Science.gov

Sample records for adjacent graphene layers

  1. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  2. Burning Graphene Layer-by-Layer

    NASA Astrophysics Data System (ADS)

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-06-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.

  3. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  4. Single-layer behavior and its breakdown in twisted graphene layers

    NASA Astrophysics Data System (ADS)

    Luican-Mayer, Adina

    2013-03-01

    Stacking order plays a major role in the electronic properties of graphene layers because hopping between carbon atoms in neighboring layers is a key ingredient in their band structure. Twisting the layers away from the equilibrium Bernal stacking, which produces the superstructures known as Moiré patterns in scanning tunneling microscopy, decreases the overlap between atoms in adjacent layers and therefore significantly alters their electronic properties. Using scanning tunneling microscopy and spectroscopy, we obtained direct evidence for the electronic structure of twisted graphene layers.[2] The samples were membranes of CVD grown graphene and graphite crystals which contain areas with various twist angles. In topographic images the regions where layers are twisted away from Bernal stacking exhibit Moiré patterns with periods which depend on the twist angle. We find that the density of states on the twisted layers develops two Van Hove singularities that symmetrically flank the Dirac point at an energy that depends on the twist angle. High magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers reveal that for twist angles exceeding ~3 degrees the low energy carriers exhibit Landau level spectra characteristic of massless Dirac fermions. Above 20 degrees the layers effectively decouple and the electronic properties are indistinguishable from those in single-layer graphene, while for smaller angles we observe a slowdown of the carrier velocity which is strongly angle dependent.[3] These results are compared with theoretical predictions. DOE-FG02-99ER45742, NSF DMR 1207108, Alcatel-Lucent

  5. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  6. Electronic structure of few-layer epitaxial graphene on Ru(0001).

    PubMed

    Sutter, P; Hybertsen, M S; Sadowski, J T; Sutter, E

    2009-07-01

    The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However, the perturbation by the metal decreases rapidly with the addition of further graphene sheets, and already an epitaxial graphene bilayer on Ru recovers the characteristic Dirac cones of isolated monolayer graphene. A graphene trilayer on Ru behaves like free-standing bilayer graphene. Density-functional theory based calculations show that this decoupling is due to the efficient passivation of metal d-states by the interfacial graphene layer.

  7. Low-frequency phonons of few-layer graphene within a tight-binding model

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Van Alsenoy, Christian

    2014-12-01

    Few-layer graphene is a layered carbon material with covalent bonding in the layers and weak van der Waals interactions between the layers. The interlayer energy is more than two orders of magnitude smaller than the intralayer one, which hinders the description of the static and dynamic properties within electron band structure models. We overcome this difficulty by introducing two sets of matrix elements—one set for the covalent bonds in the graphene layers and another one for the van der Waals interactions between adjacent graphene layers in a tight-binding model of the band structure. Both sets of matrix elements are derived from an ab initio study on carbon dimers. The matrix elements are applied in the calculation of the phonon dispersion of graphite and few-layer graphene with AB and ABC layer stacking. The results for few-layer graphene with AB stacking agree well with the available experimental data, which justifies the application of the matrix elements to other layered carbon structures with van der Waals interactions such as few-layer graphene nanoribbons, multiwall carbon nanotubes, and carbon onions.

  8. Graphene/ferroelectrics/graphene hybrid structure: Asymmetric doping of graphene layers

    SciTech Connect

    Duong, Dinh Loc; Lee, Si Young; Kim, Seong Kyu; Lee, Young Hee

    2015-06-15

    We report graphene/ferroelectric/graphene hybrid structure to demonstrate an asymmetrical doping in two graphene layers, one side with electrons and another side with holes. Two ferroelectrics, a poly(vinylidenefluoride) (PVDF) and a hydrofluorinated graphene, were used to demonstrate the concept with density functional calculations, revealing the Fermi level shift of 0.35 and 0.75 eV, respectively. This concept was confirmed by Raman spectroscopy using graphene/poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/graphene hybrid, which can easily form β-phase close to our simulation model. G-band peak position was downshifted for electron doping and upshifted for hole doping. This hybrid structure opens an opportunity to study bilayer graphene system with a controllable thickness for a wide range of high carrier concentration.

  9. Antibacterial activity of graphene layers

    NASA Astrophysics Data System (ADS)

    Dybowska-Sarapuk, Ł.; Kotela, A.; Krzemiński, J.; Janczak, D.; Wróblewska, M.; Marchel, H.; Łegorz, P.; Jakubowska, M.

    2016-09-01

    The bacterial biofilm is a direct cause of complications in management of various medical conditions. There is an ongoing search for a feasible method to prevent its growth, as an alternative to antibiotics, which are ineffective. The aim of the study was to prepare and evaluate a detailed algorithm for production of graphene coatings, using economically efficient methods of printed electronics (such as ink-jet printing or spray coating), and assess their antibacterial properties. Based on the preliminary results of our work we suggest that graphene coating may inhibit the formation of microbial biofilms. Further research is needed to verify antibacterial properties of graphene coatings and its future applications in prevention of biofilm-related infections, e.g. by coating surgical instruments, catheters or tracheostomy tubes. In addition, we propose a series of hypotheses to be evaluated in further work.

  10. Enhanced intervalley scattering in artificially stacked double-layer graphene

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Z.; Kelekçi, Özgür; Iqbal, M. W.; Jin, Xiaozhan; Hwang, Chanyong; Eom, Jonghwa

    2014-08-01

    We fabricated artificially stacked double-layer graphene by sequentially transferring graphene grown by chemical vapor deposition. The double-layer graphene was characterized by Raman spectroscopy and transport measurements. A weak localization effect was observed for different charge carrier densities and temperatures. The obtained intervalley scattering rate was unusually high compared to normal Bernal-stacked bilayer or single-layer graphene. The sharp point defects, local deformation, or bending of graphene plane required for intervalley scattering from one Dirac cone to another seemed to be enhanced by the artificially stacked graphene layers.

  11. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  12. Layer resolved capacitive probing of graphene bilayers

    NASA Astrophysics Data System (ADS)

    Zibrov, Alexander; Parmentier, François; Li, Jia; Wang, Lei; Hunt, Benjamin; Dean, Cory; Hone, James; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Compared to single layer graphene, graphene bilayers have an additional ``which-layer'' degree of freedom that can be controlled by an external electric field in a dual-gated device geometry. We describe capacitance measurements capable of directly probing this degree of freedom. By performing top gate, bottom gate, and penetration field capacitance measurements, we directly extract layer polarization of both Bernal and twisted bilayers. We will present measurements of hBN encapsulated bilayers at both zero and high magnetic field, focusing on the physics of the highly degenerate zero-energy Landau level in the high magnetic field limit where spin, valley, and layer degeneracy are all lifted by electronic interactions.

  13. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  14. Symmetry breaking in few layer graphene films

    NASA Astrophysics Data System (ADS)

    Bostwick, Aaron; Ohta, Taisuke; McChesney, Jessica L.; Emtsev, Konstantin V.; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-10-01

    Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this paper we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing ED.

  15. Symmetry Breaking in Few Layer Graphene Films

    SciTech Connect

    Bostwick, A.; Ohta, T.; McChesney, J.L.; Emtsev, K.; Seyller,Th.; Horn, K.; Rotenberg, E.

    2007-05-25

    Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.

  16. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects.

    PubMed

    Alexeev, Dmitry; Chen, Jie; Walther, Jens H; Giapis, Konstantinos P; Angelikopoulos, Panagiotis; Koumoutsakos, Petros

    2015-09-09

    The Kapitza resistance (RK) between few-layer graphene (FLG) and water was studied using molecular dynamics simulations. The RK was found to depend on the number of the layers in the FLG though, surprisingly, not on the water block thickness. This distinct size dependence is attributed to the large difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid-liquid interfaces by controlling and regulating the liquid layering at the interface.

  17. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    PubMed

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  18. Characterization of few-layered graphene grown by carbon implantation

    SciTech Connect

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-21

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  19. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Tan, Yang; Zhou, Shengqiang; Chen, Feng

    2016-08-01

    We report on the first experimental study of the layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet by applying ion irradiation. The deformation of graphene layers is investigated both theoretically and experimentally. It is observed that after the irradiation of energetic ion beams, the space between separate graphene layers is reduced due to layer-to-layer compression, resulting in tighter contact of the graphene sheet with the surface of the substrate. This processing enables enhanced interaction of the graphene with the evanescent-field wave near the surface, which induces reinforced polarization-dependent light absorption of the graphene. Utilizing the ion-bombarded graphene nanosheets as saturable absorbers, we have realized efficient Q-switched waveguide lasing with enhanced performance through the interaction of the graphene and evanescent field.

  20. Substrate-induced magnetism in epitaxial graphene buffer layers.

    PubMed

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  1. Detection of interlayer interaction in few-layer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Zefei; Han, Yu; Lin, Jiangxiazi; Zhu, Wei; He, Mingquan; Xu, Shuigang; Chen, Xiaolong; Lu, Huanhuan; Ye, Weiguang; Han, Tianyi; Wu, Yingying; Long, Gen; Shen, Junying; Huang, Rui; Wang, Lin; He, Yuheng; Cai, Yuan; Lortz, Rolf; Su, Dangsheng; Wang, Ning

    2015-08-01

    Bernal-stacked few-layer graphene has been investigated by analyzing its Landau-level spectra through quantum capacitance measurements. We find that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. In trilayer graphene, the interlayer interaction parameters are generally similar to those of graphite. However, in tetralayer graphene, the hopping parameters of the two bulk layers are quite different from those of the two outer layers. This represents direct evidence of the surface relaxation phenomenon. Traditionally, the van der Waals interaction between the carbon layers is thought to be insignificant. However, we suggest that the interlayer interaction is an important factor in explaining the observed results, and the symmetry-breaking effects in graphene sublattice are not negligible.

  2. Deformation of graphene on an oxidizing nickel surface: the role of graphene layer number

    NASA Astrophysics Data System (ADS)

    George, Lijin; Shaina, P. R.; Gupta, Aparna; Das Gupta, Nandita; Jaiswal, Manu

    2016-11-01

    Few-layer graphene grown on nickel substrates by chemical vapour deposition is typically characterised by thickness inhomogeneity. In this work, we investigate the thickness-dependent changes induced in graphene during the surface oxidation of the underlying metal. Temperature-dependent Raman spectroscopy and scanning electron microscopy are used to monitor the lattice strain and defect formation induced in graphene, as well as the oxidation of Ni surface. Significant lattice strain is induced in thin layers of graphene (1-2 layers) during the oxidation process, for T > 400 °C. This is followed by the formation of boundary-type defects, and graphene loses structural integrity. In contrast, lattice strain induced in thicker graphene (up to 7 layers) during the metal surface oxidation is quite subdued. These thicker layers de-pin and remain structurally intact even after the underneath metal surface has oxidized.

  3. Tunable hybrid surface waves supported by a graphene layer

    NASA Astrophysics Data System (ADS)

    Iorsh, I. V.; Shadrivov, I. V.; Belov, P. A.; Kivshar, Yu. S.

    2013-05-01

    We study electromagnetic waves localized near the surface of a semi-infinite dielectric medium covered by a graphene layer in the presence of a strong external magnetic field. We demonstrate that a novel type of hybrid TE-TM polarized surface plasmons can propagate along the graphene layer. We analyze the effect of the Hall conductivity on the polarization properties of these hybrid surface waves and suggest a possibility to tune the graphene plasmons by the external magnetic field.

  4. Single layer graphene protective gas barrier for copper photocathodes

    NASA Astrophysics Data System (ADS)

    Liu, Fangze; Moody, Nathan A.; Jensen, Kevin L.; Pavlenko, Vitaly; Narvaez Villarrubia, Claudia W.; Mohite, Aditya D.; Gupta, Gautam

    2017-01-01

    Photocathodes can benefit from a thin protection layer and attain long-term stability. Graphene is potentially a good candidate for such application. We report direct growth of single-layer graphene on single crystal Cu(110) photocathodes using chemical vapor deposition and the effective protection of copper photocathodes with graphene against degradation under atmospheric conditions. Due to the interaction and charge transfer between graphene and copper, the graphene-protected cathodes have 0.25 eV lower work function and 17% higher quantum efficiency at 250 nm compared with bare Cu cathodes. The graphene coating can protect copper photocathodes from degradation for more than 20 min in an exposure to 200 Torr of air. The validation of graphene-photocathode compatibility opens a new route to the lifetime-extension for photocathodes.

  5. Spectroscopic characterization of charge carrier anisotropic motion in twisted few-layer graphene

    PubMed Central

    Kandyba, Viktor; Yablonskikh, Mikhail; Barinov, Alexei

    2015-01-01

    Graphene, a layer of carbon atoms in a honeycomb lattice, captures enormous interest as probably the most promising component of future electronics thanks to its mechanical robustness, flexibility, and unique charge carrier quasiparticles propagating like massless high energy Dirac fermions. If several graphene layers form a stack, the interaction between them is, on the one hand, weak, allowing realization of various registries between the layers and, on the other hand, strong enough for a wide range tuning of the electronic properties. Here we grow few layer graphene with various number of layers and twist configurations and address the electronic properties of individual atomic layers in single microscopic domains using angle-resolved photoelectron spectromicroscopy. The dependence of the interlayer coupling on the twist angle is analyzed and, in the domains with tri-layers and more, if different rotations are present, the electrons in weaker coupled adjacent layers are shown to have different properties manifested by coexisting van Hove singularities, moiré superlattices with corresponding superlattice Dirac points, and charge carrier group velocity renormalizations. Moreover, pronounced anisotropy in the charge carrier motion, opening a possibility to transform strongly coupled graphene bilayers into quasi one-dimensional conductors, is observed. PMID:26548567

  6. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  7. Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops

    SciTech Connect

    Cruz-Silva, E.; Botello-Mendez, A.R.; Barnett, Zachary M; Jia, Xiaoting; Dresselhaus, M; Terrones, H.; Terrones, M.; Sumpter, Bobby G; Meunier, Vincent

    2010-01-01

    Recent experimental reports indicate that Joule heating can atomically sharpen the edges of chemical vapor deposition grown graphitic nanoribbons. The absence or presence of loops between adjacent layers in the annealed materials is the topic of a growing debate that this Letter aims to put to rest. We offer a rationale explaining why loops do form if Joule heating is used alone, and why adjacent nanoribbon layers do not coalesce when Joule heating is applied after high-energy electrons first irradiate the sample. Our work, based on large-scale quantum molecular dynamics and electronic-transport calculations, shows that vacancies on adjacent graphene sheets, created by electron irradiation, inhibit the formation of edge loops.

  8. Nanoscale imaging of freestanding nitrogen doped single layer graphene.

    PubMed

    Iyer, Ganjigunte R S; Wang, Jian; Wells, Garth; Bradley, Michael P; Borondics, Ferenc

    2015-02-14

    Graphene can be p-type or n-type doped by introduction of specific species. Doping can modulate the electronic properties of graphene, but opening a sizable-well-tuned bandgap is essential for graphene-based tunable electronic devices. N-doped graphene is widely used for device applications and is mostly achieved by introducing ammonia into the synthesis gas during the chemical vapor deposition (CVD) process. Post synthesis treatment studies to fine-tune the electron hole doping in graphene are limited. In this work realization of N-doping in large area freestanding single layer graphene (LFG) is achieved by post treatment in nitrogen plasma. The changes in the chemical and electronic properties of graphene are followed with Raman microscopy and mapped via synchrotron based scanning transmission X-ray microscopy (STXM) at the nanoscale.

  9. Mode Locking of Lasers with Atomic Layer Graphene

    DTIC Science & Technology

    2012-07-01

    saturable absorption of the atomic layer graphene different forms of passive laser mode lockers were fabricated. These are the fiber pigtailed...ranging from 1m to 2m. The vector solitons operation of a graphene mode locked erbium fiber laser was experimentally investigated. 1...or fiber lasers; d) to use the modern material fabrication techniques to improve the performance of the graphene -based mode lockers. 3

  10. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    PubMed Central

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-01-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors. PMID:26311131

  11. Damage evaluation in graphene underlying atomic layer deposition dielectrics.

    PubMed

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A

    2015-08-27

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  12. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    NASA Astrophysics Data System (ADS)

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-08-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  13. Graphene-based multilayers constructed from layer-by-layer self-assembly techniques.

    PubMed

    Yu, Bing; Liu, Xiaomian; Cong, Hailin; Yuan, Hua; Wang, Dong; Li, Zejing

    2014-02-01

    This paper reviews the recent research and development of graphene-based multilayers fabricated from layer-by-layer (LBL) self-assembly technique. Graphene multilayer films, due to their excellent performances and specific applications, have attracted widespread attention during recent decades. In this paper, the preparation and property of self-assembled graphene multilayer films are introduced. The application of different graphene multilayer films in transparent conducting films (TCFs), field effect transistors (FETs), lithium ion batteries (LIBs), supercapacitors, and solar cells are summarized and discussed. The perspectives for the future developments of self-assembled graphene multilayer films are proposed.

  14. Surfactant-free single-layer graphene in water.

    PubMed

    Bepete, George; Anglaret, Eric; Ortolani, Luca; Morandi, Vittorio; Huang, Kai; Pénicaud, Alain; Drummond, Carlos

    2017-04-01

    Dispersing graphite in water to obtain true (single-layer) graphene in bulk quantity in a liquid has been an unreachable goal for materials scientists in the past decade. Similarly, a diagnostic tool to identify solubilized graphene in situ has been long awaited. Here we show that homogeneous stable dispersions of single-layer graphene (SLG) in water can be obtained by mixing graphenide (negatively charged graphene) solutions in tetrahydrofuran with degassed water and evaporating the organic solvent. In situ Raman spectroscopy of these aqueous dispersions shows all the expected characteristics of SLG. Transmission electron and atomic force microscopies on deposits confirm the single-layer character. The resulting additive-free stable water dispersions contain 400 m(2) l(-1) of developed graphene surface. Films prepared from these dispersions exhibit a conductivity of up to 32 kS m(-1).

  15. Surfactant-free single-layer graphene in water

    NASA Astrophysics Data System (ADS)

    Bepete, George; Anglaret, Eric; Ortolani, Luca; Morandi, Vittorio; Huang, Kai; Pénicaud, Alain; Drummond, Carlos

    2016-11-01

    Dispersing graphite in water to obtain true (single-layer) graphene in bulk quantity in a liquid has been an unreachable goal for materials scientists in the past decade. Similarly, a diagnostic tool to identify solubilized graphene in situ has been long awaited. Here we show that homogeneous stable dispersions of single-layer graphene (SLG) in water can be obtained by mixing graphenide (negatively charged graphene) solutions in tetrahydrofuran with degassed water and evaporating the organic solvent. In situ Raman spectroscopy of these aqueous dispersions shows all the expected characteristics of SLG. Transmission electron and atomic force microscopies on deposits confirm the single-layer character. The resulting additive-free stable water dispersions contain 400 m2 l-1 of developed graphene surface. Films prepared from these dispersions exhibit a conductivity of up to 32 kS m-1.

  16. Surface stress of graphene layers supported on soft substrate

    PubMed Central

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-01-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates. PMID:27166087

  17. Tuning surface plasmons in graphene ribbons with liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Viktor Yu.; Bunning, Timothy J.; Evans, Dean R.

    2016-09-01

    Surface plasmons in graphene possess stronger mode confinement and lower propagation loss. One way to excite the surface plasmons is placing a periodic array of graphene nano-ribbons on top of a dielectric substrate. However once the system is fabricated it is not possible to change its optical properties. Liquid crystals (LC) are a uniaxial medium with an optical axis easily controlled by external stimuli. We suggest tuning the surface plasmons in an array of graphene ribbons by placing a LC slab on top of the ribbons. A voltage applied to the LC layer shifts the graphene ribbons plasmonic notch and changes its depth.

  18. Kinetic and chemical stability of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Bongiorno, Angelo; Bongiorno's lab Team

    2014-03-01

    Chemical functionalization of graphene holds great promise to open new applications of graphene in technology. Here we combine density functional theory (DFT) and Monte Carlo calculations to study both the stability and structure of graphene layers functionalized with epoxide and hydroxyl species. Our calculations show that sparse functionalizations of graphene are unstable in air at room temperature. However, oxygen groups diffuse and are prone to form dense agglomerates. To investigate these phenomena, we use DFT calculations to first map the interaction of functionalities on graphene, and then to device a simple energy scheme to both compute the Gibbs free energy of formation of arbitrary functionalizations of graphene and predict the structure resulting from diffusion and agglomeration processes. We find that the stability of graphene oxide increases for increasing both the O:C ratio and ageing time. The structure of the aged layers consists of a non-homogeneous phase of highly oxidized regions surrounded by areas of pristine graphene. Within the oxidized domains, formation of energetically stable motifs reduces the likelihood of occurrence of decomposition reactions, thereby enhancing the kinetic stability of the oxidized layer.

  19. Ultraviolet laser deposition of graphene thin films without catalytic layers

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Alshareef, H. N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  20. Layer-by-Layer Insight into Electrostatic Charge Distribution of Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Rokni, Hossein; Lu, Wei

    2017-02-01

    In few-layer graphene (FLG) systems on a dielectric substrate such as SiO2, the addition of each extra layer of graphene can drastically alter their electronic and structural properties. Here, we map the charge distribution among the individual layers of finite-size FLG systems using a novel spatial discrete model that describes both electrostatic interlayer screening and fringe field effects. Our results reveal that the charge density in the region very close to the edges is screened out an order of magnitude more weakly than that across the central region of the layers. Our discrete model suggests that the interlayer charge screening length in 1–8 layer thick graphene systems depends mostly on the overall gate/molecular doping level rather than on temperature, in particular at an induced charge density >5 × 1012 cm‑2, and can reliably be determined to be larger than half the interlayer spacing but shorter than the bilayer thickness. Our model can be used for designing FLG-based devices, and offers a simple rule regarding the charge distribution in FLG: approximately 70%, 20%, 6% and 3% (99% overall) of the total induced charge density reside within the four innermost layers, implying that the gate-induced electric field is not definitely felt by >4th layer.

  1. Layer-by-Layer Insight into Electrostatic Charge Distribution of Few-Layer Graphene

    PubMed Central

    Rokni, Hossein; Lu, Wei

    2017-01-01

    In few-layer graphene (FLG) systems on a dielectric substrate such as SiO2, the addition of each extra layer of graphene can drastically alter their electronic and structural properties. Here, we map the charge distribution among the individual layers of finite-size FLG systems using a novel spatial discrete model that describes both electrostatic interlayer screening and fringe field effects. Our results reveal that the charge density in the region very close to the edges is screened out an order of magnitude more weakly than that across the central region of the layers. Our discrete model suggests that the interlayer charge screening length in 1–8 layer thick graphene systems depends mostly on the overall gate/molecular doping level rather than on temperature, in particular at an induced charge density >5 × 1012 cm−2, and can reliably be determined to be larger than half the interlayer spacing but shorter than the bilayer thickness. Our model can be used for designing FLG-based devices, and offers a simple rule regarding the charge distribution in FLG: approximately 70%, 20%, 6% and 3% (99% overall) of the total induced charge density reside within the four innermost layers, implying that the gate-induced electric field is not definitely felt by >4th layer. PMID:28220816

  2. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Costa, Sara D.; Weis, Johan Ek; Frank, Otakar; Fridrichová, Michaela; Kalbac, Martin

    2016-06-01

    In this report important Raman modes for the evaluation of strain in graphene (the 2D and 2D‧) are analyzed. The isotope labeling is used to disentangle contribution of individual graphene layers of graphene bilayer to the studied Raman modes. It is shown that for Bernal-stacked bilayers, the 2D and the 2D‧ Raman modes have three distinct components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The reported results thus enable addressing the properties of individual graphene layers in graphene bilayer by Raman spectroscopy.

  3. Coulomb Drag and Magnetotransport in Graphene Double Layers

    NASA Astrophysics Data System (ADS)

    Tutuc, Emanuel

    2013-03-01

    Graphene double layers, a set of two closely spaced graphene monolayers seperated by an ultra-thin dielectric, represent an interesting electron system to explore correlated electron states. We discuss the fabrication of such samples using a layer-by-layer transfer approach, the electron transport in individual layers at zero and in a high magnetic field, and Coulomb drag measurements. Coulomb drag, probed by flowing a drive current in one layer, and measuring the voltage drop in the opposite layer provides a direct measurement of the electron-electron scattering between the two layers, and can be used to probe the electron system ground state. Coulomb drag in graphene, measured as a function of both layer densities and temperature reveals two distinct regimes: (i) diffusive drag at elevated temperatures, above 50 K, and (ii) mesoscopic fluctuations-dominated drag at low temperatures. A second topic discussed here is a technique that allows a direct measurement of the Fermi energy in an electron system with an accuracy independent of the sample size, using a graphene double layer heterostructure. The underlying principle of the technique is that an interlayer bias applied to bring the top layer to the charge neutrality point is equal to the Fermi energy of the bottom layer, which in effect renders the top graphene layer a resistively detected Kelvin probe. We illustrate this method by measuring the Fermi velocity, Landau level spacing, and Landau level broadening in monolayer graphene. Work done in collaboration with S. Kim, I. Jo, J. Nah, D. Dillen, K. Lee, B. Fallahazad, Z. Yao, and S. K. Banerjee. We thank ONR, NRI, and NSF for support.

  4. Sound propagation through a discretely inhomogeneous thermoelastic plane layer adjacent to heat-conducting liquids

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, L. A.; Larin, N. V.

    2017-01-01

    An analytical solution of the problem of the propagation of a plane sound wave through a discretely inhomogeneous thermoelastic layer adjacent to inviscid heat-conducting liquids is obtained. Results of calculations of the dependences of the transmission coefficient on the wave incidence angle and frequency for discretely inhomogeneous and continuously inhomogeneous thermoelastic layers are given. It is shown that a thermoelastic layer with continuously inhomogeneous thickness can be simulated using a system of homogeneous thermoelastic layers.

  5. Wrinkled single-layer graphenes fabricated by silicon nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Li, Zibo; Wu, Yutong; Nan, Jingjie; Tang, Xiaoduo; Zhang, Junhu; Yang, Bai

    2016-11-01

    The degree of crumpling affects the optoelectronic properties of graphene, which are very important for the performance of graphene-based devices and materials. In this article, we report an approach to tune the formation of wrinkles on single-layer graphene (SLG) by silicon nanopillar (SNP) arrays. By using gold nanoparticles as an etching mask, SNP arrays with different heights could be prepared by tuning the duration of etching. The formation of wrinkles on these SNP arrays was studied systematically. We found that thermal treatment could lead to a wrapping behavior of graphene around SNP arrays, which was accompanied by the emergence of many more wrinkles. Controllable wettability, conductivity and transmittance were demonstrated. This ability to tune wrinkles using SNP arrays can be employed to engineer the fabrication of graphene-related devices and other optoelectronic applications.

  6. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    PubMed

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  7. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    PubMed

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  8. Number of graphene layers exhibiting an influence on oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2012-01-20

    This article investigates the analytical performance of double-, few- and multi-layer graphene upon oxidation of adenine and guanine. We observed that the sensitivity of differential pulse voltammetric response of guanine and adenine is significantly higher at few-layer graphene surface than single-layer graphene. We use glassy carbon electrode as substrate coated with graphenes. Our findings shall have profound influence on construction of graphene based genosensors.

  9. Single-layer graphene on silicon nitride micromembrane resonators

    SciTech Connect

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja; Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S.; Taylor, Jacob M.; Marcus, Charles M.; Cheol Shin, Yong; Kong, Jing

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  10. Vacancy Interlayer Migration in Multi-layered Graphene

    NASA Astrophysics Data System (ADS)

    Liu, Lili; Gao, Junfeng; Zhang, Xiuyun; Yan, Tianying; Ding, Feng

    2014-03-01

    Graphene has innumerous applications due to its exceptional properties. Various defects that may be introduced into the graphene lattice during synthesis and/or post-treatments are known have significantly impact on these properties. So engineering graphene by introducing or annealing of defects is an important technology to achieve desired properties for various applications. Therefore a comprehensive understanding on the behavior of defects in graphene is critically important. Here, interlayer migration of the vacancies in multi-layered graphene (MLG) was investigated by density functional tight-binding molecular dynamic simulations and first principle calculations. Our study reveals that, although the direct vacancy migration between neighboring graphene layers (NGLs) is prohibited by a very high barrier up to ~ 7 eV, the interaction between vacancies or vacancy and holes in NGLs can greatly reduce the barrier to ~ 3 eV and expedites the migration process. Our study reveals a new mechanism of the defect self-healing in MLG and multi-walled carbon nanotubes and it can be used to engineer desired graphene materials.

  11. Nonlocal thermal transport across embedded few-layer graphene sheets.

    PubMed

    Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-12-17

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g. the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  12. Nonlocal thermal transport across embedded few-layer graphene sheets

    SciTech Connect

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  13. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  14. Imaging Stacking Order in Few-Layer Graphene

    SciTech Connect

    C Lui; Z Li; Z Chen; P Klimov; L Brus; T Heinz

    2011-12-31

    Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in tri- and tetralayer graphene. We find that 15% of exfoliated graphene tri- and tetralayers is composed of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. These domains are stable and remain unchanged for temperatures exceeding 800 C.

  15. Compression behavior of single-layer graphenes.

    PubMed

    Frank, Otakar; Tsoukleri, Georgia; Parthenios, John; Papagelis, Konstantinos; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S; Galiotis, Costas

    2010-06-22

    Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically approximately 1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (> or =0.2) the buckling strain is of the order of -0.5% to -0.6%. However, for l/w < 0.2 no failure is observed for strains even higher than -1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air.

  16. Anomalous Coulomb drag in bilayer graphene double layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip

    Bilayer graphene double-layer structure consists of two layers of bilayer graphene separated by atomically thin hexagonal boron nitride (hBN). With a perfect Fermi surface nesting and strong electron-electron interaction (ECoulomb > Ekinetic), such systems offer exciting platforms to study interaction driven phenomena, such as Coulomb drag and exciton condensation. We fabricate ultra-clean encapsulated bilayer graphene double layers with dry pick-up method. Room temperature drag measurement on our devices shows the sign of drag agree with the typical Fermi liquid behavior. However, at lower temperatures, the sign of drag reversed, indicating a new drag mechanism emerges and dominates. We measure this with different geometry, temperature, bias and gating to investigate the origin of such effect and discuss the implication of the drag sign changes.

  17. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).

  18. Synthesis, properties, and dispersion of few-layer graphene fluoride.

    PubMed

    Grayfer, Ekaterina D; Makotchenko, Viktor G; Kibis, Lidiya S; Boronin, Andrei I; Pazhetnov, Egor M; Zaikovskii, Vladimir I; Fedorov, Vladimir E

    2013-09-01

    We have fluorinated few-layer graphene (FLG) by using a low-temperature fluorination route with gaseous ClF3. The treatment process resulted in a new graphene derivative with a finite approximate composition of C2F. TEM studies showed that the product consisted of thin transparent sheets with no more than 10 fluorographene layers stacked together. Spectroscopic methods revealed a predominantly covalent nature of the C-F bonds in the as-synthesized product and we found no evidence for the existence of so-called "semi-ionic" C-F bonds, as observed in bulk C(x)F. In contrast to the case of graphite and typical (thick) expanded graphites, fluorination of FLG did not lead to the intercalation of ClF3 molecules, owing to the lack of a 3D layered structure. The approximate "critical" number of graphene layers that were necessary to form a phase of intercalated compound was estimated to be more than 12, thus providing a "chemical proof" of the difference between the properties of few-layered graphenes and bulk graphites. Fluorographene C2F was successfully delaminated into thinner layers in organic solvents, which is an important property for its integration into electronic devices, nanohybrids, etc.

  19. Surface potentials and layer charge distributions in few-layer graphene films.

    PubMed

    Datta, Sujit S; Strachan, Douglas R; Mele, E J; Johnson, A T Charlie

    2009-01-01

    Graphene-derived nanomaterials are emerging as ideal candidates for postsilicon electronics. Elucidating the electronic interaction between an insulating substrate and few-layer graphene (FLG) films is crucial for device applications. Here, we report electrostatic force microscopy (EFM) measurements revealing that the FLG surface potential increases with film thickness, approaching a "bulk" value for samples with five or more graphene layers. This behavior is in sharp contrast with that expected for conventional conducting or semiconducting films, and derives from unique aspects of charge screening by graphene's relativistic low energy carriers. EFM measurements resolve previously unseen electronic perturbations extended along crystallographic directions of structurally disordered FLGs, likely resulting from long-range atomic defects. These results have important implications for graphene nanoelectronics and provide a powerful framework by which key properties can be further investigated.

  20. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  1. Heat Conduction across Monolayer and Few-Layer Graphenes

    DTIC Science & Technology

    2010-05-01

    film. We note that even though the metal films were deposited in vacuum , water vapor that adsorbs on the substrate during the air exposure after the... developed approach based on Raman spectroscopy16 to count the number of layers n of the graphene flakes. In this approach, n is determined from the ratio...Au/Ti, we coated a monolayer graphene (1- LG) sample with a semitransparent layer of Au (8 nm)/Ti (2 nm) and compared the Raman spectrum of the sample

  2. Terahertz modulators based on multiple non-Bernal graphene layers

    NASA Astrophysics Data System (ADS)

    Chatzakis, Ioannis; Li, Zhen; Benderskii, Alexander; Cronin, Stephen

    2015-03-01

    We investigate a THz modulator based on a stack of disoriented the non-Bernal stacks graphene layers (GLs) grown by chemical vapor deposition method (CVD) on SiO2 substrate. The non-Bernal stacking GLs results in the electron decoupling of the GLs, higher interband absorption and exhibit the same energy spectrum of the charge carriers to that in individual GLs. The detection efficiency in room temperature is high due low probability of the high energy of the optical phonons (~ 0.2 eV) absorption. Using terahertz time- domain spectroscopy, we show that the multi graphene layers exhibit fairly high responsivity due to high quantum efficiency.

  3. High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures

    PubMed Central

    Kim, Kyoung Hwan; Yang, MinHo; Cho, Kyeong Min; Jun, Young-Si; Lee, Sang Bok; Jung, Hee-Tae

    2013-01-01

    We present a simple and up-scalable method to produce highly repaired graphene oxide with a large surface area, by introducing spherical multi-layered graphene balls with empty interiors. These graphene balls are prepared via chemical vapor deposition (CVD) of Ni particles on the surface of the graphene oxides (GO). Transmission electron microscopy and Raman spectroscopy results reveal that defects in the GO surfaces are well repaired during the CVD process, with the help of nickel nanoparticles attached to the functional groups of the GO surface, further resulting in a high electrical conductivity of 18,620 S/m. In addition, the graphene balls on the GO surface effectively prevent restacking of the GO layers, thus providing a large surface area of 527 m2/g. Two electrode supercapacitor cells using this highly conductive graphene material demonstrate ideal electrical double layer capacitive behavior, due to the effective use of the outstanding electric conductivity and the large surface area. PMID:24248235

  4. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  5. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  6. Tunneling Plasmonics in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Fei, Z.; Iwinski, E. G.; Ni, G. X.; Zhang, L. M.; Bao, W.; Rodin, A. S.; Lee, Y.; Wagner, M.; Liu, M. K.; Dai, S.; Goldflam, M. D.; Thiemens, M.; Keilmann, F.; Lau, C. N.; Castro-Neto, A. H.; Fogler, M. M.; Basov, D. N.

    2015-08-01

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At sub-nanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nano-imaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene: yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  7. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    SciTech Connect

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Willinger, Marc-Georg; Schloegl, R.

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.

  8. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-10-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene-graphene and graphene-substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.

  9. Spectroscopic investigation of thermal conductivity in few-layer graphene

    NASA Astrophysics Data System (ADS)

    Denison, Joseph C., Jr.

    Carbon is an extremely versatile element due to the ability of its electronic structure to allow strong bonds with many elements including other carbon atoms. This allows for the formation of many types of large and complex architectures, such as fullerenes and carbon nanotubes, at the nanoscale. One of the most fascinating allotropes of carbon is graphene, a two-dimensional honeycomb lattice with carbon in sp2 hybridization, which building block for layered graphite and other nanocarbons.[1] Because of its unique structure, graphene displays several interesting properties including high thermal[2-4] and electrical mobility and conductivity[1,5]. The initial studies on graphene were performed on mechanically exfoliated samples, which were limited to few microns in size. In the recent years, large areas of single- and few-layer graphene (˜few cm x cm) are being produced by chemical vapor deposition technique for practical applications. However, chemical vapor deposition grown graphene is highly polycrystalline with interfaces such as edges, grain boundaries, dislocations, and point defects. This inevitable presence of defects in graphene influences its electrical and thermal transport. While many studies have previously focused on the influence of defects on electrical mobility and conductivity, there is little information on the influence of defects on the thermal properties of graphene. This study specifically investigates the effect of both intrinsic and extrinsic defects on the in-plane thermal properties of graphene using micro-Raman spectroscopy. The in-plane thermal conductivity of few-layered graphene (FLG) was measured using Raman spectroscopy, following the work of Balandin et al. [4]The thermal conductivity was estimated from a shift of the characteristic G-band of graphene as a function of the excitation laser power. The graphene samples were synthesized on nickel substrates using chemical vapor deposition, and transferred to copper TEM grids and

  10. Electron transport in molecular junctions with graphene as protecting layer

    SciTech Connect

    Hüser, Falco; Solomon, Gemma C.

