nations have differing abilities to participate and transfer of know-how to those who need it is a key aspect of the approach. A key contributor to the success of OneGeology has been its utilization of the latest new web technology and an emerging data exchange standard for geological map data called GeoSciML. GeoSciML (GeoScience Markup Language) is a schema written in GML (Geography Markup Language) for geological data. GeoSciML has the ability to represent both the geography (geometries e.g. polygons, lines and points) and geological attribution in a clear and structured format. OneGeology was launched March 2007 at the inaugural workshop in Brighton England. At that workshop the 43 participating nations developed a declaration of a common objective and principles called the “Brighton Accord” (http://onegeology.org/what_is/accord.html) . Work was initiated immediately and the resulting OneGeology Portal was launched at the International Geological Congress in Oslo in August 2008 by Simon Winchester, author of “The Map that Changed the World”. Since the

  6. Digital geologic map and GIS database of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2006-01-01

    The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.

  7. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be

  8. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    SciTech Connect

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  9. Geology of the Southern Guadalupe Mountains, Texas

    USGS Publications Warehouse

    King, Philip B.

    1948-01-01

    This report deals with an area of 425 square miles in the western part of Texas, immediately south of the New Mexico line. The area comprises the south end of the Guadalupe Mountains and the adjacent part of the Delaware Mountains; it includes the highest peaks in the State of Texas. The area is a segment of a large mountain mass that extends 50 miles or more northward and southward. The report describes the geology of the area, that is, the nature of its rocks, tectonics, and surface features, and the evidence that they give as to the evolution of the area through geologic time. Incidental reference is made to the geology of surrounding regions in order to place the area in its environment. Stratigraphy of Permian rocks - The consolidated rocks of the area are all marine sediments of Permian age, whose total exposed thickness is about 4,000 feet. Most of the rocks contain abundant invertebrate fossils, some of which were described by B. F. Shumard in 1858. They were made famous by the classic study of G. H. Girty in 1908. The rocks consist chiefly of sandstones and limestones of various textures and structures, and are notable for their abrupt change from one rock type into another within short distances. This characteristic is believed to have been caused by the rocks being laid down on the margin of the Delaware Basin, a structural feature of Permian time. The margin lay between the more rapidly subsiding basin and a less rapidly subsiding shelf area to the northwest. The lowest exposed formation is the Bone Spring limestone. Two deep wells indicate that it is underlain by the Hueco limestone (of Carboniferous or Permian age), and this by rocks of Pennsylvanian age. The Bone Spring is predominantly black, thin-bedded limestone to the southeast, in the basin area, but to the northwest this facies changes into gray, thicker-bedded limestone. At the margin of the basin, the formation is raised along the Bone Spring flexure, which was apparently in movement toward

  10. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    , rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.

  11. Geological hazards associated with intense rain and flooding in Natal

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; van Schalkwyk, A.

    1993-02-01

    The combination of rugged topography and climate predisposes the province of Natal to severe floods. Information available since 1856 shows that bridge and slope failures have been recorded in twenty out of twenty-five flood episodes. Bridge failures are caused mostly by geological factors. The mechanism of failure can be classified broadly into foundation failures and changes of river course. Scour and debris build-up have led to failures of foundations located in rock and alluvial sediments. In preparing and replacing bridges the aims have been to increase the area of waterway, increase foundation depths to reach more competent strata and lay protection along banks and abutments to counteract scour. Historically, slope failures have not been well documented but following the 1987/88 storms 223 slope failures were recorded. The classification of the failures allowed the mechanisms of failure to be ascertained, and general design considerations to be reviewed. In areas adjacent to the Drakensberg Mountains slope failures are part of a natural erosion cycle which may be accelerated in periods of heavy rain. Throughout Natal, hummocky ground adjacent to dolerite intrusions reveals the on-going history of failure caused by water ingress and the generation of high pore water pressures on the slip planes. Classic flows occurred throughout the Greater Durban area where residual sandy soils of the Natal Group sandstone became supersaturated. Slumping was common on steep terrain underlain by granite-gneiss in the Kwa-Zulu area. Shales of the Pietermaritzburg Formation are notoriously unstable, yet few failures occurred during the summer storms of 1987/88. Inadequate drainage was responsible for many failures, this was particularly so along the railways.

  12. Exchange coupling between laterally adjacent nanomagnets

    NASA Astrophysics Data System (ADS)

    Dey, H.; Csaba, G.; Bernstein, G. H.; Porod, W.

    2016-09-01

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing.

  13. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  14. Rectified images of selected geologic maps in the Northern Rockies Area, Idaho, Montana, Washington, and Wyoming

    USGS Publications Warehouse

    Larsen, Jeremy C.; Assmus, Kenneth C.; Causey, J. Douglas; Zientek, Michael L.

    2004-01-01

    Selected geologic maps covering parts of the Northern Rocky Mountains and adjacent areas were converted to raster images and georeferenced (rectified) for use in a geographic information system (GIS). These rectified images were created for the purpose of visually comparing published geologic maps with other geospatial information. However, they cannot be queried or used for spatial analysis thus limiting their use in a GIS. The 42 georeferenced images included in this report range in scale from 1:250,000 to 1:100,000.Tagged Image Format (TIFF) images of the maps were generated by scanning an original paper map or converting previously published Portable Document Format (PDF) images or Encapsulated Post-Script (EPS) files. To reduce file size and minimize image overlap, the TIFF images were cropped, and then rectified using ArcMap? 8 and converted to MrSID? images. Information in the explanation and cross sections can be viewed in un-rectified images of the original publications that are included with this report. In addition, the text in the map unit description along with the unit name, map label, and a citation are organized in a searchable PDF file.

