Science.gov

Sample records for adjacent ground water

  1. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    USGS Publications Warehouse

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The maximum beneficial utilization of the ground-water resources cannot be accomplished in haphazard fashion. It must be planned and controlled on the basis of sound, current information about the hydrology of the various aquifers. Continued and, in some areas, intensified investigations of the ground-water resources of the region should form the basis for such planning and control.

  2. Ground Water in Kilauea Volcano and Adjacent Areas of Mauna Loa Volcano, Island of Hawaii

    USGS Publications Warehouse

    Takasaki, Kiyoshi J.

    1993-01-01

    About 1,000 million gallons of water per day moves toward or into ground-water bodies of Kilauea Volcano from the lavas of Mauna Loa Volcano. This movement continues only to the northern boundaries of the east and southwest rift zones of Kilauea, where a substantial quantity of ground water is deflected downslope to other ground-water bodies or to the ocean. In the western part of Kilauea, the kaoiki fault system, which parallels the southwest rift zone, may be the main barrier to ground-water movement. The diversion of the ground water is manifested in the western part of Kilauea by the presence of large springs at the shore end of the Kaoiki fault system, and in the eastern part by the apparently large flow of unheated basal ground water north of the east rift zone. Thus, recharge to ground water in the rift zones of Kilauea and to the areas to the south of the rift zones may be largely by local rainfall. Recharge from rainfall for all of Kilauea is about 1,250 million gallons per day. Beneath the upper slopes of the Kilauea rift zones, ground-water levels are 2,000 feet or more above mean sea level, or more than 1,000 feet below land surface. Ground-water levels are at these high altitudes because numerous and closely spaced dikes at depth in the upper slopes impound the ground water. In the lower slopes, because the number of dikes decreases toward the surface, the presence of a sufficient number of dikes capable of impounding ground water at altitudes substantially above sea level is unlikely. In surrounding basal ground-water reservoirs, fresh basal ground water floats on seawater and, through a transition zone of mixed freshwater and seawater, discharges into the sea. The hydraulic conductivity of the dike-free lavas ranges from about 3,000 to about 7,000 feet per day. The conductivity in the upper slopes of the rift ranges from about 5 to 30 feet per day and that of the lower slopes of the east rift zone was calculated at about 7,000 feet per day. The

  3. Summary of ground-water data, Post Headquarters and adjacent areas, White Sands Missile Range

    USGS Publications Warehouse

    Kelly, T.E.

    1973-01-01

    Geohydrologic data have been obtained from more than 100 wells and test holes that have been drilled in the Post Headquarters and adjacent areas of White Sands Missile Range. Observation-well data show that, in general, a continuous decline of the water table has occurred in the vicinity of the well field since production began in 1949. Approximately 40,000 acre-feet of water has been produced from the aquifer to date (1972). A series of maps are presented which show the changes that have occurred in the well field as the result of development.

  4. Emergency ground-water supplies in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1972-01-01

    Urban areas that are supplied from surface-water sources are especially vulnerable to major disruption of their water supplies. Such disruption could result from natural disasters such as earthquakes, floods, or landslides or from such other causes as dam failures fallout of radioactive material or other toxic substance from the atmosphere or other toxic substances from the atmosphere or direct introduction (either accidental or deliberate) of any substance that would render the water unfit for use. Prolonged disruption of public water supplies not only causes personal hardships but also endangers health and safety unless suitable alternative emergency supplies can be provided. The degree of hardship and danger generally increases in direct relation to the population density. Ground water because it occurs beneath protective soil and rock materials is less subject to sudden major contamination than are surface-water bodies. For this reason and also because of its widespread availability in the Puget Sound region ground water is especially desireable as a sources of emergency supplies for drinking or other uses requiring water of good quality. In much of the area existing wells would be suitable as safe sources of emergency supplies.

  5. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  6. Ground-water data in Orange County and adjacent counties, Texas, 1985-90

    USGS Publications Warehouse

    Kasmarek, Mark C.

    1999-01-01

    The lower unit of the Chicot aquifer is a major source of freshwater for Orange County, Texas. In 1989, the average rate of ground-water withdrawal from the lower unit of the Chicot aquifer in Orange County for municipal and industrial use was 13.8 million gallons per day, a substantial decrease from the historical high of 23.1 million gallons per day in 1972. The average withdrawal for industrial use decreased substantially from 14.4 million gallons per day during 1963?84 to 6.9 million gallons per day during 1985?89. The average withdrawal for municipal use during 1985?89 was 6.8 million gallons per day, similar to the average withdrawal of 5.8 million gallons per day during 1963?84. Water levels in wells in most of the study area rose during 1985?90. The largest rise in water levels was more than 10 feet in parts of Orange and Pinehurst, north of site B (one of three areas of ground-water withdrawal for industrial use), while the largest decline in water levels was a localized decline of more than 60 feet at site C in south-central Orange County (also an area of withdrawal for industrial use). Chemical analyses of ground-water samples from the lower Chicot aquifer during 1985?90 indicate that the aquifer contained mostly freshwater (dissolved solids concentrations less than 1,000 milligrams per liter). Dissolved chloride concentrations remained relatively constant in most wells during 1985?90 but could vary greatly between wells within short distances. Saline-water encroachment continued to occur during 1985?89 but at a slower rate than in the 1970s and early 1980s. On the basis of chemical data collected during 1985?89, a relation was determined between specific conductance and dissolved chloride concentration that can be used to estimate dissolved chloride by multiplying the specific conductance by different factors for low or high conductances.

  7. Analysis and simulation of ground-water flow in Lake Wales Ridge and adjacent areas of central Florida

    USGS Publications Warehouse

    Yobbi, Dann K.

    1996-01-01

    The Lake Wales Ridge is an uplands recharge area in central Florida that contains many sinkhole lakes. Below-normal rainfall and increased pumping of ground water have resulted in declines both in ground-water levels and in the water levels of many of the ridge lakes. A digital flow model was developed for a 3,526 square-mile area to help understand the current (1990) ground-water flow system and its response to future ground-water withdrawals. The ground-water flow system in the Lake Wales Ridge and adjacent area of central Florida consists of a sequence of sedimentary aquifers and confining units. The uppermost water-bearing unit of the study area is the surficial aquifer. This aquifer is generally unconfined and is composed primarily of clastic deposits. The surficial aquifer is underlain by the confined intermediate aquifer and confining units which consists of up to three water-bearing units composed of interbedded clastics and carbonate rocks. The lowermost unit of the ground- water flow system, the confined Upper Floridan aquifer, consists of a thick, hydraulically connected sequence of carbonate rocks. The Upper Floridan aquifer is about 1,200 to 1,400 feet thick and is the primary source for ground-water withdrawals in the study area. The generalized ground-water flow system of the Lake Wales Ridge is that water moves downward from the surficial aquifer to the intermediate aquifer and the Upper Floridan aquifer in the central area, primarily under the ridges, with minor amounts of water flow under the flatlands. The water flows laterally away fromn the central area, downgradient to discharge areas to the west, east, and south, and locally along valleys of major streams. Upward leakage occurs along valleys of major streams. The model was initially calibrated to the steady-state conditions representing September 1989. The resulting calibrated hydrologic parameters were then tested by simulating transient conditions for the period October 1989 through 1990. A

  8. Shallow ground-water quality adjacent to burley tobacco fields in northeastern Tennessee and southwestern Virginia, spring 1997

    USGS Publications Warehouse

    Johnson, G.C.; Connell, J.F.

    2001-01-01

    In 1994, the U.S. Geological Survey began an assessment of the upper Tennessee River Basin as part of the National Water-Quality Assessment (NAWQA) Program. A ground-water land-use study conducted in 1996 focused on areas with burley tobacco production in northeastern Tennessee and southwestern Virginia. Land-use studies are designed to focus on specific land uses and to examine natural and human factors that affect the quality of shallow ground water underlying specific types of land use. Thirty wells were drilled in shallow regolith adjacent to and downgradient of tobacco fields in the Valley and Ridge Physiographic Province of the upper Tennessee River Basin. Ground-water samples were collected between June 4 and July 9, 1997, to coincide with the application of the majority of pesticides and fertilizers used in tobacco production. Ground-water samples were analyzed for nutrients, major ions, 79 pesticides, 7 pesticide degradation products, 86 volatile organic compounds, and dissolved organic carbon. Nutrient concentrations were lower than the levels found in similar NAWQA studies across the United States during 1993-95. Five of 30 upper Tennessee River Basin wells (16.7 percent) had nitrate levels exceeding 10 mg/L while 19 percent of agricultural land-use wells nationally and 7.9 percent in the Southeast had nitrate concentrations exceeding 10 mg/L. Median nutrient concentrations were equal to or less than national median concentrations. All pesticide concentrations in the basin were less than established drinking water standards, and pesticides were detected less frequently than average for other NAWQA study units. Atrazine was detected at 8 of 30 (27 percent) of the wells, and deethylatrazine (an atrazine degradation product) was found in 9 (30 percent) of the wells. Metalaxyl was found in 17 percent of the wells, and prometon, flumetralin, dimethomorph, 2,4,5-T, 2,4-D, dichlorprop, and silvex were detected once each (3 percent). Volatile organic compounds

  9. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  10. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  11. Development of ground-water resources in Orange County, Texas, and adjacent areas in Texas and Louisiana, 1971-80

    USGS Publications Warehouse

    Bonnet, C.W.; Gabrysch, R.K.

    1982-01-01

    Although saltwater encroachment is evident in parts of southern Orange County, the encroachment is not expected to be detrimental if the ground-water pumping remains stable and the projected increase in demands for water is met with surface-water supplies.

  12. Water temperature, streamflow, and ground-water elevation in and adjacent to the Russian river between Hopland and Guerneville, California from 1998-2002

    USGS Publications Warehouse

    Cox, Marisa H.; Hatch, Christine

    2003-01-01

    Temperature, water level elevation, stage height, and river discharge data for this report were collected in and adjacent to the Russian River from Hopland to Guerneville, CA over a four-year period from 1998 to 2002 to establish baselines for long-term water quality, water supply and habitat. Data files presented in this report were collected by the USGS and the Sonoma County Water Agency's Engineering Resource and Planning, and Natural Resource Divisions. Temperature data were collected in single-channel submersible microloggers or temperature data were collected simultaneously with water-elevation data in dual-channel down-hole data loggers. Stream stage and streamflow data were collected at USGS stream gaging stations located near Hopland, Healdsburg, and Guerneville over a 130 km reach of the Russian River. During the period of record stream flow ranged from 3 to 1458 m3/s. Stream temperature ranged from 8 to 29 oC while groundwater temperature ranged from 10 to 38 oC. Stream stage varied 5 m seasonly, while ground-water level varied 19 m over the same time scale.

  13. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  14. Availability and chemistry of ground water on the Bruneau Plateau and adjacent eastern plain in Twin Falls County, south-central Idaho

    USGS Publications Warehouse

    Moffatt, R.L.; Jones, M.L.

    1984-01-01

    The Bruneau plateau in south-central Idaho consists of about 889 ,600 acres of potentially irrigable land. About 112,200 of these acres have been developed for agriculture; 11,200 acres are irrigated with ground water, and the remaining acreage is irrigated with water from the Snake and Bruneau rivers and Salmon Falls Creek. On the basis of present usage, about 158,000 acre-feet of water per year are needed to develop an additional 63,000 acres. About 438,000 acre-feet per year are needed to irrigate existing and newly developed lands in dry years when streamflow in the Snake River at Milner Dam is inadequate to meet appropriated needs. Pumping lifts of about 400-600 feet and low well yields on the Bruneau plateau probably preclude large-scale irrigation development solely from local ground-water resources. However, supplemental sources of irrigation water are available from a perched-water aquifer, a thermal aquifer, and the regional aquifer adjacent to the plateau. About 100,000-115,000 acre-feet per year of water probably could be withdrawn from the perched and regional aquifers and conveyed to the plateau without serious impact on local ground-water resources. The amount of water that could be safely withdrawn from the thermal aquifer was not determined. (USGS)

  15. Ground-water quality and discharge to Chincoteague and Sinepuxent Bays adjacent to Assateague Island National Seashore, Maryland

    USGS Publications Warehouse

    Dillow, Jonathan J.A.; Banks, William S.L.; Smigaj, Michael J.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage

  16. Geology and ground-water resources of the Two Medicine unit and adjacent areas, Blackfeet Indian Reservation, Montana, with a section on chemical quality of water

    USGS Publications Warehouse

    Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.

    1965-01-01

    The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.

  17. Pesticides in surface water, bed sediment, and ground water adjacent to commercial cranberry bogs, Lac du Flambeau Reservation, Vilas County, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    2005-01-01

    In samples from the Trout River, which is used as a source of water to maintain lake levels in the Corn Lakes, the only pesticides detected were the non-targeted compounds atrazine and deethyl atrazine, indicating it was not a source of targeted compounds detected in the Corn Lakes. Only two pesticides (chlorpyrifos and metolachlor) were detected in bed-sediment samples collected from the lakes; chlorpyrifos from Little Trout Lake and metolachlor from the Corn Lakes. Four pesticides (the targeted compounds napropamide and norflurazon and the non-targeted compounds atrazine and deethyl atrazine) were detected in ground-water samples from two of four sampled monitor wells. The highest ground-water concentrations (up to 0.14 ?g/L napropamide and 0.56 ?g/L norflurazon) were measured in samples from the monitoring well located directly downgradient from the Corn Lakes and commercial cranberry operations. No pesticides were detected in samples from the reference well located upgradient from the Corn Lakes and cranberry operations. Further study is needed to identify additional pesticides as well as chronic effects on aquatic organisms to determine whether cranberry-related pesticides affect the lake ecosystems of the Lac du Flambeau Reservation.

  18. Limnological characteristics of selected lakes in the Nebraska sandhills, U.S.A., and their relation to chemical characteristics of adjacent ground water

    NASA Astrophysics Data System (ADS)

    La Baugh, James W.

    1986-10-01

    Limnological characteristics of Crane, Hackberry, Island and Roundup Lakes, and chemical characteristics of shallow ground water, within the Crescent Lake National Wildlife Refuge, western Nebraska, were determined during a preliminary investigation of the interaction between lakes and ground water in this study area between 1980 and 1984. When ice cover was absent, the lakes were well-mixed vertically, regardless of season. Depth to which 1% of surface illumination penetrated was commonly less than 1m. Variability in light penetration, as measured by Secchidisk transparency, appeared to be unrelated to changes in algal biomass, even though algal biomass, measured as chlorophyll a, varied seasonally within a two-order-of-magnitude range. Blue-green algae were the most abundant phytoplankton; this condition occurred most often when the ratio of total nitrogen to total phosphorus in the lakes' water was less than 29. Although rotifers and copepod naupli commonly were the most abundant zooplankton in the lakes, cladocerans were dominant occasionally. Either sodium or calcium was the most abundant cation, and bicarbonate was the most abundant anion, in water from water-table wells and lakes sampled during the study. The second most abundant cation in the ground water was related to the location of the sampled well within the ground-water system. The lakes were a source of dissolved organic carbon seeping to ground water. Chemical and hydrologic data indicate there is interaction between lakes and ground water in the study area.

  19. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  20. Ground water contamination

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Ground water contamination and basic concepts of water law; Federal law governing water contamination and remediation; Ground water flow and contaminant migration; Ground water cleanup under CERCLA; Technical methods of remediation and prevention of contamination; Liability for ground water contamination; State constraints on contamination of ground water; Water quantity versus water quality; Prevention of use of contaminated ground water as an alternative to remediation; Economic considerations in liability for ground water contamination; and Contamination, extraction, and injection issues.

  1. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. PMID:25617998

  2. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  3. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  4. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  5. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  6. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  7. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  8. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  9. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential

  10. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  11. Ground water: a review.

    USGS Publications Warehouse

    Bredehoeft, J.D.

    1983-01-01

    There is growing documentation that a significant portion of the Nation's fresh ground water in the densely populated areas of the USA is contaminated. Because of the slow rates of ground-water movement, ground water once contaminated will remain so for decades, often longer. Cleanup of contaminated ground water is almost always expensive and often technically unfeasible; the expense is often prohibitive. -from Author

  12. Conceptual evaluation of regional ground-water flow in the carbonate-rock province of the Great Basin, Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Prudic, D.E.; Harrill, J.R.; Burbey, T.J.

    1993-01-01

    The regional groundwater flow system in the carbonate rocks of Nevada and Utah is conceptualized as shallow systems superimposed on deeper systems, which transmit water primarily through carbonate rocks. A computer model was used to simulate the two systems. The regional model includes simplifying assumptions that are probably valid for parts of the province; however, the validity of each assumption is unknown for the province as a whole. Therefore, simulation results do not perfectly replicate actual groundwater flow; instead they provide a conceptual evaluation of regional groundwater flow. The model was calibrated by adjusting transmissivity and vertical leakance until simulated water levels and simulated discharge generally agreed with known water levels, mapped areas of discharge, and estimates of discharge. Simulated flow is about 1.5 million acre-ft/yr. Most groundwater flow is simulated in the upper model layer where about 45 shallow flow regions were identified. In the lower layer, 17 deep-flow subregions were identified and grouped into 5 large regions on the basis of water-flow patterns. Simulated flow in this layer is about 28 percent of the total inflow and about half is discharged as springflow. Interbasin flow to several large springs is through thick, continuous, permeable carbonate rocks; elsewhere deep consolidated rocks are not highly transmissive, suggesting that carbonate rocks are not highly permeable everywhere or are not present everywhere. (USGS)

  13. Ground Water in Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.

    2000-01-01

    Ground water is one of Hawaii's most important natural resources. It is used for drinking water, irrigation, and domestic, commercial, and industrial needs. Ground water provides about 99 percent of Hawaii's domestic water and about 50 percent of all freshwater used in the State. Total ground water pumped in Hawaii was about 500 million gallons per day during 1995, which is less than 3 percent of the average total rainfall (about 21 billion gallons per day) in Hawaii. From this perspective, the ground-water resource appears ample; however, much of the rainfall runs off to the ocean in streams or returns to the atmosphere by evapotranspiration. Furthermore, ground-water resources can be limited because of water-quality, environmental, or economic concerns. Water beneath the ground surface occurs in two principal zones: the unsaturated zone and the saturated zone. In the unsaturated zone, the pore spaces in rocks contain both air and water, whereas in the saturated zone, the pore spaces are filled with water. The upper surface of the saturated zone is referred to as the water table. Water below the water table is referred to as ground water. Ground-water salinity can range from freshwater to that of seawater. Freshwater is commonly considered to be water with a chloride concentration less than 250 mg/L, and this concentration represents about 1.3 percent of the chloride concentration of seawater (19,500 mg/L). Brackish water has a chloride concentration between that of freshwater (250 mg/L) and saltwater (19,500 mg/L).

  14. Ground water. [Water pollution control

    SciTech Connect

    Costle, D.M.

    1980-09-01

    There is growing evidence that the Nation's ground water is contaminated by a variety of sources. These include unprotected industrial, municipal, and radioactive disposal sites, petroleum exploration and mining activities, agricultural operations such as insecticide spraying, high de-icing salts and others. As of March 1980, more than 8000 chemical tests have been performed on well water, with chlorinated organic solvents found most frequently. Because 100 million Americans may be threatened by unfit drinking water, EPA has developed a new ground water strategy. It will enlist the help of State and local governments who already have programs under way and it will involve broad public debate and participation.

  15. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  16. Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge Areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, September 2005-August 2006

    USGS Publications Warehouse

    Moreo, Michael T.; Laczniak, Randell J.; Stannard, David I.

    2007-01-01

    Evapotranspiration was measured at six eddy-correlation sites for a 1-year period between September 1, 2005, and August 31, 2006. Five sites were in phreatophytic shrubland dominated by greasewood, and one site was in a grassland meadow. The measured annual evapotranspiration ranged from 10.02 to 12.77 inches at the shrubland sites and 26.94 inches at the grassland site. Evapotranspiration rates correlated to measured vegetation densities and to satellite-derived vegetation indexes. Evapotranspiration rates were greater at sites with denser vegetation. The primary water source supporting evapotranspiration was water derived from local precipitation at the shrubland sites, and ground water at the grassland site. Measured precipitation, ranging from 6.21 to 11.41 inches, was within 20 percent of the computed long-term annual mean. The amount of ground water consumed by phreatophytes depends primarily on local precipitation and vegetation density. The ground-water contribution to local evapotranspiration ranged from 6 to 38 percent of total evapotranspiration at the shrubland sites, and 70 percent of total evapotranspiration at the grassland site. Average depth to water ranged from 7.2 to 32.4 feet below land surface at the shrubland sites, and 3.9 feet at the grassland site. Water levels declined throughout the growing season and recovered during the non-growing season. Diurnal water-level fluctuations associated with evapotranspiration were evident at some sites but not at others.

  17. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  18. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  19. Ground water and energy

    SciTech Connect

    Not Available

    1980-05-01

    In view of complex environmental/energy decisions, the Environmental Impacts Division of the Office of Technology Impacts develops analytical methods for conducting policy analyses supporting decision making. The methods development process often begins with a workshop of leading experts and specialists in the relevant disciplines and issue areas; workshop findings are subsequently utilized by OTI to form a more solid foundation for viable policies. The National Workshop on Ground Water and Energy Production was envisioned as a tool through which OTI could obtain insights, information, and methods (on environmental, economical, physical, political, legal, and social issues) to use in its analyses, models, and assessments. To accomplish this, the Workshop comprised both plenary sessions and individual working groups. The former provided opportunities for all participants to explore issues from a broad perspective, whereas the latter enabled participants to focus on the three following areas: ground water supply; conflicts and barriers to its use; and alternatives or solutions to the various issues. This report summarizes information and insights gained by the Office of Technology Impacts during the course of the Workshop. The Key Findings section summarizes the most important facts discovered during the Workshop. The three general topics that follow (Supply, Conflicts and Barriers, and Alternatives) are those described in the Core Issues statements. The statements are reflective of the recommendations and analyses prepared by the several working groups.