    2015-12-07

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  11. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  12. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  13. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  14. Nonlocal optical properties in periodic lattice of graphene layers.

    PubMed

    Chern, Ruey-Lin; Han, Dezhuan

    2014-02-24

    Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.

  15. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  16. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage.

    PubMed

    Wang, Hua; Feng, Hongbin; Li, Jinghong

    2014-06-12

    Being confronted with the energy crisis and environmental problems, the exploration of clean and renewable energy materials as well as their devices are urgently demanded. Two-dimensional (2D) atomically-thick materials, graphene and grpahene-like layered transition metal dichalcogenides (TMDs), have showed vast potential as novel energy materials due to their unique physicochemical properties. In this Review, we outline the typical application of graphene and grpahene-like TMDs in energy conversion and storage fields, and hope to promote the development of 2D TMDs in this field through the analysis and comparisons with the relatively natural graphene. First, a brief introduction of electronic structures and basic properties of graphene and TMDs are presented. Then, we summarize the exciting progress of these materials made in both energy conversion and storage field including solar cells, electrocatalysis, supercapacitors and lithium ions batteries. Finally, the prospects and further developments in these exciting fields of graphene and graphene-like TMDs materials are also suggested.

  17. Intrinsic Negative Poisson's Ratio for Single-Layer Graphene.

    PubMed

    Jiang, Jin-Wu; Chang, Tienchong; Guo, Xingming; Park, Harold S

    2016-08-10

    Negative Poisson's ratio (NPR) materials have drawn significant interest because the enhanced toughness, shear resistance, and vibration absorption that typically are seen in auxetic materials may enable a range of novel applications. In this work, we report that single-layer graphene exhibits an intrinsic NPR, which is robust and independent of its size and temperature. The NPR arises due to the interplay between two intrinsic deformation pathways (one with positive Poisson's ratio, the other with NPR), which correspond to the bond stretching and angle bending interactions in graphene. We propose an energy-based deformation pathway criteria, which predicts that the pathway with NPR has lower energy and thus becomes the dominant deformation mode when graphene is stretched by a strain above 6%, resulting in the NPR phenomenon.

  18. Oxidation and disorder in few-layered graphene induced by the electron-beam irradiation

    SciTech Connect

    Xu Zhiwei; Wang Rui; Qian Xiaoming; Chen Lei; Li Jialu; Song Xiaoyan; Liu Liangsen; Chen Guangwei

    2011-05-02

    Structural changes caused by an electron beam with the high irradiation energy of 5 MeV were investigated in few-layered graphene. Both the original and the irradiated few-layered graphene were characterized by x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. It was found that a typical diffraction peak of graphene oxide emerged and this may be attributed to a partial oxidation in few-layered graphene which was induced by the irradiation. In addition, the graphitic structure of few-layered graphene was found to be disordered according to the increased intensity ratio of D to G band.

  19. Atomic layer deposition of metal oxides on pristine and functionalized graphene.

    PubMed

    Wang, Xinran; Tabakman, Scott M; Dai, Hongjie

    2008-07-02

    We investigate atomic layer deposition (ALD) of metal oxide on pristine and functionalized graphene. On pristine graphene, ALD coating can only actively grow on edges and defect sites, where dangling bonds or surface groups react with ALD precursors. This affords a simple method to decorate and probe single defect sites in graphene planes. We used perylene tetracarboxylic acid (PTCA) to functionalize the graphene surface and selectively introduced densely packed surface groups on graphene. Uniform ultrathin ALD coating on PTCA graphene was achieved over a large area. The functionalization method could be used to integrate ultrathin high-kappa dielectrics in future graphene electronics.

  20. Electronic structure of epitaxial graphene layers on SiC: effects of the substrate

    SciTech Connect

    Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. Ngoc; Naud, C.; Mallet, P.; Veuillen, J.-Y.; Berger, C.; Conrad, E.H.; Magaud, L.

    2008-10-17

    A strong substrate-graphite bond is found in the first all-carbon layer by density functional theory calculations and x-ray diffraction for few graphene layers grown epitaxially on SiC. This first layer is devoid of graphene electronic properties and acts as a buffer layer. The graphene nature of the film is recovered by the second carbon layer grown on both the (0001) and (0001{sup -}) 4H-SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. Hence the graphene is doped and a gap opens at the Dirac point after three Bernal stacked carbon layers are formed.

  1. Investigation on optical properties of BSA protein on single-layer graphene using terahertz spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Yang, Shengxin; Du, Pengju; Sun, Yiwen

    2016-11-01

    Terahertz (THz) spectroscopy is sensitive to probe several aspects of biological systems. In THz frequency, electrically controllable Drude-like intraband absorption makes graphene a promising platform for building graphene-based optoelectronic devices such as THz biosensor. In this work, BSA protein thin films were spin-coated and incubated on single-layer graphene. IR lasers with different power were used as the pump light to stimulate the sandwich-like sample respectively. The graphene monolayer complex conductivity was calculated using the transmission method. The novel optical properties of single-layer graphene and BSA protein on graphene in the THz range will be discussed in this paper.

  2. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  3. Plasmons in spatially separated double-layer graphene nanoribbons

    SciTech Connect

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-07

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  4. Effective elastic mechanical properties of single layer graphene sheets.

    PubMed

    Scarpa, F; Adhikari, S; Srikantha Phani, A

    2009-02-11

    The elastic moduli of single layer graphene sheet (SLGS) have been a subject of intensive research in recent years. Calculations of these effective properties range from molecular dynamic simulations to use of structural mechanical models. On the basis of mathematical models and calculation methods, several different results have been obtained and these are available in the literature. Existing mechanical models employ Euler-Bernoulli beams rigidly jointed to the lattice atoms. In this paper we propose truss-type analytical models and an approach based on cellular material mechanics theory to describe the in-plane linear elastic properties of the single layer graphene sheets. In the cellular material model, the C-C bonds are represented by equivalent mechanical beams having full stretching, hinging, bending and deep shear beam deformation mechanisms. Closed form expressions for Young's modulus, the shear modulus and Poisson's ratio for the graphene sheets are derived in terms of the equivalent mechanical C-C bond properties. The models presented provide not only quantitative information about the mechanical properties of SLGS, but also insight into the equivalent mechanical deformation mechanisms when the SLGS undergoes small strain uniaxial and pure shear loading. The analytical and numerical results from finite element simulations show good agreement with existing numerical values in the open literature. A peculiar marked auxetic behaviour for the C-C bonds is identified for single graphene sheets under pure shear loading.

  5. Corrugated graphene layers for sea water desalination using capacitive deionization.

    PubMed

    Dahanayaka, Madhavi; Liu, Bo; Hu, Zhongqiao; Chen, Zhong; Law, Adrian Wing-Keung; Zhou, Kun

    2017-03-14

    The effect of the electric field and surface morphology of corrugated graphene (GE) layers on their capacitive deionization process is studied using molecular dynamics simulations. Deionization performances are evaluated in terms of water flow rate and ion adsorption and explained by analysing the water density distribution, radial distribution function and distribution of the ions inside the GE layers. The simulation results reveal that corrugation of GE layers reduces the water flow rate but largely enhances ion adsorption in comparison to the flat GE layers. Such enhancement is mainly due to the adsorption of ions on the GE layers due to the anchoring effect in the regions with wide interlayer distances. Moreover, it reveals that the entrance configuration of the GE layers also has a significant effect on the performance of deionization. Overall, the results from this study will be helpful in designing effective electrode configurations for capacitive deionization.

  6. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  7. Touch stimulated pulse generation in biomimetic single-layer graphene

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  8. Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy

    SciTech Connect

    Antonova, Irina V.; Nebogatikova, Nadezhda A.; Prinz, Victor Ya.

    2014-05-12

    Arrays of graphene or few-layer graphene quantum dots (QDs) embedded in a partially fluorinated graphene matrix were created by chemical functionalization of layers. Charge transient spectroscopy employed for investigation of obtained QD systems (size 20–70 nm) has allowed us to examine the QD energy spectra and the time of carrier emission (or charge relaxation) from QDs as a function of film thickness. It was found that the characteristic time of carrier emission from QDs decreased markedly (by about four orders of magnitude) on increasing the QD thickness from one graphene monolayer to 3 nm. Daylight-assisted measurements also demonstrate a strong decrease of the carrier emission time.

  9. Fabrication and applications of multi-layer graphene stack on transparent polymer

    NASA Astrophysics Data System (ADS)

    Krajewska, Aleksandra; Pasternak, Iwona; Sobon, Grzegorz; Sotor, Jaroslaw; Przewloka, Aleksandra; Ciuk, Tymoteusz; Sobieski, Jan; Grzonka, Justyna; Abramski, Krzysztof M.; Strupinski, Wlodek

    2017-01-01

    In this report, we demonstrate the preparation method of a multi-layer stack with a pre-defined number of graphene layers, which was obtained using chemical vapor deposition graphene deposited on a copper substrate and subsequently transferred onto a poly(methyl methacrylate) (PMMA) substrate. The prepared multi-layer stack can also be transferred onto an arbitrary substrate and in the end, the polymer can be removed, which in consequence significantly increases the range of possible graphene applications. The multi-layer character was confirmed by optical transmittance measurements and Raman spectroscopy, whereas the microstructure of the multi-layer graphene stack was investigated using Scanning Electron Microscopy. The electrical properties in the function of the number of graphene layers were assessed with standard Hall Effect measurements. Finally, we showed the practical application of the multi-layer graphene stack as a saturable absorber of a mode-locked Er-doped fiber laser.

  10. Role of barrier layer on dielectric function of graphene double layer system at finite temperature

    NASA Astrophysics Data System (ADS)

    Patel, Digish K.; Ambavale, Sagar K.; Prajapati, Ketan; Sharma, A. C.

    2016-05-01

    We have theoretically investigated the static dielectric function of graphene double layer system (GDLS) at finite temperatures within the random phase approximation. GDLS has been suspended on a substrate and barrier layer of three different materials; h-BN, Al2O3 and HfO2 has been introduced between two graphene sheets of GDLS. We have reported dependence of the overall dielectric function of GDLS on interlayer distance and the effect of the dielectric environment at finite temperatures. Results show close relation between changing environment and behavior of dielectric constant of GDLS.

  11. Few layer graphene based superlattices as efficient thermal insulators

    NASA Astrophysics Data System (ADS)

    Ni, Yuxiang; Chalopin, Yann; Volz, Sebastian

    2013-09-01

    While graphene and few layer graphene (FLG) are considered as having the highest thermal conductivity in their in-plane directions, our molecular dynamics (MD) simulations however show that those systems are also characterized by a superior thermal contact resistance, which could be largely tuned with the layer number when in contact with a silica substrate. Taking advantages of such a resistive interface, MD simulations show that SiO2/FLG superlattices have a thermal conductivity as low as 0.30 W/m K, exhibiting a promising prospect in nano-scale thermal insulation. These findings pave the way for an improved thermal management of nanoscale systems such as thermal barrier coatings and phase change memory materials with atomic-scale super-insulators.

  12. Low-energy phase change memory with graphene confined layer

    NASA Astrophysics Data System (ADS)

    Zhu, Chengqiu; Ma, Jun; Ge, Xiaoming; Rao, Feng; Ding, Keyuan; Lv, Shilong; Wu, Liangcai; Song, Zhitang

    2016-06-01

    How to reduce the Reset operation energy is the key scientific and technological problem in the field of phase change memory (PCM). Here, we show in the Ge2Sb2Te5 based PCM cell, inserting an additional graphene monolayer in the Ge2Sb2Te5 layer can remarkably decrease both the Reset current and energy. Because of the small out-of-plane electrical and thermal conductivities of such monolayer graphene, the Set resistance and the heat dissipation towards top TiN electrode of the modified PCM cell are significantly increased and decreased, respectively. The mushroom-typed larger active phase transition volume thus can be confined inside the underlying thinner GST layer, resulting in the lower power consumption.

  13. Buckling instability of circular double-layered graphene sheets.

    PubMed

    Natsuki, Toshiaki; Shi, Jin-Xing; Ni, Qing-Qing

    2012-04-04

    In this paper, we study the buckling properties of circular double-layered graphene sheets (DLGSs), using plate theory. The two graphene layers are modeled as two individual sheets whose interactions are determined by the Lennard-Jones potential of the carbon-carbon bond. An analytical solution of coupled governing equations is proposed for predicting the buckling properties of circular DLGSs. Using the present theoretical approach, the influences of boundary conditions, plate sizes, and buckling-mode shapes on the buckling behaviors are investigated in detail. The buckling stability is significantly affected by the buckling-mode shapes. As a result of van der Waals interactions, the buckling stress of circular DLGSs is much larger for the anti-phase mode than for the in-phase mode.

  14. Spatiotemporal morphometry of adjacent tissue layers with application to the study of sulcal formation

    PubMed Central

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A.; Kim, Kio; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2012-01-01

    The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063

  15. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    NASA Astrophysics Data System (ADS)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  16. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication.

  17. Negative Poisson's Ratio in Single-Layer Graphene Ribbons.

    PubMed

    Jiang, Jin-Wu; Park, Harold S

    2016-04-13

    The Poisson's ratio characterizes the resultant strain in the lateral direction for a material under longitudinal deformation. Though negative Poisson's ratios (NPR) are theoretically possible within continuum elasticity, they are most frequently observed in engineered materials and structures, as they are not intrinsic to many materials. In this work, we report NPR in single-layer graphene ribbons, which results from the compressive edge stress induced warping of the edges. The effect is robust, as the NPR is observed for graphene ribbons with widths smaller than about 10 nm, and for tensile strains smaller than about 0.5% with NPR values reaching as large as -1.51. The NPR is explained analytically using an inclined plate model, which is able to predict the Poisson's ratio for graphene sheets of arbitrary size. The inclined plate model demonstrates that the NPR is governed by the interplay between the width (a bulk property), and the warping amplitude of the edge (an edge property), which eventually yields a phase diagram determining the sign of the Poisson's ratio as a function of the graphene geometry.

  18. Aqueous proton transfer across single-layer graphene

    PubMed Central

    Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; Cai, Yu; Raju, Muralikrishna; Zhang, Weiwei; Sacci, Robert L.; Vlassiouk, Ivan V.; Fulvio, Pasquale F.; Ganesh, Panchapakesan; Wesolowski, David J.; Dai, Sheng; van Duin, Adri C. T.; Neurock, Matthew; Geiger, Franz M.

    2015-01-01

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is therefore thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energy barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. Unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons. PMID:25781149

  19. Aqueous proton transfer across single-layer graphene

    SciTech Connect

    Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; Cai, Yu; Raju, Muralikrishna; Zhang, Weiwei; Sacci, Robert L.; Vlassiouk, Ivan V.; Fulvio, Pasquale F.; Ganesh, Panchapakesan; Wesolowski, David J.; Dai, Sheng; van Duin, Adri C. T.; Neurock, Matthew; Geiger, Franz M.

    2015-03-17

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused ​silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energy barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while ​pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and ​hydrogen transfer indicate the process is selective for aqueous protons.

  20. Aqueous proton transfer across single-layer graphene

    DOE PAGES

    Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...

    2015-03-17

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused ​silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while ​pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and ​hydrogen transfer indicate the process is selective for aqueous protons.« less

  1. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil.

    PubMed

    Xu, Lirong; Zhou, Xin; Tian, Wei Quan; Gao, Teng; Zhang, Yan Feng; Lei, Shengbin; Liu, Zhong Fan

    2014-09-01

    The integration of 2D covalent organic frameworks (COFs) with atomic thickness with graphene will lead to intriguing two-dimensional materials. A surface-confined covalently bonded Schiff base network was prepared on single-layer graphene grown on copper foil and the dynamic reaction process was investigated with scanning tunneling microscopy. DFT simulations provide an understanding of the electronic structures and the interactions between the surface COF and graphene. Strong coupling between the surface COF and graphene was confirmed by the dispersive bands of the surface COF after interaction with graphene, and also by the experimental observation of tunneling condition dependent contrast of the surface COF.

  2. van der Waals screening by single-layer graphene and molybdenum disulfide.

    PubMed

    Tsoi, Stanislav; Dev, Pratibha; Friedman, Adam L; Stine, Rory; Robinson, Jeremy T; Reinecke, Thomas L; Sheehan, Paul E

    2014-12-23

    A sharp tip of atomic force microscope is employed to probe van der Waals forces of a silicon oxide substrate with adhered graphene. Experimental results obtained in the range of distances from 3 to 20 nm indicate that single-, double-, and triple-layer graphenes screen the van der Waals forces of the substrate. Fluorination of graphene, which makes it electrically insulating, lifts the screening in the single-layer graphene. The van der Waals force from graphene determined per layer decreases with the number of layers. In addition, increased hole doping of graphene increases the force. Finally, we also demonstrate screening of the van der Waals forces of the silicon oxide substrate by single- and double-layer molybdenum disulfide.

  3. On the nature of the stacking interaction between two graphene layers

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Zhang, Yu; Sun, Tao; Wang, Yi-Bo

    2015-01-01

    The interlayer interaction energy and its components of the bilayer graphene were obtained by extrapolation of the interlayer interaction energies and their components of the dimers formed by graphene with benzene, naphthalene, anthracene, phenanthrene, pyrene, tetracene, perylene, pentacene and hexacene. The resulting interaction energy of the bilayer graphene is -1.82 kcal/mol (or -79 meV) per carbon atom. The dispersion energy represents 70% of the total attractive energy between two graphene layers. In contrast, the electrostatic component is responsible for 25% of the total attractive interaction and the induction term contributes 5% to the stability of two graphene layers.

  4. Near-field scanning microwave microscopy of few-layer graphene.

    SciTech Connect

    Kalugin, Nikolai G.; Gonzales, Edward; Kalichava, Irakli; Gin, Aaron V.; Wickey, Lee; Del Barga, Christopher; Talanov, Vladimir V.; Shaner, Eric Arthur

    2010-08-01

    Near-field microwave microscopy can be used as an alternative to atomic-force microscopy or Raman microscopy in determination of graphene thickness. We evaluated the values of AC impedance for few layer graphene. The impedance of mono and few-layer graphene at 4GHz was found predominantly active. Near-field microwave microscopy allows simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without device fabrication. Our results may be useful for design of future graphene-based microwave devices.

  5. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    PubMed

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  6. Knudsen effusion through polymer-coated three-layer porous graphene membranes.

    PubMed

    Boutilier, Michael S H; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2017-05-05

    Graphene membranes have the potential to exceed the permeance and selectivity limits of conventional gas separation membranes. Realizing this potential in practical systems relies on overcoming numerous scalability challenges, such as isolating or sealing permeable defects in macroscopic areas of graphene that can compromise performance and developing methods to create high densities of selective pores over large areas. This study focuses on a centimeter-scale membrane design, where leakage is reduced by substrate selection, permeable polymer film coating, and stacking of three independent layers of graphene, while (selective) pores are created by high density ion bombardment. The three-layer graphene provides high resistance to gas flow, which decreases with ion bombardment and results in selectivity consistent with Knudsen effusion. The results suggest that the permeable pores created in three layer graphene were larger than those required for molecular sieving and that designs based on single layer graphene may lend themselves more easily to molecular sieving of gases.

  7. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system

    NASA Astrophysics Data System (ADS)

    Kim, Juhan; Heo, Soo Bong; Hoi Gu, Geun; Suh, Jung Sang

    2010-03-01

    We have developed a method to fabricate graphene flakes composed of high quality multi-layer graphene sheets using a thermal plasma jet system. A carbon atomic beam was generated by injecting ethanol into Ar plasma continuously; the beam then flowed through a carbon tube attached to the anode. Graphene was made by epitaxial growth where a carbon atomic beam, having the proper energy, collided with a graphite plate. The graphene fabricated was very pure and showed a relatively good crystalline structure. We have demonstrated that the number of layers of graphene sheets could be controlled by controlling the rate of ethanol injection. Our process is a continuous process with a relatively high yield (~8%).

  8. Effects of heat treatment on Raman spectra of two-layer 12C/13C graphene.

    PubMed

    Kalbac, Martin; Frank, Otakar; Kavan, Ladislav

    2012-10-22

    The Raman spectra of two-layered graphene on a silicon substrate were studied in the temperature range from 298 to 1073 K in an inert atmosphere. Isotopic engineering was used to fabricate two-layer graphene specimens containing (13)C atoms in the top layer and (12)C atoms in the bottom layer, which allowed the behavior of each particular layer to be distinguished as a function of temperature. It is demonstrated that the top layer exhibits much lower Raman temperature coefficients than the bottom one for both the G and the G' modes. We suggest that the changes in the Raman spectra of graphene observed during thermal cycling are predominantly caused by a superposition of two effects, namely, the mechanical stress in graphene exerted by the substrate and the intrinsic changes in the graphene lattice caused by the temperature itself. The top graphene layer is proposed to be more relaxed than the bottom graphene layer and thus reflects almost exclusively the temperature variations as a freestanding graphene layer would.

  9. Fabrication of graphene-silicon layered heterostructures by carbon penetration of silicon film.

    PubMed

    Meng, Lei; Wang, Yeliang; Li, Linfei; Gao, H-J

    2017-02-24

    A new, easy, in situ technique for fabricating a two-dimensional graphene-silicon layered heterostructure has been developed to meet the demand for integration between graphene and silicon-based microelectronic technology. First, carbon atoms are stored in bulk iridium, and then silicon atoms are deposited onto the Ir(111) surface and annealed. With longer annealing times, the carbon atoms penetrate from the bulk iridium to the top of the silicon and eventually coalesce there into graphene islands. Atomically resolved scanning tunneling microscopy images, high-pass fast Fourier transform treatment and Raman spectroscopy demonstrate that the top graphene layer is intact and continuous, and beneath it is the silicon layer.

  10. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    SciTech Connect

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P.; Yang, H.; Blume, R.; Schloegl, R.

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  11. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  12. Long Spin Diffusion Length in Few-Layer Graphene Flakes

    NASA Astrophysics Data System (ADS)

    Yan, W.; Phillips, L. C.; Barbone, M.; Hämäläinen, S. J.; Lombardo, A.; Ghidini, M.; Moya, X.; Maccherozzi, F.; van Dijken, S.; Dhesi, S. S.; Ferrari, A. C.; Mathur, N. D.

    2016-09-01

    We report a spin valve with a few-layer graphene flake bridging highly spin-polarized La0.67Sr0.33MnO3 electrodes, whose surfaces are kept clean during lithographic definition. Sharp magnetic switching is verified using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. A naturally occurring high interfacial resistance ˜12 M Ω facilitates spin injection, and a large resistive switching (0.8 M Ω at 10 K) implies a 70 - 130 μ m spin diffusion length that exceeds previous values obtained with sharp-switching electrodes.

  13. A Direct Transfer of Layer-Area Graphene

    DTIC Science & Technology

    2010-01-01

    A direct transfer of layer-area graphene William Regan,1,2 Nasim Alem,1,2,3 Benjamín Alemán,1,2,3 Baisong Geng,1,4 Çağlar Girit,1,2 Lorenzo Maserati... Meyer , Ç. Ö. Girit, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 92, 123110 2008. 10J. C. Meyer , Ç. Ö. Girit, M. F. Crommie, and A. Zettl, Nature...London 454, 319 2008. 11M. D. Fischbein and M. Drndić, Appl. Phys. Lett. 93, 113107 2008. 12J. C. Meyer , A. K. Geim, M. I. Katsnelson, K. S

  14. Effect of water layer at the SiO2/graphene interface on pentacene morphology.

    PubMed

    Chhikara, Manisha; Pavlica, Egon; Matković, Aleksandar; Gajić, Radoš; Bratina, Gvido

    2014-10-07

    Atomic force microscopy has been used to examine early stages of pentacene growth on exfoliated single-layer graphene transferred to SiO2 substrates. We have observed 2D growth with mean height of 1.5 ± 0.2 nm on as-transferred graphene. Three-dimensional islands of pentacene with an average height of 11 ± 2 nm were observed on graphene that was annealed at 350 °C prior to pentacene growth. Compellingly similar 3D morphology has been observed on graphene transferred onto SiO2 that was treated with hexamethyldisilazane prior to the transfer of graphene. On multilayer graphene we have observed 2D growth, regardless of the treatment of SiO2. We interpret this behavior of pentacene molecules in terms of the influence of the dipolar field that emerges from the water monolayer at the graphene/SiO2 interface on the surface energy of graphene.

  15. Green synthesis of well-dispersed single-layer graphene colloids via an electrolytic method

    NASA Astrophysics Data System (ADS)

    Huang, Yilong; Tian, Yanhong; Wang, Shang

    2017-03-01

    Graphene has lots of attractive properties. However, most of its optimal properties are only associated with individual sheets. Producing a colloidal form of graphene can effectively avoid graphene aggregation and thus maintain its original performance. In this paper, an electrolytic method was utilized to prepare graphene colloids. Initially, graphene oxide (GO) was produced from graphite by a pressurized oxidation method. The high concentration of H+ or OH‑ was found to facilitate the aggregation of GO. Then, GO was reduced by nascent hydrogen, which was generated by reducing hydrogen ions on an iron cathode in the electrolytic method. X-ray diffraction, Raman spectrum, thermogravimetric analysis and x-ray photoelectron spectroscopy analyses indicated that the nascent hydrogen can effectively reduce GO to graphene. Atomic force microscopy analysis and dispersibility evaluation of graphene colloids proved that the novel electrolytic method can prepare well-dispersed single-layer graphene colloids.

  16. Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Doan Le, Huu; Quynh Nguyen, Van; Thanh Tam Ngo, Thi; Phuc Do, Quan; Nghia Nguyen, Xuan; Phan, Ngoc Minh; Tran, Dai Lam

    2013-03-01

    The preparation and characterization of graphene films for cholesterol determination are described. The graphene films were synthesized by thermal chemical vapor deposition (CVD) method. Methane gas (CH4) and copper tape were used as carbon source and catalyst in the graphene growth process, respectively. The intergrated array was fabricated by using micro-electro-mechanical systems (MEMS) technology in which Fe3O4-doped polyaniline (PANi) film was electropolymerized on Pt/Gr electrodes. The properties of the Pt/Gr/PANi/Fe3O4 films were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy and electrochemical techniques. Cholesterol oxidase (ChOx) has been immobilized onto the working electrode with glutaraldehyde agent. The cholesterol electrochemical biosensor shows high sensitivity (74 μA mM-1 cm-2) and fast response time (<5 s). A linear calibration plot was obtained in the wide cholesterol concentration range from 2 to 20 mM and correlation coefficient square (R2) of 0.9986. This new layer-by-layer biosensor based on graphene films promises many practical applications.

  17. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    NASA Astrophysics Data System (ADS)

    Yada, Susumu; Oyake, Takafumi; Sakata, Masanori; Shiomi, Junichiro

    2016-01-01

    When installing thermal interface material (TIM) between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR) between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness), and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness).

  18. Growth of homogeneous single-layer graphene on Ni-Ge binary substrate

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Da; Lu, Zitong; Guo, Qinglei; Ye, Lin; Wei, Xing; Ding, Guqiao; Zhang, Miao; Di, Zengfeng; Liu, Su

    2014-02-01

    In contrast to the commonly used chemical vapor deposition growth that leads to multilayer graphene formation by carbon segregation from the Ni bulk, we designed a Ni-Ge binary system to directly grow graphene film on Ni-Ge binary substrate, via chemical vapor deposition with methane and hydrogen gas as precursors. Our system fully overcomes the fundamental limitations of Ni and yields homogenous single layer graphene over large areas. The chemical vapor deposition growth of graphene on Ni-Ge binary substrate shows that self limiting monolayer graphene growth can be obtained on these substrate.

  19. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    PubMed Central

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-01-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices. PMID:26111758

  20. Layer-selective half-metallicity in bilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2015-05-01

    Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field Dc for the half-metallicity being an issue in recent works on ZGNRs. A properly chosen direction of the electric field alone has been predicted to significantly reduce Dc in the hydrogenated CNTs, which in this work turned out to be the case in narrow bilayer ZGNRs (biZGNRs). Here, our simple model based on the electrostatic potential difference between the edges predicts that for wide biZGNRs of width greater than ~2.0 nm (10 zigzag carbon chains), only one layer of the biZGNRs becomes half-metallic leaving the other layer insulating as confirmed by our density functional theory (DFT) calculations. The electric field-induced switching of the spin-polarized current path is believed to open a new route to graphene-based spintronics applications.

  1. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.

    PubMed

    Gong, Lei; Young, Robert J; Kinloch, Ian A; Haigh, Sarah J; Warner, Jamie H; Hinks, Jonathan A; Xu, Ziwei; Li, Li; Ding, Feng; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S

    2013-08-27

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (~0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed.

  2. Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites

    PubMed Central

    2013-01-01

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed. PMID:23899378

  3. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    NASA Astrophysics Data System (ADS)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  4. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.

    PubMed

    Iyer, Ganjigunte R Swathi; Wang, Jian; Wells, Garth; Guruvenket, Srinivasan; Payne, Scott; Bradley, Michael; Borondics, Ferenc

    2014-06-24

    Graphene-based plasmonic devices have recently drawn great attention. However, practical limitations in fabrication and device architectures prevent studies from being carried out on the intrinsic properties of graphene and their change by plasmonic structures. The influence of a quasi-infinite object (i.e., the substrate) on graphene, being a single sheet of carbon atoms, and the plasmonic device is overwhelming. To address this and put the intrinsic properties of the graphene-plasmonic nanostructures in focus, we fabricate large-area, freestanding, single-layer graphene-gold (LFG-Au) sandwich structures and Au nanoparticle decorated graphene (formed via thermal treatment) hybrid plasmonic nanostructures. We observed two distinct plasmonic enhancement routes of graphene unique to each structure via surface-enhanced Raman spectroscopy. The localized electronic structure variation in the LFG due to graphene-Au interaction at the nanoscale is mapped using scanning transmission X-ray microscopy. The measurements show an optical density of ∼0.007, which is the smallest experimentally determined for single-layer graphene thus far. Our results on freestanding graphene-Au plasmonic structures provide great insight for the rational design and future fabrication of graphene plasmonic hybrid nanostructures.

  5. A hybrid Mg-Al layered double hydroxide/graphene nanostructure obtained via hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodong; Cao, Jian-Ping; Zhao, Jun; Hu, Guo-Hua; Dang, Zhi-Min

    2014-06-01

    A hybrid Mg-Al layered double hydroxide/graphene (LDH-GR) material nanostructure has been fabricated by employing the hydrothermal treatment at 140 °C for 10 h. Graphene oxide is simultaneously reduced to graphene during the hydrothermal treatment. The LDH and LDH-GR have high degree of crystallinity and assembled layer structure, which is attributed to electrostatic interaction mechanism. The obtained hybrid nanostructure materials can be used as flame retardant or conductor of electricity and heat due to the combination of different properties arising from graphene and LDH.

  6. Inhomogeneous longitudinal distribution of Ni atoms on graphene induced by layer-number-dependent internal diffusion

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.; Tashima, K.; Kotsugi, M.; Ohkochi, T.; Suemitsu, M.; Fukidome, H.

    2016-09-01

    The intrinsic transport properties, such as carrier mobility and saturation velocity, of graphene are the highest among materials owing to its linear band dispersion and weak backscattering. However, the reported field-effect mobility of transistors using graphene as a channel is much lower than the intrinsic channel mobility. One of the reasons for this low mobility is the high contact resistance between graphene and metals used for the source and drain electrodes, which results from the interfacial roughness. Even Ni, which is a promising contact metal for many materials because of its high adhesion and lower contact resistance, does not meet the requirement as a contact metal for graphene. Noticing that the interfacial roughness between the a metal and graphene is strongly related to the onset of the contact resistance, we performed transmission electron microscopy and photoemission electron microscopy measurements to evaluate the microscopic lateral and longitudinal distributions of Ni atoms at the Ni/graphene interface formed on epitaxial graphene (EG) on 4H-SiC(0001). Our data revealed that the deposited Ni atoms diffused into the EG layers, but they did not reach the EG/SiC interface, and the diffusion was stronger on bilayered graphene than on monolayered graphene. We thus ascribe the layer-number-dependent internal diffusion of Ni atoms in EG as a cause of the microscopic interfacial roughness between graphene and the metal. Ensuring homogeneous distribution of the number of EG layers should be key to lowering the contact resistance.

  7. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  8. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    NASA Astrophysics Data System (ADS)

    Rozouvan, Tamara; Poperenko, Leonid; Kravets, Vasyl; Shaykevich, Igor

    2017-02-01

    The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene's electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  9. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric.

    PubMed

    Ki Min, Bok; Kim, Seong K; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-11-04

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer.

  10. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  11. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers

    NASA Astrophysics Data System (ADS)

    Cong, Chunxiao; Yu, Ting

    2014-08-01

    Few-layer graphene has attracted tremendous attention owing to its exceptional electronic properties inherited from single-layer graphene and new features led by introducing extra freedoms such as interlayer stacking sequences or rotations. Effectively probing interlayer shear modes are critical for unravelling mechanical and electrical properties of few-layer graphene and further developing its practical potential. Unfortunately, shear modes are extremely weak and almost fully blocked by a Rayleigh rejecter in Raman measurements. This greatly hinders investigations of shear modes in few-layer graphene. Here, we demonstrate enhancing of shear modes by properly folding few-layer graphene. As a direct benefit of the strong signal, enhancement mechanism, vibrational symmetry, anharmonicity and electron-phonon coupling of the shear modes are uncovered through studies of Raman mapping, polarization- and temperature-dependent Raman spectroscopy. This work complements Raman studies of graphene layers, and paves an efficient way to exploit low-frequency shear modes of few-layer graphene and other two-dimensional layered materials.

  12. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE PAGES

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  13. Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Kleut, D. N.; Marković, Z. M.; Holclajtner Antunović, I. D.; Dramićanin, M. D.; Kepić, D. P.; Todorović Marković, B. M.

    2014-09-01

    This paper represents results of a Raman spectroscopy study of gamma-irradiated few-layer graphene thin films at three different doses: 25, 50 and 110 kGy. Graphene thin films were deposited by the vacuum filtration method and then transferred onto glass substrate. Raman spectroscopy and atomic force microscopy analysis have shown that the average in-plane crystallite size La of graphene thin films varies slightly when an irradiation dose is applied. Raman spectroscopy revealed that gamma irradiation of graphene thin films resulted in slight p-doping of the graphene thin film surface. It was found that during gamma irradiation at a dose of 110 kGy, the graphene sheets merged. As a result, the number of incorporated defects in the graphene structure was reduced (the ID/IG ratio decreased with the increase in the applied dose).

  14. Graphene as a transparent conducting and surface field layer in planar Si solar cells.

    PubMed

    Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.

  15. Spin and valley resolved Landau level crossing in tri-layer ABA stacked graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Gupta, Vishakha; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Deshmukh, Mandar

    We present quantum Hall measurements on a high quality encapsulated tri-layer graphene device. Low temperature field effect mobility of this device is around 500,000 cm2/Vs and we see SdH oscillations at a magnetic field as low as 0.3 T. Quantum Hall measurements confirm that the chosen tri layer graphene is Bernal (ABA) stacked. Due to the presence of both mass-less monolayer like Dirac fermions and massive bi-layer like Dirac fermions in Bernal stacked tri-layer graphene, there are Landau level crossings between monolayer and bi-layer bands in quantum Hall regime. Although most of the Landau Level crossings are predominantly present on the electron sides, we also observe signatures of the crossings on the hole side. This behaviour is consistent with the asymmetry of electron and hole in ABA tri-layer graphene. We observe a series of crossings of the spin and valley resolved Landau Levels.

  16. Resistance and rupture analysis of single- and few-layer graphene nanosheets impacted by various projectiles

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Liu, Ling

    2016-09-01

    In this paper, a quasi-classical model for the collision of various nanoparticles with single- and few-layer graphene nanosheets was introduced as a multi-scale approach that couples non-equilibrium molecular dynamics with the Finite Element Method. As a resistance criterion, it was observed that the coefficient of restitution and the induced stresses depend on the impact velocity of projectile. These parameters were evaluated computationally, and it was revealed that certain resulting behaviors differ from behaviors at the macro scale. By obtaining an out-of-plane yield stress limit of 1.0 TPa for graphene, the stress analysis of single- and multi-layer graphene sheets revealed that the limit projectile velocity needed for the yielding of graphene sheets increases with the increase in the number of layers. For aluminum nanoparticles, this increase is almost linear, and for other metals, it slightly deviates from the linear trend. It was also observed that the graphene sheets have a different rupture form when impacted by gaseous molecules than by metal particles. Considering the very high momentum of gas molecules and their shock-like behavior during high-speed collisions with a graphene sheet, pores with a size of one carbon atom can be created in graphene sheets. Since a single-layer graphene sheet can withstand a projectile which is 3.64 times larger than a projectile impacting a 20-layer graphene sheet, spaced graphene sheets seem to be more effective in absorbing the impact energy of projectiles than conventional few-layer graphene sheets.