  15. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  16. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  17. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  18. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  19. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  20. Multiwell experiment: Geology

    SciTech Connect

    Lorenz, J.C.

    1987-01-01

    The general objective of the Multiwell Experiment geology study is the detailed characterization of the low-permeability gas reservoirs of the Mesaverde Formation at the MWX site. The ultimate objective of the study is the understanding of how the detailed characteristics affect completion, stimulation, and production of these reservoirs, and the successful extrapolation of this knowledge to other low-permeability reservoirs. Low-permeability sandstone reservoirs contain significant reserves of natural gas in the US, but these reserves are difficult to exploit. Much of this difficulty is attributable to an insufficient data base on the sedimentological and fracture characteristics of the reservoirs. These characteristics strongly control not only reservoir porosity and permeability, but they also control total reservoir volume, internal reservoir heterogeneity, and susceptibility of the reservoir to damage by different drilling and stimulation techniques. The recognition alone by operators that these are indeed controlling factors is a significant step in the utilization of the low-permeability reserves, and this is one of the important results of this study. However, the implementation of techniques that have been derived using the data base assembled from this study is the next step of the program. 15 refs.

  1. Geology and undiscovered oil and gas resources in the Madison Group, Williston Basin, North Dakota and Montana

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Lillis, Paul G.; Pollastro, Richard M.; Anna, Lawrence O.

    2010-01-01

    structures and in stratigraphic-structural traps. The largest fields are on the Little Knife, Billings Nose, and Nesson anticlines. Recent studies show that Madison Group oils were generated from organic-rich Mission Canyon Formation and Ratcliffe Interval carbonates adjacent to the reservoirs. Seals were formed by overlying or lateral evaporites or tight carbonates. Based on available geologic and production data, the undiscovered oil resources for conventional reservoirs in the Mission Canyon-Charles AU were estimated to have a mean of 45 MMBO.

  2. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. )

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  3. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2008-01-01

    Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi

  4. Geology and petroleum resources of northwestern Africa

    SciTech Connect

    Peterson, J.A.; Klemme, H.D.

    1986-05-01

    The main onshore basins of northwestern Africa are (1) basins in the Atlas folded geosynclinal belt adjacent to the Mediterranean Sea, (2) the Tindouf, Bechar, and Reggane basins of western Algeria and southern Morocco, and (3) the Taoudeni basin of Mauritania and Mali. Coastal basins are (1) the Essaouria basin of southwestern Morocco, (2) the Tarfaya basin of Western Sahara, (3) the Senegal basin of Senegal and western Mauritania, (4) the Sierra Leone-Liberia basin, and (5) the Ivory Coast basin. The petroleum geology and resource potential of these basins is detailed.

  5. Records of selected wells and lithologic logs of test holes, Hendry County and adjacent areas, Florida

    USGS Publications Warehouse

    Fish, John E.; Causaras, Carmen R.; O'Donnell, T. H.

    1983-01-01

    To provide water-resource information for Hendry County, Florida , geologic test holes were drilled in the surficial aquifer, and an extensive inventory was compiled of wells in the surficial aquifer and deep artesian aquifers. This report provides: (1) records for 788 selected wells and test holes including location , construction, water use, water level, chloride concentration, specific conductance, temperature, yield, hydrogen sulfide, and iron-staining problems; and (2) lithologic logs for 26 test holes ranging in depth from 90 to 650 feet. A few inventoried wells and two test holes are in adjacent parts of Collier or Glades Counties. (USGS)

  6. Reconnaissance of the Hot Springs Mountains and adjacent areas, Churchill County, Nevada

    SciTech Connect

    Voegtly, N.E.

    1981-01-01

    A geological reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas (KGRA's), resulted in a reinterpretation of the nature and location of some Basin and Range faults. This reconnaissance took place during June-December 1975. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by US Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie basement rocks of Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present.

  7. Introduction and role of the US Geological Survey

    SciTech Connect

    Gryc, G.

    1989-01-01

    When the USGS assumed overall supervision of the program, a policy was initiated to make all acquired technical data public as promptly as possible. Consequently, weekly drilling reports were issued, and the results of the geophysical surveys were made available as soon as the data had been put into usable form. This information was incorporated into several oil-industry service files and is available in both hard copy and computer format. When the program was terminated, final reports were required of Husky Oil NPR Operations, Inc., and Tetra Tech, Inc. Most of these reports were immediately released to the public through the National Geophysical Data Center, National Oceanic and Atmospheric Administration, in Boulder, Colorado 80303. Thus nearly all the technical data were available in 1981, when the exploration program was terminated and the leasing program was authorized by Congress. When the USGS was assigned the overall direction of the exploration program in 1977, in-house studies were begun to provide the knowledge on which to base informed and objective guidance. The studies ranged from detailed stratigraphy and geochemistry to synthesis and interpretation of the geological framework of the NPRA and adjacent areas. In addition, the large volume and rapid accumulation of this new information stimulated research in data storage and processing.

