Science.gov

Sample records for adjacent intronic regions

  1. Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.

    PubMed

    Zafrir, Zohar; Tuller, Tamir

    2015-10-01

    RNA splicing is the central process of intron removal in eukaryotes known to regulate various cellular functions such as growth, development, and response to external signals. The canonical sequences indicating the splicing sites needed for intronic boundary recognition are well known. However, the roles and evolution of the local folding of intronic and exonic sequence features adjacent to splice sites has yet to be thoroughly studied. Here, focusing on four fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Candida albicans), we performed for the first time a comprehensive high-resolution study aimed at characterizing the encoding of intronic splicing efficiency in pre-mRNA transcripts and its effect on intron evolution. Our analysis supports the conjecture that pre-mRNA local folding strength at intronic boundaries is under selective pressure, as it significantly affects splicing efficiency. Specifically, we show that in the immediate region of 12-30 nucleotides (nt) surrounding the intronic donor site there is a preference for weak pre-mRNA folding; similarly, in the region of 15-33 nt surrounding the acceptor and branch sites there is a preference for weak pre-mRNA folding. We also show that in most cases there is a preference for strong pre-mRNA folding further away from intronic splice sites. In addition, we demonstrate that these signals are not associated with gene-specific functions, and they correlate with splicing efficiency measurements (r = 0.77, P = 2.98 × 10(-21)) and with expression levels of the corresponding genes (P = 1.24 × 10(-19)). We suggest that pre-mRNA folding strength in the above-mentioned regions has a direct effect on splicing efficiency by improving the recognition of intronic boundaries. These new discoveries are contributory steps toward a broader understanding of splicing regulation and intronic/transcript evolution. PMID:26246046

  2. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex

    PubMed Central

    Kralovicova, Jana; Lages, Ana; Patel, Alpa; Dhir, Ashish; Buratti, Emanuele; Searle, Mark; Vorechovsky, Igor

    2014-01-01

    Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression. PMID:24944197

  3. Intron Retention in the Alternatively Spliced Region of RON Results from Weak 3’ Splice Site Recognition

    PubMed Central

    Smith, Lindsay D.; Lucas, Christian M.; Eperon, Ian C.

    2013-01-01

    The RON gene encodes a tyrosine kinase receptor for macrophage-stimulating protein. A constitutively active isoform that arises by skipping of exon 11 is expressed in carcinomas and contributes to an invasive phenotype. However, a high proportion of the mRNA expressed from the endogenous gene, or from transfected minigenes, appears to retain introns 10 and 11. It is not known whether this represents specific repression or the presence of weak splicing signals. We have used chimeric pre-mRNAs spliced in vitro to investigate the reason for intron retention. A systematic test showed that, surprisingly, the exon sequences known to modulate exon 11 skipping were not limiting, but the 3’ splice site regions adjacent to exons 11 and 12 were too weak to support splicing when inserted into a globin intron. UV-crosslinking experiments showed binding of hnRNP F/H just 5’ of these regions, but the hnRNP F/H target sequences did not mediate inhibition. Instead, the failure of splicing is linked to weak binding of U2AF65, and spliceosome assembly stalls prior to formation of any of the ATP-dependent complexes. We discuss mechanisms by which U2AF65 binding is facilitated in vivo. PMID:24155930

  4. Intronic miR-932 targets the coding region of its host gene, Drosophila neuroligin2.

    PubMed

    Qian, Jinjun; Tu, Renjun; Yuan, Liudi; Xie, Wei

    2016-06-10

    Despite great progress for two decades in microRNAs (miRNAs), the direct regulation of host gene by intragenic (mostly intronic) miRNA is conceptually plausible but evidence-limited. Here, we report that intronic miR-932 could target its host gene via binding with coding sequence (CDS) region rather than regular 3'UTR. The conserved miR-932 is embedded in the fourth intron of Drosophila neuroligin2 (dnlg2), which encodes a synaptic cell adhesion molecule, DNlg2. In silico analysis predicted two putative miR-932 target sites locate in the CDS region of dnlg2 instead of regular 3'-UTR miRNA binding sites. Employing luciferase reporter assay, we further proved that the miR-932 regulates expression of its host gene dnlg2 via the binding CDS region of dnlg2. Consistently, we observed miR-932 downregulated expression of dnlg2 in S2 cell, and the repression of dnlg2 by miR-932 at both protein and RNA level. Furthermore, we found CDS-located site1 is dominant for regulating expression of host dnlg2 by miR-932. In addition to providing thorough examination of one intronic miRNA targeting the CDS region of its host gene, our genome-wide analysis indicated that nearly half of fruitfly and human intronic miRNAs may target their own host gene at coding region. This study would be valuable in elucidating the regulation of intronic miRNA on host gene, and provide new information about the biological context of their genomic arrangements and functions. PMID:26844630

  5. Intronic regions of plant genes potentially encode RDR (RNA-dependent RNA polymerase)-dependent small RNAs

    PubMed Central

    Qin, Jingping; Ma, Xiaoxia; Yi, Zili; Tang, Zhonghai; Meng, Yijun

    2015-01-01

    Recent research has linked the non-coding intronic regions of plant genes to the production of small RNAs (sRNAs). Certain introns, called ‘mirtrons’ and ‘sirtrons’, could serve as the single-stranded RNA precursors for the generation of microRNA and small interfering RNA, respectively. However, whether the intronic regions could serve as the template for double-stranded RNA synthesis and then for sRNA biogenesis through an RDR (RNA-dependent RNA polymerase)-dependent pathway remains unclear. In this study, a genome-wide search was made for the RDR-dependent sRNA loci within the intronic regions of the Arabidopsis genes. Hundreds of intronic regions encoding three or more RDR-dependent sRNAs were found to be covered by dsRNA-seq (double-stranded RNA sequencing) reads, indicating that the intron-derived sRNAs were indeed generated from long double-stranded RNA precursors. More interestingly, phase-distributed sRNAs were discovered on some of the dsRNA-seq read-covered intronic regions, and those sRNAs were largely 24 nt in length. Based on these results, the opinion is put forward that the intronic regions might serve as the genomic origins for the RDR-dependent sRNAs. This opinion might add a novel layer to the current biogenesis model of the intron-derived sRNAs. PMID:25609829

  6. BIALLELIC POLYMORPHISM IN THE INTRON REGION OF B-TUBULIN GENE OF CRYPTOSPORIDIUM PARASITES

    EPA Science Inventory

    Nucleotide sequencing of polymerase chain reaction-amplified intron region of the Cryptosporidium parvum B-tubulin gene in 26 human and 15 animal isolates revealed distinct genetic polymorphism between the human and bovine genotypes. The separation of 2 genotypes of C. parvum is...

  7. The chick and human collagen alpha1(XII) gene promoter--activity of highly conserved regions around the first exon and in the first intron.

    PubMed

    Chiquet, M; Mumenthaler, U; Wittwer, M; Jin, W; Koch, M

    1998-10-15

    A single gene encodes collagen XII, an extracellular matrix protein with three large fibronectin-related subunits connected via a short collagen triple helix. Since collagen XII is a component of a specific subset of collagen fibrils in tissues bearing high tensile stress, we are interested to know how its restricted expression is regulated. To this aim, we have isolated the region around the first exon of both the chick and human collagen alpha1(XII) gene. The upstream sequences of the two genes share common features but are not related. Strong similarity starts about 100 bp 5' of the first exon and ends 100 bp into the first intron. In addition, two large conserved regions (56-63% similarity) were found in the first intron. A single major and two clusters of minor transcription start sites were identified in both the chick and human gene. To test for promoter activity, conserved fragments from the chick gene were cloned into reporter plasmids for transient transfection of fibroblasts. A 70-bp stretch containing a conserved nuclear factor-1 binding sequence just upstream of the first transcription start site was found to work as a basal promoter. An adjacent, but nonoverlapping short segment including the more downstream start sites and a conserved TATTAA sequence exhibited independent promoter activity. GC-rich sequences just 5' and 3' of the minimal promoter fragments were required for full activity. In contrast, inclusion of more upstream sequences (up to 2.4 kb) had no effect. The two conserved regions in the first intron showed no promoter activity on their own but modulated activity when linked to autologous or heterologous promoters. Specifically, one of these intronic regions might contain enhancer element(s) that respond to mechanical stress acting on the fibroblasts. We conclude that the collagen XII gene is driven by a basal promoter with two halves that can act independently; conserved control regions are located around the first exon and in the first

  8. Image registration using a weighted region adjacency graph

    NASA Astrophysics Data System (ADS)

    Al-Hasan, Muhannad; Fisher, Mark

    2005-04-01

    Image registration is an important problem for image processing and computer vision with many proposed applications in medical image analysis.1, 2 Image registration techniques attempt to map corresponding features between two images. The problem is particularly difficult as anatomy is subject to elastic deformations. This paper considers this problem in the context of graph matching. Firstly, weighted Region Adjacency Graphs (RAGs) are constructed from each image using an approach based on watershed saliency. 3 The vertices of the RAG represent salient regions in the image and the (weighted) edges represent the relationship (bonding) between each region. Correspondences between images are then determined using a weighted graph matching method. Graph matching is considered to be one of the most complex problems in computer vision, due to its combinatorial nature. Our approach uses a multi-spectral technique to graph matching first proposed by Umeyama4 to find an approximate solution to the weighted graph matching problem (WGMP) based on the singular value decomposition of the adjacency matrix. Results show the technique is successful in co-registering 2-D MRI images and the method could be useful in co-registering 3-D volumetric data (e.g. CT, MRI, SPECT, PET etc.).

  9. Rayleigh wave tomography of China and adjacent regions

    NASA Astrophysics Data System (ADS)

    Huang, Zhongxian; Su, Wei; Peng, Yanju; Zheng, Yuejun; Li, Hongyi

    2003-02-01

    This paper presents a tomographic study on the S wave velocity structure of China and adjacent regions. Group velocity dispersions of fundamental Rayleigh waves along more than 4000 paths were determined with frequency-time analysis. The study region was divided into a 1° × 1° grid, and velocities in between grid nodes were calculated by bilinear interpolation. The Occam's inversion scheme was adopted to invert for group velocity distributions. This method is robust and allows us to use a fine grid in model parameterization and thus helps to restore a more realistic velocity pattern. Checkerboard tests were carried out, and the lateral resolution was estimated to be 4°-6° in China and its eastern continental shelves. The resulting group velocity maps from 10 to 184 s showed good correlation with known geological and tectonic features. The pure path dispersion curves at each node were inverted for shear wave velocity structures. The three-dimensional velocity model indicates thick lithospheres in the Yangtze and Tarim platforms and hot upper mantles in Baikal and western Mongolia, coastal area and continental shelves of eastern China, and Indochina and South China Sea regions. The Tibetan Plateau has a very thick crust with a low-velocity zone in its middle. Beneath the crust a north dipping high-velocity zone, mimicking a subducting plate, reaches to 200 km in depth and reaches to the Kunlun Mountains northward. In northern Tibet a low-velocity zone immediately below the Moho extends eastward then turns southward along the eastern edge of the plateau until it connects to the vast low-velocity area in Indochina and the South China Sea.

  10. Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel

    2012-01-01

    Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.