  20. Ground water and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  1. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  2. Preventing ground water contamination

    SciTech Connect

    Thompson, R.

    1985-07-12

    A recent Office of Technology Assessment report to Congress indicates that the associated health risks from ground water contamination are likely to increase because federal and state laws provide inadequate protection. Road de-icing salts, pesticide runoff, septic tanks, and seepage from livestock manure and fertilizers are all major causes that are difficult to control. A primary source that can be corrected is improper or unsafe disposal of hazardous wastes that are dumped into landfills or surface ponds or injected into deep wells. Congress has tried to deal with the problem by strengthening existing and introducing new legislation. Because getting rid of hazardous waste is increasingly expensive and difficult, companies are beginning to look for ways to prevent pollution at the source by using new technologies that are economically sound. 17 references, 4 figures.

  3. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  4. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  5. HANDBOOK: GROUND WATER VOLUME I: GROUND WATER AND CONTAMINATION

    EPA Science Inventory

    This handbook is an extensively revised version of the Ground Water Handbook, originally published in 1987 as EPA/625/6-87/016. It has been published in two volumes: Volume I: Ground Water and Contamination, EPA/625/6-90/016a, and Volume II: Methodology, EPA/625/6-90/016b. Volume...

  6. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of...

  7. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of...

  8. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. Link to an amendment published at 76 FR 35744, June 20, 2011. (a... adjacent waters, Mass. (a) * * * (2) Anchorage B. All waters bounded by a line beginning at 41°36′42.3″...

  9. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  10. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  11. Water resources of Okaloosa County and adjacent areas, Florida

    USGS Publications Warehouse

    Trapp, Henry; Pascale, C.A.; Foster, J.B.

    1977-01-01

    Okaloosa County, in the northwest Florida panhandle, uses the Floridan aquifer for water supply, although it also has abundant surface water and ground water in the surficial sand-and-gravel aquifer. Water levels have declined locally more than 90 feet in the upper limestone of the Floridan aquifer. The Floridan aquifer is overlain by the Pensacola clay confining bed, and the Bucatunna Clay subdivides it into two limestone units. Water in the upper limestone is generally of good quality. The lower limestone probably contains saline water. Average daily stream discharge is about 2,500 million gallons. Stream discharge does not diminish excessively during droughts, owing to high base runoff. Water levels in the Floridan aquifer will decline as long as pumping increases in the present areas of withdrawal. The decline could be alleviated by redistribution of pumping, artificial recharge, and the use of the sand-and-gravel aquifer or streams. (Woodard-USGS)

  12. Ground water exfiltration in a river oxbow

    NASA Astrophysics Data System (ADS)

    Suck, M.; Nützmann, G.; Lewandowski, J.

    2009-04-01

    This paper deals with the quantification of the exchange between ground water and surface water in a river oxbow. Implementation and evaluation of the study site are based upon a conceptual model, in which exfiltration into the oxbow and mainly into the adjacent river Spree are supposed as major transport processes. A clogging mud layer in the oxbow with its low hydraulic conductivity controls exfiltration and is the highest hydraulic resistance in the considered aquatic system. The measurement of temperature depth profiles within that layer was one of the methods applied to measure groundwater exfiltration. Because of the different groundwater and surface water temperatures there are temperature differences between the upper and lower boundary of the mud layer. Depending on the extent of ground water exfiltration that depth profile is more or less curved. By adaptation of an analytical solution to the plotted temperature depth profiles the flux rates were calculated. A supplementary method to measure exfiltration, the seepage meter, is used for direct measurements of the flux rates. With that method the ground water flux which passes a defined cross section of the sediment-water boundary is collected. The evaluation of the results yields higher exfiltration rates for the temperature depth profiles than for the seepage meters. For the seepage meters the results show only a part of the actual flux rates because of several error sources. Despite those errors the comparison of the results from both methods shows a similar flux pattern with strong small-scale heterogeneities. At scales of few meters the measured flux rates fluctuate more than an order of magnitude. The flux rates near the bank are frequently higher than in the middle of the oxbow. However, the flux rates are controlled by the thickness of the clogging mud layer, its hydraulic conductivity, its heterogeneity and the water table differences between surface water and adjacent aquifer.

  13. Ground water quality assessment using multi-rectangular diagrams.

    PubMed

    Ahmad, Niaz; Sen, Zekai; Ahmad, Manzoor

    2003-01-01

    A new graphical technique is proposed here for classifying chemical analyses of ground water. In this technique, a diagram is constructed using rectangular coordinates. The new diagram, called a multi-rectangular diagram (MRD), uses adjacent multi-rectangles in which each rectangle represents a specific ground water type. This new diagram has the capability to accommodate a large number of data sets. MRDs have been used to classify chemical analyses of ground water in the Chaj Doab area of Pakistan to illustrate this new approach. Using this graphical method, the differentiated ground water types are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate, and sodium sulfate. Sodium bicarbonate emerges as the most abundant ground water type. MRDs also offer a visual display of the Chebotarev sequence of ground water quality evolution. PMID:14649865

  14. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  15. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  16. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  17. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  18. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  19. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  20. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  1. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Buzzards Bay, Nantucket Sound, and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of...

  2. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Buzzards Bay, Nantucket Sound, and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of...

  3. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Buzzards Bay, Nantucket Sound, and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of...

  4. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  5. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buzzards Bay, Nantucket Sound, and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of...

  6. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  7. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... explosives, as defined in 49 CFR 173.50. Dangerous cargo means “certain dangerous cargo” as defined in § 160... adjacent waters (Datum: NAD 83). 110.168 Section 110.168 Navigation and Navigable Waters COAST GUARD..., Virginia and adjacent waters (Datum: NAD 83). (a) Anchorage Grounds—(1) Anchorage A . The waters bounded...

  8. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  9. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  10. Base flow and ground water in upper Sweetwater Valley, Tennessee

    USGS Publications Warehouse

    Evaldi, R.D.; Lewis, J.G.

    1983-01-01

    Base flow measurements showed interbasin transfer of water among sub-basins of upper Sweetwater Valley. In general, topographically higher sub-basins have deficient surface outflow unless significant spring flow occurs in the basin. Topographically lower areas adjacent to the main channel of Sweetwater Creek generally have surplus flow. Major flow surpluses were associated with areas in which the majority of flow originated at a spring. Unusual outflow was related to geology to hypothesize a ground-water flow network. Areas of ground-water flow up-gradient of large springs were hypothesized as likely areas for significant ground-water reservoirs. A water budget study indicated that during dry years approximately three-fourths of the annual flow to Sweetwater Creek may be derived from ground-water sources. Streamflow records were analyzed to estimate the frequency of low-flow of Sweetwater Creek. (USGS)

  11. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  12. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  13. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  14. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  15. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  16. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  17. Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1981-01-01

    Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)

  18. The ground beetles (Coleoptera: Carabidae) of the Strandzha Mountain and adjacent coastal territories (Bulgaria and Turkey)

    PubMed Central

    Guéorguiev, Borislav

    2016-01-01

    Abstract Background The knowledge of the ground-beetle fauna of Strandzha is currently incomplete, and is largely based on data from the Bulgarian part of the region and on records resulting from casual collecting. This study represents a critical revision of the available literature, museum collections and a three years field study of the carabid beetles of the Bulgarian and Turkish parts of Strandzha Mountain and the adjacent Black Sea Coast territories. New information A total of 328 species and subspecies of Carabidae, belonging to 327 species from the region of Strandzha Mountain and adjacent seacoast area, have been listed. Of these, 77 taxa represent new records for the Bulgarian part of the region, and 110 taxa new records for Turkish part of the studied region. Two taxa, one subgenus (Haptotapinus Reitter, 1886) and one species (Pterostichus crassiusculus), are new to the fauna of Bulgaria. Based on a misidentification, the species Apotomus testaceus is excluded from the list of the Bulgarian fauna. Seven species (Carabus violaceus azurescens, Apotomus rufus, Platynus proximus, Molops alpestris kalofericus, M. dilatatus angulicollis, Pterostichus merklii, and Calathus metallicus) are treated as doubtful for the regional fauna, and one (Apotomus rufus) also for the Bulgarian fauna. Altogether, 43 taxa collected in the Turkish part of the region are new for European Turkey. New taxa for Turkey are the genera Myas and Oxypselaphus, the subgenus Feronidius, and nine species and subspecies (Carabus granulatus granulatus, Dyschirius tristis, Bembidion normannum apfelbecki, B. subcostatum vau, Acupalpus exiguus, Myas chalybaeus, Oxypselaphus obscurus, Pterostichus leonisi, Pt. melas). In addition, there are a further seven species that are here confirmed for Turkey. PMID:27099564

  19. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  20. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  1. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included. (Woodard-USGS)

  2. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  3. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  4. Assessment of information on ground-water/surface-water interactions in the northern midcontinent

    USGS Publications Warehouse

    Strobel, Michael L.

    1995-01-01

    Ground-water/surface-water interactions are important to the hydrology of shallow aquifers, streams, lakes, and wetlands. Information on ground-water/surface-water interactions in the northern midcontinent was assessed. The ground-water/surface-water interactions in physiographic and climatic areas that contain many wetlands differed from the interactions in areas that consisted predominantly of alluvial aquifers along large streams. In both types of areas, however, the interactions are complex. The distribution of shallow ground-water observation wells in the northern midcontinent and the frequency of measurement were evaluated. Most shallow wells are located adjacent to major streams, especially in areas where wetlands are not a dominant surface-water feature. The frequency of measurement was inconsistent between states.

  5. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  6. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  7. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  8. Microbial and Chemical Characterization of Geothermal Ground Water

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Kennedy, John

    Subsurface geothermal sites are commonly colonized by chemolithotrophic bacteria which use rock minerals and CO_2 as sole nutrients. This type of ``life cradle'' may not only be common on Earth but may also be a likely scenario on many other planets. Three geothermal sites in southern New Mexico have been chosen to characterize geothermal waters for microbial diversity and chemical content. All sites of this on-going study are located on or near the Rio Grande Rift and are tapped into fractured reservoir systems of Paleozoic carbonate rocks, Tertiary volcanic rocks or consolidated basin-fill sediments. Geothermal fluids were analyzed for major cations and anions, selected trace elements, TOC, phosphate, fluoride and dissolved gases. The microbial analysis included phospholipid fatty acid (PLFA) analysis and DNA sequencing. Geothermal ground water was high in dissolved solids, had high concentrations of carbon dioxide and was more acidic than adjacent ground water not affected by geothermal activity. Geothermal ground-water samples contained very low amounts of biomass composed of relatively simple microbial communities. Several species of Archaebacteria were detected in some of the ground water that was derived from wells tapping into deep fractured systems. The analysis of denaturing gradient gel electrophoresis (DGGE) images indicated distinct differences of the types of microbes present in geothermal water compared to an adjacent deep non-thermal flow system.

  9. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R., (Edited By)

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  10. Nitrates in Wisconsin ground water.

    PubMed

    Schuknecht, B; Lawton, G W; Steinka, P; Delfino, J J

    1975-01-01

    Nitrate analyses were performed on ground water well samples originating from sources throughout Wisconsin. The data ranged from below the analytical detection limit up to 140 mg NO3-N/1. Over nine percent of all wells sampled has nitrate concentrations in excess of 10 mg NO3-N/1. Six individual counties had more than 10 mg NO3-N/1 in at least twenty percent of the wells covered in this survey. However, data reported for over eight thousand new wells driven in 1971-1972 showed only slightly more than two percent with nitrate levels above 10 mg NO3-N/1. This reflected the trend toward drilling deeper wells which are influenced less by nitrate seepage as well as adherence to new and stricter well construction codes. PMID:1183417

  11. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  12. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  13. INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE

    EPA Science Inventory

    Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

  14. Ground water near Newton, Jasper County, Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.

    2001-01-01

    The water quality in the South Skunk River and the alluvial aquifer was similar, except most ground-water samples contained low dissolved oxygen concentrations. The low dissolved-oxygen concentrations in ground water resulted in high concentrations of iron and manganese in some locations and reduced forms of nitrogen.

  15. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  16. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  17. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  18. Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance

    NASA Astrophysics Data System (ADS)

    Hayashi, Masaki; van der Kamp, Garth; Rudolph, Dave L.

    1998-06-01

    The hydrology and water quality of lakes and wetlands are controlled by the exchange of water and solutes with adjacent uplands. We studied a small catchment in Saskatchewan, Canada, to evaluate the mechanisms of water and solute transfer between the wetland and the surrounding upland. Detailed measurements of hydrologic processes (precipitation, runoff, evapotranspiration, and subsurface flow) and chloride distribution are combined to improve the estimate of the transfer flux. This paper describes hydrologic processes and Part 2 describes the solute transport processes. Large snowmelt runoff occurs in the catchment, which transfer 30-60% of winter precipitation on the upland into the wetland to form a pond in the center. Snowmelt water and summer precipitation infiltrate under the central pond. Infiltration accounts for 75% of water leaving the central pond and evapotranspiration accounts for 25%. Most of the infiltrated water flows laterally in the shallow subsurface to the wet margin of the pond and further to the upland, where it is consumed by evapotranspiration without recharging deep groundwater. The net recharge rate of the aquifer underlying the catchment is only 1-3 mm year -1. Snowmelt runoff transfers water from the upland to the wetland, and shallow subsurface flow transfers water in the opposite direction. When the two processes are combined, they provide the paths for cyclic transport of solutes.

  19. Ground-water levels in Wyoming, 1976

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1977-01-01

    Ground-water levels are measured periodically in a network of about 280 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1976 to 1977. Well history, highest and lowest water levels , and hydrographs for most wells also are included. The program of groundwater observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne. (Woodard-USGS)

  20. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  1. Alternatives for Ground Water Cleanup

    NASA Astrophysics Data System (ADS)

    Hudak, P. F.

    Aquifer remediation is one of our most difficult environmental challenges; technological limitations and problems arising from the physical and chemical complexities of contaminated subsurface environments thwart our best efforts. A 19-member committee of leaders in environmental engineering, hydrogeology, epidemiology, environmental economics, and environmental policy has written an ambitious book that broadly addresses the groundwater remediation problem. Topics include site characterization, capabilities and limitations of pump-and-treat and alternative technologies, alternative goals for ground water cleanup, and policy implications.One of the book's strengths is its information base, which includes various public and private groups, data from 80 pump-and-treat sites, and an extensive literature review. The text is clearly written and well organized. Specific conclusions are stated at the end of each major chapter, and sound policy recommendations are offered at the end of the final chapter. An appendix summarizes pump-andtreat systems reviewed during the study. Several case studies, diagrams, and photographs effectively illustrate concepts and ideas conveyed in the text.

  2. Hanford Site ground-water monitoring for 1992

    SciTech Connect

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  3. Water and solute transfer between a prairie wetland and adjacent uplands, 2. Chloride cycle

    NASA Astrophysics Data System (ADS)

    Hayashi, Masaki; van der Kamp, Garth; Rudolph, Dave L.

    1998-06-01

    The quality of water in lakes and wetlands depends on the exchange of solutes with adjacent uplands. In many prairie wetlands, the input of water is dominated by snowmelt runoff and the outputis dominated by groundwater flow. We use chloride as a tracer to quantify the mass transfer processes associated with surface runoff and groundwater flow between a wetland in Saskatchewan, Canada and the surrounding upland. Snowmelt runoff transports 4-5 kg yr -1 of chloride from the upland to the wetland. Most of this chloride infiltrates under the wetland and moves laterally to the upland with shallow groundwater. Under the upland, chloride moves upward in the vadose zone with soil water, and accumulates near the surface as water is consumed by evapotranspiration. Part of this chloride mixes with snowmelt runoff and moves back to the wetland Therefore, chloride is cycled between the wetland and the upland at an approximate rate of 5 kg yr -1. The chloride cycle occurs within 5-6 m of the ground surface. A small amount of chloride escapes from the cycle with the downward flow of groundwater into the deep aquifer. The estimated flux of chloride leaving the cycle is 0.1-0.6 kg yr -1, which is of the same order of magnitude as the rate at which the catchment receives atmospheric deposition of chloride. Because the atmospheric input is reasonably well known over the prairie region, the concentration of chloride in groundwater under recharge wetlands can be used to estimate the recharge rate of deep aquifers.

  4. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  5. Remediation of ground water containing volatile organic compounds and tritium

    SciTech Connect

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.

  6. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  7. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  8. HANDBOOK: GROUND WATER VOLUME II: METHODOLOGY

    EPA Science Inventory

    This handbook is an extensively revised version of the Ground Water Handbook, originally published in 1987 as EPA/625/6-87/016. It has been published in two volumes: Volume I: Ground Water and Contamination, EPA/625/6-90/016a, and Volume II: Methodology, EPA/625/6-90/016b. Volume...

  9. FIELD STUDY OF THE FATE OF ARSENIC, LEAD, AND ZINC AT THE GROUND-WATER/SURFACE-WATER INTERFACE

    EPA Science Inventory

    It is recognized that physical and chemical interactions between adjacent ground water and surface water bodies are an important factor impacting water budget and nutrient/contaminant transport within a watershed. This observation is also of importance for hazardous waste site c...

  10. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  11. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    PubMed

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795

  12. Hanford site ground water protection management plan

    SciTech Connect

    Not Available

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  13. International borders, ground water flow, and hydroschizophrenia.

    PubMed

    Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron

    2005-01-01

    A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users? PMID:16149973

  14. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  15. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  16. A primer on ground water

    USGS Publications Warehouse

    Baldwin, Helene L.; McGuinness, C.L.

    1963-01-01

    Most of us don't have to look for water. We grew up either in big cities where there was a public water supply, or in small towns or on farms where the water came from wells. But there are some people to whom finding a new supply of water is vitally important.

  17. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  18. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  19. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  20. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  1. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  2. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  3. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  4. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  5. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  6. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  7. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  8. Natural radionuclides in ground waters and cores

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  9. Ground water protection management program plan

    SciTech Connect

    Not Available

    1994-02-01

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  10. Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States

    SciTech Connect

    Musgrove, M.; Banner, J.L. )

    1993-03-26

    Ground waters in three adjacent regional flow systems in the midcontinent exhibit extreme chemical and isotopic variations that delineate large-scale fluid flow and mixing processes and two distinct mechanisms for the generation of saline fluids. Systematic spatial variations of major ion concentrations, H, O, and Sr isotopic compositions, and ground-water migration pathways indicate that each flow system contains water of markedly different origin. Mixing of the three separate ground waters exerts a fundamental control on ground-water composition. The three ground waters are: (i) dilute meteoric water recharged in southern Missouri; (ii) saline Na-Ca-Cl water in southeastern Kansas of far-traveled meteoric origin that acquired its salinity by halite dissolution; and (iii) Na-Ca-Cl brines in north-central Oklahoma that may have originated as Paleozoic seawater. 45 refs., 4 figs., 1 tab.

  11. 75 FR 65278 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger... its regulations to establish one new danger zone in Pamlico Sound near Marine Corps Air Station Cherry... existing 1.8 mile Danger Zone [as described in Sec. 334.420(b)(1)(i)] in the Pamlico Sound and...

  12. DISTRIBUTION OF CONTAMINANTS IN WATERS OF MONROE HARBOR (RIVER RAISIN), MICHIGAN AND ADJACENT LAKE ERIE

    EPA Science Inventory

    The report describes the results of surveys of selected organochlorines and metals in Monroe Harbor and adjacent Lake Erie. Seasonal surveys at 3 sites of contaminant distribution in the water column were designed to support exposure effects studies and mass balance modeling. Che...

  13. A ground-water sapping landscape in the Florida Panhandle

    NASA Astrophysics Data System (ADS)

    Schumm, S. A.; Boyd, K. F.; Wolff, C. G.; Spitz, W. J.

    1995-07-01

    Drainage networks that have formed by ground-water sapping are developed in the highly permeable sands of the Citronelle Formation in the Florida Panhandle. The valleys resemble those formed on Hawaii, the Colorado Plateau and on Mars, but they have developed without significant lithologic controls. Drainage patterns range from trellis to dentritic depending on the effect of beach ridges and relative relief. Many of the drainage networks are not fully developed, and the adjacent uplands have been modified by marine, aeolian, and to a limited extent fluvial processes. Extension of the networks appears to be episodic, as a result of fires, hurricanes, and human activities, which damage or destroy vegetation.

  14. Estimating ground water discharge by hydrograph separation.

    PubMed

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives. PMID:12772830

  15. Ground water in the North Side Pumping Division, Minidoka Project, Minidoka County, Idaho

    USGS Publications Warehouse

    Crosthwaite, Emerson G.; Scott, R.C.

    1956-01-01

    nearby is being developed by private capital. Completion of the Federal reclamation project will more than double the irrigated acreage in the North Side Division of the Minidoka Project. The area to be irrigated with ground water is at the south-central edge of the Snake River Plain adjacent to project lands that have been irrigated for many years with Snake River water.

  16. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  17. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  18. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sound Vessel Traffic Service (PSVTS) VHF-FM radio frequency for the area in which the vessel is... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in...

  19. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pamlico Sound and adjacent waters... REGULATIONS § 334.420 Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations. (a) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The...

  20. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pamlico Sound and adjacent waters... REGULATIONS § 334.420 Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations. (a) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The...

  1. Ground water recharge from Lake Chad

    SciTech Connect

    Isiorho, S.; Matisoff, G.; McCall, P.L.