  8. Andrei borisovich vistelius: a dominant figure in 20th century mathematical geology

    USGS Publications Warehouse

    Merriam, D.F.

    2001-01-01

    Andrei Borisovich Vistelius (1915-1995), along with William Christian Krumbein (1902-1979) and John Cedric Griffiths (1912-1992), were dominant figures in the formative and development years of mathematical (or quantitative) geology as a subdiscipline of geology.

  9. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  10. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  11. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  12. Interpreting Urban Geology.

    ERIC Educational Resources Information Center

    Hannibal, Joseph Timothy; Schmidt, Mark Thomas

    1991-01-01

    Describes field trips to urban locations for geological instruction. The program was developed by the Cleveland Museum of Natural History. Authors claim these field trips have been an effective and enjoyable way of conveying a wide variety of geological information to participants at all levels and backgrounds and have created favorable publicity.…

  13. People and Geology.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on the many natural resources we extract from the earth's crust, including metals, graphite, and other minerals, as well as fossil fuels. Contains teaching activities such as a geologic scavenger hunt, a geology chronology, and the recycling of aluminum. Includes a reproducible handout for the activity on aluminum.…

  14. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  15. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  16. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  17. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  18. Geologic time scale bookmark

    USGS Publications Warehouse

    ,

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  19. Assessing the impacts of geopressure on exploration using integrated geological log analysis

    SciTech Connect

    Betancour, I.R. ); Vellez, F.; Gonzales, A. )

    1993-02-01

    The occurrence of geopressure anomalies in the El Furrial, Chaguaramal and Boqueron oil fields in the Maturin subbasin of the Eastern Venezuela Basin, and their heterogeneous evolution through geological time has caused significant drilling problems. Identification of these anomalies and isolation of the adjacent subcompacted formations has cost much time and money. There are two main abnormal pressure zones in the Eastern Venezuela Basin. The lower occurs in a thick homogenous marine shale sequence of the Carapita Formation, deposited during late Oligocene-early Miocene times, which was followed by a late Miocene period of uplift and erosion. The upper occurs in marine shales and sandstones of the La Pica Formation, which was transgressively deposited on the eroded Carapita Formation. Using an integrated analysis of lithology and wireline logs, tectonically-influenced sections have been identified within the lower geopressure which have modified its original conditions. Furthermore, the late Miocene unconformity between the two zones controls the occurrence, style and dimension of the upper geopressure. Detailed differential compaction analysis from low to high hydraulic potential intervals through the lithostratigraphic sequence and their association to the unconformity explain the evolution and the current state of geopressure distribution throughout the oil fields. These conclusions are supported by direct and indirect quantitative pore and fracture pressure gradient analysis. The study identifies areas within these fields (e.g., Central and Eastern Boqueron) which show alterations of the occurrence and behavior of the geopressure. Such knowledge permits rapid modifications to drilling programs, allowing successful exploration and development.

  20. Lunar and Planetary Science XXXV: Mars All Over: Geologic Mapping

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles presented in this session include: 1) 'Geology of Noachian Martian Highlands Surrounding the Gusev Crater'; 2) 'The History of Deposition and Nature of Material in Hellas Basin, Mars'; 3) 'Geologic Mapping of the Medusae Fossae Formation on Mars'; 4) 'Geology of the Aram Chaos from MGS-Mars Odyssey Missions and Mars Express HRSC Data'; 5) 'Toward a Comprehensive Stratigraphic Column of Mars'; 6 'The Olympus Mons Aureole Deposits: Constraints on Emplacement Scenarios Based on Remotely Sensed Data'.

  1. Overview: Gas hydrate geology and geography

    SciTech Connect

    Malone, R.D.

    1993-01-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  2. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  3. Analysis of Geological Structures

    NASA Astrophysics Data System (ADS)

    Price, Neville J.; Cosgrove, John W.

    1990-08-01

    A knowledge of structural geology is fundamental to understanding the processes by which the earth's crust has evolved. It is a subject of fundamental importance to students of geology, experienced field geologists and academic researchers as well as to petroleum and mining engineers. In contrast to many structural textbooks which dwell upon geometrical descriptions of geological structures, this book emphasises mechanical principles and the way in which they can be used to understand how and why a wide range of geological structures develop. Structures on all scales are considered but the emphasis of the book is on those that can be seen on the scale of hand specimen or outcrop. Drawing on their considerable teaching experience the authors present a coherent and lucid analysis of geological structures which will be welcomed by a wide variety of earth scientists.

  4. Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Hays, William H.

    2003-01-01

    The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a

  5. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  6. Geology Before Pluto: Pre-Encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  7. Life on Guam: Geology. 1977 Edition.

    ERIC Educational Resources Information Center

    Elkins, Gail; And Others

    As part of an updated series of activity oriented educational materials dealing with aspects of the Guam environment, this publication focuses on the physical environment of Guam through an introduction to the geology of Guam. Contents include the formation of Guam, weathering and erosion, earthquakes, soil, and water. Activities investigate…

  8. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  9. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  10. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  11. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    EPA Science Inventory

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  12. Geologic map of the Patagonia Mountains, Santa Cruz County, Arizona

    USGS Publications Warehouse

    Graybeal, Frederick T.; Moyer, Lorre A.; Vikre, Peter; Dunlap, Pamela; Wallis, John C.