  11. Intron splicing in 5' untranslated region of the rolA transcript in transgenic apple.

    PubMed

    Xue, Zhong-Tian; Holefors, Anna; Welander, Margareta

    2008-01-01

    The rolA gene encoded on the Ri plasmid of Agrobacterium rhizogenes causes developmental alterations, including dwarfing characteristics in the transgenic plants. In an attempt to introduce dwarfing characteristics into apple rootstocks for breeding purposes, the rolA gene was incorporated into the apple rootstock M26 and obtained four transgenic clones. All the clones exhibited reduced growth compared to untransformed control plants but different degree of dwarfing and wrinkled leaves. In the present study, expression of the rolA gene was further investigated by analysing the structure of the rolA transcript and the levels of the rolA mRNAs from these clones. The nucleotide (nt) sequence of the rolA transcript showed two forms of the transcript: one, the unspliced form, was co-linear with the rolA sequence in the genomic DNA; the other was spliced mRNA in which an 85-base pair (bp) intron sequence in the 5' untranslated region (5'UTR) was spliced out. The position of splicing is different from that in Arabidopsis thaliana but similar to the splicing site found in tobacco. The transcription start region of the rolA gene in apple was 206bp upstream of that in Arabidopsis and 277bp upstream to Nicotiana tabacum transcription start. A hairpin-like secondary structure and an upstream open reading frame (uORF) were revealed in the rolA 5'UTR. The levels of the rolA mRNA in the apple transgenic clones were analysed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed slight variation in the shoot tissues of the transgenic clones. PMID:17490782

  12. Spliceosomal introns in the 5′ untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression

    PubMed Central

    2013-01-01

    Background Introns located close to the 5′ end of a gene or in the 5′ untranslated region often exert positive effects on gene expression. This effect, known as intron-mediated enhancement (IME), has been observed in diverse eukaryotic organisms, including plants. The sequences involved in IME seem to be spread across the intron and function in an additive manner. The IMEter algorithm was developed to predict plant introns that may enhance gene expression. We have identified several plant members of the BTL class of E3s, which may have orthologs across eukaryotes, that contain a 5′UTR intron. The RING finger E3 ligases are key enzymes of the ubiquitination system that mediate the transfer of ubiquitin to substrates. Results In this study, we retrieved BTL sequences from several angiosperm species and found that 5′UTR introns showing a strong IMEter score were predicted, suggesting that they may be conserved by lineage. Promoter-GUS fusion lines were used to confirm the IME effect of these 5′UTR introns on gene expression. IMEter scores of BTLs were compared with the 5′UTR introns of two gene families MHX and polyubiquitin genes. Conclusions Analysis performed in two Arabidopsis BTL E3 ligases genes indicated that the 5′UTR introns were essential for gene expression in all the tissues tested. Comparison of the average 5′UTR intron size on three gene families in ten angiosperm species suggests that a prevalent size for a 5′UTR intron is in the range of 600 nucleotides, and that the overall IMEter score within a gene family is preserved across several angiosperms. Our results indicated that gene expression dependent on a 5′UTR intron is an efficient regulatory mechanism in BTL E3 ligases that has been preserved throughout plant evolution. PMID:24228887

  13. A region in the first exon/intron of rat carnitine palmitoyltransferase Ibeta is involved in enhancement of basal transcription.

    PubMed Central

    Wang, Guo-Li; Moore, Meredith L; McMillin, Jeanie B

    2002-01-01

    Carnitine palmitoyltransferase-Ibeta (CPT-Ibeta) catalyses the transfer of long-chain fatty acids to the enzymes of beta-oxidation of muscle and heart. Transcriptional control of this regulatory protein is relevant to disorders of fatty acid oxidation and the switch to glucose metabolism that occurs in cardiac pathology. The presence of a transcriptional enhancer sequence in the first untranslated exon and first intron of the CPT-Ibeta gene was identified using deletional and mutational analysis, and by ligation of an oleate responsive element (fatty acid response element) to a minimal promoter. The enhancer sequences are contained in the first 40 bases downstream of the transcription start site and increase CPT-Ibeta reporter gene expression independent of any 5' cis-acting elements. Deletion of the first 40 bases of the 3'-untranslated region does not affect the up-regulation of transcription by 10 microM phenylephrine. However, mutation and/or deletion of bases between +11 and +30 dramatically decreases reporter gene expression. Electrophoretic mobility-shift assays reveal two DNA (+11 to +36)-protein complexes that appear cardiac specific. The exon/intron element enhances activation of the heterologous thymidine kinase promoter in a position- and orientation-dependent manner. Therefore we have identified a novel region in the first exon/intron of the CPT-Ibeta gene that acts as a non-classical transcriptional enhancer downstream of regulatory elements characterized previously in the 5'-flanking region of the minimal promoter. PMID:11879187

  14. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA.

    PubMed Central

    Carroll, S M; Narayan, P; Rottman, F M

    1990-01-01

    N6-methyladenosine (m6A) residues occur at internal positions in most cellular and viral RNAs; both heterogeneous nuclear RNA and mRNA are involved. This modification arises by enzymatic transfer of a methyl group from S-adenosylmethionine to the central adenosine residue in the canonical sequence G/AAC. Thus far, m6A has been mapped to specific locations in eucaryotic mRNA and viral genomic RNA. We have now examined an intron-specific sequence of a modified bovine prolactin precursor RNA for the presence of this methylated nucleotide by using both transfected-cell systems and a cell-free system capable of methylating mRNA transcripts in vitro. The results indicate the final intron-specific sequence (intron D) of a prolactin RNA molecule does indeed possess m6A residues. When mapped to specific T1 oligonucleotides, the predominant site of methylation was found to be within the consensus sequence AGm6ACU. The level of m6A at this site is nonstoichiometric; approximately 24% of the molecules are modified in vivo. Methylation was detected at markedly reduced levels at other consensus sites within the intron but not in T1 oligonucleotides which do not contain either AAC or GAC consensus sequences. In an attempt to correlate mRNA methylation with processing, stably transfected CHO cells expressing augmented levels of bovine prolactin were treated with neplanocin A, an inhibitor of methylation. Under these conditions, the relative steady-state levels of the intron-containing nuclear precursor increased four to six times that found in control cells. Images PMID:2388614

  15. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA.

    PubMed

    Carroll, S M; Narayan, P; Rottman, F M

    1990-09-01

    N6-methyladenosine (m6A) residues occur at internal positions in most cellular and viral RNAs; both heterogeneous nuclear RNA and mRNA are involved. This modification arises by enzymatic transfer of a methyl group from S-adenosylmethionine to the central adenosine residue in the canonical sequence G/AAC. Thus far, m6A has been mapped to specific locations in eucaryotic mRNA and viral genomic RNA. We have now examined an intron-specific sequence of a modified bovine prolactin precursor RNA for the presence of this methylated nucleotide by using both transfected-cell systems and a cell-free system capable of methylating mRNA transcripts in vitro. The results indicate the final intron-specific sequence (intron D) of a prolactin RNA molecule does indeed possess m6A residues. When mapped to specific T1 oligonucleotides, the predominant site of methylation was found to be within the consensus sequence AGm6ACU. The level of m6A at this site is nonstoichiometric; approximately 24% of the molecules are modified in vivo. Methylation was detected at markedly reduced levels at other consensus sites within the intron but not in T1 oligonucleotides which do not contain either AAC or GAC consensus sequences. In an attempt to correlate mRNA methylation with processing, stably transfected CHO cells expressing augmented levels of bovine prolactin were treated with neplanocin A, an inhibitor of methylation. Under these conditions, the relative steady-state levels of the intron-containing nuclear precursor increased four to six times that found in control cells. PMID:2388614

  16. Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15

    PubMed Central

    Nelson, George W.; Freedman, Barry I.; Bowden, Donald W.; Langefeld, Carl D.; An, Ping; Hicks, Pamela J.; Bostrom, Meredith A.; Johnson, Randall C.; Kopp, Jeffrey B.; Winkler, Cheryl A.

    2010-01-01

    Admixture mapping recently identified MYH9 as a susceptibility gene for idiopathic focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy (HIVAN) and end-stage kidney disease attributed to hypertension (H-ESKD) in African Americans (AA). MYH9 encodes the heavy chain of non-muscle myosin IIA, a cellular motor involved in motility. A haplotype and its tagging SNPs spanning introns 12–23 were most strongly associated with kidney disease (OR 2–7; P < 10−8, recessive). To narrow the region of association and identify potential causal variation, we performed a dense-mapping study using 79 MYH9 SNPs in AA populations with FSGS, HIVAN and H-ESKD (typed for a subset of 46 SNPs), for a total of 2496 cases and controls. The strongest associations were for correlated SNPs rs5750250, rs2413396 and rs5750248 in introns 13, 14 and 15, a region of 5.6 kb. Rs5750250 showed OR 5.0, 8.0 and 2.8; P = 2 × 10−17, 2 × 10−10 and 3 × 10−22, respectively, for FSGS, HIVAN and H-ESKD; OR 5.7; P = 9 × 10−27 for combined FSGS and HIVAN, recessive. An independent association was observed for rs11912763 in intron 33. Neither the highly associated SNPs nor the results of resequencing MYH9 in 40 HIVAN or FSGS cases and controls revealed non-synonymous changes that could account for the disease associations. Rs2413396 and one of the highly associated SNPs in intron 23, rs4821480, are predicted splicing motif modifiers. Rs5750250 combined with rs11912763 had receiver operator characteristic (ROC) C statistics of 0.80, 0.73 and 0.65 for HIVAN, FSGS and H-ESKD, respectively, allowing prediction of genetic risk by typing two SNPs. PMID:20124285

  17. Conserved termini and adjacent variable region of Twortlikevirus Staphylococcus phages.

    PubMed

    Zhang, Xianglilan; Kang, Huaixing; Li, Yuyuan; Liu, Xiaodong; Yang, Yu; Li, Shasha; Pei, Guangqian; Sun, Qiang; Shu, Peng; Mi, Zhiqiang; Huang, Yong; Zhang, Zhiyi; Liu, Yannan; An, Xiaoping; Xu, Xiaolu; Tong, Yigang

    2015-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing cause of serious infection, both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection are narrowing because of the limited number of newly developed antimicrobials. Here, four newly-isolated MRSA-virulent phages, IME-SA1, IMESA2, IME-SA118 and IME-SA119, were sequenced and analyzed. Their genome termini were identified using our previously proposed "termini analysis theory". We provide evidence that remarkable conserved terminus sequences are found in IME-SA1/2/118/119, and, moreover, are widespread throughout Twortlikevirus Staphylococcus phage G1 and K species. Results also suggested that each phage of the two species has conserved 5' terminus while the 3' terminus is variable. More importantly, a variable region with a specific pattern was found to be present near the conserved terminus of Twortlikevirus S. phage G1 species. The clone with the longest variable region had variable terminus lengths in successive generations, while the clones with the shortest variable region and with the average length variable region maintained the same terminal length as themselves during successive generations. IME-SA1 bacterial infection experiments showed that the variation is not derived from adaptation of the phage to different host strains. This is the first study of the conserved terminus and variable region of Twortlikevirus S. phages. PMID:26670039

  18. Phaneorozoic sequence stratigraphy of Bolivia and adjacent regions

    SciTech Connect

    Sempere, T. )

    1993-02-01

    Phaneorozoic sequence stratigraphy of the Pacific margin of western South America, particularly the Bolivian section, has been completed and new interpretations and hypotheses have been proposed as a result of data analyses of this information. The Paleozoic margin was initially passive (late Cambrian-Llanvirn, [open quotes]Puna aulacogen[close quotes]), but became active during a middle Ordovician compressional episode. Most of late Cambrian to early Triassic Bolivian rocks are of marine origin, with dark shale units recording sea level rises, whereas middle Triassic to Recent rocks were mainly deposited in continental environments (except six restricted-marine ingressions in the late Cretaceous-Danian, and one in the late Miocene, all with hydrocarbon potential). A noteworthy similarity exists between the Devonian to Jurassic stratigraphies of Bolivia and the Parana basin, suggesting that Bolivia behaved as part of the Brazilian craton from late Cambrian to late Jurassic, when it was captured into the Pacific margin geotectonic system. Organic-rich units correlate with Paleozoic highstand deposits and younger ingressions. The Bolivian Phanerozoic strata is characterized by thick layers, partly due to middle Ordovician-Carboniferous and late Cretaceous-Cenozoic foreland basins. Paleozoic foreland geometries include northeastern onlaps and, potentially, stratigraphic traps. Hydrocarbon generation, migration and trapping mainly depended on Cenozoic structural loading and burial and on propagation of Andean deformation which are comprised of Paleozoic shale decollements. Precise knowledge of the evolution of the Phanerozoic geodynamic contexts and basin geometries through sedimentation and subsequent deformations is crucial for hydrocarbon exploration strategies in these regions.