    1985-01-01

    Lake Chad is a shallow, closed basin lake located in Sub-Sharan Africa. It has the largest drainage basin of any lake in the world, and is also very old, being formed by tectonic processes during the Cretaceous. These features should combine to form a saline lake, but the open waters of Lake Chad are reasonably fresh, having a total dissolved solids concentration of about 320 mg/1. This apparent discrepancy can be explained by noting that recharge of the unconfined aquifer to the SW in Nigeria by ground water infiltration through the lakebed can remove significant quantities of water and dissolved solutes from the lake. The authors have measured and calculated ground water infiltration and velocities by several techniques. Direct, volumetric measurements of ground water recharge seepage give velocities on the order of .28-8.8 x 10/sup -3/ m/day. Tracer monitoring in a borehole dilution test yielded ground water velocities of 3.6 m/day to the SW (away from the lake). Hydraulic conductivities approx. .004-.6 m/day were determined by falling head measurements. Finally, using static water levels, the potentiometric surface within approx. 80 km of the southwest portion of Lake Chad yields water table gradients of 1.0-1.7 x 10/sup -4/ away from the lake. These results confirm that surface water and solute inflow to Lake Chad is removed by recharge to the unconfined aquifer in Nigeria.

  2. Distribution and probable source of nitrate in ground water of Paradise Valley, Arizona

    SciTech Connect

    Silver, B.A.; Fielden, J.R.

    1980-01-01

    Two theories have been proposed regarding the source of nitrate in Paradise Valley ground water: one suggests contamination by fertilizers and by treated wastewater effluent, and the other suggests that ammonium chloride, leached from tuffs in the adjacent Superstition Mountains, is oxidized to nitrate and deposited in a braided stream complex. The geology, hydrogeology, and distribution of nitrate in Paradise Valley ground water are described.

  3. Ground-water data for Georgia, 1984

    USGS Publications Warehouse

    Clarke, J.S.; Longsworth, S.A.; McFadden, K.W.; Peck, M.F.

    1985-01-01

    Continuous water-level records from 155 wells and more than 800 water-level measurements made in Georgia during 1984 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1984. Monthly means are shown for the 10-year period 1975-84. Mean annual water levels ranged from 7 feet lower to 7 feet higher in 1984 than in 1983. Water-quality samples are collected periodically throughout Georgia and analyzed as part of a real and regional ground-water studies. Along the coast, chloride concentrations in the Floridan aquifer system generally remained steady. (USGS)

  4. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  5. Ground-water applications of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1982-01-01

    Remote sensing can be used as a tool to inventory springs and seeps and to interpret lithology, structure, and ground-water occurrence and quality. Thermograms are the best images for inventory of seeps and springs. The steps in aquifer mapping are image analysis and interpretation and ground-water interpretation. A ground-water interpretation is derived from a conceptual geologic model by inferring aquifer characteristics and water salinity. The image selection process is very important for obtaining maximum geologic and hydrologic information from remotely sensed data. Remote sensing can contribute an image base map or geologic and hydrologic parameters, derived from the image, to the multiple data sets in a hydrologic information system. Various merging and integration techniques may then be used to obtain information from these data sets.

  6. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  7. Assessment of the fresh-and brackish-water resources underlying Dunedin and adjacent areas on northern Pinellas County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Swenson, E.S.

    1996-01-01

    The city of Dunedin is enhancing their potable ground-water resources through desalination of brackish ground water. An assessment of the fresh- and brackish-water resources in the Upper Floridan aquifer was needed to estimate the changes that may result from brackish-water development. The complex hydrogeologic framework underlying Dunedin and adjacent areas of northern Pinellas County is conceptualized as a multilayered sequence of permeable zones and confining and semiconfining units. The permeable zones contain vertically spaced, discrete, water-producing zones with differing water quality. Water levels, water-level responses, and water quality are highly variable among the different permeable zones. The Upper Floridan aquifer is best characterized as a local flow system in most of northern Pinellas County. Pumping from the Dunedin well field is probably not influencing water levels in the aquifer outside Dunedin, but has resulted in localized depressions in the potentiometric surface surrounding production-well clusters. The complex geologic layering combined with the effects of production-well distribution probably contribute to the spatial and temporal variability in chloride concentrations in the Dunedin well field. Chloride concentrations in ground water underlying the Dunedin well field vary both vertically and laterally. In general, water-quality rapidly changes below depths of 400 feet below sea level. Additionally, randomly distributed water-producing zones with higher chloride concentrations may occur at shallow, discrete intervals above 400 feet. A relation between chloride concentration and distance from St. Joseph Sound is not apparent; however, a possible relation exists between chloride concentration and production-well density. Chloride-concentration data from production wells show a consistently increasing pattern that has accelerated since the late 1980's. Chloride-concentration data from 15 observation wells show increasing trends for 6 wells

  8. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  9. Montana's Coalbed Methane Ground-Water Monitoring Program: Year One

    NASA Astrophysics Data System (ADS)

    Wheaton, J. R.; Smith, M.; Donato, T. A.; Bobst, A. L.

    2003-12-01

    Tertiary coal seams in the Powder River Basin in southeastern Montana provide three very important resources: ground water, coal, and natural gas. Ground water from springs and wells is essential for the local agricultural economy. Because coal seams in the Fort Union Formation have higher hydraulic conductivity values and are more continuous than the sandstone units, they are the primary aquifers in this region. Coalbed methane (CBM) production is beginning in the Powder River Basin, and requires removal and management of large quantities of water from the coal-seam aquifers. The extensive pumping required to produce the methane is expected to create broad areas of severe potentiometric decline. The Montana CBM ground-water monitoring program, now in place, is based on scientific concepts developed during more than 30 years of coal-mine hydrogeology research. The program includes inventories of ground-water resources and regular monitoring at dedicated wells and selected springs. The program is now providing baseline potentiometric and water-quality data, and will continue to be active through the duration of CBM production and post-production ground-water recovery. An extensive inventory of ground-water resources in the Montana portion of the Powder River Basin has located 300 springs and 21 wells on private land, and 460 springs and 21 wells on U. S. Forest Service and U. S. Bureau of Land Management land, all producing ground water from the methane bearing strata. In southeastern Montana, 134 monitoring wells are currently included in the CBM monitoring program. They are completed either in coal seams, adjacent sandstone units, or alluvium. During the coal boom of the 1970's and 1980's many monitoring wells were drilled, but most have been since unused. Thirty-six of these existing wells have now been returned to service to decrease start-up costs for the CBM program. This network of existing wells has been augmented at key sites with 26 new wells drilled

  10. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...

  11. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...

  12. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...

  13. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...

  14. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...

  15. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  16. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  17. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  18. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  19. Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia and adjacent waters.

    PubMed

    Austin, William C; Ott, Bruce S; Reiswig, Henry M; Romagosa, Paula; McDaniel, Neil G

    2013-01-01

    Two new species of Demospongiae are described for British Columbia and adjacent waters in the family Axinellidae, Auletta krautteri sp. n. and Dragmacidon kishinensis sp. n. They represent range extensions for both of these genera. Both are fairly commonly encountered, Auletta krautteri below diving depths (87 to at least 300 m) and Dragmacidon kishinensis in shallow water (intertidal to 30 m). We propose an amended genus diagnosis for Auletta to account for the variability among species in principal spicules that form the ascending tracts to be either oxeas, styles or strongyles rather than just oxeas. PMID:24146581

  20. Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia and adjacent waters

    PubMed Central

    Austin, William C.; Ott, Bruce S.; Reiswig, Henry M.; Romagosa, Paula; McDaniel, Neil G.

    2013-01-01

    Abstract Two new species of Demospongiae are described for British Columbia and adjacent waters in the family Axinellidae, Auletta krautteri sp. n. and Dragmacidon kishinensis sp. n. They represent range extensions for both of these genera. Both are fairly commonly encountered, Auletta krautteri below diving depths (87 to at least 300 m) and Dragmacidon kishinensis in shallow water (intertidal to 30 m). We propose an amended genus diagnosis for Auletta to account for the variability among species in principal spicules that form the ascending tracts to be either oxeas, styles or strongyles rather than just oxeas. PMID:24146581

  1. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  2. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  3. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  5. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  6. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  7. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  8. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  9. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 257.22... Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  10. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  11. MODELING TOOLS FOR GROUND WATER-SURFACE WATER INTERACTIONS

    EPA Science Inventory

    This project develops algorithms for simulating the dynamic interactions between surface water and ground water in rivers and riparian streams. The algorithms rely on physically based linear response functions which describe the exchange rates and volumes of water between the str...

  12. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  13. Ground water work breakdown structure dictionary

    SciTech Connect

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  14. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  15. IN-SITU BIOREMEDIATION OF GROUND WATER

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  16. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  17. GROUND-WATER DATA MANAGEMENT WITH STORET

    EPA Science Inventory

    The manual has been designed to address both ground-water quality data and the related well site characteristics. For non-USGS wells, appropriate fields have been added to include the information on site characteristics. Much of the information has been adopted from the site char...

  18. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  19. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  20. Ground-water monitoring at Santa Barbara, California; Phase 2, Effects of pumping on water levels and on water quality in the Santa Barbara ground-water basin

    USGS Publications Warehouse

    Martin, Peter

    1984-01-01

    From July 1978 to January 1980, water levels in the southern part of the Santa Barbara ground-water basin declined more than 100 feet. These water-level declines resulted from increases in municipal pumping since July 1978. The increase in municipal pumping was part of a basin-testing program designed to determine the usable quantity of ground water in storage. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines to altitudes below sea level in the main water-bearing zones. As a result, the ground-water basin would be subject to saltwater intrusion if the study-period pumpage were maintained or increased. Data indicate that saltwater intrusion has degraded the quality of the water yielded from six coastal wells. During the study period, the six coastal wells all yielded water with chloride concentrations in excess of 250 milligrams per liter, and four of the wells yielded water with chloride concentrations in excess of 1,000 milligrams per liter. Previous investigators believed that saltwater intrusion was limited to the shallow part of the aquifer, directly adjacent to the coast. The possibility of saltwater intrusion into the deeper water-bearing deposits in the aquifer was thought to be remote because an offshore fault truncates these deeper deposits so that they lie against consolidated rocks on the seaward side of the fault. Results of this study indicate, however, that ocean water has intruded the deeper water-bearing deposits, and to a much greater extent than in the shallow part of the aquifer. Apparently the offshore fault is not an effective barrier to saltwater intrusion. No physical barriers are known to exist between the coast and the municipal well field. Therefore, if the pumping rate maintained during the basin-testing program were continued, the degraded water along the coast could move inland and contaminate the municipal supply wells. The time required for the degraded water to move from the coast to

  1. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  2. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  3. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  4. Ground water maps of the Hanford Site

    SciTech Connect

    Kasza, G.L.; Harris, S.F.; Hartman, M.J.

    1990-12-01

    This report presents the results of the June 1990, ground water level measurement program at the 100 Areas and 200 Areas of the Hanford Site (Figure 1). The water levels beneath these areas are measured regularly on a semiannual basis and the data received are used to produce the following set of maps for public release. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 100 Areas have the prefix 199; wells in the 200 Areas have the prefix 299, and the wells outside these areas have the prefix 699. Ground Water Maps of the Hanford Site is prepared by the Geosciences Group, Environmental Division, Westinghouse Hanford Company, for the US Department of Energy, Richland Operations Office. 1 ref., 6 figs., 2 tabs.

  5. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  6. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  7. Ground water nitrate removal in subsoil of forested and mowed riparian buffer zones

    SciTech Connect

    Addy, K.L.; Gold, A.J.; Groffman, P.M.; Jacinthe, P.A.

    1999-05-01

    The authors studied two similar riparian sites in southern New England and examined ground water nitrate (NO{sub 3}{sup {minus}}-N) removal in the subsurface of mowed (i.e., herbaceous) vs. forested (i.e., woody) vegetation. Each site consisted of poorly drained, fine to medium sands and contained adjacent areas of mowed and forested vegetation. They dosed mesocosms with bromide and {sup 15}N labeled NO{sub 3}{sup {minus}}-N amended ground water to simulate the shallow ground water NO{sub 3}{sup {minus}}-N dynamics of riparian buffers zones. Mesocosms were composed of undisturbed, horizontal soil cores extracted from seasonally saturated subsoil. The authors observed substantial ground water NO{sub 3}{sup {minus}}-N removal and denitrification at all locations. Ground water NO{sub 3}{sup {minus}}-N removal rates were significantly correlated with carbon-enriched patches of organic matter. This correlation supports previous work that patches function as hotspots of microbial activity in the subsoil. Within each site, they found no significant difference in ground water NO{sub 3}{sup {minus}}-N removal rates in the subsoil of forested and mowed areas and they noted tree roots throughout the subsoil of the mowed areas. They found that ground water NO{sub 3}{sup {minus}}-N removal rates differed significantly between similar sites. They caution against ascribing specific ground water NO{sub 3}{sup {minus}}-N removal rates to different riparian aboveground vegetation types without recognizing the importance of site differences, e.g., water table dynamics, land use legacy and adjacent vegetation. Riparian zones composed of a mix of forested and mowed vegetation, common in agroforestry and suburban land uses, may remove substantial amounts of ground water NO{sub 3}{sup {minus}}-N.

  8. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  9. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explosives, as defined in 49 CFR 173.50. Dangerous cargo means “certain dangerous cargo” as defined in § 160... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hampton Roads, Virginia and..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.168 Hampton...

  10. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  11. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  12. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  13. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  14. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  15. Measures of Water Quality in Merrit Island National Wildlife Refuge Impoundments and Adjacent Indian River Lagoon

    NASA Technical Reports Server (NTRS)

    Blum, Linda K.

    2000-01-01

    The goal of this project was to conduct preliminary investigations to determine appropriate sampling strategies to measure the flux of dissolved nutrients (specifically, NH4+, NO3-, NO2-, and PO4(3-)) and suspended particulate matter (TSS) between impoundments and the IRL in preparation for an intensive three-year monitoring program. In addition to nutrients and TSS, a variety of common water quality indicators were also measured during these preliminary studies. Six impoundments and a single restored marsh were selected for study. Over a month long period, water samples were collected weekly at selected impoundment culverts. Water was collected in duplicate as independent grab samples from both the lagoon side and within the perimeter ditch directly adjacent to the culverts. Water quality indicators inside and outside the marsh impoundments were different. Ammonium, salinity, bacteria, and chlorophyll-a were higher inside the impoundments as expected possibly as a result of the great affect of evaporation on impoundment water. Water quality indicators responded rapidly both inside and outside the impoundments as exemplified by the increase in NH4(+)-N concentrations during a horseshoe crab die-off. Water quality indicators were high variable during the month in which water samples were collected. Because the impoundments are widely spaced it is logistically unrealistic to sample each of the impoundments and associated seagrass beds on a single day, sampling must be stratified to allow patterns of material movement and the annual flux of materials to and from the impoundments to be determined.

  16. Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current.

    PubMed

    Seymour, Justin R; Doblin, Martina A; Jeffries, Thomas C; Brown, Mark V; Newton, Kelly; Ralph, Peter J; Baird, Mark; Mitchell, James G

    2012-10-01

    Different oceanographic provinces host discrete microbial assemblages that are adapted to local physicochemical conditions. We sequenced and compared the metagenomes of two microbial communities inhabiting adjacent water masses in the Tasman Sea, where the recent strengthening of the East Australian Current (EAC) has altered the ecology of coastal environments. Despite the comparable latitude of the samples, significant phylogenetic differences were apparent, including shifts in the relative frequency of matches to Cyanobacteria, Crenarchaeota and Euryarchaeota. Fine-scale variability in the structure of SAR11, Prochlorococcus and Synechococcus populations, with more matches to 'warm-water' ecotypes observed in the EAC, indicates the EAC may drive an intrusion of tropical microbes into temperate regions of the Tasman Sea. Furthermore, significant shifts in the relative importance of 17 metabolic categories indicate that the EAC prokaryotic community has different physiological properties than surrounding waters. PMID:23760900

  17. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  18. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  19. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  20. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  1. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  2. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... identification of ground water protection areas and other sensitive ground water areas affect me? (a) You...

  3. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  4. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge. The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  5. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  6. A new version of regional ocean reanalysis for coastal waters of China and adjacent seas

    NASA Astrophysics Data System (ADS)

    Han, Guijun; Li, Wei; Zhang, Xuefeng; Wang, Xidong; Wu, Xinrong; Fu, Hongli; Zhang, Xiaoshuang; Zhang, Lianxin; Li, Dong

    2013-07-01

    A new regional ocean reanalysis over multiple decades (1958-2008) for the coastal waters of China and adjacent seas has been completed by the National Marine Data and Information Service (NMDIS) under the CORA (China Ocean ReAnalysis) project. Evaluations were performed on three aspects: (1) the improvement of general reanalysis quality; (2) eddy structures; and (3) decadal variability of sea surface height anomalies (SSHAs). Results showed that the quality of the new reanalysis has been enhanced beyond ˜40% (39% for temperature, 44% for salinity) in terms of the reduction of root mean squared errors (RMSEs) for which the reanalysis values were compared to observed values in the observational space. Compared to the trial version released to public in 2009, the new reanalysis is able to reproduce more detailed eddy structures as seen in satellite and in situ observations. EOF analysis of the reanalysis SSHAs showed that the new reanalysis reconstructs the leading modes of SSHAs much better than the old version. These evaluations suggest that the new CORA regional reanalysis represents a much more useful dataset for the community of the coastal waters of China and adjacent seas.

  7. A regional ocean reanalysis system for coastal waters of China and adjacent seas

    NASA Astrophysics Data System (ADS)

    Han, Guijun; Li, Wei; Zhang, Xuefeng; Li, Dong; He, Zhongjie; Wang, Xidong; Wu, Xinrong; Yu, Ting; Ma, Jirui

    2011-05-01

    A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service (NMDIS). It produces a dataset package called CORA (China ocean reanalysis). The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system (POMgcs). The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations. Data assimilation is a sequential three-dimensional variational (3D-Var) scheme implemented within a multigrid framework. Observations include satellite remote sensing sea surface temperature (SST), altimetry sea level anomaly (SLA), and temperature/salinity profiles. The reanalysis fields of sea surface height, temperature, salinity, and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature, salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges, temperature profiles, as well as the trajectories of Argo floats. Some case studies offer the opportunity to verify the evolution of certain local circulations. These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.

  8. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  9. Hydrogeology, water quality, and ground-water-development alternatives in the Upper Wood River Ground-Water Reservoir, Rhode Island. Water resources investigations

    SciTech Connect

    Dickerman, D.C.; Bell, R.W.

    1993-12-31

    This report describes the hydrogeology, water quality, and ground-water-development alternatives in the upper Wood River ground-water reservoir, Rhode Island. The report includes discussion of (1) recharge to and hydraulic properties of the stratified-drift aquifer, (2) stream-aquifer interconnection, (3) assessment of the quality of ground water and surface water, (4) input to and calibration of a two-dimensional ground-water-flow model, and (5) results of simulations of the effect of alternative ground-water-development schemes on ground-water levels and streamflow.

  10. Ground-water quality assessment of the Carson River basin, Nevada and California; results of investigations, 1987-91

    USGS Publications Warehouse

    Welch, Alan H.; Lawrence, Stephen J.; Lico, Michael S.; Thomas, James M.; Schaefer, Donald H.

    1997-01-01

    Using existing Nevada State drinking-water standards as a measure of the overall water quality, ground-water quality in principal aquifers of the upper Carson River basin is generally excellent. Ground-water quality in the Carson Desert, the distal end of the Carson River basin, displays extremes in concentrations of major and minor inorganic constituents, with dissolved solids reaching concentrations exceeding sea water. More than 10 percent of sampled ground water in the principal aquifers contain concentrations of arsenic, dissolved solids, and manganese greater than the drinking-water standards. Nearly all sampled ground water in the basin had radon-222 activities greater than the proposed Federal maximum contaminant level of 300 picocuries per liter. Uranium concentrations greater than the proposed Federal maximum contaminant level of 20 micrograms per liter were found in ground water in the adjacent Sierra Nevada.

  11. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  12. Determining the mean hydraulic gradient of ground water affected by tidal fluctuations

    USGS Publications Warehouse

    Serfes, Michael E.

    1991-01-01

    Tidal fluctuations in surface-water bodies produce progressive pressure waves in adjacent aquifers. As these pressure waves propagate inland, ground-water levels and hydraulic gradients continuously fluctuate, creating a situation where a single set of water-level measurements cannot be used to accurately characterize ground-water flow. For example, a time series of water levels measured in a confined aquifer in Atlantic City, New Jersey, showed that the hydraulic gradient ranged from .01 to .001 with a 22-degree change in direction during a tidal day of approximately 25 hours. At any point where ground water tidally fluctuates, the magnitude and direction of the hydraulic gradient fluctuates about the mean or regional hydraulic gradient. The net effect of these fluctuations on ground-water flow can be determined using the mean hydraulic gradient, which can be calculated by comparing mean ground- and surface-water elevations. Filtering methods traditionally used to determine daily mean sea level can be similarly applied to ground water to determine mean levels. Method (1) uses 71 consecutive hourly water-level observations to accurately determine the mean level. Method (2) approximates the mean level using only 25 consecutive hourly observations; however, there is a small error associated with this method.

  13. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  14. EVALUATING THE EFFECTIVENESS OF GROUND WATER EXTRACTION SYSTEMS (JOURNAL)

    EPA Science Inventory

    The most common process for remediating contaminated ground water is extraction and treatment. Data from 19 ongoing and completed ground water extraction systems were collected and analyzed to evaluate the effectiveness of this process in achieving cleanup concentration goals for...

  15. Remediation of dichloromethane (DCM)-contaminated ground water

    SciTech Connect

    Flathman, P.E.; Jerger, D.E.; Woodhull, P.M. )

    1992-08-01

    This case history describes the physical and biological treatment of dichloromethane (DCM)-contaminated ground water following the rupture of an underground pipeline which contaminated an estimated 11,000 m[sup 3] (14,000 yd[sup 3]) of soil and ground water in the early fall of 1983. Air stripping DCM from recovered ground water was initiated and provided an estimated 97% reduction in the ground water concentration of DCM. When it became evident that physical treatment alone would no longer be effective in removing residual DCM from the ground water environment, the practice of air stripping DCM from recovered ground water was terminated. Biological treatment was initiated and provided greater than a 500,000-fold reduction in the ground water concentration of DCM. Biological treatment had far exceeded the ability of physical treatment along to remediate a ground water environment contaminated with a biodegradable contaminant. 14 refs., 12 figs., 4 tabs.