  17. Robust adhesion of flower-like few-layer graphene nanoclusters

    NASA Astrophysics Data System (ADS)

    Tian, Shibing; Li, Lin; Sun, Wangning; Xia, Xiaoxiang; Han, Dong; Li, Junjie; Gu, Changzhi

    2012-07-01

    Nanostructured surface possessing ultrahigh adhesion like ``gecko foot'' or ``rose petal'' can offer more opportunities for bionic application. We grow flower-like few-layer graphene on silicon nanocone arrays to form graphene nanoclusters, showing robust adhesion. Their contact angle (CA) is 164° with a hysteresis CA of 155° and adhesive force for a 5 μL water droplet is about 254 μN that is far larger than present reported results. We bring experimental evidences that this great adhesion depends on large-area plentiful edges of graphene nanosheets tuned by conical nanostructure and intrinsic wetting features of graphene. Such new hierarchical few-layer graphene nanostructure provides a feasible strategy to understand the ultra-adhesive mechanism of the ``gecko effect'' or ``rose effect'' and enhance the wettability of graphene for many practical applications.

  18. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    SciTech Connect

    Que, Yande D.; Tao, Jing; Zhang, Yong; Wang, Yeliang L.; Wu, Lijun J.; Zhu, Yimei M.; Kim, Kisslinger; Weinl, Michael; Schreck, Matthias; Shen, Chengmin M.; Du, Shixuan X.; Liu, Yunqi Q.; Gao, H. -J.; Huang, Li; Xu, Wenyan Y.

    2015-01-20

    Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transition metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾

  19. Selective growth of Pb islands on graphene/SiC buffer layers

    SciTech Connect

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.; Hu, T. W.; Ma, F. E-mail: kwxu@mail.xjtu.edu.cn; Chu, Paul K.; Xu, K. W. E-mail: kwxu@mail.xjtu.edu.cn

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Since Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.

  20. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    DOE PAGES

    Que, Yande D.; Tao, Jing; Zhang, Yong; ...

    2015-01-20

    Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less

  1. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential

    NASA Astrophysics Data System (ADS)

    Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng

    2015-12-01

    To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are

  2. Strain engineering of Kapitza resistance in few-layer graphene.

    PubMed

    Chen, Jie; Walther, Jens H; Koumoutsakos, Petros

    2014-02-12

    We demonstrate through molecular dynamics simulations that the Kapitza resistance in few-layer graphene (FLG) can be controlled by applying mechanical strain. For unstrained FLG, the Kapitza resistance decreases with the increase of thickness and reaches an asymptotic value of 6 × 10(-10) m(2)K/W at a thickness about 16 nm. Uniaxial cross-plane strain is found to increase the Kapitza resistance in FLG monotonically, when the applied strain varies from compressive to tensile. Moreover, uniaxial strain couples the in-plane and out-of-plane strain/stress when the surface of FLG is buckled. We find that with a compressive cross-plane stress of 2 GPa, the Kapitza resistance is reduced by about 50%. On the other hand it is almost tripled with a tensile cross-plane stress of 1 GPa. Remarkably, compressive in-plane strain can either increase or reduce the Kapitza resistance, depending on the specific way it is applied. Our study suggests that graphene can be exploited for both heat dissipation and insulation through strain engineering.

  3. Symmetry breaking in graphene layers on SiC-substrate—an ab-initio study

    NASA Astrophysics Data System (ADS)

    Agrawal, B. K.; Agrawal, S.

    2013-05-01

    A comprehensive detailed ab-initio study of the electronic structure of 1-7 graphene layers on the polar SiC (0 0 0 1) substrate systems has been performed for the first time. We observe a symmetry-breaking in all the graphene-SiC (0 0 0 1) substrate systems leading to an opening of band gap in contrast to the existence of zero band gap seen in the isolated graphene layer. The planar lattice parameter in graphene-SiC system decreases with the number of graphene layers from 3.051 Å to 2.948 Å showing an overall decrease of 3.5% and it approaches toward the bulk graphite. The electronic structure of the graphene layer-SiC system depends crucially on the planar lattice parameter and both the band gap and the location of the Dirac point are affected drastically. The band gap and the depth of the Dirac point below the Fermi level decrease with the number of graphene layers in conformity with the recent ARPES experiments of Zhou et al. The present results in some graphene-SiC systems are seen to be different from the earlier theoretical results reported in the literature.

  4. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    DOE PAGES

    Wang, Gang; Zhang, Miao; Liu, Su; ...

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less

  5. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    SciTech Connect

    Wang, Gang; Zhang, Miao; Liu, Su; Xie, Xiaoming; Ding, Guqiao; Wang, Yongqiang; Chu, Paul K.; Gao, Heng; Ren, Wei; Yuan, Qinghong; Zhang, Peihong; Wang, Xi; Di, Zengfeng

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substrate surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.

  6. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    PubMed

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  7. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties

    PubMed Central

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  8. Dielectric function for doped graphene layer with barium titanate

    NASA Astrophysics Data System (ADS)

    Martinez Ramos, Manuel; Garces Garcia, Eric; Magana, Fernado; Vazquez Fonseca, Gerardo Jorge

    2015-03-01

    The aim of our study is to calculate the dielectric function for a system formed with a graphene layer doped with barium titanate. Density functional theory, within the local density approximation, plane-waves and pseudopotentials scheme as implemented in Quantum Espresso suite of programs was used. We considered 128 carbon atoms with a barium titanate cluster of 11 molecules as unit cell with periodic conditions. The geometry optimization is achieved. Optimization of structural configuration is performed by relaxation of all atomic positions to minimize their total energies. Band structure, density of states and linear optical response (the imaginary part of dielectric tensor) were calculated. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.

  9. Relaxation Properties of Single Layer Graphene on SiO2 Substrate.

    PubMed

    Wang, Weidong; Li, Shuai; Min, Jiaojiao; Shen, Cuili

    2015-04-01

    The relaxation properties of single layer graphene sheet on the SiO2 substrate are investigated through molecular dynamics simulation technique in this article. The graphene sheet models with different aspect ratios on SiO2 substrate are established and sufficiently relaxed at different thermodynamic temperatures. Subsequently, the morphology, equilibrium position and undulation of graphene on SiO2 substrate are discussed. It is observed that after sufficient relaxation processes, all the graphene sheets are adsorbed on SiO2 substrates and have some certain degree of undulations both on the edge and in the inner surface rather than perfect planar structures. Further observation from the simulation results shows that with different initial distances between the graphene sheet and SiO2 substrate, the graphene sheet would eventually stabilize to an identical equilibrium level at the same temperature. In addition, the final average distance between the graphene sheet and the substrate is a constant of 3.44 A at 0.01 K, in close proximity to the value of parameter r in Lennard-Jones potential function, and the higher the temperature is, the larger the final distance becomes. The results also indicate that for the same size of the graphene sheet, the increasing of temperature significantly aggravates the undulation of graphene sheet. With the increase of aspect ratios, the undulation of the graphene sheet is also aggravated, even the graphene sheet would crimp to a certain extent.

  10. Few-layers graphene oxide for NO2 gas sensor on plastic

    NASA Astrophysics Data System (ADS)

    Ramli, Muhammad M.; Isa, Siti S. Mat; Jamlos, M. F.; Murad, S. A. Z.; Isa, M. Mohamad; Kasjoo, S. R.; Ahmad, N.; Nor, N. I. M.; Khalid, N.

    2017-03-01

    Vacuum filtration method was used in order to fabricate a homogeneous and uniform thin film of multi-layer graphene oxide on plastic substrate. This self-regulating technique allows the number of graphene oxide layer to be controlled thus controlling the film thickness by simply varying either the concentration of the graphene oxide in the suspension or the filtration volume. Measurement of the sheet resistance as a function of graphene oxide concentration in solution shows the percolation behavior of multi-layer films. The device was then exposed in nitrogen dioxide (NO2) environment at room temperature and 200 °C, under atmospheric pressure. Results demonstrate that the graphene oxide film shows good sensitivity and excellent recovery time using plastic substrate.

  11. Raman Scattering from few-layer Graphene Films

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Joshi, P.; Srinivas, T.; Eklund, Peter

    2006-03-01

    Few layer-graphene sheet (nGL's) films, where n is the number of graphene layers, are new two-dimensional sp^2 carbon systems that have been shown to produce exciting Fractional Quantum Hall phenomena. We report here on the first Raman scattering (RS) results of nGLs. nGLs with lateral dimensions of ˜1-3 μm were prepared by chemical delamination of graphite flake or HOPG and then transferred from solution onto substrates (mica, pyrex,In/pyrex and Au/pyrex). RS spectra have been collected on nGL's with n=1, 2, 3 and compared with the graphite. Graphite exhibits two E2g interlayer modes at 42 cm-1 and 1582 cm-1. The Raman spectra of (n=1-3) nGLs were found to exhibit peaks at 1350 cm-1 and 1620 cm-1, i.e., near frequencies associated with high phonon density of states. The high frequency E2g band is found to split into two bands when the nGL is supported on metallic substrates (In,Au). In both these cases, we observe bands at 1583 cm-1, ˜1592 cm-1 rather than one band at 1581 cm-1 when the nGL is on insulating pyrex. The splitting of the interlayer band when on metallic substrates is identified with charge transfer between the nGL and the substrate. The phonon density of states scattering observed does not appear to be due to disorder in the basal plane.

  12. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performances of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer.

  13. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    SciTech Connect

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  14. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    DOE PAGES

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. In conclusion,more » our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less

  15. Control of layer stacking in CVD graphene under quasi-static condition.

    PubMed

    Subhedar, Kiran M; Sharma, Indu; Dhakate, Sanjay R

    2015-09-14

    The type of layer stacking in bilayer graphene has a significant influence on its electronic properties because of the contrast nature of layer coupling. Herein, different geometries of the reaction site for the growth of bilayer graphene by the chemical vapor deposition (CVD) technique and their effects on the nature of layer stacking are investigated. Micro-Raman mapping and curve fitting analysis confirmed the type of layer stacking for the CVD grown bilayer graphene. The samples grown with sandwiched structure such as quartz/Cu foil/quartz along with a spacer, between the two quartz plates to create a sealed space, resulted in Bernal or AB stacked bilayer graphene while the sample sandwiched without a spacer produced the twisted bilayer graphene. The contrast difference in the layer stacking is a consequence of the difference in the growth mechanism associated with different geometries of the reaction site. The diffusion dominated process under quasi-static control is responsible for the growth of twisted bilayer graphene in sandwiched geometry while surface controlled growth with ample and continual supply of carbon in sandwiched geometry along with a spacer, leads to AB stacked bilayer graphene. Through this new approach, an efficient technique is presented to control the nature of layer stacking.

  16. Large area single and bilayer graphene with controlled orientation for each layer

    NASA Astrophysics Data System (ADS)

    Brown, Lola; Lochocki, Edward; Gutiérrez, Christopher; Pasupathy, Abhay; Shen, Kyle; Park, Jiwoong; Cornell Collaboration; Cornell-Columbia Collaboration

    2014-03-01

    The creation and exploration of artificial graphene structures has recently become the focus of great interest. In particular, controlling the interlayer twist angles in multilayer graphene stacks allows modulation of the overall band structure. However, producing such a structure remains difficult due to the random distribution of twist angles in as-grown samples. Here we report a novel way for creating large area graphene stacks with a pre-determined twist angle. We first grow single layer graphene whose orientation is aligned over a few cm length scale on copper foil. The overall angle alignment of the graphene is confirmed using low energy electron microscopy (LEED) and transmission electron microscopy techniques. Since the graphene is well aligned over a few centimeters, we can create large area graphene stacks with known twist angle by transferring these graphene layers while controlling the orientation of each layer during transfer. We confirm that the layers are coupled by probing the resulting band structure using angle resolved photoemission spectroscopy (ARPES), and examining their interlayer optical resonance features using spatially resolved hyperspectral (DUV-Vis-NIR wavelengths). This new method is scalable, and controllable and thus paves the way to explore and exploit the novel properties of two-dimensional crystals in artificial stacks with controlled interlayer structures. Second affiliation: Kavli Institute at Cornell for Nanoscale Science.

  17. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-03

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g(-1) and 380 mA h g(-1) are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  18. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  19. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.

    PubMed

    Chung, Kyungwha; Rani, Adila; Lee, Ji-Eun; Kim, Ji Eun; Kim, Yonghwi; Yang, Heejin; Kim, Sang Ouk; Kim, Donghyun; Kim, Dong Ha

    2015-01-14

    The use of graphene in conventional plasmonic devices was suggested by several theoretic research studies. However, the existing theoretic studies are not consistent with one another and the experimental studies are still at the initial stage. To reveal the role of graphenes on the plasmonic sensors, we deposited graphene oxide (GO) and reduced graphene oxide (rGO) thin films on Au films and their refractive index (RI) sensitivity was compared for the first time in SPR-based sensors. The deposition of GO bilayers with number of deposition L from 1 to 5 was carried out by alternative dipping of Au substrate in positively- and negatively charged GO solutions. The fabrication of layer-by-layer self-assembly of the graphene films was monitored in terms of the SPR angle shift. GO-deposited Au film was treated with hydrazine to reduce the GO. For the rGO-Au sample, 1 bilayer sample showed a higher RI sensitivity than bare Au film, whereas increasing the rGO film from 2 to 5 layers reduced the RI sensitivity. In the case of GO-deposited Au film, the 3 bilayer sample showed the highest sensitivity. The biomolecular sensing was also performed for the graphene multilayer systems using BSA and anti-BSA antibody.

  20. Band gap opening in methane intercalated graphene.

    PubMed

    Hargrove, Jasmine; Shashikala, H B Mihiri; Guerrido, Lauren; Ravi, Natarajan; Wang, Xiao-Qian

    2012-08-07

    Recent experimental work has demonstrated production of quasi-free-standing graphene by methane intercalation. The intercalation weakens the coupling of adjacent graphene layers and yields Dirac fermion behaviour of monolayer graphene. We have investigated the electronic characteristics of a methane intercepted graphene bilayer under a perpendicularly applied electric field. Evolution of the band structure of intercalated graphene as a function of the bias is studied by means of density-functional theory including interlayer van der Waals interactions. The implications of controllable band gap opening in methane-intercalated graphene for future device applications are discussed.

  1. Colloidal properties and stability of aqueous suspensions of few-layer graphene: Importance of graphene concentration.

    PubMed

    Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J; Mao, Liang

    2017-01-01

    Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of (14)C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations >3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (<10 mmol/L). FLG nanoparticles with smaller lateral sizes (25 nm-75 nm) were shown to agglomerate more slowly than larger FLG, and these small FLG particles exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger FLG particles. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors.

  2. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study

    SciTech Connect

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.; Kottaisamy, M.

    2014-02-15

    The exfoliation of graphene from pristine graphite in a liquid phase was achieved successfully via sonication followed by centrifugation method. Ultraviolet–visible (UV–vis) spectra of the obtained graphene dispersions at different exfoliation time indicated that the concentration of graphene dispersion increased markedly with increasing exfoliation time. The sheet-like morphology of the exfoliated graphene was revealed by Scanning Electron Microscopy (SEM) image. Further, the morphological change in different exfoliation time was investigated by Atomic Force Microscopy (AFM). A complete structural and defect characterization was probed using micro-Raman spectroscopic technique. The shape and position of the 2D band of Raman spectra revealed the formation of bilayer to few layer graphene. Also, Raman mapping confirmed the presence of uniformly distributed bilayer graphene sheets on the substrate.

  3. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-10-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal-insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate.

  4. Grain size control for CVD-grown single crystal mono- and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Luo, Zhengtang

    2015-03-01

    By suppressing the nucleation density during Chemical Vapor Deposition (CVD) growth, we demonstrate that the large-size single crystal monolayer and bilayer graphene can be synthesized by this method. For single layer, single crystals with diameter up to 5.9 mm, have been successfully obtained by adjusting degree of oxidation during surface treatment step and hydrogen annealing duration during growth, thereby allow us to control nucleation density and consequently to control graphene grains sizes. For bilayer growth, our main strategy is to maximize the duration that is controlled by the absorption-diffusion mechanism. With this method, sub-millimeter size single crystal bilayer graphene is also obtained. Electron transport measurement on those produced graphene has shown carrier mobility that is comparable with that of mechanical exfoliated graphene, indicating the high quality of our graphene sample. This project is supported by the Research Grant Council of Hong Kong SAR (Project Number 623512 and DAG12EG05).

  5. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.

    PubMed

    Lee, Jeong-Hoon; Song, Kwan-Woo; Park, Min-Ho; Kim, Hyung-Kyu; Yang, Cheol-Woong

    2011-07-01

    Graphene was synthesized deliberately at the interface between Ni film and SiO2/Si substrate as well as on top surface of Ni film using chemical vapor deposition (CVD) which is suitable for large-scale and low-cost synthesis of graphene. The carbon atom injected at the top surface of Ni film can penetrate and reach to the Ni/SiO2 interface for the formation of graphene. Once we have the graphene in between Ni film and SiO2/Si substrate, the substrate spontaneously provides insulating SiO2 layer and we may easily get graphene/SiO2/Si structure simply by discarding Ni film. This growth of graphene at the interface can exclude graphene transfer step for electronic application. Raman spectroscopy and optical microscopy show that graphene was successfully synthesized at the back of Ni film and the coverage of graphene varies with temperature and time of synthesis. The coverage of graphene at the interface depends on the amount of carbon atoms diffused into the back of Ni film.

  6. Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions.

    PubMed

    Neyts, Erik C; van Duin, Adri C T; Bogaerts, Annemie

    2013-08-21

    We investigate the theoretical possibility of single layer graphene formation on a nickel surface at different substrate temperatures under far-from-equilibrium high precursor flux conditions, employing state-of-the-art hybrid reactive molecular dynamics/uniform acceptance force bias Monte Carlo simulations. It is predicted that under these conditions, the formation of a single layer graphene-like film may proceed through a combined deposition-segregation mechanism on a nickel substrate, rather than by pure surface segregation as is typically observed for metals with high carbon solubility. At 900 K and above, nearly continuous graphene layers are obtained. These simulations suggest that single layer graphene deposition is theoretically possible on Ni under high flux conditions.

  7. Formation of a Buffer Layer for Graphene on C-Face SiC{0001}

    NASA Astrophysics Data System (ADS)

    He, Guowei; Srivastava, N.; Feenstra, R. M.

    2014-04-01

    Graphene films prepared by heating the SiC surface (the C-face of the {0001} surface) in a Si-rich environment have been studied using low-energy electron diffraction (LEED) and low-energy electron microscopy. Upon graphitization, an interface with symmetry is observed by in situ LEED. After oxidation, the interface displays symmetry. Electron reflectivity measurements indicate that these interface structures arise from a graphene-like "buffer layer" that forms between the graphene and the SiC, similar to that observed on Si-face SiC. From a dynamical LEED structure calculation for the oxidized C-face surface, it is found to consist of a graphene layer sitting on top of a silicate (Si2O3) layer, with the silicate layer having the well-known structure as previously studied on bare SiC surfaces. Based on this result, the structure of the interface prior to oxidation is discussed.

  8. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.

    PubMed

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V; Poklonski, Nikolai A; Siahlo, Andrei I; Vyrko, Sergey A

    2013-10-21

    Structural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed.

  9. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-04-01

    In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  10. DFT simulations of inter-graphene-layer coupling with rotationally misaligned hBN tunnel barriers in graphene/hBN/graphene tunnel FETs

    NASA Astrophysics Data System (ADS)

    Valsaraj, Amithraj; Register, Leonard F.; Tutuc, Emanuel; Banerjee, Sanjay K.

    2016-10-01

    Van der Waal's heterostructures allow for novel devices such as two-dimensional-to-two-dimensional tunnel devices, exemplified by interlayer tunnel FETs. These devices employ channel/tunnel-barrier/channel geometries. However, during layer-by-layer exfoliation of these multi-layer materials, rotational misalignment is the norm and may substantially affect device characteristics. In this work, by using density functional theory methods, we consider a reduction in tunneling due to weakened coupling across the rotationally misaligned interface between the channel layers and the tunnel barrier. As a prototypical system, we simulate the effects of rotational misalignment of the tunnel barrier layer between aligned channel layers in a graphene/hBN/graphene system. We find that the rotational misalignment between the channel layers and the tunnel barrier in this van der Waal's heterostructure can significantly reduce coupling between the channels by reducing, specifically, coupling across the interface between the channels and the tunnel barrier. This weakened coupling in graphene/hBN/graphene with hBN misalignment may be relevant to all such van der Waal's heterostructures.

  11. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    PubMed

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  12. Single-layer graphene based SPR biochips for tuberculosis bacillus detection

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan; Lee, Wei-Che; Hsieh, Min-Hua; Lai, Hsin-Chih

    2012-06-01

    This paper is intended to demonstrate a facile and effective method to construct single layer graphene films onto the self-assembled monolayer (SAM) at Au electrodes based surface plasmon resonance (SPR) biochips integrated loop-mediated isothermal amplification (LAMP) for tuberculosis bacillus (TB) detection. It is a novel Au-SAM-graphene nanocomposites and taking advantages of the striking properties of both graphene and Au film, fundamental understanding in hybrid material manipulation and new electrochemical properties can be obtained. The sensitivity of TB detection in the LAMP-based assay for the amplification of the Insertion Sequence 6110 (IS6110) samples was determined by a single-layer graphene/Au thin film and compared with that of a conventional Au/Cr-based SPR chips. The results show that a graphene/Au SPR offers a potentially powerful assay, with a highly sensitive analysis, that may be applicable as an important tool for bio-marker detection.

  13. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi0.5 Sb1.5 Te3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals.

  14. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.

    PubMed

    Wang, Xiang; Wang, Jingfang; Cheng, Hanjun; Yu, Ping; Ye, Jianshan; Mao, Lanqun

    2011-09-06

    This study demonstrates the capability of graphene as a spacer to form electrochemically functionalized multilayered nanostructures onto electrodes in a controllable manner through layer-by-layer (LBL) chemistry. Methylene green (MG) and positively charged methylimidazolium-functionalized multiwalled carbon nanotubes (MWNTs) were used as examples of electroactive species and electrochemically useful components for the assembly, respectively. By using graphene as the spacer, the multilayered nanostructures of graphene/MG and graphene/MWNT could be readily formed onto electrodes with the LBL method on the basis of the electrostatic and/or π-π interaction(s) between graphene and the electrochemically useful components. Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV) were used to characterize the assembly processes, and the results revealed that nanostructure assembly was uniform and effective with graphene as the spacer. Electrochemical studies demonstrate that the assembled nanostructures possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH and could thus be used as electronic transducers for bioelectronic devices. This potential was further demonstrated by using an alcohol dehydrogenase-based electrochemical biosensor and glucose dehydrogenase-based glucose/O(2) biofuel cell as typical examples. This study offers a simple route to the controllable formation of graphene-based electrochemically functionalized nanostructures that can be used for the development of molecular bioelectronic devices such as biosensors and biofuel cells.

  15. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    SciTech Connect

    Eren, B.; Gysin, U.; Marot, L. Glatzel, Th.; Steiner, R.; Meyer, E.

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  16. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    PubMed Central

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  17. PREFACE: Ultrathin layers of graphene, h-BN and other honeycomb structures Ultrathin layers of graphene, h-BN and other honeycomb structures

    NASA Astrophysics Data System (ADS)

    Geber, Thomas; Oshima, Chuhei

    2012-08-01

    Since ancient times, pure carbon materials have been familiar in human society—not only diamonds in jewellery and graphite in pencils, but also charcoal and coal which have been used for centuries as fuel for living and industry. Carbon fibers are stronger, tougher and lighter than steel and increase material efficiency because of their lower weight. Today, carbon fibers and related composite materials are used to make the frames of bicycles, cars and even airplane parts. The two-dimensional allotrope, now called graphene, is just a single layer of carbon atoms, locked together in a strongly bonded honeycomb lattice. In plane, graphene is stiffer than diamond, but out-of-plane it is soft, like rubber. It is virtually invisible, may conduct electricity (heat) better than copper and weighs next to nothing. Carbon compounds with two carbon atoms as a base, such as graphene, graphite or diamond, have isoelectronic sister compounds made of boron-nitrogen pairs: hexagonal and cubic boron nitride, with almost the same lattice constant. Although the two 2D sisters, graphene and h-BN, have the same number of valence electrons, their electronic properties are very different: freestanding h-BN is an insulator, while charge carriers in graphene are highly mobile. The past ten years have seen a great expansion in studies of single-layer and few-layer graphene. This activity has been concerned with the π electron transport in graphene, in electric and magnetic fields. More than 30 years ago, however, single-layer graphene and h-BN on solid surfaces were widely investigated. It was noted that they drastically changed the chemical reactivity of surfaces, and they were known to 'poison' heterogeneous catalysts, to passivate surfaces, to prevent oxidation of surfaces and to act as surfactants. Also, it was realized that the controlled growth of h-BN and graphene on substrates yields the formation of mismatch driven superstructures with peculiar template functionality on the

  18. Enhancement of capillary electrochromatographic separation performance by conductive polymer in a layer-by-layer fabricated graphene stationary phase.

    PubMed

    Zhang, Juan; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2014-04-25

    In this work, we fabricated a novel graphene-based capillary column for open-tubular capillary electrochromatography (OT-CEC) by a layer-by-layer strategy. To immobilize graphene onto the inner surface of silica capillary, a bio-inspired method was first used to functionalize the capillary surface with a layer of polydopamine (PDA). Graphene oxide (GO) was then introduced and can covalently react with polydopamine, realizing immobilization of graphene as a result. To enhance the modification efficiency of polydopamine, a conductive polymer, polyaniline (PANI) was introduced to be a sub-layer; polydopamine was then introduced following with GO, to generate a multilayer GO-PDA-PANI@capillary. Interestingly, separation efficiency of the graphene-based capillary was enhanced significantly by using conductive PANI as a sub-layer. The morphology of different layers modified on the capillary column was characterized by scanning electron microscopy (SEM). The electroosmotic flow (EOF) characteristics of capillaries modified with different layers were also investigated by varying the pH value of mobile phase. GO-PDA-PANI@capillary showed good separation efficiency towards alkylbenzenes by OT-CEC mode, with theoretic plate numbers up to 133,918 for benzene. The separation was found to follow a reversed-phase chromatographic retention mechanism. Repeatability of the GO-PDA-PANI@capillary was studied, with relative standard deviations for intra-day and inter-day runs less than 2.89%, and column-to-column runs less than 6.17%. The separation performance of GO-PDA-PANI@capillary was also compared with that of the reported graphene modified capillary.

  19. Evenly transferred single-layered graphene membrane assisted by strong substrate adhesion

    NASA Astrophysics Data System (ADS)

    Park, Seongjae; Kim, Hoijoon; Seol, Daehee; Park, Taejin; Leem, Mirine; Ha, Hyunwoo; An, Hyesung; You Kim, Hyun; Jeong, Seong-Jun; Park, Seongjun; Kim, Hyoungsub; Kim, Yunseok

    2017-04-01

    We explored the transfer of a single-layered graphene membrane assisted by substrate adhesion. A relatively larger adhesion force was measured on the SiO2 substrate compared with its van der Waals contribution, which is expected to result from the additional contribution of the chemical bonding force. Density functional theory calculations verified that the strong adhesion force was indeed accompanied by chemical bonding. The transfer of single-layered graphene and subsequent deposition of the dielectric layer were best performed on the SiO2 substrate exhibiting a larger adhesion force. This study suggests the selection and/or modification of the underlying substrate for proper transfer of graphene as well as other 2D materials similar to graphene.

  20. Evenly transferred single-layered graphene membrane assisted by strong substrate adhesion.

    PubMed

    Park, Seongjae; Kim, Hoijoon; Seol, Daehee; Park, Taejin; Leem, Mirine; Ha, Hyunwoo; An, Hyesung; You Kim, Hyun; Jeong, Seong-Jun; Park, Seongjun; Kim, Hyoungsub; Kim, Yunseok

    2017-04-07

    We explored the transfer of a single-layered graphene membrane assisted by substrate adhesion. A relatively larger adhesion force was measured on the SiO2 substrate compared with its van der Waals contribution, which is expected to result from the additional contribution of the chemical bonding force. Density functional theory calculations verified that the strong adhesion force was indeed accompanied by chemical bonding. The transfer of single-layered graphene and subsequent deposition of the dielectric layer were best performed on the SiO2 substrate exhibiting a larger adhesion force. This study suggests the selection and/or modification of the underlying substrate for proper transfer of graphene as well as other 2D materials similar to graphene.

  1. Propagation characteristics of surface plasmon polariton modes in graphene layer with nonlinear magnetic cladding

    NASA Astrophysics Data System (ADS)

    Bhagyaraj, C.; Ajith, R.; Vincent, Mathew

    2017-03-01

    We study the dispersion characteristics of surface plasmon polariton modes guided through a graphene monolayer bounded with a nonlinear magnetic cladding and linear substrate. Nonlinear cladding with permeability μ ={μ }{{l}}+{μ }{{nl}}| {\\boldsymbol{H}}{| }2 provides an extra hand for controlling guided mode behavior externally. The presence of graphene layer enhances nonlinearity in the waveguide configuration thereby changing position of the self-focused peak of field components in the nonlinear medium. Also the propagation length of the fundamental mode strongly depends on the chemical potential of graphene layer. An appreciable increase in propagation length with increase in input power is observed. Phase constant and propagation length of the fundamental mode are calculated as a function of input mode power and graphene layer chemical potential over midinfrared frequencies.

  2. Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition

    SciTech Connect

    Fujita, K.; Banno, K.; Aryal, H. R.; Egawa, T.

    2012-10-15

    Carbon layer has been grown on a Ni/SiO{sub 2}/Si(111) substrate under high vacuum pressure by pulse arc plasma deposition. From the results of Raman spectroscopy for the sample, it is found that graphene was formed by ex-situ annealing of sample grown at room temperature. Furthermore, for the sample grown at high temperature, graphene formation was shown and optimum temperature was around 1000 Degree-Sign C. Transmission electron microscopy observation of the sample suggests that the graphene was grown from step site caused by grain of Ni film. The results show that the pulse arc plasma technique has the possibility for acquiring homogenous graphene layer with controlled layer thickness.

  3. Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes.

    PubMed

    Qin, Yanzhe; Hu, Yongyou; Koehler, Stephan; Cai, Liheng; Wen, Junjie; Tan, Xiaojun; Xu, Weiwei L; Sheng, Qian; Hou, Xu; Xue, Jianming; Yu, Miao; Weitz, David

    2017-03-22

    Perforated single-layered graphene has demonstrated selectivity and flux that is orders of magnitude greater than state-of-the-art polymer membranes. However, only individual graphene sheets with sizes up to tens of micrometers have been successfully fabricated for pressurized permeation studies. Scaling-up and reinforcement of these atomic membranes with minimum cracks and pinholes remains a major hurdle for practical applications. We develop a large-area in situ, phase-inversion casting technique to create 63 cm(2) high-quality single-layered perforated graphene membranes for ultrafast nanofiltration that can operate at pressures up to 50 bar. This result demonstrates the feasibility of our technique for creating robust large-area, high quality, single-layered graphene and its potential use as a pressurized nanofiltration membrane.

  4. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    SciTech Connect

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-05-15

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.

  5. A further comparison of graphene and thin metal layers for plasmonics.

    PubMed

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-21

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  6. A further comparison of graphene and thin metal layers for plasmonics

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-01

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  7. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    NASA Astrophysics Data System (ADS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-05-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.

  8. Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform.

    PubMed

    Gutés, Albert; Carraro, Carlo; Maboudian, Roya

    2012-03-15

    A new approach to the development of a single-layer graphene sensor decorated with metal nanoparticles is presented. Chemical vapor deposition is used to grow single layer graphene on copper. Decoration of the single-layer graphene is achieved by electroless deposition of Au nanoparticles using the copper substrate as a source of electrons. Transfer of the decorated single-layer graphene on glassy carbon electrodes offers a sensitive platform for biosensor development. As a proof of concept, 10 units of glucose oxidase were deposited on the surface in a Nafion matrix to stabilize the enzyme as well as to prevent interference from ascorbic acid and uric acid. Amperometric linear response calibration in the μmoll(-1) is obtained. The presented methodology enables highly sensitive platforms for biosensor development, providing a scalable roll-to-roll production with a much more reproducible scheme when compared to the graphene biosensors reported previously based on drop-cast of multi-layer graphene suspensions.

  9. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

    PubMed

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping

    2011-06-15

    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness <5 layers). A negative graphite electrode can be electrochemically charged and expanded in an electrolyte of Li salts and organic solvents under high current density and exfoliated efficiently into few-layer graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper.

  10. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    SciTech Connect

    Wang, Lifeng Hu, Haiyan

    2014-06-21

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  11. Seamless lamination of a concave-convex architecture with single-layer graphene

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hoon; Lim, Taekyung; Baik, Jaeyoon; Seo, Keumyoung; Moon, Youngkwon; Park, Noejung; Shin, Hyun-Joon; Kyu Kwak, Sang; Ju, Sanghyun; Real Ahn, Joung

    2015-10-01

    Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A variety of silicon dioxide concave-convex architectures were uniformly and seamlessly laminated with graphene using a thermal treatment. The planar graphene was stretched to cover the concave-convex architecture, and the resulting strain on the curved graphene was spatially resolved by confocal Raman spectroscopy; molecular dynamic simulations were also conducted and supported the observations. Changes in electrical resistivity caused by the spatially varying strain induced as the graphene-silicon dioxide laminate varies dimensionally from 2D to 3D were measured by using a four-point probe. The resistivity measurements suggest that the electrical resistivity can be systematically controlled by the 3D geometry of the graphene-silicon dioxide laminate. This 3D graphene-insulator laminate will broaden the range of graphene applications beyond planar structures to 3D materials.Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A

  12. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoOx) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoOx interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoOx/CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  13. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  14. Enhancement of light extraction efficiency of vertical LED with patterned graphene as current spreading layer

    NASA Astrophysics Data System (ADS)

    Singh, Sumitra; Sai Nandini, Annam Deepthi; Pal, Suchandan; Dhanavantri, Chenna

    2016-01-01

    In this paper we report an optimised pattern of surface textured graphene current spreading layer (CSL) for the enhancement of light extraction efficiency (LEE) in InGaN/GaN vertical light emitting diodes (V-LEDs). It is found that by texturing graphene surface LEE improves drastically. This improvement is attributed to better current spreading of graphene and increased random and multiple scattering of light through textured surfaces. Simulation results illustrate that V-LEDs with surface textured (hexagonal pattern) ITO as CSL shows threefold improvement in light extraction efficiency compared to V-LEDs with no surface texturing on ITO CSL. Further, LEE of V-LEDs having patterned graphene CSL is compared with that for indium tin oxide (ITO) CSL. V-LEDs with optimised hexagonal patterning on graphene CSL shows 13.42% enhancement of LEE compared to that of LED with hexagonal patterning on ITO surface.

  15. Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Tai, Zhixin; Yan, Xingbin; Xue, Qunji

    2012-09-01

    In this paper, a graphene/shape-memory polyurethane (PU) composite film, used for a supercapacitor electrode, is fabricated by a simple bonding method. In the composite, formerly prepared graphene paper is closely bonded on the surface of the PU slice, forming a bi-layered composite film. Based on the good flexibility of graphene paper and the outstanding shape holding capacity of PU phase, the resulting composite film can be changed into various shapes. Also, the composite film shows excellent shape recovery ability. The graphene/PU composite film used as the electrode maintains a satisfactory electrochemical capacitance of graphene material and there is no decay in the specific capacitance after long-cycle testing, making it attractive for novel supercapacitors with special shapes and shape-memory ability.

  16. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  17. Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates

    PubMed Central

    Wei, Da; Li, Hai-Ou; Cao, Gang; Luo, Gang; Zheng, Zhi-Xiong; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    Graphene double quantum dots (DQDs) open to use charge or spin degrees of freedom for storing and manipulating quantum information in this new electronic material. However, impurities and edge disorders in etched graphene nano-structures hinder the ability to control the inter-dot tunnel coupling, tC, the most important property of the artificial molecule. Here we report measurements of tC in an all-metal-side-gated graphene DQD. We find that tC can be controlled continuously about a factor of four by employing a single gate. Furthermore, tC, can be changed monotonically about another factor of four as electrons are gate-pumped into the dot one by one. The results suggest that the strength of tunnel coupling in etched graphene DQDs can be varied in a rather broad range and in a controllable manner, which improves the outlook to use graphene as a base material for qubit applications. PMID:24213723

  18. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    PubMed

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  19. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  20. Raman spectroscopy of few-layer graphene prepared by C2-C6 cluster ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Zhang, R.; Zhang, Z. D.; Huang, Z. H.; Liu, C. S.; Fu, D. J.; Liu, J. R.