  19. Regional tectonics of Myanmar (Burma) and adjacent areas

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.; Loyd, S.P.; Tabbutt, V.M. ); Dolan, Stein, A. )

    1990-05-01

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexity of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.

  20. Functional characterization of transcriptional regulatory elements in the upstream region and intron 1 of the human S6 ribosomal protein gene.

    PubMed Central

    Antoine, M; Kiefer, P

    1998-01-01

    Expression of housekeeping genes involves regulation at comparable levels in a wide spectrum of cells. To define the cis-regulatory elements in the human S6 ribosomal protein (rpS6) gene, we made a series of deletions of the upstream non-transcribed region, including or excluding exon 1 or intron 1 sequences. The mutated rpS6 gene regulatory regions were fused to the chloramphenicol acetyltransferase reporter gene and transfected into HeLa and COS-1 cells. The results have identified three parts of the rpS6 gene that are required for efficient and specific transcription. The core promoter includes only a 40 bp region upstream of the transcription start site and initiation region. Both upstream and intronic elements enhance transcription from the core promoter. Furthermore, mutation of the splice donor site of intron 1 almost completely abolished the enhancing activity of the intronic transcriptional modulator. We used gel retardation assays to identify sequence-specific binding sites in the upstream region and in the proximal half of intron 1. Both common and different nuclear factors that bind the rpS6 gene promoter were identified in extracts from HeLa and COS-1 cells, suggesting that different transcription factors may bind specifically to the same binding region and might be interchangeable in their function to ensure high-level expression of housekeeping genes independently of the cell type. PMID:9820808

  1. Identification of a nuclear matrix attachment region like sequence in the last intron of PI3K{gamma}

    SciTech Connect

    Dai Bingbing; Ying Lei; Cai Rong; Li Ying; Zhang Xingqian; Lu Jian; Qian Guanxiang . E-mail: sundai0@163.com

    2006-03-10

    MARs are not only the structure bases of chromatin higher order structure but also have much biological significance. In this study, the whole sequence of about 100 kb in length from BAC clone of GS1-223D4 (GI: 5931478), in which human PI3K{gamma} gene is localized, was analyzed by two online-based computer programs, MARFinder and SMARTest. A strong potential MAR was predicted in the last and largest intron of PI3K{gamma}. The predicted 2 kb MAR, we refer to PIMAR, was further analyzed through biochemical methods in vitro and in vivo. The results showed that the PIMAR could be associated with nuclear matrices from HeLa cells both in vitro and in vivo. Further reporter gene analysis showed that in the transient transfection the expression of reporter gene linked with reversed PIMAR was repressed slightly, while in stably integrated state, the luciferase reporter both linked with reversed and orientated PIMAR was enhanced greatly in NIH-3T3 and K-562. These results suggest that the PIMAR maybe has the capacity of shielding integrated heterogeneous gene from chromatin position effect. Through combination of computer program analysis with confirmation by biochemical methods, we identified, for First time, a 2 kb matrix attachment region like sequence in the last intron of human PI3K{gamma}.

  2. The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces.

    PubMed

    Comeron, J M; Kreitman, M

    2000-11-01

    Intron length is negatively correlated with recombination in both Drosophila melanogaster and humans. This correlation is not likely to be the result of mutational processes alone: evolutionary analysis of intron length polymorphism in D. melanogaster reveals equivalent ratios of deletion to insertion in regions of high and low recombination. The polymorphism data do reveal, however, an excess of deletions relative to insertions (i.e., a deletion bias), with an overall deletion-to-insertion events ratio of 1.35. We propose two types of selection favoring longer intron lengths. First, the natural mutational bias toward deletion must be opposed by strong selection in very short introns to maintain the minimum intron length needed for the intron splicing reaction. Second, selection will favor insertions in introns that increase recombination between mutations under the influence of selection in adjacent exons. Mutations that increase recombination, even slightly, will be selectively favored because they reduce interference among selected mutations. Interference selection acting on intron length mutations must be very weak, as indicated by frequency spectrum analysis of Drosophila intron length polymorphism, making the equilibrium for intron length sensitive to changes in the recombinational environment and population size. One consequence of this sensitivity is that the advantage of longer introns is expected to decrease inversely with the rate of recombination, thus leading to a negative correlation between intron length and recombination rate. Also in accord with this model, intron length differs between closely related Drosophila species, with the longest variant present more often in D. melanogaster than in D. simulans. We suggest that the study of the proposed dynamic model, taking into account interference among selected sites, might shed light on many aspects of the comparative biology of genome sizes including the C value paradox. PMID:11063693

  3. Functional analysis of a highly conserved abundant larval transcript-2 (alt-2) intron 2 repeat region of lymphatic filarial parasites.

    PubMed

    Sakthidevi, Moorthy; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2014-06-01

    The filarial-specific protein abundant larval transcript-2 (ALT-2) is expressed exclusively in the infective larval stage (L3) and is a crucial protein for establishing immunopathogenesis in human hosts. The alt-2 gene has a conserved minisatellite repeat (29 or 27bp) in intron 2 (IR2) whose significance within lymphatic filarial species is unknown. Here, we report the role of IR2 in the regulation of alt-2 gene expression using an in vitro model. Using electrophoretic mobility shift assays, we identified the presence of a putative nuclear protein binding region within IR2. Subsequent transient expression experiments in eukaryotic cell lines demonstrated that the IR2 downregulated the expression of a downstream luciferase reporter gene, which was further validated with RT-PCR. We therefore identify IR2 as a suppressor element that regulates L3 stage-specific expression of alt-2. PMID:24681262

  4. Seismic Monitoring Capabilities of the Caribbean and Adjacent Regions Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Saurel, Jean-Marie; von Hillebrandt-Andrade, Christa; Crespo, Hector; McNamara, Dan; Huerfano, Victor

    2014-05-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions during the past 500 years. Since 1500, at least 4484 people are reported to have perished in these killer waves. Hundreds of thousands are currently threatened along the Caribbean coastlines. In 2005 the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) was established. It recommended the following minimum seismic performance standards for the detection and analysis of earthquakes: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. The implementation plan of the CARIBE EWS currently includes 115 seismic stations in the Caribbean and Adjacent Regions. The NOAA National Weather Service Caribbean Tsunami Warning Program prepares and distributes monthly reports on real time and archived seismic data availability of the contributing stations at the US Tsunami Warning Centers, the Puerto Rico Seismic Network and IRIS. As of early 2014, 99 of the proposed stations are being contributed by national, regional and international seismological institutions. Recent network additions (Nicaragua, Colombia, Mexico, Cayman Islands, and Venezuela) have reduced detection threshold, time and location error throughout much of the Caribbean region and Central America. Specifically, earthquakes (>M4.0) can be detected within 1 minute throughout much of the Caribbean. The remaining exceptions to this standard for detection are portions of northern South America and Mexico. Another performance criterion is 90% data availability. Currently 60-70% of the stations meet this standard. The presentation will further report on the status of the CARIBE EWS seismic capability for the timely and accurate detection and analysis of earthquakes for tsunami warning purposes for the Caribbean and Adjacent Regions.

  5. Androgen-dependent protein interactions within an intron 1 regulatory region of the 20-kDa protein gene.

    PubMed

    Avellar, M C; Gregory, C W; Power, S G; French, F S

    1997-07-11

    The 20-kDa protein gene is androgen regulated in rat ventral prostate. Intron 1 contains a 130-base pair complex response element (D2) that binds androgen (AR) and glucocorticoid receptor (GR) but transactivates only with AR in transient cotransfection assays in CV1 cells using the reporter vector D2-tkCAT. To better understand the function of this androgen-responsive unit, nuclear protein interactions with D2 were analyzed by DNase I footprinting in ventral prostate nuclei of intact or castrated rats and in vitro with ventral prostate nuclear protein extracts from intact, castrated, and testosterone-treated castrated rats. Multiple androgen-dependent protected regions and hypersensitive sites were identified in the D2 region with both methods. Mobility shift assays with 32P-labeled oligonucleotides spanning D2 revealed specific interactions with ventral prostate nuclear proteins. Four of the D2-protein complexes decreased in intensity within 24 h of castration. UV cross-linking of the androgen-dependent DNA binding proteins identified protein complexes of approximately 140 and 55 kDa. The results demonstrate androgen-dependent nuclear protein-DNA interactions within the complex androgen response element D2. PMID:9211911

  6. Endothelial nitric oxide synthase intron 4a/b polymorphism in coronary artery disease in Thrace region of Turkey

    PubMed Central

    Sivri, N.; Unlu, A.; Palabiyik, O.; Budak, M.; Kacmaz, Y.; Yalta, K.; Sipahi, T.

    2014-01-01

    Coronary artery disease (CAD) is one of the frequent cardiovascular mortality causes in the world. Common risk factors explain only about half the risk of CAD. The healthy familial predisposition to CAD, combined with advances in genetic analysis, has led to a number of studies in recent years making an effort to identify the genetic factors that influence the risk. The approach taken by most studies was to examine the association of naturally occurring genetic polymorphisms in candidate genes with risk of or severity of CAD. Endothelial nitric oxide synthase (eNOS) is important for vascular and tissue protection and is found in endothelial cells that encompass the entire vasculature, including the vessels in the heart. Nitric oxide (NO) is produced in a catabolic reaction in the endothelial cells, neurons, glia and macrophages by nitric oxide synthase (NOS) isoenzymes. eNOS is a subgroup of this family of enzymes that catalyses the production of nitric oxide (NO) from L-arginine and oxygen, which leads to vascular relaxation by activating the guanylate cyclase. This finally induces smooth muscle relaxation. The aim of this study was to investigate the allelic frequency and the genotypic distribution of the variable number of tandem repeat 27 (27 VNTR) gene polymorphism in intron 4 of the eNOS (eNOS 4a/b) gene in Thrace region, to compare CAD patients with appropriate healthy controls and to correlate the genetic findings with CAD subtypes. The study group included 281 (153 subjects with CAD and 128 controls) patients. The eNOS polymorphism was identified with a polymerase chain reaction. Genotypes were defined as aa, ab and bb according to the presence of a and b alleles. In this case–control study, we found that there was sensible correlation between eNOS gene intron 4a/b VNTR polymorphism and the risk of CAD in Thrace region of Turkey. However, there was no major difference for the genotype distribution and the allelic frequency among the CAD subtypes. Further

  7. Motifs within the CA-repeat-rich region of Surfactant Protein B (SFTPB) intron 4 differentially affect mRNA splicing

    PubMed Central

    Yang, Wenjun; Ni, Lan; Silveyra, Patricia; Wang, Guirong; Noutsios, Georgios T; Singh, Anamika; DiAngelo, Susan L; Sanusi, Olabisi; Raval, Manmeet; Floros, Joanna

    2013-01-01

    The first half of the surfactant protein B (SP-B) gene intron 4 is a CA-repeat-rich region that contains 11 motifs. To study the role of this region on SP-B mRNA splicing, minigenes were generated by systematic removal of motifs from either the 5′ or 3′ end. These were transfected in CHO cells to study their splicing efficiency. The latter was determined as the ratio of completely to incompletely spliced SP-B RNA. Our results indicate that SP-B intron 4 motifs differentially affect splicing. Motifs 8 and 9 significantly enhanced and reduced splicing of intron 4, respectively. RNA mobility shift assays performed with a Motif 8 sequence that contains a CAUC cis-element and cell extracts resulted in a RNA:protein shift that was lost upon mutation of the element. Furthermore, in silico analysis of mRNA secondary structure stability for minigenes with and without motif 8 indicated a correlation between mRNA stability and splicing ratio. We conclude that differential loss of specific intron 4 motifs results in one or more of the following: a) altered splicing, b) differences in RNA stability and c) changes in secondary structure. These, in turn, may affect SP-B content in lung health or disease. PMID:23687636

  8. Intron Evolution in Saccharomycetaceae

    PubMed Central

    Hooks, Katarzyna B.; Delneri, Daniela; Griffiths-Jones, Sam

    2014-01-01

    Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery. PMID:25364803

  9. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii) in China from Mitochondrial Control Region and Nuclear Intron Sequences

    PubMed Central

    Li, Yanhe; Guo, Xianwu; Chen, Liping; Bai, Xiaohui; Wei, Xinlan; Zhou, Xiaoyun; Huang, Songqian; Wang, Weimin

    2015-01-01

    Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC) in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA) were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China. PMID:26132567

  10. Pn tomographic velocity and anisotropy beneath the Tibetan Plateau and the adjacent regions

    NASA Astrophysics Data System (ADS)

    Lü, Y.; Ni, S.; Liu, B.; Sun, Y.

