Sample records for adjacent host rock

  1. GOAT ROCKS WILDERNESS AND ADJACENT ROADLESS AREAS, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Close, T.J.

    1984-01-01

    The Goat Rocks Wilderness and adjacent roadless areas are a rugged, highly forested, scenic area located on the crest of the Cascade Range in south-central Washington. Several mineral claims have been staked in the area. Mineral surveys were conducted. Geochemical, geophysical, and geologic investigations indicate that three areas have probable mineral-resource potential for base metals in porphyry-type deposits. Available data are not adequate to permit definition of the potential for oil and gas. There is little likelihood for the occurrence of other kinds of energy resources in the area. Evaluation of resource potential in the three areas identified as having probable mineral-resource potential could be improved by more detailed geochemical studies and geologic mapping.

  2. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  3. Interaction between clay-based sealing components and crystalline host rock

    NASA Astrophysics Data System (ADS)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    comes from the FZ, application of the BSM for extended distances above and below the FZ does not significantly affect the saturation time of the volume adjacent to the FZ. The application of BSM near the FZ rather than a low swelling capacity, more permeable filling material is very significant. This study assumed a perfect contact between seal materials and host rock. Limited to the assumptions used in this study, use of BSM near the FZ was found to increase the time before the centre of the shaft seal became fully saturated from between 4 and 30 years (when the DBF is used) to between 90 and 100 years (when the BSM is used).

  4. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    for dike growth decreases with dike length. From numerical solutions for dilation of cracks oriented like segments of the northeastern dike, we find that we can best model the form of the dike by treating it as composed of 10 cracks rather than 35. We attribute this result to coalescence of adjacent segments below the present outcrop and to inelastic deformation at segment ends. Using a driving pressure of 2 MPa (20 bars), we estimate a shear modulus of about 10^3 MPa for the host rocks, in agreement with laboratory tests on soft shale. A propagation criterion based on stress intensity at the segment ends indicates a fracture toughness of the host rocks of about 100 MPa-m^? , a hundredfold greater than values reported from laboratory tests. Segmentation of fractures is common in many materials and has been observed during fissure eruptions at Kilauea Volcano in Hawaii. At the northeastern dike, we attribute segmentation to local rotation of the direction of least principal compressive stress. From continuum-mechanical models of magma and heat flow in idealized conduits, we conclude that magma flows far more rapidly and with less relative heat loss in plugs than in dikes. Although dikes are the preferred form for emplacement, plugs are the preferred form for the flow of magma. We present a numerical solution for volumetric flow rate and wall heat flux for the northeastern dike and find that although the flow rate is extremely sensitive to conduit geometry, the rate of heat loss to wall rocks is not. During emplacement of the northeastern dike, local flow rate increased where wall rocks were eroded and reached a maximum of about 45 times the mean initial rate, whereas the maximum rate of heat loss to wallrocks increased to only 1.6 times the mean initial rate. An inferred progression from continuous magma flow along a dike to flow from a plug agrees well with observations of volcanic eruptions that begin from fissures and later are localized at discrete vents. We

  5. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  6. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  7. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    USGS Publications Warehouse

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  8. Relationship between Rock Varnish and Adjacent Mineral Dust Compositions Using Microanalytical Techniques

    NASA Astrophysics Data System (ADS)

    Macholdt, D.; Jochum, K. P.; Otter, L.; Stoll, B.; Weis, U.; Pöhlker, C.; Müller, M.; Kappl, M.; Weber, B.; Kilcoyne, A. L. D.; Weigand, M.; Al-Amri, A. M.; Andreae, M. O.

    2015-12-01

    Rock varnishes are up to 250 μm thick, Mn- and Fe-rich, dark black to brownish-orange lustrous rock coatings. Water and aeolian dust (60-70%), in combination with biological oxidation or inorganic precipitation processes, or even a combination of both, induce varnish growth rates of a few μm per 1000 a, indicating that element enrichment and aging processes are of major importance for the varnish formation. A combination of 200 nm-fs laser- and 213 nm-ns laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) was chosen for high-spatial-resolution analyses. The aim was to identify provenance, chemistry, and dynamics of the varnishes, and their formation over the millennia. To this end, mineral dust and adjacent varnishes were sampled in six arid to semi-arid deserts, in Israel, South Africa, California, and Saudi Arabia. Dust minerals incorporated in the varnishes were examined by STXM-NEXAFS spectroscopic and element mapping at the nm scale. Varnishes from different locations can be distinguished by element ratio plots of Pb/Ni vs. Mn/Ba. A comparison of dust element ratios of particles <50 μm to ratios of adjacent varnishes reveals much lower values for dust. However, the factors between the element ratios of dust and of varnish are similar for four of six regions (Mn/Ba: 6 ± 2; Pb/Ni: 4 ± 3). Two of the six regions diverge, which are South African (Mn/Ba: 20, Pb/Ni: 0.5) and Californian (Anza Borrego Desert: Mn/Ba: 4.5; Pb/Ni: 16.5) varnishes.The results indicate that the enrichment and degradation processes might be similar for most locations, and that Mn and Pb are preferably incorporated and immobilized in most varnishes compared to Ba and Ni. The Pb/Ni ratios of the South African varnishes are indicators for either a preferred incorporation of Ni compared to Pb from available dust, and

  9. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  10. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.-Ming

    1991-01-01

    Five sedimentary-rock-hosted disseminated gold deposits have been discovered since 1980 in southwestern Guizhou Province (PRC). Submicron-sized gold is disseminated in silty carbonate and carbonaceous shale host rocks of Permian and Triassic age. Arsenic, antimony, mercury, and thallium accompany the gold. Associated hydrothermal alteration resulted in decarbonatization of limestone, silicification, and argillization, and depletion of base metals, barium, and many other elements. Organic material occurs in most host rocks and ores. It was apparently devolatilized during a regional heating event that preceded hydrothermal activity, and thus was not mobilized during mineralization, and did not affect gold deposition. The geologic setting of the Guizhou deposits includes many features that are similar to those of sedimentary-rock-hosted deposits of the Great Basin, western United States. The heavy-element suite that accompanies gold is the same, but base metals are even scarcer in the Guizhou deposits than they are in U.S. deposits. The Guizhou deposits discovered to date are smaller than most U.S. deposits and have no known spatially associated igneous rocks. ?? 1991.

  11. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  12. Contrasting diagenetic histories of concretions vs. host rocks, Lion Mountain Member, Riley formation (upper Cambrian), Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, E.F.

    1988-02-01

    White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rindsmore » underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.« less

  13. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by

  14. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  15. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    NASA Astrophysics Data System (ADS)

    Cao, P.; Karpyn, Z.; Li, L.

    2013-12-01

    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  16. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    NASA Astrophysics Data System (ADS)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  17. Host rocks and their alterations as related to uranium-bearing veins in the United States

    USGS Publications Warehouse

    Walker, George W.

    1956-01-01

    This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its

  18. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  19. Folding and fracturing of rock adjacent to salt diapirs

    NASA Astrophysics Data System (ADS)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides

  20. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan J.

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  1. Damage-plasticity model of the host rock in a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less

  2. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    NASA Astrophysics Data System (ADS)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in

  3. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  4. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  5. Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts

    USGS Publications Warehouse

    Bacon, C.R.

    1989-01-01

    Accessory minerals commonly occur attached to or included in the major crystalline phases of felsic and some intermediate igneous rocks. Apatite is particularly common as inclusions, but Fe-Ti oxides, pyrrhotite, zircon, monazite, chevkinite and xenotime are also known from silicic rocks. Accessories may nucleate near the host crystal/ liquid interface as a result of local saturation owing to formation of a differentiated chemical boundary layer in which accessory mineral solubility would be lower than in the surrounding liquid. Differentiation of this boundary layer would be greatest adjacent to ferromagnesian phenocrysts, especially Fe-Ti oxides; it is with oxides that accessories are most commonly associated in rocks. A boundary layer may develop if the crystal grows more rapidly than diffusion can transport incorporated and rejected elements to and from the phenocryst. Diffusion must dominate over convection as a mode of mass transfer near the advancing crystal/liquid interface in order for a boundary layer to exist. Accumulation of essential structural constituent elements of accessory minerals owing to their slow diffusion in evolved silicate melt also may force local saturation, but this is not a process that applies to all cases. Local saturation is an attractive mechanism for enhancing fractionation during crystallization differentiation. If accessory minerals attached to or included in phenocrysts formed because of local saturation, their host phenocrysts must have grown rapidly when accessories nucleated in comparison to lifetimes of magma reservoirs. Some inconsistencies remain in a local saturation origin for accessory phases that cannot be evaluated without additional information. ?? 1989.

  6. Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria.

    PubMed

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor

    2018-04-15

    Glaciers and permafrost are strongly linked to each other in mid-latitude mountain regions particularly with polythermal glaciers. This linkage is not only climatically defined but also in terms of geomorphic and glaciological processes. We studied two adjacent cirques located in the Central Austria. We focussed on the deglaciation since the Little Ice Age (LIA) maximum (c.1850CE) and its relevance for permafrost and rock glacier evolution since then. One cirque is occupied by a glacier remnant whereas the second one is occupied by an active rock glacier which was partly overridden by a glacier during the LIA. We applied a multidisciplinary approach using field-based techniques including geoelectrics, geodetic measurements, and automatic monitoring as well as historic maps and photographs, remote sensing, and digital terrain analysis. Results indicate almost complete deglaciation by the end of the last millennium. Small-scale tongue-shaped landforms of complex origin formed during the last decades at finer-grained slope deposits below the cirque headwalls. Field evidences and geophysics results proved the existence of widespread sedimentary ice beneath a thin veneer of debris at these slopes. The variable thickness of the debris layer has a major impact on differential ablation and landform evolution in both cirques. The comparison of digital elevation models revealed clear mass losses at both cirques with low rates between 1954 and 2002 and significantly higher rates since then. The central and lower part of the rock glacier moves fast transporting sediments and ice downvalley. In contrast, the upper part of the rock glacier is characterised by low debris and ice input rates. Both effects cause a significant decoupling of the main rock glacier body from its nourishment area leading eventually to rock glacier starvation. This study demonstrates the importance of a decadal-scale and multidisciplinary research approach in determining the development of alpine

  7. Host-Parasite Interactions and Population Dynamics of Rock Ptarmigan.

    PubMed

    Stenkewitz, Ute; Nielsen, Ólafur K; Skírnisson, Karl; Stefánsson, Gunnar

    2016-01-01

    Populations of rock ptarmigan (Lagopus muta) in Iceland fluctuate in multiannual cycles with peak numbers c. every 10 years. We studied the ptarmigan-parasite community and how parasites relate to ptarmigan age, body condition, and population density. We collected 632 ptarmigan in northeast Iceland in early October from 2006 to 2012; 630 (99.7%) were infected with at least one parasite species, 616 (98%) with ectoparasites, and 536 (85%) with endoparasites. We analysed indices for the combined parasite community (16 species) and known pathogenic parasites, two coccidian protozoans Eimeria muta and Eimeria rjupa, two nematodes Capillaria caudinflata and Trichostrongylus tenuis, one chewing louse Amyrsidea lagopi, and one skin mite Metamicrolichus islandicus. Juveniles overall had more ectoparasites than adults, but endoparasite levels were similar in both groups. Ptarmigan population density was associated with endoparasites, and in particular prevalence of the coccidian parasite Eimeria muta. Annual aggregation level of this eimerid fluctuated inversely with prevalence, with lows at prevalence peak and vice versa. Both prevalence and aggregation of E. muta tracked ptarmigan population density with a 1.5 year time lag. The time lag could be explained by the host specificity of this eimerid, host density dependent shedding of oocysts, and their persistence in the environment from one year to the next. Ptarmigan body condition was negatively associated with E. muta prevalence, an indication of their pathogenicity, and this eimerid was also positively associated with ptarmigan mortality and marginally inversely with fecundity. There were also significant associations between fecundity and chewing louse Amyrsidea lagopi prevalence (negative), excess juvenile mortality and nematode Capillaria caudinflata prevalence (positive), and adult mortality and skin mite Metamicrolichus islandicus prevalence (negative). Though this study is correlational, it provides strong

  8. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  9. Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Susceptibility (AMS): An example from Aptian carbonates of La Florida, Northern Spain

    NASA Astrophysics Data System (ADS)

    Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels

    2009-01-01

    The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a

  10. EAGLE CAP WILDERNESS AND ADJACENT AREAS, OREGON.

    USGS Publications Warehouse

    Kilsgaard, Thor H.; Tuchek, Ernest T.

    1984-01-01

    On the basis of a mineral survey of the Eagle Cap Wilderness and adjacent areas a probable mineral-resources potential was identified in five areas in the eastern part of the wilderness. Mineral resources are most likely to occur in tactite deposits in sedimentary rocks at or near contacts with intrusive granitic rocks that could contain copper and small amounts of other metals; however, there is little promise for the occurrence of energy resources.

  11. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J.

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  12. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  13. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    NASA Astrophysics Data System (ADS)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  14. Vein deposits hosted by plutonic rocks in the Croesus Stock and Hailey gold belt mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Worl, Ronald G.; Lewis, Reed S.

    2001-01-01

    Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.

  15. Newly discovered sediment rock-hosted disseminated gold deposits in the People's Republic of China

    USGS Publications Warehouse

    Cunningham, Charles G.; Ashley, Roger P.; Chou, I. -Ming; Huang, Zushu; Chaoyuan, Wan; Li, Wenkang

    1988-01-01

    Five deposits discovered in Guizhou Province, Yata, Getang, Sanchahe, Ceyang, and Banqi are described for the first time in Western literature. The deposits have geologic features and geochemical signatures that are remarkably similar to those of sedimentary rock-hosted precious metal deposits in the United States. The sizes of the deposits are as yet undetermined, but they each contain significant reserves at average grades of 4 to 5 g of gold per metric ton. Exploration and drilling are in progress at all of the deposits, and other areas where the geologic setting and geochemical anomalies are similar are being tested.

  16. Hard-rock GMPEs versus Vs30-Kappa Host-to-Target Adjustment Techniques : Why so Large Differences in High Frequency Hard-Rock Motion ?

    NASA Astrophysics Data System (ADS)

    Bard, P. Y.; Laurendeau, A.; Hollender, F.; Perron, V.; Hernandez, B.; Foundotos, L.

    2016-12-01

    Assessment of local seismic hazard on hard rock sites (1000 < VS30 < 3000 m/s) is needed either for installations built on such hard rock, or as a reference motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion, but most of them are poorly constrained for VS30 larger than 1000 m/s. The presently used approach for estimating hard rock hazard consists of "host-to-target" adjustment techniques (HTTA) based on VS30 and κ0 values. Recent studies have investigated alternative methods to estimate reference motions on very hard rock through an original processing of the Japanese KiK-net recordings from stiff sites (500 < VS30 < 1350 m/s). The pairs of recordings at surface and depth, together with the knowledge of the velocity profile, allowed to derive two sets of "virtual" outcropping, hard-rock motion data for sites having velocities in the range [1000 - 3000 m/s]. The corrections are based either on a transformation of deep, within-motion to outcropping motion, or on a deconvolution of surface recordings using the velocity profile and 1D simulation, which has been performed both in the response spectrum and Fourier domains. Each of these virtual "outcropping hard-rock motion" data sets has then been used to derive GMPEs with simple functional forms, using as site condition proxy the S-wave velocity at depth (VSDH), ranging from 1000 to 3000 m/s. Both sets provide very similar predictions, which are much smaller at high frequencies (f > 10 Hz) than those estimated with the traditional HTTA technique - by a factor up to 3-4,. These differences decrease for decreasing frequency, and become negligible at low frequency (f < 1 Hz). The main focus will be to discuss the possible reasons of such differences, in relation with the implicit or explicit assumptions of either approach. Our present interpretation is related to the existence of a significant, high-frequency amplification on

  17. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces.

    PubMed

    Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan

    2018-01-01

    Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as

  18. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces

    PubMed Central

    Reed, Cecile C.; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S.; Fiala, Ivan

    2018-01-01

    Introduction Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Material and methods Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Results and discussion Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the

  19. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  20. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  1. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...

  2. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  3. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  4. Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States

    PubMed Central

    O’Shea, Beth; Stransky, Megan; Leitheiser, Sara; Brock, Patrick; Marvinney, Robert G.; Zheng, Yan

    2014-01-01

    Arsenic is enriched up to 28 times the average crustal abundance of 4.8 mg kg−1 for meta-sedimentary rocks of two adjacent formations in central Maine, USA where groundwater in the bedrock aquifer frequently contains elevated As levels. The Waterville Formation contains higher arsenic concentrations (mean As 32.9 mg kg−1, median 12.1 mg kg−1, n=36) than the neighboring Vassalboro Group (mean As 19.1 mg kg−1, median 6.0 mg kg−1, n=36). The Waterville Formation is a pelitic meta-sedimentary unit with abundant pyrite either visible or observed by scanning electron microprobe. Concentrations of As and S are strongly correlated (r=0.88, p<0.05) in the low grade phyllite rocks, and arsenic is detected up to 1,944 mg kg−1 in pyrite measured by electron microprobe. In contrast, statistically significant (p<0.05) correlations between concentrations of As and S are absent in the calcareous meta-sediments of the Vassalboro Group, consistent with the absence of arsenic-rich pyrite in the protolith. Metamorphism converts the arsenic-rich pyrite to arsenic-poor pyrrhotite (mean As 1 mg kg−1, n=15) during de-sulfidation reactions: the resulting metamorphic rocks contain arsenic but little or no sulfur indicating that the arsenic is now in new mineral hosts. Secondary weathering products such as iron oxides may host As, yet the geochemical methods employed (oxidative and reductive leaching) do not conclusively indicate that arsenic is associated only with these. Instead, silicate minerals such as biotite and garnet are present in metamorphic zones where arsenic is enriched (up to 130.8 mg kg−1 As) where S is 0%. Redistribution of already variable As in the protolith during metamorphism and contemporary water-rock interaction in the aquifers, all combine to contribute to a spatially heterogeneous groundwater arsenic distribution in bedrock aquifers. PMID:24861530

  5. Petrogenesis of metaultramafic rocks from the Quadrilátero Ferrífero and adjacent terrains, Minas Gerais, Brazil: Two events of ultramafic magmatism?

    NASA Astrophysics Data System (ADS)

    da Fonseca, Gabriela Magalhães; Jordt-Evangelista, Hanna; Queiroga, Gláucia Nascimento

    2018-03-01

    In the worldwide known Quadrilátero Ferrífero and the adjacent terrains, southeastern Brazil, many serpentinite and soapstone quarries, and some rare bodies of metaultramafic rocks that partially preserve minerals or textures from the original igneous protolith can be found. It is not known if the protoliths and the ages of the metaultramafic rocks found in the Quadrilátero Ferrífero (and its oriental basement) and Mineiro Belt regions are the same or if they represent distinct magmatic episodes. The petrogenetic investigation, specially concerning the REE contents, aimed to gather informations about the type of magmatism and the mantle source in order to compare the metaultramafic rocks of both regions. The interpretation of the data concerning petrography, mineral chemistry and geochemistry shows that the metaultramafic rocks are similar to komatiitic peridotites, with MgO contents > 22 wt % and TiO2 < 0.9 wt %. The plot of the REE for the lithotypes found in the Quadrilátero Ferrífero shows decrease in LREE possibly reflecting the depletion of the mantle source. On the other hand the samples from the Mineiro Belt are enriched in LREE suggesting a mantle source enriched in these elements. This enrichment may have been caused by mantle metassomatism that occurred during accretion of the Paleoproterozoic magmatic arc that generated the Mineiro belt. In this paper, we therefore suggest two periods of ultramafic magmatism. The first one found in the Archean basement of the Quadrilátero Ferrífero, with a depleted mantle source. The second occurred in the Paleoproterozoic basement of the Mineiro belt, having a metassomatized mantle as source.

  6. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and

  7. Geologic framework of pre-Cretaceous rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico

    USGS Publications Warehouse

    Condon, Steven M.

    1992-01-01

    This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through

  8. Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Hickman, S. H.

    2005-12-01

    to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.

  9. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio

    2013-03-01

    The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate

  10. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  11. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  12. Diagenesis of the Machar Field (British North Sea) chalk: Evidence for decoupling of diagenesis in fractures and the host rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maliva, R.G.; Dickson, J.A.D.; Smalley, P.C.

    1995-01-02

    The Chalk Group (Cretaceous/Tertiary) in the Machar Field (British North Sea) contains both fracture-filling and microcrystalline calcite cements. Modeling of fluid-rock interaction using data on light stable isotopes obtained by whole rock analyses and laser ablation analyses of calcite cements reveal that the fracture and matrix diagenetic systems were largely decoupled. The calcium and carbonate of the fracture-filling calcite cements were derived largely from the adjacent chalk matrix. The fracture diagenetic system had a high water-rock ratio, which maintained a relatively stable water {delta}{sup 18}O ratio during calcite dissolution and precipitation. The chalk matrix, on the contrary, had a lowmore » molar water-rock ratio during recrystallization, which resulted in increases in the pore-water {delta}{sup 18}O value during recrystallization at elevated temperatures. This evolution of the pore-water {delta}{sup 18}O value is manifested by highly variable cement {delta}{sup 18}O values. The present-day formation waters of the Machar Field have {sup 87}Sr/{sup 86}Sr ratios significantly higher than the whole rock and fracture-filling cement calcite values, evidence that the chemical composition of the formation waters is not representative of that of the pore waters during chalk recrystallization. Little diagenesis is therefore now occurring in the Machar Field. The diagenetic systems of the chalk matrix and fractures both had a high degree of openness with respect to carbon, because of the introduction of organically derived bicarbonate rather than advection of water through the chalk. The bulk of calcite cementation in fractures and the recrystallization and cementation of the chalk matrix occurred at temperatures in the 80--100 C range, at or just below the present-day reservoir temperature of 97 C.« less

  13. Proceedings of the scientific visit on crystalline rock repository development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations.more » Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.« less

  14. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  15. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal

  16. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U Pb and TDM ages and host-rock affinity from detrital zircons

    NASA Astrophysics Data System (ADS)

    Veevers, J. J.; Saeed, A.

    2007-12-01

    In conjugate SE Africa and Antarctica, Early Permian sandstones of the Swartrant Formation of the Ellisras Basin, Vryheid Formation of the Karoo Basin, and Amelang Plateau Formation of Dronning Maud Land (DML) were deposited after Gondwanan glaciation on a westward paleoslope. We analysed detrital zircons for U-Pb ages by a laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) and attached age significance only to clusters of three or more overlapping analyses. We analysed Hf-isotope compositions by a multi-collector spectrometer (LAM-MC-ICPMS) and trace elements by electron microprobe (EMP) and ICPMS. These analyses indicate the rock type and source (whether crustal or juvenile mantle) of the host magma, and a "crustal" model age ( TDMC). The integrated analysis gives a more distinctive, and more easily interpreted, picture of crustal evolution in the provenance area than age data alone. Zircons from the Ellisras Basin are aged 2700-2540 Ma with minor populations about 2815 Ma and 2040 Ma, which correspond with the ages of the upslope parts of the proximal Kaapvaal Craton and Limpopo Belt. Mafic rock is the dominant host rock, and it reflects the Archean granite-greenstone terrane of the Kaapvaal Craton. The three Karoo Basin samples and the two DML samples have zircons with these common properties: (1) 1160-880 Ma, host magma mafic granitoid (< 65% SiO 2) derived from juvenile depleted mantle sources ( ɛHf positive) at 1.65 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga; (2) 760 to 480 Ma, host magma granitoid and low-heavy rare earth element rock (?alkaline rock-carbonatite), derived from mixed crustal and juvenile depleted mantle sources ( ɛHf positive and negative) at 1.50 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga. Together with similar detrital zircons in Triassic sandstone of SE Australia, these properties reflect those in upslope central Antarctica, indicating a provenance of ˜ 1000 Ma (Grenville) cratons embedded in 700-500 Ma (Pan

  17. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  18. Zebra textures in carbonate rocks: Fractures produced by the force of crystallization during mineral replacement

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh v. S.

    2018-06-01

    Zebra textures are enigmatic banded fabrics that occur in many carbonate-hosted ore deposits, dolomite hydrocarbon reservoirs and carbonate successions globally. They consist of a variety of minerals and are characterised by parallel light and dark bands that occur at a millimetre- to centimetre-scale. Based on petrological evidence, there is general consensus that the dark bands formed by replacement of the carbonate host rock. Historically, more contention surrounds the origin of the light bands, but the dominant view is that these are mineral-filled cavities, which is supported by overwhelming textural evidence. Overall, the feature common to all versions of zebra textures is mineral replacement of the original carbonate host. We suggest that mineral replacement (and the force of crystallization) in association with open space generation is a viable mechanism for the development of zebra cavity systems. Dissolution and open space generation in either evaporites or carbonates adjacent to the site of replacement reactions is necessary to remove the confining pressure from the rock and to allow the development of fractures. The pressure of the growing replacement crystals within the carbonate pervasively splits the carbonate apart, producing thin strips of carbonate surrounded by open space. The fractures may then be subject to dissolution and are later filled by cements. Very regular stratabound zebra textures (as found in ore deposits like Cadjebut, Australia and San Vicente, Peru) may be related to stratabound dissolution (of evaporites or carbonates), whereas irregularly distributed zebra textures are more likely to be associated with irregular carbonate dissolution.

  19. Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States.

    PubMed

    O'Shea, Beth; Stransky, Megan; Leitheiser, Sara; Brock, Patrick; Marvinney, Robert G; Zheng, Yan

    2015-02-01

    Arsenic is enriched up to 28 times the average crustal abundance of 4.8 mg kg(-1) for meta-sedimentary rocks of two adjacent formations in central Maine, USA where groundwater in the bedrock aquifer frequently contains elevated As levels. The Waterville Formation contains higher arsenic concentrations (mean As 32.9 mg kg(-1), median 12.1 mg kg(-1), n=38) than the neighboring Vassalboro Group (mean As 19.1 mg kg(-1), median 6.0 mg kg(-1), n=38). The Waterville Formation is a pelitic meta-sedimentary unit with abundant pyrite either visible or observed by scanning electron microprobe. Concentrations of As and S are strongly correlated (r=0.88, p<0.05) in the low grade phyllite rocks, and arsenic is detected up to 1944 mg kg(-1) in pyrite measured by electron microprobe. In contrast, statistically significant (p<0.05) correlations between concentrations of As and S are absent in the calcareous meta-sediments of the Vassalboro Group, consistent with the absence of arsenic-rich pyrite in the protolith. Metamorphism converts the arsenic-rich pyrite to arsenic-poor pyrrhotite (mean As 1 mg kg(-1), n=15) during de-sulfidation reactions: the resulting metamorphic rocks contain arsenic but little or no sulfur indicating that the arsenic is now in new mineral hosts. Secondary weathering products such as iron oxides may host As, yet the geochemical methods employed (oxidative and reductive leaching) do not conclusively indicate that arsenic is associated only with these. Instead, silicate minerals such as biotite and garnet are present in metamorphic zones where arsenic is enriched (up to 130.8 mg kg(-1) As) where S is 0%. Redistribution of already variable As in the protolith during metamorphism and contemporary water-rock interaction in the aquifers, all combine to contribute to a spatially heterogeneous groundwater arsenic distribution in bedrock aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria)

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs

    2017-07-01

    Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We

  1. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  2. 10 CFR 960.4-2-3 - Rock characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Rock characteristics. 960.4-2-3 Section 960.4-2-3 Energy... REPOSITORY Postclosure Guidelines § 960.4-2-3 Rock characteristics. (a) Qualifying condition. The present and expected characteristics of the host rock and surrounding units shall be capable of accommodating the...

  3. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  4. Metamorphic mineral assemblages of slightly calcic pelitic rocks in and around the Taconic Allochthon, southwestern Massachusetts and adjacent Connecticut and New York

    USGS Publications Warehouse

    Zen, E-an

    1981-01-01

    The mineral assemblages from metamorphosed slightly calcic pelitic rocks of the Taconic Range in southwestern Massachusetts and adjacent areas of Connecticut and New York were studied petrographically and chemically. These rocks vary in metamorphic grade from those below the chloritoid zone through the chloritoid and garnet zones into the kyanite-staurolite zone. Microprobe data on the ferromagnesian minerals show that the sequence of increasing Fe/ (Fe+Mg) value is, from the lowest, chlorite, biotite, hornblende, chloritoid, staurolite, garnet. Hornblende, epidote, garnet, and plagioclase are the most common minerals that carry significant calcium. Biotite is persistently deficient in alkali but is abnormally rich in octahedral aluminum to such an extent that the overall charge balance can be ascribed to an AI=K+ (Fe,Mg) diadochy. Muscovite contains small though persistent amounts of iron and magnesium in octahedral positions but has a variable K/Na ratio, which is potentially useful as a geothermometer. One low-grade muscovite is highly phengitic, but the white micas in rocks from metamorphic grades higher than chloritoid zone do not contain significant phengite components. Chlorite is persistently high in aluminum and so its ratio of divalent ions to aluminum is approximately that of garnet. Many garnets show pronounced zoning in manganese and less pronounced zoning in calcium. Garnet coexisting with hornblende contains a high proportion of the grossularitic component. The calcium content is significant in all the analyzed garnets, except those from a cummingtonite-bearing sample that is free of muscovite. This suggests that in slightly calcic pelitic rocks, calcium-free garnet cannot coexist with muscovite. Most of the mineral assemblages formed in the presence of excess quartz and muscovite. The phase-petrologic analysis, made with the aid of an eight-phase multisystematic model, shows the following major points: 1. Chloritoid and staurolite coexist in a

  5. Stress–strain state of adjacent rock mass under slice mining of steeply dipping ore bodies

    NASA Astrophysics Data System (ADS)

    Baryshnikov, VD; Gakhova, LN

    2018-03-01

    Under analysis is the stress state of rock mass surrounding stopes in the initial cutting layer displaced in plan relative to the above-lying extracted layer in the overcut rock mass. The authors determine the boundaries of the post-limiting deformation zones during stoping advance using the Mohr–Coulomb criterion. The sequence of stoping to ensure better support conditions is proposed.

  6. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  7. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  8. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  9. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  10. Dating High Temperature Mineral Fabrics in Lower Crustal Granulite Facies Rocks

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.; Schwartz, J. J.; Tulloch, A. J.; Klepeis, K. A.; Odom Parker, K.; Palin, M.; Ramezani, J.

    2015-12-01

    Granulite facies rocks may record strain that provides a record of compressional and/or extensional crustal events in hot orogenic cores and the roots of magmatic arcs. Although the precise timing of these events is important for constructing tectonic histories, it is often difficult to determine due to uncertain relationships between isotopic signatures, mineral growth, and textural features that record strain. In addition, there may be large uncertainties in isotope data due to intracrystalline diffusion and multiple crystallization events. L-S tectonites in lower crustal rocks from Fiordland, NZ record the early stages of extensional collapse of thickened magmatic arc crust. The precise age of these fabrics is important for constraining the timing of extension that led to opening of the Tasman Sea. High temperature granulite facies L-S fabrics in garnet reaction zones (GRZ) border syn- to post-deformational leucosomes. U-Pb zircon, Lu-Hf garnet, and Sm-Nd garnet ages, and trace elements in these phases indicate the complexity of assigning precise and useful ages. Zircon have soccer ball morphology with patchy and sector zoned CL. Zircon dates for igneous host and adjacent GRZ range over ca. 17 Ma. 236U-208Pb LA-ICP-MS are 108-125 Ma, N=124 (host & GRZ); however, chemical abrasion (CA) shifts GRZ dates ca. 2 Ma older. 236U-208Pb SHRIMP-RG dates cluster in 2 groups: 118.5±0.8 Ma, N=23 and 111.0±0.8 Ma, N=6. CA single crystal TIMS dates also fall into 2 groups: 117.6±0.1 Ma, N=4 and 116.6±0.2 Ma N=4. Garnet isochron ages determined from coarse garnet selvages adjacent to leucosomes range from 112.8±2.2 (147Sm-143Nd, 10 pts.) to 114.8±3.5 (177Lu-176Hf, 6 pts.) Ma. Zircon dates from all methods show ranges (>10 Ma) and 2 distinct populations. Host and GRZ zircon cannot be readily distinguished by age, lack younger rims, but have distinct Th/U trends and Eu/Eu* vs. Hf ratios. Difference in zircon trace element composition indicates either early leucosome

  11. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  12. Sedimentary rocks of the coast of Liberia

    USGS Publications Warehouse

    White, Richard William

    1969-01-01

    Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.