  16. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310 Section 165.1310 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  17. Concentration of hydrocarbons associated with particles in the shelf waters adjacent to the entrance of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Wade, T. L.; Oertel, G. F.

    1981-01-01

    Particulate hydrocarbon concentrations were measured in 94 water samples. The concentrations ranged from below the detection limit ( 0.7 micro-G/L) to 32 micro-g/l. The mean for all samples was 5.6 micro-g/l. Particulate hydrocarbon concentrations are higher in the Bay mouth and lower in the shelf waters adjacent to the entrance of Chesapeake Bay. No coherent particulate hydrocarbon distribution is seen with depth in the water column. The Bay is postulated as one of the possible chronic sources of particulate hydrocarbons for the adjacent shelf waters.

  18. Approximate ground-water-level contours, April 1981, for the Soquel-Aptos area, Santa Cruz County, California

    USGS Publications Warehouse

    Bloyd, Richard M.

    1981-01-01

    Ground-water levels in selected wells were measured in the Soquel-Aptos, Calif., area in April 1981. On the basis of these measurements approximate ground-water-level contours were constructed. The general direction of ground-water movement in the Soquell-Aptos area is from the ridges in the northern part of the area, toward the adjacent canyons, and then southward toward the ocean. Ground-water pumping has caused ground-water levels to decline below sea level in the Capitola area, in the area just to the west and northwest of aptos, and in isolated local areas southwest of Rio Del Mar. Ground-water levels in the northern part of the area away from the seacoast have not declined much over time. (USGS)

  19. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  20. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  1. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  2. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  3. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  4. Water quality at and adjacent to the south Dade County solid-waste disposal facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1983-01-01

    A water-quality reconnaissance was conducted at the south Dade County solid-waste landfill near Goulds, Florida, from December 1977 through August 1978. The landfill is located directly on the unconfined Biscayne aquifer, which, in the study area, is affected by saltwater intrusion. Water samples collected from six monitor well sites at two depths and four surface-water sites were analyzed to determine the chemical, physical, and biological conditions of the ground water and surface water of the study area. Results indicated that water quality beneath the landfill was highly variable with location and depth. Leachate was generally more evident in the shallow wells and during the dry-season sampling, but was greatly diluted and dispersed in the deep wells and during the wet season. High concentrations of contaminants were generated primarily in areas of the landfill with the most recent waste deposits. Chloride (limited to the shallow wells and the dry season), alkalinity, ammonia, iron, manganese, lead, phosphorus, and organic nitrogen indicate leachate contamination of the aquifer. Water-quality characteristics in the surface waters were generally only slightly above background levels. (USGS)

  5. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false The Narrows and Gulf of Mexico... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.710 The Narrows and Gulf of Mexico adjacent to.... The waters of The Narrows and the Gulf of Mexico easterly of the periphery of a circular area...

  6. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false The Narrows and Gulf of Mexico... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.710 The Narrows and Gulf of Mexico adjacent to.... The waters of The Narrows and the Gulf of Mexico easterly of the periphery of a circular area...

  7. HYDROGIOLOGIC FRAMEWORK, GROUND-WATER GEOCHEMISTRY, AND ASSESSMENT OF NITROGEN YIELD FROM BASE FLOW IN TWO AGRICULTURAL WATERSHEDS, KENT COUNTY, MARYLAND

    EPA Science Inventory

    Hydrostratigraphic and geochemical data collected in two adjacent watersheds on the Delmarva Peninsula, in Kent County, Maryland, indicate that shallow subsurface stratigraphy is an important factor that affects the concentrations of nitrogen in ground water discharging as stream...

  8. HYDROGEOLOGIC FRAMEWORK, GROUND-WATER GEOCHEMISTRY, AND ASSESSMENT OF NITROGEN YIELD FROM BASE FLOW IN TWO AGRICULTURAL WATERSHEDS, KENT COUNTY, MARYLAND

    EPA Science Inventory

    Hydrostratigraphic and geochemical data collected in two adjacent watersheds on the Delmarva Peninsula, in Kent County, Maryland, indicate that shallow subsurface stratigraphy is an important factor that affects the concentrations of nitrogen in ground water discharging as stream...

  9. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas: Shallow ground-water quality and land use in the Albuquerque Area, Central New Mexico, 1993. National water quality assessment program. Water-resources investigations

    SciTech Connect

    Anderholm, S.K.

    1997-12-31

    This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells for analysis of selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds (VOC`s), and pesticides. The results of the chemical analyses are presented in appendices.

  10. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  11. Ground-water modeling of pumping effects near regional ground-water divides and river/aquifer systems - Results and implications of numerical experiments

    USGS Publications Warehouse

    Sheets, Rodney A.; Dumouchelle, Denise H.; Feinstein, Daniel T.

    2005-01-01

    Agreements between United States governors and Canadian territorial premiers establish water-management principles and a framework for protecting Great Lakes waters, including ground water, from diversion and consumptive uses. The issue of ground-water diversions out of the Great Lakes Basin by large-scale pumping near the divides has been raised. Two scenario models, in which regional ground-water flow models represent major aquifers in the Great Lakes region, were used to assess the effect of pumping near ground-water divides. The regional carbonate aquifer model was a generalized model representing northwestern Ohio and northeastern Indiana; the regional sandstone aquifer model used an existing calibrated ground-water flow model for southeastern Wisconsin. Various well locations and pumping rates were examined. Although the two models have different frameworks and boundary conditions, results of the models were similar. There was significant diversion of ground water across ground-water divides due to pumping within 10 miles of the divides. In the regional carbonate aquifer model, the percentage of pumped water crossing the divide ranges from about 20 percent for a well 10 miles from the divide to about 50 percent for a well adjacent to the divide. In the regional sandstone aquifer model, the percentages range from about 30 percent for a well 10 miles from the divide to about 50 percent for a well adjacent to the divide; when pumping on the west side of the divide, within 5 mi of the predevelopment divide, results in at least 10 percent of the water being diverted from the east side of the divide. Two additional scenario models were done to examine the effects of pumping near rivers. Transient models were used to simulate a rapid stage rise in a river during pumping at a well in carbonate and glacial aquifers near the river. Results of water-budget analyses indicate that induced infiltration, captured streamflow, and underflow were important for both glacial and

  12. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  13. Measurement of ground water velocity using Rhodamine WT dye near Sheffield, Illinois

    USGS Publications Warehouse

    Garklavs, George; Toler, L.G.

    1985-01-01

    Ground-water flow velocity was estimated in a tract of land adjacent to a low-level radioactive-waste disposal site near Sheffield, Illinois, by measuring the time-of-travel between two wells spaced 110 feet apart. Rhodamine WT dye was the principal tracer used in the test. The leading edge and peak concentrations of Rhodamine WT were well defined. A ground-water velocity of 6.9 feet per day (2,500 feet per year) was computed from the arrival time of the leading edge of the tracer cloud. (USGS)

  14. Two-Dimensional Ground Water Transport

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  15. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  16. Ground-water contamination from lead shot at Prime Hook National Wildlife Refuge, Sussex County, Delaware

    USGS Publications Warehouse

    Soeder, Daniel J.; Miller, Cherie V.

    2003-01-01

    Prime Hook National Wildlife Refuge is located in southeastern Delaware in coastal lowlands along the margin of Delaware Bay. For 37 years, the Broadkiln Sportsman?s Club adjacent to the refuge operated a trap-shooting range, with the clay-target launchers oriented so that the expended lead shot from the range dropped into forested wetland areas on the refuge property. Investigators have estimated that up to 58,000 shotgun pellets per square foot are present in locations on the refuge where the lead shot fell to the ground. As part of the environmental risk assessment for the site, the U.S. Geological Survey (USGS) investigated the potential for lead contamination in ground water. Results from two sampling rounds in 19 shallow wells indicate that elevated levels of dissolved lead are present in ground water at the site. The lead and associated metals, such as antimony and arsenic (common shotgun pellet alloys), are being transported along shallow ground-water flowpaths toward an open-water slough in the forested wetland adjacent to the downrange target area. Water samples from wells located along the bank of the slough contained dissolved lead concentrations higher than 400 micrograms per liter, and as high as 1 milligram per liter. In contrast, a natural background concentration of lead from ground water in a well upgradient from the site is about 1 microgram per liter. Two water samples collected several months apart from the slough directly downgradient of the shooting range contained 24 and 212 micrograms per liter of lead, respectively. The data indicate that lead from a concentrated deposit of shotgun pellets on the refuge has been mobilized through a combination of acidic water conditions and a very sandy, shallow, unconfined aquifer, and is moving along ground-water flowpaths toward the surface-water drainage. Data from this study will be used to help delineate the lead plume, and determine the fate and transport of lead from the source area.

  17. [Functional groups of high trophic level communities in adjacent waters of Changjiang estuary].

    PubMed

    Zhang, Bo; Jin, Xian-Shi; Tang, Qi-Sheng

    2009-02-01

    Based on the three bottom trawl surveys in adjacent waters of Changjiang estuary in June, August and October 2006, the composition and variation of the functional groups of high trophic level communities in the waters were studied. According to diet analysis, the high trophic level communities in the waters included six functional groups, i.e., piscivore, shrimp predator, crab predator, benthivore, planktivore, and generalist predator. Due to the variation of marine environment and fish migration behavior, the composition and trophic level of the high trophic level communities had greater monthly change. In June, fishes, acetes, and crabs dominated the communities, and planktivore was the major functional group, with its trophic level being the lowest (3.06); in August, fishes were dominant, and shrimp predator was the major functional group, with its trophic level being the highest (3.78); and in October, fishes also dominated the communities, the proportion of shrimp and crab increased, and planktivore and benthivore were the major functional groups, with a trophic level of 3.58. PMID:19459374

  18. Monitoring for pesticides in ground water in Nevada

    USGS Publications Warehouse

    Adams, Patricia A.; Moses, Charles W.; Bevans, Hugh E.

    1997-01-01

    Many pesticides designed to control weed encroachment, plant disease, and insect predation are used in agricultural and urban areas in the United States. Contamination of ground water by pesticides has increased over the last 20 years (U.S. Environmental Protection Agency, 1992). In 1985, the U.S. Environmental Protection Agency (USEPA) estimated the detection of at least 17 agricultural pesticides in the ground water of 23 states. By 1988, pesticides identified in ground water had increased to 46 in 26 states. To protect ground water from pesticide contamination, USEPA, through the Federal Fungicide Insecticide and Rodenticide Act (FIFRA), requires all states to institute a ground-water protection program.

  19. Guidelines for Evaluating Ground-Water Flow Models

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    2004-01-01

    Ground-water flow modeling is an important tool frequently used in studies of ground-water systems. Reviewers and users of these studies have a need to evaluate the accuracy or reasonableness of the ground-water flow model. This report provides some guidelines and discussion on how to evaluate complex ground-water flow models used in the investigation of ground-water systems. A consistent thread throughout these guidelines is that the objectives of the study must be specified to allow the adequacy of the model to be evaluated.

  20. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  1. Effect of channelization of Rio Puerto Nuevo on ground-water levels in the San Juan metropolitan area, Puerto Rico

    USGS Publications Warehouse

    Padilla, Ingrid

    1991-01-01

    Channelization and concrete lining of the Rio Puerto Nuevo and its tributaries in the San Juan Metropolitan area has been proposed to control flooding in low lying areas adjacent to the stream. Concern about the effect of these channel modifications on the ground-water system prompted the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to conduct an investigation of surface-water and ground-water interactions in the Rio Puerto Nuevo basin in 1988. A principal objective of this investigation was to determine the potential effect of channelization of the Rio Puerto Nuevo on ground-water levels.

  2. Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Wang, Lu; Yin, Kedong; Lü, Ying; Zhang, Derong; Yang, Yongqiang; Huang, Xiaoping

    2013-11-01

    Spatio-temporal distribution of pore water nutrients and the fluxes at the sediment-water interface (SWI) were investigated to probe into the geochemical behavior of nutrients associated with early diagenesis of organic matter (OM), and to study the accumulation and transformation processes of nutrients at the SWI, as well as to discuss the impact of riverine inputs on nutrients in the Pearl River estuary (PRE) and adjacent offshore areas. Nutrient concentrations decreased from the upper to the lower reaches of the estuary, suggesting that there was a high input of anthropogenic nutrients and the estuary was acting as a nutrient sink. Dissolved inorganic nitrogen (DIN: the sum of NH4-N, NO3-N and NO2-N) concentrations in the water column and the pore water were higher in the estuary than at offshore areas due to the riverine discharge and the high accumulation rate in the estuary. NO3-N concentration was the highest of the three forms of DIN in the overlying water and showed a sharp decrease from the surficial sediment with increasing sediment depth, indicating that there was strong denitrification at the SWI. NH4-N, mainly deriving from the anaerobic degradation of OM, was the main form of DIN in the pore water and increased with depth. Negative NO3-N fluxes (into the sediment) and positive NH4-N fluxes (from the sediment) were commonly observed from incubation experiments, indicating the denitrification occurred at the SWI. DIN flux suggested that the sediment was a sink of DIN in spring, however, the sediment was the source of DIN in summer and winter. Nutrients dominantly diffused out of the sediment, suggesting that the sediment was the source of nutrients in spring at adjacent offshore areas. The fluxes directed that PO4-P mainly diffused into the sediment while SiO4-Si mainly diffused out of the sediment.

  3. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  4. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  5. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  6. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    identified from aerial thermal imagery during flights in May and December 2003 in both estuaries. The occurrence of ground-water seeps was confirmed using continuous and discrete measurements of temperature and specific conductance in selected seeps and in the adjacent estuaries that showed salinity anomalies reflecting the input of freshwater in these complex tidal systems. Analysis of water samples from shallow ground water in the hyporheic zone and from ground-water seeps indicated the presence of elevated concentrations of dissolved nitrogen, compared to concentrations in the adjacent estuaries and surface-water tributaries draining into the estuaries. These findings indicate that shallow ground water is a source of dissolved nitrogen to the estuaries. Orthophosphate levels were low in ground water in the hyporheic zone in Bass Harbor Marsh, but somewhat higher in one hyporheic-zone well in Northeast Creek compared with the concentrations in both estuaries that were at or below detection limits. Household wastewater-related compounds were not detected in ground water in the hyporheic zone. Analysis of water samples from domestic and bedrock monitoring wells developed in fractured bedrock indicated that concentrations of dissolved nitrogen, phosphorus, and household wastewater-related compounds were typically at or below detection, suggesting that the aquifers sampled had not been contaminated from septic sources.

  7. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  8. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  9. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  10. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  11. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  12. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  13. Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from

  14. [Distribution of picophytoplanktons in Qingdao offshore and its adjacent waters in winter].

    PubMed

    Wang, Min; Liang, Yan-tao; Bai, Xiao-ge; Jiang, Xue-jiao; Wang, Fang; Qiao, Qian

    2008-11-01

    Picophytoplankton (0.2-2.0 microm in size) is the smallest group of autotrophic plankton, being abundant and widespread in the world ocean and playing an important role in the organic matter cycling in ocean. By the method of epifluorescence microscopy (EFM), the abundance and its spatial and diurnal variations of the picophytoplanktons in Qingdao offshore and its adjacent waters in winter were investigated. The results showed that in the study area in winter, phycoerythrin-rich (PE) Synechococcus cells were dominant, followed by Picoeukaryote (Euk) cells, while the abundance of phycocyanin-rich (PC) Synechococcus cells was low and no Prochlorococcus (Pro) cells were observed. The abundance of Synechococcus (Syn) and Euk varied from 8.97 x 10(3) to 1.95 x 10(5) cells x ml(-1) (averaged 4.67 x 10(4) cells x ml(-1) and from 1.95 x 10(2) to 1.01 x 10(4) cells x m(l-1)(averaged 2.39 x 10(3) cells x ml(1) respectively. There was a high-value of Syn abundance in Jiaonan offshore and a low-value in Jimo and southeast Laoshan off-shores, while a high-value of Euk abundance in Rizhao offshore and a low-value in Laoshan offshore. No significant difference was observed in the vertical distribution of Syn and Euk abundance among four water layers (P>0.05) at a continuous station located in the center of Jiaozhou Bay, the abundance had an obvious diurnal fluctuation. Pearson correlation analysis indicated that Syn was positively correlated with water temperature and electrical conductivity (P<0.01) but negatively correlated with dissolved oxygen concentration (P<0.01) and Euk was negatively correlated with water salinity and dissolved oxygen concentration. In the study area in winter, picophytoplankton contributed about 20% to the total phytoplanktonic biomass. PMID:19238842

  15. Heat, chloride, and specific conductance as ground water tracers near streams

    USGS Publications Warehouse

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  16. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  17. Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.

    2006-01-01

    As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.

  18. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  19. Chemical quality of ground water in the central Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1978-01-01

    The study area includes about 1,200 square miles in the central Sacramento Valley adjacent to the Sacramento River from Knights Landing to Los Molinos, Calif. With recent agricultural development in the area, additional land has been brought under irrigation from land which had been used primarily for dry farming and grazing. This report documents the chemical character of the ground water prior to water-level declines resulting from extensive pumping for irrigation or to changes caused by extensive use of imported surface water. Chemical analyses of samples from 209 wells show that most of the area is underlain by ground water of a quality suitable for most agricultural and domestic purposes. Most of the water sampled in the area has dissolved-solids concentrations ranging from 100 to 700 milligrams per liter. The general water types for the area are a calcium magnesium bicarbonate or magnesium calcium bicarbonate and there are negligible amounts of toxic trace elements. (Woodard-USGS)

  20. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  1. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    USGS Publications Warehouse

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  2. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  3. Chemistry and age of ground water in the southwestern Hueco Bolson, New Mexico and Texas

    USGS Publications Warehouse

    Anderholm, Scott K.; Heywood, Charles E.

    2003-01-01

    This report, prepared in cooperation with El Paso Water Utilities, presents the results of an investigation to determine the chemistry and age of ground water on the southwestern side of the Hueco Bolson. The radioactive isotope carbon-14 was used to estimate the length of time that water from wells has been isolated from the atmosphere, which is the modern carbon-14 reservoir. Nine wells on the southwestern side of the Hueco Bolson were sampled for analysis of common constituents, nutrients, total organic carbon, trace elements, stable isotopes, and radioactive isotopes. Dissolved-solids concentrations in water from the wells sampled ranged from 269 to 2,630 milligrams per liter. Sodium concentrations generally increased linearly with chloride concentrations, possibly indicating mixing of dilute recharge water with sodium chloride brine. Concentrations of nutrients and trace elements generally were small. The deuterium and oxygen-18 composition in all samples except those from wells adjacent to the Rio Grande indicates that infiltration of precipitation is the main source of water to these wells and that evaporation has not affected the isotopic composition of the water. The source of water from wells adjacent to the Rio Grande is probably not the same source as the water from wells adjacent to the Franklin Mountains. The calculated apparent carbon- 14 ages ranged from 12,100 to 25,500 years.

  4. Nutrient fluxes in the Changjiang River estuary and adjacent waters — a modified box model approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohong; Yu, Zhiming; Fan, Wei; Song, Xiuxian; Cao, Xihua; Yuan, Yongquan

    2015-01-01

    To solve nutrient flux and budget among waters with distinct salinity difference for water-salt-nutrient budget, a traditional method is to build a stoichiometrically linked steady state model. However, the traditional way cannot cope appropriately with those without distinct salinity difference that parallel to coastline or in a complex current system, as the results would be highly affected by box division in time and space, such as the Changjiang (Yangtze) River estuary (CRE) and adjacent waters (30.75°2-31.75°N, 122°10'-123°20'E). Therefore, we developed a hydrodynamic box model based on the traditional way and the regional oceanic modeling system model (ROMS). Using data from four cruises in 2005, horizontal, vertical and boundary nutrient fluxes were calculated in the hydrodynamic box model, in which flux fields and the major controlling factors were studied. Results show that the nutrient flux varied greatly in season and space. Water flux outweighs the nutrient concentration in horizontal flux, and upwelling flux outweighs upward diffusion flux in vertical direction (upwelling flux and upward diffusion flux regions overlap largely all the year). Vertical flux in spring and summer are much greater than that in autumn and winter. The maximum vertical flux for DIP (dissolved inorganic phosphate) occurs in summer. Additional to the fluxes of the Changjiang River discharge, coastal currents, the Taiwan Warm Current, and the upwelling, nutrient flux inflow from the southern Yellow Sea and outflow southward are found crucial to nutrient budgets of the study area. Horizontal nutrient flux is controlled by physical dilution and confined to coastal waters with a little into the open seas. The study area acts as a conveyer transferring nutrients from the Yellow Sea to the East China Sea in the whole year. In addition, vertical nutrient flux in spring and summer is a main source of DIP. Therefore, the hydrodynamic ROMS-based box model is superior to the traditional

  5. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately. PMID:22165212

  6. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  7. Distribution patterns of phytoplankton in the Changjiang River estuary and adjacent waters in spring 2009

    NASA Astrophysics Data System (ADS)

    Kong, Fanzhou; Xu, Zijun; Yu, Rencheng; Yuan, Yongquan; Zhou, Mingjiang

    2016-09-01

    The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters. In this study, phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009. It was found that dinoflagellates, Prorocentrum donghaiense and Karenia mikimotoi, and diatoms, Skeletonema spp. and Paralia sulcata, were the major taxa dominating the phytoplankton community. Cluster analysis, non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples. The analyses categorized the samples into three groups at a similarity level of 30%. Group I was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region. Group II, which was dominated by the diatom Skeletonema spp. and represented the red tide of Skeletonema spp., was situated around Group I in the sea area west of 122°50'E. Group III was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups I and II. Group III was further divided into two subgroups (III-S1 and III-S2) at a similarity level of 40%. Group III-S1 was characterized by the presence of the benthic diatom P. sulcata, representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling. Group III-S2 was dominated by dinoflagellates and represented red tides formed by P. donghaiense and K. mikimotoi. A gradual change of red-tide causative species was observed from the estuary to the offshore sea area, from diatoms to armored dinoflagellates and then unarmored dinoflagellates. Environmental factors associated with each group, and thus affecting the distribution of phytoplankton and red tides, are discussed.