    2011-11-01

    We present a tomographic velocity and anisotropy model of the uppermost mantle beneath the Tibetan Plateau and the adjacent regions. The investigation analyzed 105,385 Pn phase readings from the International Seismological Centre (ISC) and the China Earthquake Data Center. The average Pn velocity under the study area is approximately 8.15 km/s, with velocity perturbations up to 3-4%. We find high Pn velocities under the Indian Plate and in the Tarim and Sichuan basins, low Pn velocities under the Hindu Kush and in Myanmar and the adjacent region, and especially low Pn velocities under the area north of the Indus-Yarlung Zangbo suture. The high Pn velocity anomalies of the Indian Plate are discontinuous at the collision region in the east-west direction, indicating that the Indian Plate probably subducts in a piecewise manner. Distributions of Pn velocities are used to validate mechanisms for the subduction of the Indian Plate presented in previous studies. In addition, Pn anisotropy is obtained simultaneously with Pn velocity. At plate collision zones, the fast Pn anisotropy direction is parallel to the direction of the collision edge. We validate the existence of Pn anisotropy under these regions and discuss the relationship of anisotropy with tectonic structure and plate movement.

  11. Hepatocyte Nuclear Factor 1 Regulates the Expression of the Organic Cation Transporter 1 via Binding to an Evolutionary Conserved Region in Intron 1 of the OCT1 Gene

    PubMed Central

    O’Brien, Valerie P.; Bokelmann, Kristin; Ramírez, Jacqueline; Jobst, Karoline; Ratain, Mark J.; Brockmöller, Jürgen

    2013-01-01

    The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences. PMID:23922447

  12. Hepatocyte nuclear factor 1 regulates the expression of the organic cation transporter 1 via binding to an evolutionary conserved region in intron 1 of the OCT1 gene.

    PubMed

    O'Brien, Valerie P; Bokelmann, Kristin; Ramírez, Jacqueline; Jobst, Karoline; Ratain, Mark J; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2013-10-01

    The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences. PMID:23922447

  13. A genome walking strategy for the identification of nucleotide sequences adjacent to known regions.

    PubMed

    Wang, Hailong; Yao, Ting; Cai, Mei; Xiao, Xiuqing; Ding, Xuezhi; Xia, Liqiu

    2013-02-01

    To identify the transposon insertion sites in a soil actinomycete, Saccharopolyspora spinosa, a genome walking approach, termed SPTA-PCR, was developed. In SPTA-PCR, a simple procedure consisting of TA cloning and a high stringency PCR, following the single primer-mediated, randomly-primed PCR, can eliminate non-target DNA fragments and obtain target fragments specifically. Using SPTA-PCR, the DNA sequence adjacent to the highly conserved region of lectin coding gene in onion plant, Allium chinense, was also cloned. PMID:23108875

  14. Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures

    NASA Astrophysics Data System (ADS)

    Kao, Honn; Behr, Yannik; Currie, Claire A.; Hyndman, Roy; Townend, John; Lin, Fan-Chi; Ritzwoller, Michael H.; Shan, Shao-Ju; He, Jiangheng

    2013-11-01

    paper presents the first continental-scale study of the crust and upper mantle shear velocity (Vs) structure of Canada and adjacent regions using ambient noise tomography. Continuous waveform data recorded between 2003 and 2009 with 788 broadband seismograph stations in Canada and adjacent regions were used in the analysis. The higher primary frequency band of the ambient noise provides better resolution of crustal structures than previous tomographic models based on earthquake waveforms. Prominent low velocity anomalies are observed at shallow depths (<20 km) beneath the Gulf of St. Lawrence in east Canada, the sedimentary basins of west Canada, and the Cordillera. In contrast, the Canadian Shield exhibits high crustal velocities. We characterize the crust-mantle transition in terms of not only its depth and velocity but also its sharpness, defined by its thickness and the amount of velocity increase. Considerable variations in the physical properties of the crust-mantle transition are observed across Canada. Positive correlations between the crustal thickness, Moho velocity, and the thickness of the transition are evident throughout most of the craton except near Hudson Bay where the uppermost mantle Vs is relatively low. Prominent vertical Vs gradients are observed in the midcrust beneath the Cordillera and beneath most of the Canadian Shield. The midcrust velocity contrast beneath the Cordillera may correspond to a detachment zone associated with high temperatures immediately beneath, whereas the large midcrust velocity gradient beneath the Canadian Shield probably represents an ancient rheological boundary between the upper and lower crust.

  15. A new version of regional ocean reanalysis for coastal waters of China and adjacent seas

    NASA Astrophysics Data System (ADS)

    Han, Guijun; Li, Wei; Zhang, Xuefeng; Wang, Xidong; Wu, Xinrong; Fu, Hongli; Zhang, Xiaoshuang; Zhang, Lianxin; Li, Dong

    2013-07-01

    A new regional ocean reanalysis over multiple decades (1958-2008) for the coastal waters of China and adjacent seas has been completed by the National Marine Data and Information Service (NMDIS) under the CORA (China Ocean ReAnalysis) project. Evaluations were performed on three aspects: (1) the improvement of general reanalysis quality; (2) eddy structures; and (3) decadal variability of sea surface height anomalies (SSHAs). Results showed that the quality of the new reanalysis has been enhanced beyond ˜40% (39% for temperature, 44% for salinity) in terms of the reduction of root mean squared errors (RMSEs) for which the reanalysis values were compared to observed values in the observational space. Compared to the trial version released to public in 2009, the new reanalysis is able to reproduce more detailed eddy structures as seen in satellite and in situ observations. EOF analysis of the reanalysis SSHAs showed that the new reanalysis reconstructs the leading modes of SSHAs much better than the old version. These evaluations suggest that the new CORA regional reanalysis represents a much more useful dataset for the community of the coastal waters of China and adjacent seas.

  16. A regional ocean reanalysis system for coastal waters of China and adjacent seas

    NASA Astrophysics Data System (ADS)

    Han, Guijun; Li, Wei; Zhang, Xuefeng; Li, Dong; He, Zhongjie; Wang, Xidong; Wu, Xinrong; Yu, Ting; Ma, Jirui

    2011-05-01

    A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service (NMDIS). It produces a dataset package called CORA (China ocean reanalysis). The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system (POMgcs). The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations. Data assimilation is a sequential three-dimensional variational (3D-Var) scheme implemented within a multigrid framework. Observations include satellite remote sensing sea surface temperature (SST), altimetry sea level anomaly (SLA), and temperature/salinity profiles. The reanalysis fields of sea surface height, temperature, salinity, and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature, salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges, temperature profiles, as well as the trajectories of Argo floats. Some case studies offer the opportunity to verify the evolution of certain local circulations. These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.

  17. Tsunami Ready Recognition Program for the Caribbean and Adjacent Regions Launched in 2015

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Hinds, K.; Aliaga, B.; Brome, A.; Lopes, R.

    2015-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years with 4,561 associated deaths according to the NOAA Tsunami Database. The most recent devastating tsunamis occurred in 1946 in Dominican Republic; 1865 died. With the explosive increase in residents, tourists, infrastructure, and economic activity along the coasts, the potential for human and economic loss is enormous. It has been estimated that on any day, more than 500,000 people in the Caribbean could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. In 2005 the UNESCO Intergovernmental Oceanographic Commission established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (ICG CARIBE EWS) to coordinate tsunami efforts among the 48 participating countries in territories in the region. In addition to monitoring, modeling and communication systems, one of the fundamental components of the warning system is community preparedness, readiness and resilience. Over the past 10 years 49 coastal communities in the Caribbean have been recognized as TsunamiReady® by the US National Weather Service (NWS) in the case of Puerto Rico and the US Virgin Islands and jointly by UNESCO and NWS in the case of the non US jurisdictions of Anguilla and the British Virgin Islands. In response to the positive feedback of the implementation of TsunamiReady, the ICG CARIBE EWS in 2015 recommended the approval of the guidelines for a Community Performance Based Recognition program. It also recommended the adoption of the name "Tsunami Ready", which has been positively consulted with the NWS. Ten requirements were established for recognition and are divided among Preparedness, Mitigation and Response elements which were adapted from the proposed new US TsunamiReady guidelines and align well with emergency management functions. Both a

  18. Polymorphisms in an intronic region of the myocilin gene associated with primary open-angle glaucoma—a possible role for alternate splicing

    PubMed Central

    Pandaranayaka, P.J. Eswari; Prasanthi, N.; Kannabiran, N.; Rangachari, K.; Dhivya, M.; Krishnadas, Subbiah R.; Sundaresan, P.

    2010-01-01

    Purpose To examine the possible role of alternate splicing leading to aggregation of myocilin in primary open-angle glaucoma. Methods Several single nucleotide variations found in the myocilin (MYOC) genomic region were collected and examined for their possible role in causing splice-site alterations. A model for myocilin built using a knowledge-based consensus method was used to map the altered protein products. A total of 150 open-angle glaucoma patients and 50 normal age-matched control subjects were screened for the predicted polymorphisms, and clustering was performed. Results A total of 124 genomic variations were screened, and six polymorphisms that lead to altered protein products were detected as possible candidates for the alternative splicing mechanism. Five of these lay in the intronic regions, and the one that lay in the exon region corresponded to the previously identified polymorphism (Tyr347Tyr) implicated in primary open-angle glaucoma. Experimentally screening the intronic region of the MYOC gene showed the presence of the predicted g.14072G>A polymorphism, g.1293C/T heterozygous polymorphism, instead of our predicted g.1293C/- polymorphism. Other than the prediction, two novel SNPs (g.1295G>T and g.1299T>G) and two reported SNPs (g.1284G>T and g.1286G>T) were also identified. Cluster analysis showed the g.14072G>A homozygous condition was more common in this cohort than the heterozygous condition. Conclusions We previously proposed that the disruption of dimer or oligomer formation by the C-term region allows greater chances of nucleation for aggregation. Here we suggest that polymorphisms in the myocilin genomic region that cause synonymous codon changes or those that occur in the intron regions can possibly lead to altered myocilin protein products through altered intron–exon splicing. PMID:21203411

  19. Ancient, highly polymorphic human major histocompatibility complex DQA1 intron sequence

    SciTech Connect

    McGinnis, M.D.; Quinn, D.L.; Lebo, R.V.; Simons, M.J.