  13. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  14. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    NASA Astrophysics Data System (ADS)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  15. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    NASA Astrophysics Data System (ADS)

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel

    2017-12-01

    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  16. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE PAGES

    Pride, Steven R.; Berryman, James G.; Commer, Michael; ...

    2016-08-30

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  17. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pride, Steven R.; Berryman, James G.; Commer, Michael

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  18. Aeromagnetic map of northwest Utah and adjacent parts of Nevada and Idaho

    USGS Publications Warehouse

    Langenheim, Victoria

    2016-01-01

    Two aeromagnetic surveys were flown to promote further understanding of the geology and structure in northwest Utah and adjacent parts of Nevada and Idaho by serving as a basis for geophysical interpretations and by supporting geological mapping, water and mineral resource investigations, and other topical studies. Although this area is in general sparsely populated, (except for cities and towns along the Wasatch Front such as Ogden and Brigham City), it encompasses metamorphic core complexes in the Grouse Creek and Raft River Mountains (figure 1) of interest to earth scientists studying Cenozoic extension. The region was shaken in 1909 and 1934 by M6+ earthquakes east of the Hansel Mountains (Doser, 1989; Arabasz and others, 1994); damage from the 1934 earthquake occurred as far east as Logan, Utah (http:// www.seis.utah.edu/lqthreat/nehrp_htm/1934hans/n1934ha1. shtml#urbse). The presence of Quaternary shield volcanoes and bimodal Pleistocene volcanism in Curlew Valley (Miller and others, 1995; Felger and others, 2016) as well as relatively high temperature gradients encountered in the Indian Cove drillhole in the north arm of Great Salt Lake (Blackett and others, 2014) may indicate some potential for geothermal energy development in the area (Miller and others, 1995). The area also hosts four significant mining districts, in the northern Pilot Range, the Goose Creek Mountains in the northwest corner of the map, the southern end of the Promontory Mountains, and the southwest part of the Raft River Mountains, although production notably waned after World War II (Doelling, 1980). Other prospects of interest include those in the southern Grouse Creek Mountains, Silver Island, and the northern Newfoundland Mountains.Large areas of northwest Utah are covered by young, surficial deposits or by Great Salt Lake or are down-dropped into deep Cenozoic basins, making extrapolation of bedrock geology from widely spaced exposures difficult or tenuous (figure 1). Local spatial

  19. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2014-01-01

    Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.

  20. Peralkaline- and calc-alkaline-hosted volcanogenic massive sulfide deposits of the Bonnifield District, East-Central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Foley, Nora K.; Slack, John E.; Koenig, Alan E.; Oscarson, Robert L.

    2012-01-01

    the deposits; electrum inclusions occur in Dry Creek sphalerite. Contents and ratios of trace elements in graphitic argillite that serve as proxies for the redox state of the bottom waters in the basin indicate that Dry Creek mineralization took place in suboxic to periodically anoxic bottom waters. Trace element data show higher contents of Tl-Mn-As in pyrite from the Anderson Mountain deposit compared to the Dry Creek or WTF deposits and thus suggest that Anderson Mountain may have formed at lower temperatures or under slightly more oxidizing conditions. No exact modern analogue for the tectonic setting of the Bonnifield VMS deposits is known, although the back-arc regions of the Okinawa Trough and Woodlark Basin satisfy the requirement for a submarine, extensional setting adjacent to a continental margin. Limited occurrences of peralkaline volcanic rocks occur in these two potential analogues, but the peralkalinity of those rocks is much less than that of the Mystic Creek Member metarhyolites in the Bonnifield district. The highly elevated trace element (e.g., Zr, Nb) contents of Mystic Creek metarhyolites suggest that a better analogue may be a submarine rifted continental margin. The calc-alkaline composition of the host rocks to the Anderson Mountain deposit suggests that mineralization there formed in a continental margin arc, outboard of the extended continental margin setting of the peralkaline-hosted Dry Creek and WTF deposits.

  1. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain.

    PubMed

    Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang

    2017-05-01

    Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-weathering bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.

  2. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of amore » ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.« less

  3. Magmatic Enclaves in Granitic Rocks: Paragons or Parasites?

    NASA Astrophysics Data System (ADS)

    Clemens, John; Stevens, Gary; Elburg, Marlina

    2017-04-01

    Granitic rocks form the fundamental building blocks of Earth's continents and provide us with a wide range of resources, so their formation is worth trying to understand. Fine-grained, igneous-textured microgranular enclaves of tonalitic to monzogranitic composition (ME) are common in granitic rocks and their origins have been hotly debated, with some workers suggesting that ME are not igneous. These ME have been studied intensively enough that we are now certain that they are of igneous origin - globules of mingled and quenched magma. Although a mantle connection is evident in many cases, their ultimate origin (including where in the lithosphere they originate) is still debated. This contribution explores the systematics of chemical variation in ME and their host granites, with the aim of uncovering any systematics in their behaviour and modelling the processes that have led to the variations that we measure, comparing host-rock series to their respective ME series. As always, the hope is that the study of ME may lead to improved understanding and modelling of the processes that are responsible for the formation of the host granitic magmas. Using variations between the molecular quantities Ti and M (Fe+Mn+Mg), we demonstrate that the petrogenetic processes that operated within a diverse group of S- and I-type granitic host magmas and their ME suites are dissimilar. Variations within the granitic series result from a variety of what might be called 'orderly' processes, resulting in linear or curvilinear trends in chemical variation diagrams. In contrast, processes that affected the ME series commonly resulted in scattered, chaotic variations. Even in cases in which an ME series displays more orderly variation, it can be shown that the hypothesis of simple mixing between a parent enclave magma and its host granitic magma, to produce the overall variations, cannot be supported. ME magmas had vastly smaller volumes compared with their host granitic magmas. Thus, they

  4. Experimental thermomechanical damage as first approach to understand the petrophysical behavior of the granitic host-rocks from an active fractured-geothermal system (Liquiñe, Chile - 39º S)

    NASA Astrophysics Data System (ADS)

    Molina Piernas, E.; Sepúlveda, J.; Arancibia, G.; Roquer, T.; Morata, D.; Bracke, R.; Vázquez, P.

    2017-12-01

    Chile's location along an active subduction zone has endowed it with a high geothermal potential. However, a better understanding of the thermomechanical and fluid transport properties of rocks is required to assess the potential of geothermal systems and thereby enhance the possibilities for their use. We have focused in the area surrounding Liquiñe, in the Southern Andean Volcanic Zone (Chile, 39º S). This area hosts several recent thermal manifestations, predominantly hot springs, and it is affected by the Liquiñe-Ofqui Fault Zone (LOFZ), which controls the position of the modern volcanic arc in southern Chile and cuts the Patagonian batholith. We have carried out experimental analyzes in order to understand this geothermal system and the influence of the thermomechanical features over the granitic host-rocks (low-porous crystalline rocks). To do this, physical properties such as capillary water absorption coefficient, Vp-wave velocity and compressive resistance were evaluated before and after heating rock samples at 150 ºC and 210 ºC (at ambient pressure) in an oven at a heating rate of 6 °C/min and maintaining the maximum temperature for 4 hours. The cooling rate was less than 2 °C/min to avoid shrinkage phenomena. The results show that the damage by heat was greater at 210 ºC than 150 ºC, likely due to an increased capillary coefficient ( 30% and 25%). On the contrary, Vpvelocity ( -19% and -13%) and compressive resistance ( -27% in both cases) decreased, with respect to unheated samples. Consequently, we can infer an inherent effect on the later fracture process due to the thermal stress when this granitic body was at depth. After that, and considering the local and regional strain-stress state, both factors have facilitated the fluid flow, increasing the permeability of this granitic host-rock allowing the presence of hot-springs. Future work will be to acquire complementary petrophysical parameters, such as porosity, permeability, thermal

  5. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2012-01-01

    caused injuries within developed regions located on or adjacent to talus slopes, highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock fall hazard and risk in Yosemite Valley (Wieczorek et al., 1998, 1999; Guzzetti et al., 2003; Wieczorek et al., 2008), and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls (Evans and Hungr, 1999), up to approximately 100,000 m3 in volume.

  6. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Ming, Douglas W.; Gellert, Ralf; Clark, Benton C.; Morris, Richard V.; Yen, Albert S.; Arvidson, Raymond E.; Crumpler, Larry S.; Farrand, William H.; Grant, John A.; hide

    2014-01-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  7. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  8. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    NASA Astrophysics Data System (ADS)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  9. Predicting scour in weak rock of the Oregon Coast Range : final report

    DOT National Transportation Integrated Search

    1999-10-01

    Recent experience in the Coast Range Province of Oregon demonstrates that weak sedimentary bedrock in stream channels can be vulnerable to scour. The presence of erodible rock adjacent to bridge foundations and abutments necessitates monitoring of th...

  10. Relation between Fabric Anisotropy of Host-Rock vis-à-vis Far-Field Stress, and the Emplacement Of Pegmatite Dikes - an example from the Dharwar Craton (South India)

    NASA Astrophysics Data System (ADS)

    Bhatt, S.; Rana, V.; Mamtani, M. A.

    2017-12-01

    Dikes are known to control magma transport within the lithosphere. They (dikes) usually form by the fracturing of host rock and propagate orthogonal to the minimum principal stress direction and/or may follow the pre-existing anisotropy depending on the magnitude of fluid pressure and the tensile strength of the host rock. Pegmatite veins/dikes are often associated with hydraulic fracturing and high magmatic fluid pressure, which is attributed to volatile rich hydrous melt. The Koppal Pluton (KP) is a syenite body that lies to the East of the Chitradurga Shear Zone, which separates the Dharwar Craton into East and West Dharwar Craton. The KP is visually isotropic and profusely permeated by pegmatite dikes. Orientation data of the pegmatite dikes (n=357) were collected for geometric and paleostress analysis. The orientation of anisotropy with respect to the maximum principal stress and fluid pressure dictates whether a new fracture will form or a pre-existing anisotropy will be reactivated/dilated. To understand the relationship between the pre-existing anisotropy and orientation of pegmatite dikes, anisotropy of magnetic susceptibility (AMS) analysis was performed on the samples of KP. AMS analysis reveals NNE-SSW oriented magnetic fabric ascribed to regional D3 deformational event (NW-SE compression). Mean orientation of the magnetic fabric (NNE-SSW) is oblique to the mean orientation of the pegmatite dikes (NNW-SSE). It is envisaged that pegmatite dikes emplaced syntectonically as mode-I crack during regional D3 deformation event (pure shear dominated transpression) and developed oblique to the magnetic fabric of the pluton. The present study leads to a better understanding about the influence and interaction of principle stress, magmatic fluid pressure, and host-rock anisotropy on the ascent and emplacement of pegmatite dikes that intrude the visually isotropic KP. Acknowledgments: SB acknowledges INSPIRE Fellowship Programme (Award no: IF131138) of DST (New

  11. Method and apparatus for determining two-phase flow in rock fracture

    DOEpatents

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  12. Illite authigenesis during faulting and fluid flow - a microstructural study of fault rocks

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; van der Lelij, Roelant; Margreth, Annina

    2017-04-01

    Authigenic illite can form synkinematically during slip events along brittle faults. In addition it can also crystallize as a result of fluid flow and associated mineral alteration processes in hydrothermal environments. K-Ar dating of illite-bearing fault rocks has recently become a common tool to constrain the timing of fault activity. However, to fully interpret the derived age spectra in terms of deformation ages, a careful investigation of the fault deformation history and architecture at the outcrop-scale, ideally followed by a detailed mineralogical analysis of the illite-forming processes at the micro-scale, are indispensable. Here we integrate this methodological approach by presenting microstructural observations from the host rock immediately adjacent to dated fault gouges from two sites located in the Rolvsnes granodiorite (Bømlo, western Norway). This granodiorite experienced multiple episodes of brittle faulting and fluid-induced alteration, starting in the Mid Ordovician (Scheiber et al., 2016). Fault gouges are predominantly associated with normal faults accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges constrains deformation and alteration due to fluid ingress from the Permian to the Cretaceous, with a cluster of ages for the finest (<0.1 µm) fraction in the early to middle Jurassic. At site one, high-resolution thin section structural mapping reveals a complex deformation history characterized by several coexisting types of calcite veins and seven different generations of cataclasite, two of which contain a significant amount of authigenic and undoubtedly deformation-related illite. At site two, fluid ingress along and adjoining the fault core induced pervasive alteration of the host granodiorite. Quartz is crosscut by calcite veinlets whereas plagioclase, K-feldspar and biotite are almost completely replaced by the main alteration products kaolin, quartz and illite. Illite-bearing micro

  13. Nectonema zealandica n. sp. (Nematomorpha: Nectonematoidea) parasitising the purple rock crab Hemigrapsus edwardsi (Brachyura: Decapoda) in New Zealand, with notes on the prevalence of infection and host defence reactions.

    PubMed

    Poinar, G; Brockerhoff, A M

    2001-10-01

    A new species of marine hairworm, Nectonema zealandica (Nematomorpha: Nectonematoidea), is described from the purple rock crab Hemigrapsus edwardsi Hilgendorf from the South Island, New Zealand. This is the first record of Nectonema in the South Pacific Ocean and the southernmost locality for the genus. The description is based on juveniles and pre-adults taken from crabs. The new species is characterised by its stomal structure, presence of four cephalic papillae, mesenchyme arranged in eight lobes in pre-adults, insertion of muscle layer increasing body diameter at the septum and translucent anterior chamber. Data on the prevalence of infection over a three-year period, rates of parasitism in relation to host sex and size, and host defence reactions are presented. A list of all reported hosts of nectonematids is included.

  14. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  15. Rocks and geology in the San Francisco Bay region

    USGS Publications Warehouse

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  16. Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Dennis, D. J.

    2014-12-01

    Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.

  17. Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traub, David; Nguyen, Jason

    The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.

  18. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu-Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (⩾10 Mt copper). The origin of Cu-Co mineralisation in this province remains speculative, with the debate centred around syngenetic-diagenetic and hydrothermal-diagenetic hypotheses. The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15. The main Cu-Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal-supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment. The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic

  19. Silvicultural treatments to regenerate principal species in the flat rock forest community

    Treesearch

    James E. Johnson; Laura S. Gellerstedt; David O. Mitchem

    2006-01-01

    Principal indicator tree species of the Flat Rock Forest Community include Virginia pine (Pinus virginiana Mill.), eastern redcedar (Juniperus virginiana L.), and post oak (Quercus stellata Wangenh.). These species are unusual for forests occurring adjacent to large rivers in the central and southern Appalachian...

  20. The carbonaceous phyllite rock-hosted Pedra Verde copper mine, Borborema Province, Brazil: Stable isotope constraints, structural controls and metallogenic evolution

    NASA Astrophysics Data System (ADS)

    da Silva Nogueira de Matos, José Henrique; Saraiva dos Santos, Ticiano José; Virgínia Soares Monteiro, Lena

    2017-12-01

    The Pedra Verde Copper Mine is located in the Viçosa do Ceará municipality, State of Ceará, NE Brazil. The copper mineralization is hosted by the Pedra Verde Phyllite, which is a carbonaceous chlorite-calcite phyllite with subordinate biotite. It belongs to the Neoproterozoic Martinópole Group of the Médio Coreaú Domain, Borborema Province. The Pedra Verde deposit is stratabound and its ore zoning is conspicuous, according to the following sequence, from bottom to top: marcasite/pyrite, native silver, chalcopyrite, bornite, chalcocite, native copper and hematite. Barite and carbonaceous material are reported in ore zones. Zoning reflects the ore formation within a redox boundary developed due to the interaction between oxidized copper- and sulfate-bearing fluids and the reduced phyllite. Structural control on mineralization is evidenced by the association of the ore minerals with veins, hinge folds, shadow pressures, and mylonitic foliation. It was mainly exercised by a dextral transcurrent shear zone developed during the third deformational stage identified in the Médio Coreaú Domain between 590 Ma and 570 Ma. This points to the importance of epigenetic, post-metamorphic deformational events for ore formation. Oxygen isotopic composition (δ18OH2O = 8.94 to 11.28‰, at 250 to 300 °C) estimated for the hydrothermal fluids in equilibrium with calcite indicates metamorphic or evolved meteoric isotopic signatures. The δ13CPDB values (-2.60 to -9.25‰) obtained for hydrothermal calcite indicate mixing of carbon sources derived from marine carbonate rocks and carbonaceous material. The δ34SCDT values (14.88 to 36.91‰) of sulfides suggest evaporites as sulfate sources or a closed system in relation to SO42- availability to form H2S. Carbonaceous matter had a key role in thermochemical sulfate processes and sulfide precipitation. The Pedra Verde Copper Mine is considered the first stratabound meta-sedimentary rock-hosted copper deposit described in Brazil

  1. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  2. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  3. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  4. Fluid evolution during burial and Variscan deformation in the Lower Devonian rocks of the High-Ardenne slate belt (Belgium): sources and causes of high-salinity and C-O-H-N fluids

    NASA Astrophysics Data System (ADS)

    Kenis, I.; Muchez, Ph.; Verhaert, G.; Boyce, A.; Sintubin, M.

    2005-08-01

    part of the High-Ardenne slate belt the salinity varies respectively between 0 and 3.5 eq.wt% NaCl and between 0 and 2.7 eq.wt% NaCl, while in the epizonal part the salinity varies between 0.6 and 17 eq.wt% NaCl and between 3 and 10.6 eq.wt% for the earliest and latest aqueous fluid inclusions, respectively. Although high salinity fluids are often attributed to the original sedimentary setting, the increasing salinity of the fluids that circulated through the Lower Devonian rocks in the High-Ardenne slate belt can be directly attributed to regional metamorphism. More specifically the salinity of the primary fluid inclusions is related to hydrolysis reactions of Cl-bearing minerals during prograde metamorphism, while the salinity of the secondary fluid inclusions is rather related to hydration reactions during retrograde metamorphism. The temporal and spatial distribution of the fluids in the High-Ardenne slate belt are indicative for a closed fluid flow system present in the Lower Devonian rocks during burial and Variscan deformation, where fluids were in thermal and chemical equilibrium with the host rock. Such a closed fluid flow system is confirmed by stable isotope study of the veins and their adjacent host rock for which uniform δ180 values of both the veins and their host rock demonstrate a rock-buffered fluid flow system.

  5. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  6. Steady as a rock: Biogeomorphic influence of nurse rocks and slope processes on kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i)

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco L.

    2017-10-01

    This study examines biogeomorphic interactions between nurse rocks, slope processes, and 300 kūpaoa (Dubautia menziesii) shrubs in Haleakalā Crater (Maui, Hawai'i). Research objectives were to: assess the association of kūpaoa with substrates upslope and downslope of plants, and proximity to the closest rock uphill; contrast shrub/substrate relationships with site frequency of sediment types; measure surface soil shear-strength and compressibility on 50 paired locations near boulders; and investigate the aggregation characteristics and spatial patterns of kūpaoa in relation to rock and substrate variation. Data analyzed came from three 100-plant surveys at 3 sites: a plant census at 2720-2975 m altitude, and wandering-quarter transects (WQTs) across two areas (2610-2710 m); ground sediment cover was estimated along four phototransects on these sites. Data for the three 100-plant surveys included substrate type-outcrops, blocks, cobbles, pebbles, exposed soil, organic litter-upslope from each plant, and distance to the largest rock upslope. The two surveys examined along WQTs included substrate type found downslope from kūpaoa, plant height, plant diameters across and along the slope, and distance between successively censused plants. Most plants grew downslope of nurse rocks; > 74% were adjacent to blocks or outcrops, and > 17% near cobbles. Plants showed avoidance for finer substrates; only 5.3% and 2.7% grew on/near bare soils and pebbles, respectively. About 92% of kūpaoa were ≤ 10 cm downslope of rocks; > 89% grew ≤ 2 cm away, and 83% in direct contact with a rock. Some seedlings also grew on pukiawe (Leptecophylla tameiameiae) nurse plants. Several stable rock microsites protected plants from disturbance by slope processes causing debris shift. Site sediments were significantly finer than substrates near plants; shrubs grew preferentially adjacent to boulders > 20 cm wide, which were more common near plants than across sites. Soils downslope of 50

  7. Social transmission of a host defense against cuckoo parasitism.

    PubMed

    Davies, Nicholas B; Welbergen, Justin A

    2009-06-05

    Coevolutionary arms races between brood parasites and hosts involve genetic adaptations and counter-adaptations. However, hosts sometimes acquire defenses too rapidly to reflect genetic change. Our field experiments show that observation of cuckoo (Cuculus canorus) mobbing by neighbors on adjacent territories induced reed warblers (Acrocephalus scirpaceus) to increase the mobbing of cuckoos but not of parrots (a harmless control) on their own territory. In contrast, observation of neighbors mobbing parrots had no effect on reed warblers' responses to either cuckoos or parrots. These results indicate that social learning provides a mechanism by which hosts rapidly increase their nest defense against brood parasites. Such enemy-specific social transmission enables hosts to track fine-scale spatiotemporal variation in parasitism and may influence the coevolutionary trajectories and population dynamics of brood parasites and hosts.

  8. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  9. High temperature pseudotachylytes and ductile shear zones in dry rocks from the continental lower crust (Lofoten, Norway)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot

    2014-05-01

    Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and

  10. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  11. Field Injection Test in the Host Rock nearby a Fault Zone - Stress Determination and Fault Hydraulic Diffusivity

    NASA Astrophysics Data System (ADS)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2017-12-01

    Fluid injections associated with human activities are well known to induce perturbations in the ambient rock mass. In particular, the hydromechanical response of a nearby fault under an increase of the pore pressure is of great interest in permeability as well as seismicity related problems. We present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). The site was densely instrumented and during the test the pressure, displacements and seismicity were recorded in order to capture the hydro-mechanical response of the surrounding stimulated volume. A numerical model was used including the reactivated structure at the injection point interacting with a plane representing the main fault orientation. A number of calculations were performed in order to estimate the injection characteristics and the state of stress of the test. By making use of the recorded seismic events location an attempt is made to reproduce the spatio-temporal characteristics of the microseismicity cloud. We have introduced in the model heterogeneous frictional properties along the fault plane that result in flow and rupture channeling effects. Based on the spatio-temporal characteristics of these rupture events we attempt to estimate the resulting hydraulic properties of the fault according to the triggering front concept proposed by Shapiro et al. (2002). The effect of the frictional heterogeneities and the fault orientation on the resulting hydraulic diffusivity is discussed. We have so far observed in our model that by statistically taking into account the frictional heterogeneities in our analysis, the spatio-temporal characteristics of the rupture events and the recovered hydraulic properties of the fault are in a satisfying agreement. References: Shapiro, S. A., Rothert, E., Rath, V., & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity

  12. The geochemistry of host arc volcanic rocks to the Co-O epithermal gold deposit, Eastern Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Sonntag, Iris; Kerrich, Robert; Hagemann, Steffen G.

    2011-12-01

    Mindanao is the second largest island of the Philippines and is located in the southern part of the archipelago. It comprises the suture zone between the Eurasian and the Philippine plate, which is displayed in the Philippine Mobile Belt. Eastern Mindanao is part of the Philippine Mobile Belt and outcropping rocks are mainly Eocene to Pliocene in age related to episodes of arc volcanism alternating with sedimentation. New high-precision elemental analysis of the Oligocene magma series, hosting the Co-O epithermal Au deposit, which represents an arc segment in the central part of Eastern Mindanao, revealed dominantly calc-alkaline rocks ranging in composition between basalt and dacites. Major element trends (MgO vs. TiO2 and Fe2O3) are comparable to other magmas in Central and Eastern Mindanao as well as other SW Pacific Islands such as Borneo. Rare earth and trace element distribution patterns display typical island arc signatures highlighted by the conjunction of LILE-enrichment with troughs at Nb, Ta, and Ti. Ratios of Zr/Nb in basalts vary between 17 and 39, signifying a depleted subarc mantle wedge comparable to the range of MORB, and other Indonesian island arc basalts. In basalts, Nb/Ta and Zr/Sm ratios are 12-37 and 14-27 respectively indicative of deep melts of rutile-eclogite subducted slab, as well as fluids, infiltrating the mantle wedge source of basalts. Moderate large ion lithophile element contents and low Th/La and Th/Ce ratios suggest no significant slab-derived components such as sediment or crustal fragments. The comparatively low Ce and Yb values in basalts, but also andesites and dacites, are consistent with a thin arc crust related to an intraoceanic convergent margin setting. This is further supported by Nb contents in basalts that range between 1 and 3 ppm and are within the range of modern oceanic convergent margin basalts. The range of HREE fractionation signifies that basaltic melts separated at deeper levels of the subarc wedge, possibly

  13. Geochemistry of surface water in alpine catchments in central Colorado, USA: Resolving host-rock effects at different spatial scales

    USGS Publications Warehouse

    Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Church, S.E.; Schmidt, T.S.; Fey, D.L.; deWitt, E.H.; Klein, T.L.

    2009-01-01

    The US Geological Survey is conducting a study of surface-water quality in the Rocky Mountains of central Colorado, an area of approximately 55,000 km2. Using new and existing geologic maps, the more than 200 rock formations represented in the area were arranged into 17 groups based on lithologic similarity. The dominant regional geologic feature affecting water quality in central Colorado is the Colorado mineral belt (CMB), a NE-trending zone hosting many polymetallic vein or replacement deposits, and porphyry Mo deposits, many of which have been mined historically. The influence of the CMB is seen in lower surface-water pH (<5), and higher concentrations of SO42 - (>100 mg/L) and chalcophile metals such as Cu (>10 ??g/L), Zn (>100 ??g/L), and Cd (>1 ??g/L) relative to surface water outside the CMB. Not all streams within the CMB have been affected by mineralization, as there are numerous catchments within the CMB that have no mineralization or alteration exposed at the surface. At the regional-scale, and away from sites affected by mineralization, hydrothermal alteration, or mining, the effects of lithology on water quality can be distinguished using geochemical reaction modeling and principal components analysis. At local scales (100 s of km2), effects of individual rock units on water chemistry are subtle but discernible, as shown by variations in concentrations of major lithophile elements or ratios between them. These results demonstrate the usefulness of regional geochemical sampling of surface waters and process-based interpretations incorporating geologic and geochemical understanding to establish geochemical baselines.

  14. Stratigraphy, structure, and lithofacies relationships of Devonian through Permian sedimentary rocks: Paradox Basin and adjacent areas - southeastern Utah. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, J.; Rogers, T.; Ely, R.

    Geophysical well log analysis, literature review, and field work were conducted to develop isopach, structure contour, outcrop, and facies maps and cross sections for the Devonian through Permian strata of a 14,586-km/sup 2/ (5632-square-mile) area in southeastern Utah. The study area includes part of the Paradox Basin, the salt deposits of which are of interest in siting studies for a nuclear waste repository. For this reason hydrologic models of this area are needed. This study, part of which included the development of a three-dimensional stratigraphic computer model utilizing Geographic Information System software, can serve as a base for hydrologic ormore » other models for this area. Within and adjacent to the study area, 730 wells were screened to select the 191 wells analyzed for the study. It was found that the Elbert through Molas formations did not exhibit noticeable facies changes within the study area. The Pinkerton Trail Formation exhibits moderate changes: anhydrite and shale become somewhat more abundant toward the northeast. Facies changes in the Paradox Formation are more dramatic. Thick saline facies deposits are present in the northeast, grading to thinner anhydrite and then to carbonate facies in the south and west. The lithology of the Honaker Trail Formation appears to be fairly uniform throughout the area. Facies changes in the Cutler Group are numerous and sometimes dramatic, and generally correspond to the named formations of the group. Other factors that could affect groundwater flow, such as stratigraphic cover of fine-grained rocks, area of formation outcrops, and fracturing and faulting are discussed and delineated on maps.« less

  15. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  16. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.

    1997-01-01

    Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of

  17. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    USGS Publications Warehouse

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  18. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    NASA Astrophysics Data System (ADS)

    Anhaeusser, Carl R.

    2015-02-01

    The Johannesburg Dome occurs as an inlier of Palaeoarchaean-Mesoarchaean granitic rocks, gneisses and greenstones in the central part of the Kaapvaal Craton, South Africa. In the west-central part of the dome a large greenstone remnant is surrounded and intruded by ca. 3114 Ma porphyritic granodiorites. Referred to locally as the Zandspruit greenstone remnant, it consists of a shallow-dipping ultramafic complex comprised of a number of alternating layers of harzburgite and pyroxenite. The ultramafic rocks are metamorphosed to greenschist grade and have largely been altered to serpentinite and amphibolite (tremolite-actinolite). In the granite-greenstone contact areas the porphyritic granodiorite has partially assimilated the greenstones producing a variety of hybrid rocks of dioritic composition. The hybrid rocks contain enclaves or xenoliths of greenstone and, in places, orbicular granite structures. Particularly noteworthy is an unusual zone of potash-metasomatized rock, occurring adjacent to the porphyritic granodiorite, consisting dominantly of biotite and lesser amounts of carbonate, quartz and sericite. Large potash-feldspar megacrysts and blotchy aggregated feldspar clusters give the rocks a unique texture. An interpretation placed on these rocks is that they represent metasomatized metapyroxenites of the layered ultramafic complex. Field relationships and geochemical data suggest that the rocks were influenced by hydrothermal fluids emanating from the intrusive porphyritic granodiorite. The adjacent greenstones were most likely transformed largely by the process of infiltration metasomatism, rather than simple diffusion, as CO2, H2O as well as dissolved components were added to the greenstones. Element mobility appears to have been complex as those generally regarded as being immobile, such as Ti, Y, Zr, Hf, Ta, Nb, Th, Sc, Ni, Cr, V, and Co, have undergone addition or depletion from the greenstones. Relative to all the rocks analyzed from the greenstones

  19. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  20. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  1. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and

  2. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  3. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  4. Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Dai, J.; Dutta, N.; Xu, H.

    2006-05-01

    ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.

  5. Experimental research data on stress state of salt rock mass around an underground excavation

    NASA Astrophysics Data System (ADS)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  6. Kaersutite-bearing xenoliths and megacrysts in volcanic rocks from the Funk Seamount in the souhtwest Indian Ocean

    NASA Technical Reports Server (NTRS)

    Reid, Arch M.; Le Roex, Anton P.

    1988-01-01

    The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.

  7. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  8. PERMEABILITY CHANGES IN CRYSTALLINE ROCKS DUE TO TEMPERATURE: EFFECTS OF MINERAL ASSEMBLAGE.

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Byerlee, J.D.; ,

    1985-01-01

    The change in permeability with time of granite, quartzite, anorthosite and gabbro was measured while these rocks were subjected to a temperature gradient. Permeability reductions of up to two orders of magnitude were observed, with the greatest reactions occurring in the quartzite. These changes are thought to be caused by dissolution of minerals at high temperatures, and redeposition of the dissolved material at lower temperatures. Quartz appears to be an important mineral in this self-sealing process. If very low permeability is desired around a nuclear waste repository in crystalline rocks, then a quartz-rich rock may be the most appropriate host.