    2015-01-01

    Several spatial databases provide data for the geologic map of the Patagonia Mountains in Arizona. The data can be viewed and queried in ArcGIS 10, a geographic information system; a geologic map is also available in PDF format. All products are available online only.

  13. Geologic Map of the Goleta Quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.

    2007-01-01

    This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events

  14. The Regional Geology of Conamara Chaos: Stratigraphic Relations and Implications for Future Exploration. D. A. Senske, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

    NASA Astrophysics Data System (ADS)

    Senske, D.

    2015-12-01

    Much of the previous geologic analysis of the Conamara Chaos region has focused on the history and reconstruction of the crustal blocks within the chaos itself. To better understand the geologic context of this relatively young outcrop of disrupted crust, its relation to regional geologic events, and the evolution of the entire area over time, we have performed comprehensive geologic mapping. Using image data centered at 10°N, 271°W with a resolution of 180 m/pixel and covering an area of approximately 90,000 km2, the interrelation between tectonic structures (arrays of bands, ridges, and fractures) and cryovolcanic units is established. Our analysis shows that in addition to the major outcrop of chaos (~75x100 km), there are approximately 80 additional smaller (10's of km across) areas of chaos or lenticulae. By identifying key cross cutting and superposition relations, it is possible to identify a set of distinct trends in the formation of tectonic features. The tectonic stratigraphy shows an alternating and cyclical pattern with one set of ~N20°W tectonic features subsequently superposed by ~N30°E bands and ridges. This sequence appears to repeat three times over the history of the region. The identification of a fracture that cross cuts older regional units but is preserved in some of the larger crustal blocks within Conamara indicates that the chaos postdates both the adjacent Astenus and Agave Lineae. The mapping shows little or no emplacement of cryovolcanic deposits in the earliest history of this region. Instead, volcanic processes appear to be a part of later geologic activity. Regional geologic mapping reveals tectonic patterns that are consistent with those mapped over a more limited area [Spaun et al., 2003]. The restriction of cryovolcanism to the latter part of the history, suggests a change in geologic setting and possibly crustal structure with time. Data to be collected by the Europa mission now in formulation will allow: (1) the mapped

  15. Report on geologic exploration activities

    SciTech Connect

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is reponsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. Th ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed.

  16. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  17. Geology of caves

    USGS Publications Warehouse

    Morgan, I.M.

    1991-01-01

    A cave is a natural opening in the ground extending beyond the zone of light and large enough to permit the entry of man. Occurring in a wide variety of rock types and caused by widely differing geological processes, caves range in size from single small rooms to intercorinecting passages many miles long. The scientific study of caves is called speleology (from the Greek words spelaion for cave and logos for study). It is a composite science based on geology, hydrology, biology, and archaeology, and thus holds special interest for earth scientists of the U.S. Geological Survey.

  18. Digital data and geologic map of the Powder Mill Ferry Quadrangle, Shannon and Reynolds counties, Missouri

    USGS Publications Warehouse

    McDowell, Robert C.; Harrison, Richard W.; Lagueux, Kerry M.

    2000-01-01

    The geology of the Powder Mill Ferry 7 1/2-minute quadrangle , Shannon and Reynolds Counties, Missouri was mapped from 1997 through 1998 as part of the Midcontinent Karst Systems and Geologic Mapping Project, Eastern Earth Surface Processes Team. The map supports the production of a geologic framework that will be used in hydrogeologic investigations related to potential lead and zinc mining in the Mark Twain National Forest adjacent to the Ozark National Scenic Riverways (National Park Service). Digital geologic coverages will be used by other federal and state agencies in hydrogeologic analyses of the Ozark karst system and in ecological models.

  19. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    USGS Publications Warehouse

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (<3.5 m.y.) are less common. Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater

  20. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  1. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    USGS Publications Warehouse

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  2. Areal geology of the Little Cone quadrangle, Colorado

    USGS Publications Warehouse

    Bush, Alfred Lerner; Marsh, O.T.; Taylor, Richard Bartlett

    1958-01-01

    The Little Cone quadrangle includes an area of about 59 square miles in eastern San Miguel County in southwestern Colorado. It lies within and adjacent to the northeastern boundary of the Colorado Plateau physiographic province. The precipitous front of the San Juan Mountains lies a few miles to the east and northeast, and an outlier of the San Juans, the San Miguel Mountains, lies about a mile to the south. The quadrangle contains features characteristic of both the plateaus and the mountains, and has been affected by geologic events and processes of two different geologic environments.

  3. Precambrian basement geology of North and South Dakota.

    USGS Publications Warehouse

    Klasner, J.S.; King, E.R.

    1986-01-01

    Combined analysis of drill-hole, gravity and magnetic data indicates that the Precambrian rocks in the basement of the Dakotas may be divided into a series of lithotectonic terrains. On the basis of an analysis of geological and geophysical data in the Dakotas and from the surrounding states and Canada, it is shown how the exposed Precambrian rocks of the adjacent shield areas project into the study area. Brief comments are made on the tectonic implications of this study. Geological and geophysical characteristics of 11 terrains are tabulated. -P.Br.