    1994-10-01

    A 438 basepair intron 1 sequence adjacent to exon 2 in the human major histocompatibility complex DQA1 gene defined 16 allelic variants in 69 individuals from wide ethnic backgrounds. In contrast, the most variable coding region spanned by the 247 basepair exon 2 defined 11 allelic variants. Our phylogenetic human intron 1 tree derived by the Bootstrap algorithm reflects the same relative allelic relationships as the reported DQA1 exon 2 have cosegregated since divergence of the human races. Comparison of human alleles to a Rhesus monkey DQA1 first intron sequence found only 10 nucleotide substitutions unique to Rhesus, with the other 428 positions (98%) found in at least one human allele. This high degree of homology reflects the evolutionary stability of intron sequences since these two species diverged over 20 million years ago. Because more intron 1 alleles exist than exon 2 alleles, these polymorphic introns can be used to improve tissue typing for transplantation, paternity testing, and forensics and to derive more complete phylogenetic trees. These results suggest that introns represent a previously underutilized polymorphic resource. 42 refs., 3 figs., 1 tab.

  20. Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements.

    PubMed Central

    Warnecke, C; Willich, T; Holzmeister, J; Bottari, S P; Fleck, E; Regitz-Zagrosek, V

    1999-01-01

    To investigate mechanisms of human angiotensin II type 2 receptor (hAT2) gene regulation we functionally characterized the promoter and downstream regions of the gene. 5'-Terminal deletion mutants from -1417/+100 to -46/+100 elicited significant but low functional activity in luciferase reporter gene assays with PC12W cells. Inclusion into the promoter constructs of intron 1 and the transcribed region of the hAT2 gene up to the translation start enhanced luciferase activity 6.7+/-1.6-fold and 11.6+/-1.7-fold (means+/-S.E.M.) respectively, whereas fusion of the promoter to the spliced 5' untranslated region of hAT2 cDNA did not, which indicated an enhancement caused by intronic sequence elements. Reverse transcriptase-mediated PCR confirmed that the chimaeric hAT2-luciferase mRNA was regularly spliced in PC12W cells. A Northern blot analysis of transfected cells showed levels of luciferase mRNA expression consistent with the respective enzyme activities. Mapping of intron 1 revealed that a 12 bp sequence in the centre of the intron was required for the increase in promoter activity, whereas the 5' adjacent intronic region mediated a decrease in luciferase activity. Mutation of the 12 bp region led to altered protein binding and markedly decreased luciferase activity. Cloned into a promoterless luciferase vector, a 123 bp intron 1 fragment was able to direct reporter gene expression to the same activity as occurred in conjunction with the 5' flanking region. These results indicate that sequence elements in intron 1 are necessary for efficient transcription of hAT2. In reporter gene assays, intron 1 might by itself function as a promoter and initiate transcription from an alternative start point. PMID:10229654

  1. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and

  2. Pn wave velocity and anisotropy beneath Pamir and its adjacent regions

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Pei, Shunping

    2012-12-01

    As the western end point of continental collision between the Indian and Eurasian plates, Pamir is an ideal place to research uplifting mechanisms in the Tibetan plateau. In this study, 141 644 Pn arrivals were used to obtain seismic wave velocities and anisotropy in the uppermost mantle beneath Pamir and its adjacent regions by performing tomographic inversion of Pn travel times. The data were selected from multiple databases, including ISC/EHB, the Annual Bulletin of Chinese Earthquakes, and regional bulletins of Xinjiang. The tomography results reveal significant features with high resolution and correlate well with geological structures. The main results are as follows: (1) The Pn wave velocities are particularly high in the old stable blocks such as Tarim basin, Indian plate and Tajik basin, while the low Pn velocities always lie in tectonically active regions like the western Tibetan plateau, Pamir, Tianshan and Hindu Kush. (2) Strong Pn anisotropy is found beneath the Indian-Eurasian collision zone; its direction is parallel to the collision arc and nearly perpendicular to both the direction of maximum compression stress and relative crustal movement. The result is probably caused by the pure shear deformation in the uppermost mantle of the collision zone. (3) A geodynamic continent-continent collision model is proposed to show anisotropy and collision mechanisms between the Indian plate and the Tarim and Tajik basins.

  3. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  4. Seasonal variations of transport time of freshwater exchanges between Changjiang Estuary and its adjacent regions

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Shen, Jian; He, Qing; Zhu, Lei; Zhang, Dai

    2015-05-01

    Seasonal variations of transport time of freshwater between the Changjiang Estuary (CJE) and its adjacent regions, Hangzhou Bay (HZB) and Jiangsu Coast (JSC), are investigated. The freshwater exchange between the CJE and HZB is controlled by the strength of the secondary plume, which initiates from the South Passage of the southernmost waterway of CJE. The transport time varies seasonally and is modulated by spring-neap tides. The water exchange between CJE and HZB exhibits a high spatial variation. A large water age is observed in the region near the southern coast of the HZB, which corresponds to high pollutant deposition and low water quality conditions observed in the field. A large exchange occurs in summer between CJE and HZB. The freshwater transported into the HZB is accumulated in the deep channel near the western shoreline of the HZB and weak horizontal exchange occurs in the southern region near the southern shoreline, resulting in an increase of water age in the southern region. Due to the increase of northerly and northwesterly winds in winter and fall, more horizontal exchange occurs, resulting in a decrease of water age. The transport time from Xuliujing to the Hangzhou Bay ranges from 30 to 60 days near Jinshanwei, and ranges from 100 to 140 days in the southern region. The advective transport is the dominant transport mechanism to move water out of the HZB, while shear-induced exchange flow transports freshwater into the HZB. Net flux is out of HZB in winter and fall, but into the HZB in summer when Changjiang discharge is high. A weak transport of freshwater between the CJE and Subei Coast exists. A portion of a freshwater plume transports freshwater northward during summer and fall. It takes approximately 60-140 days for the freshwater from Xuliujing to be transported to the Subei Coast.

  5. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    SciTech Connect

    Conrad, R.; Thomas, J.; Spieth, J.; Blumenthal, T. )

    1991-04-01

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of a vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.

  6. Insertion of part of an intron into the 5' untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene.

    PubMed Central

    Conrad, R; Thomas, J; Spieth, J; Blumenthal, T

    1991-01-01

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, SL1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. We demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5' splice site into the 5' untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of a vit-5 intron, including the 3' splice site, were inserted into the 5' untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. We termed the region of a trans-spliced mRNA precursor between the 5' end and the first 3' splice site an "outron." Our results suggest that if a transcript begins with intronlike sequence followed by a 3' splice site, this alone may constitute an outron and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing. Images PMID:1848665

  7. Global Projections of 21st Century Land-Use Changes in Regions Adjacent to Protected Areas

    PubMed Central

    Beaumont, Linda J.; Duursma, Daisy

    2012-01-01

    The conservation efficiency of Protected Areas (PA) is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21st century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5). The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010–2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges. PMID:22952744

  8. Recurrent Loss of Specific Introns during Angiosperm Evolution

    PubMed Central

    Wang, Hao; Devos, Katrien M.; Bennetzen, Jeffrey L.

    2014-01-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. PMID:25474210

  9. Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae).

    PubMed

    Nozaki, Hisayoshi; Takahara, Manabu; Nakazawa, Atsushi; Kita, Yoko; Yamada, Takashi; Takano, Hiroyoshi; Kawano, Shigeyuki; Kato, Masahiro

    2002-06-01

    Mobile group I introns sometimes contain an open reading frame (ORF) possibly encoding a site-specific DNA endonuclease. However, previous phylogenetic studies have not clearly deduced the evolutionary roles of the group I intron ORFs. In this paper, we examined the phylogeny of group IA2 introns inserted in the position identical to that of the chloroplast-encoded rbcL coding region (rbcL-462 introns) and their ORFs from 13 strains of five genera (Volvox, Pleodorina, Volvulina, Astrephomene, and Gonium) of the colonial Volvocales (Chlorophyceae) and a related unicellular green alga, Vitreochlamys. The rbcL-462 introns contained an intact or degenerate ORF of various sizes except for the Gonium multicoccum rbcL-462 intron. Partial amino acid sequences of some rbcL-462 intron ORFs exhibited possible homology to the endo/excinuclease amino acid terminal domain. The distribution of the rbcL-462 introns is sporadic in the phylogenetic trees of the colonial Volvocales based on the five chloroplast exon sequences (6021 bp). Phylogenetic analyses of the conserved intron sequences resolved that the G. multicoccum rbcL-462 intron had a phylogenetic position separate from those of other colonial volvocalean rbcL-462 introns, indicating the recent horizontal transmission of the intron in the G. multicoccum lineage. However, the combined data set from conserved intron sequences and ORFs from most of the rbcL-462 introns resolved robust phylogenetic relationships of the introns that were consistent with those of the host organisms. Therefore, most of the extant rbcL-462 introns may have been vertically inherited from the common ancestor of their host organisms, whereas such introns may have been lost in other lineages during evolution of the colonial Volvocales. In addition, apparently higher synonymous substitutions than nonsynonymous substitutions in the rbcL-462 intron ORFs indicated that the ORFs might evolve under functional constraint, which could result in homing of the

  10. Identification guide to skates (Family Rajidae) of the Canadian Atlantic and adjacent regions

    USGS Publications Warehouse

    Sulak, Kenneth J.; MacWhirter, P. D.; Luke, K.E.; Norem, A.D.; Miller, J.M.; Cooper, J.A.; Harris, L.E.

    2009-01-01

    Ecosystem-based management requires sound information on the distribution and abundance of species both common and rare. Therefore, the accurate identification for all marine species has assumed a much greater importance. The identification of many skate species is difficult as several are easily confused and has been found to be problematic in both survey data and fisheries data collection. Identification guides, in combination with training and periodic validation of taxonomic information, improve our accuracy in monitoring data required for ecosystem-based management and monitoring of populations. This guide offers a comparative synthesis of skate species known to occur in Atlantic Canada and adjacent regions. The taxonomic nomenclature and descriptions of key morphological features are based on the most up-to-date understanding of diversity among these species. Although this information will aid the user in accurate identification, some features vary geographically (such as colour) and others with life stage (most notably the proportion of tail length to body length; the presence of spines either sharper in juveniles or in some cases not yet present; and also increases in the number of tooth rows as species grow into maturity). Additional information on juvenile features are needed to facilitate problematic identifications (e.g. L. erinacea vs. L. ocellata). Information on size at maturity is still required for many of these species throughout their geographic distribution.

  11. A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco.

    PubMed

    Kim, Young Jin; Lee, Sun Hi; Park, Ky Young

    2004-12-17

    The expression of CSDC9 encoding S-adenosylmethionine decarboxylase (SAMDC) is developmentally and spatially regulated in carnation. To examine the regulation of the SAMDC gene, we analyzed the spatial expression of CSDC9 with a 5'-flanking beta-glucuronidase fusion in transgenic tobacco plants. GUS was strongly expressed in flower, pollen, stem and vein of cotyledons. Expression in both anther and stigma was under developmental control; analysis of a series of mutants with deletions of the 5'-flanking region demonstrated differential activation in petal, anther, stigma and pollen grains. All the major cis-regulatory elements required for pollen-specific transcription were located in the upstream region between -273 and -158. This region contains four putative elements related to gibberellin induction (pyrimidine boxes, TTTTTTCC and CCTTTT) and pollen-specific expression (GTGA and AGAAA). In addition, the first 5'-leader intron was necessary for tissue-specific expression. PMID:15589825

  12. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.