  9. Soil physical and chemical properties associated with flat rock and riparian forest communities

    Treesearch

    David O. Mitchem; James E. Johnson; Laura S. Gellerstedt

    2006-01-01

    Flat Rock forest communities are unique ecosystems found adjacent to some large rivers in the Central and Southern Appalachian Mountains. Characterized by thin, alluvial soils overlying flat, resistant sandstone, these areas are maintained by severe flooding and have unique associated plant systems. With the advent of dams to control flooding in the 20th century, many...

  10. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-11-01

    The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  11. Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields

    NASA Astrophysics Data System (ADS)

    Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.

    2013-07-01

    The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.

  12. Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii (Matsumura)

    PubMed Central

    Loeb, Gregory M.

    2018-01-01

    Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the factors determining local population dynamics. This study investigated the infestation of non-crop plants by the invasive Drosophila suzukii (Matsumura), a pest of numerous economically important stone and small fruit crops, by sampling fruit-producing non-crop hosts adjacent to commercial plantings weekly from June through November in central New York over a two-year period. We found D. suzukii infestation rates (number of flies emerged/kg fruit) peaked mid-August through early September, with Rubus allegheniensis Porter and Lonicera morrowii Asa Gray showing the highest average infestation in both years. Interannual infestation patterns were similar despite a lower number of adults caught in monitoring traps the second year, suggesting D. suzukii host use may be density independent. PMID:29301358

  13. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  14. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  15. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  16. Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Jeong, Ju-Hwan; Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong

    2013-09-01

    In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.

  17. Effects of Space Weathering on Lunar Rocks: Scanning Electron Microscope Petrography

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Keller, Lindsay P.; McKay, David S.

    1998-01-01

    Lunar rocks that have undergone direct exposure to the space weathering environment at the surface of the Moon commonly have patinas on their surfaces. Patinas are characterized by visible darkening and other changes in spectral properties of rocks. They form as a result of bombardment by micrometeorites, solar wind, and solar flares. Processes of space weathering and patina production have clearly been significant in the formation and history of the lunar regolith. It is very likely that other planetary bodies without atmospheres have undergone similar alteration processes; therefore, it is critical to determine the relationship between patinas and their host rocks in view of future robotic and remote-sensing missions to the Moon and other planetary bodies.

  18. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  19. Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada

    USGS Publications Warehouse

    Moore, George Winfred; Stephens, James G.

    1954-01-01

    During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.

  20. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less

  1. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    DOE PAGES

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; ...

    2017-07-28

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less

  2. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    NASA Astrophysics Data System (ADS)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine; Viswanathan, Hari S.; Wang, Yifeng

    2017-10-01

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.

  3. Size cues and the adjacency principle.

    DOT National Transportation Integrated Search

    1963-11-01

    The purpose of the present study was to apply the adjacency principle to the perception of relative depth from size cues. In agreement with the adjacency principle, it was found that the size cue between adjacent objects was more effective than the s...

  4. Characterization of carbon in sediment-hosted disseminated gold deposits, north central Nevada

    USGS Publications Warehouse

    Leventhal, Joel; Hofstra, Albert; ,

    1990-01-01

    The gray, dark gray and black colors of the sediments and the presence of pyrite in the Carlin, Jerritt Canyon, Horse Canyon, Betze, and Gold Acres sediment-hosted disseminated gold (SHDG) deposits indicate that these rocks are not oxidized with respect to carbon and iron sulfide. The organic matter in the host rocks of SHDG deposits in north-central Nevada is cryptocrystalline graphite with dimensions of 30 to 70 A (0.003 to 0.007 ??) that was formed at temperatures of 250 to 300??C. These results indicate that north-central Nevada was subjected to pumpellyite-actinolite to lowermost greenschist facies conditions prior to mineralization. The hydrothermal fluids that produced the gold deposits had little, if any, effect on the thermal maturity and crystallinity of the cryptocrystalline graphite produced by the earlier thermal event.

  5. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  6. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  11. Biomarkers Indigenous to Late Archean Rocks

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.; Love, G. D.; Snape, C. E.

    2003-12-01

    Two new lines of evidence support the authenticity of molecular fossils in late Archean rocks of the Hamersley Province, Western Australia. Specifically, they support 1) a syngenetic relationship between the kerogen and extractable biomarkers, and 2) a indigenous relationship between extractable compounds and the host rocks. Carbon skeletons released from kerogen via high-pressure hydropyrolysis match those found in associated extracted bitumen. Biomarker ratios indicate less mature steranes and terpanes (i.e. hopanes and tricyclic terpanes) are embedded in the kerogen matrix as compared to the highly mature steranes and terpanes in the extracts, which is similar to findings in other hydropyrolysis experiments. Lithology-associated variations in biomarker distributions are noteworthy and suggest environmental settings are associated with differing biotic ecosystems. The evidence reported here confirms the 2.7 Ga antiquity of diverse biosynthetic pathways. Molecular data, together with isotopic data, indicate aerobic and anaerobic respiration pathways were fundamental to the complex microbial biogeochemistry of the late Archean. The biomarkers in these rocks support an early radiation of the three domains of life and radiation within the bacteria, such that clades of cyanobacteria, green sulfur bacteria, and proteobacteria had been established.

  12. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  14. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  15. Distinguishing Indigenous from Contaminating Microorganisms in Rock Samples from a Deep Au Mine in South Africa

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Fredrickson, J. K.; Pfiffner, S. M.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L.; hide

    2002-01-01

    The concentration and distribution of microbial biomass within deep subsurface rock strata is not well known To date, most analyses are from water samples and a few cores. Hand samples, block samples and cores from an actively mined Carbon Leader ore zone at 3.2 kilometers depth were collected for microbial analyses. The Carbon Leader was comprised of quartz, S-bearing aromatic hydrocarbons, Fe(III) oxyhydroxides, sulfides, uraninite, Au and minor amounts of sulfate. The porosity of the ore was 1% and the maximum pore throat diameter was less than 0.1 microns; whereas, the porosity of the adjacent quartzite was .02 to .9% with a maximum pore throat diameter of 0.9 microns. Rhodamine dye, fluorescent microspheres, microbial enrichments, autoradiography, phospholipid fatty acid (PLEA) and 16S rDNA analyses were performed on these rock samples and the mining water. The date indicate that the levels of solute contamination less than 0.01% for pared rock samples. Despite this low level of contamination, PLEA, microbial enrichment, DNA and tracer analyses and calculations indicate that most of the viable microorganisms in the Carbon Leader represent gram negative aerobic heterotrophs and ammonia oxidizers that are phylogenetically identical or closely related to service water microorganisms. These microbial contaminants probably infiltrated the low permeability rock through mining-induced microfractures. Geochemical data also detected drilling water in a fault zone approx. 1 meter behind the rock face encountered during coring. The mining induced macrofractures that are common at these great depths act as pathways for the drilling water borne microorganisms into the lower temperature zone that extends several meters into rock strata from the rock face. Combined PLEA and T- RFLP analyses of the service water and Carbon Leader samples indicate that the concentration of indigenous microorganisms was less than 10(exp 2) cells/gram. Such a low concentrations result from the

  16. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are

  17. More than Meets the Ear: A Factor Analysis of Student Impressions of Television Talk Show Hosts.

    ERIC Educational Resources Information Center

    Walker, James R.

    To identify the descriptors most frequently associated with four popular television talk show hosts and to isolate the fundamental dimensions of the images of those talk show hosts, a study surveyed 209 students from Memphis State University and the University of Arkansas (Little Rock) about their impressions of Johnny Carson, David Letterman,…

  18. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  19. Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, E.D.; Koch, P.S.; Summa, L.L.

    1996-08-01

    The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zonemore » of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.« less

  20. Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Maloof, Adam C.; Tailby, Nicholas; Ramezani, Jahandar; Fu, Roger R.; Hanus, Veronica; Trail, Dustin; Bruce Watson, E.; Harrison, T. Mark; Bowring, Samuel A.; Kirschvink, Joseph L.; Swanson-Hysell, Nicholas L.; Coe, Robert S.

    2015-11-01

    It currently is unknown when Earth's dynamo magnetic field originated. Paleomagnetic studies indicate that a field with an intensity similar to that of the present day existed 3.5 billion years ago (Ga). Detrital zircon crystals found in the Jack Hills of Western Australia are some of the very few samples known to substantially predate this time. With crystallization ages ranging from 3.0-4.38 Ga, these zircons might preserve a record of the missing first billion years of Earth's magnetic field history. However, a key unknown is the age and origin of magnetization in the Jack Hills zircons. The identification of >3.9 Ga (i.e., Hadean) field records requires first establishing that the zircons have avoided remagnetization since being deposited in quartz-rich conglomerates at 2.65-3.05 Ga. To address this issue, we have conducted paleomagnetic conglomerate, baked contact, and fold tests in combination with U-Pb geochronology to establish the timing of the metamorphic and alteration events and the peak temperatures experienced by the zircon host rocks. These tests include the first conglomerate test directly on the Hadean-zircon bearing conglomerate at Erawandoo Hill. Although we observed little evidence for remagnetization by recent lightning strikes, we found that the Hadean zircon-bearing rocks and surrounding region have been pervasively remagnetized, with the final major overprinting likely due to thermal and/or aqueous effects from the emplacement of the Warakurna large igneous province at ∼1070 million years ago (Ma). Although localized regions of the Jack Hills might have escaped complete remagnetization, there currently is no robust evidence for pre-depositional (>3.0 Ga) magnetization in the Jack Hills detrital zircons.

  1. Compositional variation in the chevkinite group: New data from igneous and metamorphic rocks

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.; Wall, F.; Baginski, B.

    2009-01-01

    Electron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchilyzoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure-temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described. ?? 2009 The Mineralogical Society.

  2. Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks

    USGS Publications Warehouse

    Belkin, Harvey E.; MacDonald, R.; Wall, F.; Baginski, B.

    2009-01-01

    Electron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchily- zoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure- temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described.

  3. Uranium mineralization in fluorine-enriched volcanic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffsmore » are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).« less

  4. Tourmaline orbicules in peraluminous monzogranites of Argentina: A study case of fluid-rock interaction between leucogranite and country-rock metasediments

    NASA Astrophysics Data System (ADS)

    Lira, Raúl; Poklepovic, María F.

    2017-12-01

    Tourmaline orbicules hosted in peraluminous granites are documented worldwide. Seven occurrences were identified in Argentina. Petrography, mineral chemistry, whole-rock geochemistry mass balance and microthermometric studies were performed in orbicules formed at the cupola of a peraluminous A-type leucogranite (Los Riojanos pluton), as well as complementary investigation was achieved in other orbicules of similar geological setting. Mass balance computations in zoned orbicules consistently confirmed immobility of Si both in core and halo, immobility of K and little loss of Al during halo reactions. Elements gained and lost in the schorl-rich core are Fe, Al, Mg, Ti, Ba, Sr, Y and Zr, and Na, K, Rb and Nb, respectively; in the halo, K, Ba, Sr, Y, Zr and locally CaO, were gained, and Fe, Mg, Na, Al, Rb and Nb were lost. The schorl-rich core is enriched in LREE relative to the leucogranite host. A temperature-salinity plot from fluid inclusion data delineates a magmatic-meteoric mixing trend of diluting salinity with descending temperature. Computed δDH20 values from Los Riojanos orbicule schorl suggest magmatic and magmatic-meteoric mixed origins. In Los Riojanos, mass balance constraints suggest that Fe, Mg, Ba, Sr and metallic traces like Zn and V (±Pb) were most likely derived from country-rock schists and gneisses through fluid-rock exchange reactions. A late magmatic-, volatile-rich- fluid exsolution scenario for the formation of orbicules is envisaged. Schorl crystallization was likely delayed to the latest stages of leucogranite consolidation, not only favored by the high diffusivity of B2O3 preferentially partitioned into the exsolved aqueous-rich fluid, but also likely limited to the low availability of Fe and Mg from the scarce granitic biotite, and to the high F- content of the melt. The spatial confination of orbicules to the contact zone granite-metasediments suggests that orbicules were not formed until exsolved fluids reached the boundary with the

  5. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  6. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  7. Modeling stress–strain state of rock mass under mining of complex-shape extraction pillar

    NASA Astrophysics Data System (ADS)

    Fryanov, VN; Pavlova, LD

    2018-03-01

    Based on the results of numerical modeling of stresses and strains in rock mass, geomechanical parameters of development workings adjacent to coal face operation area are provided for multi-entry preparation and extraction of flat seams with production faces of variable length. The negative effects on the geomechanical situation during the transition from the longwall to shortwall mining in a fully mechanized extraction face are found.

  8. Sorptivity of rocks and soils of the van Genuchten-Mualem type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1991-06-01

    One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium.more » For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.« less

  9. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  10. Quantifying porosity and permeability of fractured carbonates and fault rocks in natural groundwater reservoirs

    NASA Astrophysics Data System (ADS)

    Pirmoradi, Reza; Wolfmayr, Mariella; Bauer, Helene; Decker, Kurt

    2017-04-01

    This study presents porosity and permeability data for a suite of different carbonate rocks from two major groundwater reservoirs in eastern Austria that supply more than 60% of Vienna`s drinking water. Data includes a set of lithologically different, unfractured host rocks, fractured rocks with variable fracture intensities, and fault rocks such as dilation breccias, different cataclasites and dissolution-precipitation fault rocks. Fault rock properties are of particular importance, since fault zones play an important role in the hydrogeology of the reservoirs. The reservoir rocks are exposed at two major alpine karst plateaus in the Northern Calcareous Alps. They comprise of various Triassic calcareous strata of more than 2 km total thickness that reflect facies differentiation since Anisian times. Rocks are multiply deformed resulting in a partly dense network of fractures and faults. Faults differ in scale, fault rock content, and fault rock volumes. Methods used to quantify the porosity and permeability of samples include a standard industry procedure that uses the weight of water saturated samples under hydrostatic uplift and in air to determine the total effective (matrix and fracture) porosity of rocks, measurements on plugs with a fully automated gas porosity- and permeameter using N2 gas infiltrating plugs under a defined confining pressure (Coreval Poro 700 by Vinci technologies), and percolation tests. The latter were conducted in the field along well known fault zones in order to test the differences in fractured rock permeability in situ and on a representative volume, which is not ensured with plug measurements. To calculate hydraulic conductivity by the Darcy equation the measured elapsed time for infiltrating a standard volume of water into a small borehole has been used. In general, undisturbed host rock samples are all of low porosity (average around 1%). The open porosity of the undisturbed rocks belonging to diverse formations vary from 0

  11. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  12. Whole-rock Pb and Sm-Nd isotopic constraints on the growth of southeastern Laurentia during Grenvillian orogenesis

    USGS Publications Warehouse

    Fisher, C.M.; Loewy, S.L.; Miller, C.F.; Berquist, P.; Van Schmus, W. R.; Hatcher, R.D.; Wooden, J.L.; Fullagar, P.D.

    2010-01-01

    The conventional view that the basement of the southern and central Appalachians represents juvenile Mesoproterozoic crust, the final stage of growth of Laurentia prior to Grenville collision, has recently been challenged. New whole-rock Pb and Sm-Nd isotopic data are presented from Meso protero zoic basement in the southern and central Appalachians and the Granite-Rhyolite province, as well as one new U-Pb zircon age from the Granite-Rhyolite province. These data, combined with existing data from Mesoproterozoic terranes throughout southeastern Laurentia, further substantiate recent suggestions that the southern and central Appalachian basement is exotic with respect to Laurentia. Sm-Nd isotopic compositions of most rocks from the southern and central Appalachian basement are consistent with progressive growth through reworking of the adjacent Granite-Rhyolite province. However, Pb isotopic data, including new analyses from important regions not sampled in previous studies, do not correspond with Pb isotopic compositions of any adjacent crust. The most distinct ages and isotopic compositions in the southern and central Appalachian basement come from the Roan Mountain area, eastern Tennessee-western North Carolina. The data set indicates U-Pb zircon ages up to 1.8 Ga for igneous rocks, inherited and detrital zircon ages >2.0 Ga, Sm-Nd depleted mantle model (TDM) ages >2.0 Ga, and the most elevated 207Pb/204Pb observed in southeastern Laurentia. The combined U-Pb geochronologic and Sm-Nd and Pb isotopic data preclude derivation of southern and central Appalachian basement from any nearby crustal material and demonstrate that Grenville age crust in southeastern Laurentia is exotic and probably was transferred during collision and assembly of Rodinia. These new data better define the boundary between the exotic southern and central Appalachian basement and adjacent Laurentian Granite-Rhyolite province. ?? 2010 Geological Society of America.

  13. ROCK I Has More Accurate Prognostic Value than MET in Predicting Patient Survival in Colorectal Cancer.

    PubMed

    Li, Jian; Bharadwaj, Shruthi S; Guzman, Grace; Vishnubhotla, Ramana; Glover, Sarah C

    2015-06-01

    Colorectal cancer remains the second leading cause of death in the United States despite improvements in incidence rates and advancements in screening. The present study evaluated the prognostic value of two tumor markers, MET and ROCK I, which have been noted in other cancers to provide more accurate prognoses of patient outcomes than tumor staging alone. We constructed a tissue microarray from surgical specimens of adenocarcinomas from 108 colorectal cancer patients. Using immunohistochemistry, we examined the expression levels of tumor markers MET and ROCK I, with a pathologist blinded to patient identities and clinical outcomes providing the scoring of MET and ROCK I expression. We then used retrospective analysis of patients' survival data to provide correlations with expression levels of MET and ROCK I. Both MET and ROCK I were significantly over-expressed in colorectal cancer tissues, relative to the unaffected adjacent mucosa. Kaplan-Meier survival analysis revealed that patients' 5-year survival was inversely correlated with levels of expression of ROCK I. In contrast, MET was less strongly correlated with five-year survival. ROCK I provides better efficacy in predicting patient outcomes, compared to either tumor staging or MET expression. As a result, ROCK I may provide a less invasive method of assessing patient prognoses and directing therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to <0.10 and reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  15. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    USGS Publications Warehouse

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.

  16. Hayward Fault rocks: porosity, density, and strength measurements

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2001-01-01

    Porosity, density and strength measurements were conducted on rock samples collected from the Hayward Fault region in Northern California as part of the Hayward Fault Working Group’s efforts to create a working model of the Hayward Fault. The rocks included in this study were both fine and coarse grained gabbros, altered keratophyre, basalt, sandstone, and serpentinite from various rock formations adjacent to the Hayward Fault. Densities ranged from a low of 2.25 gm/cc (altered keratophyre) to 3.05 gm/cc (fine gabbro), with an average of 2.6 gm/cc, typical of many other rocks. Porosities were generally around 1% or less, with the exception of the sandstone (7.6%) and altered keratophyre (13.5%). Failure and frictional sliding tests were conducted on intact rock cylinders at room temperature under effective pressure conditions of up to 192 MPa, simulating depths of burial to 12 km. Axial shortening of the samples progressed at a rate of 0.1 µm/sec (fine samples) or 0.2 µm/sec (porous samples) for 6 mm of displacement. Velocity stepping tests were then conducted for an additional 2 mm of displacement, for a total of 8 mm. Both peak strength (usually failure strength) and frictional strength, determined at 8 mm of displacement, increased systematically with effective pressure. Coefficients of friction, based on the observed fracture angles, ranged from 0.6 to 0.85, consistent with Byerlee’s Law. Possible secondary influences on the strength of the Hayward rock samples may be surface weathering, or a larger number of pre-existing fractures due to the proximity to the Hayward Fault. All samples showed velocity strengthening, so that the average a-b values were all strongly positive. There was no systematic relation between a-b values and effective pressure. Velocity strengthening behavior is associated with stable sliding (creep), as observed in the shallow portions of the Hayward Fault.

  17. Subsidence and collapse sinkholes in soluble rock: a numerical perspective

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas

    2016-04-01

    Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.

  18. Comparative anatomy of epithermal precious- and base-metal districts hosted by volcanic rocks: A talk presented at the GAC/MSC/GGU Joint Annual Meeting, May 11-13, 1983, Victoria, British Columbia

    USGS Publications Warehouse

    Heald-Wetlaufer, Pamela; Hayba, Daniel O.; Foley, Nora K.; Goss, J.A.

    1983-01-01

    In order to distinguish dissimilar from similar features of epithermal districts, lithotectonic, mineralogical and geochemical traits are compiled for 15 such districts. The districts occur in structurally complex settings associated with silicic to intermediate volcanics. Affiliation with subduction environments on a continental scale and caldera settings on a regional scale is common but is not demonstrable for all districts. Most deposits formed near the end of major volcanism, but some formed considerably later. Paleodepth to the top of the ore is 300-600m for most districts, although Au-rich districts appear to be shallower. The lateral extent of the ore zone is highly variable and far exceeds the limited vertical range (300-800m). Most ore was deposited from dominantly meteoric fluids ranging in temperature from 220°-290°C. Salinities ranged from 0-13 wt% NaCl equiv., and typical values were 1-3 wt%. Although noted for eight deposits, boiling is clearly associated with precious-metal deposition in only two deposits. Four districts, typified by Goldfield, Nev., are characterized by a highly sulfidized mineral assemblage, advanced argillic alteration, and ore deposition closely following emplacement of the host rock. The remaining eleven districts highlight a second, discrete type of deposit. They contain adularia, exhibit sericitic ± argillic alteration, and were mineralized significantly after emplacement of the host rock. The latter category includes two subgroups: Ag- and base-metal-rich deposits (e.g., Creede, Colo.), and Au-rich, base-metal-poor deposits (e.g., Round Mtn., Nev.).

  19. PRIMARY MINERALIZATION OF URANIUM-BEARING "SILICEOUS REEF" VEINS IN THE BOULDER BATHOLITH, MONTANA. PART I. THE HOST ROCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, H.D.; Bieler, B.H.

    1960-01-01

    Between 1952 and 1956 a study was made of some of the uranium-bearing hydrothermal veins in the northern part of the Boulder batholith, Montana. Three mines, the W. Wilson, G. Washington, and Free Enterprise, were investigated in detail. The veins are characterized by a microcrystalline quartz gangue containing sparsely scattered, very fine-grained sulfide minerals and uraninite. Above the present water table, secondary uranium minerals are abundant locally. Throughout the area the veins --called "siliceous reefs"--strike east to northeast, are of steep dip, and vary in thickness from a fraction of an inch to several feet. The country rock is granodioritemore » containing, in order of abundance, plagioclase (An/sub 30/ to An/sub 36/), quartz, orthoclase, biotite, and hornblende, with apatite, zircon, and sphene. Small bodies of aplite, pegmatite, and alaskite occur along some veins. The granodiorite adjacent to the veins is rather strongly altered. The alteration is similar throughout all of the deposits studied, in barren and orebearing portions alike. The essential minerals show a characteristic sequence of alteration, in the order hornblende, andesine, biotite, orthoclase, and quartz. Successive zones of alteration are characterized, from the vein outward, by maximum development of sericite (muscovite polytype 1M, in part), kaolinite, and montmorillonite. Other alteration products are quartz, pyrite, calcite, leucoxene, and chlorite. The alteration resulted in an increase in silica and ferric iron, a decrease in alumina, total iron, ferrous iron, lime, soda, and magnesia, and little change in potash, titania, phosphorus, carbon dioxide, and sulfur. Consideration of the stability fields of the sheet structure silicate minerals indicates little basis for interpretation of the temperatures prevailing during mineralization. (auth)« less

  20. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnicalmore » characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.« less

  1. UHT overprint of HP rocks? A case study from the Adula nappe complex (Central Alps, N Italy)

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Zanchetta, Stefano; Malaspina, Nadia; Poli, Stefano

    2014-05-01

    The Adula-Cima Lunga nappe complex is located on the eastern flank of the Lepontine Dome and represents the highest of the Lower Penninic units of the Central Alps. The Adula nappe largely consists of orthogneiss and paragneiss of pre-Mesozoic origin, variably retrogressed eclogites preserved as boudins within paragneiss, minor ultramafic bodies and metasedimentary rocks of presumed Mesozoic age. The higher metamorphic conditions have been estimated for the peridotite lenses in the southern part of the nappe at pressure over 3.0 GPa and temperature of 800-850°C. Garnet lherzolite bodies crop out at three localities, from west to east: Cima di Gagnone, Alpe Arami and Mt. Duria. After the partial subduction of the European distal margin beneath the Africa-Adria margin, the HP rocks were overprinted by an upper amphibolite facies metamorphism that postdates the main phase of nappe stacking. In the southern sector of the Lepontine Dome, adjacent to the Insubric Fault, metamorphic conditions promoted extensive migmatization of both metasedimentary and metagranitoid rocks. In one single outcrop, at Monte Duria, garnet lherzolites occur in m-sized boudins hosted within partly granulitized amphibole-bearing and k-feldspar gneisses that contain also some decimeter-sized boudins of both mafic and metapelitic eclogites. This rock association is in turn embedded within the migmatitic gneisses that form most of the southern sector of the Adula nappe. Petrographic and chemical analyses indicate that garnet peridotite is composed of olivine (XMg=0.88), orthopyroxene, clinopyroxene and garnet (Py68; Cr2O3 up to 1.45 wt%) with inclusions of Cr-rich spinel (up to Cr/(Al+Cr)=0.55) surrounded by kelyphitic symplectites of opx + cpx/amph + spl. These reaction produced double coronas, one composed of opx (former ol) and one composed of cpx + opx+ spl. In one kelyphite, we observed the uncommon occurrence of ZrO2 (baddeleyite) and ZrTi2O6 (srilankite). Tiny crystals of these two Zr

  2. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    PubMed Central

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-01-01

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material. PMID:28811444

  3. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions.

    PubMed

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-08-12

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  4. Distribution of manganese between coexisting biotite and hornblende in plutonic rocks

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Tilling, R.I.

    1968-01-01

    The distribution of manganese between coexisting biotite and hornblende for 80 mineral pairs from igneous rocks of diverse provenance (including Southern California, Sierra Nevada, Boulder, and Boulder Creek batholiths and the Jemez Mountains volcanics) has been determined by neutron activation analysis. Data on the distribution ratio (Kd = Mnhornblende Mnbiotite) indicate that an equilibrium distribution of Mn is closely approached, though not completely attained, in most samples from plutonic environments. Comparison of Kd values of mineral pairs with bulk chemical composition of host rocks reveals no correlation. Because initial crystallization temperatures vary with rock composition, the lack of correlation of composition with Kd suggests that the equilibrium distribution of Mn between biotite and hornblende reflects exchange at subsolidus temperatures rather than initial crystallization temperatures. The highest Kd values are for volcanic rocks, in which rapid quenching prevents subsolidus redistribution of Mn. For sample pairs from the Southern California and Sierra Nevada batholiths there is a positive correlation of Kd with TiO2 content of biotite. Though the evidence is not compelling, Kd may also correlate with the rate of cooling and/or the presence or absence of sphene in the rock. ?? 1968.

  5. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  6. High manganese concentrations in rocks at Gale crater, Mars

    USGS Publications Warehouse

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John P.; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  7. Petrology of Impact-Melt Rocks at the Chicxulub Multiring Basin, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Schuraytz, Benjamin C.; Sharpton, Virgil L.; Marin, Luis E.

    1994-01-01

    Compositions and textures of melt rocks from the upper part of the Chicxulub structure are typical of melt rocks at other large terrestrial impact structures. Apart from variably elevated iridium concentrations (less than 1.5 to 13.5 +/- 0.9 ppb) indicating nonuniform dissemination of a meteoritic component, bulk rock and phenocryst compositions imply that these melt rocks were derived exclusively from continental crust and platform-sediment target lithologies. Modest differences in bulk chemistry among samples from wells located approximately 40 km apart suggest minor variations in relative contributions of these target lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and plagioclase also support minor primary differences in chemistry between the melts. Evidence for pervasive hydrothermal alteration of the porous mesostasis includes albite, K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile element-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host important ore deposits.

  8. P-T evolution of the Precambrian mafic rocks hosting the Varena iron ore deposit in SE Lithuania

    NASA Astrophysics Data System (ADS)

    Šiliauskas, Laurynas; Skridlaitė, Gražina; Prusinskiene, Sabina

    2017-04-01

    The Precambrian Varena iron ore deposit in the western East European Craton, near the Latvian-East Lithuanian and Middle Lithuanian domain boundary, is buried beneath 210-500 m thick sediments. It consists of variable metasomatic rocks, mostly Mg-Fe skarns, associated with dolomitic marbles, magnetite and other ores. Metasomatites are hosted by metamorphosed igneous (mostly mafic) and sedimentary rocks and crosscut by later granites and diabase dikes. Three samples of altered mafic rocks (D8-3, D8-4 and D8-6) were chosen for PT estimations. D8-3 sample (582.5 m) is a coarse-grained metagabbro near a metasomatic K-Mg hastingsite rock. It consists of diopsidic pyroxene, edenitic and actinolitic hornblende, plagioclase (An22-15) and scapolite with minor titanite, chlorite, apatite and talc. Diopside compositions range from iron richer (Mg# 0.64, jadeite component of 0.027) to magnesium richer (Mg# 0.89, jadeite less than 0.01). Amphiboles vary from primary Mg-hastingsitic (AlVI 0.38 apfu, Mg# 0.70) to secondary edenitic (AlVI 0.25, Mg# 0.72) hornblende. Plagioclase is slightly zoned, cores more calcium-rich (An22-20) than rims (An18-15). Sample D8-4 (588 m) has similar mineral and chemical compositions, but is somewhat more altered than the D8-3 sample. Plagioclase in diopside is more anorthitic (An32-30), while matrix plagioclase is more albitic (An27-20). Sample D8-6 (710 m) is composed of diopside, plagioclase, scapolite, Mg-hornblende and actinolite. Diopside has Mg# of 0.77-0.84 and jadeite component of 0.01-0.02. Amphibole compositions range from Mg-hornblende (Mg# 0.64-0.7, Al VI 0.2-0.17 apfu) to actinolite (Mg# 0.76-0.83, Al VI 0.12-0.10 apfu). Plagioclases are An18 in cores and An10 at rims. Diopsides with the lowest Mg# and highest jadeite components, together with plagioclase cores were used for PT calculations by the winTWQ software (Berman, 1991). Temperatures of 530° C and 550° C and pressures of 6.3 and 6.1 kbar were estimated for the D8-3 and D8

  9. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    EPA Science Inventory

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  10. Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Clennell, M. Ben; Keller, Joao V. A.; Giwelli, Ausama; Luzin, Vladimir

    2017-10-01

    The structure, frictional properties and permeability of faults within carbonate rocks exhibit a dynamic interplay that controls both seismicity and the exchange of fluid between different crustal levels. Here we review field and experimental studies focused on the characterization of fault zones in carbonate rocks with the aim of identifying the microstructural indicators of rupture nucleation and seismic slip. We highlight results from experimental research linked to observations on exhumed fault zones in carbonate rocks. From the analysis of these accumulated results we identify the meso and microstructural deformation styles in carbonates rocks and link them to the lithology of the protolith and their potential as seismic indicators. Although there has been significant success in the laboratory reproduction of deformation structures observed in the field, the range of slip rates and dynamic friction under which most of the potential seismic indicators is formed in the laboratory urges caution when using them as a diagnostic for seismic slip. We finally outline what we think are key topics for future research that would lead to a more in-depth understanding of the record of seismic slip in carbonate rocks.

  11. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    NASA Astrophysics Data System (ADS)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  12. Culicoides biting midges (Diptera, Ceratopogonidae) in various climatic zones of Russia and adjacent lands.