    2013-07-01

    Few-layer graphene has been prepared on 300 nm-thick Ni films by C2-C6 cluster ion implantation at 20 keV/cluster. Raman spectroscopy reveals significant influence of the number of atoms in the cluster, the implantation dose, and thermal treatment on the structure of the graphene layers. In particular, the graphene samples exhibit a sharp G peak at 1584 cm-1 and 2D peaks at 2711-2717 cm-1. The IG/I2D ratios higher than 1.70 and IG/ID ratio as high as 1.95 confirm that graphene sheets with low density of defects have been synthesized with much improved quality by ion implantation with larger clusters of C4-C6.

  1. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    SciTech Connect

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionally high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.

  2. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  3. Synthesis and characterization of porous, mixed phase, wrinkled, few layer graphene like nanocarbon from charcoal

    NASA Astrophysics Data System (ADS)

    Manoj, B.

    2015-12-01

    A technique to synthesis wrinkled graphene like nano carbon (GNC) from charcoal is reported in the current study. The charcoal produced by thermal decomposition and is intercalated by Hummers method. It is separated by centrifugation and sonication to get few layer graphene sheets. The structural and chemical changes of the nanostructure is elucidated by Raman spectroscopy, TEM, SEM-EDS and XPS. Raman spectra revealed the existence of highly graphitized amorphous carbon, which is confirmed by the appearance of five peaks in the deconvoluted first order Raman spectra. The SEM analysis reveals the formation of large area graphene sheets with nano-porous structure in it. The TEM/SAED analysis exhibits the presence of short range few layer graphene.

  4. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGES

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  5. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    PubMed

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting.

  6. Driving Forces of Conformational Changes in Single-Layer Graphene Oxide

    PubMed Central

    2012-01-01

    The extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites for chemical functionalization in the controlled formation of graphene architecture and composites. However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate its ability to undergo conformational changes due to responses to its environment, whether pH, salinity, or temperature. Here, we report experimental and molecular simulations confirming the conformational changes of single-layer graphene oxide sheets from the wet or dry state. MD, PM6, and ab initio simulations of dry SLG and dry and wetted SLGO and electron microscopy imaging show marked differences in the properties of the materials that can explain variations in previously observed results for the pH dependent behavior of SLGO and electrical conductivity of chemically modified graphene-polymer composites. Understanding the physicochemical responses of graphene and graphene oxide architecture and performing selected chemistry will ultimately facilitate greater tunability of their performance. PMID:22494387

  7. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  8. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  9. Large changes of graphene conductance as a function of lattice orientation between stacked layers

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsoo; Qi, Yabing; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-01-01

    Using the conductive tip of an atomic force microscope as an electrode, we found that the electrical conductance of graphite terraces separated by steps can vary by large factors of up to 100, depending on the relative lattice orientation of the surface and subsurface layers. This effect can be attributed to interlayer interactions that, when stacked commensurately in a Bernal sequence (ABAB…), cause the band gap to open. Misaligned layers, on the other hand, behave like graphene. Angular misorientations of a few degrees were found to cause large increases in the conductance of the top layer, with the maximum occurring around 30°. These results suggest new applications for graphene multilayers by stacking layers at various angles to control the resistance of the connected graphene ribbons in devices.

  10. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries

    SciTech Connect

    Tong, Xin; Wang, Hui; Wang, Gang; Wan, Lijuan; Ren, Zhaoyu; Bai, Jintao; Bai, Jinbo

    2011-05-15

    High quality graphene sheets are synthesized through efficient oxidation process followed by rapid thermal expansion and reduction by H{sub 2}. The number of graphene layers is controlled by tuning the oxidation degree of GOs. The higher the oxidation degree of GOs is getting, the fewer the numbers of graphene layers can be obtained. The material is characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopies. The obtained graphene sheets with single, triple and quintuplicate layers as anode materials exhibit a high reversible capacity of 1175, 1007, and 842 mA h g{sup -1}, respectively, which show that the graphene sheets with fewer layers have higher reversible capacity. -- Graphical abstract: The typical TEM images of the graphene sheets derived from GO3(a), GO2(b) and GO1(c). Display Omitted Highlights: {yields} With the oxidation degree of GO increasing, the numbers of graphene layers decreased. {yields} With the numbers of graphene layers decreasing, the reversible capacity improved. {yields} Graphene sheets with single-layer exhibit the best electrochemical performances.

  11. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane.

    PubMed

    Guo, Wei; Cheng, Chi; Wu, Yanzhe; Jiang, Yanan; Gao, Jun; Li, Dan; Jiang, Lei

    2013-11-13

    An electrogenetic layered graphene hydrogel membrane (GHM) possesses ultra-large interlayer spacing of about 10 nm, forming charged 2D nanocapillaries between graphene sheets that selectively permeate counter-ions and exclude co-ions. When an electrolyte flow goes through the GHM, it functions as an integrated 2D nanofluidic generator converting hydraulic motion into electricity. The maximum streaming conductance density approaches 16.8 μA cm(-2) bar(-1) .

  12. Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf

    2016-02-01

    A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.

  13. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Li, Yiye; Lu, Zhenzhen; Li, Zhongjun; Nie, Guangjun; Fang, Ying

    2014-05-01

    We report a facile approach for the fabrication of a new class of graphene oxide (GO)-based nanoassemblies by layer-by-layer (LbL) technique. The single-layer thickness and intrinsic negatively charged carboxyl groups of GO nanosheets provide a natural platform for LbL assembly of polyelectrolyte nanofilms by electrostatic forces at mild and aqueous conditions. The general applicability of our approach is demonstrated by the preparation of GO nanoassemblies with sizes of 100-200 nm using various charged polyelectrolytes, including synthetic polymers, polypeptides, and DNA oligonucleotides. Systemic assessment of cytotoxicity and acute stress response show that no discernable signs of cytotoxicity are associated with exposure of GO and its nanoassemblies [GO/PLL (poly ( l-lysine)), GO/PLL/PSS (poly(sodium-4-styrenesulfonate)), GO/PLL-PEG (PEGlayted PLL), GO/PLL/PLGA-PEG (PEGlayted poly ( l-glutamic acid))] up to 1 μg/mL. Studies on cellular uptake and subcellular localization show that a representative nanoassembly, GO/PLL-PEG, can effectively cross cell membranes and localize mainly in lysosomal compartments, without induction of noticeable harmful effects as confirmed by detection of mitochondrial depolarization and lysosomal pH.

  14. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method

    NASA Astrophysics Data System (ADS)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah

    2016-11-01

    In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.

  15. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method.

    PubMed

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah

    2016-12-01

    In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.

  16. Nature of the surface states at the single-layer graphene/Cu(111) and graphene/polycrystalline-Cu interfaces

    NASA Astrophysics Data System (ADS)

    Pagliara, S.; Tognolini, S.; Bignardi, L.; Galimberti, G.; Achilli, S.; Trioni, M. I.; van Dorp, W. F.; Ocelík, V.; Rudolf, P.; Parmigiani, F.

    2015-05-01

    Single-layer graphene supported on a metal surface has shown remarkable properties relevant for novel electronic and optoelectronic devices. However, the nature of the electronic states derived from unoccupied surface states and quantum well states, lying in the real-space gap between the graphene and the solid surface, has not been explored and exploited yet. Herein, we use ultraviolet nonlinear angle-resolved photoemission spectroscopy to unveil the coexistence at the graphene/Cu(111) interface of a highest occupied Shockley surface state (HOSS) and the two lowest unoccupied surface states (LUSS). The experimental results and electronic structure calculations, based on one-dimensional model potential, indicate that the two unoccupied states originate from the hybridization of an n =1 image potential state with a quantum well state. The hybridized nature of these unoccupied states is benchmarked by a similar experiment done on single-layer graphene grown on copper polycrystalline foil where only the image state survives being the quantum well state at this interface inhibited.

  17. Ab-initio investigation of the influence of chemical compounds on graphene layer properties in fabricated IR detector

    NASA Astrophysics Data System (ADS)

    Ruta, L.; Wozny, J.; Szczecinska, N.; Lisik, Z.

    2016-11-01

    In this work, the influence of H2O, NaOH and propanol on properties of graphene layer placed on SiO2 has been investigated. These chemical particles are present during technological steps required for a device fabrication and may lead to significant changes of graphene properties. The investigation has been done by means of ab-initio simulation based on the DFT method. A MedeA-VASP package was used to investigate behavior of graphene layer in the vicinity of chemical compounds. Presented studies show that properties of graphene are significantly modified when particles of H2O and NaOH are captured in-between graphene layer and SiO2. Special attention should be paid to NaOH which, according to simulations, decays and modifies the properties of graphene layer.

  18. Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene.

    PubMed

    Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe

    2013-07-18

    We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.

  19. SrO(001) on graphene: a universal buffer layer for integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam; Wen, Hua; Pinchuk, Igor; Zhu, Tiancong; Kawakami, Roland

    2015-03-01

    We report the successful growth of high-quality crystalline SrO on highly-ordered pyrolytic graphite (HOPG) and single layer graphene by molecular beam epitaxy. The epitaxial SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD), and atomic force microscopy measurements show rms surface roughness of optimal films to be 1.2 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. To show the utility of SrO as a buffer layer for complex oxide integration, we grew perovskite crystal SrTiO3 on SrO, and it was also confirmed to have (001) orientation from x-ray diffraction. This materials advancement opens the door to integration of many other complex oxides to explore novel correlated electron physics in graphene.

  20. Few layered graphene Sheet decorated by ZnO Nanoparticles for anti-bacterial application

    NASA Astrophysics Data System (ADS)

    Bykkam, Satish; Narsingam, Sowmya; Ahmadipour, Mohsen; Dayakar, T.; Venkateswara Rao, K.; Shilpa Chakra, Ch.; Kalakotla, Shanker

    2015-07-01

    A widely soluble few layered graphene (FLG) sheets decorated by ZnO nano particles were prepared through hydrothermal method using ethylene glycol as a solvent and a reducing agent. The obtained FLG/ZnO composite material was characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Raman spectroscopy. The anti-bacterial properties of ZnO nano particles decorated few layered graphenes were tested against Escherichia coli and Salmonella typhi by using well diffusion method. The results confirmed that FLG/ZnO has significant antibacterial activity more against S. typhi than E. coli. The obtained results from the current research work conclusively states that the ZnO nano particles which were decorated by few layered graphene possess a significant anti-bacterial activity.

  1. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-02

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

  2. Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures

    PubMed Central

    Gopinadhan, Kalon; Shin, Young Jun; Jalil, Rashid; Venkatesan, Thirumalai; Geim, Andre K.; Neto, Antonio H. Castro; Yang, Hyunsoo

    2015-01-01

    Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron–nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen–Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications. PMID:26388149

  3. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B.; Johns, James E.; Hersam, Mark C.

    2014-06-09

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n = 2, and n = 3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n = 2 the n = 3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  4. Graphene-copper composite with micro-layered grains and ultrahigh strength.

    PubMed

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-02-07

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance.

  5. Graphene-copper composite with micro-layered grains and ultrahigh strength

    PubMed Central

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-01-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306

  6. Graphene-copper composite with micro-layered grains and ultrahigh strength

    NASA Astrophysics Data System (ADS)

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-02-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance.

  7. Atomic layer deposition of Al2O3 on NF3-pre-treated graphene

    NASA Astrophysics Data System (ADS)

    Junige, Marcel; Oddoy, Tim; Yakimova, Rositsa; Darakchieva, Vanya; Wenger, Christian; Lupina, Grzegorz; Kitzmann, Julia; Albert, Matthias; Bartha, Johann W.

    2015-06-01

    Graphene has been considered for a variety of applications including novel nanoelectronic device concepts. However, the deposition of ultra-thin high-k dielectrics on top of graphene has still been challenging due to graphene's lack of dangling bonds. The formation of large islands and leaky films has been observed resulting from a much delayed growth initiation. In order to address this issue, we tested a pre-treatment with NF3 instead of XeF2 on CVD graphene as well as epitaxial graphene monolayers prior to the Atomic Layer Deposition (ALD) of Al2O3. All experiments were conducted in vacuo; i. e. the pristine graphene samples were exposed to NF3 in the same reactor immediately before applying 30 (TMA-H2O) ALD cycles and the samples were transferred between the ALD reactor and a surface analysis unit under high vacuum conditions. The ALD growth initiation was observed by in-situ real-time Spectroscopic Ellipsometry (irtSE) with a sampling rate above 1 Hz. The total amount of Al2O3 material deposited by the applied 30 ALD cycles was cross-checked by in-vacuo X-ray Photoelectron Spectroscopy (XPS). The Al2O3 morphology was determined by Atomic Force Microscopy (AFM). The presence of graphene and its defect status was examined by in-vacuo XPS and Raman Spectroscopy before and after the coating procedure, respectively.

  8. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide

    NASA Astrophysics Data System (ADS)

    Emtsev, Konstantin V.; Bostwick, Aaron; Horn, Karsten; Jobst, Johannes; Kellogg, Gary L.; Ley, Lothar; McChesney, Jessica L.; Ohta, Taisuke; Reshanov, Sergey A.; Röhrl, Jonas; Rotenberg, Eli; Schmid, Andreas K.; Waldmann, Daniel; Weber, Heiko B.; Seyller, Thomas

    2009-03-01

    Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200nm refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach μ=2,000cm2V-1s-1 at T=27K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

  9. Band gap engineering for single-layer graphene by using slow Li(+) ions.

    PubMed

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-08-05

    In order to utilize the superb electronic properties of graphene in future electronic nano-devices, a dependable means of controlling the transport properties of its Dirac electrons has to be devised by forming a tunable band gap. We report on the ion-induced modification of the electronic properties of single-layer graphene (SLG) grown on a SiC(0001) substrate by doping low-energy (5 eV) Li(+) ions. We find the opening of a sizable and tunable band gap up to 0.85 eV, which depends on the Li(+) ion dose as well as the following thermal treatment, and is the largest band gap in the π-band of SLG by any means reported so far. Our Li 1s core-level data together with the valence band suggest that Li(+) ions do not intercalate below the topmost graphene layer, but cause a significant charge asymmetry between the carbon sublattices of SLG to drive the opening of the band gap. We thus provide a route to producing a tunable graphene band gap by doping Li(+) ions, which may play a pivotal role in the utilization of graphene in future graphene-based electronic nano-devices.

  10. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  11. Hybridization of conductive few-layer graphene with well-dispersed Pd nanocrystals

    NASA Astrophysics Data System (ADS)

    Qian, Wen; Cottingham, Steven; Jiao, Jun

    2013-06-01

    To improve the activity of Pd nanocrystals (NCs) and maximize the applicability, we used a very simple, low-cost and environmentally benign method to hybridize conductive few-layer graphene with Pd NCs. The TEM results indicated that the monodispersed Pd NCs were well distributed on the graphene surface. The particle size and loading density can be easily tailored by varying reaction times. The XRD and Raman spectrum clearly demonstrated that the pristine exfoliated few-layer graphene are well-crystallized with very low defects, and still preserved the high crystalline structure after the chemical deposition of Pd NCs. Furthermore, this effective process does not require the use of surfactants during the entire reaction, resulting in a clean interface between Pd NCs and graphene substrate, with improved electron transmission. This work presents not only a promising methodology for the mass production of Pd@graphene hybrids, but also opening up the opportunity to develop graphene-Pd based devices for applications in catalysts, sensors and hydrogen storage.

  12. Self-forming oriented layer slip and macroscale super-low friction of graphene

    NASA Astrophysics Data System (ADS)

    Song, Hui; Ji, Li; Li, Hongxuan; Wang, Jinqing; Liu, Xiaohong; Zhou, Huidi; Chen, Jianmin

    2017-02-01

    Graphite lubrication is not effective in vacuum, and the failure mechanism is still under debate. Here, we show that graphene as two-dimensional (2D) "graphite paper" can overcome this shortcoming of graphite. Graphene exhibits stable super-low friction in a vacuum environment at the engineering scale because it can self-form a highly ordered lamellar structure on the sliding interface during the friction process owing to its unique 2D nano-effects. Experimental observation of the layer-slip phenomenon on the low-energy-state outside layers provides direct evidence to understand the lubrication mechanism of graphitic materials.

  13. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  14. Tensile mechanical properties of nano-layered copper/graphene composite

    NASA Astrophysics Data System (ADS)

    He, Yezeng; Huang, Feng; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-03-01

    The solidification of two-dimensional liquid copper confined to graphene layers has been studied using molecular dynamics simulations. The results clearly show that the liquid copper undergoes an obvious transition to a crystal film with the decrease of temperature, accompanied by dramatic change in potential energy and radial distribution function. Moreover, five different simulation models are used to investigate the effects of the number of graphene layers on the mechanical properties of the composites. It is found that the strength and plasticity of the composites have been improved significantly.

  15. Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, Jack A.; Sagade, Abhay A.; Aria, Adrianus I.; Van Veldhoven, Zenas A.; Braeuninger-Weimer, Philipp; Wang, Ruizhi; Cabrero-Vilatela, Andrea; Martin, Marie-Blandine; Sui, Jinggao; Connolly, Malcolm R.; Hofmann, Stephan

    2017-03-01

    We demonstrate a simple, scalable approach to achieve encapsulated graphene transistors with negligible gate hysteresis, low doping levels and enhanced mobility compared to as-fabricated devices. We engineer the interface between graphene and atomic layer deposited (ALD) Al2O3 by tailoring the growth parameters to achieve effective device encapsulation whilst enabling the passivation of charge traps in the underlying gate dielectric. We relate the passivation of charge trap states in the vicinity of the graphene to conformal growth of ALD oxide governed by in situ gaseous H2O pretreatments. We demonstrate the long term stability of such encapsulation techniques and the resulting insensitivity towards additional lithography steps to enable vertical device integration of graphene for multi-stacked electronics fabrication.

  16. An iron-based green approach to 1-h production of single-layer graphene oxide

    NASA Astrophysics Data System (ADS)

    Peng, Li; Xu, Zhen; Liu, Zheng; Wei, Yangyang; Sun, Haiyan; Li, Zheng; Zhao, Xiaoli; Gao, Chao

    2015-01-01

    As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene.

  17. An iron-based green approach to 1-h production of single-layer graphene oxide

    PubMed Central

    Peng, Li; Xu, Zhen; Liu, Zheng; Wei, Yangyang; Sun, Haiyan; Li, Zheng; Zhao, Xiaoli; Gao, Chao

    2015-01-01

    As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene. PMID:25607686

  18. An iron-based green approach to 1-h production of single-layer graphene oxide.

    PubMed

    Peng, Li; Xu, Zhen; Liu, Zheng; Wei, Yangyang; Sun, Haiyan; Li, Zheng; Zhao, Xiaoli; Gao, Chao

    2015-01-21

    As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene.

  19. Charge-carrier screening in single-layer graphene.

    PubMed

    Siegel, David A; Regan, William; Fedorov, Alexei V; Zettl, A; Lanzara, Alessandra

    2013-04-05

    The effect of charge-carrier screening on the transport properties of a neutral graphene sheet is studied by directly probing its electronic structure. We find that the Fermi velocity, Dirac point velocity, and overall distortion of the Dirac cone are renormalized due to the screening of the electron-electron interaction in an unusual way. We also observe an increase of the electron mean free path due to the screening of charged impurities. These observations help us to understand the basis for the transport properties of graphene, as well as the fundamental physics of these interesting electron-electron interactions at the Dirac point crossing.

  20. Ultrathin ultra-broadband electro-absorption modulator based on few-layer graphene based anisotropic metamaterial

    NASA Astrophysics Data System (ADS)

    Sayem, Ayed Al; Mahdy, M. R. C.; Jahangir, Ifat; Rahman, Md. Saifur

    2017-02-01

    In this article, a few-layered graphene-dielectric multilayer (metamaterial) electro-optic modulator has been proposed in the mid and far infrared range that works on electro-absorption mechanism. Graphene, both mono layer and few layer, is an actively tunable optical material that allows control of inter-band and intra-band transition by tuning its chemical potential. Utilizing this unique feature of graphene, we propose a multilayer graphene dielectric stack where few layer graphene is preferred over mono layer graphene. Although the total thickness of the stack still remains in the nanometer range, this device can exhibit superior performances in terms of (i) high modulation depth, (ii) ultra-broadband performance, (iii) ultra-low insertion loss due to inherent metamaterial properties, (iv)nano-scale footprint, (v) polarization independence and (vi) capability of being integrated to a silicon waveguide. Interestingly, these superior performances, achievable by using few layer graphene with carefully designed metamaterial, may not be possible with mono layer graphene. Our proposals have been validated by both the effective medium theory and general transfer matrix method.

  1. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.

    PubMed

    Barbier, Michaël; Vasilopoulos, Panagiotis; Peeters, François M

    2010-12-13

    We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Pδ(x) = V(x)/ħv(F), with v(F) the Fermi velocity. For a Kronig-Penney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra 'Dirac' points are found in bilayer graphene SLs. Non-ballistic transport is also considered.

  2. Gating of single-layer graphene with single-stranded deoxyribonucleic acids.

    PubMed

    Lin, Jian; Teweldebrhan, Desalegne; Ashraf, Khalid; Liu, Guanxiong; Jing, Xiaoye; Yan, Zhong; Li, Rong; Ozkan, Mihri; Lake, Roger K; Balandin, Alexander A; Ozkan, Cengiz S

    2010-05-21

    Patterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac point and "intrinsic" conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8 x 10(12) cm(-2). This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full width at half maximum. Ab initio calculations using density functional theory rule out significant charge transfer or modification of the graphene band structure in the presence of ssDNA fragments.

  3. Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.

    PubMed

    Liu, Zhun; Wang, Ru-Zhi; Liu, Li-Min; Lau, Woon-Ming; Yan, Hui

    2015-05-07

    Using first-principles calculations, we examined the bipolar doping of double-layer graphene vertical heterostructures, which are constructed by hydrogenated boron nitride (BN) sheets sandwiched into two parallel graphene monolayers. The built-in potential difference in hydrogenated BN breaks the interlayer symmetry, resulting in the p- and n-type doping of two graphene layers at 0.83 and -0.8 eV, respectively. By tuning the interlayer spacing between the graphene and hydrogenated BN, the interfacial dipole and screening charge distribution can be significantly affected, which produces large modulations in band alignments, doping levels and tunnel barriers. Furthermore, we present an analytical model to predicate the doping level as a function of the average interlayer spacing. With large interlayer spacings, the "pillow effect" (Pauli repulsion at the highly charge overlapped interface) is diminished and the calculated Dirac point shifts are in good accordance with our prediction models. Our investigations suggest that this double-layer graphene heterostructures constructed using two-dimensional Janus anisotropic materials offer exciting opportunities for developing novel nanoscale optoelectronic and electronic devices.

  4. In-situ Fabrication and Electronic Characterization of Junction-confined Single Layer Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rodriguez-Manzo, Julio; Hong, Sung Ju; Drndic, Marija; Johnson, A. T. Charlie

    2013-03-01

    We report electronic measurements on high quality single layer junction-confined graphene nanoribbons fabricated in a transmission electron microscope (TEM). In this work, a process is demonstrated for the fabrication and confirmation of pristine single layer graphene nanoribbons using high vacuum current annealing and precision nano-sculpting, both conducted within the vacuum chamber of a TEM. Briefly, CVD-grown graphene is patterned into a freely-suspended nanoribbon connected to large area contacts. The sample is then mounted on a TEM holder with electrical feedthroughs to allow for simultaneous imaging and in-situ electrical transport measurements within the TEM. A focused electron beam is used to progressively narrow the ribbon, providing a platform to controllably sculpt and define the device geometry while characterizing its electrical properties. In-situ electrical measurements and TEM imaging with sub-nm resolution revealed the dependence of the nanoribbon resistance as a function of width in the range 17 - 280 nm. Monolayer graphene were found to sustain current densities in excess of 5 x 109 A/cm2, orders of magnitude higher than copper while the conductance varied approximately as w0.75, where w is the ribbon width in nanometers. These results demonstrates graphene's potential as a next generation, high performance interconnects material with the ability to reach single-digit technology nodes at the level of a single atomic layer. Funding for this work was provided by SRC contract # 2011-IN-2229.

  5. How water layers on graphene affect folding and adsorption of TrpZip2

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Agarwal, Mrigya; Kim, BongKeun; Pivkin, Igor V.; Shea, Joan-Emma

    2014-12-01

    We present a computational study of the folding of the Trp-rich β-hairpin TrpZip2 near graphene, a surface of interest as a platform for biosensors. The protein adsorbs to the surface, populating a new bound, folded state, coexisting with extended, adsorbed conformations. Adsorption and folding are modulated by direct interactions between the indole rings of TrpZip2 and the rings on the graphene surface, as well as by indirect water-mediated interactions. In particular, we observe strong layering of water near graphene, ice-like water configurations, and the formation of short lived hydrogen-bonds between water and protein. In order to study the effect of this layering in more detail, we modified the interactions between graphene and water to obtain two extreme cases: (1) enhanced layering of water that prevents the peptide from penetrating the water layer thereby enabling it to fold to a bulk-like structure, and (2) disruption of the water layer leading to adsorption and unfolding of the protein on the surface. These studies illuminate the roles of direct and solvent mediated interactions in modulating adsorption and folding of proteins on surfaces.

  6. Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate

    PubMed Central

    Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula

    2016-01-01

    We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086

  7. How water layers on graphene affect folding and adsorption of TrpZip2.

    PubMed

    Peter, Emanuel K; Agarwal, Mrigya; Kim, BongKeun; Pivkin, Igor V; Shea, Joan-Emma

    2014-12-14

    We present a computational study of the folding of the Trp-rich β-hairpin TrpZip2 near graphene, a surface of interest as a platform for biosensors. The protein adsorbs to the surface, populating a new bound, folded state, coexisting with extended, adsorbed conformations. Adsorption and folding are modulated by direct interactions between the indole rings of TrpZip2 and the rings on the graphene surface, as well as by indirect water-mediated interactions. In particular, we observe strong layering of water near graphene, ice-like water configurations, and the formation of short lived hydrogen-bonds between water and protein. In order to study the effect of this layering in more detail, we modified the interactions between graphene and water to obtain two extreme cases: (1) enhanced layering of water that prevents the peptide from penetrating the water layer thereby enabling it to fold to a bulk-like structure, and (2) disruption of the water layer leading to adsorption and unfolding of the protein on the surface. These studies illuminate the roles of direct and solvent mediated interactions in modulating adsorption and folding of proteins on surfaces.

  8. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    SciTech Connect

    Park, Suk In; Tchoe, Youngbin; Baek, Hyeonjun; Hyun, Jerome K.; Yi, Gyu-Chul E-mail: gcyi@snu.ac.kr; Heo, Jaehyuk; Jo, Janghyun; Kim, Miyoung; Kim, Nam-Jung E-mail: gcyi@snu.ac.kr

    2015-01-01

    We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm{sup 2} at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  9. Electronic Structure and Morphology of Graphene Layers on SiC

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke

    2008-03-01

    Recent years have witnessed the discovery and the unique electronic properties of graphene, a sheet of carbon atoms arranged in a honeycomb lattice. The unique linear dispersion relation of charge carriers near the Fermi level (``Dirac Fermions'') lead to exciting transport properties, such as an unusual quantum Hall effect, and have aroused scientific and technological interests. On the way towards graphene-based electronics, a knowledge of the electronic band structure and the morphology of epitaxial graphene films on silicon carbide substrates is imperative. We have studied the evolution of the occupied band structure and the morphology of graphene layers on silicon carbide by systematically increasing the layer thickness. Using angle-resolved photoemission spectroscopy (ARPES), we examine this unique 2D system in its development from single layer to multilayers, by characteristic changes in the π band, the highest occupied state, and the dispersion relation in the out-of-plane electron wave vector in particular. The evolution of the film morphology is evaluated by the combination of low-energy electron microscopy and ARPES. By exploiting the sensitivity of graphene's electronic states to the charge carrier concentration, changes in the on-site Coulomb potential leading to a change of π and π* bands can be examined using ARPES. We demonstrate that, in a graphene bilayer, the gap between π and π* bands can be controlled by selectively adjusting relative carrier concentrations, which suggests a possible application of the graphene bilayer for switching functions in electronic devices. This work was done in collaboration with A. Bostwick, J. L. McChesney, and E. Rotenberg at Advanced Light Source, Lawrence Berkeley National Laboratory, K. Horn at Fritz-Haber-Institut, K. V. Emtsev and Th. Seyller at Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, and F. El Gabaly and A. K. Schmid at National Center for Electron Microscopy, Lawrence Berkeley

  10. Van der Waals forces and electron-electron interactions in two strained graphene layers

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Harnish, Peter; Sylvester, Alexander; Kotov, Valeri N.

    2014-03-01

    We evaluate the van der Waals (vdW) interaction energy at T=0 between two undoped graphene layers which are separated by a finite distance. Our study is carried out within the Random Phase Approximation and the interaction energy is obtained for variation in the strength of effective Coulomb interaction and anisotropy due to applied uniaxial strain. We consider the following three models for the anisotropic case: a) where one of the two layers is uniaxially strained, b) the two layers are strained in the same direction, and c) one of the layers is strained in the perpendicular direction. We find that for all the three models and any given value of the coupling, the vdW interaction energy increases with increasing anisotropy. The effect is most striking for the case when both the layers are strained in the parallel direction where we observe up to an order of magnitude increase in the strained graphene relative to the unstrained case. We also investigate the effect of intra-layer electron-electron interactions in the region of large separation between the strained graphene layers. We conclude that the many-body contributions to the correlation energy are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the layers. Alexander Sylvester acknowledges financial assistance from the Research Experiences for Undergraduates (REU) Program of the National Science Foundation (NSF) focussing on complex materials.

  11. Characteristics of Hydrogen Sensor Based on Monolayer of Pt Nanoparticles Decorated on Single-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Ha, Nguyen Hai; Long, Cung Thanh; Nam, Nguyen Hoang; Hue, Nguyen Thi; Phuong, Nguyen Huy; Hong, Hoang Si

    2017-01-01

    We report the construction and testing of a resistive-type H2 sensor composed of a monolayer of platinum nanoparticles (Pt NPs) deposited using an immersion method on single-layer graphene. It was found that the Pt NP monolayer significantly reduced the response/recovery time of the graphene-based H2 sensor. The very rapid response of the sensor is attributed to the short diffusion length between the monolayer Pt nanoparticles and single-layer graphene. The sensor showed response time of 6 s and recovery time of 69 s at the optimal working temperature of 150°C. In addition, the fabricated device exhibited good repeatability at 10,000 ppm H2, detection range of 10 ppm to 10,000 ppm, and good thermal stability, satisfying the requirements for H2 sensors for safety applications.

  12. The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene

    PubMed Central

    Jiang, Yanqiu; Yang, Ling; Guo, Zongxia; Lei, Shengbin

    2015-01-01

    The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple. PMID:26634648

  13. Plasmon-drag-assisted terahertz generation in a graphene layer incorporating an asymmetric plasmon nanostructure

    NASA Astrophysics Data System (ADS)

    Raeis-Zadeh, S. Mohsen; Semnani, Behrooz; Safavi-Naeini, Safieddin

    2016-09-01

    This Rapid Communication presents a structure and full theoretical analysis to exploit the photon drag effect for THz signal generation in a graphene layer integrated with a plasmonic structure. The plasmonic structure is composed of a periodic array of asymmetric nanoparticles patterned over a graphene layer. The nanoparticles are designed to accomplish two goals: field localization due to the plasmonic resonance and manipulating the phase of the near field to effectively drag the quasiparticles in graphene. Combining the asymmetry with the plasmon resonances of nanoparticles, we show that an enhancement as large as three orders of magnitude is attainable in the power of the generated THz wave. This level of unprecedented enhancement mostly stems from the phase manipulation of the near field caused by asymmetric nanoparticles. Using the achieved enhancement, it is demonstrated that an ultra-wideband THz signal carrying the power of 1 μ W can be generated using a commercially available femtosecond pulsed laser.

  14. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  15. Nonreciprocal propagation of surface plasmon mode guided through graphene layer on magnetized semiconductor

    NASA Astrophysics Data System (ADS)

    Bhagyaraj, C.; Mathew, Vincent

    2017-01-01

    This paper discusses the nonreciprocal effect induced by magnetized semiconductor substrate on surface plasmon mode guided through monolayer graphene. Dispersion relation for the fundamental antisymmetric mode is derived analytically. Nonreciprocal propagation characteristics of fundamental mode is studied as a function of wavelength, graphene layer chemical potential and biasing magnetic field. Fundamental mode exhibits appreciable nonreciprocal dispersion for transversal magnetization of semiconductor substrate in midinfrared and terahertz frequencies. Cutoff wavelength for backward propagating mode is observed above 2.5 T of external biasing field. Cutoff wavelength is found to be decreasing with increase in the biasing magnetic field and cladding index, also identified to be independent of graphene layer chemical potential. Proposed waveguide structure suggests the possibility of realizing one way propagating plasmonic waveguides with widely tunable guiding characteristics and related functional devices such as isolators, modulators, phase shifters and switches for integrated photonic circuits.

  16. Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

    PubMed

    Tetsuka, Hiroyuki; Nagoya, Akihiro; Tamura, Shin-Ichi

    2016-12-01

    A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivity in the deep ultraviolet region of ca. 2.3 × 10(6) A W(-1) and ca. 5.5 × 10(13) Jones without the application of a backgate voltage. The high level of photoresponsivity persists into the near-infrared region (ca. 3.4 × 10(2) A W(-1) and 8.0 × 10(9) Jones). In addition, application in flexible photodetectors is demonstrated by the construction of a structure on a polyethylene terephthalate (PET) substrate. We further show the feasibility of using our flexible photodetectors towards the practical application of infrared photoreflectors. Together with the potential application of flexible photodetectors and infrared photoreflectors, the proposed hybrid photodetectors have potential for use in future graphene-based optoelectronic devices.

  17. Influence of Metal Contacts on Graphene Transport Characteristics and Its Removal with Nano-carbon Interfacial Layer

    NASA Astrophysics Data System (ADS)

    Kanda, Akinobu; Ito, Yu; Katakura, Kenta; Sonoda, Hiroki; Higuchi, Shoma; Tomori, Hikari; Ootuka, Youiti

    Graphene is a promising candidate for the next-generation electronic material. While considerable effort has been devoted to achieve higher mobility in graphene films, relatively little attention has been paid to the effect of metal contacts, which are indispensable to the electric devices. At a graphene/metal interface, mainly due to the difference in work functions, carriers are injected from the metal to graphene. The resulting shift of local Dirac point is not limited at the graphene/metal interface but extends into the graphene channel. This carrier doping affects more significantly the performance of graphene field effect devices with shorter channel, as well as may conceal Dirac physics at the graphene/metal interface. Here, we experimentally investigate the channel length dependence of graphene transport properties in a wide gate-voltage range and extract the effect of metal contact. Several metal species are investigated. We reveal the origin of electron-hole asymmetry and the effect of the chemical interaction between graphene and metal, and derive the effective work function of graphene (4.93 eV). Furthermore, we succeed in reducing the influence of metal contact by inserting a thin nano-carbon layer (amorphous carbon or multilayer graphene (MLG)) at the interface.

  18. van der Waals forces and electron-electron interactions in two strained graphene layers

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Harnish, Peter; Sylvester, Alexander; Kotov, Valeri N.; Neto, A. H. Castro

    2014-06-01

    We evaluate the van der Waals (vdW) interaction energy at zero temperature between two undoped strained graphene layers separated by a finite distance. We consider the following three models for the anisotropic case: (a) where one of the two layers is uniaxially strained, (b) the two layers are strained in the same direction, and (c) one of the layers is strained in the perpendicular direction with respect to the other. We find that for all three models and given value of the electron-electron interaction coupling, the vdW interaction energy increases with increasing anisotropy. The effect is most striking for the case when both layers are strained in the same direction where we observe up to an order of magnitude increase in the strained relative to the unstrained case. We also investigate the effect of electron-electron interaction renormalization in the region of large separation between the strained graphene layers. We find that the many-body renormalization contributions to the correlation energy are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the layers due to renormalization of the Fermi velocity, the anisotropy, and the effective interaction. Our analysis can be useful in designing graphene-based vdW heterostructures which, in recent times, has seen an upsurge in research activity.

  19. Few layer graphene-polypropylene nanocomposites: the role of flake diameter.

    PubMed

    Vallés, Cristina; Abdelkader, Amr M; Young, Robert J; Kinloch, Ian A

    2014-01-01

    Graphene shows excellent potential as a structural reinforcement in polymer nanocomposites due to its exceptional mechanical properties. We have shown previously that graphene composites can be analysed using conventional composite theory with the graphene flakes acting as short fillers which have a critical length of ∼3 μm which is required for good reinforcement. Herein, polypropylene (PP) nanocomposites were prepared using electrochemically-exfoliated few layer graphene (FLG) with two different flake diameters (5 μm and 20 μm). The crystallization temperature and degree of crystallinity of the PP were found to increase with the loading of FLG, which suggests that the flakes acted as crystallisation nucleation sites. Mechanical testing showed that the 5 μm flakes behaved as short fillers and reinforced the PP matrix poorly. The modulus of the 20 μm flake composites, however, increased linearly with loading up to 20 wt%, without any of the detrimental aggregation effects seen in other graphene systems. The mechanical data were compared with our previous work on other graphene composite systems and the apparent need to balance the degree of functionalization to improve matrix compatibility whilst not encouraging aggregation is discussed.