  8. Distribution patterns of phytoplankton in the Changjiang River estuary and adjacent waters in spring 2009

    NASA Astrophysics Data System (ADS)

    Kong, Fanzhou; Xu, Zijun; Yu, Rencheng; Yuan, Yongquan; Zhou, Mingjiang

    2016-01-01

    The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters. In this study, phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009. It was found that dinoflagellates, Prorocentrum donghaiense and Karenia mikimotoi, and diatoms, Skeletonema spp. and Paralia sulcata, were the major taxa dominating the phytoplankton community. Cluster analysis, non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples. The analyses categorized the samples into three groups at a similarity level of 30%. Group I was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region. Group II, which was dominated by the diatom Skeletonema spp. and represented the red tide of Skeletonema spp., was situated around Group I in the sea area west of 122°50'E. Group III was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups I and II. Group III was further divided into two subgroups (III-S1 and III-S2) at a similarity level of 40%. Group III-S1 was characterized by the presence of the benthic diatom P. sulcata, representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling. Group III-S2 was dominated by dinoflagellates and represented red tides formed by P. donghaiense and K. mikimotoi. A gradual change of red-tide causative species was observed from the estuary to the offshore sea area, from diatoms to armored dinoflagellates and then unarmored dinoflagellates. Environmental factors associated with each group, and thus affecting the distribution of phytoplankton and red tides, are discussed.

  9. Relation between ground water and surface water in Brandywine Creek basin, Pennsylvania

    USGS Publications Warehouse

    Olmsted, F.H.; Hely, A.G.

    1962-01-01

    change in ground-water stage in the observation wells, gave values of about 7 percent using 16 wells) and 7 1/2 percent (using 3 index wells). The second method, in which the change in ground water storage is based on a hypothetical base-flow recession curve (derived from the observed linear relation between ground-water stage in the index wells and base flow), gave a value of about 10 1/2 percent. The most probable value of gravity yield is between 7 1/2 and 10 percent, but this estimate may require modification when more information on the average magnitude of water-table fluctuation and the sources of base flow of the creek become available. Rough estimates were made of the average coefficient of transmissibility of the rocks in the basin by use of the estimated total ground-water discharge for the period 1952-53, approximate values of length of discharge areas, and average water-table gradients adjacent to the discharge areas. The estimated average coefficient of transmissibility for 1952-53 is roughly 1,000 gpd per foot. The transmissibility is variable, decreasing with decreasing ground-water stage. The seeming inconsistency between the small to moderate ground-water yield to wells and the high yield to streams is explained in terms of the deep permeable soils, the relatively high gravity yield of the zone of water-table fluctuation, the steep water-table gradients toward the streams, the relatively low transmissibility of the rocks, and the rapid decreases in gravity yield below the lower limit of water-table fluctuation. It is concluded that no simple relation exists between the amount of natural ground-water discharge in an area and all the proportion of this discharge that can be diverted to wells.

  10. Ground-water movement and water quality in Lake Point, Tooele County, Utah, 1999-2003

    USGS Publications Warehouse

    Kenney, T.A.; Wright, S.J.; Stolp, B.J.

    2006-01-01

    Water-level and water-quality data in Lake Point, Tooele County, Utah, were collected during August 1999 through August 2003. Water levels in Lake Point generally declined about 1 to 2 feet from July 2001 to July 2003, likely because of less-than-average precipitation. Ground water generally flows in two directions from the Oquirrh Mountains. One component flows north toward the regional topographic low, Great Salt Lake. The other component generally flows southwest toward a substantial spring complex, Factory/Dunne's Pond. This southwest component flows through a coarse gravel deposit believed to be a shoreline feature of historic Lake Bonneville. The dominant water-quality trend in Lake Point is an increase in dissolved-solids concentration with proximity to Great Salt Lake. The water type changes from calcium-bicarbonate adjacent to the Oquirrh Mountains to sodium-chloride with proximity to Great Salt Lake. Evaluation of chloride-bromide weight ratios indicates a mixture of fresher recharge waters with a brine similar to what currently exists in Great Salt Lake.

  11. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E., Jr.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  12. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  13. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  14. Hanford Site environmental data for calendar year 1990 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

  15. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  16. A benchmark-multi-disciplinary study of the interaction between the Chesapeake Bay and adjacent waters of the Virginian Sea

    NASA Technical Reports Server (NTRS)

    Hargis, W. J., Jr.

    1981-01-01

    The social and economic importance of estuaries are discussed. Major focus is on the Chesapeake Bay and its interaction with the adjacent waters of the Virginia Sea. Associated multiple use development and management problems as well as their internal physical, geological, chemical, and biological complexities are described.

  17. Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation

    NASA Astrophysics Data System (ADS)

    Chen, Jianfang; Li, Yan; Yin, Kedong; Jin, Haiyan

    2004-10-01

    Two cruises were conducted in the Pearl River Estuary (PRE) and adjacent coastal waters during July 1999 and 2000 to investigate spatial variation, transformation and degradation of amino acids (AAs). Salinity, suspended sediments (SS), chl a, nutrients, dissolved organic carbon, particulate organic carbon, AAs, and hexosamines were measured and analyzed. Concentrations of particulate hydrolysable AAs (PHAAs), dissolved combined AAs and dissolved free AAs ranged from 0.41 to 12.6 μmol L-1, 1.1 to 4.0 μmol L-1 and 0.15 to 1.10 μmol L-1, respectively. AAs concentrations were low in waters of salinity <10, increased to the maximum in the estuarine and coastal plumes (salinity =10-25) and decreased beyond the coastal plume. There was a region where PHAAs were maximum, which coincided with the region of the chl a maximum and depletion of dissolved inorganic phosphorus in the coastal plume south of Hong Kong. This indicates that most of the AAs in estuarine and coastal waters were produced through phytoplankton production and AAs might be a temporary sink for inorganic nitrogen. The ratios of AAs/HAs and glucosamine/galactosamine (Glc-NH2/Gal-NH2) were on average, 26.0 and 3.8, respectively, in biogenic particulate matter (chl a >5 μg L-1 and SS<10 mg L-1), decreased in turbid particles (SS>20 mg L-1) and reached the lowest values of 5.8 and 1.4 in sediments. In particular, the ratios of AAs/HAs, Glc-NH2/Gal-NH2 were low in the upper or northwest side of the estuary where turbidity was high. This indicated that these AAs were "old", likely due to resuspension of refractory organic matter from sediments or zooplankton grazing modification and bacterial reworking as the salt wedge advanced upstream near the bottom. Apparently, the dynamics of AAs in the PRE appeared to be governed by biological production processes and estuarine circulation in the estuary. As the chl a maximum developed downstream in the estuarine and coastal plume and the salt wedge moved upstream at

  18. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  19. Hydrology, water quality, and simulation of ground-water flow at a taconite-tailings basin near Keewatin, Minnesota. Water Resources Investigation

    SciTech Connect

    Myette, C.F.

    1991-01-01

    The purpose of the report is to describe the hydrology of a 2.5-sq mi taconite-tailings basin near Keewatin, Minnesota. The report describes (1) the hydrogeologic setting of the basin, including a description of the tailings within the basin, (2) the surface-water discharge at the outlet of the basin and its response to rainfall on the basin, (3) the ground-water system at the tailings basin and its response to rainfall on the basin, (4) the quality of the ground water beneath the basin and in the surrounding drift, (5) the quality of surface water and sediment discharging from the basin, and (6) the results of a finite-difference-model simulation of the ground-water flow system. Model simulation of ground-water flow was limited to deposits in the tailings basin and parts of the adjacent and underlying glacial-drift aquifers. The model was developed to evaluate estimates of hydraulic properties obtained from field data and to provide a better understanding of the effects of climatic stresses on ground-water levels and ground-water flow in the basin and on discharge from the basin. It has been suggested, however, that the filling and abandonment of these basins may create long-term pollution problems resulting from sediment erosion and chemical leaching of heavy metals.

  20. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements...

  1. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements...

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  3. Interactions between ground water and wetlands, southern shore of Lake Michigan, USA

    NASA Astrophysics Data System (ADS)

    Shedlock, Robert J.; Wilcox, Douglas A.; Thompson, Todd A.; Cohen, David A.

    1993-01-01

    Wetlands between, and within, dune-beach complexes along the south shore of Lake Michigan are strongly affected by ground water. The hydrogeology of the glacial drift aquifer system in a 26 km 2 area was investigated to determine the effects of ground water on the hydrology and hydrochemistry of Cowles Bog and its adjacent wetlands. The investigation showed that ground water from intermediate- and regional-scale flow systems discharges to Cowles Bog from confined aquifers that underlie the wetland. These flow systems are recharged in moraines south of the dune-beach complexes. Water from the confined aquifers discharges into the surficial aquifer mainly by upward leakage through a buried till sheet that serves as the confining layer. However, the till sheet is breached below a raised peat mound in Cowles Bog, allowing direct upward discharge from the confinef aquifer into the surficial sand, marl, and peat. The shallow ground and wetland water in the area influenced by this leakage is a calcium magnesium bicarbonate type, with low tritium concentrations consistent with mixing of older ground water and more recent precipitation. Ground water and wetland water from surrounding areas are less mineralized and have higher tritium concentrations characteristic of precipitation in the late 1970s. The results of this study suggest that wetlands in complex hydrogeologic settings may be influenced by multiple ground-water flow systems that are affected by geomorphic features, stratigraphic discontinuities, and changes in sediment types. Discharge and recharge zones may both occur in the same wetland. Multidisciplinary studies incorporating hydrological, hydrochemical, geophysical, and sedimentological data are necessary to identify such complexities in wetland hydrology.

  4. Larval distribution pattern of Muraenesox cinereus (Anguilliformes: Muraenesocidae) leptocephali in waters adjacent to Korea

    NASA Astrophysics Data System (ADS)

    Ji, Hwan-Sung; Kim, Jin-Koo; Oh, Taeg Yun; Choi, Kwang Ho; Choi, Jung Hwa; Seo, Young Il; Lee, Dong Woo

    2015-09-01

    To understand the transport and recruitment processes of the daggertooth pike conger, Muraenesox cinereus, in the marginal seas of East Asia, we investigated the distribution pattern, estimated spawning areas and periods, and recruitment mechanisms of M. cinereus, based on 51 individuals of leptocephali collected from Korean waters during 2010-2014. Back-calculated hatching dates, determined from the daily incremental growth rates of the otoliths, indicated that the spawning period for M. cinereus was during July-September. The size range of M. cinereus leptocephali collected offshore of Jeju Island and southeast of the Korea-Japan intermediate zone was 16.6-20.9 mm TL (age, 18-23 d). We hypothesize that one of the spawning grounds of M. cinereus is located offshore in the East China Sea. In Korean waters, the ages and body lengths of M. cinereus leptocephali increased northward from latitude 31°30'N to 34°40'N, with metamorphosis occurring at latitude 34°40'N. Therefore, we surmised that the hatched preleptocephali of M. cinereus were transported from offshore areas in the East China Sea to Jeju Island and the Korea Strait (KS) by the Kuroshio and Tsushima Warm Current.

  5. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  6. Review of ground water modeling needs for the US Army

    SciTech Connect

    Not Available

    1992-09-01

    The report was prepared to assist the U.S. Army in remediation of ground water contamination from hazardous, toxic, and radioactive wastes at Army installations. The Waterways Experiment Station of the Army Corps of Engineers requested that the Water Science and Technology Board evaluate the state of the art in mathematical models of ground water flow and contaminant transport, and then advise the Corps of Engineers on how it might support and use such models to meet Army's ground water remediation needs over the next ten years. The study recommends that the Army develop in-house expertise in ground water modeling, expand partnership programs between the Army and academic researchers, and develop a ground water modeling support center to help focus research, technology transfer and training activities.

  7. Model-estimated ground-water recharge and hydrograph of ground-water discharge to a stream

    USGS Publications Warehouse

    Rutledge, A.T.

    1997-01-01

    The computer model PULSE, described in this report, can be used to construct a hydrograph of ground-water discharge to a stream. The model is applicable to a ground-water flow system that is driven by areally uniform recharge to the water table, and in which ground water discharges to a gaining stream. One of the two formulations used by the model allows for an instantaneous recharge pulse and subsequent ground-water discharge to the stream. The other formulation, which allows for a gradual hydrologic gain or loss term in addition to the instantaneous pulse, can be used to simulate the effects of gradual recharge to the water table, ground-water evapotranspiration, or downward leakage to a deeper aquifer.

  8. REMEDIATION AND PROTECTION OF GROUND WATER FROM CONTAMINATION BY ARSENIC

    EPA Science Inventory

    Successful prevention of public exposure to arsenic in ground-water resources impacted by natural sources or contaminated sites is dependent on scientifically-based strategies for site remediation and water resource management. Research within the National Risk Management Resear...

  9. Carbon-14 dating of ground water in the Palouse Basin of the Columbia river basalts

    NASA Astrophysics Data System (ADS)

    Douglas, Alyssa A.; Osiensky, James L.; Keller, C. Kent

    2007-02-01

    SummaryDelineation of the spatial distribution of ground water that is several thousands of years old can provide an important piece of the puzzle in the evaluation of long-term, ground water resource sustainability under pumping conditions. Ground water for municipal and local water supplies within the Palouse Basin of eastern Washington and northern Idaho are derived almost entirely from two basalt aquifer systems. Decades of continual water level declines in the deeper aquifer system in response to interstate pumping have suggested that this high transmissivity, low storativity aquifer system is being mined. Average water level declines in the deeper aquifer system have been on the order of 0.46 m (1.5 ft) per year for the past 40-plus years. Carbon-isotopic measurements on dissolved inorganic carbon were used to provide information on the relative ages of the ground water pumped from various locations within the basin. Mass balance modeling of hydrochemical reactions together with steep, downward vertical gradients throughout the basin suggest that the ground water being withdrawn currently required several thousand years to traverse spatially variable sequences of loess, fluvial sediments, and basalt flows with associated sedimentary interbeds, that overlie the primary producing zones in the basin. Restrictions to the vertical movement of recharge water such as low permeability, overburden deposits, well-developed fragipans, and thick, low permeability, sedimentary interbeds increase in the eastern portion of the Palouse Basin compared to the western portion. This has resulted in accumulation of the oldest ground water in the topographically highest areas of the basin adjacent to the basin divide.

  10. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  11. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  12. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  13. Hydrogeology and simulation of ground-water flow in the Ohio River alluvial aquifer near Carrollton, Kentucky

    USGS Publications Warehouse

    Unthank, Michael D.

    1999-01-01

    The alluvial aquifer near Carrollton, Kentucky, lies in a valley eroded by glacial meltwater that was later part filled with outwash sand and gravel deposits. The aquifer is unconfined, and ground water flows from the adjacent bedrock-valley wall toward the Ohio River and ground-water withdrawal wells. Ground-water-level and Ohio River stage data indicate the alluvial aquifer was at or near steady-state condition in November 1995. A two-dimensional, steady-state ground-water-flow model was developed to estimate the hydraulic properties, the rate of recharge, and the contributing areas to discharge boundaries for the Ohio River alluvial aquifer at Carrollton and the surrounding area. Results from previous investigations, available hydrogeologic data, and observations of water levels from area ground-water wells were compiled to conceptualize the ground-water-flow system and construct the numerical model. Ground water enters the modeled area by induced infiltration from the Ohio River and smaller streams, flow from the bedrock-valley wall, and infiltration of precipitation. Ground water exits the modeled area primarily through withdrawal wells and flow to the Ohio River. A sensitivity analysis of the model indicates that it is most sensitive to changes in the stage of the Ohio River and conductance values for the riverbed material. A particle-tracking simulation was used to delineate recharge and discharge boundaries of the flow system and contributing areas for withdrawal wells, and to estimate time of travel through the flow system.

  14. Procedures for ground-water investigations. Revision 1

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  15. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  16. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  17. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  18. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  19. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  20. In-Situ Use of Ground Water By Alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated column lysimeter study was conducted over a 4 year period to determine the effect of groundwater salinity and depth to ground water on the in-situ use of groundwater by a salt tolerant alfalfa crop. The treatments included a control with no groundwater, and ground water with electrical ...

  1. Ground-water levels in Arkansas, spring 1983

    USGS Publications Warehouse

    Edds, Joe

    1983-01-01

    About 640 ground-water level measurements were made in observation wells in Arkansas in the spring of 1981. In addition , the report contains potentiometric-surface maps and well hydrographs relating to the alluvial aquifer and the Sparta Sand , the most important aquifers with respect to ground-water availability and use in Arkansas. (USGS)

  2. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  3. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    USGS Publications Warehouse

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  4. CONCEPTUAL FRAMEWORK FOR REGRESSION MODELING OF GROUND-WATER FLOW.

    USGS Publications Warehouse

    Cooley, Richard L.

    1985-01-01

    The author examines the uses of ground-water flow models and which classes of use require treatment of stochastic components. He then compares traditional and stochastic procedures for modeling actual (as distinguished from hypothetical) systems. Finally, he examines the conceptual basis and characteristics of the regression approach to modeling ground-water flow.

  5. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  6. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  7. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  8. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  9. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  10. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  11. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  12. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  13. Ground water in the Piedmont upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  14. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.

  15. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  16. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  17. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  18. Natural recharge and localization of fresh ground water in Kuwait

    USGS Publications Warehouse

    Bergstrom, R.E.; Aten, R.E.

    1965-01-01

    Fresh ground water (200 parts per million total dissolved solids and upwards) occurs in portions of Pleistocene sandstone aquifers beneath basins and wadis in north Kuwait where the mean rainfall is about five inches per year. The fresh water is surrounded and underlain by brackish water (> 4000 ppm TDS). Drilling and testing show that fresh water saturation is restricted to wadis and basin areas; in Rawdatain basin it attains a maximum thickness of about 110 feet and a lateral extent of about seven miles. The fresh ground water represents recharge localized, during infrequent, torrential rain storms, in areas of concentrated runoff where sediments in the vadose zone are moderately permeable and depth to the water table is generally less than a hundred feet. Concentration of runoff appears to be the primary control in the localization of recharge. The fresh water percolates downward to the ground-water reservoir following rare storms, then flows in the direction of hydraulic gradient and gradually becomes brackish. Theoretical delineation of the recharge area and ground-water flow pattern in Rawdatain was confirmed by tritium and C14 dating of the water. Brackish ground-water conditions prevail from water table downward in areas where rainfall infiltrates essentially where it falls, permeability of sediments in the vadose zone is low, or the water table is several hundred feet below land surface. In these areas, rainfall is retained and lost within the soil zone or becomes mineralized during deep percolation. ?? 1964.

  19. Water Resources Data - Texas, Water Year 2003, Volume 6. Ground Water

    USGS Publications Warehouse

    Barbie, D.L.

    2003-01-01

    Water-resources data for the 2003 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 880 ground-water observation wells and water-quality data for 158 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  20. Ground Watering of the Death Valley Region, Nevada and California

    SciTech Connect

    USGS

    2006-10-12

    Water is a precious commodity, especially in the arid southwest region of the US, where there is a limited supply of both surface water and ground water. Ground water has a variety of uses (such as agricultural, commercial, and domestic) in the Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California. The DVRFS, an area of about 100,000 square kilometers, contains very complex geology and hydrology. Using a computer model to represent this complex system the US Geological Survey (USGS) simulated ground-water flow in the Death Valley region for use with US Department of Energy (DOE) projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  1. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  2. Ground-water resources of the Lexington, Kentucky, area

    USGS Publications Warehouse

    Faust, R.J.

    1977-01-01

    Ground water in the Lexington, Kentucky, area occurs in Ordovician Limestones in which cavity development is generally limited to about 100 feet below land surface. Some wells produce about 300 gallons per minute in some of the large stream valleys , about 50 gallons per minute in the rolling upland and small stream valleys, and about 5 gallons per minute on hilltops and steep slopes. Many wells throughout the area do not furnish adequate water for domestic supplies because no significant water-bearing openings are penetrated during drilling. Ground-water use is limited mostly to domestic and stock supplies and a few small public supplies. Ground water is generally a calcium bicarbonate type and in places contains sodium chloride and (or) hydrogen sulfide. Bacterial pollution of ground water is widespread because of direct recharge of polluted runoff and streamflow to cavernous limestones. (Woodard-USGS)

  3. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, Daniel T.; Wilkinson, James M.; Orzol, Leonard L.

    1998-01-01

    A ground-water flow model was used in conjunction with a particle-tracking program to demonstrate a method of evaluating ground-water vulnerability. The study area encompassed the part of the Portland Basin located in Clark County, Washington. A new computer program was developed that interfaces the particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results and to evaluate ground-water vulnerability by identifying recharge areas and their characteristics, determining the downgradient impact of land use at recharge areas, and estimating the age of ground water. The report presents a description of the methods used and the results of the evaluation of ground-water vulnerability.

  4. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  5. Evidence for ground-water stratification near Yucca Mountain, Nevada

    USGS Publications Warehouse

    Futa, K.; Marshall, B.D.; Peterman, Z.E.

    2006-01-01

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  6. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  7. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  8. Assessing ground water development potential using landsat imagery.