    PubMed

    Sprygin, A V; Fiodorova, O A; Babin, Yu Yu; Elatkin, N P; Mathieu, B; England, M E; Kononov, A V

    2014-12-01

    Culicoides biting midges play an important role in the epidemiology of many vector-borne infections, including bluetongue virus, an internationally important virus of ruminants. The territory of the Russian Federation includes regions with diverse climatic conditions and a wide range of habitats suitable for Culicoides. This review summarizes available data on Culicoides studied in the Russian Federation covering geographically different regions, as well as findings from adjacent countries. Previous literature on species composition, ranges of dominant species, breeding sites, and host preferences is reviewed and suggestions made for future studies to elucidate vector-virus relationships. © 2014 The Society for Vector Ecology.

  13. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  14. Preliminary report on uranium and thorium content of intrusive rocks in northeastern Washington and northern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1977-11-01

    This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less

  15. Petrogenesis of volcanic rocks that host the world-class Agsbnd Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo

    2017-05-01

    We present the first study of the volcanic rocks of the Cañadón Asfalto Formation that host the Navidad world-class Ag + Pb epithermal district located in the North Patagonian Massif, Patagonia, Argentina. These volcanic and sedimentary rocks were deposited in a lacustrine environment during an extensional tectonic regime associated with the breakup of Gondwana and represent the mafic to intermediate counterparts of the mainly silicic Jurassic Chon Aike Volcanic Province. Lava flows surrounded by autobrecciated carapace were extruded in subaerial conditions, whereas hyaloclastite and peperite facies suggest contemporaneous subaqueous volcanism and sedimentation. LA-ICPMS Usbnd Pb ages of zircon crystals from the volcanic units yielded Middle Jurassic ages of 173.9 ± 1.9 Ma and 170.8 ± 3 Ma. In the Navidad district, volcanic rocks of the Cañadón Asfalto Formation show arc-like signatures including high-K basaltic-andesite to high-K dacite compositions, Rb, Ba and Th enrichment relative to the less mobile HFS elements (Nb, Ta), enrichment in light rare earth elements (LREE), Ysbnd Ti depletion, and high Zr contents. These characteristics could be explained by assimilation of crustal rocks in the Jurassic magmas, which is also supported by the presence of zircon xenocrysts with Permian and Middle-Upper Triassic ages (281.3 Ma, 246.5, 218.1, and 201.3 Ma) and quartz xenocrysts recognized in these volcanic units. Furthermore, Sr and Nd isotope compositions suggest a contribution of crustal components in these Middle Jurassic magmas. High-K basaltic andesite has initial 87Sr/86Sr ratios of 0.70416-0.70658 and ξNd(t) values of -5.3 and -4. High-K dacite and andesite have initial 87Sr/86Sr compositions of 0.70584-0.70601 and ξNd(t) values of -4,1 and -3,2. The range of Pb isotope values (206Pb/204Pb = 18.28-18.37, 207Pb/204Pb = 15.61-15.62, and 208Pb/204Pb = 38.26-38.43) of Navidad volcanic rocks and ore minerals suggest mixing Pb sources with contributions of

  16. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  17. Evaluation of frictional melting on the basis of trace element analyses of fault rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2016-12-01

    Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or

  18. Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study

    NASA Astrophysics Data System (ADS)

    Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang

    2017-09-01

    Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in

  19. Petrology of the Crystalline Rocks Hosting the Santa Fe Impact Structure

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.

    2010-01-01

    We collected samples from within the area of shatter cone occurrence and for approximately 8 kilometers (map distance) along the roadway. Our primary goal is to date the impact. Our secondary goal is to use the petrology and Ar systematics to provide further insight into size and scale of the impact. Our approach is to: Conduct a detailed petrology study to identify lithologies that share petrologic characteristics and tectonic histories but with differing degrees of shock. Obtain micro-cores of K-bearing minerals from multiple samples for Ar-40/Ar-39 analysis. Examine the Ar diffusion patterns for multiple minerals in multiple shocked and control samples. This will help us to better understand outcrop and regional scale relationships among rocks and their responses to the impact event.

  20. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  1. Paralavas in the Cretaceous Paraná volcanic province, Brazil - A genetic interpretation of the volcanic rocks containing phenocrysts and glass.

    PubMed

    Baggio, Sérgio B; Hartmann, Léo A; Bello, Rosa M S

    2016-01-01

    The occurrences of glassy rocks containing long and curved phenocrysts in the Paraná volcanic province, South America, are here interpreted as paralavas. The large number of thin (0.1-0.5 m) dikes and sills of glassy volcanic rocks with hopper, hollow or curved, large crystals of clinopyroxene (up to 10 cm), plagioclase (up to 1 cm), magnetite and apatite are contained in the core of thick (>70 m) pahoehoe flows. They are strongly concentrated in the state of Paraná, coincident with the presence of the large number of dikes in the Ponta Grossa arch. These rocks were previously defined as pegmatites, although other names have also been used. A paralava is here interpreted as the product of melting of basaltic rocks following varied, successive processes of sill emplacement in high-kerogen bituminous shale and ascent of the resultant methane. As the gas reached the lower portion of the most recent lava flow of the volcanic pile, the methane reacted with the silicate and oxide minerals of the host volcanic rock (1,000 ºC) and thus elevated the local temperature to 1,600 ºC. The affected area of host rock remelted (possibly 75 wt.%) and injected buoyantly the central and upper portion of the core. This methane-related mechanism explains the evidence found in the paralavas from this volcanic province, one of the largest in the continents.

  2. Geophysics: hot fluids or rock in eclogite metamorphism?

    PubMed

    Bjørnerud, M G; Austrheim, H

    2006-03-16

    The mechanisms by which mafic rocks become converted to denser eclogite in the lower crust and mantle are fundamental to our understanding of subduction, mountain building and the long-term geochemical evolution of Earth. Based on larger-than-expected gradients in argon isotopes, Camacho et al. propose a new explanation--co-seismic injection of hot (700 degrees C) aqueous fluids into much colder (400 degrees C) crust--for the localized nature of eclogite metamorphism during Caledonian crustal thickening, as recorded in the rocks of Holsnøy in the Bergen arcs, western Norway. We have studied these unusual rocks, which were thoroughly dehydrated under granulite facies conditions during a Neoproterozoic event (about 945 million years (945 Myr) ago); we also concluded that fracture-hosted fluids were essential as catalysts and components in the conversion to eclogite about 425 Myr ago. However, we are sceptical of the assertion by Camacho et al. that eclogite temperatures were reached only in the vicinity of fluid-filled fractures. Determining whether these rocks were strong enough to fracture at depths of 50 km because they were cold or because they were very dry is crucial to understanding the mechanics of the lower crust in mountain belts, including, for example, the causes of seismicity in the Indian plate beneath the modern Himalayas.

  3. Chemical remagnetization and clay diagenesis: testing the hypothesis in the Cretaceous sedimentary rocks of northwestern Montana

    NASA Astrophysics Data System (ADS)

    Gill, J. D.; Elmore, R. D.; Engel, M. H.

    Although the migration of fluids is a likely agent of remagnetization for some chemical remanent magnetizations (CRMs), widespread CRMs, which occur in rocks that have not been altered by externally derived fluids, need to explained by another mechanism. We are testing clay diagenesis as a remagnetization mechanism for such CRMs by comparing results from Mesozoic strata in the disturbed belt of Montana where the rocks contain ordered illite/smectite that formed by moderate heating as a result of thrust loading, with equivalent strata on the adjacent Sweetgrass Arch which contain unaltered smectite-rich clay mineral assemblages. The results indicate that the magnetization in the rocks in the Sweetgrass Arch is weak and dominated by a modern viscous component. In contrast, the disturbed belt rocks have higher magnetic intensities and contain a prefolding or early synfolding, reversed tertiary magnetization that is interpreted to be a CRM residing in magnetite and perhaps pyrrhotite. A presence-absence test and the timing of acquisition for the CRM suggest that magnetite authigenesis could be related to the smectite-to-illite conversion.

  4. Sediment-hosted Pb-Zn Deposits: a global perspective

    USGS Publications Warehouse

    Leach, David L.; Sangster, Donald F.; Kelley, Karen D.; Large, R; Garven, G.; Allen, Craig R.

    2005-01-01

    Sediment-hosted Pb-Zn deposits contain the world's greatest lead and zinc resources and dominate world production of these metals. They are a chverse group of ore deposits hosted by a wide variety of carbonate and siliciclastic roch that have no obviolls genetic association with igneous activity. A nmge of ore-fortl1ing processes in a vmiety of geologic and tectonic environments created these deposits over at least two billion years of Earth history. The metals were precipitated by basinal brines in synsedimentary and early diagenetic to low-grade metamorphic environments. The deposits display a broad range of relationships to enclosing host rocks that includes stratiform, strata-bound, and discordant ores. These ores are divided into two broad subt)1Jes: Mississippi Valley-type (MVT) and sedimentmy exhalative (SEDEX), Despite the "exhalative" component inherent in the term "SEDEX," in this manusclipt, direct evidence of an exhalite in the ore or alteration component is not essential for a deposit to be classified as SEDEX. The presence of laminated sulfides parallel to bedding is assumed to be permissive evidence for exhalative ores. The chstinction between some SEDEX and MVT depOSits can be quite subjective because some SEDEX ores replaced carbonate, whereas some MVT depOSits formed in an early diagenetic environment and display laminated ore textures. Geologic and resource information are presented for 248 depositS that provide a framework to describe ,mel compare these deposits. Nine of tlle 10 largest sediment-hosted Pb-Zn deposits are SEDEX, Of the deposits that contain at least 2.5 million metric tons (Mt), there are 35 SEDEX (excluding Broken Hill-type) deposits and 15 MVT (excluding Iris-type) deposits. Despite the skewed distribution of the deposit size, the two deposits types have an excellent correlation between total tonnage and tonnage of contained metal (Pb + Zn), with a fairly consistent ratio of about lO/l, regardless of the size of the deposit or

  5. Geochemical characteristics of igneous rocks associated with epithermal mineral deposits—A review

    USGS Publications Warehouse

    du Bray, Edward A.

    2017-01-01

    Newly synthesized data indicate that the geochemistry of igneous rocks associated with epithermal mineral deposits varies extensively and continuously from subalkaline basaltic to rhyolitic compositions. Trace element and isotopic data for these rocks are consistent with subduction-related magmatism and suggest that the primary source magmas were generated by partial melting of the mantle-wedge above subducting oceanic slabs. Broad geochemical and petrographic diversity of individual igneous rock units associated with epithermal deposits indicate that the associated magmas evolved by open-system processes. Following migration to shallow crustal reservoirs, these magmas evolved by assimilation, recharge, and partial homogenization; these processes contribute to arc magmatism worldwide.Although epithermal deposits with the largest Au and Ag production are associated with felsic to intermediate composition igneous rocks, demonstrable relationships between magmas having any particular composition and epithermal deposit genesis are completely absent because the composition of igneous rock units associated with epithermal deposits ranges from basalt to rhyolite. Consequently, igneous rock compositions do not constitute effective exploration criteria with respect to identification of terranes prospective for epithermal deposit formation. However, the close spatial and temporal association of igneous rocks and epithermal deposits does suggest a mutual genetic relationship. Igneous systems likely contribute heat and some of the fluids and metals involved in epithermal deposit formation. Accordingly, deposit formation requires optimization of source metal contents, appropriate fluid compositions and characteristics, structural features conducive to hydrothermal fluid flow and confinement, and receptive host rocks, but not magmas with special compositional characteristics.

  6. Origin of spinel lamella and/or inclusions in olivine of harzburgite form the Pauza ultramafic rocks from the Kurdistan region, northeastern Iraq

    NASA Astrophysics Data System (ADS)

    Mohammad, Y.; Maekawa, H.; Karim, K.

    2009-04-01

    Exsolution lamellae and octahedral inclusions of chromian spinel occur in olivine of harzburgite of the Pauza ultramafic rocks, Kurdistan region, northeastern Iraq. The lamella is up to 80μm long and up to 50 μm wide. The lamellae and octahedral inclusions of chromian spinel are distributed heterogeneously in the host olivine crystal. They are depleted in Al2O3 relative to the subhedral spinel grains in the matrix and spinel lamella in orthopyroxene. Olivine (Fo92 - 93) with spinel lamellae occurs as fine-grained crystals around orthopyroxene, whereas olivine (Fo90-91) free from spinel is found in matrix. Based on back-scattered images analyses, enrichments of both Cr # and Fe+3 in the chromian spinel lamella in olivine (replacive olivine) relative to that in adjacent orthopyroxene. As well as the compositions of chromian spinel lamellae host olivine are more Mg-rich than the matrix olivine. Furthermore the restriction of olivine with spinel lamellae and octahedral inclusions on around orthopyroxene, and the similarity of spinel lamella orientations in both olivine and adjacent orthopyroxene. This study concludes that the spinel inclusions in olivine are remnant (inherited from former orthopyroxene) spinel exsolution lamella in orthopyroxene, that has been formed in upper mantle conditions ( T = 1200 °C, P = 2.5 GPa ). Replacive olivine are formed by reaction of ascending silica poor melt and orthopyroxene in harzburgite as pressure decrease the solubility of silica-rich phase (orthopyroxene) in the system increase, therefore ascending melt dissolve pyroxene with spinel exsolution lamella and precipitate replacive olivine with spinel inclusions. We can conclude that the olivines with spinel lamella are not necessary to be original and presenting ultrahigh-pressure and/or ultra deep-mantle conditions as previously concluded. It has been formed by melting of orthopyroxene (orthopyroxene with spinel exsolution lamella = olivine with spinel lamellae and octahedral

  7. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    USGS Publications Warehouse

    Gries, R.R.; Clayton, J.L.; Leonard, C.

    1997-01-01

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the south-west and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S1 + S2 = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay. Oils produced from the San Juan sag and adjacent part of the San Juan basin are geochemically similar to rock extracts obtained from these potential source rock intervals. Based on reconstruction of the geologic history of the basin integrated with models of organic maturation, we conclude that most of the source rock maturation occurred in the Oligocene and Miocene. Little to no maturation took place during Laramide subsidence of the basin, when the Animas and Blanco Basin formations were deposited. The timing of maturation is unlike that of most Laramide basins in the Rocky Mountain region, where maturation occurred as a result of Paleocene and Eocene basin fill. The present geothermal gradient in the San Juan sag is slightly higher (average 3.5??C/100 m; 1.9??F/100 ft) than the regional average for southern Rocky

  8. Impact of trap architecture, adjacent habitats, abiotic factors, and host plant phenology on captures of plum curculio (Coleoptera: Curculionidae) adults.

    PubMed

    Lafleur, Gérald; Chouinard, Gérald; Vincent, Charles; Cormier, Daniel

    2007-06-01

    Pyramid traps, 2.44 m and 3.66 m in height, were compared with standard-sized pyramid traps, 1.22 m in height, to assess the impact of trap architecture on captures of adult plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), in two apple (Malus spp.) orchards and a blueberry (Vaccinium spp.) planting. The effects of adjacent habitat (organic orchard versus wooded areas), abiotic factors, and phenological stages of apple also were assessed to determine whether these variables influenced trap captures. Standard-sized pyramidal traps captured significantly more adults than larger trap variants. In the apple orchards, most adults (70-80%) were captured before petal fall with the exception of blocks adjacent to the organic orchard (25%). Significantly more adults were captured along the edge of an apple orchard (managed using an integrated pest management strategy) facing an organic apple orchard (76%) than along the edge facing wooded areas (24%). There was a significant positive correlation between daily trap captures and mean daily temperatures before petal fall in apple orchards.

  9. Origin of dolomitic rocks in the lower Permian Fengcheng formation, Junggar Basin, China: evidence from petrology and geochemistry

    NASA Astrophysics Data System (ADS)

    Zhu, Shifa; Qin, Yi; Liu, Xin; Wei, Chengjie; Zhu, Xiaomin; Zhang, Wei

    2017-04-01

    Although dolomitization of calcite minerals and carbonatization of volcanic rocks have been studied widely, the extensive dolomitic rocks that originated from altered volcanic and volcaniclastic rocks have not been reported. The dolomitic rocks of the Fengcheng Formation in the Junggar Basin of China appear to be formed under unusual geologic conditions. The petrological and geochemical characteristics indicate that the dolomitizing host rock is devitrified volcanic tuff. After low-temperature alteration and calcitization, these tuffaceous rocks are replaced by Mg-rich brine to form massive dolomitic tuffs. We propose that the briny (with -2 ‰ 6 ‰ of δ13CPDB and -5 ‰ 4 ‰ of δ18OPDB) and Mg-rich marine formation water (with 0.7060 0.7087 of 87Sr/86Sr ratio), the thick and intermediate-mafic volcanic ashes, and the tectonically compressional movement may have favored the formation of the unusual dolomitic rocks. We conclude that the proposed origin of the dolomitic rocks can be extrapolated to other similar terranes with volcaniclastic rocks, seabed tuffaceous sediment, and fracture filling of sill.

  10. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  11. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  12. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  13. Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial

  14. Elastic geobarometry: uncertainties arising from the geometry of the host-inclusion system

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Mattia L.; Burnley, Pamela; Angel, Ross J.; Chiara Domeneghetti, M.; Nestola, Fabrizio; Alvaro, Matteo

    2017-04-01

    Ultra-high-pressure metamorphic (UHPM) rocks are the only rocks that can provide insights into the detailed processes of deep and ultra-deep subduction. The application of conventional geobarometry to these rocks can be extremely challenging. Elastic geobarometry is an alternative and complementary method independent of chemistry and chemical equilibria. Minerals trapped as inclusions within other host minerals develop residual pressure (Pinc) on exhumation as a result of the differences between the thermo-elastic properties of the host and the inclusion. If correctly interpreted, measurement of the Pinc allows for a good estimate of the entrapment pressure. The solution for isotropic non-linear elasticity has been recently incorporated into the classic host-inclusion model [1; 2] and is now available in the EoSFit7c software [3]. However, this solution assumes a simple geometry for the host inclusion system with a small spherical inclusion located at the center of an infinite host. To verify the results of the analytical solution and to extend the analysis beyond the existing geometrical assumptions we performed numerical calculations using Finite Element Modelling (FEM). This approach has allowed us to evaluate the deviation from the pressure calculated with the isotropic solution if applied to real host-inclusion systems where the geometry is far from ideal, for example when the inclusion is not small, not at the center of the host and not spherical. In order to determine the effects of shape alone, we performed calculations with isotropic elasticity. Our results show that the deviations from the analytical solution arising from the geometry of the system are smaller than 1% if a spherical inclusion has a radius smaller than 1/4 of that of the host and is located at more than two inclusion radii from the external surface of the host. Deviations produced by changes in the shape of the inclusions include two contributions. First, the effect of edges and corners is

  15. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical

  16. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  17. Frictional processes during flank motion at Mount Etna (Italy): experimental characterisation of slip on similar and dissimilar volcanic and sedimentary rocks.

    NASA Astrophysics Data System (ADS)

    Rozanski, Wojciech; Lavallee, Yan; Kendrick, Jackie; Castagna, Angela; Mitchell, Thomas; Heap, Michael; Vinciguerra, Sergio; Hirose, Takehiro; Dingwell, Donald

    2015-04-01

    The edifice of Mount Etna (Italy) is structurally unstable, exhibiting a near continuous ESE seaward sliding along a set of faults due to interplay between regional tectonics, gravity instability and magma intrusion. Continuous seismic and ground deformation monitoring reveals the resulting large-scale flank motion at variable rates. The mechanisms controlling this faulting kinetic remains, however, poorly constrained. Examination of the fault zones reveals a range of rock types along the different fault segments: fresh and altered basalt, clay and limestone. As lithological contrasts can jeopardise the structural stability of an edifice, we experimentally investigate the frictional properties of these rocks using low- to high-velocity-rotary shear tests on similar and dissimilar rocks to better understand episodes of slow flank motion as well as rapid and catastrophic sector collapse events. The first set of experiments was performed at velocities up to 1.2 m/s and at normal stresses of 1.5 MPa, commensurate with depths of the contacts seen in the Etna edifice. Friction experiments on clay gouge shows the strong rate-weakening dependence of slip in this material as well as the release of carbon dioxide. Friction experiments on solid rocks show a wider range of mechanical behaviour. At high velocity (>0.6 m/s) volcanic rocks tend to melt whereas the clay and limestone do not; rather they decarbonate, which prevents the rock from achieving the temperature required for melting. Experiments on dissimilar rocks clearly show that composition of host rocks affects the composition and viscosity of the resultant frictional melt, which can have a dramatic effect on shear stress leading to fault weakening or strengthening depending on the combination of host rock samples. A series of low- to moderate-slip velocity experiments is now being conducted to complement our dataset and provide a more complete rock friction model applicable to Mount Etna.

  18. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, Southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Hsu, Liang C.; Spatz, David

    1988-01-01

    Comparative lab spectra and Thematic Mapper imagery investigations at 3 Tertiary calderas in southern Nevada indicate that desert varnish is absorbant relative to underlying host rocks below about 0.7 to 1.3 microns, depending on mafic affinity of the sample, but less absorbant than mafic host rocks at higher wavelengths. Desert varnish occurs chiefly as thin impregnating films. Distribution of significant varnish accumulations is sparse and localized, occurring chiefly in surface recesses. These relationships result in the longer wavelength bands and high 5/2 values over felsic units with extensive desert varnish coatings. These lithologic, petrochemical, and desert varnish controlled spectral responses lead to characteristic TM band relationships which tend to correlate with conventionally mappable geologic formations. The concept of a Rock-Varnish Index (RVI) is introduced to help distinguish rocks with a potentially detectable varnish. Felsic rocks have a high RVI, and those with extensive desert varnish behave differently, spectrally, from those without extensive varnish. The spectrally distinctive volcanic formations at Stonewall Mountain provide excellent statistical class segregation on supervised classification images. A binary decision rule flow-diagram is presented to aid TM imagery analysis over volcanic terrane in semi-arid environments.

  19. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  20. Assessment of Coalbed Gas Resources in Cretaceous and Tertiary Rocks on the North Slope, Alaska, 2006

    USGS Publications Warehouse

    Roberts, Steve; Barker, Charles E.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2006-01-01

    The North Slope of Alaska is a vast area of land north of the Brooks Range, extending from the Chukchi Sea eastward to the Canadian border. This Arctic region is known to contain extensive coal deposits; hypothetical coal resource estimates indicate that nearly 4 trillion short tons of coal are in Cretaceous and Tertiary rocks. Because of the large volume of coal, other studies have indicated that this region might also have potential for significant coalbed gas resources. The present study represents the first detailed assessment of undiscovered coalbed gas resources beneath the North Slope by the USGS. The assessment is based on the total petroleum system (TPS) concept. Geologic elements within a TPS relate to hydrocarbon source rocks (maturity, hydrocarbon generation, migration), the characteristics of reservoir rocks, and trap and seal formation. In the case of coalbed gas, the coal beds serve as both source rock and reservoir. The Brookian Coalbed Gas Composite TPS includes coal-bearing rocks in Cretaceous and Tertiary strata underlying the North Slope and adjacent Alaska State waters. Assessment units (AUs) within the TPS (from oldest to youngest) include the Nanushuk Formation Coalbed Gas AU, the Prince Creek and Tuluvak Formations Coalbed Gas AU, and the Sagavanirktok Formation Coalbed Gas AU.

  1. Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.

    2015-12-01

    High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can

  2. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.

    PubMed

    Mazurek, Martin; Jakob, Andreas; Bossart, Paul

    2003-03-01

    Water-conducting faults and fractures were studied in the granite-hosted Aspö Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough

  3. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D

  4. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  5. Variability of adjacency effects in sky reflectance measurements.

    PubMed

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-09-01

    Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.

  6. Trace element abundances in megacrysts and their host basalts - Constraints on partition coefficients and megacryst genesis

    NASA Technical Reports Server (NTRS)

    Irving, A. J.; Frey, F. A.

    1984-01-01

    Rare earth and other trace element abundances are determined in megacrysts of clinopyroxene, orthopyroxene, amphibole, mica, anorthoclase, apatite and zircon, as well as their host basalts, in an effort to gather data on mineral/melt trace element partitioning during the high pressure petrogenesis of basic rocks. Phase equilibria, major element partitioning and isotopic ratio considerations indicate that while most of the pyroxene and amphibole megacrysts may have been in equilibrium with their host magmas at high pressures, mica, anorthoclase, apatite, and zircon megacrysts are unlikely to have formed in equilibrium with their host basalts. It is instead concluded that they were precipitated from more evolved magmas, and have been mixed into their present hosts.

  7. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  8. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.

    1988-01-01

    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  9. Alkalic rocks and resources of thorium and associated elements in the Powderhorn District, Gunnison County, Colorado

    USGS Publications Warehouse

    Olson, J.C.; Hedlund, D.C.

    1981-01-01

    Alkalic igneous rocks and related concentrations of thorium, niobium, rare-earth elements, titanium, and other elements have long been known in the Powderhorn mining district and have been explored intermittently for several decades. The deposits formed chiefly about 570 m.y. (million years) ago in latest Precambrian or Early Cambrian time. They were emplaced in lower Proterozoic (Proterozoic X) metasedimentary, metavolcanic, and plutonic rocks. The complex of alkalic rocks of Iron Hill occupies 31 km 2 (square kilometers) and is composed of pyroxenite, uncompahgrite, ijolite, nepheline syenite, and carbonatite, in order of generally decreasing age. Fenite occurs in a zone, in places more than 0.6 km (kilometer) wide, around a large part of the margin of the complex and adjacent to alkalic dikes intruding Precambrian host rock. The alkalic rocks have a radioactivity, chiefly due to thorium, greater than that of the surrounding Powderhorn Granite (Proterozoic X) and metamorphic rocks. The pyroxenite, uncompahgrite, ijolite, and nepheline syenite, which form more than 80 percent of the complex, have fairly uniform radioactivity. Radioactivity in the carbonatite stock, carbonatite dikes, and the carbonatite-pyroxenite mixed rock zone, however, generally exceeds that in the other rocks of the complex. The thorium concentrations in the Powderhorn district occur in six types of deposits: thorite veins, a large massive carbonatite body, carbonatite dikes, trachyte dikes, magnetite-ilmeniteperovskite dikes or segregations, and disseminations in small, anomalously radioactive plutons chiefly of granite or quartz syenite that are older than rocks of the alkalic complex. The highest grade thorium concentrations in the district are in veins that commonly occur in steeply dipping, crosscutting shear or breccia zones in the Precambrian rocks. They range in thickness from a centimeter or less to 5 m (meters) and are as much as 1 km long. The thorite veins are composed chiefly of

  10. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    NASA Astrophysics Data System (ADS)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  11. Mineral growth in rocks: kinetic-rheological models of replacement, vein formation, and syntectonic crystallization

    NASA Astrophysics Data System (ADS)

    Fletcher, Raymond C.; Merino, Enrique

    2001-11-01

    We model three cases of coupling between mineral growth kinetics and mechanical response of the rock: (i) dispersed spherical crystals growing by replacement in a hydrostatically stressed elastic rock; (ii) growth of veins or vein networks accommodated by viscous relaxation of surrounding rock; and (iii) syntectonic crystallization in a rock undergoing bulk pure shear. Such models for the microscopic environment of mineral growth, together with additional assumptions or knowledge about rheological behavior and aggregate geometry, provide refined estimates of the behavior of a macroscopic volume element, which could be combined with geochemical reaction-transport models. Crucial in the models are the various consequences-pressure solution, creep, fracturing-of the local stress that is necessarily generated by mineral growth in rocks (other than in pores). In the first model, the dispersed spherical crystals of mineral A are assumed to grow within a spherical volume of rock consisting of mineral B, the ;mineralized zone; (MZ), itself embedded in elastic rock. The macroscopic stress in the MZ and the far-field stress in the surrounding rock are uniform and hydrostatic. Mineral growth of the A crystals is driven by supersaturation with respect to mineral A, is accommodated by replacement of B grains, and leads to an expansion of the MZ described by an infinitesimal strain. The radial growth rate of a spherical crystal of mineral A, with replacement of mineral B, is da/dt=kARTln(ΩA)[kBV0B/(kBV0B+kAV0A)], where kA and kB are kinetic constants, R is the gas constant, T the temperature in kelvin, and V0A and V0B are specific volumes. Reference saturation states of mineral A, ΩA > 1, and host mineral B, ΩB = 1, are specified at the far-field hydrostatic stress, σ0. The microscopic environment of each crystal of A is modeled by a representative volume element (RVE) consisting of a sphere of mineral A embedded in a spherical shell of mineral B. In each RVE, stress is

  12. Houston, We Have a Podcast. Episode 48: Moon Rocks

    NASA Image and Video Library

    2018-06-08

    Gary Jordan (Host): Houston, we have a podcast. Welcome to the official podcast of the NASA Johnson Space Center, episode 48, Moon Rocks. I'm Gary Jordan and I'll be your host today. So, in this podcast, we bring in the experts, NASA scientists, engineers, astronauts, all to let you know the coolest information about what's going on right here at NASA. So, today, we're talking to the keeper of all moon rocks in the world, Ryan Zeigler. Well, technically, they're all held here at the Johnson Space Center by NASA in the Lunar Curation Facility. But Ryan is the lunar sample curator here in Texas and he's also a planetary scientist. We had a great discussion about moon rocks, like the reason why we brought them back from moon during the Apollo Program, more about the facilities that keep them, and also what we're still learning from them. So, with no further delay, let's go lightspeed and jump right ahead to our talk with Dr. Ryan Zeigler. Enjoy. [ Music ] Host: Ryan, thanks for taking the time to come on the podcast today. I can't believe it, but we're actually finally going to talk about moon rocks. Ryan Zeigler: I know, I mean you'd think this was a cursed subject or something. Host: Well, it's interesting because -- and correct me if I'm wrong -- all of the moon rocks that were collected on the Apollo missions are here, correct? Ryan Zeigler: Most of our here, about -- about 85% are here or maybe 80% are here, 5% are out with scientists, and about 15% are at a secret remote storage facility at White Sands, so -- Host: Oh, okay. Ryan Zeigler: Not that secret, I guess, so. Host: The secret's out now. Okay. So -- but -- but the moon rocks were collected on just human missions, right, not robotic missions? Ryan Zeigler: For NASA, yes. Host: Okay. Okay. So, were there other lunar acquisition -- like robotic ones? Ryan Zeigler: Yeah, so the Soviets had three Luna missions -- Luna 16, 20, and 24, and they collected about a pound of samples. Host: Oh, really? Ryan Zeigler

  13. Infectious microbial diseases and host defense responses in Sydney rock oysters

    PubMed Central

    Raftos, David A.; Kuchel, Rhiannon; Aladaileh, Saleem; Butt, Daniel

    2014-01-01

    Aquaculture has long been seen as a sustainable solution to some of the world's growing food shortages. However, experience over the past 50 years indicates that infectious diseases caused by viruses, bacteria, and eukaryotes limit the productivity of aquaculture. In extreme cases, these types of infectious agents threaten the viability of entire aquaculture industries. This article describes the threats from infectious diseases in aquaculture and then focuses on one example (QX disease in Sydney rock oysters) as a case study. QX appears to be typical of many emerging diseases in aquaculture, particularly because environmental factors seem to play a crucial role in disease outbreaks. Evidence is presented that modulation of a generic subcellular stress response pathway in oysters is responsible for both resistance and susceptibility to infectious microbes. Understanding and being able to manipulate this pathway may be the key to sustainable aquaculture. PMID:24795701

  14. Understanding tectonic stress and rock strength in the Nankai Trough accretionary prism, offshore SW Japan

    NASA Astrophysics Data System (ADS)

    Huffman, Katelyn A.

    predicted in the method by as much as 4 MPa at Site C0002. I constrain stress at Site C0002 using geophysical logging data from two adjacent boreholes drilled into the same sedimentary sequence with different drilling conditions in a forward model that predicts breakout width over a range of horizontal stresses (where SHmax is constrained by the ratio of stresses that would produce active faulting and Shmin is constrained from leak-off-tests) and rock strength. I then compare predicted breakout widths to observations of breakout widths from RAB images to determine the combination of stresses in the model that best match real world observations. This is the first published method to constrain both stress and strength simultaneously. Finally, I explore uncertainty in rock behavior during compressional breakout formation using a finite element model (FEM) that predicts Biot poroelastic changes in fluid pressure in rock adjacent to the borehole upon its excavation and explore the effect this has on rock failure. I test a range of permeability and rock stiffness. I find that when rock stiffness and permeability are in the range of what exists at Nankai, pore fluid pressure increase +/- 45° from Shmin and can lead to weakening of wall rock and a wider compressional failure zone than what would exist at equilibrium conditions. In a case example at, we find this can lead to an overestimate of tectonic stress using compressional failures of ~2 MPa in the area of the borehole where fluid pressure increases. In areas around the borehole where pore fluid decreases (+/- 45° from SHmax), the wall rock can strengthen which suppresses tensile failure. The implications of this research is that there are many potential pitfalls in the method to constrain stress using borehole breakouts in Nankai Trough mudstone, mostly due to uncertainty in parameters such as strength and underlying assumptions regarding constitutive rock behavior. More laboratory measurement and/or models of rock

  15. Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.