  20. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene

    PubMed Central

    2016-01-01

    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials. PMID:27723305

  1. Examining the impact of multi-layer graphene using cellular and amphibian models

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Mouchet, Florence; Cadarsi, Stéphanie; Janowska, Izabela; Russier, Julie; Ménard-Moyon, Cécilia; Risuleo, Gianfranco; Soula, Brigitte; Galibert, Anne-Marie; Flahaut, Emmanuel; Pinelli, Eric; Gauthier, Laury; Bianco, Alberto

    2016-06-01

    In the last few years, graphene has been defined as the revolutionary material showing an incredible expansion in industrial applications. Different graphene forms have been applied in several contexts, spreading from energy technologies and electronics to food and agriculture technologies. Graphene showed promises also in the biomedical field. Hopeful results have been already obtained in diagnostic, drug delivery, tissue regeneration and photothermal cancer ablation. In view of the enormous development of graphene-based technologies, a careful assessment of its impact on health and environment is demanded. It is evident how investigating the graphene toxicity is of fundamental importance in the context of medical purposes. On the other hand, the nanomaterial present in the environment, likely to be generated all along the industrial life-cycle, may have harmful effects on living organisms. In the present work, an important contribution on the impact of multi-layer graphene (MLG) on health and environment is given by using a multifaceted approach. For the first purpose, the effect of the material on two mammalian cell models was assessed. Key cytotoxicity parameters were considered such as cell viability and inflammatory response induction. This was combined with an evaluation of MLG toxicity towards Xenopus laevis, used as both in vivo and environmental model organism.

  2. A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc

    NASA Astrophysics Data System (ADS)

    Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Lalla, Niranjan P.; Mishra, Ratikant; Sathe, V. G.; Bhoraskar, S. V.; Das, A. K.

    2009-06-01

    The paper demonstrates the selective bulk synthesis of few-layer graphenes by optimizing an external magnetic field assisted electric arc. An ultra-high purity glassy graphite anode was sublimated in an argon atmosphere, and carbon nanotubes (CNTs), along with graphene sheets, were found inside the deposit formed on the cathode. Both the high purity CNTs and the graphene sheets, with minimal structural defects, were synthesized separately by varying the strength and orientation of the external magnetic field. The as-synthesized carbonaceous samples were characterized with the help of transmission electron microscopy, selected area electron diffraction (SAED), Raman spectroscopy and thermogravimetry with the objective of optimizing the highest selective production of 2D graphene structures. The as-synthesized graphene sheets exhibited a relatively high degree of graphitization and low structural defect density as confirmed by Raman spectroscopy. They were found to exhibit higher oxidation temperature (767 °C) than that of the carbon nanocrystalline particles (690 °C), as inferred from the thermogravimatric analysis. Moreover, they were found to roll up at their edges on account of their surface energy minimization. This was confirmed by the SAED analysis. With this new technique, we could successfully synthesize 2D graphene structures at the rate of a few g h-1.

  3. ``Intrinsic'' terahertz plasmons and magnetoplasmons in single layer graphene on SiC

    NASA Astrophysics Data System (ADS)

    Crassee, Iris; Orlita, Milan; Potemski, Marek; van der Marel, Dirk; Ostler, Markus; Seyller, Thomas; Kuzmenko, Alexey

    2012-02-01

    Plasmons in graphene have lately attracted much attention, to great extent, due to promises for novel technologies. Recently, plasmon absorption in graphene was attained in deliberately patterned structures [1]. We measured the magneto-optical absorption and Faraday rotation response of highly doped single layer graphene, epitaxially grown on Si-terminated SiC substrate. The zero-field spectra show a clear plasmon peak at about 2 THz. In magnetic fields, the plasmon peak splits into two branches, thus showing a characteristic magneto-plasmon behavior which was previously observed in periodic dot structures in GaAs two dimensional electron gases [2]. Hence, in large-scale epitaxial graphene on SiC, light can couple to plasmons in the absence of the intentional patterning of graphene. We suggest that optically-active plasmon absorption in this kind of two-dimensional system arises from laterally confined plasmon modes due to``intrinsic'' imperfections of graphene on Si-face of SiC, such as, grain boundaries which we clearly identify with AFM methods. [1] L. Ju et al. , Nature Nanotechnology 6, 630 (2011). [2] A. J. Allen et al. , Phys Rev B 28, 4875 (1983).

  4. Large area single and multi-layer graphene with uniform intralayer and interlayer orientation

    NASA Astrophysics Data System (ADS)

    Ogawa, Yui; Kim, Cheol-Joo; Brown, Lola; Huang, Lujie; Lee, Kan-Heng; Ziegler, Zachary; Park, Jiwoong

    2015-03-01

    The precise control over the intralayer and interlayer structures in two-dimensional (2D) materials provides new and exciting routes toward novel materials with unique electrical and optical properties. A prototypical example is twisted bilayer graphene (tBLG), where the interlayer rotation angle (θ) gives rise to various angle-dependent electrical and optical phenomena. However, it is generally difficulty to control θ during growth, especially for small θ, as Bernal-stacked BLG is energetically and kinetically preferred. Here, we report the fabrication and properties of large scale tBLG with controlled θ. For this, we use a newly-developed double-transfer technique with a building block of lattice-uniform single layer graphene. The interlayer structure and interaction is measured and confirmed using hyperspectral optical imaging and darkfield transmission electron microscopy. In addition, we can grow lattice-uniform graphene on Cu-film as well as Cu-foil. While Cu-foil is promising for the realization of scalable graphene growth, graphene on Cu-film allow us specific applications, such very flat substrate for excellent LEED and ARPES characterization, as well as forming unique structures. Our fabrication and characterization methods are scalable and applicable to multilayer graphene and other 2D materials in the future.

  5. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer.

    PubMed

    Zhao, Xiaolong; Liu, Sen; Niu, Jiebin; Liao, Lei; Liu, Qi; Xiao, Xiangheng; Lv, Hangbing; Long, Shibing; Banerjee, Writam; Li, Wenqing; Si, Shuyao; Liu, Ming

    2017-02-24

    Conductive-bridge random access memory (CBRAM) is considered a strong contender of the next-generation nonvolatile memory technology. Resistive switching (RS) behavior in CBRAM is decided by the formation/dissolution of nanoscale conductive filament (CF) inside RS layer based on the cation injection from active electrode and their electrochemical reactions. Remarkably, RS is actually a localized behavior, however, cation injects from the whole area of active electrode into RS layer supplying excessive cation beyond the requirement of CF formation, leading to deterioration of device uniformity and reliability. Here, an effective method is proposed to localize cation injection into RS layer through the nanohole of inserted ion barrier between active electrode and RS layer. Taking an impermeable monolayer graphene as ion barrier, conductive atomic force microscopy results directly confirm that CF formation is confined through the nanohole of graphene due to the localized cation injection. Compared with the typical Cu/HfO2 /Pt CBRAM device, the novel Cu/nanohole-graphene/HfO2 /Pt device shows improvement of uniformity, endurance, and retention characteristics, because the cation injection is limited by the nanohole graphene. Scaling the nanohole of ion barrier down to several nanometers, the single-CF-based CBRAM device with high performance is expected to achieve by confining the cation injection at the atomic scale.

  6. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers

    NASA Astrophysics Data System (ADS)

    Liu, Yanpeng; Yuan, Li; Yang, Ming; Zheng, Yi; Li, Linjun; Gao, Libo; Nerngchamnong, Nisachol; Nai, Chang Tai; Sangeeth, C. S. Suchand; Feng, Yuan Ping; Nijhuis, Christian A.; Loh, Kian Ping

    2014-11-01

    Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its in-plane conductivity. The poor electronic coupling between the planes is due to the presence of transfer process organic residues and trapped air pocket in wrinkles. Here we show the plane-to-plane tunnelling conductivity of stacked CVD graphene layers can be improved significantly by inserting 1-pyrenebutyric acid N-hydroxysuccinimide ester between the graphene layers. The six orders of magnitude increase in plane-to-plane conductivity is due to hole doping, orbital hybridization, planarization and the exclusion of polymer residues. Our results highlight the importance of interfacial modification for enhancing the performance of LBL-stacked CVD graphene films, which should be applicable to other types of stacked two-dimensional films.

  7. Estimating the elastic properties of few-layer graphene from the free-standing indentation response.

    PubMed

    Zhou, Lixin; Wang, Yugang; Cao, Guoxin

    2013-11-27

    Using molecular mechanics simulations, the elastic properties of multi-layer graphene (MLG) are investigated; this includes both the linear analysis based on the indentation load-displacement relationship and the nonlinear analysis based on the strain energy. The elastic properties of graphene layers in MLG are similar to each other and also quite close to those of monolayer graphene. The van der Waals (VDW) interaction between graphene layers (interlayer interaction) will create a difference between the indenter tip displacement and the deviation of MLG in indentation, which will cause an overestimation of the elastic modulus of MLG based on classic indentation analysis. This overestimation can be as high as 20%. In addition, the interlayer interaction will significantly affect the nonlinear elastic behavior of MLG in free-standing indentation. With an increase in the number of layers of MLG, the second-order elastic stiffness of MLG is very sensitive to the indentation loading range, and the third-order nonlinear elastic constant is significantly increased.

  8. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers.

    PubMed

    Liu, Yanpeng; Yuan, Li; Yang, Ming; Zheng, Yi; Li, Linjun; Gao, Libo; Nerngchamnong, Nisachol; Nai, Chang Tai; Sangeeth, C S Suchand; Feng, Yuan Ping; Nijhuis, Christian A; Loh, Kian Ping

    2014-11-20

    Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its in-plane conductivity. The poor electronic coupling between the planes is due to the presence of transfer process organic residues and trapped air pocket in wrinkles. Here we show the plane-to-plane tunnelling conductivity of stacked CVD graphene layers can be improved significantly by inserting 1-pyrenebutyric acid N-hydroxysuccinimide ester between the graphene layers. The six orders of magnitude increase in plane-to-plane conductivity is due to hole doping, orbital hybridization, planarization and the exclusion of polymer residues. Our results highlight the importance of interfacial modification for enhancing the performance of LBL-stacked CVD graphene films, which should be applicable to other types of stacked two-dimensional films.

  9. Reflection electron energy loss spectrum of single layer graphene measured on a graphite substrate

    NASA Astrophysics Data System (ADS)

    Werner, Wolfgang S. M.; Bellissimo, Alessandra; Leber, Roland; Ashraf, Afshan; Segui, Silvina

    2015-05-01

    Reflection electron energy loss spectra (REELS) have been measured on a highly oriented pyrolytic graphite (HOPG) sample. Two spectra were measured for different energies, 1600 eV, being more sensitive to the bulk and 500 eV being more sensitive to the surface. The energy loss distributions for a single surface and bulk excitation were extracted from the two spectra using a simple decomposition procedure. These single scattering loss distributions correspond to electron trajectories with significantly different penetration depths and agree with energy loss spectra measured on free standing single layer graphene and multilayer graphene (i.e. graphite). This result implies that for a layered electron gas (LEG) material, the number of layers which responds in a correlated fashion to an external perturbation is determined by the depth range penetrated by the external perturbation, and not by the number of layers actually present in the specimen.

  10. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    PubMed Central

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  11. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    NASA Astrophysics Data System (ADS)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-07-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.

  12. Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo

    2016-03-01

    Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.

  13. Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Ansari, R.

    2012-01-01

    In this article, an atomistic model is developed to study the buckling and vibration characteristics of single-layered graphene sheets (SLGSs). By treating SLGSs as space-frame structures, in which the discrete nature of graphene sheets is preserved, they are modeled using three-dimensional elastic beam elements for the bonds. The elastic moduli of the beam elements are determined via a linkage between molecular mechanics and structural mechanics. Based on this model, the critical compressive forces and fundamental natural frequencies of single-layered graphene sheets with different boundary conditions and geometries are obtained and then compared. It is indicated that the compressive buckling force decreases when the graphene sheet aspect ratio increases. At low aspect ratios, the increase of aspect ratios will result in a significant decrease in the critical buckling load. It is also indicated that increasing aspect ratio at a given side length results in the convergence of buckling envelops associated with armchair and zigzag graphene sheets. The influence of boundary conditions will be studied for different geometries. It will be shown that the influence of boundary conditions is not significant for sufficiently large SLGSs.

  14. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    PubMed Central

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.

  15. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  16. Selective metal deposition at graphene line defects by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kim, Kwanpyo; Lee, Han-Bo-Ram; Johnson, Richard W.; Tanskanen, Jukka T.; Liu, Nan; Kim, Myung-Gil; Pang, Changhyun; Ahn, Chiyui; Bent, Stacey F.; Bao, Zhenan

    2014-09-01

    One-dimensional defects in graphene have a strong influence on its physical properties, such as electrical charge transport and mechanical strength. With enhanced chemical reactivity, such defects may also allow us to selectively functionalize the material and systematically tune the properties of graphene. Here we demonstrate the selective deposition of metal at chemical vapour deposited graphene’s line defects, notably grain boundaries, by atomic layer deposition. Atomic layer deposition allows us to deposit Pt predominantly on graphene’s grain boundaries, folds and cracks due to the enhanced chemical reactivity of these line defects, which is directly confirmed by transmission electron microscopy imaging. The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications. Using Pt-graphene hybrid structures, we demonstrate high-performance hydrogen gas sensors at room temperature and show its advantages over other evaporative Pt deposition methods, in which Pt decorates the graphene surface non-selectively.

  17. Tribological characteristics of few-layer graphene over Ni grain and interface boundaries

    NASA Astrophysics Data System (ADS)

    Tripathi, Manoj; Awaja, Firas; Paolicelli, Guido; Bartali, Ruben; Iacob, Erica; Valeri, Sergio; Ryu, Seunghwa; Signetti, Stefano; Speranza, Giorgio; Pugno, Nicola Maria

    2016-03-01

    The tribological properties of metal-supported few-layered graphene depend strongly on the grain topology of the metal substrate. Inhomogeneous distribution of graphene layers at such regions led to variable landscapes with distinguishable roughness. This discrepancy in morphology significantly affects the frictional and wetting characteristics of the FLG system. We discretely measured friction characteristics of FLG covering grains and interfacial grain boundaries of polycrystalline Ni metal substrate via an atomic force microscopy (AFM) probe. The friction coefficient of FLG covered at interfacial grain boundaries is found to be lower than that on grains in vacuum (at 10-5 Torr pressure) and similar results were obtained in air condition. Sliding history with AFM cantilever, static and dynamic pull-in and pull-off adhesion forces were addressed in the course of friction measurements to explain the role of the out-of-plane deformation of graphene layer(s). Finite element simulations showed good agreement with experiments and led to a rationalization of the observations. Thus, with interfacial grain boundaries the FLG tribology can be effectively tuned.The tribological properties of metal-supported few-layered graphene depend strongly on the grain topology of the metal substrate. Inhomogeneous distribution of graphene layers at such regions led to variable landscapes with distinguishable roughness. This discrepancy in morphology significantly affects the frictional and wetting characteristics of the FLG system. We discretely measured friction characteristics of FLG covering grains and interfacial grain boundaries of polycrystalline Ni metal substrate via an atomic force microscopy (AFM) probe. The friction coefficient of FLG covered at interfacial grain boundaries is found to be lower than that on grains in vacuum (at 10-5 Torr pressure) and similar results were obtained in air condition. Sliding history with AFM cantilever, static and dynamic pull-in and pull

  18. Optical properties of few layered graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Pratap Choudhary, Raghvendra; Shukla, Shobha; Vaibhav, Kumar; Bhagwan Pawar, Pranav; Saxena, Sumit

    2015-09-01

    Quantum dots provide a unique opportunity to study the confinement effects of electronic wave function on the properties of materials. We have investigated the optical properties of graphene quantum dots synthesized using ultra-fast light-matter interactions followed by one step reduction process. Atomic-scale morphological information suggests the presence of both zigzag and armchair edges in these quantum dots. Optical characterizations were performed using absorption, photoluminescence, and infrared spectroscopy. A shift in the emission spectrum and disappearance of n → π* transition in the absorption spectrum on reduction of the ablated samples confirmed the formation of graphene quantum dots. First principles calculations are in good agreement with the experimentally reported infrared data.

  19. Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Manohara, Harish

    2008-01-01

    This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one

  20. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  1. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing

    NASA Astrophysics Data System (ADS)

    Chun, Sungwoo; Kim, Youngjun; Oh, Hyeong-Sik; Bae, Giyeol; Park, Wanjun

    2015-07-01

    In this paper, we propose a graphene sensor using two separated single-layered graphenes on a flexible substrate for use as a pressure sensor, such as for soft electronics. The working pressure corresponds to the range in which human perception recognizes surface morphologies. A specific design of the sensor structure drives the piezoresistive character due to the contact resistance between two graphene layers and the electromechanical properties of graphene itself. Accordingly, sensitivity in resistance change is given by two modes for low pressure (-0.24 kPa-1) and high pressure (0.039 kPa-1) with a crossover pressure (700 Pa). This sensor can detect infinitesimal pressure as low as 0.3 Pa with uniformly applied vertical force. With the attachment of the artificial fingerprint structure (AFPS) on the sensor, the detection ability for both the locally generated shear force and actual human touch confirms recognition of the surface morphology constructed by periodic structures.In this paper, we propose a graphene sensor using two separated single-layered graphenes on a flexible substrate for use as a pressure sensor, such as for soft electronics. The working pressure corresponds to the range in which human perception recognizes surface morphologies. A specific design of the sensor structure drives the piezoresistive character due to the contact resistance between two graphene layers and the electromechanical properties of graphene itself. Accordingly, sensitivity in resistance change is given by two modes for low pressure (-0.24 kPa-1) and high pressure (0.039 kPa-1) with a crossover pressure (700 Pa). This sensor can detect infinitesimal pressure as low as 0.3 Pa with uniformly applied vertical force. With the attachment of the artificial fingerprint structure (AFPS) on the sensor, the detection ability for both the locally generated shear force and actual human touch confirms recognition of the surface morphology constructed by periodic structures. Electronic

  2. Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene

    SciTech Connect

    Choi, Hyunyong; Borondics, Ferenc; Siegel, David A.; Zhou, Shuyun Y.; Martin, Michael C.; Lanzara, Alessandra; Kaindl, Robert A.

    2009-03-26

    We study the broadband optical conductivity and ultrafast carrier dynamics of epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally buffer, monolayer, and multilayer graphene exhibit significant terahertz and near-infrared absorption, consistent with a model of intra- and interband transitions in a dense Dirac electron plasma. Non-equilibrium terahertz transmission changes after photoexcitation are shown to be dominated by excess hole carriers, with a 1.2-ps mono-exponential decay that refects the minority-carrier recombination time.

  3. Fabrication and characterization of nanometer-sized gaps in suspended few-layer graphene devices

    NASA Astrophysics Data System (ADS)

    Lumetti, S.; Martini, L.; Candini, A.

    2017-02-01

    Graphene nanodevices, such as ultra-narrow constrictions and nanometer-spaced gaps, are emerging as appealing candidates for various applications, ranging from advanced quantum devices to single-molecule junctions and even DNA sequencing. Here, we present the realization and characterization of nanometer-sized gaps in suspended few-layer graphene devices via feedback-controlled electroburning at room temperature. By analyzing the electrical behavior after the electroburning process, we identify two distinct regimes for the resulting devices, deriving a simple yet effective quantitative criterion to determine the complete opening of the nanogaps.

  4. Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Chen, Zhongshan; Yao, Wen; Ai, Yuejie; Liu, Yunhai; Hayat, Tasawar; Alsaedi, Ahmed; Alharbi, Njud S; Wang, Xiangke

    2016-12-01

    With the development and application of graphene oxides (GO), the potential toxicity and environmental behavior of GO has become one of the most forefront environmental problems. Herein, a novel nanoscale layered double hydroxides (glycerinum-modified nanocrystallined Mg/Al layered double hydroxides, LDH-Gl), layered double oxides (calcined LDH-Gl, LDO-Gl) and metallic oxide (TiO2) were synthesized and applied as superior coagulants for the efficient removal of GO from aqueous solutions. Coagulation of GO as a function of coagulant contents, pH, ionic strength, GO contents, temperature and co-existing ions were studied and compared, and the results showed that the maximum coagulation capacities of GO were LDO-Gl (448.3 mg g(-1)) > TiO2 (365.7 mg g(-1)) > LDH-Gl (339.1 mg g(-1)) at pH 5.5, which were significantly higher than those of bentonite, Al2O3, CaCl2 or other natural materials due to their stronger reaction active and interfacial effect. The presence of SO3(2-) and HCO3(-) inhibited the coagulation of GO on LDH-Gl and LDO-Gl significantly, while other cations (K(+), Mg(2+), Ca(2+), Ni(2+), Al(3+)) or anion (Cl(-)) had slightly effect on GO coagulation. The interaction mechanism of GO coagulation on LDO-Gl and TiO2 might due to the electrostatic interactions and strong surface complexation, while the main driving force of GO coagulation on LDH-Gl might be attributed to electrostatic interaction and hydrogen bond, which were further evidenced by TEM, SEM, FT-IR and XRD analysis. The results of natural environmental simulation showed that LDO-Gl, TiO2 or other kinds of natural metallic oxides could be superior coagulants for the efficient elimination of GO or other toxic nanomaterials from aqueous solutions in real environmental pollution cleanup.

  5. Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study

    SciTech Connect

    Mathew, S.; Thong, John T. L.; Chan, T. K.; Breese, M. B. H.; Zhan, D.; Shen, Z. X.; Gopinadhan, K.; Dhar, S.; Venkatesan, T.; Roy Barman, A.

    2011-10-15

    Graphene samples with 1, 2, and 4 layers and 1 + 1 folded bi-layers and graphite have been irradiated with 2 MeV protons at fluences ranging from 1 x 10{sup 15} to 6 x 10{sup 18} ions/cm{sup 2}. The samples were characterized using visible and UV Raman spectroscopy and Raman microscopy. The ion-induced defects were found to decrease with increasing number of layers. Graphene samples suspended over etched holes in SiO{sub 2} have been fabricated and used to investigate the influence of the substrate SiO{sub 2} for defect creation in graphene. While Raman vibrational modes at 1460 cm{sup -1} and 1555 cm{sup -1} have been observed in the visible Raman spectra of substantially damaged graphene samples, these modes were absent in the irradiated-suspended monolayer graphene.

  6. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    PubMed

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  7. Graphene-layered steps and their fields visualized by 4D electron microscopy

    PubMed Central

    Park, Sang Tae; Yurtsever, Aycan; Baskin, John Spencer; Zewail, Ahmed H.

    2013-01-01

    Enhanced image contrast has been seen at graphene-layered steps a few nanometers in height by means of photon-induced near-field electron microscopy (PINEM) using synchronous femtosecond pulses of light and electrons. The observed steps are formed by the edges of graphene strips lying on the surface of a graphene substrate, where the strips are hundreds of nanometers in width and many micrometers in length. PINEM measurements reflect the interaction of imaging electrons and induced (near) electric fields at the steps, and this leads to a much higher contrast than that achieved in bright-field transmission electron microscopy imaging of the same strips. Theory and numerical simulations support the experimental PINEM findings and elucidate the nature of the electric field at the steps formed by the graphene layers. These results extend the range of applications of the experimental PINEM methodology, which has previously been demonstrated for spherical, cylindrical, and triangular nanostructures, to shapes of high aspect ratio (rectangular strips), as well as into the regime of atomic layer thicknesses. PMID:23690572

  8. Local, global, and nonlinear screening in twisted double-layer graphene

    PubMed Central

    Lu, Chih-Pin; Rodriguez-Vega, Martin; Li, Guohong; Luican-Mayer, Adina; Watanabe, Kenji; Taniguchi, Takashi; Rossi, Enrico; Andrei, Eva Y.

    2016-01-01

    One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. Here we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together with direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. We further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene. PMID:27302949

  9. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures

    PubMed Central

    Deng, Tianqi; Su, Haibin

    2015-01-01

    We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715

  10. Calculation of the superconducting transition temperature of a graphene layer doped with titanium and palladium

    NASA Astrophysics Data System (ADS)

    Vazquez, Gerardo; Magana, Fernando; Salas-Torres, Osiris

    We explore the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti) and the possibility of inducing superconductivity in a graphene sheet in two cases, one by doping its surface with palladium atoms sit on the center of the hexagons of the graphene layer and other by covering the graphene layer with two layers of titanium metal atoms. The results here were obtained from first-principles density functional theory in the local density approximation. The Quantum-Espresso package was used with norm conserving pseudopotentials. All of the structures considered were relaxed to their minimum energy configuration. Phonon frequencies were calculated using the linear-response technique on several phonon wave-vector mesh. The electron-phonon coupling parameter was calculated with several electron momentum k-mesh. The superconducting critical temperature was estimated using the Allen-Dynes formula with μ* = 0.1 - 0.15. We note that palladium and titanium are good candidate materials to show a metal-to-superconductor transition. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.

  11. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  12. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

    NASA Astrophysics Data System (ADS)

    Tzeng, Yonhua; Yeh, Shoupu; Fang, Wei Cheng; Chu, Yuehchieh

    2014-03-01

    Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated.

  13. On the existence of Si-C double bonded graphene-like layers

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.

    2009-09-01

    Upon analyzing an earlier experimental study by density-functional theory we have shown that graphene-like SiC layers can exist. We found that, for a particular stacking sequence, Si dbnd C double bond was responsible for the much larger interlayer distances observed in synthesized multi-walled SiC nanotubes. The Si/C ratios in SiC layers determine the extent of interlayer distances and bonding nature. It has been also shown that for some intermediate ratios of Si:C and/or with other stacking sequences, a collapse of SiC layers to tetrahedrally bonded system is possible. We have argued that these synthesized Si dbnd C double-bonded multi-wall silicon-carbide nanotubes may provide a pathway for future realization of SiC graphene-like materials.

  14. Energy Gaps and Layer Polarization of Integer and Fractional Quantum Hall States in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan

    2016-02-01

    Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν =1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν =2 /3 quantum Hall state and a feature at ν =1 /2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.

  15. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  16. Sensitivity analysis of single-layer graphene resonators using atomic finite element method

    SciTech Connect

    Lee, Haw-Long; Hsu, Jung-Chang; Lin, Shu-Yu; Chang, Win-Jin

    2013-09-28

    Atomic finite element simulation is applied to study the natural frequency and sensitivity of a single-layer graphene-based resonator with CCCC, SSSS, CFCF, SFSF, and CFCF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphene sheet are compared with the results of the previous finite element study. In addition, the sensitivity of the resonator is compared with the early work based on nonlocal elasticity theory. The results of the comparison are very good in all considered cases. The sensitivities of the resonator with different boundary conditions are obtained, and the order based on the boundary condition is CCCC > SSSS > CFCF > SFSF > CFFF. The highest sensitivity is obtained when the attached mass is located at the center of the resonator. This is useful for the design of a highly sensitive graphene-based mass sensor.

  17. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer.

    PubMed

    Stebunov, Yury V; Aftenieva, Olga A; Arsenin, Aleksey V; Volkov, Valentyn S

    2015-10-07

    The development of sensing interfaces can significantly improve the performance of biological sensors. Graphene oxide provides a remarkable immobilization platform for surface plasmon resonance (SPR) biosensors due to its excellent optical and biochemical properties. Here, we describe a novel sensor chip for SPR biosensors based on graphene-oxide linking layers. The biosensing assay model was based on a graphene oxide film containing streptavidin. The proposed sensor chip has three times higher sensitivity than the carboxymethylated dextran surface of a commercial sensor chip. Moreover, the demonstrated sensor chips are bioselective with more than 25 times reduced binding for nonspecific interaction and can be used multiple times. We consider the results presented here of importance for any future applications of highly sensitive SPR biosensing.

  18. Enhanced photocatalytic properties of graphene modified few-layered WSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Zheng, Binjie; Wang, Xinqiang; Qi, Fei; He, Jiarui; Zhang, Wanli; Chen, Yuanfu

    2017-04-01

    Reduced graphene oxide (RGO) modified few-layered WSe2 nanosheets have been synthesized through a facile one-pot solvothermal reaction. Compared with bare WSe2 nanosheets with relatively poor photocatalytic activity, WSe2/RGO composite demonstrates significant enhancement in photocatalytic degradation of organic dye RhB under visible light irradiation. The k value of WSe2/RGO is ∼1.9 times larger than that of bare WSe2 nanosheets, which is attributed to the excellent charge separation feature and electronic transport ability of graphene nanosheets, leading to highly reduced electron-hole pair recombination of graphene on WSe2 nanosheets thus strongly enhancing the photocatalytic performance. The WSe2/RGO composite is a promising catalyst for photocatalytic degradation of organic pollutants by solar energy.

  19. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theorymore » that predicts a 1.6 eV barrier for transport from WSe2 to graphene.« less

  20. Structural and optical properties of cobalt slanted nanopillars conformally coated with few-layer graphene

    SciTech Connect

    Wilson, Peter M.; Lipatov, Alexey; Schmidt, Daniel; Schubert, Eva; Schubert, Mathias; Hofmann, Tino E-mail: thofmann@engr.unl.edu; Sinitskii, Alexander E-mail: thofmann@engr.unl.edu

    2015-06-08

    Optical characterization of anisotropic multicomponent nanostructures is generally not a trivial task, since the relation between a material's structural properties and its permittivity tensor is nonlinear. In this regard, an array of slanted cobalt nanopillars that are conformally coated with few-layer graphene is a particularly challenging object for optical characterization, as it has a complex anisotropic geometry and comprises several materials with different topologies and filling fractions. Normally, a detailed characterization of such complex nanostructures would require a combination of several microscopic and spectroscopic techniques. In this letter, we demonstrate that the important structural parameters of these graphene-coated sculptured thin films can be determined using a fast and simple generalized spectroscopic ellipsometry test combined with an anisotropic Bruggeman effective medium approximation. The graphene coverage as well as structural parameters of nanostructured thin films agree excellently with electron microscopy and Raman spectroscopy observations. The demonstrated optical approach may also be applied to the characterization of other nanostructured materials.

  1. Few-Layer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients.

    PubMed

    Russier, Julie; León, Verónica; Orecchioni, Marco; Hirata, Eri; Virdis, Patrizia; Fozza, Claudio; Sgarrella, Francesco; Cuniberti, Gianaurelio; Prato, Maurizio; Vázquez, Ester; Bianco, Alberto; Delogu, Lucia G

    2017-03-06

    In the cure of cancer, a major cause of today's mortality, chemotherapy is the most common treatment, though serious frequent challenges are encountered by current anticancer drugs. We discovered that few-layer graphene (FLG) dispersions have a specific killer action on monocytes, showing neither toxic nor activation effects on other immune cells. We confirmed the therapeutic application of graphene on an aggressive type of cancer that is myelomonocytic leukemia, where the monocytes are in their malignant form. We demonstrated that graphene has the unique ability to target and boost specifically the necrosis of monocytic cancer cells. Moreover, the comparison between FLG and a common chemotherapeutic drug, etoposide, confirmed the higher specificity and toxicity of FLG. Since current chemotherapy treatments of leukemia still cause serious problems, these findings open the way to new and safer therapeutic approaches.

  2. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-01

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm-2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600-900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  3. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    SciTech Connect

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J.; Robinson, Jeremy T.; Wallace, Robert M.; Mayer, Theresa S.; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A.

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theory that predicts a 1.6 eV barrier for transport from WSe2 to graphene.

  4. Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production.

    PubMed

    Sim, Uk; Moon, Joonhee; Lee, Joohee; An, Junghyun; Ahn, Hyo-Yong; Kim, Dong Jin; Jo, Insu; Jeon, Cheolho; Han, Seungwu; Hong, Byung Hee; Nam, Ki Tae

    2017-02-01

    Photoelectrochemical cells are used to split hydrogen and oxygen from water molecules to generate chemical fuels to satisfy our ever-increasing energy demands. However, it is a major challenge to design efficient catalysts to use in the photoelectochemical process. Recently, research has focused on carbon-based catalysts, as they are nonprecious and environmentally benign. Interesting advances have also been made in controlling nanostructure interfaces and in introducing new materials as catalysts in the photoelectrochemical cell. However, these catalysts have as yet unresolved issues involving kinetics and light-transmittance. In this work, we introduce high-transmittance graphene onto a planar p-Si photocathode to produce a hydrogen evolution reaction to dramatically enhance photon-to-current efficiency. Interestingly, double-layer graphene/Si exhibits noticeably improved photon-to-current efficiency and modifies the band structure of the graphene/Si photocathode. On the basis of in-depth electrochemical and electrical analyses, the band structure of graphene/Si was shown to result in a much lower work function than Si, accelerating the electron-to-hydrogen production potential. Specifically, plasma-treated double-layer graphene exhibited the best performance and the lowest work function. We electrochemically analyzed the mechanism at work in the graphene-assisted photoelectrode. Atomistic calculations based on the density functional theory were also carried out to more fully understand our experimental observations. We believe that investigation of the underlying mechanism in this high-performance electrode is an important contribution to efforts to develop high-efficiency metal-free carbon-based catalysts for photoelectrochemical cell hydrogen production.

  5. Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited.

    PubMed

    Gutierrez, Fabiana A; Bedatty Fernandes, Flavio C; Rivas, Gustavo A; Bueno, Paulo R

    2017-03-01

    The electronic density of states and its contribution to the capacitance of graphene compounds (oxidized and reduced) were investigated using an electrochemical impedance-derived capacitance spectroscopic approach. It is clearly demonstrated that graphene oxide, which is known to exhibit semiconductor electronic characteristics, has little influence on the magnitude of the measured capacitance. Moreover, when graphene oxide is electrochemically reduced to graphene, the capacitance increases dramatically by about three orders of magnitude (from microfaradays to millifaradays). This increased capacitive effect has been interpreted as being directly associated with the electrochemical non-faradaic (super- or ultracapacitive) characteristics of the interface (i.e. associated with its electroactive area, for instance). The results obtained and interpretation made in this work demonstrate that the magnitude of the measured capacitance is a consequence of an electrochemical capacitive phenomenon (mesoscopic in essence; thus, the associated capacitance is equivalently termed mesoscopic capacitance) that energetically contains, in series, both electrostatic (geometrical) and quantum effects, thus being essentially different from those exclusively related to the amount of existing interfacial sites for ions (i.e. beyond those associated with pure double-layer capacitive effects). Conceptually, it is proposed that the mesoscopic capacitance of reduced graphene can be explained mainly through quantum chemical effects, ultimately following first-principles quantum mechanics supported on density functional theory, wherein the density of states is central.

  6. Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy

    PubMed Central

    Fujita, Naohiro; Matsumoto, Daisuke; Sakurai, Yuki; Kawahara, Kenji; Ago, Hiroki; Takenobu, Taishi; Marumoto, Kazuhiro

    2016-01-01

    Graphene has been actively investigated as an electronic material owing to many excellent physical properties, such as high charge mobility and quantum Hall effect, due to the characteristics of a linear band structure and an ideal two-dimensional electron system. However, the correlations between the transport characteristics and the spin states of charge carriers or atomic vacancies in graphene have not yet been fully elucidated. Here, we show the spin states of single-layer graphene to clarify the correlations using electron spin resonance (ESR) spectroscopy as a function of accumulated charge density using transistor structures. Two different electrically induced ESR signals were observed. One is originated from a Fermi-degenerate two-dimensional electron system, demonstrating the first observation of electrically induced Pauli paramagnetism from a microscopic viewpoint, showing a clear contrast to no ESR observation of Pauli paramagnetism in carbon nanotubes (CNTs) due to a one-dimensional electron system. The other is originated from the electrically induced ambipolar spin vanishments due to atomic vacancies in graphene, showing a universal phenomenon for carbon materials including CNTs. The degenerate electron system with the ambipolar spin vanishments would contribute to high charge mobility due to the decrease in spin scatterings in graphene. PMID:27731338

  7. Electroabsorption modulator based on inverted-rib-type silicon waveguide including double graphene layers

    NASA Astrophysics Data System (ADS)

    Kim, Yonghan; Kwon, Min-Suk

    2017-04-01

    We investigate, theoretically, a compact graphene-based electroabsorption modulator (EAM). The compactness of the EAM arises from an inverted-rib-type (IRT) silicon waveguide including a graphene–oxide–graphene stack. The EAM consists of input and output waveguides, which are conventional silicon strip waveguides, and the IRT waveguide efficiently connected to them through tapering regions. The stack is located in the region where the fundamental transverse electric mode of the IRT waveguide is mainly confined. Hence, the IRT waveguide mode strongly interacts with the graphene layers. Moreover, the IRT waveguide can be realized without complex high-precision processes. The calculated modulation depth of the IRT waveguide is 0.41 dB μm‑1 when the chemical potential of graphene is tuned between 0.2 and 0.6 eV. It is more than two times larger than those of previous graphene-covered silicon waveguides. The EAM, with a 3 dB extinction ratio, employs an IRT waveguide of length 7–8 μm. This EAM is analyzed and found to have an optical bandwidth of 100 nm, an electrical bandwidth of up to 46.4 GHz, and energy consumption smaller than 630 fJ bit‑1. Such EAMs based on IRT waveguides may play an important role in off-chip optical interconnection.