    PubMed

    Mutiti, Samuel; Levy, Jonathan; Mutiti, Christine; Gaturu, Ndung'u S

    2010-01-01

    Seven villages in southeastern Kenya surround Mt. Kasigau and depend on the mountain's cloud forest for their water supply. Five of these villages have regularly experienced water shortages, and all village water supplies were contaminated with Escherichia coli bacteria. There is a need to economically find new sources of fresh ground water. Remote sensing offers a relatively quick and cost-effective way of identifying areas with high potential for ground water development. This study used spectral properties of features on Landsat remote sensing imagery to map linear features, soil types, surface moisture, and vegetation. Linear features represented geologic or geomorphologic features indicating either shallow ground water or areas of increased subsurface hydraulic conductivity. Regarding soil type, black soils were identified as potential indicators of shallow aquifers based on their relatively lower elevation and association with river valleys. A vegetation map was created using unsupervised classification, and three of the resulting vegetation classes were observed to be commonly associated with wet areas and/or ground water discharge. A wetness map, created using tasseled cap analysis, was used to identify all areas of high ground moisture, including those that corresponded to vegetated areas. The linear features, soil type, vegetation, and wetness maps were overlaid to produce a composite that highlighted areas with the highest potential for ground water development. Electrical resistivity surveys confirmed that areas highlighted by the composite image had relatively shallow depths to the water table. Some figures in this paper are available in color in the online version of the paper. PMID:19210559

  9. Latin hypercube approach to estimate uncertainty in ground water vulnerability.

    PubMed

    Gurdak, Jason J; McCray, John E; Thyne, Geoffrey; Qi, Sharon L

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. PMID:17470124

  10. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  11. Hydrogeology and Ground-Water Quality, Chippewa Township, Isabella County, Michigan, 2002-05

    USGS Publications Warehouse

    Westjohn, David B.; Hoard, Chris J.

    2006-01-01

    The ground-water resource potential of Chippewa Township, Isabella County, Mich. was characterized on the basis of existing hydrogeologic data, water-level records, analyses of water samples, and interpretation of geophysical survey data. Eight ground-water samples were collected and analyzed for major ions, nutrients, and trace-metal composition. In addition, 10 direct current-resistivity soundings were collected throughout Chippewa and Coe Townships to identify potential freshwater in the aquifer system. The aquifer system includes complexly interbedded glaciofluvial, glaciolacustrine, and basal-lodgment tills, which overlie Jurassic or Pennsylvanian sedimentary rocks. In parts of the township, freshwater is present in all geologic units, but in most areas saline water is encountered near the base of Pleistocene glacial deposits and in the Jurassic or Pennsylvanian bedrock. A near-surface sheet of relatively dense basal-lodgment till likely prevents, or substantially retards, significant direct recharge of ground water to glacial and bedrock aquifers in Chippewa and adjacent townships. Glacial sands and gravels form the principal aquifer for domestic wells (97.5 percent of wells in the township). The single community water supply in the township has wells screened in glacial deposits near the base of the glacial drift. Increased withdrawals of ground water in response to increasing demand has led to a slight decline in water quality from this supply. This water-quality decline is related primarily to an increase of dissolved sulfate, which is probably a function of well depth and dissolution of gypsum, a common mineral constituent in the Jurassic 'red beds,' which form the uppermost bedrock unit throughout most of the township. One explanation for the increase in sulfate is upconing of saline water from bedrock sources, which may contain saline water.

  12. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  13. Identification of technical guidance related to ground water monitoring

    SciTech Connect

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  14. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  15. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, T.B.

    1984-01-01

    A study was conducted to evaluate water-resource problems related to abandoned lead and zinc mines in Cherokee County, and adjacent areas in Oklahoma and Missouri. Discontinuities and perforations, which were produced by mining in the confining shale west of the Pennsylvanian-Mississippian geologic contact, have created artificial groundwater recharge and discharge areas. Abandoned wells and drill holes present the greatest contamination hazard to water supplies in the deep aquifer. There is a potential for downward movement from the shallow to the deep aquifer throughout the study area, with greatest potential in Ottawa County, Oklahoma. Principal effects of abandoned mines on groundwater quality are lowered pH and increased concentrations of sulfate and trace metals of water in the mines. No conclusive evidence of lateral migration of contaminated mine water from the mines into the water-supply wells adjacent to the mines was found. Analyses of water from the deep aquifer did not indicate trace-metal contamination. The effects of abandoned mines on streamwater quality are most severe in Short Creek and Tar Creek. Increased concentrations of zinc and manganese were observed in the Spring River below Short Creek Kansas. (USGS)

  16. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  17. Tectonic influences on ground water quality: insight from complementary methods.

    PubMed

    Earman, Sam; McPherson, Brian J O L; Phillips, Fred M; Ralser, Steve; Herrin, James M; Broska, James

    2008-01-01

    A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories. PMID:18194326

  18. Sewage in ground water in the Florida Keys

    SciTech Connect

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels were beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.

  19. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  20. Hydrology, water quality, and ground-water-development alternatives in the Chipuxet ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Dickerman, D.C.

    1985-01-01

    A glacial sand and gravel aquifer in the Chipuxet River basin of Rhode Island forms a ground-water reservoir that could yield as much as 8.6 million gallons per day to wells; however, some streams would go dry for extended periods of time. The State Water Resources Board has tested five site that it proposes to develop for a public supply of 3 million gallons per day. A digital model was used to determine how withdrawal at this rate from alternative combinations of wells would affect water levels and streamflow. Results show that withdrawal of 3 million gallons per day would have a minimal effect on water levels, but that withdrawal at this rate from some well combinations could cause the Chipuxet River to have little or no flow for 90 consecutive days on the average of 1 year in 20. Quality of ground water is generally good, but leaching of fertilizers applied to croplands, which overlie much of the aquifer, has caused locally excessive concentrations of nitrate. Induced infiltration of surface water through organic sediments that line the bottoms of ponds and streams also seems to be the cause of elevated concentrations of manganese in water from some heavily pumped wells. (USGS)

  1. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  2. The effect of terrace geology on ground-water movement and on the interaction of ground water and surface water on a mountainside near Mirror Lake, New Hampshire, USA

    USGS Publications Warehouse

    Winter, T.C.; Buso, D.C.; Shattuck, P.C.; Harte, P.T.; Vroblesky, D.A.; Goode, D.J.

    2008-01-01

    The west watershed of Mirror Lake in the White Mountains of New Hampshire contains several terraces that are at different altitudes and have different geologic compositions. The lowest terrace (FSE) has 5 m of sand overlying 9 m of till. The two next successively higher terraces (FS2 and FS1) consist entirely of sand and have maximum thicknesses of about 7 m. A fourth, and highest, terrace (FS3) lies in the north-west watershed directly adjacent to the west watershed. This highest terrace has 2 m of sand overlying 8 m of till. All terraces overlie fractured crystalline bedrock. Numerical models of hypothetical settings simulating ground-water flow in a mountainside indicated that the presence of a terrace can cause local ground-water flow cells to develop, and that the flow patterns differ based on the geologic composition of the terrace. For example, more ground water moves from the bedrock to the glacial deposits beneath terraces consisting completely of sand than beneath terraces that have sand underlain by till. Field data from Mirror Lake watersheds corroborate the numerical experiments. The geology of the terraces also affects how the stream draining the west watershed interacts with ground water. The stream turns part way down the mountainside and passes between the two sand terraces, essentially transecting the movement of ground water down the valley side. Transects of water-table wells were installed across the stream's riparian zone above, between, and below the sand terraces. Head data from these wells indicated that the stream gains ground water on both sides above and below the sand terraces. However, where it flows between the sand terraces the stream gains ground water on its uphill side and loses water on its downhill side. Biogeochemical processes in the riparian zone of the flow-through reach have resulted in anoxic ground water beneath the lower sand terrace. Results of this study indicate that it is useful to understand patterns of ground-water

  3. Availability of Ground-Water Data for Idaho, Water Year 2006

    USGS Publications Warehouse

    Campbell, A.M.

    2007-01-01

    Introduction The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, collects a large amount of data each year pertaining to the ground-water resources of Idaho. These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 2005, data were published in a report series entitled, 'Water Resources Data for Idaho, Ground-Water Data.' Prior to the introduction of that series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 2006, the ground-water data reporting requirement was discontinued. However, data continue to be available in our databases. This fact sheet serves as an index to ground-water data for 2006.

  4. Ground-water data for Georgia, 1985

    USGS Publications Warehouse

    Clarke, J.S.; Joiner, C.N.; Longsworth, S.A.; McFadden, K.W.; Peck, M.F.

    1986-01-01

    Continuous water level records from 146 wells and water level measurements from an additional 1,100 wells in Georgia during 1985 provide the basic data for this report. Hydrographs for selected wells illustrate the effects that changes in recharge and discharge have had on the groundwater reservoirs in the State. Daily mean water levels are shown in hydrographs for 1985. Monthly mean water levels are shown for the 10-year period 1976-86. During 1985, annual mean water levels were generally lower than in 1984, and ranged from 11.4 feet lower to 0.6 feet higher. Much of the decline can be attributed to below-normal precipitation from mid-1984 to mid-1985. Water quality samples also are collected periodically throughout Georgia and analyzed as part of areal and regional groundwater studies. Along the coast, the chloride concentration in the Floridan aquifer system generally remained stable in the Savannah and Brunswick areas. (USGS)

  5. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethinyl estradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl de...

  6. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  7. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...

  8. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  9. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  10. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  11. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUNDSITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as "Superfund" sites. eview of Superfund Reco...

  12. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethynylestradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl der...

  13. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  14. Hanford Site ground-water monitoring for 1990

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities.

  15. A Numerical model to evaluate proposed ground-water allocations in southwest Kansas

    USGS Publications Warehouse

    Jorgensen, D.G.; Grubb, H.F.; Baker, C.H.; Hilmes, G.E.; Jenkins, E.D.

    1982-01-01

    A computer model was developed to assist the Southwest Kansas Groundwater Management District No. 3 in the evaluation of applications to appropriate ground water. The model calculated the drawdown due from a proposed well at all existing wells in the section of the proposed well and at all wells in the adjacent eight sections. The depletion expected in the 9-square-mile area due to all existing wells and the proposed well is computed and compared with allowable limits defined by the management district. An optional program permits the evaluation of allowable depletion for one or more townships. All options are designed to run interactively, thus allowing for immediate evaluation of proposed ground-water withdrawals. (USGS)

  16. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  17. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  18. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  19. Chemical Interactions of Uranium in Water, Sediments, and Plants Along a Watershed Adjacent to the Abandoned Jackpile Mine

    NASA Astrophysics Data System (ADS)

    Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.

    2015-12-01

    The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.

  20. Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

    2004-08-30

    Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

  1. LAS VEGAS VALLEY WATER BUDGET: RELATIONSHIP OF DISTRIBUTION, CONSUMPTIVE USE, AND RECHARGE TO SHALLOW GROUND WATER

    EPA Science Inventory

    Estimates of quantity and geographic distribution of recharge to the shallow ground-water zone from water use return flows in Las Vegas Valley were made for the years 1973, 1965, 1958, 1950, and 1943 as part of a broader study on the impact of water and land use on ground-water q...

  2. Proceedings of the second international conference on ground water ecology

    SciTech Connect

    Stanford, J.A.; Valett, H.M.

    1994-12-31

    This conference was held March 27--30, 1994 in Atlanta, Georgia. The purpose of this conference was to provide a forum for state-of-the-art information on groundwater ecosystems. Attention is focused on the following topics: Biogeochemistry; ecology of metazoans; ground water management; microbial ecology; modeling; pollution, restoration and bioremediation; problems in karst systems; and surface and ground water interaction zones. Individual papers are processed separately for inclusion in the appropriate data bases.

  3. Fresh and saline ground-water zones in the Punjab region, West Pakistan

    USGS Publications Warehouse

    Swarzenski, W.V.

    1968-01-01

    An extensive program of test drilling and water sampling, undertaken by the Water and Soils Investigation Division (WASID) of the West Pakistan Water and Power Development Authority (WAPDA) to evaluate hydrologic problems related to waterlogging and soil salinity, has furnished data for the delineation of fresh and saline ground-water zones in the Punjab region of West Pakistan. Fresh ground water containing generally less than 500 ppm (parts per million) of total dissolved solids is found in wide belts paralleling the major rivers and in other areas of ground-water recharge. The fresh groundwater zone of upper (northeastern) Rechna Doab, where annual precipitation in places exceeds 30 inches, is the most extensive of the Punjab region and attains a depth of 1,700 feet or more below land surface near Gujranwala. Fresh ground water adjacent to the Indus River extends locally to depths of about l,500 feet. Saline ground water occurs downgradient from sources of recharge, particularly in the central parts of the interfluvial areas. Also, available data indicate a gradual increase in mineralization with depth and distance from sources of fresh-water recharge. Thus, even extensive fresh-water zones appear to be underlain, at variable depths, by saline ground water in most of the Punjab region. The saline ground waters of the Punjab region do not constitute, however, a distinct salt-water body that can be defined in terms of stratigraphic position, sea-level datum, particular lithology, or by chemical character. The ground waters of the Punjab region are characterized by a gradation from calcium magnesium bicarbonate types, near the sources of recharge, to waters containing a dominant proportion of sodium. Water containing from 500 to 1,000 ppm is commonly of the sodium bicarbonate type, or it may be of the mixed type, having about equal proportions of the common anions (bicarbonate, chloride, and sulfate). With increasing mineralization from about 1,000 to 3,000 ppm

  4. Ground-water data for Georgia, 1986

    USGS Publications Warehouse

    Clarke, J.S.; Longsworth, S.A.; Joiner, C.N.; Peck, M.F.; McFadden, K.W.; Milby, B.J.

    1987-01-01

    Continuous water level records from 152 wells and water level measurements from an additional 750 wells in Georgia during 1986 provide the basic data for this report. Hydrographs for selected wells illustrate the effects that changes in recharge and discharge have had on the groundwater reservoirs in the State. Daily mean water levels are shown in hydrographs for 1986. Monthly mean water levels are shown for the 10-yr period 1977-86. During 1986, a prolonged drought resulted in water level declines throughout the State. Annual mean water levels were from 2.7 ft higher to 17.3 ft lower than in 1985, and record lows were measured in 33 wells in the summer and fall. The 1986 lows were from 0.02 ft to 29.2 ft lower than the previous record lows. The largest declines were measured in the Clayton aquifer in the southwestern part of the State. The declines can be attributed to reduced recharge and increased pumping that resulted from below-normal precipitation during the first half of the year. Water quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional groundwater studies. Periodic monitoring of water quality in the Savannah and Brunswick areas indicates that the chloride concentration in the Upper Floridan aquifer there generally has remained stable. (USGS)

  5. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  6. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  7. Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production.

    PubMed

    Field, Jennifer A; Reed, Ralph L; Sawyer, Thomas E; Griffith, Steven M; Wigington, P J

    2003-01-01

    Little is known about the occurrence and distribution of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] in soil, ground water, and surface water in areas affected by grass-seed production. A field study was designed to investigate the occurrence and distribution of diuron and its transformation products at a poorly drained field site located along an intermittent tributary of Lake Creek in the southern Willamette Valley of Oregon. The experimental sites consisted of a field under commercial grass seed production with a cultivated riparian zone and a second site that was part of the same grass seed field but with a noncultivated riparian zone. Diuron and its transformation product DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] were the only significant residues detected in this study. Concentrations of diuron in surface water declined from a maximum of 28 microg/L immediately following application to low levels that persisted as long as flow was present. Diuron and DCPMU concentrations in shallow ground water (15-36 cm below ground surface) were highest (2-13 microg/L) in the zone immediately adjacent (0.5 m) to Lake Creek and indicated the influence of stream water on shallow ground water near the stream. Diuron and DCPMU detected in soil prior to the second season's application indicated the persistence of diuron and DCPMU from the previous year's application. Surface runoff during the rainy season removes only a very small percentage (<1%) of the applied herbicide. In addition, no evidence was obtained for the downward transport of diuron or its transformation products to deep ground water. PMID:12549556

  8. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    USGS Publications Warehouse

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway - from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 ??g L-1, in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows

  9. Environmental Occurrence and Shallow Ground Water Detection of the Antibiotic Monensin from Dairy Farms

    USGS Publications Warehouse

    Bergamaschi, B.A.; Watanabe, N.; Harter, T.H.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway-from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 microg L(-1), in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows.

  10. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  11. Deformation-induced changes in hydraulic head during ground-water withdrawal

    USGS Publications Warehouse

    Hsieh, Paul A.

    1996-01-01

    Ground-water withdrawal from a confined or semiconfined aquifer causes three-dimensional deformation in the pumped aquifer and in adjacent layers (overlying and underlying aquifers and aquitards). In response to the deformation, hydraulic head in the adjacent layers could rise or fall almost immediately after the start of pumping. This deformation-induced effect suggest that an adjacent layer undergoes horizontal compression and vertical extension when pumping begins. Hydraulic head initially drops in a region near the well and close to the pumped aquifer, but rises outside this region. Magnitude of head change varies from a few centimeters to more than 10 centimeters. Factors that influence the development of deformation-induced effects includes matrix rigidity (shear modulus), the arrangement of aquifer and aquitards, their thicknesses, and proximity to land surface. Induced rise in hydraulic head is prominent in an aquitard that extends from land surface to a shallow pumped aquifer. Induced drop in hydraulic head is likely observed close to the well in an aquifer that is separated from the pumped aquifer by a relatively thin aquitard. Induced effects might last for hours in an aquifer, but could persist for many days in an aquitard. Induced effects are eventually dissipated by fluid flow from regions of higher head to regions of lower head, and by propagation of drawdown from the pumped aquifer into adjacent layers.

  12. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  13. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  14. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  15. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  16. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  17. Bibliography of publications relating to ground water in Connecticut

    USGS Publications Warehouse

    Cushman, R.V.

    1950-01-01

    In 1939, when it became necessary to curtail the work being carried on by the Works Progress Administration, cooperation was arranged between the Federal Ecological Survey and the State Water Commission to continue investigations relative to the over-development of ground-water supplies in the New Haven area. From time to time additional funds have been made available to meet growing demands by the State for data on its ground-water supplied and the present cooperative program between the U.S. Geological Survey and the State Water Commission is a continuation of the original arrangement. It is estimated that about 14 per cont of the State has been covered by recent ground-water surveys and in addition some data are available for another 20 per cent of he State.

  18. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    USGS Publications Warehouse

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  19. 77 FR 62234 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming.'' is available via the Internet on the EPA Region...

  20. 77 FR 19012 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming'' is available via the Internet on the EPA Region...

  1. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.

    PubMed

    Evanson, Melissa; Ambrose, Richard F

    2006-02-01

    Coastal wetlands are receiving increased attention as a putative source of fecal indicator bacteria (FIB) in Southern California coastal waters. We examined temporal trends of water and sediment-associated FIB after rain events along with spatial sediment characteristics at two sites within the Santa Ana River wetlands and made comparisons to FIB levels observed in adjacent surf zone waters. During the first two rain events, total coliforms (TC), Escherichia coli (EC) and enterococci (ENT) in wetland water and sediment samples peaked either on the same day or within several days of the rain event, while the third resulted in elevated wetlands sediment TC levels only. TC in adjacent coastal waters consistently peaked on the same day as the rain event and decreased quickly thereafter (within 1 day). The TC/EC ratios of surf zone samples consistently fell below 10, indicating an increased probability of human fecal contamination whereas wetland TC/EC ratios were higher, averaging approximately 60 and 14 at each site. These results suggest sediment-associated FIB populations may be distinct from those found in the water samples, or at least have internal dynamics independent of water-borne populations. Increases in sediment-associated FIB may be due to in situ population growth and/or increased survival due to changes in environmental parameters (salinity, moisture and nutrient input) resulting from the rain events. Spatial differences in between the two sites may be due to sediment differences such as organic content and finer grain size and/or discrete sources of FIB. PMID:16386284

  2. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for ground water systems. (a) A ground water system with...

  3. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  4. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  5. Ground-water and water-chemistry data for the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Caldwell, Rodney R.; Truini, Margot

    1997-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the upper Deschutes Basin, Oregon. Data in this report include tabulated information and a location map for more than 1,500 field-located water wells, hydrographs showing water-level fluctuations over various time periods for 102 of the wells, and water-chemistry analyses from 26 wells, 7 springs, and 5 surface-water sites.

  6. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  7. Availability Of Ground-Water Data For California, Water Year 2000

    USGS Publications Warehouse

    Huff, Julia

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our databases. This Fact Sheet serves as an index to ground-water data for water year 2000. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for water year 2000 (fig. 2) and instructions for obtaining this and other ground-water information contained in the databases of the Water Resources Division, California District.

  8. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  9. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER

    EPA Science Inventory

    Because ground water is a source of potable water for millions of people, an economical means of removing volatile organic contaminants is essential. Laboratory, pilot-scale and full-scale studies are being carried out in the United States of America to determine the effect of va...

  10. Quality of ground water from private domestic wells

    USGS Publications Warehouse

    DeSimone, Leslie A.; Hamilton, Pixie A.; Gilliom, Robert J.

    2009-01-01

    This article highlights major findings from two USGS reports: DeSimone (2009) and DeSimone and others (2009). These reports can be accessed at http://water.usgs.gov/nawqa. This article is followed by a summary of treatment considerations and options for owners of private domestic wells, written by Cliff Treyens of the National Ground Water Association.

  11. Chemical quality of ground water in Fairfax County, Virginia

    USGS Publications Warehouse

    Larson, J.D.

    1978-01-01

    Two maps portray the chemical quality of ground water in Fairfax County, Virginia. One map shows dissolved-solids concentration and chemical analyses diagrams. The other indicates hardness and areas of marginal water quality. Three tables of chemical analysis representing the three distinct rock types in the county are presented also. (Woodard-USGS)

  12. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  13. Ground-water quality in Wisconsin through 1972

    USGS Publications Warehouse

    Skinner, E.L.; Holt, C. L. R., Jr.

    1972-01-01

    Ground water, a plentiful and largely underdeveloped resource of Wisconsin, has good to excellent chemical quality in most places. This resource is readily available in most parts of the State for municipal, industrial, and rural uses. In 1970, about 0.5 billion gallons of ground water a day was pumped in Wisconsin for all uses (Murray and Reeves, 1972). In addition, underground reservoirs discharge an average of 16 billion gallons per day of water of relatively constant temperature and uniform quality, which maintains the base flow of streams and the level of lakes (Holt, 1964).