  4. Geologic Mapping of Isabella Quadrangle (V50), Venus

    NASA Astrophysics Data System (ADS)

    Bleamaster, L. F., III

    2006-03-01

    Geologic Mapping of the Isabella Quadrangle (V50) provides tests of wrinkle ridge and shield formation mechanisms and temporal relations, impact crater-volcanic construct interactions, and structural reactivation.

  5. Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid to spatial data selection

    NASA Astrophysics Data System (ADS)

    Pouliot, Jacynthe; Bédard, Karine; Kirkwood, Donna; Lachance, Bernard

    2008-05-01

    Topological relationships between geological objects are of great interest for mining and petroleum exploration. Indeed, adjacency, inclusion and intersection are common relationships between geological objects such as faults, geological units, fractures, mineralized zones and reservoirs. However, in the context of 3D modeling, actual geometric data models used to store those objects are not designed to manage explicit topological relationships. For example, with Gocad© software, topological analyses are possible but they require a series of successive manipulations and are time consuming. This paper presents the development of a 3D topological query prototype, TQuery, compatible with Gocad© modeling platform. It allows the user to export Gocad© objects to a data storage model that regularizes the topological relationships between objects. The development of TQuery was oriented towards the use of volumetric objects that are composed of tetrahedrons. Exported data are then retrieved and used for 3D topological and spatial queries. One of the advantages of TQuery is that different types of objects can be queried at the same time without restricting the operations to voxel regions. TQuery allows the user to analyze data more quickly and efficiently and does not require a 3D modeling specialist to use it, which is particularly attractive in the context of a decision-making aid. The prototype was tested on a 3D GeoModel of a continental red-bed copper deposit in the Silurian Robitaille Formation (Transfiguration property, Québec, Canada).

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are

  7. Economic Geology (Oil & Gas)

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  8. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  9. 3D Geologic Model of the San Diego Area

    NASA Astrophysics Data System (ADS)

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  10. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical

  11. Geology of icy satellites

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1985-01-01

    The geology of the major icy satellites of Jupiter, Saturn, Uranus, and Neptune is discussed in terms of the four major processes that shape icy satellite surfaces: impact cratering, volcanism, tectonism, and interactions with planetary magnetospheres and solar radiation. The role of these processes in creating the differences that exist among the satellites, in particular the orderly progression of geological properties in the Jovian satellites, is emphasized. Important questions left open after the Voyager missions are summarized.

  12. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  13. View of north side from exterior stairs of adjacent building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north side from exterior stairs of adjacent building, bottom cut off by fringed buildings, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  14. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  15. Geologic flow characterization using tracer techniques

    SciTech Connect

    Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

  16. Sensitive strata in Bootlegger Cove Formation

    USGS Publications Warehouse

    Olsen, Harold W.

    1989-01-01

    Sensitivity magnitudes are interpreted from remolded strength values in recent subsurface geologic, geotechnical, and geochemical data from the Bootlegger Cove Formation adjacent to the Turnagain Heights Landslide. The results show that strata composed of highly sensitive clays occur in both the middle and lower zones of the formation, and that between these strata the clays are generally of low-to-medium sensitivity. The most sensitive stratum is in the middle zone between two sand layers, and its sensitivity increases from both clay-sand interfaces to a maximum at the center of the stratum. The pore fluid chemistry of the highly sensitive materials differs from that in the materials of low to medium sensitivity only in their concentrations of organic carbon, chloride, bicarbonate, and sulfate. The total dissolved solids concentration is low, and the ratio of monovalent to divalent cations is very high throughout the middle and lower zones of the formation. Of the known causes of high and extremely high sensitivities, only organic and/or anionic dispersants are consistent with these findings.

  17. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  18. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  19. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  20. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  1. Seismotectonics of northeastern United States and adjacent Canada

    NASA Astrophysics Data System (ADS)

    Yang, Jih-Ping; Aggarwal, Yash Pal

    1981-06-01

    Data for local earthquakes recorded by a network of stations in northeastern United States and adjacent Canada were analyzed to study the seismicity, the relationship between earthquakes and known faults, the state of stress, and crustal and upper mantle velocity structure. In addition, portable seismographs were deployed in the field to study aftershocks. As a result, accurate locations for about 364 local earthquakes (2 ≤ mb ≤ 5) and 22 focal mechanism solutions were determined. A comparison of the spatial distribution of these events (1970-1979) with historical earthquakes (1534-1959) reveals that seismic activity in the northeast is relatively stationary in space: those areas that have had little or no seismicity historically are relatively aseismic today, whereas the historically active areas are also active today. The instrumental locations, historical seismicity, and focal mechanism solutions show an internal consistency that help us distinguish two distinct seismogenic provinces. (1) The Adirondack-western Quebec province is a northwesterly trending zone of seismic activity, about 200 km wide and at least 500 km long, extending from the SE Adirondacks into western Quebec, Canada. Thrust faulting on planes striking NNW to NW appears to predominate, and the inferred axis of maximum horizontal compression is largely uniform and trends WSW, nearly parallel to the calculated absolute plate motion of North America. Little or no seismicity is found where anorthosite outcrops at the surface. Correlations between gravity anomalies and earthquake locations suggest that seismic activity in this zone is localized to regions of steep NE or SW gradient in Bouguer anomalies. This zone does not appear to extend southeastward to Boston, as proposed by some workers. (2) The Appalachian province is a northeasterly trending zone of seismic activity extending from northern Virginia to New Brunswick, Canada. Highangle reverse or thrust faulting on N to NE trending planes

  2. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.