  8. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.

    PubMed

    Liu, Zhike; Li, Jinhua; Sun, Zhen-Hua; Tai, Guoan; Lau, Shu-Ping; Yan, Feng

    2012-01-24

    A single-layer graphene film with high conductance and transparency was realized by effective chemical doping. The conductance of single-layer graphene was increased for more than 400% when it was doped with Au nanoparticles and poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid). Then semitransparent organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) were fabricated with single-layer graphene and indium tin oxide (ITO) as the top and bottom electrodes, respectively. The performance of the devices was optimized by tuning the active layer thickness and doping the single-layer graphene electrodes. The maximum efficiency of 2.7% was observed in the devices with the area of 20 mm(2) illuminated from graphene electrode under the AM1.5 solar simulator. It is notable that all of the devices showed higher efficiency from the graphene than ITO side, which was attributed to the better transmittance of the graphene electrodes. In addition, the influence of the active area of the organic solar cell on its photovoltaic performance was studied. We found that, when the active areas increased from 6 to 50 mm(2), the power conversion efficiencies decreased from 3% to 2.3% because of the increased series resistances and the decreased edge effect of the devices.

  9. Separation and electrical properties of self-organized graphene/graphite layers

    NASA Astrophysics Data System (ADS)

    Mailian, Manuel R.; Mailian, Aram R.

    2015-02-01

    Intrinsic layered structure of graphite is the source of ongoing and expanding search of ways of obtaining low-cost and promising graphite thin layers. We report on a novel method of obtaing and seperating rubbed graphite sheets by using water soluble NaCl substrate. The electrical behavior of sheets was characterized by current-voltage measurements. An in-plane electrical anisotropy depending on rubbing direction is discovered. Optical microscopy observations combined with discovered non-linear electrical behavior revealed that friction leads to the formation of sheet makeup which contain an optically transparent lamina of self-organized few-layer graphene.

  10. First direct observation of a nearly ideal graphene band structure

    SciTech Connect

    Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.; Berger, C.; de Heer, W.A.; Lanzara, A.; Conrad, E.H.

    2009-12-10

    Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000{bar 1}) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.

  11. Synthesis of atomic layers of hybridized h-BNC by depositing h-BN on graphene via ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Meng, J. H.; Zhang, X. W.; Liu, H.; Yin, Z. G.; Wang, D. G.; Wang, Y.; You, J. B.; Wu, J. L.

    2016-10-01

    We report the deposition of hexagonal boron nitride (h-BN) on graphene by ion beam sputtering deposition. Both graphene domains and films synthesized by chemical vapor deposition were used as substrates. In the case of graphene domains, it was found that the h-BN domains were preferentially grown on the baked Cu surface instead of graphene due to the highly catalytic activity of Cu. On the other hand, the higher ejection energy of sputtered particles leads to the mixing of boron/nitrogen atoms and carbon atoms. Consequently, the h-BNC films consisting of the hybrid atomic layers of h-BN and graphene domains were formed when the graphene films were used as substrates. This work provides a promising and accessible route for the synthesis of hybridized h-BNC material.

  12. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  13. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  14. Facile synthesis of few-layer graphene with a controllable thickness using rapid thermal annealing.

    PubMed

    Chu, Jae Hwan; Kwak, Jinsung; Kwon, Tae-Yang; Park, Soon-Dong; Go, Heungseok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kwon, Soon-Yong

    2012-03-01

    Few-layer graphene films with a controllable thickness were grown on a nickel surface by rapid thermal annealing (RTA) under vacuum. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2-3 nm) carbon- and oxygen-containing compounds on a nickel surface; thus, the high-temperature annealing of the nickel samples without the introduction of intentional carbon-containing precursors results in the formation of graphene films. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time, and the resulting films have a limited thickness (<2 nm), even for an extended RTA time. The transferred films have a low sheet resistance of ~0.9 ± 0.4 kΩ/sq, with ~94% ± 2% optical transparency, making them useful for applications as flexible transparent conductors.

  15. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone.

    PubMed

    Jandhyala, Srikar; Mordi, Greg; Lee, Bongki; Lee, Geunsik; Floresca, Carlo; Cha, Pil-Ryung; Ahn, Jinho; Wallace, Robert M; Chabal, Yves J; Kim, Moon J; Colombo, Luigi; Cho, Kyeongjae; Kim, Jiyoung

    2012-03-27

    Integration of graphene field-effect transistors (GFETs) requires the ability to grow or deposit high-quality, ultrathin dielectric insulators on graphene to modulate the channel potential. Here, we study a novel and facile approach based on atomic layer deposition through ozone functionalization to deposit high-κ dielectrics (such as Al(2)O(3)) without breaking vacuum. The underlying mechanisms of functionalization have been studied theoretically using ab initio calculations and experimentally using in situ monitoring of transport properties. It is found that ozone molecules are physisorbed on the surface of graphene, which act as nucleation sites for dielectric deposition. The physisorbed ozone molecules eventually react with the metal precursor, trimethylaluminum to form Al(2)O(3). Additionally, we successfully demonstrate the performance of dual-gated GFETs with Al(2)O(3) of sub-5 nm physical thickness as a gate dielectric. Back-gated GFETs with mobilities of ~19,000 cm(2)/(V·s) are also achieved after Al(2)O(3) deposition. These results indicate that ozone functionalization is a promising pathway to achieve scaled gate dielectrics on graphene without leaving a residual nucleation layer.

  16. Highly Stable and Effective Doping of Graphene by Selective Atomic Layer Deposition of Ruthenium.

    PubMed

    Kim, Minsu; Kim, Ki-Ju; Lee, Seung-Joon; Kim, Hyun-Mi; Cho, Seong-Yong; Kim, Min-Sik; Kim, Soo-Hyun; Kim, Ki-Bum

    2017-01-11

    The sheet resistance of graphene synthesized by chemical vapor deposition is found to be significantly reduced by the selective atomic layer deposition (ALD) of Ru onto defect sites such as wrinkles and grain boundaries. With 200 ALD cycles, the sheet resistance is reduced from ∼500 to <50 Ω/sq, and the p-type carrier density is drastically increased from 10(13) to 10(15) cm(-2). At the same time, the carrier mobility is reduced from ∼670 to less than 100 cm(2) V(-1) s(-1). This doping of graphene proved to be very stable, with the electrical properties remaining unchanged over eight weeks of measurement. Selective deposition of Ru on defect sites also makes it possible to obtain a graphene film that is both highly transparent and electrically conductive (e.g., a sheet resistance of 125 Ω/sq with 92% optical transmittance at 550 nm). Highly doped graphene layers achieved by Ru ALD are therefore expected to provide a viable basis for transparent conducting electrodes.

  17. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  18. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials.

    PubMed

    Yan, Liang; Zheng, Yue Bing; Zhao, Feng; Li, Shoujian; Gao, Xingfa; Xu, Bingqian; Weiss, Paul S; Zhao, Yuliang

    2012-01-07

    Graphene has attracted great interest for its superior physical, chemical, mechanical, and electrical properties that enable a wide range of applications from electronics to nanoelectromechanical systems. Functionalization is among the significant vectors that drive graphene towards technological applications. While the physical properties of graphene have been at the center of attention, we still lack the knowledge framework for targeted graphene functionalization. In this critical review, we describe some of the important chemical and physical processes for graphene functionalization. We also identify six major challenges in graphene research and give perspectives and practical strategies for both fundamental studies and applications of graphene (315 references).

  19. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.

    PubMed

    Hui, Jingshu; Burgess, Mark; Zhang, Jiarui; Rodríguez-López, Joaquín

    2016-04-26

    A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.

  20. The impact of the thermal conductivity of a dielectric layer on the self-heating effect of a graphene transistor.

    PubMed

    Pan, T S; Gao, M; Huang, Z L; Zhang, Y; Feng, Xue; Lin, Y

    2015-08-28

    The self-heating effect of a graphene transistor on the transport properties was studied. Different dielectric layers, SiO2 and AlN, which have different thermal conductivities, were used to tune the thermal dissipation of the graphene transistor. An obvious change in channel resistance and a shift of charge neutrality point were observed during the operation of the transistor with SiO2, while the change is slight when AlN is the dielectric layer. This observation is considered to be related to the temperature determined desorption rate of p-type dopants in graphene.

  1. Electronic structure of twisted bilayer graphene with doping and under electric fields

    NASA Astrophysics Data System (ADS)

    Xian, Lede; Barraza-Lopez, Salvador; Chou, Mei-Yin

    2011-03-01

    Rotational stacking faults of graphene layers in epitaxial graphene are believed to electronically decouple adjacent layers, thus single-layer graphene-like behavior can be observed. In addition, the layers close to the SiC substrate are known to be electron doped. Using density functional theory and a pi-electron, highly tuned tight-binding model, we study the modifications of the band structure in rotational stack-faulted bilayer graphene induced by doping and by external electric fields. In particular, the interlayer coupling, the magnitude of the Fermi velocity, and the possible impact on charge transport will be discussed.

  2. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  3. High temperature and current density induced degradation of multi-layer graphene

    SciTech Connect

    Wang, Baoming; Haque, M. A.; Mag-isa, Alexander E.; Kim, Jae-Hyun; Lee, Hak-Joo

    2015-10-19

    We present evidence of moderate current density, when accompanied with high temperature, promoting migration of foreign atoms on the surface of multi-layer graphene. Our in situ transmission electron microscope experiments show migration of silicon atoms at temperatures above 800 °C and current density around 4.2 × 10{sup 7} A/cm{sup 2}. Originating from the micro-machined silicon structures that clamp the freestanding specimen, the atoms are observed to react with the carbon atoms in the multi-layer graphene to produce silicon carbide at temperatures of 900–1000 °C. In the absence of electrical current, there is no migration of silicon and only pyrolysis of polymeric residue is observed.

  4. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene

    PubMed Central

    Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim; Bøggild, Peter; Craciun, Monica Felicia; Russo, Saverio

    2015-01-01

    We present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150°C in atmosphere and to a temperature as high as 620°C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl3 intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications. PMID:25567796

  5. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Yadav, Deepika; Boubanga Tombet, Stephane; Watanabe, Takayuki; Arnold, Stevanus; Ryzhii, Victor; Otsuji, Taiichi

    2016-12-01

    We report on the first experimental observation of terahertz emission and detection in a double graphene layered (GL) heterostructure which comprises a thin hexagonal-boron nitride tunnel-barrier layer sandwiched between two separately contacted GLs. Inter-GL population inversion is induced by electrically biasing the structure. Resonant tunneling and negative differential resistance is expected when the two graphene band structures are perfectly aligned. However, in the case of small misalignments we demonstrate that the photon-absorption/emission-assisted non-resonant- and resonant-tunneling causes all excess charges in the n-type GL to recombine with the holes in the p-type GL giving rise to an increased measured dc current. This work highlights a novel strategy for the realization of efficient voltage-tunable terahertz emitters and detectors.

  6. On the Quantum Hall Effect in mono(bi)-layer graphene

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2014-11-01

    Based on a thermodynamic approach, we have calculated the specific resistivity of mono(bi)-layer graphene assumed dissipationless in quantizing magnetic field. The resistivity arises from combination of Peltier and Seebeck effects. The current I causes heating (cooling) at the first (second) sample contacts, due to the Peltier effect. The voltage measured across the sample is equal to the Seebeck thermoemf, and thus provides finite resistivity as I→0. The resistivity is a universal function of the magnetic field, e-h plasma density and temperature, expressed in fundamental units h/e2. At fixed magnetic field the magneto-transport problem is resolved in the vicinity of the Dirac point taking into account the splitting of zeroth Landau level. For mono(bi)- layer graphene the B-dependent splitting of zeroth Landau level is recovered from experimental data.

  7. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  8. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  9. Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory

    SciTech Connect

    Kim, Young Rae; Jo, Yong Eun; Sung, Yeo Hyun; Won, Ui Yeon; Shin, Yong Seon; Kang, Won Tae; Yu, Woo Jong E-mail: micco21@skku.edu; Lee, Young Hee E-mail: micco21@skku.edu

    2015-03-09

    In this study, we have demonstrated nonvolatile memory devices using graphene quantum-dots (GQDs) trap layers with indium zinc oxide (IZO) semiconductor channel. The Fermi-level of GQD was effectively modulated by tunneling electrons near the Dirac point because of limited density of states and weak electrostatic screening in monolayer graphene. As a result, large gate modulation was driven in IZO channel to achieve a subthreshold swing of 5.21 V/dec (300 nm SiO{sub 2} gate insulator), while Au quantum-dots memory shows 15.52 V/dec because of strong electrostatic screening in metal quantum-dots. Together, discrete charge traps of GQDs enable stable performance in the endurance test beyond 800 cycles of programming and erasing. Our study suggests the exciting potential of GQD trap layers to be used for a highly promising material in non-volatile memory devices.

  10. Surface states resonances at the single-layer graphene/Cu(111) interface

    NASA Astrophysics Data System (ADS)

    Tognolini, S.; Pagliara, S.; Bignardi, L.; Ponzoni, S.; Rudolf, P.; Parmigiani, F.

    2016-01-01

    By tuning the laser photon energy in the non-linear two-photons photoemission at a single-layer graphene/Cu(111) interface, it is possible to observe a strong resonance at hυ = 3.5 eV along with a weaker one at hυ = 3.85 eV. The main resonance photon energy is consistent with a direct optical transition between the occupied Cu(111) Shockley surface state and the n = 1 image potential state, located in the real gap-space between the single-layer graphene and the Cu(111) surface. The large amplitude of this resonance unveils a high value of the electric dipole matrix element integral that governs this transition. Furthermore, the Lorentzian shape of this resonance implies that these two states are decoupled from the continuum of states and the lifetime of the image potential state can be estimated.

  11. Effects of ultraviolet nanosecond laser irradiation on structural modification and optical transmission of single layer graphene

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Kang, Xiaoli; Zhu, Qihua; Zheng, Wanguo

    2017-03-01

    Structural modifications and optical transmission change of single layer graphene (SLG) on transparent SiO2 substrate induced by nanosecond 355 nm laser irradiation were systematically studied by scanning electron microscopy (SEM), laser-excited Raman, X-ray photon spectroscopy (XPS) and UV-vis transmission spectra. In this study, to avoid damage to graphene, the selected irradiation fluence was set to be smaller than the laser damage threshold of SLG. Laser-driven formation of nano-dots, carbon clusters and spherical carbon morphologies were clearly presented using SEM magnification images, and the formation mechanism of such structures were discussed. Raman spectra revealed formation of D' peak and the continuously increasing of ID/IG intensity ratio with the concurrent increase of laser fluence, indicating the increase in amount of structural defects and disordering in SLG. XPS results disclosed that the oxygen content in SLG increases with laser fluence. The formation and relative content increase of Cdbnd O, Csbnd Osbnd C and Osbnd Cdbnd O bonds in SLG induced by laser irradiation were also revealed by XPS. Laser-driven micro-structure modifications of crystalline graphene to nano-crystalline graphene and photo-chemical reactions between graphene and O2 and H2O in air environment were suggested to be responsible for the Raman and XPS revealed modifications in SLG. It is worthy to point out that the above mentioned structural modifications only caused a slight decrease (<2% @ 550 nm) in the optical transmittance of SLG. These results may provide more selections for the batch processing of large scale graphene aiming at modifying its structure and thus taiorling its properties.

  12. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, X.; Fulvio, P. F.; Baker, G. A.; Veith, G. M.; Unocic, R. R.; Mahurin, S., M.; Chi, M.; Dai, S.

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL-1) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf2N]), by tip ultrasonication.

  13. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, Xiqing; Fulvio, Pasquale F; Baker, Gary A; Veith, Gabriel M; Unocic, Raymond R; Mahurin, Shannon Mark; Dai, Sheng

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL{sup -1}) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf{sub 2}N]), by tip ultrasonication.

  14. Synthesis of Graphene Layers from Metal-Carbon Melts: Nucleation and Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Amini, Shaahin

    A new method for growth of large-area graphene, which can lead to a scalable low-cost high-throughput production technology, was demonstrated. The method is based on growing of graphene films on the surface of metal-carbon melts and involves dissolving carbon in a molten metal at a specified temperature and then allowing the dissolved carbon to nucleate and grow on top of the melt at a lower temperature. The synthesized graphene layers were subjected to detailed microscopic and Raman spectroscopic characterizations. The deconvolution of the Raman 2D band was used to accurately determine the number of atomic planes in the resulting graphene layers and access their quality. The results indicated that the technology can provide bulk graphite films, few-layer graphene as well as high-quality single layer graphene on metals. It was also shown that upon cooling of supersaturated metal-carbon melts; graphite would also grow inside the melt either with flake or sphere morphology, depending on the solidification rate and degree of supersaturation. At small solidification rates, graphite crystals are normally bounded by faceted low index basal and prismatic planes which grow by lateral movement of ledges produced by 2D-nucleation or dislocations. At higher growth rates, however, both interfaces become kinetically rough, and growth becomes limited by diffusion of carbon to the growing interface. The roughening transition from faceted to non-faceted was found to depend on the driving force and nature of growing plane. Due to high number of C-C dangling bonds in prismatic face, its roughening transition occurs at smaller driving forces. At intermediate rates, the prismatic interfaces become rough and grow faster while the basal plane is still faceted, leading to formation of flake graphite. At higher growth rates, both interfaces grow with a relatively similar rate leading to initiation of graphite sphere formation, which later grows by a multi-stage growth mechanism. An

  15. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  16. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.

    PubMed

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan

    2016-02-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.

  17. Strong enhancement of Faraday rotation using one-dimensional conjugated photonic crystals containing graphene layers.

    PubMed

    Ardakani, Abbas Ghasempour

    2014-12-20

    We propose a one-dimensional conjugated photonic crystal single heterojunction infiltrated with a single graphene layer to achieve large Faraday rotation (FR) angles as well as high transmission simultaneously. The effects of the external magnetic field values, incidence angle, number of unit cells, layer thickness of constituents of the conjugated photonic crystals, chemical potential of graphene, and ambient temperature on the Faraday rotation angle and transmission are investigated. Our results reveal that both the sign reversal and shifting of the FR peak can be obtained by changing the width of layers in the conjugated photonic crystal. In the case of negative FR angle, an increase of magnetic field enhances the FR angle and degrades the transmission. However, in the case of positive FR angle, when the magnetic field increases to a certain value, the FR angle is improved too. Further increase of the magnetic field leads to a decrease of FR angle. With increasing the number of unit cells, the FR angle is enhanced at the cost of decreasing the transmission. It is shown that normal incidence results in higher FR angle and transmission. It is also demonstrated that sign reversal and change of the FR angle is possible by manipulating the chemical potential of graphene and the ambient temperature.

  18. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.

    PubMed

    Yu, Mingpeng; Wang, Aiji; Wang, Yinshu; Li, Chun; Shi, Gaoquan

    2014-10-07

    Atomic layer deposition (ALD) was applied to deposit ZnO on graphene aerogel, and this composite was used as an anode material for lithium ion batteries. This electrode material was further modified by an ultrathin Al2O3 layer via ALD to stabilize its electrochemical stability. These two metal oxides were uniformly immobilized on graphene frameworks, and the Al2O3 coating strongly improved the electrochemical performances of ZnO-graphene aerogel composite anodes. Particularly, the composite with 10 ALD cycles of Al2O3 coating (denoted as ZnO-G-10) exhibited a high initial discharge capacity of 1513 mA h g(-1) and maintained a reversible capacity of 490 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1). Furthermore, the capacity retention rate increased from 70% to 90% in comparison with its uncoated counterpart after 100 cycles. The ZnO-G-10 anode also showed good rate-capability, delivering a discharge capacity of 415 mA h g(-1) at 1000 mA g(-1). The improved electrochemical performance is attributed to the formation of an artificial solid electrolyte interphase layer, stabilizing ZnO and the electrolyte by preventing the aggregation of Zn/ZnO nanograins and the side reaction that would cause the degradation of anodes.

  19. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    PubMed

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  20. Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures.

    PubMed

    Sarau, George; Heilmann, Martin; Bashouti, Muhammad; Latzel, Michael; Tessarek, Christian; Christiansen, Silke

    2017-03-22

    While doping enables application-specific tailoring of graphene properties, it can also produce high defect densities that degrade the beneficial features. In this work, we report efficient nitrogen doping of ∼11 atom % without virtually inducing new structural defects in the initial, large-area, low defect, and transferred single-layer graphene. To shed light on this remarkable high-doping-low-disorder relationship, a unique experimental strategy consisting of analyzing the changes in doping, strain, and defect density after each important step during the doping procedure was employed. Complementary micro-Raman mapping, X-ray photoelectron spectroscopy, and optical microscopy revealed that effective cleaning of the graphene surface assists efficient nitrogen incorporation accompanied by mild compressive strain resulting in negligible defect formation in the doped graphene lattice. These original results are achieved by separating the growth of graphene from its doping. Moreover, the high doping level occurred simultaneously with the epitaxial growth of n-GaN micro- and nanorods on top of graphene, leading to the flow of higher currents through the graphene/n-GaN rod interface. Our approach can be extended toward integrating graphene into other technologically relevant hybrid semiconductor heterostructures and obtaining an ohmic contact at their interfaces by adjusting the doping level in graphene.

  1. Heterogeneous fluorescence intermittency in single layer reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Si, Jixin; Volkan-Kacso, Sandor; Eltom, Ahmed; Morozov, Yurii; McDonald, Matthew P.; Ruth, Anthony; Kuno, Masaru; Janko, Boldizsar

    Fluorescence intermittency, or blinking, has been observed in a wide range of systems, including quantum dots, nanorods, and nanowires. Striking similarities have been documented in the optical response of these nanoscale emitters. However, the mechanism behind blinking still remains elusive. For the first time, blinking has been observed in a two-dimensional system in recent experiments on reduced graphene oxide (rGO). Here we reveal the power spectral density (PSD) of the blinking in rGO shares the same 1/f-like behavior of previously known blinking systems; meanwhile, the heterogeneous dynamic evolution and spatial correlation make rGO a unique blinking system. To investigate the origin of blinking, we self-consistently explain the evolution of rGO blinking using the phenomenological multiple recombination center (MRC) model that captures common features of nanoscale blinking. Furthermore, tight binding method and ab-initio method calculations of carbon nanodots are utilized to look for the microscopic structure corresponding to the RCs in the MRC model. M. K. thanks the American Chemical Society Petroleum Research Fund, the Army Research Office (W911NF-12-1-0578) for support. B.J. was supported in part by the U. S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract W-31-109-Eng-38.

  2. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    SciTech Connect

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-08-28

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking.

  3. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    NASA Astrophysics Data System (ADS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-08-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and "wizard hat" parabolic for rhombohedral (ABCA) stacking.

  4. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Peng, Zhenhuan; Wang, Wenjun; Chen, Xikun; Fang, Jianhui; Xu, Jiaqiang

    2014-01-01

    We developed hydrogen iodide (HI) reduction of rGO and surfactant-assisted chemical reaction- deposition method to form hybrid material of sulfur (S) encapsulated in reduced graphene oxide (rGO) sheets for rechargeable lithium batteries. The surfactant-assisted chemical reaction-deposition method strategy provides intimate contact between the S and graphene oxide. Chemical reduced rGO with high conductivity as carbon coating layer prevented the dissolution of polysulfide ions and improved the electron transfer. This novel core-shell structured S@rGO composites with high S content showed high reversible capacity, good discharge capacity retention and enhanced rate capability used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a S@rGO with up to 85 wt% S maintains a stable discharge capacity of about 980 mAh g-1 at 0.05 C and 570 mAh g-1 at 1C after 200 cycles charge/discharge. These results emphasize the importance of rGO with high electrical conductivity after HI-reduced rGO homogeneously coating on the surface of S, therefore, effectively alleviating the shuttle phenomenon of polysulfides in organic electrolyte. Our surfactant-assisted chemical reaction-HI reduction approach should offer a new technique for the design and synthesis of battery electrodes based on highly conducting carbon materials.

  5. Bimodal behaviour of charge carriers in graphene induced by electric double layer

    PubMed Central

    Tsai, Sing-Jyun; Yang, Ruey-Jen

    2016-01-01

    A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid. PMID:27464986

  6. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage

    NASA Astrophysics Data System (ADS)

    Chen, Dongyun; Ji, Ge; Ding, Bo; Ma, Yue; Qu, Baihua; Chen, Weixiang; Lee, Jim Yang

    2013-08-01

    Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li+ as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a facile surfactant-assisted synthesis under hydrothermal conditions. The layer structure and morphology of the composites were confirmed by X-ray diffraction, scanning electron microscopy and high-resolution transmission microscopy. The effects of surfactant amount on the WS2 layer number were investigated and the performance of the layered composites as high energy density lithium-ion battery anodes was evaluated. The composite formed with a surfactant : tungsten precursor ratio of 1 : 1 delivered the best cyclability (average of only 0.08% capacity fade per cycle for 100 cycles) and good rate performance (80% capacity retention with a 50-fold increase in current density from 100 mA g-1 to 5000 mA g-1), and may find uses in power-oriented applications.Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li+ as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a facile surfactant-assisted synthesis under hydrothermal conditions. The layer structure and morphology of the composites were confirmed by X-ray diffraction, scanning electron microscopy and high-resolution transmission microscopy. The effects of surfactant amount on the WS2 layer number were investigated and the performance of the layered composites as high energy density lithium-ion battery anodes was evaluated. The composite formed with a surfactant : tungsten precursor ratio of 1 : 1 delivered the best cyclability (average of only 0.08% capacity fade per cycle for 100 cycles) and good rate performance (80

  7. Interaction between graphene layers and the mechanisms of graphite's superlubricity and self-retraction.

    PubMed

    Xu, Ziwei; Li, Xiuxia; Yakobson, Boris I; Ding, Feng

    2013-08-07

    Graphene layer-layer interaction is explored as a function of the misorientation angle. A stepwise potential energy surface (PES), where the optimized commensurate configuration (AB stacking) corresponds to the global minimum and all incommensurate configurations correspond to nearly equal energies, is shown. The stepwise behavior is attributed to the alternating appearance of AB and AA stacking-like areas and the transition areas between them. Further, the PES of most incommensurate configurations is found to be ultra-smooth. Based on this, the puzzling experimental observation of graphite flake self-retraction is successfully explained.

  8. Interaction between graphene layers and the mechanisms of graphite's superlubricity and self-retraction

    NASA Astrophysics Data System (ADS)

    Xu, Ziwei; Li, Xiuxia; Yakobson, Boris I.; Ding, Feng

    2013-07-01

    Graphene layer-layer interaction is explored as a function of the misorientation angle. A stepwise potential energy surface (PES), where the optimized commensurate configuration (AB stacking) corresponds to the global minimum and all incommensurate configurations correspond to nearly equal energies, is shown. The stepwise behavior is attributed to the alternating appearance of AB and AA stacking-like areas and the transition areas between them. Further, the PES of most incommensurate configurations is found to be ultra-smooth. Based on this, the puzzling experimental observation of graphite flake self-retraction is successfully explained.

  9. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).

    PubMed

    Cong, Chunxiao; Yu, Ting; Saito, Riichiro; Dresselhaus, Gene F; Dresselhaus, Mildred S

    2011-03-22

    Though graphene has been intensively studied by Raman spectroscopy, in this letter, we report a study of the second-order overtone and combination Raman modes in a mostly unexplored frequency range of 1690-2150 cm(-1) in nonsuspended commensurate (AB-stacked), incommensurate (folded) and suspended graphene layers. On the basis of the double resonance theory, four dominant modes in this range have been assigned to (i) the second order out-of-plane transverse mode (2oTO or M band), (ii) the combinational modes of in-plane transverse acoustic mode and longitudinal optical mode (iTA+LO), (iii) in-plane transverse optical mode and longitudinal acoustic mode (iTO+LA), and (iv) longitudinal optical mode and longitudinal acoustic mode (LO+LA). Differing from AB-stacked bilayer graphene or few layer graphene, single layer graphene shows the disappearance of the M band. Systematic analysis reveals that interlayer interaction is essential for the presence (or absence) of the M band, whereas the substrate has no effect on the presence (or absence) of the M band. Dispersive behaviors of these "new" Raman modes in graphene have been probed by laser excitation energy-dependent Raman spectroscopy. It is found that the appearance of the M band strictly depends on the AB stacking, which could be used as a fingerprint for AB-stacked bilayer graphene. This work expands upon the unique and powerful abilities of Raman spectroscopy to study graphene and provides another effective way to probe phonon dispersion, electron-phonon coupling, and to exploit the electronic band structure of graphene layers.

  10. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors.

    PubMed

    Wu, Zhong-Shuai; Parvez, Khaled; Winter, Andreas; Vieker, Henning; Liu, Xianjie; Han, Sheng; Turchanin, Andrey; Feng, Xinliang; Müllen, Klaus

    2014-07-09

    Highly uniform, ultrathin, layer-by-layer heteroatom (N, B) co-doped graphene films are fabricated for high-performance on-chip planar micro-supercapacitors with an ultrahigh volumetric capacitance of ∼488 F cm(-3) and excellent rate capability due to the synergistic effect of nitrogen and boron co-doping.

  11. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2.

    PubMed

    Teague, M L; Lai, A P; Velasco, J; Hughes, C R; Beyer, A D; Bockrath, M W; Lau, C N; Yeh, N-C

    2009-07-01

    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO(2) substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene.

  12. Effect of radical fluorination on mono- and bi-layer graphene in Ar/F{sub 2} plasma

    SciTech Connect

    Tahara, K.; Iwasaki, T.; Hatano, M.; Matsutani, A.

    2012-10-15

    Fluorinated graphene has the possibility to achieve unique properties and functions in graphene. We propose a highly controlled fluorination method utilizing fluorine radicals in Ar/F{sub 2} plasma. To suppress ion bombardments and improve the reaction with fluorine radicals on graphene, the substrate was placed 'face down' in the plasma chamber. Although monolayer graphene was more reactive than bilayer, fluorination of bilayer reached the level of I{sub D}/I{sub G} {approx} 0.5 in Raman D peak intensity at 532 nm excitation. Annealing fluorinated samples proved reversibility of radical fluorination for both mono- and bi-layer graphenes. X-ray photoelectron spectroscopy showed the existence of carbon-fluorine bonding.

  13. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  14. Long-Term Passivation of Strongly Interacting Metals with Single-Layer Graphene

    PubMed Central

    2015-01-01

    The long-term (>18 months) protection of Ni surfaces against oxidation under atmospheric conditions is demonstrated by coverage with single-layer graphene, formed by chemical vapor deposition. In situ, depth-resolved X-ray photoelectron spectroscopy of various graphene-coated transition metals reveals that a strong graphene–metal interaction is of key importance in achieving this long-term protection. This strong interaction prevents the rapid intercalation of oxidizing species at the graphene–metal interface and thus suppresses oxidation of the substrate surface. Furthermore, the ability of the substrate to locally form a passivating oxide close to defects or damaged regions in the graphene overlayer is critical in plugging these defects and preventing oxidation from proceeding through the bulk of the substrate. We thus provide a clear rationale for understanding the extent to which two-dimensional materials can protect different substrates and highlight the key implications for applications of these materials as barrier layers to prevent oxidation. PMID:26499041

  15. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials.

    PubMed

    Sedykh, A E; Gordeev, E G; Pentsak, E O; Ananikov, V P

    2016-02-14

    Graphene can efficiently shield chemical interactions and gradually decrease the binding to reactive defect areas. In the present study, we have used the observed graphene shielding effect to control the reactivity patterns on the carbon surface. The experimental findings show that a surface coating with a tiny carbon layer of 1-2 nm thickness is sufficient to shield the defect-mediated reactivity and create a surface with uniform binding ability. The shielding effect was directly observed using a combination of microscopy techniques and evaluated with computational modeling. The theoretical calculations indicate that a few graphene layers can drastically reduce the binding energy of the metal centers to the surface defects by 40-50 kcal mol(-1). The construction of large carbon areas with controlled surface reactivity is extremely difficult, which is a key limitation in many practical applications. Indeed, the developed approach provides a flexible and simple tool to change the reactivity patterns on large surface areas within a few minutes.

  16. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  17. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.

    PubMed

    Li, Shao-Sian; Tu, Kun-Hua; Lin, Chih-Cheng; Chen, Chun-Wei; Chhowalla, Manish

    2010-06-22

    The utilization of graphene oxide (GO) thin films as the hole transport and electron blocking layer in organic photovoltaics (OPVs) is demonstrated. The incorporation of GO deposited from neutral solutions between the photoactive poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) layer and the transparent and conducting indium tin oxide (ITO) leads to a decrease in recombination of electrons and holes and leakage currents. This results in a dramatic increase in the OPV efficiencies to values that are comparable to devices fabricated with PEDOT:PSS as the hole transport layer. Our results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.

  18. Microstructure and Functional Mechanism of Friction Layer in Ni3Al Matrix Composites with Graphene Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Xue, Bing; Zhu, Qingshuai; Shi, Xiaoliang; Zhai, Wenzheng; Yang, Kang; Huang, Yuchun

    2016-10-01

    Microstructure and functional mechanism of friction layer need to be further researched. In the present work, the friction coefficients and wear rates are analyzed through response surface methodology to obtain an empirical model for the best response. Fitting results show that the tribological performance of Ni3Al matrix composites (NMCs) with graphene nanoplatelets (GNPs) is better than that of NMCs without GNPs, especially at high sliding velocities and high loads. Further research suggests that the formation of integrated friction layer, which consists of a soft microfilm on a hard coating, is the major reason to cause the differences. Of which, the wear debris layer (WDL) with a low shear strength can reduce the shear force. The ultrafine layer (UL), which is much harder and finer, can effectively avoid fracture and improve the load support capacity. Moreover, the GNPs in WDL and UL can be easily sheared and help to withstand the loads, trending to be parallel to the direction of shear force.

  19. The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate.

    PubMed

    Dou, Wei-Dong; Yang, Qingdan; Lee, Chun-Sing

    2013-05-10

    While oxygen is typically considered undesirable during the chemical vapor deposition (CVD) of graphene on metal substrates, we demonstrate that suitable amounts of oxygen in the CVD system can in fact improve the uniformity and thickness control of the graphene film. The role of oxygen on the CVD of graphene on a nickel substrate using a propylene precursor was investigated with various surface analytical techniques. It was found that the number of carbon layers in the deposited graphene sample decreases as the concentration of oxygen increases. In particular, single-layer graphene can be easily obtained with an oxygen/propylene ratio of 1/9. In the presence of oxygen, a thin layer of nickel oxide will form on the substrate. The oxide layer decreases the concentration of carbon atoms dissolved in the nickel substrate and results in graphene samples with a decreasing number of carbon layers.

  20. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan

    NASA Astrophysics Data System (ADS)

    Tian, Mingwei; Hu, Xili; Qu, Lijun; Du, Minzhi; Zhu, Shifeng; Sun, Yaning; Han, Guangting

    2016-07-01

    Cotton fabrics with robust ultraviolet protective property can be facilely prepared by depositing graphene oxide (GO) and chitosan (CS) upon fabric substrate via the electrostatic layer-by-layer self-assembly approach. The structure and morphology of the resultant fabrics were characterized by SEM, AFM, FTIR, XPS and dyeing color depth (K/S value), and the ultraviolet (UV) blocking properties were also further investigated. As expected, the UV protection ability was evaluated with Ultraviolet Protection Factor (UPF), and the cotton fabrics deposited with GO and CS showed more than 40-fold increase with a UPF value of 452 than that of control cotton (UPF rating at 9.37). Moreover, the LbL deposited fabric showed excellent washing durability even after 10 times water laundering.

  1. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films.

    PubMed

    Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju

    2013-12-15

    Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively.

  2. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  3. Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Panahi, M.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-08-01

    In this paper, a novel scheme is proposed for the giant enhanced Kerr nonlinearity in a single layer of graphene nanostructure based on quantum optics and nonlinear optical sciences. The linear and the nonlinear susceptibility of the monolayer graphene system are presented in details by using the density matrix method and perturbation theory. After deriving the equations of motion in the steady-state regime, we analytically solve the linear and nonlinear susceptibility of the system. Our numerical results show that the giant enhanced Kerr nonlinearity can be obtained in the double-dark-resonance condition with zero linear and nonlinear absorption. Our results may have potential applications in quantum information science in infrared and terahertz regimes.