    2005-05-01

    Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.

  16. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  17. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    USGS Publications Warehouse

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  18. Volcanic Rocks As Targets For Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  19. Constraining the age of Aboriginal rock art using cosmogenic Be-10 and Al-26 dating of rock shelter collapse in the Kimberley region, Australia.

    NASA Astrophysics Data System (ADS)

    Cazes, Gaël; Fink, David; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.

    2017-04-01

    The Kimberley region, northwest Australia, possesses an extensive and diverse collection of aboriginal rock art that potentially dates to more than 40,000 years ago. However, dating of such art using conventional techniques remains problematic. Here, we develop a new approach which makes use of the difference in production rates of in-situ 10Be and 26Al between intact rock walls and exposed surfaces of detached slabs from rock art shelters to constrain the age of Aboriginal rock-art. In the prevailing sandstone lithology of the Kimberley region, open cave-like rock shelters with cantilevered overhangs evolve by the collapse of unstable, partially rectangular, blocks weakened typically along joint-lines and fractures. On release, those slabs which extend outside the rock face perimeter will experience a higher production rate of cosmogenic 10Be and 26Al than the adjacent rock which remains intact within the shelter. The dating of these freshly exposed slabs can help reconstruct rock-shelter formation and provide either maximum or minimum ages for the rock art within the shelter. At each site, both the upper-face of the newly exposed fallen slab and the counterpart intact rock surface on the ceiling need to be sampled at their exact matching-point to ensure that the initial pre-release cosmogenic nuclide concentration on slab and ceiling are identical. The calculation of the timing of the event of slab release is strongly dependent on the local production rate, the new shielding of the slab surface and the post-production that continues on the ceiling sample at the matching point. The horizon, ceiling and slab shielding are estimated by modelling the distribution of neutron and muon trajectories in the irregular shaped rock-shelter and slab using 3D photogrammetric reconstruction from drone flights and a MATLAB code (modified from G. Balco, 2014) to estimate attenuation distances and model the production rate at each sample. Five rock-art sites have been dated and

  20. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    NASA Astrophysics Data System (ADS)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  1. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  2. Host quality and spatial patterning in infections of the Eastern mudsnail (Ilyanassa obsoleta) by two trematodes (Himasthla quissetensis and Zoogonus rubellus).

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2012-04-01

    Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.

  3. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  4. 47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for... compatible with adjacent and co-channel operations in the adjacent areas on all its frequencies; and (2... adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety stations...

  5. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. Exploration of the role of permeability and effective stress transfer effects on Earthquakes Migration in a Fault Zone induced by a Fluid Injection in the nearby host rock: Experimental and Numerical Result.

    NASA Astrophysics Data System (ADS)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2016-12-01

    Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.

  7. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  8. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  9. Effects of long non-coding RNA HOST2 on cell migration and invasion by regulating MicroRNA let-7b in breast cancer.

    PubMed

    Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting

    2018-06-01

    The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.

  10. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  11. Multiple metasomatic events recorded in Kilbourne Hole peridotite xenoliths: the relative contribution of host basalt interaction vs. silicate metasomatic glass

    NASA Astrophysics Data System (ADS)

    Hammond, S. J.; Yoshikawa, M.; Harvey, J.; Burton, K. W.

    2010-12-01

    Stark differences between bulk-rock lithophile trace element budgets and the sum of the contributions from their constituent minerals are common, if not ubiquitous in peridotite xenoliths [1]. In the absence of modal metasomatism this discrepancy is often attributed to the “catch-all”, yet often vague process of cryptic metasomatism. This study presents comprehensive Sr-Nd isotope ratios for variably metasomatized bulk-rock peridotites, host basalts, constituent peridotite mineral phases and interstitial glass from 13 spinel lherzolite and harzburgite xenoliths from the Kilbourne Hole volcanic maar, New Mexico, USA. Similar measurements were also made on hand-picked interstitial glass from one of the most highly metasomatized samples (KH03-16) in an attempt to unravel the effects of multiple metasomatic events. In all Kilbourne Hole peridotites analysed, hand-picked, optically clean clinopyroxenes preserve a more primitive Sr isotope signature than the corresponding bulk-rock; a pattern preserved in all but one sample for Nd isotope measurements. Reaction textures, avoided during hand-picking, around clinopyroxene grains are evident in the most metasomatized samples and accompanied by films of high-SiO2 interstitial glass. The margins of primary minerals appear partially resorbed and trails of glassy melt inclusions similar in appearance to those previously reported from the same locality [2], terminate in these films. Hand-picked glass from KH03-16 reveals the most enriched 87Sr/86Sr of any component recovered from these xenoliths (87Sr/86Sr = 0.708043 ± 0.00009; [Sr] = 81 ppm). Similarly, the 143Nd/144Nd of the glass is amongst the most enriched of the peridotite components (143Nd/144Nd = 0.512893 ± 0.000012; [Nd] = 10 ppm). However, the host basalt (87Sr/86Sr = 0.703953 ± 0.00012; 143Nd/144Nd = 0.512873 ± 0.000013), similar in composition to nearby contemporaneous Potrillo Volcanic Field basalts [3], contains nearly an order of magnitude more Sr and more

  12. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains

    USGS Publications Warehouse

    West, Daniel R.; Briggs, Jenny S.; Jacobi, William R.; Negron, Jose F.

    2016-01-01

    Recent evidence of range expansion and host transition by mountain pine beetle ( Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.

  13. Interaction of Rock Minerals with Carbon Dioxide and Brine: A Hydrothermal Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, Bruce M.; Gupta, Neeraj; Ickes, Jennifer A.

    2002-02-02

    This paper presents interim results of a feasibility study on carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of the investigation is to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Findings of the first phase of this investigation were presented in a topical report (Sass et al., 1999a). Preliminary results of the second phase, now underway, have been reported elsewhere (Sass et al., 1999b; 2001). Evaluations of the suitability of Mt. Simon formation for sequestering CO{sub 2} and economic issues are reported by Gupta et al., 1999; 2001; Smith etmore » al., 2001. This study is sponsored by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant. The overall objectives of Phase II experiments were to determine: (1) the potential for long-term sequestration of CO{sub 2} in deep, regional host rock formations; and (2) the effectiveness of overlying caprock as a barrier against upward migration of the injected CO{sub 2}. To meet these goals, experiments were conducted using rock samples from different potential host reservoirs and overlying rocks. In addition, pure mineral samples were used in some experimental runs to investigate specific mineralogical reactions. Due to space limitations, the scope of this paper will be limited to two types of equilibration experiments using pure minerals. Implications for more complex natural systems will be discussed in the report for Phase II being finalized at this time.« less

  14. "Rock Garden"

    NASA Image and Video Library

    1997-10-14

    This false color composite image of the Rock Garden shows the rocks "Shark" and "Half Dome" at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989). http://photojournal.jpl.nasa.gov/catalog/PIA00987

  15. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  16. A Hydrous Seismogenic Fault Rock Indicating A Coupled Lubrication Mechanism

    NASA Astrophysics Data System (ADS)

    Okamoto, S.; Kimura, G.; Takizawa, S.; Yamaguchi, H.

    2005-12-01

    In the seismogenic subduction zone, the predominant mechanisms have been considered to be fluid induced weakening mechanisms without frictional melting because the subduction zone is fundamentally quite hydrous under low temperature conditions. However, recently geological evidence of frictional melting has been increasingly reported from several ancient accretionary prisms uplifted from seismogenic depths of subduction zones (Ikesawa et al., 2003; Austrheim and Andersen, 2004; Rowe et al., 2004; Kitamura et al., 2005) but relationship between conflicting mechanisms; e.g. thermal pressurization of fluid and frictional melting is still unclear. We found a new exposure of pseudotachylyte from a fossilized out-of-sequence thrust (OOST) , Nobeoka thrust in the accretionary complex, Kyushu, southwest Japan. Hanging-wall and foot-wall are experienced heating up to maximum temperature of about 320/deg and about 250/deg, respectively. Hanging-wall rocks of the thrust are composed of shales and sandstones deformed plastically. Foot-wall rocks are composed of shale matrix melange with sandstone and basaltic blocks deformed in a brittle fashion (Kondo et al, 2005). The psudotachylyte was found from one of the subsidiary faults in the hanging wall at about 10 m above the fault core of the Nobeoka thrust. The fault is about 1mm in width, and planer rupture surface. The fault maintains only one-time slip event because several slip surfaces and overlapped slip textures are not identified. The fault shows three deformation stages: The first is plastic deformation of phyllitic host rocks; the second is asymmetric cracking formed especially in the foot-wall of the fault. The cracks are filled by implosion breccia hosted by fine carbonate minerals; the third is frictional melting producing pseudotachylyte. Implosion breccia with cracking suggests that thermal pressurization of fluid and hydro-fracturing proceeded frictional melting.

  17. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    Rock County is in south-central Wisconsin adjacent to the Illinois State line. The county has an area of about 723 square miles and had a population of about 113,000 in 1957 ; it is one of the leading agricultural and industrial counties in the State. The total annual precipitation averages about 32 inches, and the mean annual temperature is about 48 ? F. Land-surface altitudes are generally between 800 and 00 feet, but range from 731 feet, where the Rock River flows into Illinois, to above 1,080 feet, at several places in the northwestern part of the county. The northern part of Rock County consists of the hills and kettles of a terminal moraine which slopes southward to a flat, undissected outwash plain. The southeastern part of the county is an area of gentle slopes, whereas the southwestern part consists of steep-sided valleys and ridges. Rock County is within the drainage basin of the Rock River, which flows southward through the center of the county. The western and southwestern parts of ,the county are drained by the Sugar River und Coon Creek, both of which flow into the Pecatonica River in Illinois and thence into the Rock River. The southeastern part of the county is drained by Turtle Creek, which also flows into Illinois before joining the Rock River. Nearly all the lakes and ponds are in the northern one-third of the county, the area of most recent glaciation. The aquifers in Rock County are of sedimentary origin and include deeply buried sandstones, shales, and dolomites of the Upper Cambrian series. This series overlies crystalline rocks of Precambrian age and supplies water to all the cities and villages in the county. The St. Peter sandstone of Ordovician age underlies all Rock County except where the formation has been removed by erosion in the Rock and Sugar River valleys, and perhaps in Coon Creek valley. The St. Peter sandstone is the principal source of water for domestic, stock, and small industrial wells in the western half of the county

  18. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  19. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  20. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  1. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  2. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  3. Rock burst governance of working face under igneous rock

    NASA Astrophysics Data System (ADS)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  4. Cryopreserved embryo transfer: adjacent or non-adjacent to failed fresh long GnRH-agonist protocol IVF cycle.

    PubMed

    Volodarsky-Perel, Alexander; Eldar-Geva, Talia; Holzer, Hananel E G; Schonberger, Oshrat; Reichman, Orna; Gal, Michael

    2017-03-01

    The optimal time to perform cryopreserved embryo transfer (CET) after a failed oocyte retrieval-embryo transfer (OR-ET) cycle is unknown. Similar clinical pregnancy rates were recently reported in immediate and delayed CET, performed after failed fresh OR-ET, in cycles with the gonadotrophin-releasing hormone (GnRH) antagonist protocol. This study compared outcomes of CET performed adjacently (<50 days, n = 67) and non-adjacently (≥50 to 120 days, n = 62) to the last OR-day of cycles with the GnRH agonist down-regulation protocol. Additional inclusion criteria were patients' age 20-38 years, the transfer of only 1-2 cryopreserved embryos, one treatment cycle per patient and artificial preparation for CET. Significantly higher implantation, clinical pregnancy and live birth rates were found in the non-adjacent group than in the adjacent group: 30.5% versus 11.3% (P = 0.001), 41.9% versus 17.9% (P = 0.003) and 32.3% versus 13.4% (P = 0.01), respectively. These results support the postponement of CET after a failed OR-ET for at least one menstrual cycle, when a preceding long GnRH-agonist protocol is used. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Geotechnical Descriptions of Rock and Rock Masses.

    DTIC Science & Technology

    1985-04-01

    determined in the field on core speci ns by the standard Rock Testing Handbook Methods . afls GA DTIC TAB thannounod 13 Justifiatlo By Distributin...to provide rock strength descriptions from the field. The point-load test has proven to be a reliable method of determining rock strength properties...report should qualify the reported spacing values by stating the methods used to determine spacing. Preferably the report should make the determination

  6. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  7. CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.; Prestvik, T.; Li, Y.

    2009-12-01

    The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of

  8. Whole-rock and mineral compositional constraints on the magmatic evolution of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Santaguida, Frank

    2018-01-01

    The 2.06 Ga mafic-ultramafic Kevitsa intrusion is located in the Central Lapland greenstone belt. The lower ultramafic part of the intrusion hosts a large disseminated Ni-Cu-(PGE) sulfide deposit with Ni tenors ranging widely from < 4 wt% (uneconomic false ore and contact mineralization) to 4-7 wt% (regular ore) and up to 40 wt% (Ni-PGE ore). The stratigraphy of the ultramafic cumulates is divided into the basal pyroxenite-gabbro (Basal series), olivine pyroxenite (OLPX), pyroxenite, and plagioclase-bearing (ol) websterite (pOLWB), of which the latter occurs together with minor microgabbros in the ore-bearing domain of the intrusion. Around the ore domain, the ultramafic cumulate succession records a simple lithological stratigraphy and modest and predictable variations in whole-rock and mineral compositions. The ore-bearing domain, in contrast, is characterized by a complex internal architecture, variations in whole-rock and mineral compositions, and the presence of numerous inclusions and xenoliths. The OLPXs are mainly composed of cumulus olivine (Fo77-89) and clinopyroxene (Mg#81-92) with variable amounts of oikocrystic orthopyroxene (Mg#79-84). They comprise the bulk of the ultramafic cumulates and are the dominant host rocks to the sulfide ore. The host rocks to the regular and false ore type are mineralogically and compositionally similar (Fo 80-83, mostly) and show mildly LREE-enriched REE patterns (CeN/YbN 2), characteristic for the bulk of the Kevitsa ultramafic cumulates. The abundance of orthopyroxene and magnetite is lowest in the host rocks to the Ni-PGE ore type, being in line with the mineral compositions of the silicates, which are the most primitive in the intrusion. However, it contrasts with the LREE-enriched nature of the ore type (CeN/YbN 7), indicating significant involvement of crustal material in the magma. The contrasting intrusive stratigraphy in the different parts of the intrusion likely reflects different emplacement histories. It is

  9. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  10. Water-quality, bed-sediment, and discharge data for the Mississippi River-Gulf Outlet and adjacent waterways, southeastern Louisiana, August 2008 through December 2009

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Mize, Scott V.; Lovelace, John K.

    2012-01-01

    The Mississippi River-Gulf Outlet navigation channel (MRGO) was constructed in the early 1960s to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for deep-draft, ocean-going vessels and to promote the economic development of the Port of New Orleans. In 2006, the U.S. Army Corps of Engineers developed a plan to de-authorize the MRGO. The plan called for a rock barrier to be constructed across the MRGO near Bayou La Loutre. In 2008, the U.S. Geological Survey, in cooperation with the Louisiana Coastal Area Science and Technology Program began a study to document the impacts of the rock barrier on water-quality and flow before, during, and after its construction. Water-quality, bed-sediment, and discharge data were collected in the MRGO and adjacent water bodies from August 2008 through December 2009.

  11. Diversity of Cryptosporidium in brush-tailed rock-wallabies (Petrogale penicillata) managed within a species recovery programme

    PubMed Central

    Vermeulen, Elke T.; Ashworth, Deborah L.; Eldridge, Mark D.B.; Power, Michelle L.

    2015-01-01

    Host–parasite relationships are likely to be impacted by conservation management practices, potentially increasing the susceptibility of wildlife to emerging disease. Cryptosporidium, a parasitic protozoan genus comprising host-adapted and host-specific species, was used as an indicator of parasite movement between populations of a threatened marsupial, the brush-tailed rock-wallaby (Petrogale penicillata). PCR screening of faecal samples (n = 324) from seven wallaby populations across New South Wales, identified Cryptosporidium in 7.1% of samples. The sampled populations were characterised as captive, supplemented and wild populations. No significant difference was found in Cryptosporidium detection between each of the three population categories. The positive samples, detected using 18S rRNA screening, were amplified using the actin and gp60 loci. Multi-locus sequence analysis revealed the presence of Cryptosporidium fayeri, a marsupial-specific species, and C. meleagridis, which has a broad host range, in samples from the three population categories. Cryptosporidium meleagridis has not been previously reported in marsupials and hence the pathogenicity of this species to brush-tailed rock-wallabies is unknown. Based on these findings, we recommend further study into Cryptosporidium in animals undergoing conservation management, as well as surveying wild animals in release areas, to further understand the diversity and epidemiology of this parasite in threatened wildlife. PMID:25834789

  12. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  13. Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    An understanding of processes affecting seepage intoemplacement tunnels is needed for correctly predicting the performance ofunderground radioactive waste repositories. It has been previouslyestimated that the capillary and vaporization barriers in the unsaturatedfractured rock of Yucca Mountain are enough to prevent seepage underpresent day infiltration conditions. It has also been thought that asubstantially elevated infiltration flux will be required to causeseepage after the thermal period is over. While coupledthermal-hydrological-chemical (THC) changes in Yucca Mountain host rockdue to repository heating has been previously investigated, those THCmodels did not incorporate elements of the seepage model. In this paper,we combine the THC processes inmore » unsaturated fractured rock with theprocesses affecting seepage. We observe that the THC processes alter thehydrological properties of the fractured rock through mineralprecipitation and dissolution. We show that such alteration in thehydrological properties of the rock often leads to local flow channeling.We conclude that such local flow channeling may result in seepage undercertain conditions, even with nonelevated infiltrationfluxes.« less

  14. Muon tomography in the Mont Terri underground rock laboratory

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Carlus, B.; Nussbaum, C.

    2012-04-01

    The Mont Terri underground rock laboratory (Switzerland) was excavated in a Mesozoic shale formation constituted by Opalinus clay. This impermeable formation presents suitable properties for hosting repository sites of radioactive waste. A muon telescope has been placed in this laboratory in October 2009 to establish the feasibility of the muon tomography and to test the sensor performance in a calm environment, where we are protected from atmospheric noisy particles. However, the presence of radon in the gallery as well as charged particles issued from the decay of gamma rays may create a background noise. This noise shift and smooths the signal inducing an under estimation of the rock density. The uncorrelated background has been measured by placing the planes of detection in anti-coincidence. This estimation is preponderant and has to be combined to the theoretical feasibility evaluation to determine the best experimental set-up to observe muon flux fluctuations due to density variations. The muon densitometry experience is here exposed with the estimation of its feasibility. The data acquired from different locations inside the underground laboratory are presented. They are compared to two models representing the layer above the laboratory corresponding to a minimum and a maximum muon flux expectation depending on the values of the rock density.

  15. Characterization of mineral coatings associated with a Pleistocene-Holocene rock art style: The Northern Running Figures of the East Alligator River region, western Arnhem Land, Australia.

    PubMed

    King, Penelope L; Troitzsch, Ulrike; Jones, Tristen

    2017-02-01

    This data article contains mineralogic and chemical data from mineral coatings associated with rock art from the East Alligator River region. The coatings were collected adjacent to a rock art style known as the "Northern Running Figures" for the purposes of radiocarbon dating (doi:10.1016/j.jasrep.2016.11.016; (T. Jones, V. Levchenko, P.L. King, U. Troitzsch, D. Wesley, 2017) [1]). This contribution includes raw and processed powder X-ray Diffraction data, Scanning Electron Microscopy energy dispersive spectroscopy data, and Fourier Transform infrared spectral data.

  16. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  17. Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13

    USGS Publications Warehouse

    Breit, George N.

    2016-01-01

    Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.

  18. Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1992-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of

  19. Preliminary report of the uranium favorability of shear zones in the crystalline rocks of the southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penley, H.M.; Schot, E.H.; Sewell, J.M.

    1978-11-01

    Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less

  20. Picornavirus Modification of a Host mRNA Decay Protein

    PubMed Central

    Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.

    2012-01-01

    ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833

  1. Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures

    NASA Astrophysics Data System (ADS)

    Schulz, Toni; Luguet, Ambre; Wegner, Wencke; Acken, David; Koeberl, Christian

    2016-07-01

    The Lonar crater is a ~0.57-Myr-old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best-preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr-Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact-related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re-Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re-Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near-chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12-20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.

  2. Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts

    PubMed Central

    Marvel, Deborah J.; Torrey, John G.; Ausubel, Frederick M.

    1987-01-01

    Parasponia, a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with Bradyrhizobium or Rhizobium species. The Bradyrhizobium strain Rp501, isolated from Parasponia nodules, also nodulates the legumes siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata). To test whether some of the same genes are involved in the early stages of legume and nonlegume nodulation, we generated transposon Tn5 insertions in the region of three evolutionarily conserved genes (nodA, nodB, and nodC) required for legume nodulation in several Rhizobium and Bradyrhizobium species. Assays of these mutant Rp501 strains on legume hosts and Parasponia seedlings established that nodABC are required for nodulation of legume and nonlegume hosts, indicating that nonlegumes and legumes can respond to the same bacterial signal(s). In addition, a strain carrying a Tn5 insertion adjacent to the nodABC genes vigorously nodulated Rp501 legume hosts but was incapable of nodulating Parasponia, possibly identifying a nonlegume-specific nodulation function. Images PMID:16593814

  3. A giant oil seep at a salt-induced escarpment of the São Paulo Plateau, Espírito Santo Basin, off Brazil: Host rock characteristics and geochemistry

    NASA Astrophysics Data System (ADS)

    Freire, Antonio Fernando Menezes; Iemini, Juliana Andrade; Viana, Adriano Roessler; Magnavita, Luciano Portugal; Dehler, Nolan Maia; Kowsmann, Renato Oscar; Miller, Dennis James; Bezerra, Sabrina Helena Diniz Gilaberte; Zerfass, Geise de Santana dos Anjos; Shimabukuro, Seirin; Nóbrega, Marcos, II

    2017-12-01

    An international research cruise named Iatá-Piuna took place on the São Paulo Plateau on May 2013 in the Campos and Espírito Santo basins, off Brazil. The cruise was carried ou on board the research vessel (R/V) Yokosuka that hosts the human operated vehicle (HOV) SHINKAI 6500. It aimed at finding chemosynthetic communities, composed of organisms capable of generating their own vital energy by metabolizing organic and inorganic compounds related to seeps. Identification of these organisms could provide information for understanding the origin of life, since they may resemble primitive organisms that existed in the initial stages of life on Earth. During Leg 2 (May 10-24, 2013), however, dives on the northern part of the São Paulo Plateau at the Espírito Santo Basin led to the discovery of a giant oil seep. The seep, ca. 3 nautical miles (ca. 5.6 km) in length is located along an outcrop of Eocene rocks on a salt-induced escarpment of the plateau and at a water depth of ca. 2700 m. The 200 m relief of the seafloor suggests that the seep takes place along an active fault system driven by salt diapirism. The oil was analyzed and identified as a severely biodegraded marine oil, generated by carbonate rocks within a minibasin located to the east of the escarpment. This represents valuable exploratory information because it proves that an active petroleum system is present in the context of minibasins associated with salt diapirism in the area.

  4. Development of improved connection details for adjacent prestressed member bridges.

    DOT National Transportation Integrated Search

    2017-06-01

    Adjacent prestressed member girder bridges are economical systems for short spans and generally come in two types: adjacent box beam bridges and adjacent voided slab bridges. Each type provides the advantages of having low clearances because of their...

  5. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Alexis S.; Knowles, A. S.; Eldridge, D. L.

    2009-11-15

    Unsedimented volcanic rocks exposed on the seafloor at ridge systems and Seamounts host complex, abundant and diverse microbial communities that are relatively cosmopolitan in distribution (Lysnes, Thorseth et al. 2004; Mason, Stingl et al. 2007; Santelli, Orcutt et al. 2008). The most commonly held hypothesis is that the energy released by the hydration, dissolution and oxidative alteration of volcanic glasses in seawater drives the formation of an ocean crust biosphere (Thorseth, Furnes et al. 1992; Fisk, Giovannoni et al. 1998; Furnes and Staudigel 1999). The combined thermodynamically favorable weathering reactions could theoretically support anywhere from 105 to 109 cells/gram ofmore » rock depending upon the metabolisms utilized and cellular growth rates and turnover (Bach and Edwards 2003; Santelli, Orcutt et al. 2008). Yet microbially-mediated basalt alteration and energy conservation has not been directly demonstrated on the seafloor. By using synchrotron-based x-ray microprobe mapping, x-ray absorption spectroscopy and high-resolution scanning and transmission electron microscopy observations of young volcanic glasses recovered from the outer flanks of Loihi Seamount, we intended to identify the initial rates and mechanisms of microbial basalt colonization and bioalteration. Instead, here we show that microbial biofilms are intimately associated with ferromanganese crusts precipitating onto basalt surfaces from cold seawater. Thus we hypothesize that microbial communities colonizing seafloor rocks are established and sustained by external inputs of potential energy sources, such as dissolved and particulate Fe(II), Mn(II) and organic matter, rather than rock dissolution.« less

  6. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Workflow for the fast evaluation of rock mass properties and stability of rock slopes along trafficways in Lower Austria

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Zangerl, Christian

    2016-04-01

    In Lower Austria there is a total of 17.000 km of provincial and 24.000 km of communal roads, to be maintained by the province and the municipalities. In addition, there are approx. 1.500 km of railroads, and the Danube as a major waterway. A large part of this infrastructure is, or is potentially, affected by various types of instability of adjacent slopes. Due to insufficient knowledge, as well as slope design and management practice in the past, every year, especially in connection to weather extremes, slopes known to be critical become active landslides again, and unexpected new ones arise, causing damage as well as financial stress. Engineering intervention, if possible, should be quick and effective. Geologists and engineers in public service, not having the means for detailed investigation in most cases, are using guidelines to assess the requirements to be met by slope design on traffic ways. But these guidelines don't reflect many of the newer scientific advances. Therefore, scientists at BOKU and backers in the administration want to gain more insight into causative factors, which, if successful, may render maintenance of traffic lines under critical conditions more effective and predictable. The specific project goal is to produce new guidelines to allow quick assessment of the most likely behaviour of rock masses common in the area, especially when cut into shape along infrastructure lines, using readily available information. The scientific investigations include simple and ready tests (like Schmidt hammer), as well as photogrammetry, laserscanning, and other complex geophysical and numerical techniques, but the final product (guidelines) is expected to work without such difficult methods. It is important to note, on the other hand, that the rock mass stability classification inherent in the new guidelines must allow distinction between conclusions which are safe, and conjectures which are in need of validation by contracted experts. It is planned to

  8. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  9. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  10. The role of body size in host specificity: reciprocal transfer experiments with feather lice.

    PubMed

    Bush, Sarah E; Clayton, Dale H

    2006-10-01

    Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.

  11. Improved connection details for adjacent prestressed bridge beams.

    DOT National Transportation Integrated Search

    2015-03-01

    Bridges with adjacent box beams and voided slabs are simply and rapidly constructed, and are well suited to : short to medium spans. The traditional connection between the adjacent members is a shear key lled with a : conventional non-shrink grout...

  12. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri

    USGS Publications Warehouse

    Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain

    2016-01-01

    Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454

  13. Rock Games.

    ERIC Educational Resources Information Center

    Topal, Cathy Weisman

    1985-01-01

    Elementary school children are given cards containing specific criteria for doing one or two tasks: sorting or arranging rocks. Sorting tasks involve children in picking out rocks with particular characteristics, such as color or shape. In the arranging tasks children are asked to arrange rocks according to size or value. (RM)

  14. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  15. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs

  16. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  17. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  18. Use of variations in unit cell length, reflectance and hardness for determining the origin of Fe disulphides in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Eberhard, E.; Hartmann, B.

    1997-01-01

    Fe disulphides are common opaque accessories in sedimentary rocks. Both marcasite and pyrite may shed some light on the depositional environment and help determine the diagenesis of their host rocks. Quantitative ore microscopy (reflectance measurements, Vickers hardness numbers) and X-ray diffraction methods, supplemented with scanning electron microscopy and chemical analyses, were applied to pyrite (and some marcasite) hosted by sedimentary rocks spanning the interval from the Devonian to the Pliocene, and formed in various marine and continental environments. Quantitative ore microscopy of pyrites of sedimentary origin does not seem to be an efficient tool for analyzing the environment owing to the inhomogeneous nature of sulphide aggregates when viewed under the ore microscope, and the variable amounts of minor elements (e.g., As, Ni, and Co) that control the reflectance values (RV) and Vickers hardness numbers (VHN) of the host sulphides. However, such parameters as crystal habit and unit cell length of pyrite, which correlate with FeS x, are useful for environmental analysis. The redox conditions and the presence of organic remains during formation are the main factors determining these crystallographic parameters. Differences in these parameters from those of pure, ideal FeS 2 can be related to substitution of, e.g., wustite in the pyrite lattice, reflecting moderate oxidation (i.e. in the microenvironment). As far as crystal habit and length of the cell edge are concerned, late stage diagenesis is obviously less important than the microenvironment attending initial formation. The environment of deposition (i.e. the macroenvironment) of pyrite-bearing rocks has no influence on the crystal morphology or the length of the unit cell of Fe disulphide. X-ray diffraction measurements demonstrate that this method provides useful evidence on the microenvironment of sulphide precipitation around a single, equant pyrite, as well as around pyritized fossils.

  19. Review: Water-rock interactions and related eco-environmental effects in typical land subsidence zones of China

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Du, Yao; Ma, Rui; Xiao, Cong; Liu, Yanjun

    2018-01-01

    Land subsidence is common in some regions of China. Various eco-environmental problems have arisen due to changes in water-rock interactions in these subsided areas, for which a comprehensive understanding of the hydrogeological setting is needed. This paper presents the general status of land subsidence in three typical subsided areas of China through the compilation of relevant data, and reviews some typical changes in the water-rock interactions in subsided areas along with related eco-environmental issues. It is found that the subsidence development and distribution are controlled by the groundwater-withdrawal intensity externally, and by the thickness and compressibility of unconsolidated sediments internally. The physical changes and related effects of water-rock interactions in subsided areas include: (1) the decreased ground elevation that caused floods, waterlogged farmland, etc.; (2) the differential subsidence that caused ground fissures; and (3) the change of seepage field that caused substantial reduction of the water resource. Chemically, the changes and related effects of water-rock interactions include: (1) the change to the chemical environment or processes due to the hydrogeologic structure alteration, which caused groundwater pollution; and (2) hydrologic mixing (seawater intrusion, artificial recharge; exchange with adjacent aquifers or aquitards), which degraded the groundwater quality. Further research on the subsided areas in China is suggested to reveal the mechanisms regarding biological and gaseous (meteorological) changes from the perspective of interacting systems among water, rocks, biological agents and gases.