  14. Continued utilization of ground-water storage basins

    USGS Publications Warehouse

    Thomas, H.E.

    1957-01-01

    Doubtless most of you are more familiar with surface reservoirs, their capabilities and limitations, than you are with ground-water reservoirs. I believe that this is true of people in general, even the experts. And because of our inadequate knowledge of ground-water reservoirs, our use of them creates problems that are rarely if ever encountered in the operation of surface reservoirs. Nevertheless there are many similarities between these two basic forms of water storage, and I should like to point out some of these similarities, was well as some important contrasts.

  15. Ground water quality protection: the issue in perspective

    SciTech Connect

    Hall, C.W.

    1984-01-01

    The importance of protecting ground water resources cannot be overstated, and many people throughout the world seem anxious to physically and financially support a rational program to this end. Public complacency regarding the quality of ground water was destroyed with headline-grabbing incidents of pollution such as Love Canal, Valley of the Drums, and Times Beach. Contrary to earlier popular belief, the soil mantle has been shown to be ineffective in cleansing certain pollutants from the water flowing through it. The legislative basis for developing and implementing broad ground water quality protection programs exists, although it is dispersed in a variety of pieces of legislation. Such programs presuppose the existence of the scientific knowledge necessary to produce viable and effective results from its implementation. This article addresses the research needed for accumulation of this information. 12 references.

  16. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  17. MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA

    EPA Science Inventory

    Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

  18. LAND AND WATER USE EFFECTS ON GROUND-WATER QUALITY IN LAS VEGAS VALLEY

    EPA Science Inventory

    The hydrogeologic study of the shallow ground-water zone in Las Vegas Valley, Nevada determined the sources and extent of ground-water contamination to develop management alternatives and minimize adverse effects. An extensive, computerized data base utilizing water analyses, wel...

  19. Availability of Ground-Water Data for California, Water Year 1999

    USGS Publications Warehouse

    Huff, Julia A.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1999. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  20. Availability of Ground-Water Data for California, Water Year 1997

    USGS Publications Warehouse

    Huff, Julia H.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled 'Water Resources Data for California, Volume 5. Ground-Water Data.' Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1997. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  1. Availability of Ground-Water Data For California, Water Year 1998

    USGS Publications Warehouse

    Huff, Julia A.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1998. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  2. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  3. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed. PMID:18378277

  4. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  5. Chemistry and movement of ground water, Nevada Test Site

    USGS Publications Warehouse

    Schoff, S.L.; Moore, J.E.

    1964-01-01

    Three chemical types of ground water are distinguished at the Nevada Test Site and vicinity. A sodium-potassium water is related to tuff (in part zeolitized) and to alluvium containing detrital tuff. A calcium-magnesium water is related to limestone and dolomite, or to alluvium containing detritus of these rock types. A mixed chemical type, containing about as much sodium and potassium as calcium and magnesium, may result from the addition of one of the first two types of water to the other; to passage of water first through tuff and then through carbonate rock, or vice versa; and to ion-exchange during water travel. Consideration of the distribution of these water types, together with the distribution of sodium in the water and progressive changes in the dissolved solids, suggests that the ground water in the Nevada Test Site probably moves toward the Amargosa Desert, not into Indian Spring Valley and thence southeastward toward Las Vegas. The low dissolved solids content of ground-water reservoirs in alluvium and tuff of the enclosed basins indicates that recharge is local in origin.

  6. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  7. Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1979-01-01

    A May 1979 potentiometric-surface map depicts the annual low water-level period. Potentiometric levels declined 4 to 21 feet between September 1978 and May 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level declines ranged from 0 to 6 feet in coastal, northern, and southern areas of the Water Management District. Generally potentiometric levels were higher than previous May levels due to heavy rains in April and May. In parts of Hillsborough, Pasco, and Pinellas Counties, May 1979 potentiometric levels were 18 feet higher than those of September 1978. (USGS)

  8. Quantification of lincomycin resistance genes associated with lincomycin residues in waters and soils adjacent to representative swine farms in China

    PubMed Central

    Li, Liang; Sun, Jian; Liu, Baotao; Zhao, Donghao; Ma, Jun; Deng, Hui; Li, Xue; Hu, Fengyang; Liao, Xiaoping; Liu, Yahong

    2013-01-01

    Lincomycin is commonly used on swine farms for growth promotion as well as disease treatment and control. Consequently, lincomycin may accumulate in the environment adjacent to the swine farms in many ways, thereby influencing antibiotic resistance in the environment. Levels of lincomycin-resistance genes and lincomycin residues in water and soil samples collected from multiple sites near wastewater discharge areas were investigated in this study. Sixteen lincomycin-resistance and 16S rRNA genes were detected using real-time PCR. Three genes, lnu(F), erm(A), and erm(B), were detected in all water and soil samples except control samples. Lincomycin residues were determined by rapid resolution liquid chromatography-tandem mass spectrometry, with concentrations detected as high as 9.29 ng/mL in water and 0.97 ng/g in soil. A gradual reduction in the levels of lincomycin-resistance genes and lincomycin residues in the waters and soils were detected from multiple sites along the path of wastewater discharging to the surrounding environment from the swine farms. Significant correlations were found between levels of lincomycin-resistance genes in paired water and soil samples (r = 0.885, p = 0.019), and between lincomycin-resistance genes and lincomycin residues (r = 0.975, p < 0.01). This study emphasized the potential risk of dissemination of lincomycin-resistance genes such as lnu(F), erm(A), and erm(B), associated with lincomycin residues in surrounding environments adjacent to swine farms. PMID:24348472

  9. An ecological study of the KSC Turning Basin and adjacent waters

    NASA Technical Reports Server (NTRS)

    Nevin, T. A.; Lasater, J. A.; Clark, K. B.; Kalajian, E. H.

    1974-01-01

    The conditions existing in the waters and bottoms of the Turning Basin, the borrow pit near Pad 39A, and the Barge Canal connecting them were investigated to determine the ecological significance of the chemical, biological, and microbiological parameters. The water quality, biological, microbiological findings are discussed. It is recommended that future dredging activities be limited in depth, and that fill materials should not be removed down to the clay strata.

  10. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    PubMed

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive

  11. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    USGS Publications Warehouse

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    peripheral zones, whereas older, typically more reduced ground water tends to discharge closer to the center of the river corridor. Such distributions of redox state reflect ground-water movement and geochemical evolution at the aquifer-scale. Redox state of ground water undergoes additional modification as ground water nears discharge points in or adjacent to rivers, where riparian zone processes can be important. Lateral erosion of river systems away from the center of the flood plain can decrease or even eliminate interactions between ground water and reducing riparian zone sediments. Thus, ground water redox patterns in near-river sediments appear to reflect the position of a river within the riparian zone/aquifer continuum. Spatial heterogeneity of redox conditions near the river/aquifer boundary (that is, near the riverbed) makes it difficult to extrapolate transect-scale findings to a precise delineation of the oxic-suboxic boundary in the near-river environment of the entire study area. However, the understanding of relations between near-river redox state and proximity to riparian zone edges provides a basis for applying these results to the study-area scale, and could help guide management efforts such as nitrogen-reduction actions or establishment of Total Maximum Daily Load criteria. Coupling the ground-water redox-based understanding of river vulnerability with ground-water particle-tracking-based characterization of connections between upgradient recharge areas and receiving rivers demonstrates one means of linking effects of potential nitrate loads at the beginning of ground-water flow paths with river vulnerability.

  12. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  13. Hydrologic significance of carbon monoxide concentrations in ground water

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 ??g/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions. ?? 2007 National Ground Water Association.

  14. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  15. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    USGS Publications Warehouse

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  16. Faulting arrested by control of ground-water withdrawal in Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.; Gabrysch, R.K.; Verbeek, E.R.

    1983-01-01

    More than 86 historically active faults with an aggregate length of 150 miles have been identified within and adjacent to the Houston, Texas, metropolitan area. Although scarps of these faults grow gradually and without causing damaging earthquakes, historical fault offset has cost millions of dollars in damage to houses and other buildings, utilities, and highways that were built on or across the faults. The historical fault activity results from renewed movement along preexisting faults and appears to be caused principally by withdrawal of ground water for municipal, industrial, and agricultural uses in the Houston area. Approximately one-half of the area's water supply is obtained from local ground water. Monitoring by the US Geological Survey of heights of fault scarps indicates that many of the scarps have recently stopped increasing in height. The area where faulting has ceased coincides with the area where ground-water pumping was cut back in the mid-1970s to slow the damage caused by land subsidence along Galveston Bay and the Houston Ship Channel. Thus, it appears that efforts to halt land subsidence in the coastal area have provided the additional benefit of arresting damaging surface faulting. -from Authors

  17. Effects of effluent spray irrigation on ground water at a test site near Tarpon Springs, Florida

    USGS Publications Warehouse

    Brown, D.P.

    1982-01-01

    Secondary-treated effluent was applied to a 7.2-acre test site near Tarpon Springs, Fla., for about 1 year at an average rate of 0.06 million gallons per day and 3 years at 0.11 million gallons per day. Chemical fertilizer was applied periodically to the test site and adjacent areas. Periodic mounding of the water table occurred due to effluent irrigation, inducing radial flow from the test site. Physical, geochemical, biochemical processes effectively reduced total nitrogen concentration 90% and total phosphorous concentration more than 95% in the ground water of the surficial aquifer about 300 feet downgradient from the test site from that of the applied effluent. Downgradient, total nitrogen averaged 2.4 milligrams per liter and total phosphorus averaged 0.17 milligrams per liter. Substantial increases in total phosphorus were observed when the pH of the ground water increased. Total coliform bacteria in the ground water of the surficial aquifer were generally less than 100 colonies per 100 milliliters. Fecal coliform bacteria were generally less than 25 colonies per 100 milliliters at the test site and were not detected downgradient or near the test site. Fecal streptococcal bacteria were generally less than 100 colonies per 100 milliliters at the test site, but were detected on three occasions near the test site. (USGS)

  18. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  19. Availability of ground-water data for California, water year 1996

    USGS Publications Warehouse

    Huff, Julia A.

    1997-01-01

    This Fact Sheet serves as an index to California ground-water data for 1996. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water- quality data for the current year and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  20. Study on the total water pollutant load allocation in the Changjiang (Yangtze River) Estuary and adjacent seawater area

    NASA Astrophysics Data System (ADS)

    Deng, Yixiang; Zheng, Binghui; Fu, Guo; Lei, Kun; Li, Zicheng

    2010-02-01

    With the rapid economic development, the water quality is worsening and red tide takes place frequently in the Changjiang Estuary and adjacent seawaters. To improve the marine water quality, the total inland pollutant load should be controlled effectively. With efficiency and fairness in consideration, the total maximum allowable loads of COD Mn, NH 3-N, inorganic nitrogen and active phosphate to the seawaters were calculated and allocated by the linear programming method based on the water quality response fields of the pollution sources. The maximum allowable loads are 2008 × 10 3 tons, 169 × 10 3 tons, 226 × 10 3 tons and 18 × 10 3 tons for COD Mn, NH 3-N, inorganic nitrogen and active phosphate when the water quality targets are requested to be achieved in the whole studied region, and 346 × 10 3 tons and 32 × 10 3 tons for inorganic nitrogen and active phosphate when the water quality targets to be achieved only in the red tide sensitive area. The cut task of COD Mn and NH 3-N is relatively easy and can be finished by the watershed environmental plan; while the cut task of inorganic nitrogen and active phosphate is tremendous. The coastal provinces should install more denitrification and dephosphorization facilities in the existing waste water treatment plants or build new ones to control the red tides in the concerned seawaters.

  1. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah

    USGS Publications Warehouse

    Holmes, Walter F.

    1984-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mountain areas and from adjoining areas. Discharge is by wells, springs, seepage to the Sevier River, evapotranspiration, and subsurface outflow to adjoining areas.

  2. Ground-water hydrology of the Mormon Island Crane Meadows Wildlife Area near Grand Island, Hall County, Nebraska

    USGS Publications Warehouse

    Hurr, T.R.

    1981-01-01

    The Platte River in south-central Nebraska flows generally eastward in a broad, flat valley. The river banks and many areas adjacent to the river support thick stands of cottonwood and willow trees. Brush, grass, pasture land, and cultivated fields occupy most of the remaining area. This is the habitat for many types of wildlife that live in the area or stop over in the area during annual migrations. Both sandhill cranes and whooping cranes are part of the annual migration. There is concern that water-management changes, such as surface-water diversions or ground-water withdrawals for irrigation, may alter the hydrologic environment of the wetland areas and be harmful to the wildlife habitat. In order to determine what affect changes in water management might have on ground-water levels in the wetland areas, detailed data were collected from Crane Meadows Wildlife Area, which is on an island in the Platte River near Grand Island, Nebr. Ground-water levels beneath the island respond to changes in river stage, to recharge from snowmelt and precipitation, and to evapotranspiration by riparian vegetation and from areas where the water table is close to the land surface. The data show that ground-water levels respond rapidly to changes in river stage--usually within 24 hours for distances up to 2,500 feet from the edge of the river. Thus changes in river stage due to changes in surface-water diversions will not have a long-term effect on ground-water levels. Changes in ground-water withdrawals will have the double effect of changing ground-water levels due to changes in drawdown and due to changes in river stage caused by the effects of pumping on river flow. These effects will develop slowly and be long lasting. (USGS)

  3. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  4. Picosecond water dynamics adjacent to charged paramagnetic ions measured by magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Lisitza, Natasha; Bryant, Robert G.

    2007-03-01

    Measurements of water-proton spin-lattice relaxation rate constants as a function of magnetic field strength [magnetic relaxation dispersion (MRD)] in aqueous solutions of paramagnetic solutes reveal a peak in the MRD profile. These previously unobserved peaks require that the time correlation functions describing the water-proton-electron dipolar coupling have a periodic contribution. In aqueous solutions of iron(III) ion the peak corresponds to a frequency of 8.7cm-1, which the authors ascribe to the motion of water participating in the second coordination sphere of the triply charged solute ion. Similar peaks of weaker intensity in the same time range are observed for aqueous solutions of chromium(III) chloride as well as for ion pairs formed by ammonium ion with trioxalatochromate(III) ion. The widths of the dispersion peaks are consistent with a lifetime for the periodic motion in the range of 5ps or longer.

  5. Corals persisting in naturally turbid waters adjacent to a pristine catchment in Solomon Islands.

    PubMed

    Albert, Simon; Fisher, Paul L; Gibbes, Badin; Grinham, Alistair

    2015-05-15

    Few water quality measurements exist from pristine environments, with fewer reported studies of coastal water quality from Solomon Islands. Water quality benchmarks for the Solomons have relied on data from other geographic regions, often from quite different higher latitude developed nations, with large land masses. We present the first data of inshore turbidity and sedimentation rate for a pristine catchment on Isabel Island. Surveys recorded relatively high coral cover. The lowest cover was recorded at 22.7% (Jejevo) despite this site having a mean turbidity (continuous monitoring) of 32 NTU. However, a similar site (Jihro) was significantly less turbid (2.1 mean NTU) over the same period. This difference in turbidity is likely due to natural features of the Jihro River promoting sedimentation before reaching coastal sites. We provide an important baseline for Solomon Island inshore systems, whilst demonstrating the importance of continuous monitoring to capture episodic high turbidity events. PMID:25752531

  6. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  7. Identifying the Source of High-Nitrate Ground Water Related to Artificial Recharge in a Desert Basin

    NASA Astrophysics Data System (ADS)

    Densmore, J. N.; Nishikawa, T.; Bohlke, J. K.; Martin, P.

    2002-12-01

    Ground water has been the sole source of water supply for the community of Yucca Valley in the Mojave Desert, California. Domestic wastewater from the community is treated using septic tanks. An imbalance between ground-water recharge and pumpage caused ground-water levels in the ground-water basin to decline by as much as 300 feet from the late 1940s through 1994. In response to this decline, the local water district, Hi-Desert Water District, began an artificial recharge program in February 1995 to replenish the ground water in the basin using imported surface water. The artificial recharge program resulted in water-level recovery of about 250 feet between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 mg/L as NO3 to more than the U.S. Environmental Protection Agency maximum contaminant level of 45 mg/L as NO3, limiting water use for some wells. The largest increase in nitrate concentrations occurred adjacent to the artificial recharge sites where the largest increase in water levels occurred even though the recharge water had low nitrate concentrations. The source of high nitrate concentrations observed in ground water during aquifer recovery was identified by compiling historical water-quality data; monitoring changes in water quality since artificial recharge began; and analyzing selected samples for major-ion chemistry, stable isotopes of H,O, and N, caffeine, and pharmaceuticals. The major-ions and H and O stable-isotope data indicate that ground-water samples that had the highest nitrate concentrations were mixtures of imported water and native ground water. Nitrate-to-chloride ratios, N isotopes and caffeine and pharmaceutical data indicate septic-tank seepage (septage) is the primary source of increases in nitrate concentration. The rapid rise in water levels entrained the large volume of high-nitrate septage stored in the unsaturated zone, resulting in the rapid increase

  8. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  9. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  10. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  11. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  12. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  13. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  14. Ground water applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    The paper discusses the ground water portion of a hydrologic investigation of eastern South Dakota using data from the Heat Capacity Mapping Mission (HCMM) satellite. The satellite carries a two-channel radiometer (0.5-1.1 and 10.5-12.5 microns) in a sun synchronous orbit and collects data at approximately 0230 and 1330 local standard time with repeat coverage of 5 to 16 days depending on latitude. It is shown that HCMM data acquired at appropriate periods of the diurnal and annual temperature cycle can provide useful information on shallow ground water.

  15. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    SciTech Connect

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  16. Geology and ground-water resources of Richardson County, Nebraska

    USGS Publications Warehouse

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  17. Availability Of Ground-Water Data For California, Water Year 2003

    USGS Publications Warehouse

    Huff, Julia A.

    2004-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1?September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers.

  18. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  19. Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; Haekkinen, Sirpa

    2011-01-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  20. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  1. Mathematical ground-water model of Indian Wells Valley, California

    USGS Publications Warehouse

    Bloyd, R.M., Jr.; Robson, S.G.

    1971-01-01

    A mathematical model of the Indian Wells Valley ground-water basin was developed and verified. The alternating-direction implicit method was used to compute the mathematical solution. It was assumed that there are only two aquifers in the valley, one being deep and the other shallow. Where the shallow aquifer occurs, the underlying deep aquifer is confined or artesian. Flow between the aquifers under steady-state conditions is assumed to be in one direction, from deep to shallow. The transmissivity of the deep aquifer ranges from about 250,000 to 22,000 gallons per day per foot and from about 25,000 to 5,000 gallons per day per foot for the shallow aquifer. The storage coefficient for the deep aquifer ranges from 1 x 10 -4 to 0.20. Steady-state recharge and discharge in each aquifer was estimated to be 9,850 acre-feet per year. Ground-water pumping, sewage-effluent recharge, and capture of ground-water discharge occurred under non-steady-state conditions. Most of the ground-water pumpage is near Ridgecrest and Inyokern and in the area between the two towns. By 1968 pumpage in the deep aquifer had caused a reversal in the ground-water gradient south of China Lake and small water-level declines over most of the aquifer. The model for the deep aquifer was verified under steady-state and non-steady-state conditions. The shallow aquifer was verified under steady-state conditions only. The verified model was then used to generate 1983 water-level conditions in the deep aquifer.

  2. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  3. Aeromagnetic map of the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    Ponce, D.A.; Blakely, R.J.

    2002-03-12

    This aeromagnetic map of the Death Valley ground-water model area was prepared from numerous separate aeromagnetic surveys that were gridded, merged, and described by Hildenbrand and Kucks (1988) and by McCafferty and Grauch (1997). These data are available in grid format from the EROS Data Center, U.S. Geological Survey, Sioux Falls, South Dakota, 57198, and from the National Geophysical Data Center, 325 Broadway, E/GC4, Boulder, Colo., 80303. Magnetic investigations of the Death Valley ground-water basin are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency Agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwest Nevada and adjacent parts of California (Blakely and others, 2000b). The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W.

  4. GWVis: A Tool for Comparative Ground-Water Data Visualization

    SciTech Connect

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the time span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.

  5. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  6. Ground-water monitoring at Santa Barbara, California; Phase 2, effects of pumping on water levels and water quality in the Santa Barbara ground-water basins

    USGS Publications Warehouse

    Martin, Peter

    1982-01-01

    From July 1978 to January 1980, water levels declined more than 100 feet in the coastal area of the Santa Barbara ground-water basin in southern California. The water-level declines are the result of increases in municipal pumping since July 1978. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines in the main water-bearing zones to altitudes below sea level. Consequently, the ground-water basin is threatened with salt-water intrusion if the present pumpage is maintained or increased. Water-quality data suggest that salt-water intrusion has already degraded the water yielded from six coastal wells. Chloride concentrations in the six wells ranged from about 400 to 4,000 milligrams per liter. Municipal supply wells near the coast currently yield water of suitable quality for domestic use. There is, however, no known physical barrier to the continued inland advance salt water. Management alternatives to control salt-water intrusion in the Santa Barbara area include (1) decreasing municipal pumping, (2) increasing the quantity of water available for recharge by releasing surplus water to Mission Creek, (3) artificially recharing the basin using injection wells, and (4) locating municipal supply wells farther from the coast and farther apart to minimize drawdown. (USGS)

  7. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China

    NASA Astrophysics Data System (ADS)

    Li, Zengguang; Ye, Zhenjiang; Wan, Rong

    2015-12-01

    Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.