  4. Preparation of few-layer graphene-capped boron nanowires and their field emission properties

    NASA Astrophysics Data System (ADS)

    Yong-Xin, Zhang; Fei, Liu; Cheng-Min, Shen; Tian-Zhong, Yang; Jun, Li; Shao-Zhi, Deng; Ning-Sheng, Xu; Hong-Jun, Gao

    2016-07-01

    Large-area boron nanowire (BNW) films were fabricated on the Si(111) substrate by chemical vapor deposition (CVD). The average diameter of the BNWs is about 20 nm, with lengths of 5-10 μm. Then, graphene-capped boron nanowires (GC-BNWs) were obtained by microwave plasma chemical vapor deposition (MPCVD). Characterization by scanning electron microscopy indicates that few-layer graphene covers the surface of the boron nanowires. Field emission measurements of the BNWs and GC-BNW films show that the GC-BNW films have a lower turn-on electric field than the BNW films. Project supported by the National Basic Research Program of China (Grant No. 2013CB933604), the National Natural Science Foundation of China (Grant No. 51572290), and the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100).

  5. High-power thulium fiber laser Q switched with single-layer graphene.

    PubMed

    Tang, Yulong; Yu, Xuechao; Li, Xiaohui; Yan, Zhiyu; Wang, Qi Jie

    2014-02-01

    We report high-power 2 μm Tm3+ fiber lasers passively Q switched by double-piece single-layer graphene transferred onto a glass plate. Through manipulating intracavity laser beam size and increasing pump ratios, an average power of 5.2 W is directly achieved from the laser oscillator with an optical-to-optical slope efficiency of 26%. The laser pulse energy can be as high as ∼18  μJ, comparable to that from actively Q-switched fiber lasers. The narrowest pulse width is 320 ns, and the pulse repetition rate can be tuned from tens of kilohertz to 280 kHz by changing the pump power. To the best of our knowledge, this is the highest average power and pulse energy, as well as the narrowest pulse width, from graphene-based Q-switched 2 μm fiber lasers.

  6. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  7. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite.

    PubMed

    Pettes, Michael Thompson; Ji, Hengxing; Ruoff, Rodney S; Shi, Li

    2012-06-13

    At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.

  8. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties.

    PubMed

    Zhao, Zhisheng; Wang, Erik F; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-02-04

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young's moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson's ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.

  9. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  10. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    NASA Astrophysics Data System (ADS)

    Solookinejad, G.

    2016-09-01

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  11. High-energy collective electronic excitations in free-standing single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wachsmuth, P.; Hambach, R.; Kinyanjui, M. K.; Guzzo, M.; Benner, G.; Kaiser, U.

    2013-08-01

    In this joint experimental and theoretical work, we investigate collective electronic excitations (plasmons) in free-standing, single-layer graphene. The energy- and momentum-dependent electron energy-loss function was measured up to 50eV along two independent in-plane symmetry directions (ΓM and ΓK) over the first Brillouin zone by momentum-resolved electron energy-loss spectroscopy in a transmission electron microscope. We compare our experimental results with corresponding time-dependent density-functional theory calculations. For finite momentum transfers, good agreement with experiments is found if crystal local-field effects are taken into account. In the limit of small and vanishing momentum transfers, we discuss differences between calculations and the experimentally obtained electron energy-loss functions of graphene due to a finite momentum resolution and out-of-plane excitations.

  12. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  13. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit

    NASA Astrophysics Data System (ADS)

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.

    2016-07-01

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  14. Current Scaling and Dirac Fermion Heating in Multi-Layer Graphene.

    PubMed

    Chuang, Chiashain; Woo, Tak-Pong; Mahjoub, Akram M; Ouchi, Takahiro; Hsu, Chang-Shun; Chin, Chia-Pei; Aoki, Nobuyuki; Lin, Li-Hung; Ochiai, Yuichi; Liangl, Chi-Te

    2015-02-01

    We have performed transport measurements on a multi-layer graphene device fabricated by conventional mechanical exfoliation. By using the zero-field resistance of our graphene device as a self-thermometer, we are able to determine the effective Dirac fermion temperature TDF at various driving currents I while keeping the lattice constant fixed. Interesting, it is found that TDF is proportional to Ia where a ~ 1. According to theoretical and experimental studies, the exponent a is given by 2/(2+p) where the charge-phonon scattering rate 1/τph is proportional to TP. Therefore our results yield p ~ 0, suggesting that there is little Dirac fermion-phonon scattering, a great advantage for applications in nanoelectronics.

  15. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects.

    PubMed

    Liu, Xuan-He; Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun

    2014-10-29

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal chalcogenides, show many interesting dimension-related materials properties. Inspired by the development of 2D inorganic nanomaterials, single-layered covalent organic frameworks (sCOFs), featuring atom-thick sheets and crystalline extended organic structures with covalently bonded building blocks, have attracted great attention in recent years. With their unique graphene-like topological structure and the merit of structural diversity, sCOFs promise to possess novel and designable properties. However, the synthesis of sCOFs with well-defined structures remains a great challenge. Herein, the recent development of the bottom-up synthesis methods of 2D sCOFs, such as thermodynamic equilibrium control methods, growth-kinetics control methods, and surface-assisted covalent polymerization methods, are reviewed. Finally, some of the critical properties and application prospects of these materials are outlined.

  16. Large photocurrents in single layer graphene thin films: effects of diffusion and drift

    NASA Astrophysics Data System (ADS)

    Loomis, James; Panchapakesan, Balaji

    2012-07-01

    This paper reports large photocurrents in air-assisted depositions of single layer graphene (derived from reduced single layer graphene oxide) upon illumination with near-infrared (NIR) light. NIR-induced charge carrier generation and subsequent separation at the metal-graphene interface resulted in photocurrent generation. Varying bias voltages were applied to test samples and allowed for evaluating photoresponses in either diffusion- or drift-dominated regions. In the diffusion-dominated region, position-dependent effects of photoconductivity were demonstrated. The photocurrent exhibited increase when the positive electrode was illuminated, decrease when the negative electrode was illuminated, and negligible response when the area between the electrodes was illuminated. At a 100 μV bias voltage, a per cent change in current from ˜150% (40 mW NIR) to ˜1800% (335 mW NIR) is reported. Such large photocurrent responses result from built-in electric fields and optically generated temperature gradients (maximum NIR-induced temperature rise ˜70 °C). The per cent photocurrent change was observed to depend on both annealing temperature and NIR power, but not resistance value. In the drift-dominated realm, a Gaussian photocurrent profile was obtained, signaling drift of charge carriers with increase in localized electric field, akin to the classic Haynes-Shockley experiment. A minority carrier mobility value of μ ˜ 700 cm2 V -1 s-1 is reported. The simple low cost graphene devices presented in this paper were fabricated without lithographic processing and are ideal candidates for assorted infrared imaging applications.

  17. Large photocurrents in single layer graphene thin films: effects of diffusion and drift.

    PubMed

    Loomis, James; Panchapakesan, Balaji

    2012-07-05

    This paper reports large photocurrents in air-assisted depositions of single layer graphene (derived from reduced single layer graphene oxide) upon illumination with near-infrared (NIR) light. NIR-induced charge carrier generation and subsequent separation at the metal-graphene interface resulted in photocurrent generation. Varying bias voltages were applied to test samples and allowed for evaluating photoresponses in either diffusion- or drift-dominated regions. In the diffusion-dominated region, position-dependent effects of photoconductivity were demonstrated. The photocurrent exhibited increase when the positive electrode was illuminated, decrease when the negative electrode was illuminated, and negligible response when the area between the electrodes was illuminated. At a 100 μV bias voltage, a per cent change in current from ∼150% (40 mW NIR) to ∼1800% (335 mW NIR) is reported. Such large photocurrent responses result from built-in electric fields and optically generated temperature gradients (maximum NIR-induced temperature rise ∼70 °C). The per cent photocurrent change was observed to depend on both annealing temperature and NIR power, but not resistance value. In the drift-dominated realm, a Gaussian photocurrent profile was obtained, signaling drift of charge carriers with increase in localized electric field, akin to the classic Haynes-Shockley experiment. A minority carrier mobility value of μ ∼700 cm² V⁻¹ s⁻¹ is reported. The simple low cost graphene devices presented in this paper were fabricated without lithographic processing and are ideal candidates for assorted infrared imaging applications.

  18. Intrinsic carrier mobility of a single-layer graphene covalently bonded with single-walled carbon nanotubes

    SciTech Connect

    Li, Dian; Shao, Zhi-Gang; Hao, Qing; Zhao, Hongbo

    2014-06-21

    We report intrinsic carrier mobility calculations of a two-dimensional nanostructure that consists of porous single layer graphene covalently bonded with single-walled carbon nanotubes on both sides. We used first-principles calculation and found that the deformation potential of such system is about 25% of that of graphene, and the carrier mobility is about 5 × 10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for both electrons and holes, about one order of magnitude lower than that of graphene. This nanostructure and its three-dimensional stacking could serve as novel organic electronic materials.

  19. Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams

    SciTech Connect

    Wetzel, Benjamin Xie, Chen; Lacourt, Pierre-Ambroise; Dudley, John M.; Courvoisier, Francois

    2013-12-09

    We report the fabrication of micro and nano-disks in single layer chemical vapor deposition graphene on glass substrate using femtosecond laser ablation with vortex Bessel beams. The fabricated graphene disks with diameters ranging from 650 nm to 4 μm were characterized by spatially resolved micro-Raman spectroscopy. The variation of ablation threshold was investigated as a function of the number of pulses showing an incubation effect. A very high degree of size control of the fabricated graphene disks is enabled using a sequence of femtosecond pulses with different vortex orders.

  20. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates.

    PubMed

    Irigoyen, Joseba; Politakos, Nikolaos; Diamanti, Eleftheria; Rojas, Elena; Marradi, Marco; Ledezma, Raquel; Arizmendi, Layza; Rodríguez, J Alberto; Ziolo, Ronald F; Moya, Sergio E

    2015-01-01

    A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  1. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    PubMed Central

    Irigoyen, Joseba; Politakos, Nikolaos; Diamanti, Eleftheria; Rojas, Elena; Marradi, Marco; Ledezma, Raquel; Arizmendi, Layza; Rodríguez, J Alberto; Ziolo, Ronald F

    2015-01-01

    Summary A novel and facile method was developed to produce hybrid graphene oxide (GO)–polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies. PMID:26734521

  2. A comparative density functional study on electrical properties of layered penta-graphene

    SciTech Connect

    Yu, Zhi Gen Zhang, Yong-Wei

    2015-10-28

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN and ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.

  3. Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization

    PubMed Central

    Amiri, Ahmad; Ahmadi, Goodarz; Shanbedi, Mehdi; Savari, Maryam; Kazi, S. N.; Chew, B. T.

    2015-01-01

    Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications. PMID:26643279

  4. Mechanical and electronic coupling in few-layer graphene and hBN wrinkles: a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, Yufeng; Qiu, Jiapeng; Guo, Wanlin

    2016-12-01

    Wrinkle engineering is an important pathway to develop novel functional devices of two-dimensional materials. By combining first-principles calculations and continuum mechanics modelling, we have investigated the wrinkling of few-layer graphene and hexagonal boron nitride (hBN) and provide a way to estimate their bending stiffness. For few-layer wrinkles under the same strain, the magnitude of structural deformation of each constituent layer gradually decreases from bottom to top layers, while interlayer interaction increases with increasing layer number. Comparing with monolayer wrinkles, the electronic properties of few-layer wrinkles are more sensitive to bending deformation as mechanical and electronic coupling induce charge redistribution at the wrinkles, making few-layer graphene and hBN wrinkles suitable for electromechanical system application.

  5. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Deka Boruah, Buddha; Mukherjee, Anwesha; Misra, Abha

    2016-03-01

    A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

  6. Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

    DOE PAGES

    Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; ...

    2016-01-29

    Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800–1100°C, we report an increase inmore » the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm₋1 to 2300 cm₋1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Lastly, Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100°C.« less

  7. Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

    SciTech Connect

    Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; Kisslinger, Kim; Zhu, Yimei; Pulecio, Javier F.

    2016-01-29

    Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800–1100°C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm₋1 to 2300 cm₋1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Lastly, Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100°C.

  8. Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

    PubMed Central

    Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; Kisslinger, Kim; Zhu, Yimei; Pulecio, Javier F.

    2016-01-01

    Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800 –1100 °C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm−1 to 2300 cm−1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 °C. PMID:26821604

  9. Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; Kisslinger, Kim; Zhu, Yimei; Pulecio, Javier F.

    2016-01-01

    Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800 –1100 °C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm‑1 to 2300 cm‑1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 °C.

  10. Lithium-Intercalated Few Layer Graphene: Approaching the Limits of Transparency and Conductivity in Graphene-based Materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong; Wan, Jiayu; Han, Xiaogang; Cai, Xinghan; Zhu, Hongli; Kim, Dohun; Xu, Yunlu; Munday, Jeremy; Drew, H. Dennis; Fuhrer, Michael; Hu, Liangbing; University Of Maryland College Park Collaboration

    2014-03-01

    We measure simultaneous in situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. Reversible Li-intercalation stages and a two-phase boundary are observed optically. Due to the unusual electronic structure of FLG, upon intercalation we observe a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials. Transmission as high as 91.7% for sheet resistance of 3.0 Ω/square is achieved for 19 layer LiC6, corresponding to a figure of merit (FOM) σdc/σopt = 1400, five times higher than any previously demonstrated for a continuous transparent electrode. The unconventional modification of FLG optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. Our techniques can enable investigation of other aspects of intercalation in nanostructures, for example intercalation dynamics and solid-electrolyte interface formation.

  11. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing.

    PubMed

    Xi, Qian; Chen, Xu; Evans, David G; Yang, Wensheng

    2012-06-26

    A uniform three-dimensional (3D) gold nanoparticle (AuNP)-embedded porous graphene (AuEPG) thin film has been fabricated by electrostatic layer-by-layer assembly of AuNPs and graphene nanosheets functionalized with bovine serum albumin and subsequent thermal annealing in air at 340 °C for 2 h. Scanning electron microscopy (SEM) investigations for the AuEPG film indicate that an AuNP was embedded in every pore of the porous graphene film, something that was difficult to achieve with previously reported methods. The mechanism of formation of the AuEPG film was initially explored. Application of the AuEPG film in electrochemical sensing was further demonstrated by use of H(2)O(2) as a model analyte. The AuEPG film-modified electrode showed improved electrochemical performance in H(2)O(2) detection compared with nonporous graphene-AuNP composite film-modified electrodes, which is mainly attributed to the porous structure of the AuEPG film. This work opens up a new and facile way for direct preparation of metal or metal oxide nanoparticle-embedded porous graphene composite films, which will enable exciting opportunities in highly sensitive electrochemical sensors and other advanced applications based on graphene-metal composites.

  12. Experimental investigation of metallic thin film modification of nickel substrates for chemical vapor deposition growth of single layer graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Aminalragia Giamini, Sigiava; Marquez-Velasco, Jose; Sakellis, Ilias; Tsipas, Polychronis; Kelaidis, Nikolaos; Tsoutsou, Dimitra; Boukos, Nikolaos; Kantarelou, Vasiliki; Xenogiannopoulou, Evangelia; Speliotis, Thanassis; Aretouli, Kleopatra; Kordas, George; Dimoulas, Athanasios

    2016-11-01

    Lowering the growth temperature of single layer graphene by chemical vapor deposition (CVD) is important for its real-life application and mass production. Doing this without compromising quality requires advances in catalytic substrates. It is shown in this work that deposition of Zn and Bi metals modify the surface of nickel suppressing the uncontrollable growth of multiple layers of graphene. As a result, single layer graphene is obtained by CVD at 600 °C with minimum amount of defects, showing substantial improvement over bare Ni. In contrast, Cu, and Mo suppress graphene growth. We also show that graphene grown with our method has a defect density that is strongly dependent on the roughness of the original nickel foil. Good quality or highly defective holey single layer graphene can be grown at will by selecting a smooth or rough foil substrate respectively.

  13. The Effect of Growth Parameters on the Intrinsic Properties of Large-Area Single Layer Graphene Grown by Chemical Vapor Deposition on Cu

    SciTech Connect

    Regmi, Murari; Chisholm, Matthew F; Eres, Gyula

    2012-01-01

    We present a comprehensive study of the parameter space for single layer graphene growth by chemical vapor deposition on Cu. The temperature is the most widely recognized parameter in single layer graphene growth. We show that the methane-to-hydrogen ratio and the growth pressure also are critical parameters that affect the structural perfection and the cleanliness of graphene. The optimal conditions for suppressing double and multilayer graphene growth occur near 1000 C, 1:20 methane-to-hydrogen ratio, and a total pressure in the range from 0.5 to 1 Torr. Raman mapping of a 40x30 m2 area shows single layer domains with 5-10 m linear dimensions. Atomic resolution imaging of suspended graphene by aberration corrected scanning transmission electron microscopy shows that the cleanest single layer graphene consists of areas of 10-15 nm linear dimensions and smaller patches of residual contamination that was undetected by other characterization methods.

  14. High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, Abd Rashid Bin; Kim, Hyeong Pil; Jang, Jin

    2014-01-01

    We report air stable inverted organic photovoltaics (OPVs) incorporating graphene oxide (GO) and solution processed zinc oxide (ZnO) as hole transport and electron transport layers, respectively. Both the hole transport layer and the electron transport layer (HTL and ETL) are of advantage in high transparency and environmental stability. The use of GO and ZnO in poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC70BM)-based inverted OPVs leads to an improved device stability and enhanced high open circuit voltage (Voc) of 0.81 V, a short-circuit current density (Jsc) of 14.10 mA cm-2, and a fill factor (FF) of 54.44 along with a power conversion efficiency of 6.20%.

  15. Study on the high spectral intensity at the Dirac energy of single-layer graphene on an SiC substrate

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoong; Hwang, Choongyu

    2016-04-01

    We have investigated electron band structure of epitaxially grown graphene on an SiC(0001) substrate using angle-resolved photoemission spectroscopy. In single-layer graphene, abnormal high spectral intensity is observed at the Dirac energy whose origin has been questioned between in-gap states induced by the buffer layer and plasmaron bands induced by electron-plasmon interactions. With the formation of double-layer graphene, the Dirac energy does not show the high spectral intensity any longer different from the single-layer case. The inconsistency between the two systems suggests that the main ingredient of the high spectral intensity at the Dirac energy of single-layer graphene is the electronic states originating from the coupling of the graphene π bands to the localized π states of the buffer layer, consistent with the theoretical prediction on the presence of in-gap states.

  16. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes.

    PubMed

    Li, Ning; Oida, Satoshi; Tulevski, George S; Han, Shu-Jen; Hannon, James B; Sadana, Devendra K; Chen, Tze-Chiang

    2013-01-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m(-2) with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W(-1) at 3,000 cd m(-2), comparable to the most efficient lighting technologies.

  17. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Shaygan, Mehrdad; Turner, Kevin T.; Bargatin, Igor

    2016-04-01

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young’s modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young’s modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed.

  18. Density Functional Theory Study of Atomic Layer Deposition of Zinc Oxide on Graphene

    NASA Astrophysics Data System (ADS)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2015-07-01

    The dissociation of zinc ions (Zn2+) from vapor-phase zinc acetylacetonate, Zn(C5H7O2)2, or Zn(acac)2 and its adsorption onto graphene oxide via atomic layer deposition (ALD) were studied using a quantum mechanics approach. Density functional theory (DFT) was used to obtain an approximate solution to the Schrödinger equation. The graphene oxide cluster model was used to represent the surface of the graphene film after pre-oxidation. In this study, the geometries of reactants, transition states, and products were optimized using the B3LYB/6-31G** level of theory or higher. Furthermore, the relative energies of the various intermediates and products in the gas-phase radical mechanism were calculated at the B3LYP/6-311++G** and MP2/6-311 + G(2df,2p) levels of theory. Additionally, a molecular orbital (MO) analysis was performed for the products of the decomposition of the Zn(acac)2 complex to investigate the dissociation of Zn2+ and the subsequent adsorption of H atoms on the C5H7O2 cluster to form acetylacetonate enol. The reaction energies were calculated, and the reaction mechanism was accordingly proposed. A simulation of infrared (IR) properties was performed using the same approach to support the proposed mechanism via a complete explanation of bond forming and breaking during each reaction step.

  19. MgO-decorated few-layered graphene as an anode for li-ion batteries.

    PubMed

    Petnikota, Shaikshavali; Rotte, Naresh K; Reddy, M V; Srikanth, Vadali V S S; Chowdari, B V R

    2015-02-04

    Combustion of magnesium in dry ice and a simple subsequent acid treatment step resulted in a MgO-decorated few-layered graphene (FLG) composite that has a specific surface area of 393 m(2)/g and an average pore volume of 0.9 cm(3)/g. As an anode material in Li-ion batteries, the composite exhibited high reversible capacity and excellent cyclic performance in spite of high first-cycle irreversible capacity loss. A reversible capacity as high as 1052 mAh/g was measured during the first cycle. Even at the end of the 60th cycle, more than 83% of the capacity could be retained. Cyclic voltammetry results indicated pseudocapacitance behavior due to electrochemical absorption and desorption of lithium ions onto graphene. An increase in the capacity has been observed during long-term cycling owing to electrochemical exfoliation of graphene sheets. Owing to its good thermal stability and superior cyclic performance with high reversible capacities, MgO-decked FLG can be an excellent alternative to graphite as an anode material in Li-ion batteries, after suitable modifications.

  20. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    SciTech Connect

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-20

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO{sub 2}/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 10{sup 15 }cm{sup −2} onto the surface of the Ni/SiO{sub 2}/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp{sup 2}-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  1. Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer

    SciTech Connect

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Okyay, Ali K.

    2014-07-21

    A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage V{sub t} shift (4 V) at low operating voltage (6/−6 V), good retention (>10 yr), and good endurance characteristic (>10{sup 4} cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced V{sub t} shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger V{sub t} shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E ≥ 5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications.

  2. Single layer graphene band hybridization with silver nanoplates: Interplay between doping and plasmonic enhancement

    NASA Astrophysics Data System (ADS)

    Syed, Salmaan R.; Lim, Guh-Hwan; Flanders, Stuart J.; Taylor, Adam B.; Lim, Byungkwon; Chon, James W. M.

    2016-09-01

    In this paper, we report single layer graphene (SLG) hybridized with silver nanoplates, in which nanoplates act as either a charge doping or a field enhancement source for the SLG Raman spectrum. Surprisingly, the stiffening of both G and 2D peaks of more than 10 cm-1 was observed with no plasmonic enhancement of peaks, indicating that p-doping from nanoplates on SLG is occurring. Such observation is explained in terms of the contact separation distance between the graphene and the silver nanoplates being enough (˜4 Å) to cause a Fermi level shift in graphene to allow p-doping. When nanoplates were modified in shape with laser irradiation by either photothermal plasmon printing or laser induced ablation, the charge doping was lifted and the strong plasmonic enhancement of Raman signals was observed, indicating that the separation distance is increased. Further, when the nanoplates are oxidized, the two effects on the Raman bands of SLG are turned off, returning the Raman signals back to the original SLG state.

  3. Density Functional Theory Study of Atomic Layer Deposition of Zinc Oxide on Graphene.

    PubMed

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2015-12-01

    The dissociation of zinc ions (Zn(2+)) from vapor-phase zinc acetylacetonate, Zn(C5H7O2)2, or Zn(acac)2 and its adsorption onto graphene oxide via atomic layer deposition (ALD) were studied using a quantum mechanics approach. Density functional theory (DFT) was used to obtain an approximate solution to the Schrödinger equation. The graphene oxide cluster model was used to represent the surface of the graphene film after pre-oxidation. In this study, the geometries of reactants, transition states, and products were optimized using the B3LYB/6-31G** level of theory or higher. Furthermore, the relative energies of the various intermediates and products in the gas-phase radical mechanism were calculated at the B3LYP/6-311++G** and MP2/6-311 + G(2df,2p) levels of theory. Additionally, a molecular orbital (MO) analysis was performed for the products of the decomposition of the Zn(acac)2 complex to investigate the dissociation of Zn(2+) and the subsequent adsorption of H atoms on the C5H7O2 cluster to form acetylacetonate enol. The reaction energies were calculated, and the reaction mechanism was accordingly proposed. A simulation of infrared (IR) properties was performed using the same approach to support the proposed mechanism via a complete explanation of bond forming and breaking during each reaction step.

  4. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    NASA Astrophysics Data System (ADS)

    Wang, Yuqing; Feng, Yi; Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin

    2014-07-01

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100 keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200 keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  5. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    SciTech Connect

    Wang, Yuqing; Feng, Yi Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin

    2014-07-14

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100 keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200 keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  6. Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Aleshkin, V. Ya.; Dubinov, A. A.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2014-04-21

    We propose and theoretically substantiate the concept of terahertz and infrared photodetectors using the resonant radiative transitions between graphene layers (GLs) in double-GL structures. The calculated absorption spectrum and the spectral characteristics of the photodetector responsivity exhibit sharp resonant maxima at the photon energies in a wide range. The resonant maxima can be tuned by the applied voltage. We compare the photodetector responsivity with that of the GL p-i-n photodiodes and quantum-well infrared photodetectors. Weak temperature dependences of the photocurrent and dark current enable the effective operation of the proposed photodetector at room temperature.

  7. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.

    PubMed

    Strelchuk, V V; Nikolenko, A S; Gubanov, V O; Biliy, M M; Bulavin, L A

    2012-11-01

    In the present work, we used Raman spectroscopy as sensitive tool for characterization of dispersion of electron-phonon resonances in one-layer graphene. We analyzed Stokes and anti-Stokes components of the Raman spectra to investigate the temperature dependence of the graphene G-band on the power of exciting radiation. Appearance and drastic intensity increase of zone-edge D-like modes caused by introduction of structural defects and/or deformations in the graphene layer were observed in the Raman spectra at high powers of excitation. We investigated phonon dispersion of one-layer graphene for iTO phonon branch at K point along K-M direction, which is involved in double-resonance Raman scattering. Raman dispersion slope of D-band is in good agreement with results of theoretical calculations based on the Green's functions approach based on the screened electron-electron interaction. Deviation of the experimental iTO phonon frequency from the linear dependence on excitation energy was observed at excitation E(exc) = 3.81 eV. Self-consistent classification of phonon states according to the symmetry for all dispersion branches of one-layer graphene was carried out.

  8. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.

    PubMed

    Yang, Xi; Zhang, Long; Zhang, Fan; Huang, Yi; Chen, Yongsheng

    2014-05-27

    Because of advantages such as excellent electronic conductivity, high theoretical specific surface area, and good mechanical flexibility, graphene is receiving increasing attention as an additive to improve the conductivity of sulfur cathodes in lithium-sulfur (Li-S) batteries. However, graphene is not an effective substrate material to confine the polysulfides in cathodes and stable the cycling. Here, we designed and synthesized a graphene-based layered porous carbon material for the impregnation of sulfur as cathode for Li-S battery. In this composite, a thin layer of porous carbon uniformly covers both surfaces of the graphene and sulfur is highly dispersed in its pores. The high specific surface area and pore volume of the porous carbon layers not only can achieve a high sulfur loading in highly dispersed amorphous state, but also can act as polysulfide reservoirs to alleviate the shuttle effect. When used as the cathode material in Li-S batteries, with the help of the thin porous carbon layers, the as-prepared materials demonstrate a better electrochemical performance and cycle stability compared with those of graphene/sulfur composites.

  9. Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon

    NASA Astrophysics Data System (ADS)

    Murata, H.; Toko, K.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2017-01-01

    Multilayer graphene (MLG) growth on arbitrary substrates is desired for incorporating carbon wiring and heat spreaders into electronic devices. We investigated the metal-induced layer exchange growth of a sputtered amorphous C layer using Ni as a catalyst. A MLG layer uniformly formed on a SiO2 substrate at 600 °C by layer exchange between the C and Ni layers. Raman spectroscopy and electron microscopy showed that the resulting MLG layer was highly oriented and contained relatively few defects. The present investigation will pave the way for advanced electronic devices integrated with carbon materials.

  10. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  11. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.

    PubMed

    Han, Kyu Seok; Kalode, Pranav Y; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-03-07

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.

  12. Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure.

    PubMed

    Mehdipour, Hamid; Ostrikov, Kostya Ken

    2012-11-27

    Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

  13. Layer-by-layer assembly of polyelectrolyte and graphene oxide for open-tubular capillary electrochromatography.

    PubMed

    Qu, Qishu; Gu, Chenhao; Gu, Zuli; Shen, Yuqi; Wang, Chengyin; Hu, Xiaoya

    2013-03-22

    In this paper, open-tubular capillary column coated with graphene oxide (GO) was prepared through ionic adsorption of negatively charged GO nanosheets onto the capillary wall pre-modified with positively charged poly(diallydimethylammonium chloride) (PDDA). Thus prepared coating was very stable and could endure over 200 separations. The electroosmotic flow (EOF) characteristics of bare fused silica capillary column, PDDA coated column, and GO-PDDA coated column (GO-PDDA@column) were investigated by varying the percentage of methanol in buffer and the buffer pH value. The run-to-run, day-to-day, and column-to-column reproducibilities of EOF on GO-PDDA@column were satisfying with relative standard deviation values of less than 2% in all cases. The stationary phase displays a characteristic reversed-phase behavior. The GO-PDDA@column was also used to separate proteins in egg white. Both basic and acidic proteins were separated in a single run.

  14. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-07-01

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 +/- 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites.In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical

  15. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  16. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application.

    PubMed

    Rastgar, Shokoufeh; Shahrokhian, Saeed

    2014-02-01

    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity for electro-oxidation of RIF than either GO, RGO nanosheets or Ni(OH)2 nanoparticles. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of RGO nanosheets (such as high density of edge plane sites, subtle electronic characteristics and attractive π-π interaction) and unique properties of metal nanoparticles. Under the optimized analysis conditions, the modified electrode showed two oxidation processes for rifampicin at potentials about 0.08 V (peak I) and 0.69 V (peak II) in buffer solution of pH 7.0 with a wide linear dynamic range of 0.006-10.0 µmol L(-1) and 0.04-10 µmol L(-1) with a detection limit of 4.16 nmol L(-1) and 2.34 nmol L(-1) considering peaks I and II as an analytical signal, respectively. The results proved the efficacy of the fabricated modified electrode for simple, low cost and highly sensitive medicine sensor well suited for the accurate determinations of trace amounts of rifampicin in the pharmaceutical and clinical preparations.

  17. Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Fromm, F.; Oliveira, M. H., Jr.; Molina-Sánchez, A.; Hundhausen, M.; Lopes, J. M. J.; Riechert, H.; Wirtz, L.; Seyller, T.

    2013-04-01

    We report a Raman study of the so-called buffer layer with (6\\sqrt 3\\times 6\\sqrt 3)R30^{\\circ } periodicity which forms the intrinsic interface structure between epitaxial graphene and SiC(0001). We show that this interface structure leads to a non-vanishing signal in the Raman spectrum at frequencies in the range of the D- and G-band of graphene and discuss its shape and intensity. Ab initio phonon calculations reveal that these features can be attributed to the vibrational density of states of the buffer layer.

  18. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    NASA Astrophysics Data System (ADS)

    Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.

    2017-03-01

    We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4-20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  19. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  20. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  1. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-02

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  2. Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy

    SciTech Connect

    Vaupel, Matthias Dutschke, Anke; Wurstbauer, Ulrich; Pasupathy, Abhay; Hitzel, Frank

    2013-11-14

    The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300 nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2 nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

  3. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination

    NASA Astrophysics Data System (ADS)

    Nan, Qian; Li, Pei; Cao, Bing

    2016-11-01

    Highly positively charged nanofiltration (NF) membranes have been prepared via a layer-by-layer (LbL) self-assembly technique using graphene oxide (GO) and polyethyleneimine (PEI). The high aspect ratio and unique 2D structure of GO nanosheets enabled them to be easily assembled on the membrane surface, and the intrinsic low resistant channels within the GO nanosheets resulted in a high water flux of the membrane. By assembled a PEI layer on the membrane outer surface, the composite membrane exhibited high positive charge and resulted in the high rejections to multivalent ions. The effects of deposition time, PEI and GO concentrations on separation performance of the NF membranes were detailed studied. The best performance among all the membranes was achieved with salt rejections of 93.9% and 38.1% for Mg2+ and Na+, and a water flux of 4.2 L/m2 h bar at 30 °C and 0.5 MPa. The attractive performance of these NF membranes showed a great potential in the industrial application of water softening.

  4. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor.

    PubMed

    Dong, Xinyi; Wang, Lei; Wang, Dong; Li, Cheng; Jin, Jian

    2012-01-10

    Multilayer films of Co-Al layered double hydroxide nanosheets (Co-Al LDH-NS) and graphene oxide (GO) were fabricated through layer-by-layer (LBL) assembly. By using a three-electrode system, the electrochemical performances of the films were investigated to evaluate their potential as electrode materials to be used in flexible supercapacitor devices. The Co-Al LDH-NS/GO multilayer films exhibited a high specific capacitance of 880 F/g and area capacitance of 70 F/m(2) under the scan rate of 5 mV/s. And the film exhibited good cycle stability over 2000 cycles. After treating the films at 200 °C in H(2) atmosphere, the specific capacitance and area capacitance were largely increased up to 1204 F/g and 90 F/m(2) due to partial reduction of GO. A flexible electrode by depositing Co-Al LDH-NS/GO multilayer film onto PET substrate was prepared to show the potential of Co-Al LDH-NS/GO films for flexible energy storage.

  5. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure

    SciTech Connect

    Jagannadham, K.

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

  6. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine

    NASA Astrophysics Data System (ADS)

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-08-01

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  7. Coherent commensurate electronic states at the interface between misoriented graphene layers

    NASA Astrophysics Data System (ADS)

    Koren, Elad; Leven, Itai; Lörtscher, Emanuel; Knoll, Armin; Hod, Oded; Duerig, Urs

    2016-09-01

    Graphene and layered materials in general exhibit rich physics and application potential owing to their exceptional electronic properties, which arise from the intricate π-orbital coupling and the symmetry breaking in twisted bilayer systems. Here, we report room-temperature experiments to study electrical transport across a bilayer graphene interface with a well-defined rotation angle between the layers that is controllable in situ. This twisted interface is artificially created in mesoscopic pillars made of highly oriented pyrolytic graphite by mechanical actuation. The overall measured angular dependence of the conductivity is consistent with a phonon-assisted transport mechanism that preserves the electron momentum of conduction electrons passing the interface. The most intriguing observations are sharp conductivity peaks at interlayer rotation angles of 21.8° and 38.2°. These angles correspond to a commensurate crystalline superstructure leading to a coherent two-dimensional (2D) electronic interface state. Such states, predicted by theory, form the basis for a new class of 2D weakly coupled bilayer systems with hitherto unexplored properties and applications.

  8. Radio-frequency-transparent, electrically conductive graphene nanoribbon thin films as deicing heating layers.

    PubMed

    Volman, Vladimir; Zhu, Yu; Raji, Abdul-Rahman O; Genorio, Bostjan; Lu, Wei; Xiang, Changsheng; Kittrell, Carter; Tour, James M

    2014-01-08

    Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials.

  9. Effect of current stress during thermal CVD of multilayer graphene on cobalt catalytic layer

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuyoshi; Ichikawa, Hiroyasu; Uchida, Takaki

    2016-04-01

    To improve the crystallinity of multilayer graphene (MLG) by CVD at a low temperature, the effect of current stress during thermal CVD on a cobalt (Co) catalytic layer was investigated. The crystallinity of MLG obtained by CVD with current was higher than that without current at the same temperature. This indicates that current has effects besides the Joule heating effect. The current effects on the Co catalytic layer and the MLG growth reaction were investigated, and it was found that current had small effects on the grain size and crystal structure of the Co catalyst and large effects on the MLG growth reaction such as large grain growth and a low activation energy of 0.49 eV, which is close to the value reported for carbon surface diffusion on Co. It is considered that the enhancement of MLG growth reaction by current leads to the improved crystallinity of MLG at a relatively low temperature.

  10. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid

    NASA Astrophysics Data System (ADS)

    Jothiramalingam Sankaran, Kamatchi; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2017-02-01

    Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.

  11. Oriented 2D covalent organic framework thin films on single-layer graphene.

    PubMed

    Colson, John W; Woll, Arthur R; Mukherjee, Arnab; Levendorf, Mark P; Spitler, Eric L; Shields, Virgil B; Spencer, Michael G; Park, Jiwoong; Dichtel, William R

    2011-04-08

    Covalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders. We used SLG surfaces supported on copper, silicon carbide, and transparent fused silica (SiO(2)) substrates, enabling optical spectroscopy of COFs in transmission mode. Three chemically distinct COF films grown on SLG exhibit similar vertical alignment and long-range order, and two of these are of interest for organic electronic devices for which thin-film formation is a prerequisite for characterizing their optoelectronic properties.

  12. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid.

    PubMed

    Sankaran, Kamatchi Jothiramalingam; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K; Leou, Keh-Chyang; Lin, I-Nan; Haenen, Ken

    2017-02-10

    Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm(-1) and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.

  13. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    SciTech Connect

    Hasan, Mehdi; Sensale-Rodriguez, Berardi

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almost zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.

  14. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  15. Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite.