    PubMed

    Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei

    2014-09-10

    Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals. PMID:25014137

  13. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    Linked geological, geomorphological and tectonic features of Fennoscandia with adjacent regions of East-European plain and Barents-Kara shelf indirectly influenced the history of glacial grows and decays. The first-order bedrock landscape elements (often created or exhumed during pre-glacial Cenozoic stages) were the major factors that could partly control centers of ice nucleation and basal velocities, serve natural barriers shaping ice sheet margin during some time intervals, etc. On the hand, many landforms were powerfully modified by glacial and periglacial processes, in particular by strong glacial erosion with lithological and structural control. Quantitative estimation of Plio-Pleistocene erosion and deposition was performed combining regional geological-geomorphological analysis (GA) and modeling with rate-based time-scale reconstructions (RR), and mass-balance control. Of special GA importance was to compare and extract changes of preserved elements of pre-glacial Neogene topography from areas that underwent different duration of glacial activity, in comparison with bordering non-glaciated ones. More distinct radial glacial erosion pattern and larger basal ice velocities seem likely at the beginning of the early ice-age stage, with partial widening of pre-glacial drainage elements. Few wide lowlands with meandering rivers in permafrost condition could provoke early stage onset of topographic ice-streams. Over time, further complication of the pattern from radial to "spider web" is expected due to developing of topographic ice-streams. Worth to mention is progressive exhumation of resistant formations, additional complications of the pattern by fluvioglacial activity and glacial sedimentation, "pendulum" principle, with increasing amount of glacial and interglacial sedimentation in eroded material. Approximated variable permafrost distribution seems to be additional weighty aspect, changing erosion rates at some time intervals. To estimate mean annual

  14. Two isotocin genes are present in the white sucker Catostomus commersoni both lacking introns in their protein coding regions.

    PubMed Central

    Figueroa, J; Morley, S D; Heierhorst, J; Krentler, C; Lederis, K; Richter, D

    1989-01-01

    Two genes each encoding a distinct precursor protein to the hormone isotocin and a neurophysin-related protein are present in the teleost fish Catostomus commersoni. These precursors are referred to as isotocin 1 and 2. As shown by the polymerase chain reaction technique, both genes lack introns in their protein-coding sequences. Both genes are transcribed giving rise to mRNAs of 920 (isotocin 1) and 1020 (isotocin 2) bases, respectively. Based on the nucleotide sequences, the predicted isotocin precursors contain, besides the hormone moiety, a neurophysin-like protein that, in contrast to its mammalian counterpart, is extended at its C-terminus by a peptide which includes a leucine-rich core segment. This segment shows similarities to the copeptin of the mammalian vasopressin precursor that is known to possess prolactin-releasing activity. The data imply that the mammalian copeptin sequence was initially part of a larger ancestral neurophysin molecule. Images PMID:2583084

  15. Processing of intronic microRNAs

    PubMed Central

    Kim, Young-Kook; Kim, V Narry

    2007-01-01

    The majority of human microRNA (miRNA) loci are located within intronic regions and are transcribed by RNA polymerase II as part of their hosting transcription units. The primary transcripts are cleaved by Drosha to release ∼70 nt pre-miRNAs that are subsequently processed by Dicer to generate mature ∼22 nt miRNAs. It is generally believed that intronic miRNAs are released by Drosha from excised introns after the splicing reaction has occurred. However, our database searches and experiments indicate that intronic miRNAs can be processed from unspliced intronic regions before splicing catalysis. Intriguingly, cleavage of an intron by Drosha does not significantly affect the production of mature mRNA, suggesting that a continuous intron may not be required for splicing and that the exons may be tethered to each other. Hence, Drosha may cleave intronic miRNAs between the splicing commitment step and the excision step, thereby ensuring both miRNA biogenesis and protein synthesis from a single primary transcript. Our study provides a novel example of eukaryotic gene organization and RNA-processing control. PMID:17255951

  16. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression.

    PubMed Central

    Gallie, D R; Young, T E

    1994-01-01

    Gene expression in the aleurone and endosperm is highly regulated during both seed development and germination. Studies of alpha-amylase expression in the aleurone of barley (Hordeum vulgare) have generated the current paradigm for hormonal control of gene expression in germinating cereal grain. Gene expression studies in both the aleurone and endosperm tissues of maize (Zea mays) seed have been hampered because of a lack of an efficient transformation system. We report here the rapid isolation of protoplasts from maize aleurone and endosperm tissue, their transformation using polyethylene glycol or electroporation, and the regulation of gene expression in these cells. Adh1 promoter activity was reduced relative to the 35S promoter in aleurone and endosperm protoplasts compared to Black Mexican Sweet suspension cells in which it was nearly as strong as the 35S promoter. Intron-mediated stimulation of expression was substantially higher in transformed aleurone or endosperm protoplasts than in cell-suspension culture protoplasts, and the data suggest that the effect of an intron may be affected by cell type. To examine cytoplasmic regulation, the 5' and 3' untranslated regions from a barley alpha-amylase were fused to the firefly luciferase-coding region, and their effect on translation and mRNA stability was examined following the delivery of in vitro synthesized mRNA to aleurone and endosperm protoplasts. The alpha-amylase untranslated regions regulated translational efficiency in a tissue-specific manner, increasing translation in aleurone or endosperm protoplasts but not in maize or carrot cell-suspension protoplasts, in animal cells, or in in vitro translation lysates. PMID:7824660

  17. Miocene to Recent Volcanism in NE Baja California and its Correlation to Adjacent Regions

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2007-05-01

    location (an accommodation zone in the rift system). The ca 3 Ma pulse of volcanism has been related to a "ridge jump" type event (relocation of the plate boundary from the Lower Tiburon basin to the Lower Delfin Basin, within a single spreading segment of the Pacific-North America rift). Both the 6 Ma pulse and the 3 Ma pulse thus seem to be controlled by local processes rather than by regional events. The ca. 12.5 Ma Tuff of San Felipe erupted before the Gulf opened, when Baja California and Sonora were adjacent; the likely vent location is on the modern Sonoran coast north of Bahia de Kino. Work by Oskin (2002), and ongoing studies, allow outcrops of this unit to be correlated over a modern distance of at least 430 km from NE Baja California to east of Hermosillo, Sonora. It has been included by Vidal-Solano and others (2005) as part of a significant episode of post-subduction peralkaline volcanism in Sonora, attributed to regional extension and lithospheric thinning.

  18. Introns in gene evolution.

    PubMed

    Fedorova, Larisa; Fedorov, Alexei

    2003-07-01

    Introns are integral elements of eukaryotic genomes that perform various important functions and actively participate in gene evolution. We review six distinct roles of spliceosomal introns: (1) sources of non-coding RNA; (2) carriers of transcription regulatory elements; (3) actors in alternative and trans-splicing; (4) enhancers of meiotic crossing over within coding sequences; (5) substrates for exon shuffling; and (6) signals for mRNA export from the nucleus and nonsense-mediated decay. We consider transposable capacities of introns and the current state of the long-lasting debate on the 'early-or-late' origin of introns. Cumulative data on known types of contemporary exon shuffling and the estimation of the size of the underlying exon universe are also discussed. We argue that the processes central to introns-early (exon shuffling) and introns-late (intron insertion) theories are entirely compatible. Each has provided insight: the latter through elucidating the transposon capabilities of introns, and the former through understanding the importance of introns in genomic recombination leading to gene rearrangements and evolution. PMID:12868603

  19. Late cenozoic uplift of the southwestern colorado plateau and adjacent lower colorado river region

    USGS Publications Warehouse

    Lucchitta, I.

    1979-01-01

    Rocks deposited near sea level under marine, estuarine, and lacustrine conditions, and located along the course of the lower Colorado River from the mouth of the Grand Canyon as far as the Mexican border, have been displaced to present positions as high as 880 m a.s.l. and as low as 1600 m b.s.l. The rocks include the marine and estuarine Bouse Formation and the lacustrine or marine Hualapai Limestone Member of the Muddy Creek Formation. A profile joining spot elevations that represent the highest erosional remnants of these rocks preserved at any one locality gives an approximation (in most cases a minimum value) for the uplift or downdropping of the region relative to sea level since about 5.5 m.y. ago, the K/Ar age of the most widespread and critical unit. The profile shows that most of the lower Colorado region has risen at least 550 m through broad and rather uniform upwarping and at an average rate of about 100 m/m.y. In addition to these 550 m, the nearby Colorado Plateau has risen by discrete movement along Wheeler fault, which is parallel to and about 8 km west of the plateau's edge, to a total uplift of at least 880 m, at a rate that may be as high as 160 m/m.y. Before warping and faulting, the top of the plateau was about 1100 m above the fill of adjacent basins; the top of this fill probably was at or a little below sea level. p]The profile shows two major south-facing rises in slope. The bigger one, near Yuma, occurs where the profile intersects the northwest-trending San Andreas-Salton trough system of faults; it is interpreted as rifting resulting from transcurrent movement along the faults. At the Mexican border, the base of the Bouse Formation is 1600 m b.s.l., which corresponds to a rate of subsidence since the beginning of Bouse time that may be as high as 290 m/.m.y. The top of the Bouse is at 1000 m b.s.l., corresponding to a rate of subsidence of about 180 m/m.y. In this area, the "older marine sedimentary rocks" of Olmsted et al., (1973

  20. The evolution mechanism of intron length.

    PubMed

    Zhang, Qiang; Li, Hong; Zhao, Xiao-Qing; Xue, Hui; Zheng, Yan; Meng, Hu; Jia, Yun; Bo, Su-Ling

    2016-08-01

    Within two years of their discovery in 1977, introns were found to have a positive effect on gene expression. Our result shows that introns can achieve gene expression and regulation through interaction with corresponding mRNA sequences. On the base of Smith-Waterman method, local comparing helps us get the optimal matched segments between intron sequences and mRNA sequences. Studying the distribution regulation of the optimal matching region on intron sequences of ribosomal protein genes about 27 species, we find that the intron length evolution processes beginning from 5' end to 3' end and increasing one by one structural unit, which comes up with a possible mechanism for the intron length evolution. The intron of structure units is conservative with about 60bp length, but the length of linker sequence between structure units changes a lot. Interestingly, distributions of the length and matching rate of optimal matched segments are consistent with sequence features of miRNA and siRNA. These results indicate that the interaction between intron sequences and mRNA sequences is a kind of functional RNA-RNA interaction. Meanwhile, the two kinds of sequences above are co-evolved and interactive to play their functions. PMID:27449197

  1. Structural and functional analysis of the human CD45 gene (PTPRC) upstream region: evidence for a functional promoter within the first intron of the gene

    PubMed Central

    Timón, M; Beverley, P C L

    2001-01-01

    Expression of the leucocyte common antigen (CD45) in mammals is restricted to the nucleated lineages of haematopoietic cells. It appears in early progenitors in the bone marrow and is expressed at the surface of these cells throughout their differentiation. However, at least in T cells, the pattern of expression switches between different isoforms during the successive stages of differentiation in the thymus and after activation in the periphery. In order to understand the mechanisms controlling the transcription of the human CD45 gene, 2·7 kbp of the 5′-flanking region were sequenced and analysed for their ability to direct expression of a reporter gene. The only region with promoter activity was localized within the first intron of the gene. This promoter shows no tissue specificity but could be enhanced by a heterologous enhancer. Mobility shift assays showed complex but specific protein binding. The sequence in this region lacks similarity with known promoters or initiators but is highly conserved in evolution. No transcription initiation could be detected within or downstream of this region, suggesting that this might be a new type of RNA polymerase II promoter able to drive transcription from an upstream sequence. An additional exon was also found upstream of exon 1. The two exons 1 (1a and 1b) are mutually exclusive and both are spliced to exon 2. This makes the structure of the 5′ region of the human CD45 gene identical to its mouse homologue. PMID:11260323

  2. Determinants of Plant U12-Dependent Intron Splicing Efficiency

    PubMed Central

    Lewandowska, Dominika; Simpson, Craig G.; Clark, Gillian P.; Jennings, Nikki S.; Barciszewska-Pacak, Maria; Lin, Chiao-Feng; Makalowski, Wojciech; Brown, John W.S.; Jarmolowski, Artur

    2004-01-01

    Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated. PMID:15100401

  3. Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins

    PubMed Central

    Garcia-España, Antonio; Mares, Roso; Sun, Tung-Tien; DeSalle, Rob

    2009-01-01

    Background Although large scale informatics studies on introns can be useful in making broad inferences concerning patterns of intron gain and loss, more specific questions about intron evolution at a finer scale can be addressed using a gene family where structure and function are well known. Genome wide surveys of tetraspanins from a broad array of organisms with fully sequenced genomes are an excellent means to understand specifics of intron evolution. Our approach incorporated several new fully sequenced genomes that cover the major lineages of the animal kingdom as well as plants, protists and fungi. The analysis of exon/intron gene structure in such an evolutionary broad set of genomes allowed us to identify ancestral intron structure in tetraspanins throughout the eukaryotic tree of life. Methodology/Principal Findings We performed a phylogenomic analysis of the intron/exon structure of the tetraspanin protein family. In addition, to the already characterized tetraspanin introns numbered 1 through 6 found in animals, three additional ancient, phase 0 introns we call 4a, 4b and 4c were found. These three novel introns in combination with the ancestral introns 1 to 6, define three basic tetraspanin gene structures which have been conserved throughout the animal kingdom. Our phylogenomic approach also allows the estimation of the time at which the introns of the 33 human tetraspanin paralogs appeared, which in many cases coincides with the concomitant acquisition of new introns. On the other hand, we observed that new introns (introns other than 1–6, 4a, b and c) were not randomly inserted into the tetraspanin gene structure. The region of tetraspanin genes corresponding to the small extracellular loop (SEL) accounts for only 10.5% of the total sequence length but had 46% of the new animal intron insertions. Conclusions/Significance Our results indicate that tests of intron evolution are strengthened by the phylogenomic approach with specific gene families

  4. Geochemical Differences between two adjacent streams in the Tenaya Lake region of Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Andrews, E. D.