  20. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Tashiro, Takayuki; Ishida, Akizumi; Hori, Masako; Igisu, Motoko; Koike, Mizuho; Méjean, Pauline; Takahata, Naoto; Sano, Yuji; Komiya, Tsuyoshi

    2017-09-01

    The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible, and biogenic graphite has thus far been found only in the 3.7-3.8 Ga (gigayears ago) Isua supracrustal belt. Here we present the total organic carbon contents and carbon isotope values of graphite (δ13Corg) and carbonate (δ13Ccarb) in the oldest metasedimentary rocks from northern Labrador. Some pelitic rocks have low δ13Corg values of -28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ13Corg values and metamorphic grade indicates that variations in the δ13Corg values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ13Ccarb and δ13Corg values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.

  1. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada.

    PubMed

    Tashiro, Takayuki; Ishida, Akizumi; Hori, Masako; Igisu, Motoko; Koike, Mizuho; Méjean, Pauline; Takahata, Naoto; Sano, Yuji; Komiya, Tsuyoshi

    2017-09-27

    The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible, and biogenic graphite has thus far been found only in the 3.7-3.8 Ga (gigayears ago) Isua supracrustal belt. Here we present the total organic carbon contents and carbon isotope values of graphite (δ 13 C org ) and carbonate (δ 13 C carb ) in the oldest metasedimentary rocks from northern Labrador. Some pelitic rocks have low δ 13 C org values of -28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ 13 C org values and metamorphic grade indicates that variations in the δ 13 C org values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ 13 C carb and δ 13 C org values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.

  2. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  3. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  4. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography. [Over 600 citations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLemore, V. T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less

  5. Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    English, J. M.; Johnston, S. T.; Mihalynuk, M. G.

    2002-12-01

    The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache

  6. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  7. Review of samples of sediment, tailings, and waters adjacent to the Cactus Queen gold mine, Kern County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Cactus Queen Mine is located in the western Mojave Desert in Kern County, California. The Cactus Queen gold-silver (Au-Ag) deposit is similar to other Au-Ag deposits hosted in Miocene volcanic rocks that consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions. The volcanic rocks were emplaced onto a basement of Mesozoic silicic intrusive rocks. A part of the Cactus Queen Mine is located on Federal land managed by the U.S. Bureau of Land Management (BLM). Staff from the BLM initially sampled the mine area and documented elevated concentrations of arsenic (As) in tailings and sediment. BLM then requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure and characterize As and other geochemical constituents in sediment, tailings, and waters on the part of the mine on Federal lands. This report is made in response to the request by the BLM, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to the potential removal of As-contaminated mine waste from the Cactus Queen Mine as a means of reducing As release and exposure to humans and biota. This report summarizes data obtained from field sampling of sediments, mine tailings, and surface waters at the Cactus Queen Mine on January 27, 2008. Our results provide a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  8. Host-driven diversification of gall-inducing Acacia thrips and the aridification of Australia

    PubMed Central

    McLeish, Michael J; Chapman, Thomas W; Schwarz, Michael P

    2007-01-01

    Background Insects that feed on plants contribute greatly to the generation of biodiversity. Hypotheses explaining rate increases in phytophagous insect diversification and mechanisms driving speciation in such specialists remain vexing despite considerable attention. The proliferation of plant-feeding insects and their hosts are expected to broadly parallel one another where climate change over geological timescales imposes consequences for the diversification of flora and fauna via habitat modification. This work uses a phylogenetic approach to investigate the premise that the aridification of Australia, and subsequent expansion and modification of arid-adapted host flora, has implications for the diversification of insects that specialise on them. Results Likelihood ratio tests indicated the possibility of hard molecular polytomies within two co-radiating gall-inducing species complexes specialising on the same set of host species. Significant tree asymmetry is indicated at a branch adjacent to an inferred transition to a Plurinerves ancestral host species. Lineage by time diversification plots indicate gall-thrips that specialise on Plurinerves hosts differentially experienced an explosive period of speciation contemporaneous with climatic cycling during the Quaternary period. Chronological analyses indicated that the approximate age of origin of gall-inducing thrips on Acacia might be as recent as 10 million years ago during the Miocene, as truly arid landscapes first developed in Australia. Conclusion Host-plant diversification and spatial heterogeneity of hosts have increased the potential for specialisation, resource partitioning, and unoccupied ecological niche availability for gall-thrips on Australian Acacia. PMID:17257412

  9. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.

    PubMed

    Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório

    2016-05-01

    We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.

  10. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  11. Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Mukhopadhyay; E.L. Donnenthal; N. Spycher

    An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of themore » seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.« less

  12. Host age modulates within-host parasite competition

    PubMed Central

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-01-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010

  13. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  14. ROCK1 and LIM kinase modulate retrovirus particle release and cell-cell transmission events.

    PubMed

    Wen, Xiaoyun; Ding, Lingmei; Wang, Jaang-Jiun; Qi, Mingli; Hammonds, Jason; Chu, Hin; Chen, Xuemin; Hunter, Eric; Spearman, Paul

    2014-06-01

    The assembly and release of retroviruses from the host cells require dynamic interactions between viral structural proteins and a variety of cellular factors. It has been long speculated that the actin cytoskeleton is involved in retrovirus production, and actin and actin-related proteins are enriched in HIV-1 virions. However, the specific role of actin in retrovirus assembly and release remains unknown. Here we identified LIM kinase 1 (LIMK1) as a cellular factor regulating HIV-1 and Mason-Pfizer monkey virus (M-PMV) particle release. Depletion of LIMK1 reduced not only particle output but also virus cell-cell transmission and was rescued by LIMK1 replenishment. Depletion of the upstream LIMK1 regulator ROCK1 inhibited particle release, as did a competitive peptide inhibitor of LIMK1 activity that prevented cofilin phosphorylation. Disruption of either ROCK1 or LIMK1 led to enhanced particle accumulation on the plasma membrane as revealed by total internal reflection fluorescence microscopy (TIRFM). Electron microscopy demonstrated a block to particle release, with clusters of fully mature particles on the surface of the cells. Our studies support a model in which ROCK1- and LIMK1-regulated phosphorylation of cofilin and subsequent local disruption of dynamic actin turnover play a role in retrovirus release from host cells and in cell-cell transmission events. Viruses often interact with the cellular cytoskeletal machinery in order to deliver their components to the site of assembly and budding. This study indicates that a key regulator of actin dynamics at the plasma membrane, LIM kinase, is important for the release of viral particles for HIV as well as for particle release by a distantly related retrovirus, Mason-Pfizer monkey virus. Moreover, disruption of LIM kinase greatly diminished the spread of HIV from cell to cell. These findings suggest that LIM kinase and its dynamic modulation of the actin cytoskeleton in the cell may be an important host factor for

  15. Geochemistry of jadeitites and jadeite-lawsonite rocks in a serpentinite mélange (Rio San Juan Complex, northern Dominican Republic): Constraints on fluid composition in a subduction channel environment

    NASA Astrophysics Data System (ADS)

    Baese, Rauno; Maresch, Walter V.; Schenk, Volker; Schertl, Hans-Peter

    2010-05-01

    and trace element concentrations also change from centers to rims. Ca/Na varies from 0.75-0.77 in the center to 1.03-1.29 in the rim; the rims are enriched in Rb, Ba, Pb, Eu and have slightly higher REE concentrations than the centers. This may be explained by the lower solubility of lawsonite compared to that of jadeite [6], causing lawsonite to crystallize first during precipitation. Lawsonite crystallization leads to a decrease of the Ca/Na ratio in the fluid. When the Ca/Na ratio becomes low enough jadeite starts to crystallize. Based on chemical data, jadeitites and jadeite-lawsonite rocks can be subdivided into two groups. The chondrite-normalised REE pattern of the first group shows decreasing normalized values from LREE (40-10 times) towards HREE (8-1 times). The second group has a U-shaped pattern with a strong positive Eu (5 times) anomaly. Even though no depletion zone in the adjoining host rock of the jadeitite is petrographically visible, there are lower REE concentrations in blueschists directly adjacent to the veins as compared to homogeneous blueschists without any veins. This clearly indicates some fluid-rock interaction during formation of the veins. References 1) Harlow G.E., Sorensen S.S. (2005) Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. International Geology Review 47:113-146. 2) Schertl, H.-P., Maresch, W.V., Krebs, M., Draper, G. (2007) The Rio San Juan serpentinite complex and its jadeitites (Dominican Republic). In: Martens U., García-Casco A. (eds) High-pressure belts of Central Guatemala: the Motagua suture and the Chuacús Complex. IGCP 546 Special Contribution, 1. 3) Schertl, H.-P., Krebs, M., Maresch, W.V., Draper, G. (2007) Jadeitite from Hispaniola: a link between Guatemala and Antigua? 20th Colloquium on Latin American Earth Sciences, Kiel, Germany, Abstract Volume, 167-168 4) Baese, R., Schertl, H.-P., Maresch, W.V. (2007) Mineralogy and petrology of Hispaniolan jadeitites: first results. In: Martens U

  16. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  17. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  18. Host age modulates within-host parasite competition.

    PubMed

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. The rocks of Gusev Crater as viewed by the Mini-TES instrument

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Blaney, D.L.; Farrand, W. H.; Johnson, J. R.; Michalski, J.R.; Moersch, J.E.; Wright, S.P.; Squyres, S. W.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rover Spirit is part of a payload designed to investigate whether a lake once existed in Gusev Crater. Mini-TES has observed hundreds of rocks along the rover's traverse into the Columbia Hills, yielding information on their distribution, bulk mineralogy, and the potential role of water at the site. Although dust in various forms produces contributions to the spectra, we have established techniques for dealing with it. All of the rocks encountered on the plains traverse from the lander to the base of the Columbia Hills share common spectral features consistent with an olivine-rich basaltic rock known as Adirondack Class. Beginning at the base of the West Spur of the Columbia Hills and across its length, the rocks are spectrally distinct from the plains but can be grouped into a common type called Clovis Class. These rocks, some of which appear as in-place outcrop, are dominated by a component whose spectral character is consistent with unaltered basaltic glass despite evidence from other rover instruments for significant alteration. The northwest flank of Husband Hill is covered in float rocks known as Wishstone Class with spectral features that can be attributed uniquely to plagioclase feldspar, a phase that represents more than half of the bulk mineralogy. Rare exceptions are three classes of basaltic "exotics" found scattered across Husband Hill that may represent impact ejecta and/or float derived from local intrusions within the hills. The rare outcrops observed on Husband Hill display distinctive spectral characteristics. The outcrop called Peace shows a feature attributable to molecular bound water, and the outcrop that hosts the rock called Watchtower displays a dominant basaltic glass component. Despite evidence from the rover's payload for significant alteration of some of the rocks, no unambiguous detection of crystalline phyllosilicates or other secondary silicates has

  20. Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth

    NASA Astrophysics Data System (ADS)

    Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.

    2016-12-01

    The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011

  1. Microbial Fe biomineralization in mafic and ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Templeton, A. S.; Mayhew, L.; McCollom, T.; Trainor, T.

    2011-12-01

    Fluid-filled microfractures within mafic and ultramafic rocks, such as basalt and peridotite, may be one of the most ubiquitous microbial habitats on the modern and ancient earth. In seafloor and subseafloor systems, one of the dominant energy sources is the oxidation of Fe by numerous potential oxidants under aerobic to anaerobic conditions. In particular, the oxidation of Fe may be directly catalyzed by microbial organisms, or result in the production of molecular hydrogen which can then fuel diverse lithotrophic metabolisms. However, it remains challenging to identify the dominant metabolic activities and unravel the microscale biogeochemical processes occuring within such rock-hosted systems. We are investigating the mechanisms of solid-state Fe-oxidation and biomineralization in basalt, olivine, pyroxenes and basalts, in the presence and absence of microbial organisms that can thrive across the full stability range of water. In this talk we will present synchrotron-based x-ray scattering and spectroscopic analyses of Fe speciation within secondary minerals formed during microbially-mediated vs. abiotic water-rock interactions. Determining the valence state and mineralogy of Fe-bearing phases is critical for determining the water-rock reaction pathways and identifying potential biominerals that may form; therefore, we will highlight new approaches for identifying key Fe transformations within complex geological media. In addition, many of our experimental studies involve the growth of lithotrophic biofilms on well-characterized mineral surfaces in order to determine the chemistry of the microbe-mineral interface during progressive electron-transfer reactions. By coupling x-ray spectroscopy, x-ray diffraction, and electron-microscopy measurements, we will also contrast the evolution of mineral surfaces that undergo microbially-mediated oxidative alteration against minerals surfaces that produce H2 to sustain anaerobic microbial communities.

  2. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization

    USGS Publications Warehouse

    Slack, John F.; Falck, Hendrik; Kelley, Karen D.; Xue, Gabriel G.

    2017-01-01

    Detailed lithogeochemical data are reported here on early Paleozoic sedimentary rocks that host the large Howards Pass stratiform Zn-Pb deposits in Yukon-Northwest Territories. Redox-sensitive trace elements (Mo, Re, V, U) and Ce anomalies in members of the Duo Lake Formation record significant environmental changes. During the deposition of lower footwall units (Pyritic siliceous and Calcareous mudstone members), bottom waters were anoxic and sulphidic, respectively; these members formed in a marginal basin that may have become increasingly restricted with time. Relative to lower members, a major environmental change is proposed for deposition of the overlying Lower cherty mudstone member, which contains phosphorite beds up to ∼0.8 m thick in the upper part, near the base of the Zn-Pb deposits. The presence of these beds, together with models for modern phosphorite formation, suggests P input from an upwelling system and phosphorite deposition in an upper slope or outer shelf setting. The overlying Active mudstone member contains stratabound to stratiform Zn-Pb deposits within black mudstone and gray calcareous mudstone. Data for unmineralized black mudstone in this member indicate deposition under diverse redox conditions from suboxic to sulphidic. Especially distinctive in this member are uniformly low ratios of light to heavy rare earth elements that are unique within the Duo Lake Formation, attributed here to the dissolution of sedimentary apatite by downward-percolating acidic metalliferous brines. Strata that overlie the Active member (Upper siliceous mudstone member) consist mainly of black mudstone with thin (0.5–1.5 cm) laminae of fine-grained apatite, recording continued deposition on an upper slope or outer shelf under predominantly suboxic bottom waters. Results of this study suggest that exploration for similar stratiform sediment-hosted Zn-Pb deposits should include the outer parts of ancient continental margins, especially at and near

  3. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    NASA Astrophysics Data System (ADS)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  4. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  5. Pre-lithification tectonic foliation development in a clastic sedimentary rock sequence from SW Ireland

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David

    2017-04-01

    The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.

  6. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    USGS Publications Warehouse

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  7. Rock geochemistry related to mineralization processes in geothermal areas

    NASA Astrophysics Data System (ADS)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  8. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  9. A systematic review of definitions and classification systems of adjacent segment pathology.

    PubMed

    Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C

    2012-10-15

    Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances

  10. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  11. Stable-isotope studies of rocks and secondary minerals in a vapor-dominated hydrothermal system at The Geysers, Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Lambert, Steven J.; Epstein, Samuel

    1992-11-01

    The Geysers, a vapor-dominated hydrothermal system, is developed in host rock of the Franciscan Formation, which contains veins of quartz and calcite whose δ 18O values record the temperatures and isotopic compositions of fluids prevailing during at least two different episodes of rock-fluid interaction. The first episode took place at about 200°C, during which marine silica and carbonate apparently interacted with ocean water entrapped in the sediments to form veins of quartz and calcite whose δ 18O values were around +19 and +16%, respectively. The calculated water/mineral ratios were less than unity. The water may have profoundly influenced the δ 18O values of spilitic basalts during their metamorphism to greenstones. Serpentinization and structural emplacement of ophiolite slabs were isotopically unrelated to this episode, which was essentially a low-grade (post-Cretaceous?) burial metamorphism. D/H ratios of actinolite, chlorite, and micas in host rocks were more profoundly altered during this episode than were 18O/ 16O ratios. A paleogeothermal gradient of about 53°C/km has been inferred for this episode, from δ 18O-depth distributions of vein minerals. The second episode, in part recorded by cogenetic vein quartz and calcite δ 18O values of +4 to +6% and +1 to +3%, respectively, began with large quantities of meteoric water circulating in fractures in the rock at temperatures of 160-180°C in response to the initiation of the Pliocene-Pleistocene Clear Lake magmatism. The temperature rose, and with the restricted circulation of fluids the ancestral hot-water system evolved into the presently active vapor-dominated system, which according to the cogenetic vein quartz and calcite δ 18O values involved temperatures as high as 320°C and fluid/mineral ratios near unity. The change in the oxygen-isotopic composition of the serpentinite within the host rock during this later activity was negligible. The δ 13C values of vein calcite at The Geysers reflect

  12. Using Digital Computer Field Mapping of Outcrops to Examine the Preservation of High-P Rocks During Pervasive, Retrograde Greenschist Fluid Infiltration, Tinos, Cyclades Archipelago, Greece

    NASA Astrophysics Data System (ADS)

    Breeding, C. M.; Ague, J. J.; Broecker, M.

    2001-12-01

    Digital field mapping of outcrops on the island of Tinos, Greece, was undertaken to investigate the nature of retrograde fluid infiltration during exhumation of high-P metamorphic rocks of the Attic-Cycladic blueschist belt. High-resolution digital photographs of outcrops were taken and loaded into graphics editing software on a portable, belt-mounted computer in the field. Geologic features from outcrops were drawn and labeled on the digital images using the software in real-time. The ability to simultaneously identify geologic features in outcrops and digitize those features onto digital photographs in the field allows the creation of detailed, field-verified, outcrop-scale maps that aid in geologic interpretation. During Cretaceous-Eocene subduction in the Cyclades, downgoing crustal material was metamorphosed to eclogite and blueschist facies. Subsequent Oligocene-Miocene exhumation of the high-P rocks was accompanied by pervasive, retrograde fluid infiltration resulting in nearly complete greenschist facies overprinting. On Tinos, most high-P rocks have undergone intense retrogression; however, adjacent to thick marble horizons with completely retrograded contact zones, small (sub km-scale) enclaves of high-P rocks (blueschist and minor eclogite facies) were preserved. Field observations suggest that the remnant high-P zones consist mostly of massive metabasic rocks and minor adjacent metasediments. Within the enclaves, detailed digital outcrop maps reveal that greenschist retrogression increases in intensity outward from the center, implying interaction with a fluid flowing along enclave perimeters. Permeability contrasts could not have been solely responsible for preservation of the high-P rocks, as similar rock suites distal to marble contacts were completely overprinted. We conclude that the retrograded contacts of the marble units served as high-permeability conduits for regional retrograde fluid flow. Pervasive, layer-parallel flow through metasediments

  13. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  14. Control of Rock Mechanics in Underground Ore Mining

    NASA Astrophysics Data System (ADS)

    Golik, V. I.; Efremenkov, A. B.

    2017-07-01

    Performance indicators in underground mining of thick iron fields can be insufficient since geo-mechanic specifics of ore-hosting fields might be considered inadequately, as a consequence, critical deformations and even earth’s surface destruction are possible, lowering the indicators of full subsurface use, this way. The reason for it is the available approach to estimating the performance of mining according to ore excavation costs, without assessing losses of valuable components and damage to the environment. The experimental approach to the problem is based on a combination of methods to justify technical capability and performance of mining technology improvement with regard to geomechanical factors. The main idea of decisions to be taken is turning geo-materials into the condition of triaxial compression via developing the support constructions of blocked up structural rock block. The study was carried out according to an integrated approach based on the analysis of concepts, field observations, and simulation with the photo-elastic materials in conditions of North Caucasus deposits. A database containing information on the deposit can be developed with the help of industrial experiments and performance indicators of the field can be also improved using the ability of ore-hosting fields to develop support constructions, keeping the geo-mechanical stability of the system at lower cost, avoiding ore contamination at the processing stage. The proposed model is a specific one because an adjustment coefficient of natural and anthropogenic stresses is used and can be adopted for local conditions. The relation of natural to anthropogenic factors can make more precise the standards of developed, prepared and ready to excavation ore reserves relying on computational methods. It is possible to minimize critical stresses and corresponding deformations due to dividing the ore field into sectors safe from the standpoint of geo-mechanics, and using less cost

  15. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  16. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  17. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    PubMed

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rocks Can Wow? Yes, Rocks Can Wow!

    ERIC Educational Resources Information Center

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  19. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Crossley, Rosalind J.; Evans, Katy A.; Reddy, Steven M.; Lester, Gregory W.

    2017-11-01

    The redox state of iron in high-pressure serpentinites, which host a significant proportion of Fe3+ in subduction zones, can be used to provide an insight into iron cycling and constrain the composition of subduction zone fluids. In this study, we use oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone to constrain the distribution of iron and titanium, and iron oxidation state. These data provide an insight on the oxidation state and composition of fluids at depth in subduction zones. Oxide minerals host the bulk of iron, particularly Fe3+. The increase in mode of magnetite and observation of magnetite within antigorite veins in the investigated ultramafic samples during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidizing fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. However, high Ti contents are not typical of serpentinites and also cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich phases coincide with prograde metamorphism and initial exhumation, implying the early seafloor and/or prograde addition and late mobilization of Ti. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. We explore possible transport vectors for Ti and Fe through mineral texture analysis.

  20. Magmatic evolution of lunar highland rocks estimated from trace elements in plagioclase: A new bulk silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios

    NASA Astrophysics Data System (ADS)

    Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi

    2017-08-01

    The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.

  1. Hot Dry Rock; Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depthmore » originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by

  2. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  3. Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland

    USGS Publications Warehouse

    Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.

    2001-01-01

    This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units

  4. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff

  5. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Objectifying the adjacent and opposite angles: a cultural historical analysis

    NASA Astrophysics Data System (ADS)

    Daher, Wajeeh; Musallam, Nadera

    2018-02-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles' concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles' concepts. To analyze students' objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students' verbal and visual signs, together with the software dynamic tools, mediated the students' objectification of the adjacent and opposite angles' concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles' concepts.

  7. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    PubMed

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.

  8. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  9. Phytoparasitic Nematodes Adjacent to Established Strawberry Plantations

    PubMed Central

    Crow, R. V.; MacDonald, D. H.

    1978-01-01

    Plant-nematode populations associated with uncultivated vegetation, adjacent strawberry plants, and alternate crop sites were studied at three locations in Minnesota. At one site (Forest Lake), Paratylenchus projectus, Meloidogyne hapla, and Pratylenchus tenuis were frequently associated with the roots of native vegetation. These nematode species were also present in adjacent strawberry beds. Among alternate crops observed, oats and muskmelon usually supported the fewest nematodes although moderate densities of Xiphinema americanum and P. tenuis were found at one location in plots planted to oats. Pratylenchus tenuis was also found on rye at one location. PMID:19305841

  10. Stratiform zinc-lead mineralization in Nasina assemblage rocks of the Yukon-Tanana Upland in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bressler, Jason R.; Takaoka, Hidetoshi; Mortensen, James K.; Oliver, Douglas H.; Leventhal, Joel S.; Newberry, Rainer J.; Bundtzen, Thomas K.

    1998-01-01

    The Yukon-Tanana Upland of east-central Alaska and Yukon comprises thrust sheets of ductilely deformed metasedimentary and metaigneous rocks of uncertain age and origin that are overlain by klippen of weakly metamorphosed oceanic rocks of the Seventymile-Slide Mountain terrane, and intruded by post-kinematic Early Jurassic, Cretaceous and Tertiary granitoids. Metamorphosed continental margin strata in the Yukon-Tanana Upland of east-central Alaska are thought to be correlative, on the basis of stratigraphic similarities and sparse Mississippian U-Pb zircon and fossil ages (Mortensen, 1992), with middle Paleozoic metasedimentary and metavolcanic rocks in the eastern Alaska Range and in western and southeastern Yukon. Furthermore, rocks in the northern Yukon-Tanana Upland may correlate across the Tintina fault with unmetamorphosed counterparts in the Selwyn Basin (Murphy and Abbott, 1995). Volcanic-hosted (VMS) and sedimentary exhalative (sedex) massive sulfide occurrences are widely reported for these other areas (green-colored unit of fig. 1) but, as yet, have not been documented in the Alaskan part of the Yukon-Tanana Upland. Recent discoveries of VMS deposits in Devono-Mississippian metavolcanic rocks in the Finlayson Lake area of southeastern Yukon (Hunt, 1997) have increased the potential for finding VMS deposits in rocks of similar lithology and age in the Yukon-Tanana Upland of Alaska. Restoration of 450 km of early Tertiary dextral movement along the Tintina fault juxtaposes these two areas.

  11. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  12. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Ronald W. Falta; David Bruce

    2006-10-31

    chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock

  13. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  14. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  16. Constitutive Modeling of the Thermomechanical Behavior of Rock Salt

    NASA Astrophysics Data System (ADS)

    Hampel, A.

    2016-12-01

    For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big ad­van­ces in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extra­polation of a highly nonlinear deforma­tion behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.

  17. Gold grade distribution within an epithermal quartz vein system, Kestanelik, NW Turkey: implications for gold exploration

    NASA Astrophysics Data System (ADS)

    Gulyuz, Nilay; Shipton, Zoe; Gulyuz, Erhan; Lord, Richard; Kaymakci, Nuretdin; Kuscu, İlkay

    2017-04-01

    Vein-hosted gold deposits contribute a large part to the global gold production. Discovery of these deposits mainly include drilling of hundreds of holes, collecting thousands of soil and rock samples and some geophysical surveys which are expensive and time consuming. Understanding the structures hosting the veins and the variations in gold concentrations within the veins is crucial to constrain a more economic exploration program. The main aim of this study is to investigate the gold grade distribution in the mineralized quartz veins of a well exposed epithermal gold deposit hosted by Paleozoic schist and Eocene quartz-feldspar-hornblende porphyry in Lapseki, NW Turkey. We have constructed 3D architecture of the vein surfaces by mapping their outcrop geometries using a highly sensitive Trimble GPS, collecting detailed field data, well-logs and geochemistry data from 396 drill holes (255 diamond cut and 141 reverse circulation holes). Modelling was performed in MOVE Structural Modelling and Analysis software granted by Midland Valley's Academic Software Initiative, and GIS application softwares Global Mapper and Esri-ArcGIS. We envisaged that while fluid entering the conduit ascents, a sudden thickness increase in the conduit would lead to a drop in the fluid pressure causing boiling (the most dominant gold precipitation mechanism) and associated gold precipitation. Regression analysis was performed between the orthogonal thickness values and gold grades of each vein, and statistical analyses were performed to see if the gold is concentrated at specific structural positions along dip. Gold grades in the alteration zones were compared to those in the adjacent veins to understand the degree of mineralization in alteration zones. A possible correlation was also examined between the host rock type and the gold grades in the veins. These studies indicated that gold grades are elevated in the adjacent alteration zones where high gold grades exist in the veins. Schist-hosted

  18. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  19. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  20. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    NASA Astrophysics Data System (ADS)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  1. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  2. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  3. Reconnaissance geology of the Precambrian rocks in the Bi'r Ghamrah quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William

    1972-01-01

    Three sequences of volcanic and sedimentary rocks are identified in the Precambrian rocks of the Bi'r Ghamrah quadrangle at the eastern edge of the Precambrian Shield in central Saudi Arabia. The oldest sequence is called the Bi'r Khountina Group. It consists of conglomerate marble, andesite, and graywacke. Unconformably overlying this group is a sequence of graywacke with minor lava called the Murdama Group. In a small area in the southern part of the quadrangle, these rocks are unconformably overlain by rhyolitic tuff and rhyolite tentatively correlated with the Shammar Rhyolite. The older of these sedimentary and volcanic rocks were intruded by diorite and gabbro and by a large pluton of alkalic granite. A contact metamorphic aureole was formed in the Bi'r Khountina and Murdama Groups adjacent to the granite, and feeder dikes of the Sbmmmar Rhyolite(?) intrude the granite. The Bi'r Khountina Group is folded into a south-plunging asymmetrical anticlinorium, the west limb of which is repeated across northwest-trending faults. The Murdama Group appears to have been folded along the same axes, but the contact aureole against the alkalic granite and the imprint of the west-northwest striking Najd fault zone cause the rocks of the Murdama Group to appear to trend westward. Results of spectrographic and chemical analyses of wadi sand, heavy-mineral concentrates, and detrital magnetite show small anomalies. The ultramafic rocks intruded prior to the deposition of the Murdama Group are the source of anomalous chromium and lanthanum and of threshold nickel, scandium, and vanadium. The intrusive rocks younger than the Murdama Group are sources for anomalous lead and threshold silver, boron, barium, beryllium, zirconium, lanthanum, and tin. One small ancient working, probably opened for gold, is present, and at least four places in the Precambrian part of the quadrangle ere potentially favorable for gold, silver, and lead. Chromite is a potential resource in the

  4. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    USGS Publications Warehouse

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  5. Modeling Rock Alteration at the Water-Rock Interface of Icy Moons

    NASA Astrophysics Data System (ADS)

    Semprich, J.; Treiman, A. H.; Schwenzer, S. P.

    2018-05-01

    Alteration phases of a CM rock core are modeled with variations in fluid composition at the water-rock interface of icy moons. In the presence of H2O, CO2, CH4, and H2 serpentinization of the rock core is very likely at low pressures and 200–400 °C.

  6. Hard-rock jetting. Part 2. Rock type decides jetting economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, A.C.