    1973-01-01

    The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.

  3. Depositional and thermal history of Lower Triassic rocks in southwestern Montana and adjacent parts of Wyoming and Idaho

    SciTech Connect

    Paull, R.K.; Paull, R.A.; Kraemer, B.R. )

    1989-09-01

    Forty-two stratigraphic sections in Montana and adjacent parts of Wyoming and Idaho provide the framework for a conodont biostratigraphic and carbonate sedimentologic analysis of Lower Triassic marine rocks. From oldest to youngest, these units are the Dinwoody, Woodside (Red Peak to the east), and Thaynes Formations. The Dinwoody disconformably overlies Upper Permian rocks with little or no physical evidence of a 1 to 6-m.y. hiatus. The initial Triassic transgression was extensive and geologically instantaneous across the study area, and it resulted in deposition of interbedded calcareous mudstone, siltstone, and limestone. The Dinwoody varies in thickness from zero on the northeast to greater than 270 m in the southwest. Maximum thicknesses of Woodside red beds and Thaynes carbonates and siltstones are 244 and 400 m, respectively. Post-Triassic erosion progressively truncated the Thaynes, Woodside, and Dinwoody from north to south across the region. The western margin of the Triassic seaway in the study area is obscured by erosion, structural complexities, igneous activity, and younger sedimentary deposits. The sparse and scattered exposures that remain provide an intriguing mosaic of depositional environments that range from shallow marine to basinal and represent most of Early Triassic time. Lower Triassic rocks produce gas in the Wyoming-Idaho thrust belt, and similar potential may exist in Montana. Conodonts recovered from surface exposures are thermally unaltered except in close proximity to intrusive bodies and within the Medicine Lodge thrust system. This establishes that subsurface units in much of the study area are within the temperature regime for dry gas generation.

  4. Chapter 6. Tabular data and graphical images in support of the U.S. Geological Survey National Oil and Gas Assessment-East Texas basin and Louisiana-Mississippi salt basins provinces, Jurassic Smackover interior salt basins total petroleum system (504902), Travis Peak and Hosston formations.

    USGS Publications Warehouse

    ,

    2006-01-01

    This chapter describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on the CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).

  5. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  6. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  7. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  8. Osmium complexation of mismatched DNA: effect of the bases adjacent to mismatched 5-methylcytosine.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-03-18

    The efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes is a key point for the design of sequence-specific detection of DNA methylation. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes changed depending on the type of 5'-neighboring base of the 5-methylcytosine forming a mismatched base pair. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique "side reaction" was observed. However, the nature of the mismatched base pairs in the reaction site did not influence the selectivity of osmium complex formation with methylated DNA.

  9. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  10. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  11. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  12. Cassini's geological and compositional view of Tethys

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Wagner, Roland; Jaumann, Ralf; Clark, Roger N.; Cruikshank, Dale P.; Brown, Robert H.; Giese, Bernd; Roatsch, Thomas; Filacchione, Gianrico; Matson, Dennis; Ore, Cristina Dalle; Capaccioni, Fabrizio; Baines, Kevin H.; Rodriguez, Sebastien; Krupp, Norbert; Buratti, Bonnie J.; Nicholson, Phil D.

    2016-08-01

    The Saturnian satellite Tethys exhibits geological and spectral properties, whose appearance, nature and spatial distribution partly mirror those identified on the neighboring satellites Dione and Rhea or fit to the picture how spectral surface properties are expected to change from one satellite to the other within the inner Saturnian system. However, we also identified spectral variations that are unique in the Saturnian system. Whereas geologically young surface features are characterized by pure H2O-ice composition with relatively large particles, which match the particle sizes measured for fresh surface features also on Dione and Rhea, geologically old weathered regions are dominated by submicron-sized ice particles. Our investigations confirm that the Odysseus impact event did not cause the formation of Tethys' extended graben system Ithaca Chasma. On the contrary, Odysseus might be responsible for the N-S trending 'icy' bands that mark Tethys' surface in the center of its leading and trailing hemisphere.

  13. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  14. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    also show that this configuration of three interfaces and three circulation cells, which is expected to develop adjacent to the stratified Dead Sea, is expected to decrease the dissolution rates of salt layer that is located within the adjacent aquifer, by one order of magnitude in comparison to the dissolution rates today. Therefore, the processes of salt dissolution and sinkhole formation adjacent to the Dead Sea will be relatively restrained.

  15. Method for closing a drift between adjacent in situ oil shale retorts

    DOEpatents

    Hines, Alex E.

    1984-01-01

    A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

  16. Degrading permafrost and gas hydrate under the Beaufort Shelf and marine gas hydrate on the adjacent continental slope

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Melling, H.; Lundsten, E.; Vagle, S.; Collett, T. S.