  8. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L., Jr.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  9. Modeling in situ iron removal from ground water

    SciTech Connect

    Appelo, C.A.J.; Drijver, B.; Hekkenberg, R.; Jonge, M. de

    1999-12-01

    In situ iron removal is conducted routinely in a number of European countries. A volume of oxygenated water is injected, and subsequently a larger volume of ground water can be pumped with a lower iron concentration than is found in native ground water. The underlying reaction mechanism has not been well described so far, and the process has not been modeled quantitatively. The essential problem is how the electron transfer takes place between the dissolved oxygen in injection water and the dissolved iron in ground water. An intermediate reaction step, involving cation exchange of ferrous iron and subsequent oxidation by oxygen of injection water, explains the efficiency increase during the initial cycles and the absence of clogging by precipitated iron-oxyhydroxide. A hydrogeochemical transport model has been used to model column experiments with good results. The quantification of the reaction mechanism allows the assessment of operational conditions. For example, it can be shown that increasing the oxidant concentration in the injected water has an insignificant effect when exchangeable ferrous iron is low.

  10. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  11. 10 CFR 63.331 - Separate standards for protection of ground water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Separate standards for protection of ground water. 63.331... Standards Ground-Water Protection Standards § 63.331 Separate standards for protection of ground water. DOE... ground water to exceed the limits in the following Table 1: Table 1—Limits on Radionuclides in...

  12. 10 CFR 63.331 - Separate standards for protection of ground water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Separate standards for protection of ground water. 63.331... Standards Ground-Water Protection Standards § 63.331 Separate standards for protection of ground water. DOE... ground water to exceed the limits in the following Table 1: Table 1—Limits on Radionuclides in...

  13. 10 CFR 63.331 - Separate standards for protection of ground water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Separate standards for protection of ground water. 63.331... Standards Ground-Water Protection Standards § 63.331 Separate standards for protection of ground water. DOE... ground water to exceed the limits in the following Table 1: Table 1—Limits on Radionuclides in...

  14. 10 CFR 63.331 - Separate standards for protection of ground water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Separate standards for protection of ground water. 63.331... Standards Ground-Water Protection Standards § 63.331 Separate standards for protection of ground water. DOE... ground water to exceed the limits in the following Table 1: Table 1—Limits on Radionuclides in...

  15. 10 CFR 63.331 - Separate standards for protection of ground water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Separate standards for protection of ground water. 63.331... Standards Ground-Water Protection Standards § 63.331 Separate standards for protection of ground water. DOE... ground water to exceed the limits in the following Table 1: Table 1—Limits on Radionuclides in...

  16. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  17. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  18. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  19. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  20. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  1. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  2. Ground water maps of Hanford Site Separations Areas, December 1989

    SciTech Connect

    Kasza, G.L.

    1990-06-01

    The Separations Areas consist of the 200 East and 200 West areas and the surrounding vicinity on the Hanford Site. Chemical processing operations are carried out in the Separations Areas by Westinghouse Hanford Company for the US Department of Energy-Richland Operations Office. This set of ground water maps consists of: (1) Separations Areas depth-to-water map, (2) Separations Areas water table map, and (3) a map comparing the potentiometric surface of the Rattlesnake Ridge confined aquifer with the water table of the unconfined aquifer. The field measurements for these maps were collected during December 1989. 3 figs., 1 tab.

  3. Reactive Iron deposition and ground water inflow control neutralization processes in acidic mine lakes

    NASA Astrophysics Data System (ADS)

    Blodau, C.

    2002-12-01

    The controls on the internal neutralization of highly acidified waters by iron sulphide accumulation are yet poorly understood. To elucidate the influence of ground water inflow on neutralization processes, inventories of solid phase iron and sulphur, pore water profiles and rates of ferrous iron and sulphate production and consumption were analyzed in different areas of an acidic mine lake. Ground water inflow had previously been determined by ground water modelling and chamber measurements (Knoll et al., 1999). The investigated sediments adjacent to mine tailings, which were subject to the inflow of groundwater (10-30 L d-1 m-2), were richer in dissolved ferrous iron iron (30 vs. 5 mmol L-1) and sulphate (30 vs. 10 mmol L-1) and showed higher pH values (6 vs. 4) than the sediments in areas of the lake not being influenced by groundwater inflow. Sediments adjacent to the mine tailings also showed higher rates of sulphate reduction and iron sulphide accumulation (Fig. 1). From these data it is suggested that neutralization processes in iron rich, acidic mine lakes neutralization processes primarily occur in areas influenced by the inflow of acid mine groundwater. These waters usually have considerably higher pH values than the surface waters in the lakes due to buffering processes in the tailings. The seepage of this water through the sediment might thus lead to higher pH values and thus to a higher thermodynamic competitiveness of sulfate reduction vs. iron reduction (Blodau and Peiffer 2002). This causes increased neutralization rates. These findings have consequences for remediation measures in highly acidic lakes. In areas influenced by the inflow of mine drainage increases in carbon availability, for example by the deposition of particulate organic matter, should enhance iron sulphide formation rates, whereas in other areas increases in carbon availability would only result in enhanced rates of iron reduction without a lasting gain in alkalinity. Blodau, C

  4. Availability of ground-water data for California, water year 2002

    USGS Publications Warehouse

    Huff, Julia A.

    2003-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year (October 1?September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to ground-water data for water year 2002. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and waterquality data for water year 2002 and instructions for obtaining this and other ground-water information contained in the databases of the U.S. Geological Survey, Water Resources, California District.

  5. Ground water and the law - some selected annotated references

    USGS Publications Warehouse

    Vorhis, Robert C.

    1955-01-01

    The strictly "legal" literature of ground-water use and control -except for a few essays in certain of the law reviews- is quite limited. A larger and more pointful source of information and analysis is the legal-scientific writings of the geologists, hydrologists, meteorologists, engineers and others. When new statutes are to be drafted by legislatures, and new decisions are to be made by courts on this subject, such literature may well be of far greater importance than legal precedents unfounded on scientific fact. This may be demonstrated by the character and scope of the legal-scientific literature of ground water, just one branch of water science, but one which is of major importance to any thoughtful consideration of water use and control.

  6. Cooperative modeling: linking science, communication, and ground water planning.

    PubMed

    Tidwell, Vincent C; van den Brink, Cors

    2008-01-01

    Equitable allocation of ground water resources is a growing challenge due to both the increasing demand for water and the competing values placed on its use. While scientists can contribute to a technically defensible basis for water resource planning, this framework must be cast in a broader societal and environmental context. Given the complexity and often contentious nature of resource allocation, success requires a process for inclusive and transparent sharing of ideas complemented by tools to structure, quantify, and visualize the collective understanding and data, providing an informed basis of dialogue, exploration, and decision making. Ideally, a process that promotes shared learning leading to cooperative and adaptive planning decisions. While variously named, mediated modeling, group modeling, cooperative modeling, shared vision planning, or computer-mediated collaborative decision making are similar approaches aimed at meeting these objectives. In this paper, we frame "cooperative modeling" in the context of ground water planning and illustrate the process with two brief examples. PMID:18194321

  7. Distribution of fluoride in ground water of West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Waldron, M.C.

    1993-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the West Virginia Geological and Economic Survey, to evaluate the distribution of fluoride in ground water of West Virginia. Fluoride is a natural chemical constituent in domestic and public water supplies in West Virginia. Fluoride concentrations of about 1.0 milligram per liter in drinking water are beneficial to dental health. Concentrations greater than 2.0 milligrams per liter, however, could harm teeth and bones. Fluoride concentra- tions in ground water of West Virginia range from less than 0.1 to 12 milligrams per liter. Fluoride concentrations that exceed 2.0 milligrams per liter are found in wells drilled to all depths, wells drilled in all topographic settings, and wells drilled into most geologic units. Most fluoride concentrations that exceed 2.0 milligrams per liter are located at sites clustered in the northwestern part of the State.

  8. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  9. Over-Water Aspects of Ground-Effect Vehicles

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Carter, Arthur W.; Schade, Robert O.

    1960-01-01

    The large thrust augmentation obtainable with annular-jet configurations in ground proximity has led to the serious investigation of ground-effect machines. The basic theoretical work on these phenomena has been done by Chaplin and Boehler. Large thrust-augmentation factors, however, can be obtained only at very low heights, that is, of the order of a few percent of the diameter of the vehicle. To take advantage of this thrust augmentation therefore the vehicle must be either very large or must operate over very smooth terrain. Over-land uses of these vehicles then will probably be rather limited. The water, however, is inherently smooth and those irregularities that do exist, that is waves, are statistically known. It appears therefore that some practical application of ground-effect machines may be made in over-water application.

  10. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    USGS Publications Warehouse

    Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R.

    2005-01-01

    An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water sources in the area ranged from 0.27 to 742 ??g/l. Ground water in which W concentrations exceed 50 ??g/l principally occurs SE of Fallon in a geothermal area. The principal sources of W in ground water are natural and include erosion of W-bearing mineral deposits in the Carson River watershed upstream of Fallon, and, possibly, upwelling geothermal waters. Ground water in the Fallon area is strongly reducing and reductive dissolution of Fe and Mn oxyhydroxides may be releasing W; however, direct evidence that the metal oxides contain W is not available. Although W and Cl concentrations in the Carson River, a lake, and water from many wells, appear to be controlled by evaporative concentration, evaporation alone cannot explain the elevated W concentrations found in water from some of the wells. Concentrations of W exceeding 50 ??g/l are exclusively associated with Na-HCO3 and Na-Cl water types and pH > 8.0; in these waters, geochemical modeling indicates that W exhibits <10% adsorption. Tungsten concentrations are strongly and positively correlated with As, B, F, and P, indicating either common sources or common processes controlling their concentrations. Geochemical modeling indicates W concentrations are consistent with pH-controlled adsorption of W. The geochemical model PHREEQC was used to calculate IAP values, which were compared with published Ksp values for primary W minerals. FeWO4, MnWO4, Na2WO4, and MgWO4 were undersaturated and CaWO4 and SrWO 4 were approaching saturation. These conclusions are tentative because of uncertainty in the thermodynamic data. The similar behavior of As and W observed in

  11. Scanning electron microscopic investigations of fresh mortars: Well-defined water-filled layers adjacent to sand grains

    SciTech Connect

    Diamond, S. Kjellsen, K.O.

    2008-04-15

    SEM examinations are reported of freshly-mixed and early age mortar specimens prepared by fast freezing in liquid nitrogen followed by epoxy impregnation, and of companion specimens of early aged mortars prepared conventionally. Freshly-mixed mortars reveal complex features that appear to influence subsequent development of the hardened state microstructure. In particular, layers of entirely water-filled space a few micrometers thick are found adjacent to many of the sand grain surfaces. After a few hours sparse deposits of calcium hydroxide crystals (and later C-S-H) are found within these layers, but the layers persist as recognizable features for at least 12 h. The layers are identically recognizable in both fast-frozen and conventionally-prepared specimens. Another feature found in freshly-mixed mortars is the existence of patchy local areas of sparsely-packed and other areas of densely-packed cement particles.

  12. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  13. GROUND WATER PURGING AND SAMPLING METHODS: HISTORY VS. HYSTERIA

    EPA Science Inventory

    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  14. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  15. Sorption of PFOA and PFOS to Ground Water Sediment

    EPA Science Inventory

    During its years of operation, the Washington County Sanitary Landfill near St. Paul, Minnesota accepted both municipal and industrial solid waste. Several years of ground water monitoring performed by the MPCA indicates that, some of the waste disposed of at this landfill contai...

  16. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER BY ADSORPTION

    EPA Science Inventory

    Laboratory and field studies are underway to determine the effectiveness of activated carbon for removing volatile organic compounds from ground water. For fifteen C1 through C6 compounds being considered for possible regulatory action, the adsorption isotherm capacity ranges fro...

  17. Alternate conceptual model of ground water flow at Yucca Mountain

    SciTech Connect

    1993-12-31

    Attempts to predict the performance of a high-level nuclear waste repository in the United States have lead to the development of alternative conceptual models of the ground watre flow field in which the repository will be located. This step has come about because of the lage uncertainties involved in predicting the movement of water and radionuclides through an unsaturated fractured rock. Further, one of the standards to which we are comparing performance is probabilistic, so we are forced to try to conceive of all credible scenarios by which ground water may intersect the repository horizon and perhaps transport radionuclides to a given compliance boundary. To simplify this task, the DOE set about identifying alternative conceptual models of ground water flow which are consistent with existing data. Modeling these concepts necessitates the use of simplifying assumptions. Among the modeling assumptions commonly utilized by analysts of the Yucca Mountain site are those of uniformly distributed, small volumes of recharge and matrix or porous media flow. Most scientists would agree that recharge at Yucca Mountain does not occur in this ideal and simplified fashion, yet modeling endeavors continue to commonly utilize this approach. In this paper, we examine the potential effects of focused recharge on the flow field at Yucca Mountain in concert with a fractured matrix and non-equilibrium view of ground water flow.

  18. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    SciTech Connect

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods.

  19. MANUAL: GROUND-WATER AND LEACHATE TREATMENT SYSTEMS

    EPA Science Inventory

    This manual was developed for remedial design engineers and regulatory personnel who oversee the ex situ ground water or leachate treatment efforts of the regulated community. The manual can be used as a treatment technology screening tool in conjunction with other references. Mo...

  20. FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS

    EPA Science Inventory

    The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...

  1. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  2. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  3. 21. WATER TOWERBARRACKS COMPLEX LOOKING SOUTHEAST ACROSS THE PARADE GROUNDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. WATER TOWER-BARRACKS COMPLEX LOOKING SOUTHEAST ACROSS THE PARADE GROUNDS (Buildings No. 48, 49, 50) (Copy negative made from National Archives negative No. 92-F-61A-13) - Fort Sheridan, 25 miles Northeast of Chicago, on Lake Michigan, Lake Forest, Lake County, IL

  4. 20. WATER TOWERBARRACKS COMPLEX LOOKING SOUTH ACROSS THE PARADE GROUNDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WATER TOWER-BARRACKS COMPLEX LOOKING SOUTH ACROSS THE PARADE GROUNDS (Buildings No. 50, 49, 48) (Copy negative made from National Archives negative No. 92-F-61A-12) - Fort Sheridan, 25 miles Northeast of Chicago, on Lake Michigan, Lake Forest, Lake County, IL

  5. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  6. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    EPA Science Inventory

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  7. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  8. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  9. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sit...

  10. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these costs, cost information for 311 sites was furnished by U.S. EPA Office of Underg...

  11. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 site...

  12. Summary of I-129 measurements in ground and surface waters

    SciTech Connect

    Kantelo, M.V.

    1987-11-17

    The iodine-129 content of groundwater and surface water at on-plant (Savannah River Plant) and off-plant locations has been determined at irregular intervals since 1970 using neutron activation analysis. I-129 was detected in groundwater near the Burial Ground and near the seepage basins of the Separations areas. For reference, I-129 concentrations in the groundwater can be compared to the EPA drinking water standard. At a few locations the concentrations exceeded both the existing and pending EPA drinking water standard. In surface water, Four Mile Creek was the only SRP stream found to transport significant I-129 to the Savannah River. Dilution by C-Reactor discharge and the Savannah River reduced the off-plant I-129 concentrations in river water to less than 1% of the existing EPA drinking water standard and less than 0.01% of the pending EPA drinking water standard.

  13. Index of ground-water quality data for Florida

    USGS Publications Warehouse

    Seaber, P.R.; Williams, O.O.

    1985-01-01

    The Master Water Data Index of the U.S. Geological Survey contains records and information for 13,925 ground-water quality collection sites in Florida as follows: 2,180 active and 11,559 inactive well sites, and 39 active and 147 inactive spring sites. Ground-water quality data have been and are being collected at more sites in Florida than are other types of ground- and surface-water hydrologic data. Information available from the Master Water Data Index includes location (county, hydrologic unit, and latitude-longitude); reporting agency; agency identifying number; period and frequency of record; types of data (parameter sampled); and for wells, the principal aquifer sampled and well depth. This information may be retrieved, upon request, in a variety of formats. This report contains an index of the information available, not the actual water-quality data itself. The actual data may be obtained from the reporting agency that collected and stored the data. (USGS)

  14. Nature and extent of ground-water-quality changes resulting from solid-waste disposal, Marion County, Indiana

    USGS Publications Warehouse

    Pettijohn, R.A.

    1977-01-01

    Studies of seven landfills in the Indianapolis, Indiana, area indicate that in five of the landfills movement of ground water is from the deep aquifers into the uppermost aquifer. In the other two landfills, movement of ground water is from the shallow aquifers to the deeper aquifers, so that leachate is transported into the deeper aquifers. In all the landfills, the predominant direction of ground-water movement is lateral. Placing solid waste into the landfills has occasionally altered the local, but not the regional, flow patterns. Ground-water mounding at shallow depths beneath two of the landfills has caused flow toward the edges of the two fills. Leachate at these fills is moving downward and outward and has affected water quality at shallow depths. Pumping near two other landfills has reversed the direction of regional ground-water flow, allowing leachate to move toward the pumping wells. Leachate at the three remaining landfills is moving downgradient and is discharging into single streams adjacent to each landfill. (Woodard-USGS)

  15. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    SciTech Connect

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  16. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, D.E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  17. Comparison of fish communities in a clean-water stream and an adjacent polluted stream

    SciTech Connect

    Reash, R.J.; Berra, T.M. )

    1987-10-01

    Fish populations were studied in two parallel tributaries of the Mohican River, Ohio: Clear Fork, relatively undisturbed; and Rocky Fork, which receives industrial discharges and sewage effluent. Water quality in Rocky Fork was significantly worse than the control stream with respect to heavy metals (Cr, Cu, Fe, Ni, and Zn) and ammonia concentrations. Fish species richness and diversity increased downstream in Clear Fork but decreased downstream in Rocky Fork. Pollution-intolerant species were present in the headwaters of Rocky Fork and at all sites of Clear Fork. Fish community similarity of fish communities between corresponding headwater sites was significantly greater than similarity of corresponding downstream reaches, using polluted and unpolluted sites for comparison. Both headwater sites were dominated numerically by generalized invertebrate-feeding fish. At downstream sites in Clear Fork benthic insectivores became dominant in Rocky Fork, generalized invertebrate-feeding fish were present. Fish communities at polluted sites had comparatively lower variability of both trophic structure rank and relative abundance. The smaller populations of fish in these sites were dominated by a few pollution-tolerant species.

  18. Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands

    PubMed Central

    Buckley, Thomas N; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2011-01-01

    We measured sap flux (S) and environmental variables in four monospecific stands of alpine ash (Eucalyptus delegatensis R. Baker, AA) and snowgum (E. pauciflora Sieb. ex Spreng., SG) in Australia's Victorian Alps. Nocturnal S was 11.8 ± 0.8% of diel totals. We separated transpiration (E) and refilling components of S using a novel modeling approach based on refilling time constants. The nocturnal fraction of diel water loss (fn) averaged 8.6 ± 0.6% for AA and 9.8 ± 1.7% for SG; fn differed among sites but not species. Evaporative demand (D) was the strongest driver of nocturnal E (En). The ratio En/D (Gn) was positively correlated to soil moisture in most cases, whereas correlations between wind speed and Gn varied widely in sign and strength. Our results suggest (1) the large, mature trees at our subalpine sites have greater fn than the few Australian native tree species that have been studied at lower elevations, (2) AA and SG exhibit similar fn despite very different size and life history, and (3) fn may differ substantially among sites, so future work should be replicated across differing sites. Our novel approach to quantifying fn can be applied to S measurements obtained by any method. PMID:22393512

  19. Nitrate movement in shallow ground water from swine-lagoon-effluent spray fields managed under current application regulations.

    PubMed

    Israel, Daniel W; Showers, William J; Fountain, Matthew; Fountain, John

    2005-01-01

    Rapid increases in the swine (Sus scrofa domestica) population in the 1990s and associated potential for nitrate N pollution of surface waters led the state of North Carolina to adopt stringent waste management regulations in 1993. Our objectives were to characterize (i) nitrate N movement from waste application fields (WAFs) in shallow ground water, and (ii) soil, hydrologic, and biological factors influencing the amount of nitrate N in the adjacent stream. A ground water monitoring study was conducted for 36 mo on a swine farm managed under new regulations. Water table contours and lack of vertical gradients indicated horizontal flow over most of the site. Nitrate N concentrations in water from shallow wells in WAFs averaged 30 +/- 19 mg L(-1) and delta15N ratios for nitrate N were between +20 and +25 per mil. Nitrate N concentration decreased from field-edge to streamside wells by 22 to 99%. Measurement of delta18O and delta15N enrichment of nitrate in ground water throughout the WAF-riparian system indicated that denitrification has not caused significant 15N enrichment of nitrate. Over a 24-mo period, delta15N ratios for nitrate N in the stream approached delta15N ratios for nitrate N in ground water beneath WAFs indicating delivery of some waste-derived nitrate N to the stream in shallow ground water. Nitrate N concentrations in the stream were relatively low, averaging 1 mg L(-1). Dilution of high nitrate N water in shallow horizontal flow paths with low nitrate N water from deeper horizontal flow paths at or near the stream, some denitrification as ground water discharges through the stream bottom, and some denitrification in riparian zone contributed to this low nitrate N concentration. PMID:16151235

  20. Geochemistry of waters from springs, wells, and snowpack on and adjacent to Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Mariner, R.H.; Lowenstern, Jacob B.

    1999-01-01

    Chemical analyses of waters from cold springs and wells of the Medicine Lake volcano and surrounding region indicate small chloride anomalies that may be due to water-rock interaction or limited mixing with high-temperature geothermal fluids. The Fall River Springs (FRS) with a combined discharge of approximately 37 m3/s, show a negative correlation between chloride (Cl) and temperature, implying that the Cl is not derived from a high-temperature geothermal fluid. The high discharge from the FRS indicates recharge over a large geographic region. Chemical and isotopic variations in the FRS show that they contain a mixture of three distinct waters. The isotopic composition of recharge on and adjacent to the volcano are estimated from the isotopic composition of snow and precipitation amounts adjusted for evapotranspiration. Enough recharge of the required isotopic composition (-100 parts per thousand ??D) is available from a combination of the Medicine Lake caldera, the Fall River basin and the Long Bell basin to support the slightly warmer components of the FRS (32 m3/s). The cold-dilute part of the FRS (approximately 5 m3/s) may recharge in the Bear Creek basin or at lower elevations in the Fall River basin.