    1977-02-07

    In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less

  7. Reactive transport modeling of ferroan dolomitization by seawater interaction with mafic igneous dikes and carbonate host rock at the Latemar platform, Italy

    NASA Astrophysics Data System (ADS)

    Blomme, Katreine; Fowler, Sarah Jane; Bachaud, Pierre

    2017-04-01

    The Middle Triassic Latemar carbonate platform, northern Italy, has featured prominently in the longstanding debate regarding dolomite petrogenesis [1-4]. Recent studies agree that ferroan and non-ferroan dolomite replaced calcite in limestone during reactive fluid flow at <0.1 GPa and 40-80°C. Regional igneous activity drove heating that provided kinetically favorable conditions for the replacement reaction. However, the origin of the dolomitizing fluid is unclear. Seawater may have been an important component, but its Fe concentrations are insufficient to account for ferroan dolomite. New field, petrographic, XRD, and geochemical data document a spatial, temporal, and geochemical link between ferroan replacement dolomite and altered mafic igneous dikes that densely intrude the platform. A critical observation is that ferroan dolomite abundances increase towards the dikes. We hypothesize that seawater interacted with mafic minerals in the dikes, leading to Fe enrichment in the fluid that subsequently participated in dolomitization. This requires that dolomite formation was preceded by dike alteration reactions that liberated Fe and did not consume Mg. Another requirement is that ferroan and non-ferroan dolomite (instead of other Fe- and Mg-bearing minerals) formed during fluid circulation within limestone host rock. We present reactive transport numerical simulations (Coores-Arxim, [5]) that predict equilibrium mineral assemblages and the evolution of fluid dolomitizing potential from dike crystallization, through dike alteration by seawater, to replacement dolomitization in carbonate host rock. The simulations are constrained by observations. A major advantage of the simulations is that stable mineral assemblages are identified based on a forward modeling approach. In addition, the dominant igneous minerals (plagioclase, clinopyroxene olivine and their alteration products) are solid solutions. Most reactive transport simulations of carbonate petrogenesis do not

  8. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  9. Selected physical properties of rocks from the Baid al Jimalah West tungsten deposit, Kingdom of Saudi Arabia, and recommendations for geophysical surveys

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Bulk density and magnetic susceptibility of 11 outcrop samples representing the Proterozoic lithologic units at the Baid al Jimalah West tungsten deposit, Kingdom of Saudi Arabia were measured. Induced polarization response, apparent resistivity, and electromagnetic conductivity were determined for four specimens of the sample suite. Measurements show that there is a negative density contrast of about -0.17 g-cm^-3 between metasedimentary rocks of the Murdama group and the Bald al Jimalah graaite and that this contrast decreases with increasing mineralization of the granite. Similarly, the bulk magnetic susceptibility of the granite is about one-third that of the Murdama rocks for this sample suite; however, magnetic susceptibility increases with increasing mineralization in the granite specimens. Electromagnetic conductivities are uniformly low, in part because the specimens are weathered, but probably also because intense silicification accompanies the mineralization. Induced polarization chargeability increases in the granitic specimens with increasing mineralization and reflects higher percentages of sulfide minerals. Chargeability for the mineralized rocks is about four times higher than for the Murdama host rocks, and apparent resistivity values are about one-fifth the values of host rocks. Based on these results, it is recommended that during reconnaissance exploration of the area 15 detailed high-precision gravity profiles at 10 m to 50 m station spacing and eight induced polarization dipole-dipole profiles at 25 m dipole spacing and maximum 'n' of 6 be measured. To help define subsurface structure, a high-precision, ground-magnetic survey (map at 2-gamma contour interval) and a four-channel gamma ray spectrometric survey on a 25x50 m grid covering the area of the profiles are recommended.

  10. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  12. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed anmore » investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.« less

  13. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.

    PubMed

    Gallagher, M; Turner, E C; Kamber, B S

    2015-07-01

    Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather

  14. Origin of Zn-Pb-Sb-Au mineralization adjacent to the Paleoproterozoic Boliden Au-rich VMS deposit, Sweden: evidence from petrographic and oxygen isotope characteristics

    NASA Astrophysics Data System (ADS)

    Adomako-Ansah, Kofi; Ishiyama, Daizo; Allen, Rodney

    2018-06-01

    Adjacent to the world-class Boliden deposit, fine- to coarse-grained Zn-Pb-Sb-Au-rich sulfide-sulfosalt-bearing horizons occur within the base of a metasedimentary succession that has previously been regarded to stratigraphically overlie the Skellefte Volcanics and Boliden deposit. The metasedimentary succession comprises interbedded mudstone and normal-graded crystal-rich volcanic sandstone-siltstone units, interpreted to be low-density turbidity currents in a subaqueous environment below wave base. The sharp contact between the mineralized intervals and volcanic sandstone is concordant to the bedding planes and compaction foliation. Above and below the mineralization, the wall rocks contain well-preserved plagioclase crystals, partly enclosed by a weak alteration composed of bedding-parallel metamorphic biotite±sericite minerals. These observations are consistent with burial (or tectonic) compaction and diagenetic alteration that was overprinted by metamorphic biotite. The occurrence of biotite in the wall rocks and homogenization recrystallization of the sulfide-sulfosalt assemblage in the mineralized intervals are consistent with peak metamorphic conditions ( 350-450 °C, < 4 kbars) in the Boliden area. However, preservation of plagioclase and water-rock interaction under rock-dominant conditions suggest that high δ18O values (+ 10.7 to + 13.5‰) acquired during diagenesis were unchanged by the metamorphic overprint. The δ18O values yield low temperatures (< 150 °C), which indicate pre-metamorphic conditions. These data suggest that the Zn-Pb-Sb-Au-rich intervals formed as pre-metamorphic distal syn-volcanic exhalative mineralization during sedimentation of the Vargfors group metasedimentary rocks. This implies that massive sulfide formation continued even during Vargfors group time and, therefore, there is still potential for discovery of gold-rich base-metal ores in this part of the Skellefte field stratigraphy.

  15. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    PubMed

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Provenance and tectonic setting of the Neoproterozoic clastic rocks hosting the Banana Zone Cu-Ag mineralisation, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Kelepile, Tebogo; Bineli Betsi, Thierry; Franchi, Fulvio; Shemang, Elisha; Suh, Cheo Emmanuel

    2017-05-01

    Petrographic and geochemical data were combined in order to decipher the petrogenesis of the Neoproterozoic sedimentary succession associated with the Banana Zone Cu-Ag mineralisation (northwest Botswana), in the Kalahari Copperbelt. The investigated Neoproterozoic sedimentary succession is composed of two formations including the Ngwako Pan and the D'kar Formations. The Ngwako Pan Formation is made up of continental siliciclastic sediments, mainly sandstones interbedded with siltstones and mudstones, whereas the D'kar Formation is comprised of shallow marine laminated siltstones, sandstones and mudstones, with subordinate limestone. Copper-Ag mineralisation is essentially confined at the base of the D'kar Formation, which bears reduced organic components, likely to have controlled Cu-Ag precipitation. Sandstones of both the Ngwako Pan and the D'kar Formations are arkoses and subarkoses, composed of quartz (Q), feldspars (F) and lithic fragments (L). Moreover, geochemically the sandstones are considered as potassic and classified as arkoses. On the other hand, mudrocks of the D'kar Formation are finely laminated and are dominated by muscovite, sericite, chlorite and quartz. The modified chemical index of weathering (CIW‧) values indicated an intense chemical weathering of the source rock. The dominance of detrital quartz and feldspar grains coupled with Al2O3/TiO2 ratios (average 29.67 and 24.52 for Ngwako Pan and D'kar Formations, respectively) and Ni and Cr depletion in the sandstones, suggest a dominant felsic source. However, high concentrations of Ni and Cr and a low Al2O3/TiO2 ratio (<20) in the mudrocks of the D'kar Formation indicate a mixed source. Provenance of the investigated sandstones and mudrocks samples is further supported by the REE patterns, the size of Eu anomaly as well as La/Co, Th/Co, Th/Cr and Cr/Th ratios, which show a felsic source for the sandstones of both the Ngwako Pan and D'kar Formations and an intermediate source for the mudrocks

  17. SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.

    PubMed

    Singer, Maxine; Winocour, Ernest

    2011-04-10

    The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Carbon Dioxide - rock interaction: from molecular observations to theorised interactions in fluid-rock systems

    NASA Astrophysics Data System (ADS)

    Calcara, Massimo; Borgia, Andrea

    2013-04-01

    Current global warming theories have produced some benefits: among them, detailed studies on CO2 and its properties, possible applications and perspectives. Starting from its use as a "green solvent" (for instance in decaffeination process), to enhance system in oil recovery, to capture and storage enough amount of CO2 in geological horizon. So, a great debate is centred around this molecule. One More useful research in natural horizon studies is its theorised use in Enhanced Geothermal Systems with CO2 as the only working fluid. In any case, the CO2 characteristics should be deeply understood, before injecting a molecule prone to change easily its aggregation state at relatively shallow depth. CO2 Rock interaction becomes therefore a focal point in approaching research sectors linked in some manner to natural or induced presence of carbon dioxide in geological horizons. Possible chemical interactions between fluids and solids have always been a central topic in defining evolution of the system as a whole in terms of dissolutions, reactions, secondary mineral formation and, in case of whichever plant, scaling. Questions arise in case of presence of CO2 with host rocks. Chemical and molecular properties are strategic. CO2 Rock interactions are based on eventual solubility capability of pure liquid and supercritical CO2 seeking and eventually quantifying its polar and/or ionic solvent capabilities. Single molecule at STP condition is linear, with central carbon atom and oxygen atoms at opposite site on a straight line with a planar angle. It has a quadrupolar moment due to the electronegativity difference between carbon and oxygen. As soon as CO2 forms bond with water, it deforms even at atmospheric pressure, assuming an induced dipole moment with a value around 0.02 Debye. Hydrated CO2 forms a hydrophilic bond; it deforms with an angle of 178 degrees. Pure CO2 forms self aggregates. In the simplest case a dimer, with two molecules of CO2 exerting mutual attraction

  19. Supra-subduction zone extensional magmatism in Vermont and adjacent Quebec: Implications for early Paleozoic Appalachian tectonics

    USGS Publications Warehouse

    Kim, J.; Coish, R.; Evans, M.; Dick, G.

    2003-01-01

    Metadiabasic intrusions of the Mount Norris Intrusive Suite occur in fault-bounded lithotectonic packages containing Stowe, Moretown, and Cram Hill Formation lithologies in the northern Vermont Rowe-Hawley belt, a proposed Ordovician arc-trench gap above an east-dipping subduction zone. Rocks of the Mount Norris Intrusive Suite are characteristically massive and weakly foliated, have chilled margins, contain xenoliths, and have sharp contacts that both crosscut and are parallel to early structural fabrics in the host metasedimentary rocks. Although the mineral assemblage of the Mount Norris Intrusive Suite is albite + actinolite + epidote + chlorite + calcite + quartz, intergrowths of albite + actinolite are probably pseudomorphs after plagioclase + clinopyroxene. The metadiabases are subalkaline, tholeiitic, hypabyssal basalts with preserved ophitic texture. A backarc-basin tectonic setting for the intrusive suite is suggested by its LREE (light rare earth element) enrichment, negative Nb-Ta anomalies, and Ta/Yb vs. Th/Yb trends. Although no direct isotopic age data are available, the intrusions are broadly Ordovician because their contacts are clearly folded by the earliest Acadian (Silurian-Devonian) folds. Field evidence and geochemical data suggest compelling along-strike correlations with the Coburn Hill Volcanics of northern Vermont and the Bolton Igneous Group of southern Quebec. Isotopic and stratigraphic age constraints for the Bolton Igneous Group bracket these backarc magmas to the 477-458 Ma interval. A tectonic model that begins with east-dipping subduction and progresses to outboard west-dipping subduction after a syncollisional polarity reversal best explains the intrusion of deformed metamorphosed metasedimentary rocks by backarc magmas.

  20. Long-term effects of vertebroplasty: adjacent vertebral fractures.

    PubMed

    Baroud, Gamal; Vant, Christianne; Wilcox, Ruth

    2006-01-01

    In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre

  1. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    NASA Astrophysics Data System (ADS)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  2. First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Vandenabeele, Peter; Perraki, Maria; Moens, Luc

    2011-10-01

    The presence of aragonite inclusions in garnet from diamond-grade metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan was identified for the first time by means of Raman analyses and mapping. Aragonite appears within the inclusions up to 50 μm in size as a single crystal. These inclusions have rounded shape. The grain boundary between the host-garnet is smooth. No cracks occur around the aragonite inclusions. No significant shift in the main aragonite Raman band was measured. These observations indicate that residual pressure within the inclusion is minor. These findings imply either non-UHPM origin of the host garnet or significant plastic deformation of host minerals during retrograde stage. These features should be taken into account for recovery peak metamorphic conditions and modeling of exhumation processes of UHPM complexes. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California

    USGS Publications Warehouse

    Clynne, M.A.

    1999-01-01

    The eruption of Lassen Peak in May 1915 produced four volcanic rock types within 3 days, and in the following order: (1) hybrid black dacite lava containing (2) undercooled andesitic inclusions, (3) compositionally banded pumice with dark andesite and light dacite bands, and (4) unbanded light dacite. All types represent stages of a complex mixing process between basaltic andesite and dacite that was interrupted by the eruption. They contain disequilibrium phenocryst assemblages characterized by the co-existence of magnesian olivine and quartz and by reacted and unreacted phenocrysts derived from the dacite. The petrography and crystal chemistry of the phenocrysts and the variation in rock compositions indicate that basaltic andesite intruded dacite magma and partially hybridized with it. Phenocrysts from the dacite magma were reacted. Cooling, cyrstallization, and vesiculation of the hybrid andesite magma converted it to a layer of mafic foam. The decreased density of the andesite magma destabilized and disrupted the foam. Blobs of foam rose into and were further cooled by the overlying dacite magma, forming the andesitic inclusions. Disaggregation of andesitic inclusions in the host dacite produced the black dacite and light dacite magmas. Formation of foam was a dynamic process. Removal of foam propagated the foam layer downward into the hybrid andesite magma. Eventually the thermal and compositional contrasts between the hybrid andesite and black dacite magmas were reduced. Then, they mixed directly, forming the dark andesite magma. About 40-50% andesitic inclusions were disaggregated into the host dacite to produce the hybrid black dacite. Thus, disaggregation of inclusions into small fragments and individual crystals can be an efficient magma-mixing process. Disaggregation of undercooled inclusions carrying reacted host-magma phenocrysts produces co-existing reacted and unreacted phenocrysts populations.

  4. Isotopic data for Late Cretaceous intrusions and associated altered and mineralized rocks in the Big Belt Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Unruh, Daniel M.; Hofstra, Albert H.

    2017-03-07

    The quartz monzodiorite of Mount Edith and the concentrically zoned intrusive suite of Boulder Baldy constitute the principal Late Cretaceous igneous intrusions hosted by Mesoproterozoic sedimentary rocks of the Newland Formation in the Big Belt Mountains, Montana. These calc-alkaline plutonic masses are manifestations of subduction-related magmatism that prevailed along the western edge of North America during the Cretaceous. Radiogenic isotope data for neodymium, strontium, and lead indicate that the petrogenesis of the associated magmas involved a combination of (1) sources that were compositionally heterogeneous at the scale of the geographically restricted intrusive rocks in the Big Belt Mountains and (2) variable contamination by crustal assimilants also having diverse isotopic compositions. Altered and mineralized rocks temporally, spatially, and genetically related to these intrusions manifest at least two isotopically distinct mineralizing events, both of which involve major inputs from spatially associated Late Cretaceous igneous rocks. Alteration and mineralization of rock associated with the intrusive suite of Boulder Baldy requires a component characterized by significantly more radiogenic strontium than that characteristic of the associated igneous rocks. However, the source of such a component was not identified in the Big Belt Mountains. Similarly, altered and mineralized rocks associated with the quartz monzodiorite of Mount Edith include a component characterized by significantly more radiogenic strontium and lead, particularly as defined by 207Pb/204Pb values. The source of this component appears to be fluids that equilibrated with proximal Newland Formation rocks. Oxygen isotope data for rocks of the intrusive suite of Boulder Baldy are similar to those of subduction-related magmatism that include mantle-derived components; oxygen isotope data for altered and mineralized equivalents are slightly lighter.

  5. Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report

    USGS Publications Warehouse

    Nash, J. Thomas; Lehrman, Norman J.

    1975-01-01

    The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium

  6. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  7. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  8. Exercise Desert Rock, Staff Memorandums. Army, Camp Desert Rock, Nevada.

    DTIC Science & Technology

    1957-01-01

    I AD-AGAG 257 EXERCISE DESERT ROCK LAS VEGAS NV F/6 IS/ 3 EXERCISE DESERT ROCK, STAFF MEMORANDUMS. ARMY. CAMP DESERT ROCK-ETClUlCASIFE mm95i mm... Exercise Safety Progra - . 1. PUrose: To establish ane’ffective safety progr.Rm toreduce, and keep to a minimum, accident,1 manpower and monetary losses. at...agencies will be- followed. Supervispry personnel will: become familiar with those that Pre applicable to thei£r... operations. The Exercise Safety

  9. [Rock music and hearing disorders].

    PubMed

    Størmer, Carl Christian Lein; Stenklev, Niels Christian

    2007-03-29

    Continued exposition to loud noise is a well-known risk factor for development of various hearing disorders; rock musicians are especially vulnerable. The aim of this paper was to get an overview of hearing loss, tinnitus and hyperacusis among rock musicians. Medline was systematically searched, using combinations of the terms "hearing", "rock music", "tinnitus" and "hyperacusis". Seven publications concerning hearing of rock musicians were identified. Permanent hearing loss occurred in 20% (mean) of the rock musicians; the prevalence varied from 5 to 41%. Tinnitus and hyperacusis appear significantly more often in rock musicians than in non-musicians. Rock musicians have increased resistance against loud music and exposure over time is protective towards hearing loss. Further research is needed to assess rock music's impact on musicians' hearing.

  10. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  11. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  12. Geologic interpretation of gravity data from the Date Creek basin and adjacent areas, west-central Arizona

    USGS Publications Warehouse

    Otton, James K.; Wynn, Jeffrey C.

    1978-01-01

    A gravity survey of the Date Creek Basin and adjacent areas was conducted in June 1977 to provide information for the interpretation of basin geology. A comparison of facies relations in the locally uraniferous Chapin Wash Formation and the position of the Anderson mine gravity anomaly in the Date Creek Basin suggested that a relationship between gravity lows and the development of thick lacustrine sections in the region might exist. A second-order residual gravity map derived from the complete Bouguer gravity map for the survey area (derived from survey data and pre-existing U.S. Department of Defense data) shows an excellent correspondence between gravity lows and sediment-filled basins and suggests considerable variation in basin-fill thickness. Using the Anderson mine anomaly as a model, gravity data and facies relations suggest that the southeastern flank of the Aguila Valley gravity low and the gravity low at the western end of the Hassayampa Plain are likely areas for finding thick sections of tuffaceous lacustrine rocks.

  13. An integrated magnetic and geological study of cataclasite- dominated pseudotachylytes in the Chiapas Massif, Mexico: a snapshot of stress orientation following slip

    NASA Astrophysics Data System (ADS)

    Garza, Roberto S. Molina; Geissman, John; Wawrzyniec, Tim; Weber, Bodo; Martínez, Margarita López; Aranda-Gómez, Jorge

    2009-06-01

    , which we interpret as a Late Permian magnetization based on previous studies of the Chiapas Massif. This magnetization resides in haematite. Veins, as well as immediately adjacent host rock, typically have well-defined, single polarity magnetizations of north-northwest declination and moderate positive inclination and these resemble the Cretaceous expected field direction. The overall mean of the veins is of Dec = 348.7° and Inc = 33.6° (k = 30.5 and α95 = 12.3° n = 6 site means). Rock magnetic parameters suggest that the remanence in the veins principally resides in low-Ti pseudo-single domain magnetite and maghemite grains, but haematite, coarse-grained magnetite, rutile, Fe-Cr-Ni oxides and ilmenite are also present in the veins. Bulk magnetic susceptibility values range between ~0.3 and 1.1 * 10-3 SI volume units, and host rock values do not differ significantly from vein values. The orientations of the principal susceptibility axes in the host rock and the veins are indistinguishable. In both, magnetic foliations are near vertical and are essentially parallel to the nearly east-west orientation of the veins. Nonetheless, host rock fabrics are predominantly prolate, whereas vein fabrics are oblate. The mean susceptibility tensors of host rocks and pseudotachylyte are characterized by P'/T values of 1.041/-0.327 and 1.033/+0.302, respectively. This result suggests that the fabric reflected by magnetic susceptibility anisotropy in the veins was formed under pure shear stress, during cooling of the veins. The lack of evidence of fabric rotation supports models that associate partial melt with viscous break during fault slip.

  14. Explaining large mortality differences between adjacent counties: a cross-sectional study.

    PubMed

    Schootman, M; Chien, L; Yun, S; Pruitt, S L

    2016-08-02

    Extensive geographic variation in adverse health outcomes exists, but global measures ignore differences between adjacent geographic areas, which often have very different mortality rates. We describe a novel application of advanced spatial analysis to 1) examine the extent of differences in mortality rates between adjacent counties, 2) describe differences in risk factors between adjacent counties, and 3) determine if differences in risk factors account for the differences in mortality rates between adjacent counties. We conducted a cross-sectional study in Missouri, USA with 2005-2009 age-adjusted all-cause mortality rate as the outcome and county-level explanatory variables from a 2007 population-based survey. We used a multi-level Gaussian model and a full Bayesian approach to analyze the difference in risk factors relative to the difference in mortality rates between adjacent counties. The average mean difference in the age-adjusted mortality rate between any two adjacent counties was -3.27 (standard deviation = 95.5) per 100,000 population (maximum = 258.80). Six variables were associated with mortality differences: inability to obtain medical care because of cost (β = 2.6), hospital discharge rate (β = 1.03), prevalence of fair/poor health (β = 2.93), and hypertension (β = 4.75) and poverty prevalence (β = 6.08). Examining differences in mortality rates and associated risk factors between adjacent counties provides additional insight for future interventions to reduce geographic disparities.

  15. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  16. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  17. Temporal and directional patterns of nymphal Halyomorpha halys (Hemiptera: Pentatomidae) movement on the trunk of selected wild and fruit tree hosts in the Mid-Atlantic Region

    USDA-ARS?s Scientific Manuscript database

    Halyomorpha halys (Stal) (Hemiptera: Pentatomidae) is an invasive and polyphagous herbivore that has been problematic in Mid-Atlantic fruit orchards, many of which are adjacent to woodlands containing its wild hosts. Our tree census in woodlands bordering 15 Mid-Atlantic apple orchards revealed 47 ...

  18. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that

  19. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  20. Local adjacency metric dimension of sun graph and stacked book graph

    NASA Astrophysics Data System (ADS)

    Yulisda Badri, Alifiah; Darmaji

    2018-03-01

    A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.

  1. Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, Japan

    USGS Publications Warehouse

    Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.

    2008-01-01

    The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.

  2. Constrained and Unconstrained Partial Adjacent Category Logit Models for Ordinal Response Variables

    ERIC Educational Resources Information Center

    Fullerton, Andrew S.; Xu, Jun

    2018-01-01

    Adjacent category logit models are ordered regression models that focus on comparisons of adjacent categories. These models are particularly useful for ordinal response variables with categories that are of substantive interest. In this article, we consider unconstrained and constrained versions of the partial adjacent category logit model, which…

  3. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  4. Host genetics affect microbial ecosystems via host immunity.

    PubMed

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  5. Source-rock geochemistry of the San Joaquin Basin Province, California: Chapter 11 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.

    2007-01-01

    Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.

  6. Leaching of S, Cu, and Fe from disseminated Ni-(Fe)-(Cu) sulphide ore during serpentinization of dunite host rocks at Mount Keith, Agnew-Wiluna belt, Western Australia

    NASA Astrophysics Data System (ADS)

    Gole, Martin J.

    2014-10-01

    Komatiite-hosted disseminated Ni sulphide deposits in the Agnew-Wiluna greenstone belt occur both above and below the olivine isograd that was imposed on the greenstone sequence during the M2 metamorphic/deformation event. Deposits in the northern and central part of the belt and that are located below the isograd (Mount Keith, Honeymoon Well and West Jordan) have complex sulphide mineralogy and strongly zoned sulphide assemblages. These range from least-altered assemblages of pentlandite-pyrrhotite-chalcopyrite±pyrite to altered assemblages of pentlandite±chalcopyrite, pentlandite-heazlewoodite (or millerite), heazlewoodite (or millerite), and rarely to heazlewoodite-native Ni. Deposits to the south and that are above of the olivine isograd (Six Mile, Goliath North) are dominated by less complex magmatic assemblages with a lower proportion of weakly altered pentlandite±chalcopyrite assemblages. More altered assemblages are uncommon in these deposits and occur as isolated patches around the periphery of the deposits. The sulphide zonation is reflected by whole-rock reductions in S, Cu, Fe and Zn, whereas Ni, Pt and Pd and, with some exceptions, Co are conservative. The leaching of S, Cu, Fe and Zn from sulphide assemblages and the whole rock was initiated by highly reduced conditions that were produced during low fluid/rock ratio serpentinization. Consumption of H2O resulted in Cl, a component of the fluid, being concentrated sufficiently to stabilise iowaite as part of lizardite-rich assemblages. Once the rate of olivine hydration reactions declined and during and after expansion and associated fracturing of the ultramafic sequence allowed higher fluid access, a more fluid-dominated environment formed and new carbonate-bearing fluid gained access to varying extents to the ultramafic rock sequence. This drove Cl from iowaite (to form pyroaurite) and caused the sulphide assemblages to be altered from the original magmatic assemblages and compositions to those

  7. Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Xia, Qiong-Xia; Zhou, Li-Gang

    2017-09-01

    Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet

  8. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  9. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  10. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.

    2013-09-01

    Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se isotope analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S isotope analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is magmatic (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large isotopically negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se isotope values at the

  11. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  12. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

    USGS Publications Warehouse

    Sanford, Ward E.

    2017-01-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  13. Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noriega, David C., E-mail: dcnoriega1970@gmail.com; Marcia, Stefano, E-mail: stemarcia@gmail.com; Ardura, Francisco, E-mail: fardura@ono.com

    ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to themore » fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.« less

  14. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  15. Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana

    NASA Astrophysics Data System (ADS)

    Amponsah, Prince Ofori; Salvi, Stefano; Béziat, Didier; Siebenaller, Luc; Baratoux, Lenka; Jessell, Mark W.

    2015-12-01

    The Leo Man Craton in West Africa is host to numerous economic gold deposits. If some regions, such as the SW of Ghana, are well known for world-class mineralizations and have been extensively studied, gold occurrences elsewhere in the craton have been discovered only in the last half a century or so, and very little is known about them. The Julie gold deposit, located in the Paleoproterozoic Birimian terrane of NW Ghana, is one such case. This deposit is hosted in a series of granitoid intrusives of TTG composition, and consists of a network of deformed, boudinaged quartz lodes (A-type veins) contained within an early DJ1 E-W trending shear zone with dextral characteristics. A conjugate set of veins (C-type) perpendicular to the A-type veins contains low grade mineralization. The main ore zone defines a lenticular corridor about 20-50 m in width and about 3.5 km along strike, trending E-W and dipping between 30 and 60°N. The corridor is strongly altered, by an assemblage of sericite + quartz + ankerite + calcite + tourmaline + pyrite. This is surrounded by a second alteration assemblage, consisting of albite + sericite + calcite + chlorite + pyrite + rutile, which marks a lateral alteration that fades into the unaltered rock. Mass balance calculations show that during alteration overall mass was conserved and elemental transfer is generally consistent with sulfidation, sericitization and carbonatization of the host TTG. Gold is closely associated with pyrite, which occurs as disseminated grains in the veins and in the host rock, within the mineralized corridor. SEM imagery and LA-ICP-MS analyses of pyrites indicate that in A-type veins gold is associated with bismuth, tellurium, lead and silver, while in C-type veins it is mostly associated with silver. Pyrites in A-type veins contain gold as inclusions and as free gold on its edges and fractures, while pyrites from C-type veins contains mostly free gold. Primary and pseudosecondary fluid inclusions from both

  16. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  17. Groundwater Storage and Flow Pathways in a Rock Glacier Complex in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Mozil, A.; Harrington, J.; Bentley, L. R.

    2015-12-01

    Hydrological functions of alpine glaciers and their responses to the warming climate have received much attention by hydrologists working in alpine catchments around the world. As alpine glaciers retreat, they commonly leave debris-covered ice or ice-cored moraine behind, which can remain frozen in ground for many decades or centuries. In many alpine catchments, characteristic landforms indicating rock glaciers or their relicts are found in locations where glaciers do not exist under the current climate. These landscape features associated with mountain permafrost are ubiquitous in alpine catchments, but their hydrological functions have not received much attention. Do rock glaciers and other mountain-permafrost features contribute significantly to storage of snowmelt water and its delayed release to sustain baseflow in the critical alpine stream habitats? How are these storage functions responding to the climate warming? In order to answer these questions, we initiated a hydrological study of rock glaciers in an alpine catchment in the Canadian Rockies in 2014. We will present preliminary results of our study using geophysical imaging techniques, hydro-meteorological monitoring, and groundwater tracing using various environmental tracers. Key findings are: 1) substantial amount of permafrost exists in the rock glacier which is inactive (i.e. no active motion) under the present climate, 2) spatial distribution of permafrost is controlled by both meteorological and geological factors, 3) the rock glacier complex contributes 30-50 % of summer stream flow even though they occupy less than 5% of the catchment area, and 4) the low temperature (< 2 C) of groundwater discharging at the toe of rock glacier plays a significant role in regulating the temperature of stream, which hosts a population of trout species that is listed as "threatened" in the list of the status of endangered wildlife in Canada.

  18. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  19. Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire Plutonic Series

    NASA Astrophysics Data System (ADS)

    Lathrop, A. S.; Blum, Joel D.; Chamberlain, C. Page

    1996-07-01

    Nd, Sr and O isotope systematics were used to investigate the petrogenesis of two adjacent plutons of the Bethlehem Gneiss (BG) and the Kinsman Quartz Monzonite (KQM), exposed within the Central Maine Terrane (CMT) of New England. Both are Acadian-aged (≈413 Ma) synmetamorphic and syntectonic members of the New Hampshire Plutonic Series (NHPS). Potential source rocks analyzed for this study include Silurian and Devonian metasedimentary rocks of the CMT, and Ordovician metasedimentary rocks and granitic gneisses of the Bronson Hill Anticlinorium (BHA), which border the CMT to the west. The ɛSr(413), ɛNd(413) and δ18O values for the KQM range from 56.3 to 120.0, 2.8 to -6.4, and 7.6‰ to 12.9‰, respectively; values for the BG range from 7.4 to 144.7, 0.6 to -9.3, and 8.3‰ to 11.3‰, respectively; and values for possible source rocks range from 38.1 to 654.2, -10.7 to 5.4, and 6.2‰ to 14.1‰, respectively. Both the BG and KQM have extremely heterogeneous initial isotopic compositions consistent with mixing of multiple crustal source rocks, and neither contains a volumetrically significant (i.e., ≥10%) mantlederived component. Overlapping values of ɛNd(413), ɛSr(413) and δ18O values for both the BG and KQM samples resemble values for metasedimentary host rocks of the CMT and BHA. We observe no systematic correlations between ɛNd and ɛSr values for either the BG or the KQM. The ɛSr and δ18O values for the BG do not form any simple mixing trends, nor is there any direct correlation between the isotopic compositions of contact BG samples and their adjacent host rocks, in contrast to our observations for the KQM (Lathrop et al. 1994). We propose that the KQM and BG magmas were generated through anatexis of metasedimentary rocks from both the BHA and CMT in response to crystal thickening during the Acadian orogeny. Melting may have been initiated within CMT metasediments in response to high heat production in these mid-crustal rocks combined with

  20. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  1. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
    This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached

  2. Eocene melting of Precambrian lithospheric mantle: Analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia

    NASA Astrophysics Data System (ADS)

    Dostal, J.; Breitsprecher, K.; Church, B. N.; Thorkelson, D.; Hamilton, T. S.

    2003-08-01

    Potassic silica-undersaturated mafic volcanic rocks form a minor portion of the predominantly calc-alkaline Eocene Challis-Kamloops volcanic belt, which extends from the northwestern United States into central British Columbia (Canada). Their major occurrence is in the Penticton Group in south central British Columbia, where they reach a thickness of up to 500 m and form the northwestern edge of the Montana alkaline province. These analcime-bearing rocks (˜53-52 Ma old) are typically rhomb porphyries of ternary feldspar (An 28Ab 52Or 20). Additional phenocryst phases include clinopyroxene, analcime, phlogopite and rare olivine. The rocks are characterized by high total alkalis, particularly K 2O (>4.5 wt%) as well as by a distinct enrichment of large-ion lithophile elements versus heavy rare-earth elements and high-field-strength elements. They have unusual isotopic compositions compared to most other rocks of the Challis-Kamloops belt, particularly high negative ɛNd values and elevated but relatively uniform initial 87Sr/ 86Sr ratios (˜0.7065). The potassic silica-undersaturated rocks overlie Precambrian crust and lithosphere and were at least in part derived from ancient metasomatized subcontinental mantle lithosphere, which was modified in a Precambrian subduction setting. The alkaline rocks of the Challis-Kamloops belt are related to a slab-window environment. In particular, they were formed above the southern edge of the Kula plate adjacent to the Kula-Farallon slab window, whereas the Montana alkaline province situated well to the southeast was formed directly above the Kula-Farallon slab window. Upwelling of the hotter asthenospheric mantle may have been the thermal trigger necessary to induce melting of fertile and metasomatized lithospheric mantle.