    2011-12-01

    The sub-seafloor under the Arctic Shelf is arguably the part of the Earth that is undergoing the most dramatic warming. In the southern Beaufort Sea, the shelf area was terrestrially exposed during much of the Quaternary period when sea level was ~120m lower than present. As a consequence, many areas are underlain by >600m of ice-bonded permafrost that conditions the geothermal regime such that the base of the methane hydrate stability can be >1000m deep. Marine transgression has imposed a change in mean annual surface temperature from -15°C or lower during periods of terrestrial exposure, to mean annual sea bottom temperatures near 0°C. The thermal disturbance caused by transgression is still influencing the upper km of subsurface sediments. Decomposition of gas hydrate is inferred to be occurring at the base and the top of the gas hydrate stability zone. As gas hydrate and permafrost intervals degrade, a range of processes occur that are somewhat unique to this setting. Decomposition of gas hydrate at depth can cause sediment weakening, generate excess pore water pressure, and form free gas. Similarly, thawing permafrost can cause thaw consolidation, liberate trapped gas bubbles in ice bonded permafrost. Understanding the connection between deep subsurface processes generated by transgression, surficial sediment processes near the seafloor, and gas flux into the ocean and atmosphere is important to assessing geohazard and environmental conditions in this setting. In contrast, conditions for marine gas hydrate formation occur on the adjacent continental slope below ~270m water depths. In this paper, we present field observations of gas venting from three geologically distinct environments in the Canadian Beaufort Sea, two on the shelf and one on the slope. A complimentary paper by Dallimore et al reviews the geothermal changes conditioning this environment. Vigorous methane venting is occurring over Pingo-Like-Features (PLF) on the mid-shelf. Diffuse venting of

  17. Northward extension of Carolina slate belt stratigraphy and structure, South-Central Virginia: Results from geologic mapping

    USGS Publications Warehouse

    Hackley, P.C.; Peper, J.D.; Burton, W.C.; Horton, J.W.

    2007-01-01

    Geologic mapping in south-central Virginia demonstrates that the stratigraphy and structure of the Carolina slate belt extend northward across a steep thermal gradient into upper amphibolite-facies correlative gneiss and schist. The Neoproterozoic greenschist-facies Hyco, Aaron, and Virgilina Formations were traced northward from their type localities near Virgilina, Virginia, along a simple, upright, northeast-trending isoclinal syncline. This syncline is called the Dryburg syncline and is a northern extension of the more complex Virgilina synclinorium. Progressively higher-grade equivalents of the Hyco and Aaron Formations were mapped northward along the axial trace of the refolded and westwardly-overturned Dryburg syncline through the Keysville and Green Bay 7.5-minute quadrangles, and across the northern end of the Carolina slate belt as interpreted on previous geologic maps. Hyco rocks, including felsic metatuff, metawacke, and amphibolite, become gneisses upgrade with areas of local anatexis and the segregation of granitic melt into leucosomes with biotite selvages. Phyllite of the Aaron Formation becomes garnet-bearing mica schist. Aaron Formation rocks disconformably overlie the primarily felsic volcanic and volcaniclastic rocks of the Hyco Formation as evidenced by repeated truncation of internal contacts within the Hyco on both limbs of the Dryburg syncline at the Aaron-Hyco contact. East-northeast-trending isograds, defined successively by the first appearance of garnet, then kyanite ?? staurolite in sufficiently aluminous rocks, are superposed on the stratigraphic units and synclinal structure at moderate to high angles to strike. The textural distinction between gneisses and identifiable sedimentary structures occurs near the kyanite ?? staurolite-in isograd. Development of the steep thermal gradient and regional penetrative fabric is interpreted to result from emplacement of the Goochland terrane adjacent to the northern end of the slate belt during

  18. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  19. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  20. The geology of Ganymede

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  1. Geology at Yucca Mountain

    SciTech Connect

    1993-05-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper.

  2. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  3. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.

    1989-01-01

    In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

  4. Global sedimentary geology program

    SciTech Connect

    Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.

    1986-07-01

    The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

  5. Alaskan North Slope Geology

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren

    The discovery well for the Prudhoe Bay field, the largest oil accumulatn yet found in the United States, was drilled on the Arctic coast of Alaska by ARCO and Exxon in 1968. A decade of exploratory geology and increasingly detailed geophysical surveys, mostly by Sinclair and British Petroleum in the early years, but then by a number of companies, preceded the discovery. Systematic U.S. Geological Survey (USGS) reconnaissance of the Brooks Range—the great mountain system of northern Alaska—had begun in the 1940s and was accelerated after the discovery, as was industry work. In the last decade, scientists from the Alaska Division of Geology and Geophysics and from various universities have become increasingly involved. This modestly priced two-volume work presents hitherto unavailable summaries of much of this modern work.