    PubMed

    Wee, Boon-Hong; Wu, Tong-Fei; Hong, Jong-Dal

    2017-02-08

    Here we describe a facile and scalable method for preparing defect-free graphene sheets exfoliated from graphite using the positively charged polyelectrolyte precursor poly(p-phenylenevinylene) (PPV-pre) as a stabilizer in an aqueous solution. The graphene exfoliated by PPV-pre was apparently stabilized in the solution as a form of graphene/PPV-pre (denoted to GPPV-pre), which remains in a homogeneous dispersion over a year. The thickness values of 300 selected 76% GPPV-pre flakes ranged from 1 to 10 nm, corresponding to between one and a few layers of graphene in the lateral dimensions of 1 to 2 μm. Furthermore, this approach was expected to yield a marked decrease in the density of defects in the electronic conjugation of graphene compared to that of graphene oxide (GO) obtained by Hummers' method. The positively charged GPPV-pre was employed to fabricate a poly(ethylene terephthalate) (PET) electrode layer-by-layer with negatively charged GO, yielding (GPPV-pre/GO)n film electrode. The PPV-pre and GO in the (GPPV-pre/GO)n films were simultaneously converted using hydroiodic acid vapor to fully conjugated PPV and reduced graphene oxide (RGO), respectively. The electrical conductivity of (GPPV/RGO)23 multilayer films was 483 S/cm, about three times greater than that of the (PPV/RGO)23 multilayer films (166 S/cm) comprising RGO (prepared by Hummers method). Furthermore, the superior electrical properties of GPPV were made evident, when comparing the capacitive performances of two supercapacitor systems; (polyaniline PANi/RGO)30/(GPPV/RGO)23/PET (volumetric capacitance = 216 F/cm(3); energy density = 19 mWh/cm(3); maximum power density = 498 W/cm(3)) and (PANi/RGO)30/(PPV/RGO)23/PET (152 F/cm(3); 9 mWh/cm(3); 80 W/cm(3)).

  16. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    PubMed

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  17. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    DTIC Science & Technology

    2015-01-01

    Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor Chenming Xue...the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Electrochemical biosensors are highly effective in...measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors

  18. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst.

  19. Resonant impurities and their electronic behavior in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Lin

    The electronic behavior of single-layer graphene (SLG) containing resonant impurities wasinvestigated, particularly by quantum capacitance measurements. Before introducing resonant impurities into SLG, the properties of pristine SLG devices top-gated using ultra-thin Y2O3 dielectric layers were systematically studied by structure characterization, DC transport measurements and AC quantum capacitance measurements. Y2O 3 is an ideal candidate of dielectric materials for SLG top-gated devices by introducing very few short-range impurities. This facilitates us to probe the quantum capacitance and the density of states (D = Cq/e 2) of pristine and disordered graphene due to its very large capacitance. A new type of resonant impurities of Ag adatoms deposited on SLG was successfully detected through quantum capacitance measurements. The midgap states induced by Ag-adatoms are visible at room temperature and more evident at cryogenic temperatures. Theintensity of Ag-adatom-induced resonances becomes stronger at higher impurity concentration and higher magnetic fields, which agrees fairly well with theoretical calculations based on the density functional theory (DFT) and tight-binding model (TB). We elucidated that the appearance of the robust resonant peak near the charge neutrality point (CNP) and the splitting of zero Landau level (LL) for Ag-adsorbed graphene are manifestations of the hybridization effect of electrons from graphene bands and the resonant impurity bands. With a very high density of Ag adatoms, SLG capacitors show unconventional negative quantum capacitance behavior. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the CNP. Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum

  20. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.

    PubMed

    Wang, Jacob Tse-Wei; Ball, James M; Barea, Eva M; Abate, Antonio; Alexander-Webber, Jack A; Huang, Jian; Saliba, Michael; Mora-Sero, Iván; Bisquert, Juan; Snaith, Henry J; Nicholas, Robin J

    2014-02-12

    The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.

  1. High-temperature scanning tunneling microscopy study of the ordering transition of an amorphous carbon layer into graphene on ruthenium(0001).

    PubMed

    Günther, Sebastian; Dänhardt, Sebastian; Ehrensperger, Martin; Zeller, Patrick; Schmitt, Stefan; Wintterlin, Joost

    2013-01-22

    The ordering transition of an amorphous carbon layer into graphene was investigated by high-temperature scanning tunneling microscopy. A disordered C layer was prepared on a Ru(0001) surface by chemical vapor deposition of ethylene molecules at ~660 K. The carbon layer grows in the form of dendritic islands that have almost the same density as graphene. Upon annealing of the fully covered surface, residual hydrogen desorbs and a coherent but still disordered carbon layer forms, with almost the same carbon coverage as in graphene. The ordering of this layer into graphene at 920 to 950 K was monitored as a function of time. A unique mechanism was observed that involves small topographic holes in the carbon layer. The holes are mobile, and on the trajectories of the holes the disordered carbon layer is transformed into graphene. The transport of C atoms across the holes or along the hole edges provides a low-energy pathway for the ordering transition. This mechanism is prohibited in a dense graphene layer, which offers an explanation for the difficulty of removing defects from graphene synthesized by chemical methods.

  2. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ban, Chunmei; Xie, Ming; Sun, Xiang; Travis, Jonathan J.; Wang, Gongkai; Sun, Hongtao; Dillon, Anne C.; Lian, Jie; George, Steven M.

    2013-10-01

    Atomic layer deposition (ALD) was used to deposit TiO2 anode material on high surface area graphene (reduced graphene oxide) sheets for Li-ion batteries. An Al2O3 ALD ultrathin layer was used as an adhesion layer for conformal deposition of the TiO2 ALD films at 120 ° C onto the conducting graphene sheets. The TiO2 ALD films on the Al2O3 ALD adhesion layer were nearly amorphous and conformal to the graphene sheets. These nanoscale TiO2 coatings minimized the effect of the low diffusion coefficient of lithium ions in bulk TiO2. The TiO2 ALD films exhibited stable capacities of ˜120 mAh g-1 and ˜100 mAh g-1 at high cycling rates of 1 A g-1 and 2 A g-1, respectively. The TiO2 ALD films also displayed excellent cycling stability with ˜95% of the initial capacity remaining after 500 cycles. These results illustrate that ALD can provide a useful method to deposit electrode materials on high surface area substrates for Li-ion batteries.

  3. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    PubMed Central

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  4. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage.

    PubMed

    Chen, Dongyun; Ji, Ge; Ding, Bo; Ma, Yue; Qu, Baihua; Chen, Weixiang; Lee, Jim Yang

    2013-09-07

    Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li(+) as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a facile surfactant-assisted synthesis under hydrothermal conditions. The layer structure and morphology of the composites were confirmed by X-ray diffraction, scanning electron microscopy and high-resolution transmission microscopy. The effects of surfactant amount on the WS2 layer number were investigated and the performance of the layered composites as high energy density lithium-ion battery anodes was evaluated. The composite formed with a surfactant : tungsten precursor ratio of 1 : 1 delivered the best cyclability (average of only 0.08% capacity fade per cycle for 100 cycles) and good rate performance (80% capacity retention with a 50-fold increase in current density from 100 mA g(-1) to 5000 mA g(-1)), and may find uses in power-oriented applications.

  5. Surface-enhanced Raman scattering studies of few-layer graphene on silver substrate with 514 nm excitation

    NASA Astrophysics Data System (ADS)

    Ouyang, Yu; Chen, Li

    2011-04-01

    Few-layer graphene was prepared by deoxidizing graphite oxide. Surface-enhanced Raman scattering (SERS) spectrum of graphene on Ag substrate was presented with 514 nm excitation. More than nine Raman lines are shown in the 100-3200 cm -1. The intensities of all lines are enhanced. Besides D mode at 1347 cm -1, G peak at 1581 cm -1, G ∗ band at ˜2458 cm -1, and G' band at ˜2691 cm -1, there are two features in low frequency area at about 239 cm -1 and 992 cm -1 separately, one line in high frequency area at about 2900 cm -1 with a shoulder appearing at ˜2860 cm -1. According to SERS, the structure of graphene was analyzed. Furthermore, the increase of D/G intensity ratio in SERS shows the SERS has much potential to be applied in controlling synthesis quality of graphene. In addition, low frequency Raman lines presented in SERS show application potential in analyzing the layer number, stacked style and edge of graphene.

  6. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    PubMed

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film-forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles.

  7. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene

    NASA Astrophysics Data System (ADS)

    Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan

    2015-03-01

    Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.

  8. Graphene device and method of using graphene device

    DOEpatents

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  9. Frequency stabilization of single layer graphene oscillators through optical injection locking

    NASA Astrophysics Data System (ADS)

    Houri, Samer; Cartamil Bueno, Santiago; Venstra, Warner

    Single layer graphene (SLG) drum resonators offer exciting prospects as experimental testbeds for nonlinear dynamics. Recently, photo-thermal induced feedback effects leading to self-oscillations in graphene have been demonstrated. In this paper we examine the phase jitter of self-oscillating SLG, and the means to improve the frequency stability through optical injection locking. The resonator consists of an SLG on top of a 10 micron diameter circular cavity with a cavity depth of 750 nm. By shining a 10 mW He-Ne laser the drum enters a regime of photo-thermally induced self-oscillation. The oscillating SLG suffers from a significant phase noise that can be directly observed in the time domain as random walk of the oscillation period. By applying a lock tone to the oscillator through the application of a modulated blue laser (405 nm), the SLG motion is then phase locked to the applied tone with more than an order of magnitude improvement in its coherence time. The injection locking is also studied as a function of lock signal detuning and power. Presenting author.

  10. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Wang, Erik F.; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-02-01

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young’s moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson’s ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.

  11. Stacking Structures of Few-Layer Graphene Revealed by Phase-Sensitive Infrared Nanoscopy.

    PubMed

    Kim, Deok-Soo; Kwon, Hyuksang; Nikitin, Alexey Yu; Ahn, Seongjin; Martín-Moreno, Luis; García-Vidal, Francisco J; Ryu, Sunmin; Min, Hongki; Kim, Zee Hwan

    2015-07-28

    The stacking orders in few-layer graphene (FLG) strongly influences the electronic properties of the material. To explore the stacking-specific properties of FLG in detail, one needs powerful microscopy techniques that visualize stacking domains with sufficient spatial resolution. We demonstrate that infrared (IR) scattering scanning near-field optical microscopy (sSNOM) directly maps out the stacking domains of FLG with a nanometric resolution, based on the stacking-specific IR conductivities of FLG. The intensity and phase contrasts of sSNOM are compared with the sSNOM contrast model, which is based on the dipolar tip-sample coupling and the theoretical conductivity spectra of FLG, allowing a clear assignment of each FLG domain as Bernal, rhombohedral, or intermediate stacks for tri-, tetra-, and pentalayer graphene. The method offers 10-100 times better spatial resolution than the far-field Raman and infrared spectroscopic methods, yet it allows far more experimental flexibility than the scanning tunneling microscopy and electron microscopy.

  12. Josephson coupling between superconducting islands on single- and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander

    2016-05-01

    We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.

  13. Gate-tunable nanoplasmonic effects in single- and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Fei, Zhe; Andreev, Gregory; Bao, Wenzhong; Rodin, Aleksandr; McLeod, Alexander; Zhang, Lingfeng; Zhao, Zeng; Dominguez, Gerardo; Thiemens, Mark; Fogler, Michael; Castro-Neto, Antonio; Lau, Chunning; Keilmann, Fritz; Basov, Dimitri

    2012-02-01

    We employed near-field infrared (IR) nanoscopy and nanoimaging to study mid-IR nanoplasmonic effects of both single-layer graphene (SLG) and bilayer graphene (BLG) on SiO2/Si substrate. In our previous study, we found that SLG enhanced and blueshifted the surface phonon resonance of SiO2 due to plasmon-phonon coupling [Z. Fei et al. Nano. Lett. 2011]. Here we report that both these effects are also observed in BLG. Using back-gate we were able to systematically change the carrier density in both SLG and BLG while monitoring the evolution of the hybrid plasmon-phonon resonance. New data are in accord with our point-dipole modeling results. IR imaging with nanoscale resolution revealed fringe patterns extending along the edges of both SLG and BLG. We ascribe these patterns to the interference of plasmon waves launched by the near-field probe with those reflected from the edges. Detailed analysis allowed us to observe gate-induced changes in the plasmon dispersion of both SLG and BLG, which are consistent with the notion of massless Dirac fermions in SLG and massive carriers in BLG.

  14. Effect of nitriding/nanostructuration of few layer graphene supported iron-based particles; catalyst in graphene etching and carbon nanofilament growth.

    PubMed

    Baaziz, Walid; Melinte, Georgian; Ersen, Ovidiu; Pham-Huu, Cuong; Janowska, Izabela

    2014-08-14

    Stable, highly faceted and dispersed iron nitride particles supported on few layer graphene are obtained by ammonia decomposition on iron-based particles at the temperature commonly used for the synthesis of N-doped CNTs and graphene etching. The TEM/EELS analysis reveals nitrogen diffusion in a bulk of the particles. The resulting facet FeNx catalyst exhibits high activity in the etching of graphene, which is assisted by catalyst reorganization. Ammonia decomposition is used for the first time for graphene etching, while the highly faceted catalyst has an impact on the etched channels structures. According to the shape of the active planes of the catalyst, the etching results in sharp "V" channel ends and often "step-like" edges. The FeNx morphology proves previously reported triangularisation of arches in highly N-doped carbon nanotubes. The conditioning of the catalyst by its shaping and nitrogen incorporation is investigated additionally in the carbon nanostructure formation, for decomposition of ethane. The herringbone CNFs, "hollow" bamboo-like CNFs/CNTs or CNTs are effectively observed.

  15. Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al{sub 2}O{sub 3}

    SciTech Connect

    Park, Dong-Wook; Mikael, Solomon; Chang, Tzu-Hsuan; Ma, Zhenqiang; Gong, Shaoqin

    2015-03-09

    A graphene transistor with a bottom-gate coplanar structure and an atomic layer deposition (ALD) aluminum oxide (Al{sub 2}O{sub 3}) gate dielectric is demonstrated. Wetting properties of ALD Al{sub 2}O{sub 3} under different deposition conditions are investigated by measuring the surface contact angle. It is observed that the relatively hydrophobic surface is suitable for adhesion between graphene and ALD Al{sub 2}O{sub 3}. To achieve hydrophobic surface of ALD Al{sub 2}O{sub 3}, a methyl group (CH{sub 3})-terminated deposition method has been developed and compared with a hydroxyl group (OH)-terminated deposition. Based on this approach, bottom-gate coplanar graphene field-effect transistors are fabricated and characterized. A post-thermal annealing process improves the performance of the transistors by enhancing the contacts between the source/drain metal and graphene. The fabricated transistor shows an I{sub on}/I{sub off} ratio, maximum transconductance, and field-effect mobility of 4.04, 20.1 μS at V{sub D} = 0.1 V, and 249.5 cm{sup 2}/V·s, respectively.

  16. Verification of electron doping in single-layer graphene due to H2 exposure with thermoelectric power

    NASA Astrophysics Data System (ADS)

    Hong, Sung Ju; Park, Min; Kang, Hojin; Lee, Minwoo; Soler-Delgado, David; Shin, Dong Seok; Kim, Kyung Ho; Kubatkin, Sergey; Jeong, Dae Hong; Park, Yung Woo; Kim, Byung Hoon

    2015-04-01

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H2 molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  17. The most stable mono-layers of (111)-Pt (fcc) on Graphene: A first-principles GGA study

    NASA Astrophysics Data System (ADS)

    Otalora-Acevedo, J.; Rodríguez Martínez, J. A.; Moreno-Armenta, G.; Vera, E.; Takeuchi Tan, N.

    2016-08-01

    We investigate monolayers of planes (111) of Pt in the FCC structure located on graphene. The energy of formation showed that the most stable structure is √3×√3 — Pt on 2 × 2 — graphene. This system has a mismatch in the lattice constant of 0.45. The layers are completely flat, and its band structure shows that the new structure is metallic and the Dirac's cones are displaced 0.6eV above of the Fermi level. In this work we present the dependence of the enthalpy of formation of these structures and we calculated all structural parameters of their relaxation.

  18. Defect-induced Raman spectroscopy in single-layer graphene with boron and nitrogen substitutional defects by theoretical investigation

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Pachter, Ruth; Islam, Ahmad E.; Maruyama, Benji; Boeckl, John J.

    2016-10-01

    Although advances in heteroatom incorporation into the single-layer graphene lattice resulted in films with large carrier densities, careful characterization by Raman spectroscopy is important for assessment of the material's quality. We investigated theoretically I(D)/I(D‧) Raman intensity ratios induced by B- and N- substitutional doping, demonstrated to be consistent with measurements. Calculated Fermi level shifts showed that for a moderate doping density results are comparable to electrolyte gating, while analytical analysis of the electron-defect scattering provided insight into changes of cross-sections. Effects of doping density on the D band intensity and broadening were quantified, and will assist in graphene characterization.

  19. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    SciTech Connect

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo E-mail: kbh37@incheon.ac.kr; Park, Min; Lee, Minwoo; Jeong, Dae Hong; Shin, Dong Seok; Kim, Byung Hoon E-mail: kbh37@incheon.ac.kr; Kubatkin, Sergey

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  20. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P.

    2014-08-18

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ∼5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  1. Growth of MgO on multi-layered graphene and Mg in PVA matrix

    NASA Astrophysics Data System (ADS)

    Marka, Sandeep K.; Mohiddon, Md. Ahamad; Prasad, Muvva D.; Srikanth, Vadali V. S. S.

    2015-07-01

    An easy and low temperature in-situ growth of MgO micro-rods on multi-layered graphene (MLG) in poly vinyl alcohol (PVA) matrix is elucidated. MLG decked with nanosized fragments of MgO and PVA are used as the starting materials to form MgO micro-rods (width = ∼1 μm and length = ∼4 μm) and MLG filled PVA composite film. Simple solution mixing, spin coating and simple drying processes are used to obtain the PVA composite. The growth mechanism of MgO micro-rods and the role of PVA in the growth of MgO micro-rods are explained on the basis of the observed morphological, structural and phase characteristics and a further controlled synthesis experiment, respectively.

  2. Few layers graphene as thermally activated optical modulator in the visible-near IR spectral range.

    PubMed

    Benítez, J L; Hernández-Cordero, Juan; Muhl, S; Mendoza, D

    2016-01-01

    We report the temperature modulation of the optical transmittance of a few layers of graphene (FLG). The FLG was heated either by the Joule effect of the current flowing between coplanar electrodes or by the absorption of a continuous-wave 532 nm laser. The optical signals used to evaluate the modulation of the FLG were at 633, 975, and 1550 nm; the last wavelengths are commonly used in optical communications. We also evaluated the effect of the substrate on the modulation effect by comparing the performance of a freely suspended FLG sample with one mounted on a glass substrate. Our results show that the modulation of the optical transmittance of FLG can be from millihertz to kilohertz.

  3. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    PubMed Central

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-01-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  4. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications.

    PubMed

    Park, Dong-Wook; Schendel, Amelia A; Mikael, Solomon; Brodnick, Sarah K; Richner, Thomas J; Ness, Jared P; Hayat, Mohammed R; Atry, Farid; Frye, Seth T; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C

    2014-10-20

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications.

  5. The electronic structure of graphene tuned by hexagonal boron nitrogen layers: Semimetal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Chen, Qing-Yuan; Ma, Tai; He, Yao; Cao, Chao

    2016-05-01

    The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50-3.50 Å can obtain the metal-semiconductor-semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along K-H direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.

  6. Optical methods for determining thicknesses of few-layer graphene flakes

    NASA Astrophysics Data System (ADS)

    Ouyang, Wengen; Liu, Xin-Z.; Li, Qunyang; Zhang, Yingying; Yang, Jiarui; Zheng, Quan-shui

    2013-12-01

    Optical microscopy (OM) methods have been commonly used as a convenient means for locating and identifying few-layer graphene (FLG) on SiO2/Si substrates. However, it is less clear how reliably optical images of FLG could be used to determine the sample thickness. In this work, various OM methods based on color differences and color contrasts are presented and their reliabilities are evaluated. Our analysis shows that these color-based OM methods depend sensitively on certain parameters of the measuring system, particularly the light source and the reference substrate. These parameters have usually been overlooked and less controlled in routine experiments. From evaluating the performance of these OM methods with both virtual and real FLG samples, we propose some practical guidelines for minimizing the impact of these less-controlled experimental parameters and provide a user-friendly MATLAB script for facilitating the implementation.

  7. Negative quantum capacitance induced by midgap states in single-layer graphene.

    PubMed

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  8. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  9. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems.

    PubMed

    Tao, Lei; Theruvakkattil Sreenivasan, Sreeprasad; Shahsavari, Rouzbeh

    2017-01-11

    Improving heat transfer in hybrid nano/microelectronic systems is a challenge, mainly due to the high thermal boundary resistance (TBR) across the interface. Herein, we focus on gallium nitride (GaN)/diamond interface-as a model system with various high power, high temperature, and optoelectronic applications-and perform extensive reverse nonequilibrium molecular dynamics simulations, decoding the interplay between the pillar length, size, shape, hierarchy, density, arrangement, system size, and the interfacial heat transfer mechanisms to substantially reduce TBR in GaN-on-diamond devices. We found that changing the conventional planar interface to nanoengineered, interlaced architecture with optimal geometry results in >80% reduction in TBR. Moreover, introduction of conformal graphene buffer layer further reduces the TBR by ∼33%. Our findings demonstrate that the enhanced generation of intermediate frequency phonons activates the dominant group velocities, resulting in reduced TBR. This work has important implications on experimental studies, opening up a new space for engineering hybrid nano/microelectronics.

  10. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    PubMed Central

    Qiu, Dongri; Kim, Eun Kyu

    2015-01-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to −46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics. PMID:26333680

  11. High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films.

    PubMed

    Liu, Luqi; Gao, Yun; Liu, Qing; Kuang, Jun; Zhou, Ding; Ju, Siting; Han, Baohang; Zhang, Zhong

    2013-07-22

    The design and fabrication of strong, lightweight, and damage-resistant composite materials are major topics of studies on composites. Biomimetics, a developing multidisciplinary field, is now leading the fabrication of novel materials with remarkable mechanical properties. Graphene oxide (GO), a graphene derivative, possesses good mechanical properties, a high aspect ratio, and good solubility in aqueous solutions, indicating great potential in nanocomposite fields. In this work, bioinspired layered GO/poly(vinyl alcohol) (PVA) nanocomposite films with remarkable mechanical performances are prepared by an environmental friendly, bottom-up assembly methodology. The structural analysis shows alternate piles of inorganic GO platelets and organic PVA binder. Tensile tests indicate that the borate-treated GO/PVA nanocomposite films display 360 MPa of strength, which is twofold to threefold higher than that of biological materials (e.g., nacre). Toughness of GO/PVA nanocomposites is also enhanced fourfold compared with nacre. To reveal the toughening function of the intercalated polymer in the nanocomposites, the influence of polymer with varied molecular weights (Mws) on the fracture mode of the nanocomposites is systematically investigated through quasi-static tensile and creep tests. The PVA molecules with a higher Mw can connect more neighboring GO platelets through inter- and intra-linkages than those with a lower Mw, resulting in efficient stress transfer along the GO plane direction. Thus, tensile strength and toughness are improved. This work illustrates the functions of bonding types between inorganic-organic phases and intercalated polymers with different Mws on the mechanical properties of the layered nanocomposites, including stiffness, strength, and toughness.

  12. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  13. Enhanced performance of ZnO-based dye-sensitized solar cells using TiO2/graphene nanocomposite compact layer

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Ying; Chen, Po-Hao; Wu, Yeun-Jung; Chiang, Hai-Pang; Hwang, Jih-Shang; Lin, Pei-Te; Lai, Kuan-Yu; Shih-Sen Chien, Forest; Lin, Tai-Yuan

    2017-04-01

    The applications of TiO2/graphene nanocomposite as a compact layer for ZnO-based dye-sensitized solar cell (DSSC) have been studied. It was shown that the role of bifunctional graphene flakes in TiO2 compact layer not only suppressed the electron recombination between indium-doped tin oxide and electrolyte, but also reduced the resistance of compact layer. In addition, compared to typical compact layers, TiO2/graphene nanocomposite without blocking effect in optical transmittance could further boost the power conversion efficiency in DSSC. TiO2/graphene nanocomposite was demonstrated the potential to be an alternative of compact layer to typical dense TiO2 for ZnO-based DSSCs.

  14. Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst.

    PubMed

    Chen, Zhe; Lu, Jinfeng; Ai, Yuejie; Ji, Yongfei; Adschiri, Tadafumi; Wan, Lijun

    2016-12-28

    Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H2SO4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

  15. Vertical electron transport in van der Waals heterostructures with graphene layers

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  16. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells.

    PubMed

    Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Lee, Tae Hee; Kim, Jeongsuk; Cho, Young-Ho; Han, Sae-Won

    2017-05-01

    The metastasis of cancer is strongly associated with the spread of circulating tumor cells (CTCs). Based on the microfluidic devices, which offer rapid recovery of CTCs, a number of studies have demonstrated the potential of CTCs as a diagnostic tool. However, not only the insufficient specificity and sensitivity derived from the rarity and heterogeneity of CTCs, but also the high-cost fabrication processes limit the use of CTC-based medical devices in commercial. Here, we present a low-cost fabric sheet layers for CTC isolation, which are composed of polyester monofilament yarns. Fabric sheet layers are easily functionalized with graphene oxide (GO), which is beneficial for improving both sensitivity and specificity. The GO modification to the low-cost fabrics enhances the binding of anti-EpCAM antibodies, resulting in 10-25% increase of capture efficiency compared to the surface without GO (anti-EpCAM antibodies directly onto the fabric sheets), while achieving high purity by isolating only 50-300 leukocytes in 1 mL of human blood. We investigated CTCs in ten human blood samples and successfully isolated 4-42 CTCs/mL from cancer patients, while none of cancerous cells were found among healthy donors. This remarkable results show the feasibility of GO-functionalized fabric sheet layers to be used in various CTC-based clinical applications, with high sensitivity and selectivity.

  17. Vertical electron transport in van der Waals heterostructures with graphene layers

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  18. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow

    SciTech Connect

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-07-08

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.

  19. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow

    DOE PAGES

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; ...

    2016-07-08

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass ofmore » about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.« less

  20. Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Ong, Zhun-Yong; Cai, Yongqing; Zhang, Gang

    2016-10-01

    We present a theory of the phononic thermal (Kapitza) resistance at the interface between graphene or another single-layer two-dimensional (2D) crystal (e.g., MoS2) and a flat substrate, based on a modified version of the cross-plane heat transfer model by Persson, Volokitin, and Ueba [J. Phys.: Condens. Matter 23, 045009 (2011), 10.1088/0953-8984/23/4/045009]. We show how intrinsic flexural phonon damping is necessary for obtaining a finite Kapitza resistance and also generalize the theory to encased single-layer 2D crystals with a superstrate. We illustrate our model by computing the thermal boundary conductance (TBC) for bare and SiO2-encased single-layer graphene and MoS2 on a SiO2 substrate, using input parameters from first-principles calculation. The estimated room temperatures TBC for bare (encased) graphene and MoS2 on SiO2 are 34.6 (105) and 3.10 (5.07) MWK -1m-2 , respectively. The theory predicts the existence of a phonon frequency crossover point, below which the low-frequency flexural phonons in the bare 2D crystal do not dissipate energy efficiently to the substrate. We explain within the framework of our theory how the encasement of graphene with a top SiO2 layer introduces new low-frequency transmission channels, which significantly reduce the graphene-substrate Kapitza resistance. We emphasize that the distinction between bare and encased 2D crystals must be made in the analysis of cross-plane heat dissipation to the substrate.

  1. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  2. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    SciTech Connect

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  3. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    SciTech Connect

    Shaforost, O.; Wang, K.; Adabi, M.; Guo, Z.; Hanham, S.; Klein, N.; Goniszewski, S.; Gallop, J.; Hao, L.

    2015-01-14

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples.

  4. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber.

    PubMed

    Zhao, Yongguang; Li, Xianlei; Xu, Miaomiao; Yu, Haohai; Wu, Yongzhong; Wang, Zhengping; Hao, Xiaopeng; Xu, Xinguang

    2013-02-11

    Using multilayered graphene as the saturable absorber (SA), Nd:LYSO crystal as the laser material, we demonstrated a laser-diode (LD) pumped, dual-wavelength passively Q-switched solid-state laser. The maximum average output power is 1.8 W, the largest pulse energy and highest peak power is 11.3 μJ, 118 W, respectively. As we have known, they are the best results for passively Q-switched operation of graphene. The pulse laser is strong enough to realize extra-cavity frequency conversions. With a KTP crystal as the sum-frequency generator, the dual wavelengths are proved to be well time overlapped, which manifests the synchronous modulation to the dual-wavelength with multi-layered graphene.

  5. Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer.

    PubMed

    Tong, Shi Wun; Balapanuru, Janardhan; Fu, Deyi; Loh, Kian Ping

    2016-11-02

    In the short time since its discovery, perovskite solar cells (PSCs) have attained high power conversion efficiency but their lack of thermal stability remains a barrier to commercialization. Among the experimentally accessible parameter spaces for optimizing performance, identifying an electron transport layer (ETL) that forms a thermally stable interface with perovskite and which is solution-processable at low-temperature will certainly be advantageous. Herein, we developed a mesoporous graphene/polymer composite with these advantages when used as ETL in CH3NH3PbI3 PSCs, and a high efficiency of 13.8% under AM 1.5G solar illumination could be obtained. Due to the high heat transmission coefficient and low isoelectric point of mesoporous graphene-based ETL, the PSC device enjoys good chemical and thermal stability. Our work demonstrates that the mesoporous graphene-based scaffold is a promising ETL candidate for high performance and thermally stable PSCs.

  6. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    NASA Astrophysics Data System (ADS)

    Shaforost, O.; Wang, K.; Goniszewski, S.; Adabi, M.; Guo, Z.; Hanham, S.; Gallop, J.; Hao, L.; Klein, N.

    2015-01-01

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples.

  7. Structural stability and mechanical property of Ni(111)-graphene-Ni(111) layered composite: A first-principles study

    NASA Astrophysics Data System (ADS)

    Rong, Ximing; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    A first-principles calculation of the structural stability and mechanical property of Ni(111)-graphene-Ni(111) layered composite was presented. Three different structural models were considered, and the most stable interfacial structure had been determined with top-fcc structure in both sides of graphene. Stretching calculations demonstrate that the tensile stress of the composite can reach twice of that of pure Ni in the ranges of 0-0.2 strain. The Young’s modulus in triaxial directions are 384 (x), 362 (y), and 303 (z) GPa for the Ni(111)-graphene-Ni(111) structure, and 212 (x), 251 (y), and 273 (z) GPa for pure single-crystal Ni(111).

  8. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  9. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene.

    PubMed

    Kotakoski, Jani; Brand, Christian; Lilach, Yigal; Cheshnovsky, Ori; Mangler, Clemens; Arndt, Markus; Meyer, Jannik C

    2015-09-09

    Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials.

  10. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions

    NASA Astrophysics Data System (ADS)

    Ravula, Sudhir; Baker, Sheila N.; Kamath, Ganesh; Baker, Gary A.

    2015-02-01

    Research on graphene--monolayers of carbon atoms arranged in a honeycomb lattice--is proceeding at a relentless pace as scientists of both experimental and theoretical bents seek to explore and exploit its superlative attributes, including giant intrinsic charge mobility, record-setting thermal conductivity, and high fracture strength and Young's modulus. Of course, fully exploiting the remarkable properties of graphene requires reliable, large-scale production methods which are non-oxidative and introduce minimal defects, criteria not fully satisfied by current approaches. A major advance in this direction is ionic liquid-assisted exfoliation and dispersion of graphite, leading to the isolation of few- and single-layered graphene sheets with yields two orders of magnitude higher than the earlier liquid-assisted exfoliation approaches using surface energy-matched solvents such as N-methyl-2-pyrrolidone (NMP). In this Minireview, we discuss the emerging use of ionic liquids for the practical exfoliation, dispersion, and modification of graphene nanosheets. These developments lay the foundation for strategies seeking to overcome the many challenges faced by current liquid-phase exfoliation approaches. Early computational and experimental results clearly indicate that these same approaches can readily be extended to inorganic graphene analogues (e.g., BN, MoX2 (X = S, Se, Te), WS2, TaSe2, NbSe2, NiTe2, and Bi2Te3) as well.

  11. The effect of h-BN buffer layers in bilayer graphene on Co (111)

    NASA Astrophysics Data System (ADS)

    Li, Can; Liu, Yan; Zhang, Bin; Wang, Tao; Guo, Qing; Sheng, Kuang; Yin, You

    2015-05-01

    Understanding of the interface of Co/graphene is essential for applications of graphene-based devices, as well as in the process of graphene synthesis. In this paper, the Co/graphene interface, including five structures of bilayer graphene (BLG) on Co (111) surface with bilayer or monolayer BN buffer sheets, is investigated by using density functional theory calculations. The corresponding atomic and electronic structures and Mulliken charge populations are also analyzed. The bilayer BN sheets are found to be the thinnest insulator for the backside Co metal gate, which shields BLG from Co substrate pining, decreases the charges influenced by the substrate, and improves BLG transport mobility.

  12. Nucleation of graphene layers on magnetic oxides: Co3O4(111) and Cr2O3(0001) from theory and experiment

    DOE PAGES

    Beatty, John; Cheng, Tao; Cao, Yuan; ...

    2016-12-14

    We report directly grown strongly adherent graphene on Co3O4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co3O4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co3O4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer, in agreement with DFT. In contrast,more » for Cr2O3 DFT finds no strong bonding to the surface and C MBE on Cr2O3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  13. Modification of electronic properties of top-gated graphene devices by ultrathin yttrium-oxide dielectric layers.

    PubMed

    Wang, Lin; Chen, Xiaolong; Wang, Yang; Wu, Zefei; Li, Wei; Han, Yu; Zhang, Mingwei; He, Yuheng; Zhu, Chao; Fung, Kwok Kwong; Wang, Ning

    2013-02-07

    We report the structure characterization and electronic property modification of single layer graphene (SLG) field-effect transistor (FET) devices top-gated using ultrathin Y(2)O(3) as dielectric layers. Based on the Boltzmann transport theory within variant screening, Coulomb scattering is confirmed quantitatively to be dominant in Y(2)O(3)-covered SLG and a very few short-range impurities have been introduced by Y(2)O(3). Both DC transport and AC capacitance measurements carried out at cryogenic temperatures demonstrate that the broadening of Landau levels is mainly due to the additional charged impurities and inhomogeneity of carriers induced by Y(2)O(3) layers.

  14. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    NASA Astrophysics Data System (ADS)

    Kordatos, Apostolis; Kelaidis, Nikolaos; Giamini, Sigiava Aminalragia; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios

    2016-04-01

    Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  15. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon

    2016-11-01

    We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

  16. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    DOE PAGES

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; ...

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less

  17. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    SciTech Connect

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.

  18. Layer-by-Layer Self-Assembled Graphene Multilayers as Pt-Free Alternative Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    Rani, Adila; Chung, Kyungwha; Kwon, Jeong; Kim, Sung June; Jang, Yoon Hee; Jang, Yu Jin; Quan, Li Na; Yoon, Minji; Park, Jong Hyeok; Kim, Dong Ha

    2016-05-11

    Low cost, charged, and large scale graphene multilayers fabricated from nitrogen-doped reduced graphene oxide N-rGO(+), nitrogen and sulfur codoped reduced graphene oxide NS-rGO(+), and undoped reduced graphene oxide rGO(-) were applied as alternative counter electrodes in dye-sensitized solar cells (DSSCs). The neat rGO-based counter electrodes were developed via two types of layer-by-layer (LBL) self-assembly (SA) methods: spin coating and spray coating methods. In the spin coating method, two sets of multilayer films were fabricated on poly(diallyldimethylammonium chloride) (PDDA)-coated fluorine-doped tin oxide (FTO) substrates using GO(-) combined with N-GO(+) followed by annealing and denoted as [rGO(-)/N-rGO(+)]n or with NS-GO(+) and denoted as [rGO(-)/NS-rGO(+)]n for counter electrodes in DSSCs. The DSSCs employing new types of counter electrodes exhibited ∼7.0% and ∼6.2% power conversion efficiency (PCE) based on ten bilayers of [rGO(-)/N-rGO(+)]10 and [rGO(-)/NS-rGO(+)]10, respectively. The DSSCs equipped with a blend of one bilayer of [rGO(-):N-rGO(+)] and [rGO(-):NS-rGO(+)] on PDDA-coated FTO substrates were prepared from a spray coating and showed ∼6.4% and ∼5.6% PCE, respectively. Thus, it was demonstrated that a combination of undoped, nitrogen-doped, and nitrogen and sulfur codoped reduced graphene oxides can be considered as potentially powerful Pt-free electrocatalysts and alternative electrodes in conventional photovoltaic devices.

  19. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  20. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    PubMed

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.