    2010-12-01

    Tenaya and Murphy Creeks are two small, intermittent streams with drainage basins adjacent to each other in the Tenaya Lake region of Yosemite National Park. Tenaya Creek has a drainage basin area of 3.49 km2 ranging in elevation from 2491 to 3012 m; Murphy Creek has a drainage basin size of 7.07 km2 ranging in elevation from 2485 to 2990 m. Both basins are underlain by the Half Dome and Cathedral Peak Granodiorites (Bateman et al, 1983), with chemical compositions that are practically indistinguishable (Bateman et al, 1988). Both streams derive all of their water from snowmelt and rainfall, normally going dry by early August each year. Tenaya Creek flows primarily south-southwest, whereas Murphy Creek predominantly flows south. For nearly all of Tenaya Creek’s length it is bordered by the Tioga Pass Road, the only highway in Yosemite National Park which crosses the Sierras; on the other hand, all of Murphy Creek (except its mouth) is wilderness. During the summers of 2009 and 2010, both creeks were sampled along most of their lengths for major and trace elements. In addition, both streams have been sampled near their mouths periodically during the spring and summer (until they go dry) since 2007. Water discharge has been continuously monitored during this time. Because these streams derive all of their water from snowmelt and rainfall, the water chemistry of each must originate from atmospheric deposition, weathering of the bedrock and/or human or animal inputs. These factors, along with the similarity of the geology, topography and basin orientation, suggest that the water chemistries of the creeks should be similar. Instead, while measured sulfate concentrations in Tenaya and Murphy Creeks are similar in their upper reaches, Tenaya Creek sulfate values are almost double in the lower reaches. No other major or trace element showed a similar pattern, although sodium, potassium, calcium and rubidium showed modest increases. Other concentration differences between

  5. Changes in Climate over the South China Sea and Adjacent Regions: Response to and Feedback on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, Song

    2016-04-01

    El Niño-Southern Oscillation and the Asian monsoon have experienced significant long-term changes in the past decades. These changes, together with other factors, have in turn led to large climate change signals over the South China Sea and adjacent regions including Southeast Asia, the western Pacific, and the tropical Indian Ocean. An attribution analysis of the feedback processes of these signals indicate the predominant importance of water vapor and cloud radiative feedbacks. Experiments with multiple earth system models also show that these regional climate change signals exert significant influences on global climate. The increases in atmospheric heating over Southeast Asia and sea surface temperature in the adjacent oceans in the past decades have weakened the Indian and African monsoons, led to a drying effect over East Asia, and generated wave-train patterns in both the northern and southern hemispheres, explaining several prominent climate features in and outside Southeast Asia.

  6. Inhomogeneous DNA: Conducting exons and insulating introns

    NASA Astrophysics Data System (ADS)

    Krokhin, A. A.; Bagci, V. M. K.; Izrailev, F. M.; Usatenko, O. V.; Yampol'Skii, V. A.

    2009-08-01

    Parts of DNA sequences known as exons and introns play very different roles in coding and storage of genetic information. Here we show that their conducting properties are also very different. Taking into account long-range correlations among four basic nucleotides that form double-stranded DNA sequence, we calculate electron localization length for exon and intron regions. Analyzing different DNA molecules, we obtain that the exons have narrow bands of extended states, unlike the introns where all the states are well localized. The band of extended states is due to a specific form of the binary correlation function of the sequence of basic DNA nucleotides.

  7. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    PubMed

    Bondarenko, Vladyslav S; Gelfand, Mikhail S

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  8. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  9. Hydrogeologic framework of the Great Basin region of Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Plume, R.W.

    1996-01-01

    Regional aquifer systems in the Great Basin consist of carbonate-rock aquifers in the eastern Great Basin and basin-fill aquifers throughout the region. In the carbonate-rock aquifers, barriers to regional flow include Precambrian crystalline basement, upper Precambrian and Lower Cambrian clastic sedimentary rocks, and Jurassic to Tertiary granitic rocks. Basin-fill aquifers are connected to carbonate-rock aquifers in the eastern Great Basin and can be hydraulically connected with each other throughout the Great Basin.

  10. MYB elongation is regulated by the nucleic acid binding of NFκB p50 to the intronic stem-loop region.

    PubMed

    Pereira, Lloyd A; Hugo, Honor J; Malaterre, Jordane; Huiling, Xu; Sonza, Secondo; Cures, Alina; Purcell, Damian F J; Ramsland, Paul A; Gerondakis, Steven; Gonda, Thomas J; Ramsay, Robert G

    2015-01-01

    MYB transcriptional elongation is regulated by an attenuator sequence within intron 1 that has been proposed to encode a RNA stem loop (SLR) followed by a polyU tract. We report that NFκBp50 can bind the SLR polyU RNA and promote MYB transcriptional elongation together with NFκBp65. We identified a conserved lysine-rich motif within the Rel homology domain (RHD) of NFκBp50, mutation of which abrogated the interaction of NFκBp50 with the SLR polyU and impaired NFκBp50 mediated MYB elongation. We observed that the TAR RNA-binding region of Tat is homologous to the NFκBp50 RHD lysine-rich motif, a finding consistent with HIV Tat acting as an effector of MYB transcriptional elongation in an SLR dependent manner. Furthermore, we identify the DNA binding activity of NFκBp50 as a key component required for the SLR polyU mediated regulation of MYB. Collectively these results suggest that the MYB SLR polyU provides a platform for proteins to regulate MYB and reveals novel nucleic acid binding properties of NFκBp50 required for MYB regulation. PMID:25853889

  11. Thorium concentrations in the lunar surface. IV - Deconvolution of the Mare Imbrium, Aristarchus, and adjacent regions

    NASA Technical Reports Server (NTRS)

    Etchegaray-Ramirez, M. I.; Metzger, A. E.; Haines, E. L.; Hawke, B. R.

    1983-01-01

    Several fields of orbital gamma ray spectroscopy data have been deconvolved in order to model the distribution of Th over the Mare Imbrium and northern Oceanus Procellarum portions of the Apollo 15 lunar ground track, which in combination with a prior study of the Apenninus region covers a continuous swath from 10 deg E to 60 deg W in the northwest quadrant. The crater of the Aristarchus region dominates the Th distribution, with a concentration of 20 ppm, and substantial enhancements are also found in the mare regions around Brayley and at the ejecta blankets of Timocharis and Lambert. The existence of enhanced Th concentrations in mare basalt regions suggests that reservoirs of some late stage mare basalts incorporated KREEP-rich material during formation or transit.

  12. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  13. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation

    NASA Astrophysics Data System (ADS)

    Aa, Ercha; Huang, Wengeng; Yu, Shimei; Liu, Siqing; Shi, Liqin; Gong, Jiancun; Chen, Yanhong; Shen, Hua

    2015-06-01

    In this paper, a regional total electron content (TEC) mapping technique over China and adjacent areas (70°E-140°E and 15°N-55°N) is developed on the basis of a Kalman filter data assimilation scheme driven by Global Navigation Satellite Systems (GNSS) data from the Crustal Movement Observation Network of China and International GNSS Service. The regional TEC maps can be generated accordingly with the spatial and temporal resolution being 1°×1° and 5 min, respectively. The accuracy and quality of the TEC mapping technique have been validated through the comparison with GNSS observations, the International Reference Ionosphere model values, the global ionosphere maps from Center for Orbit Determination of Europe, and the Massachusetts Institute of Technology Automated Processing of GPS TEC data from Madrigal database. The verification results indicate that great systematic improvements can be obtained when data are assimilated into the background model, which demonstrates the effectiveness of this technique in providing accurate regional specification of the ionospheric TEC over China and adjacent areas.

  14. Basement structures of East and South China Seas and adjacent regions from gravity inversion

    NASA Astrophysics Data System (ADS)

    Guan, Dongliang; Ke, Xiaoping; Wang, Yong

    2016-03-01

    The satellite-derived gravity gives us an opportunity to investigate the basement structures of the East and South China Seas since the satellite gravimetry could provide large scale gravity data with high resolution of 1 arc-min by 1 arc-min. We isolate the residual gravity anomaly corresponding to the basement by subtracting the gravity anomalies of sediments and Moho undulations from satellite-derived free-air gravity anomalies. Two methods, namely gravity inversion method and convolution method based on flexure isostasy model, are used to calculate the Moho undulations in order to guarantee the accuracy of the Moho undulations since it occupies large percentages of the gravity anomalies. We invert the isolated gravity anomaly for the basement depths of East and South China Seas and adjacent areas with resolution of 1 arc-min by 1 arc-min. The basement depths of East and South China Seas range from 0.5 km to 12 km and the Moho depths vary between 6 km and 32 km. The basement topography reveals many tectonic depressions and two spreading axes concealed by the sediments, which are unseen in the bathymetry. The two spreading axes correspond to the spreading ridges derived from magnetic anomaly and the SW-NE oriented spreading axis extends SW much farther than that identified from magnetic anomaly, almost reaching to the Nam Con Son Basin. We also find that the faults constrain the distributions of basement depressions since the faults usually lie along the places where large changes of basement depth take place. Reversely, the basement map could be used to identify the unknown faults. Besides, according to the four profiles in the East and South China Seas, the mirror-image relation was found between the basement topography and the underlying Moho undulations that when the basement depth increases or decreases, the corresponding Moho depth decreases or increases.

  15. Regional prospectivity of Mesozoic and Tertiary in the eastern Adriatic and adjacent area

    SciTech Connect

    Scott, J.; Dolan, P.; Lunn, G. )

    1988-08-01

    Post-Hercynian deposits in the eastern Adriatic and the adjacent external zones of the Dinarides and Albanian Hellenides may be subdivided into four facies groups. (1) Permian-Lower Triassic clastics and carbonates with some evaporites, (2) Middle Triassic-lower Tertiary carbonate platform facies with associated continental margin deeper marine sequences, (3) Upper Cretaceous-lower Tertiary flysch, and (4) middle Tertiary molasse and postorogenic Neogene sediments. The Permian to lower Tertiary section was deposited during the complex Alpine cycle, while the upper Tertiary section is the product of post-Alpine deposition. This depositional history during markedly different tectonic regimes creates two groups of petroleum plays in the eastern Adriatic: (1) Alpine cycle plays in the Permian to lower Tertiary in the thrust-faulted and folded foreland of Adria and (2) post-Alpine plays in upper Tertiary postorogenic or late synorogenic basins. Around the Adriatic, the post-Alpine plays have so far proved the most successful. Major production occurs in the onshore Po basin and its extension beneath the Adriatic. Some of this production is from deep Alpine-cycle reservoirs, but the bulk is from the upper Tertiary-Quaternary. Similar horizons produce onshore and offshore the central-southern Adriatic coast of Italy. Major Tertiary production also occurs to the northeast in the Pannonian basin of Yugoslavia and Hungary from Miocene and younger sequences. Onshore Albania produces significant quantities of hydrocarbons; although data are scarce, much of this production is presumably from upper Tertiary molasse or lower Tertiary flysch.