  6. Geological Corrections in Gravimetry

    NASA Astrophysics Data System (ADS)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  7. Late Oligocene-Early Miocene compressional tectosedimentary episode and associated land-mammal faunas in the Andes of central Chile and adjacent Argentina (32 37°s)

    NASA Astrophysics Data System (ADS)

    Semper, Thierry; Marshall, Larry G.; Rivano, Sergio; Godoy, Estanislao

    1994-01-01

    A reassessment of the geologic and land-mammal fossil evidence used in attribution of a tectosedimentary episode in the Andes between 32 and 37°S to the Middle Eocene "Incaic tectonic phase" of Peru indicates that the episode occurred during Late Oligocene-Early Miocene times(~ 27-20 Ma). From west to east, three structural domains are recognized for this time span in the study area: a volcanic arc (Chile); a thin-skinned, E-verging fold-thrust belt (Cordillera Principal, Chile-Argentina border strip); and a foreland basin (Argentina). Initiation of thrusting in the Cordillera Principal fold-thrust belt produced the coeval initiation of sedimentation in the foreland basin of adjacent Argentina. This onset of foreland deposition postdates strata bearing a Divisaderan Land Mammal Age fauna (i.e. ~ 35-30 Ma) and is marked at ~ 36°30'S by the base of the "Rodados Lustrosos" conglomerates, which are conformably overlain by sedimentary rocks containing a Deseadan Land Mammal Age fauna (i.e. ~ 29-21 Ma). Geologic relationships between the thick volcanic Abanico (Coya-Machalí) and Farellones formations also demonstrate that this tectosedimentary episode practically ended at ~ 20 Ma at least in the volcanic arc, and was therefore roughly coeval with the major tectonic crisis (~ 27-19 Ma) known in northwestern Andean Bolivia some 1500 km to the north. This strongly suggests that a long, outstanding tectonic upheaval affected at least an extended 12-37°S segment of the Andean margin of South America during Late Oligocene and Early Miocene times.

  8. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  9. Stratigraphic sections of the Phosphoria formation in Wyoming, 1952

    USGS Publications Warehouse

    Sheldon, R.P.; Cressman, E.R.; Carswell, L.D.; Smart, R.A.

    1953-01-01

    The U.S. Geological Survey has measured and sampled the Phosphoria formation of Permian age at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1), during 1952, is the fourth Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation. T. M. Cheney participated in the description of strata and the collection of samples referred to in this report and T. K. Rigby assisted in the collection of samples. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  10. Stratigraphic sections of the Phosphoria formation in Wyoming, 1951

    USGS Publications Warehouse

    Cheney, Thomas McGriffin; Sheldon, Richard Porter; Waring, R.G.; Warner, M.A.

    1953-01-01

    The U.S. Geological Survey has recently measured and sampled the Phosphoria formation at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1) during 1951, is the third Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953b). Many people have taken part in this investigation. J. W. Hill, H. W. Peirce, J. A. Peterson, and R. A. Smart participated in the description of strata and the collection of samples referred to in this report. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  11. Geologic Map of the Big Spring Quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, David J.; McDowell, Robert C.

    2006-01-01

    The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  12. Geologic map of the Winona Quadrangle, Shannon County, Missouri

    USGS Publications Warehouse

    Orndorff, R.C.; Harrison, R.W.

    2001-01-01

    The bedrock exposed in the Winona Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  13. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  14. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  15. Geologic map of the Dillon 1 degree by 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Ruppel, E.T.; Lopez, D.A.; O'Neill, J. M.

    1993-01-01

    The digital ARC/INFO databases included in this website provide a GIS database for the geologic map of the Dillon 1 degree by 2 degree quadrangle of southwest Montana and east-central Idaho. The geologic map was originally published as U.S. Geological Survey Miscellaneous Investigations Series Map I-1803-H. This website directory contains ARC/INFO format files that can be used to query or display the geology of USGS Map I-1803-H with GIS software.

  16. Martian polar geological studies

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.

    1977-01-01

    Multiple arcs of rugged mountains and adjacent plains on the surface of Mars were examined. These features, located in the southern polar region were photographed by Mariner 9. Comparisons are made with characteristics of a lunar basin and mare; Mare imbrium in particular. The martian feature is interpreted to have originated in the same way as its lunar analog- by volcanic flooding of a large impact basin. Key data and methodology leading to this conclusion are cited.

  17. Medium Frequency Pseudo Noise Geological Radar

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)

    2003-01-01

    System and methods are disclosed for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.

  18. Geology and plate-tectonic development

    SciTech Connect

    Irwin, W.P.

    1990-01-01

    The San Andreas fault is a transform fault along the boundary between the Pacific and North American plates. Bedrock along the fault includes various lithologic units that range in age from Precambrian to Tertiary and younger. Some bedrock units that can be matched across the fault suggest strike-slip displacement of as much as 560 km. This chapter describes geologic formations of northern and central California, including Franciscan rocks, Coast Range ophiolite, Great Valley sequence, Coast Range thrust, Salinian block, displacement of pre-Quaternary rocks by the San Andreas fault, and the relation of geologic structure to seismic behavior. Formations of southern California which are described are the Transverse Ranges and the Salton Trough and displacement of basement rocks by the San Andreas fault. Plate-tectonic development of the San Andreas fault is also discussed.

  19. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of additional…

  20. Life on Guam: Geology.

    ERIC Educational Resources Information Center

    Elkins, Gail

    This unit is part of a series of materials produced by a project to develop locally applicable class, lab, and field materials in ecology and social studies for Guam junior and senior high schools. While the materials were designed for Guam, they can be adapted to other localities. This unit is designed to acquaint the students with the geology of…