  3. Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1° x 2 ° quadrangle, southwestern Utah, using ASTER satellite data

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Hofstra, Albert H.

    2012-01-01

    The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite ± alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of

  4. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  5. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  6. Separating natural trends from direct human influences on flow changes and flooding of the Rock River in Wisconsin

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.; Bader, J. A.

    2016-12-01

    The Rock River of south-central Wisconsin is an integral feature of the glacial legacy and modern drainage system of the region. It runs from the Horicon marsh, a federally protected wetland, through mostly rural areas of Wisconsin and northern Illinois to its outlet to the Mississippi River. Economically important to the adjacent farmers and communities, the Rock River has a colorful history of recreation, management, and especially change. But over the years, changes to the upper Rock River between the Horicon Marsh and Watertown, Wisconsin have induced flooding of unprecedented frequency and duration, especially when compared against hydrometeorological conditions. Anecdotal evidence suggests unusual flooding of large swaths of farmland and roadways, along with unwelcome consequences of those floodwaters have been especially pronounced since the late 1990's. Beginning in 2007, continuous weekly monitoring of the Rock River stage has been conducted in Lebanon Township below the Horicon Marsh. In that time, multiple damaging flood events have been recorded. In search of causes for these anomalous events, especially with regard to duration, upstream and downstream management practices have been evaluated. Dam manipulation downstream of the Lebanon and Ashippun Township sections is one likely cause. However, upon further review, a continued upward trend in stream stage (0.58 feet of increase over nine years) cannot be as easily explained by management practices, especially considering a general decrease in overall precipitation during those same years.

  7. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.

    PubMed

    Ushida, Kazunari; Segawa, Takahiro; Tsuchida, Sayaka; Murata, Koichi

    2016-02-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan.

  8. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  9. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  10. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    USGS Publications Warehouse

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  11. Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue

    NASA Astrophysics Data System (ADS)

    Smith, Heather D.; Baqué, Mickael; Duncan, Andrew G.; Lloyd, Christopher R.; McKay, Christopher P.; Billi, Daniela

    2014-05-01

    The Mojave Desert has been long considered a suitable terrestrial analogue to Mars in many geological and astrobiological aspects. The Silver Lake region in the Mojave Desert hosts several different rock types (talc, marble, quartz, white carbonate and red-coated carbonate) colonized by hypoliths within a few kilometres. This provides an opportunity to investigate the effect of rock type on hypolithic colonization in a given environment. Transmission measurements from 300 to 800 nm showed that the transmission of blue and UVA varied between rock types. The wavelength at which the transmission fell to 1% of the transmission at 600 nm was 475 nm for white carbonate and quartz, 425 nm for red-coated carbonate and talc and 380 nm for marble. The comparative analysis of the cyanobacterial component of hypoliths under different rocks, as revealed by sequencing 16S rRNA gene clone libraries, showed no significant variation with rock type; hypoliths were dominated by phylotypes of the genus Chroococcidiopsis, although less abundant phylotypes of the genus Loriellopsis, Leptolyngbya and Scytonema occurred. The comparison of the confocal laser scanning microscopy-λ (CLSM-λ) scan analysis of the spectral emission of the photosynthetic pigments of Chroococcidiopsis in different rocks with the spectrum of isolated Chroococcidiopsis sp. 029, revealed a 10 nm red shift in the emission fingerprinting for quartz and carbonate and a 5 nm red shift for talc samples. This result reflects the versatility of Chroococcidiopsis in inhabiting dry niches with different light availability for photosynthesis.

  12. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  13. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  14. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  15. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  16. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Working over or adjacent to water. 214.107 Section 214.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Bridge Worker Safety Standards § 214.107 Working over or adjacent to water. (a)...

  17. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  18. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis

    USGS Publications Warehouse

    Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Gerlach, David C.; Russ III, G. Price; Jones, David L.

    1992-01-01

    Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 ≥ 98 wt%. This contrast in SiO2 (and SiAl">SiAl) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and SiAl">SiAl ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert.The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from

  19. Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto

    2015-04-01

    The Vajont landslide is a well-known, reservoir-induced slope failure that occurred on 9 October 1963 and was characterized by an 'en masse' sliding motion that triggered various large waves, determining catastrophic consequences for the nearby territory and adjacent villages. During the Vajont dam construction, and especially after the disaster, some researchers identified widespread field evidence of heavy rock mass damage involving the presumed prehistoric rockslide and/or the 1963 failed mass. This paper describes evidence of heavy gravitational damage, including (i) folding, (ii) fracturing, (iii) faulting, and (iv) intact rock disintegration. The gravity-induced rock mass damage (GRMD) characterizes the remnants of the basal shear zone, still resting on the large detachment surface, and the 1963 failed rock mass. The comprehensive geological study of the 1963 Vajont landslide, based on the recently performed geomechanical survey (2006-present) and on the critical analysis of the past photographic documentation (1959-1964), allows us to recognize that most GRMD evidence is related to the prehistoric multistage Mt. Toc rockslide. The 1963 catastrophic en masse remobilization induced an increase to the prehistoric damage, reworking preexisting structures and creating additional gravity-driven features (folds, fractures, faults, and rock fragmentation). The gravity-induced damage was formed during the slope instability phases that preceded the collapse (static or quasi-static GRMD) and also as a consequence of the sliding motion and of the devastating impact between the failed blocks (dynamic GRMD). Gravitational damage originated various types of small drag folds such as flexures, concentric folds, chevron, and kink-box folds, all having a radius of 1-5 m. Large buckle folds (radius of 10-50 m) are related to the dynamic damage and were formed during the en masse motion as a consequence of deceleration and impact processes that involved the sliding mass. Prior

  20. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  1. Host-to-host variation of ecological interactions in polymicrobial infections

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  2. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    NASA Astrophysics Data System (ADS)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are

  3. Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.

    NASA Astrophysics Data System (ADS)

    Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.

    1980-08-01

    This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the

  4. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  5. Volatile, Trace Element and Isotopic Variations of Mafic Arc Volcanic Rocks from Nicaragua and Costa Rica

    NASA Astrophysics Data System (ADS)

    Hoernle, K.; Sadofsky, S.; Nichols, H.; Portnyagin, M.; van den Bogaard, P.; Alvarado, G.

    2003-12-01

    Quaternary volcanic rocks from the Central American Volcanic Arc in central Nicaragua and central Costa Rica exhibit major differences in their volatile, trace element and isotopic compositions. Olivine-hosted melt inclusions in Nicaraguan volcanic rocks with high Fo contents (>73) extend to high H2O (up to 5.3%), S (10-6860 ppm) and Cl (490-2340 ppm) contents. The volcanic rocks have high ratios of fluid mobile to fluid immobile elements such as Ba/La (65-122), Ba/Th (484-1304) and U/La (0.08-0.17). Additionally, they have 143Nd/144Nd (0.51300-0.51307) similar to normal mid-ocean-ridge basalts (N-MORB) from the East Pacific Rise (EPR), but 87Sr/86Sr (0.7035-0.7042) ratios are much higher than those found in fresh EPR glasses. Pb isotopic compositions of the samples (e.g. 206Pb/204Pb = 18.5-19.0, 207Pb/204Pb = 15.52-15.58) form an array between EPR basalts and subducted sediments. The volatile, trace element and isotope data are consistent with mixing of fluids highly enriched in fluid-mobile elements from subducted sediments with a N-MORB-type mantle wedge to produce the Nicaraguan volcanic rocks. In contrast, olivine-hosted melt inclusions (Fo >82) in Costa Rican volcanic rocks show a similar range in H2O (up to 5.1%) to Nicaraguan inclusions but overall have lower S (0-1340 ppm) and Cl (10-790 ppm) contents. Costa Rican lavas also have lower Ba/La (7-35), Ba/Th (55-338), U/La (0.02-0.12), 87Sr/86Sr (0.7035-0.7038) and 143Nd/144Nd (0.51292-0.51301) than Nicaraguan lavas, but 87Sr/86Sr and Pb isotope ratios (e.g. 206Pb/204Pb = 19.02-19.32) are more radiogenic than in Nicaragua and than usually found in fresh EPR MORB. Our data are consistent with the presence of Galapagos Hotspot-type components in the source of the central Costa Rican volcanic rocks, derived from the subducting Galapagos Hotspot Track and from Galapagos-type material entering the mantle wedge through a slab tear or window (Abratis and Worner, 2000; Geology). The estimated volume of volcanic rocks

  6. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  7. Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers

    NASA Astrophysics Data System (ADS)

    Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2017-04-01

    Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high

  8. Rocking filters fabricated in birefringent photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Statkiewicz-Barabach, Gabriela; Anuszkiewicz, Alicja; Urbanczyk, Waclaw; Wojcik, Jan

    2008-12-01

    We demonstrate an efficient higher order rocking filter, which resonantly couples polarization modes guided in birefringent photonic crystal fibers. The grating was inscribed in the birefringent fiber with two large holes adjacent to the core by periodic mechanical twisting and heating with an arc fusion splicer. Because in photonic crystal fibers the phase birefringence is very dispersive and increases against wavelength, the phase matching between coupled modes can be obtained simultaneously at several wavelengths. In particular, we demonstrate that for the grating period Λ =8 mm, resonant coupling can be obtained at three different wavelengths. The first order coupling (-13dB) is obtained for Λ = LB . This condition is fulfilled at λ = 856 nm. The second order coupling (-20dB) is obtained for Λ = 2LB at λ =1270 nm and the third order coupling (- 17dB) occurs for Λ = 3LB at λ =1623 nm. The length of the filter was 9.6 cm, which corresponds to 13 periodic twists. We also present the results of sensitivity measurements of this filter to hydrostatic pressure and temperature.

  9. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  10. Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion

    PubMed Central

    Lorenz, Ralph D.; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved >60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, “windowpane” ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of ∼4–5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2–5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  11. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates

    PubMed Central

    2011-01-01

    The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358

  12. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; hide

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  13. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  14. Early Verb Constructions in French: Adjacency on the Left Edge

    ERIC Educational Resources Information Center

    Veneziano, Edy; Clark, Eve V.

    2016-01-01

    Children acquiring French elaborate their early verb constructions by adding adjacent morphemes incrementally at the left edge of core verbs. This hypothesis was tested with 2657 verb uses from four children between 1;3 and 2;7. Consistent with the Adjacency Hypothesis, children added clitic subjects frst only to present tense forms (as in…

  15. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  16. Adjacent bin stability evaluating for feature description

    NASA Astrophysics Data System (ADS)

    Nie, Dongdong; Ma, Qinyong

    2018-04-01

    Recent study improves descriptor performance by accumulating stability votes for all scale pairs to compose the local descriptor. We argue that the stability of a bin depends on the differences across adjacent pairs more than the differences across all scale pairs, and a new local descriptor is composed based on the hypothesis. A series of SIFT descriptors are extracted from multiple scales firstly. Then the difference value of the bin across adjacent scales is calculated, and the stability value of a bin is calculated based on it and accumulated to compose the final descriptor. The performance of the proposed method is evaluated with two popular matching datasets, and compared with other state-of-the-art works. Experimental results show that the proposed method performs satisfactorily.

  17. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    PubMed Central

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  18. Chocolate Hills Rock

    NASA Image and Video Library

    2010-02-16

    This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.

  19. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain and Kane Springs Wash volcanic centers, southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.; Noble, D. C.; Hsu, L. C.; Hutsinpiller, A.; Spatz, D.

    1986-01-01

    Surface coatings on volcanic rock assemblages that occur at select tertiary volcanic centers in southern Nevada were investigated using LANDSAT 5 Thematic Mapper imagery. Three project sites comprise the subject of this study: the Kane Springs Wash, Black Mountain, and Stonewall Mountain volcanic centers. LANDSAT 5 TM work scenes selected for each area are outlined along with local area geology. The nature and composition of surface coatings on the rock types within the subproject areas are determined, along with the origin of the coatings and their genetic link to host rocks, geologic interpretations are related to remote sensing units discriminated on TM imagery. Image processing was done using an ESL VAX/IDIMS image processing system, field sampling, and observation. Aerial photographs were acquired to facilitate location on the ground and to aid stratigraphic differentiation.

  20. Objectifying the Adjacent and Opposite Angles: A Cultural Historical Analysis

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Musallam, Nadera

    2018-01-01

    The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles'…

  1. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Pearson, D. Graham; Chacko, Thomas; Luo, Yan

    2018-02-01

    High-precision measurements of W isotopic ratios have enabled increased exploration of early Earth processes. However, when applying W isotopic data to understand the geological processes, it is critical to recognize the potential mobility of W and hence evaluate whether measured W contents and isotopic compositions reflect the primary petrogenetic processes or instead are influenced by the effects of secondary inputs/mobility. Furthermore, if we are to better understand how W is partitioned between different minerals during melting and metasomatic processes it is important to document the likely sinks for W during these processes. In addition, an understanding of the main hosts for W in the crust and mantle is critically important to constrain how W is cycled and stored in the crust-mantle geochemical cycle. As a first step to investigate these issues, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases within a broad spectrum of crustal and mantle rocks, along with whole-rock concentration measurements. Mass balance shows that for tonalitic gneiss and amphibolite, the major rock-forming minerals can adequately account for the bulk W budget, and for the pristine ultramafic rocks, olivine and orthopyroxene are the major controlling phases for W whereas for metasomatized ultramafic rocks, significant W is hosted in Ti-bearing trace phases (e.g., rutile, lindsleyite) along grain boundaries or is inferred to reside in cryptic W-bearing trace phases. Formation or decomposition of these phases during secondary processes could cause fractionation of W from other HFSEs, and also dramatically modify bulk W concentrations in rocks. For rocks that experienced subsequent W enrichment/alteration, their W isotopic compositions may not necessarily represent their mantle sources, but could reflect later inputs. The relatively small suite of rocks analyzed here serves as a reconnaissance study but allows some preliminary speculations on

  2. Host phylogeny determines viral persistence and replication in novel hosts.

    PubMed

    Longdon, Ben; Hadfield, Jarrod D; Webster, Claire L; Obbard, Darren J; Jiggins, Francis M

    2011-09-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  3. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  4. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  5. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  6. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    PubMed

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  7. Mineralogical, chemical, and physical properties of the regolith overlying crystalline rocks, Fairfax County, Virginia: a preliminary report

    USGS Publications Warehouse

    Leo, Gerhard W.; Pavich, M.J.; Obermeier, Stephen F.

    1977-01-01

    Undisturbed cores of saprolite developed on crystalline rocks of the Piedmont Province in Fairfax County, Virginia have been obtained using a combination of Shelby tubes, Denison sampler, and modified diamond core-drilling. The principal purpose of the core study is to correlate variations in chemistry, mineralogy and texture with engineering properties throughout the weathering profile. Coring sites were chosen to obtain a maximum depth of weathering on diverse lithologies. The rocks investigated include pelitic schist, metagraywacke, granite, diabase and serpentinite. Four to twelve samples per core were selected, depending on thickness of 1) the weathering profile (from about 1 m in serpentinite to more than 30 m in pelitic schist) and on 2) megascopic changes in saprolite character for analysis of petrography, texture, clay mineralogy andd major element chemistry. Shear strength and compressibility were determined on corresponding segments of core. Standard penetration tests were performed adjacent to coring sites to evaluate engineering properties in situ. Geochemical changes of saprolite developed from each rock type follow predictable trends from fresh rock to soil profile, with relative Increases in Si, Ti, Al, Fe3+ and H20; variable K; and relative loss of Fe 2+, Mg, Ca, and Na. These variations are more pronounced in the weathering profiles over mafic and ultramafic rocks than metagraywacke. Clay minerals in granite, schist and metagraywacke saprolite are kaolinite, dioctahedral vermiculite, interlayered micavermiculite, and minor illite. Gibbsite is locally developed in near-surface samples of schist. Standard penetration test data for the upper 7 m of saprolite over schist and metagraywacke suggest alternations between stronger and weaker horizons than probably reflect variations in lithology including the presence of quartz lenses. Results for granite saprolite are most consistent but indicate lower strength. Shear strength increases fairly regularly

  8. The Volpe Center GPS Adjacent Band Compatibility Program Plan : GPS Adjacent Band Compatibility Workshop, Volpe Center, Cambridge MA

    DOT National Transportation Integrated Search

    2014-09-18

    Approach to DOT GPS Adjacent Band Compatibility Assessment. Identify forums and provide public outreach to make sure the progress and work are as open and transparent as possible. Develop an implementation plan that incorporates aspects from the DOT ...

  9. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank.Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank.Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine.Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  10. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    PubMed

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  12. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    USGS Publications Warehouse

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  13. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  14. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  15. Adjacent-Categories Mokken Models for Rater-Mediated Assessments

    PubMed Central

    Wind, Stefanie A.

    2016-01-01

    Molenaar extended Mokken’s original probabilistic-nonparametric scaling models for use with polytomous data. These polytomous extensions of Mokken’s original scaling procedure have facilitated the use of Mokken scale analysis as an approach to exploring fundamental measurement properties across a variety of domains in which polytomous ratings are used, including rater-mediated educational assessments. Because their underlying item step response functions (i.e., category response functions) are defined using cumulative probabilities, polytomous Mokken models can be classified as cumulative models based on the classifications of polytomous item response theory models proposed by several scholars. In order to permit a closer conceptual alignment with educational performance assessments, this study presents an adjacent-categories variation on the polytomous monotone homogeneity and double monotonicity models. Data from a large-scale rater-mediated writing assessment are used to illustrate the adjacent-categories approach, and results are compared with the original formulations. Major findings suggest that the adjacent-categories models provide additional diagnostic information related to individual raters’ use of rating scale categories that is not observed under the original formulation. Implications are discussed in terms of methods for evaluating rating quality. PMID:29795916

  16. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas

    NASA Astrophysics Data System (ADS)

    Sakyi, Patrick Asamoah; Tanaka, Ryoji; Kobayashi, Katsura; Nakamura, Eizo

    2012-10-01

    Dislocation textures of olivine grains and Pb isotopic compositions (207Pb/206Pb and 208Pb/206Pb) of olivine-hosted melt inclusions in basaltic lavas from three Hawaiian volcanoes (Kilauea, Mauna Loa, and Koolau) were examined. More than 70% of the blocky olivine grains in the studied samples have a regular-shaped dislocation texture with their dislocation densities exceeding 106 cm-2, and can be considered as deformed olivine. The size distribution of blocky olivine grains shows that more than 99% of blocky olivines coarser than 1.2 mm are identified as deformed olivine. These deformed olivine grains are identified as antecrysts, which originally crystallized from previous stages of magmatism in the same shield, followed by plastic deformation prior to entrainment in the erupted host magmas. This study revealed that entrainment of mantle-derived crystallization products by younger batches of magma is an important part of the evolution of magnesium-rich Hawaiian magma. Lead isotopic compositions of melt inclusions hosted in the olivine antecrysts provide information of the evolutionary history of Hawaiian volcanoes which could not have been accessed if only whole rock analyses were carried out. Antecryst-hosted melt inclusions in Kilauea and Koolau lavas demonstrate that the source components in the melting region changed during shield formation. In particular, evidence of interaction of plume-derived melts and upper mantle was observed in the earliest stage of Koolau magmatism.

  17. The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Donnelly, Cara L.; Griffin, William L.; O'Reilly, Suzanne Y.; Pearson, Norman J.; Shee, Simon R.

    2011-03-01

    The Kuruman Kimberlite Province is comprised of 16 small pipes and dikes and contains some of the oldest known kimberlites (>1.6 Ga). In this study, 12 intrusions are subdivided into three groups with distinct petrology, age, and geochemical and isotopic compositions: (1) kimberlites with groundmass perovskites defining a Pb-Pb isochron age of 1787 ± 69 Ma, (2) orangeite with a U-Pb perovskite age of 124 ± 16 Ma, and (3) ultramafic lamprophyres (aillikite and mela-aillikite) with a zircon U-Pb age of 1642 ± 46 Ma. The magma type varies across the Province, with kimberlites in the east, lamprophyres in the west and orangeite and ultramafic lamprophyres to the south. Differences in the age and petrogenesis of the X007 orangeite and Clarksdale and Aalwynkop aillikites suggest that these intrusions are probably unrelated to the Kuruman Province. Kimberlite and orangeite whole-rock major and trace element compositions are similar to other South African localities. Compositionally, the aillikites typically lie off kimberlite and orangeite trends. Groundmass mineral chemistry of the kimberlites has some features more typical of orangeites. Kimberlite whole-rock Sr and Nd isotopes show zoning across the Province. When the kimberlites erupted at ~1.8 Ga, they sampled a core volume (ca 50 km across) of relatively depleted SCLM that was partially surrounded by a rim of more metasomatized mantle. This zonation may have been related to the development of the adjacent Kheis Belt (oldest rocks ~2.0 Ga), as weaker zones surrounding the more resistant core section of SCLM were more extensively metasomatized.

  18. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2018-01-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  19. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  20. The Permo-Triassic uranium deposits of Gondwanaland

    NASA Astrophysics Data System (ADS)

    le Roux, J. P.; Toens, P. D.

    The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.

  1. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  2. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  3. Curiosity Rock-Contact Science Begins

    NASA Image and Video Library

    2012-09-24

    This image shows the robotic arm of NASA Mars rover Curiosity with the first rock touched by an instrument on the arm. The rover placed the APXS instrument onto the rock to assess what chemical elements were present in the rock.

  4. Rho-associated coiled-coil containing kinases (ROCK)

    PubMed Central

    Julian, Linda; Olson, Michael F

    2014-01-01

    Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase.1–5 They belong to the AGC family of serine/threonine kinases6 and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK. PMID:25010901

  5. Thermal Alteration of Pyrite to Pyrrhotite During Earthquakes: New Evidence of Seismic Slip in the Rock Record

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Dekkers, Mark J.; Chen, Jianye

    2018-02-01

    Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has certain assets and disadvantages. Here we describe a mineral magnetic method to identify seismic slip along with its peak temperature through examination of magnetic mineral assemblages within a fault zone in deep-sea sediments cored from the Japan Trench—one of the seismically most active regions around Japan—during the Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project. Fault zone sediments and adjacent host sediments were analyzed mineral magnetically, supplemented by scanning electron microscope observations with associated energy dispersive X-ray spectroscopy analyses. The presence of the magnetic mineral pyrrhotite appears to be restricted to three fault zones occurring at 697, 720, and 801 m below sea floor in the frontal prism sediments, while it is absent in the adjacent host sediments. Elevated temperatures and coseismic hot fluids as a consequence of frictional heating during earthquake rupture induced partial reaction of preexisting pyrite to pyrrhotite. The presence of pyrrhotite in combination with pyrite-to-pyrrhotite reaction kinetics constrains the peak temperature to between 640 and 800°C. The integrated mineral-magnetic, microscopic, and kinetic approach adopted here is a useful tool to identify seismic slip along faults without frictional melt and establish the associated maximum temperature.

  6. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  7. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    USGS Publications Warehouse

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  8. Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization.

    PubMed

    Fournier, Joëlle; Imanishi, Leandro; Chabaud, Mireille; Abdou-Pavy, Iltaf; Genre, Andrea; Brichet, Lukas; Lascano, Hernán Ramiro; Muñoz, Nacira; Vayssières, Alice; Pirolles, Elodie; Brottier, Laurent; Gherbi, Hassen; Hocher, Valérie; Svistoonoff, Sergio; Barker, David G; Wall, Luis G

    2018-05-23

    Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  9. Tracking the source of the enriched martian meteorites in olivine-hosted melt inclusions of two depleted shergottites, Yamato 980459 and Tissint

    NASA Astrophysics Data System (ADS)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R. C.; Schmitt, A. K.; McKeegan, K. D.

    2015-05-01

    The apparent lack of plate tectonics on all terrestrial planets other than Earth has been used to support the notion that for most planets, once a primitive crust forms, the crust and mantle evolve geochemically-independent through time. This view has had a particularly large impact on models for the evolution of Mars and its silicate interior. Recent data indicating a greater potential that there may have been exchange between the martian crust and mantle has led to a search for additional geochemical evidence to support the alternative hypothesis, that some mechanism of crustal recycling may have operated early in the history of Mars. In order to study the most juvenile melts available to investigate martian mantle source(s) and melting processes, the trace element compositions of olivine-hosted melt inclusions for two incompatible-element-depleted olivine-phyric shergottites, Yamato 980459 (Y98) and Tissint, and the interstitial glass of Y98, have been measured by Secondary Ionization Mass Spectrometry (SIMS). Chondrite-normalized Rare Earth Element (REE) patterns for both Y98 and Tissint melt inclusions, and the Y98 interstitial glass, are characteristically light-REE depleted and parallel those of their host rock. For Y98, a clear flattening and upward inflection of La and Ce, relative to predictions based on middle and heavier REE, provides evidence for involvement of an enriched component early in their magmatic history; either inherited from a metasomatized mantle or crustal source, early on and prior to extensive host crystallization. Comparing these melt inclusion and interstitial glass analyses to existing melt inclusion and whole-rock data sets for the shergottite meteorite suite, defines mixing relationships between depleted and enriched end members, analogous to mixing relationships between whole rock Sr and Nd isotopic measurements. When considered in light of their petrologic context, the origin of these trace element enriched and isotopically

  10. Regulation of ROCK Activity in Cancer

    PubMed Central

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  11. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    PubMed

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  12. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas fault in northern California, USA

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.

    2017-01-01

    Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates

  13. Descriptions of mineral occurrences and interpretation of mineralized rock geochemical data in the Stikine geophysical survey area, Southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.

    2003-01-01

    Detailed descriptions of some of the more significant mineral occurrences in the Stikine Airborne Geophysical Survey Project Area are presented based upon site-specific examinations by the U.S. Geological Survey in May of 1998. Reconnaissance geochemical data on unmineralized igneous and sedimentary host rocks, and mineralized rocks are also presented and are accompanied by a brief analysis of geochemical signatures typical of each occurrence. Consistent with the stated goal of the geophysical survey; to stimulate exploration for polymetallic massive sulfides similar to the Greens Creek deposit, the majority of the described occurrences are possible members of a belt of Late Triassic mineral deposits that are distributed along the eastern edge of the Alexander terrane in southeastern Alaska. Many of the described occurrences in the Duncan Canal-Zarembo Island area share similarities to the Greens Creek deposit. When considered as a whole, the geology, mineralogy, and geochemistry of these occurrences help to define a transitional portion of the Late Triassic mineral belt where changes in shallow to deeper water stratigraphy and arc-like to rift-related igneous rocks are accompanied by concomitant changes in the size, morphology, and metal endowments of the mineral occurrences. As a result, Late Triassic mineral occurrences in the area appear as: 1) small, discontinuous, structurally controlled stockwork veins in mafic volcanic rocks, 2) small, irregular replacements and stratabound horizons of diagenetic semi-massive sulfides in dolostones and calcareous shales, and as 3) larger, recognizably stratiform accumulations of baritic, semi-massive to massive sulfides at and near the contact between mafic volcanic rocks and overlying sedimentary rocks. Empirical exploration guidelines for Greens Creek-like polymetallic massive sulfide deposits in southeastern Alaska include: 1) a Late Triassic volcano-sedimentary host sequence exhibiting evidence of succession from

  14. 'They of the Great Rocks'-3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.

  15. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  16. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  17. Paleomagnetic Results for Eocene Volcanic Rocks from Northeastern Washington and the Tertiary Tectonics of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Fox, Kenneth F., Jr.; Beck, Myrl E., Jr.

    1985-04-01

    The direction of remanent magnetization for 102 sites in Eocene volcanic and volcaniclastic rocks of the O'Brien Creek Formation, Sanpoil Volcanics, and Klondike Mountain Formation suggests approximately 25° of clockwise rotation of a 100 by 200 km area in northeastern Washington. The volcanic rocks consist chiefly of rhyodacite and quartz latite flows, with intercalated ash flow tuff and volcaniclastic layers. These rocks have been sampled at 102 sites distributed among five volcanotectonic depressions: the Toroda Creek, Republic, Keller, and First Thought grabens and the Spokane-Enterprise lineament. The volcanic rocks probably range in age from 55 m.y. to about 48 m.y., and the 50- to 48-m.y.-old volcanic rocks within this suite appear to be rotated as much as the older rocks. Previous investigators have shown that 40-m.y.-old and younger plutonic rocks of northwestern Washington are not rotated; hence we infer that the north-central Washington rocks were rotated to their present declination between 48 and 40 m.y. B.P. (during the middle and/or late Eocene). During early Eocene time this region was extended in a westward direction through crustal necking, gneiss-doming, diking, and graben formation. Internal deformation of the region related to this crustal extension was extreme, but most bedrock units that were formed concurrent with the crustal extension were probably in place prior to the rotation; hence we infer that the rotation was chiefly accommodated by movement on faults peripheral to the sampled area. Faults active during Paleogene time appear to define boundaries of a triangular crustal block (the Sanpoil block), encompassing much of northeastern Washington, northern Idaho, northwestern Montana, and adjacent parts of British Columbia. The faults include the Laramide thrusts of the Rocky Mountain thrust belt, the strike-slip faults of the Lewis and Clark line, and strike-slip faults of the Straight Creek-Fraser zone. We suggest that during early

  18. Petroleum geochemistry of oils and rocks in Arctic National Wildlife Refuge, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoon, L.B.; Anders, D.E.

    1987-05-01

    Thirteen oil seeps or oil-stained outcrops in or adjacent to the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska indicate that commercial quantities of hydrocarbons may be present in the subsurface. The area is flanked by two important petroleum provinces: the Prudhoe Bay area on the west and the Mackenzie delta on the east. Organic carbon content (wt. %), organic matter type, and pyrolysis hydrocarbon yield show that rock units such as the Kingak Shale (average 1.3 wt. %), pebble shale unit (2.1 wt. %), and Canning Formation (1.9 wt. %) contain predominantly type III organicmore » matter. The exception is the Hue Shale (5.9 wt. %), which contains type II organic matter. Pre-Cretaceous rocks that crop out in the Brooks Range could not be adequately evaluated because of high thermal maturity. Thermal maturity thresholds for oil, condensate, and gas calculated from vitrinite reflectance gradients in the Point Thomson area are 4000, 7300, and 9330 m, respectively (12,000, 22,500, and 28,000 ft). Time-temperature index (TTI) calculations for the Beli-1 and Point Thomson-1 wells immediately west of ANWR indicate that maturity first occurred in the south and progressed north. The Cretaceous Hue Shale matured in the Beli-1 well during the Eocene and in the Point Thomson-1 well in the late Miocene to early Pliocene. In the Point Thomson area, the condensate and gas recovered from the Thomson sandstone and basement complex based on API gravity and gas/oil ratio (GOR) probably originated from the pebble shale unit, and on the same basis, the oil recovered from the Canning Formation probably originated from the Hue Shale. The gas recovered from the three wells in the Kavik area is probably thermal gas from overmature source rocks in the immediate area.« less

  19. Realistic Expectations for Rock Identification.

    ERIC Educational Resources Information Center

    Westerback, Mary Elizabeth; Azer, Nazmy

    1991-01-01

    Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…

  20. Examining the relation between rock mass cuttability index and rock drilling properties

    NASA Astrophysics Data System (ADS)

    Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram

    2016-12-01

    Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.