  16. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    NASA Astrophysics Data System (ADS)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  17. Thorium concentrations in the lunar surface: IV. Deconvolution of the mare imbrium, aristarchus, and adjacent regions

    SciTech Connect

    Etchegaray-Ramirez, M.I.; Metzger, A.E.; Haines, E.L.; Hawke, B.R.

    1983-02-15

    The distribution of Th over the Mare Imbrium and northern Oceanus Procellarum portions of the Apollo 15 lunar ground track has been modeled by deconvolving several fields of orbital gamma ray spectroscopy data. Including a prior study of the Apenninus region, a continuous swath from 10/sup 0/E to 60/sup 0/W in the northwest quadrant has now been analyzed. In the Aristarchus region, the crater dominates the Th distribution with a concentration of 20 ppm. Other enhancements are seen on the Aristarchus Plateau and south of the plateau. The concentration across the Aristarchus Plateau is not uniform. The average Th concentration in Oceanus Procellarum is less to the west than to the east of the Aristarchus Plateau. Substantial enhancements are found in mare regions around Brayley, and at the ejecta blankets of Timocharis and Lambert. Th in the Eratosthenian mare regions is generally low with one notable exception lying rouhgly between the craters Euler and Carlini. The existence of enhanced Th concentrations in mare basalt regions suggests that reservoirs of some late stage mare basalts incorporated KREEP-rich material during formation or transit.

  18. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    USGS Publications Warehouse

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The maximum beneficial utilization of the ground-water resources cannot be accomplished in haphazard fashion. It must be planned and controlled on the basis of sound, current information about the hydrology of the various aquifers. Continued and, in some areas, intensified investigations of the ground-water resources of the region should form the basis for such planning and control.

  19. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  20. Southern African Phanerozoic marine invertebrates: Biogeography, pal˦oecology, climatology and comments on adjacent regions

    NASA Astrophysics Data System (ADS)

    Boucot, A. J.

    The Palaeozoic marine invertebrate fossil record in southern Africa is characterised by extensive data for the Early and Middle Devonian but extremely limited or absent for other Palaeozoic Periods. The Mesozoic Era is lacking in marine invertebrate fossils for the Triassic, Late Jurassic, and Cretaceous. For the Cenozoic Era there is limited marine megafossil information. Overall, in benthic, cool waters, Palaeozoic, marine megafossils from southern Africa appear to represent relatively low diversity communities, when compared to ecologically comparable warm water environments elsewhere. However, the marine benthic Cretaceous and Cenozoic faunas of southwestern Africa are typically diverse warm water types, until the later Miocene when cool waters again prevailed. The Benguela Current clearly influenced lower diversity faunas. Climatically, it can be inferred from the marine megabenthic pal˦ontological evidence, thatwarm conditions were present from Early Cambrian until mid-Ordovician times, followed by a much cooler climate that persisted well into the Middle Devonian. The Late Palaeozoic evidence thus indicates cool to cold conditions. In contrast, the Late Permian fossils are consistent with warmer conditions, continuing through Late Jurassic and Cretaceous times along the East African and West African coasts, until the Late Miocene. Within the Gondwanan framework, a Central African region can be envisaged that was subject to non-marine conditions during the entire Phanerozoic Eon. Peripheral to this central African region were marine environments of various ages. The geological history of these peripheral regions was fairly unique. Some features in southern Africa are similar of those found in the Paraná Basin and the Falkland Islands. Most of North Africa from central Senegal to Libya contains a Phanerozoic marine cover extending from the Early Cambrian through to the Carboniferous, characterised by warm water faunas, except for the Ordovician which yields

  1. Discussion on origin of Pn velocity variation in China and adjacent region

    NASA Astrophysics Data System (ADS)

    Pei, Shun-Ping; Xu, Zhong-Huai; Wang, Su-Yun

    2004-01-01

    Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earth’s heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earth’s heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn velocity ν p with pressure P, ∂ ν p/∂ P, estimated from the velocity variation with crust thickness, ∂ ν p/∂ H is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thickness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang plateau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several regions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure.

  2. Accretion, modification and erosion of Archean lithosphere: evidence from the Superior Province and adjacent regions (Invited)

    NASA Astrophysics Data System (ADS)

    Frederiksen, A. W.; Olaleye, M.; Toni, D. A.; Darbyshire, F. A.; Eaton, D. W.

    2010-12-01

    The lithosphere beneath shield regions is generally believed to be thick, cold, high in seismic velocity, and convectively stable. If formation of the shield lithosphere was approximately contemporaneous with the overlying crust, then the lithosphere has undergone a history as complex as the crust; however, this history will be fundamentally different due to potential influences on the lithosphere from both plate-tectonic (top-down) and mantle convective (bottom-up) processes. The Superior Province in eastern and central Canada is the largest Archean craton in the world; recent seismological investigations have shown that it has a complex internal structure. Through a combination of tomography, shear-wave splitting, and receiver-function analysis, we have found evidence of anomalous mantle which we believe to date back to the accretion of the lithosphere: a high-velocity, strongly and consistently anisotropic region in the western Superior which is truncated by the Trans-Hudson Orogen at its western edge. This feature was then eroded by Trans-Hudson orogenic activity, as the anomaly now ends ca. 200 km east of the boundary. Subsequent rifting along the Mid-Continent Rift truncated the anomalous region to the south; the enigmatic Nipigon Embayment, which is associated with the rift but may be something other than a failed arm, contains a tightly-focused region of anomalous mantle. In the easter Superior, the lithosphere is lower in velocity and more weakly anisotropic, with more directional variation. Some of this difference may be due to different formation mechanisms, but there is also evidence of later modification by the Great Meteor hotspot. The Great Meteor track continues into the Grenville Province and shows possible evidence of later deformation. Complicating this large-scale picture is the strong evidence for internal layering seen in receiver function gathers. An anisotropic layer immediately below the Moho is ubiquitous underneath the western Superior

  3. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  4. Assessment of the Relative Largest Earthquake Hazard Level in the NW Himalaya and its Adjacent Region

    NASA Astrophysics Data System (ADS)

    Tsapanos, Theodoros M.; Yadav, R. B. S.; Olasoglou, Efthalia M.; Singh, Mayshree

    2016-04-01

    In the present study, the level of the largest earthquake hazard is assessed in 28 seismic zones of the NW Himalaya and its vicinity, which is a highly seismically active region of the world. Gumbel's third asymptotic distribution (hereafter as GIII) is adopted for the evaluation of the largest earthquake magnitudes in these seismic zones. Instead of taking in account any type of Mmax, in the present study we consider the ω value which is the largest earthquake magnitude that a region can experience according to the GIII statistics. A function of the form Θ(ω, RP6.0) is providing in this way a relatively largest earthquake hazard scale defined by the letter K(K index). The return periods for the ω values (earthquake magnitudes) 6 or larger (RP6.0) are also calculated. According to this index, the investigated seismic zones are classified into five groups and it is shown that seismic zones 3 (Quetta of Pakistan), 11 (Hindukush), 15 (northern Pamirs), and 23 (Kangra, Himachal Pradesh of India) correspond to a "very high" K index which is 6.

  5. Turbulent transport on the endwall in the region between adjacent turbine blades

    SciTech Connect

    Goldstein, R.J.; Spores, R.A. )

    1988-11-01

    The complex three-dimensional flow in the endwall region near the base of a turbine blade has an important impact on the local heat transfer. The initial horseshoe vortex, the passage vortex, and resulting corner vortices cause large variations in heat transfer over the entire endwall region. Due to these large surface gradients in heat transfer, conventional measurement techniques generally do not provide in accurate determination of the local heat transfer coefficients. In the present study the heat/mass transfer analogy is used to examine the local transport coefficients for two different endwall boundary layer thicknesses and two free-stream Reynolds numbers. A linear turbine blade cascade is used in conjunction with a removable endwall plate. Napthalene (C{sub 10}H{sub 8}) is cast into a mold on the plate and the rate of naphthalene sublimation is determined at 6,000+ locations on the simulated endwall by employing a computer-aided data acquisition system. This technique allows one to obtain detailed contour plots of the local convection coefficient over the entire endwall. By examining the mass transfer contours, it is possible to infer information on three-dimensional flow in the passage between the blades. Extremely high transport coefficients on the endwall indicate locations of potential overheating and failure in actual turbine.

  6. Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region

    NASA Astrophysics Data System (ADS)

    Wu, Guiju; Shen, Chongyang; Tan, Hongbo; Yang, Guangliang

    2016-08-01

    This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.

  7. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  8. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  9. Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1991-01-01

    A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.

  10. Introns: The Functional Benefits of Introns in Genomes.

    PubMed

    Jo, Bong-Seok; Choi, Sun Shim

    2015-12-01

    The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced. PMID:26865841

  11. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  12. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers.

    PubMed

    Xia, Shengqian; Cheng, Ling; Zu, Feng; Dun, Xiaoling; Zhou, Zhengfu; Yi, Bin; Wen, Jing; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong

    2012-05-01

    A recessive epistatic genic male sterile two-type line, 7365AB (Bnms3ms3ms4msRrfRf/BnMs3ms3ms4ms4RfRf), combined with the fertile interim-maintainer 7365C (Bnms3ms3ms4ms4rfrf) is an effective pollination control system in hybrid rapeseed production. We report an effective strategy used to fine map BnMs4 and BnRf. The two genes were both defined to a common microsyntenic region with Arabidopsis chromosome 3 using intron polymorphism (IP) markers developed according to Arabidopsis genome information and published genome organization of the A genome. The near-isogenic lines 7365AC (Bnms3ms3ms4ms4Rfrf/Bnms3ms3ms4ms4rfrf) of BnRf and 736512AB (Bnms3ms3Ms4ms4RfRf/Bnms3ms3ms4ms4RfRf) of BnMs4 were constructed to screen developed markers and create genetic linkage maps. Nine polymorphic IP markers (P1-P9) were identified. Of these, P2, P3, P4, and P6 were linked to both BnMs4 and BnRf with genetic distances <0.6 cM. Three simple sequence repeat markers, SR2, SR3, and SR5, were also identified by using public information. Subsequently, all markers linked to the two genes were used to compare the micro-collinearity of the regions flanking the two genes with Brassica rapa and Arabidopsis. The flanking regions showed rearrangements and inversion with fragments of different Arabidopsis chromosomes, but a high collinearity with B. rapa. This collinearity provided extremely valuable reference for map-based cloning in polyploid Brassica species. These IP markers could be exploited for comparative genomic studies within and between Brassica species, providing an economically feasible approach for molecular marker-assisted selection breeding, accelerating the process of gene cloning, and providing more direct evidence for the presence of multiple alleles between BnMs4 and BnRf. PMID:22246313

  13. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Baron, J.S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  14. Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1975-01-01

    Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres

  15. Climate change in the four corners and adjacent regions: Implications for environmental restoration and land-use planning

    SciTech Connect

    Waugh, W.J.

    1995-09-01

    This document contains the workshop proceedings on Climate Change in the Four Corners and Adjacent Regions: Implications for Environmental Restoration and Land-Use Planning which took place September 12-14, 1994 in Grand Junction, Colorado. The workshop addressed three ways we can use paleoenvironmental data to gain a better understanding of climate change and its effects. (1) To serve as a retrospective baseline for interpreting past and projecting future climate-induced environmental change, (2) To differentiate the influences of climate and humans on past environmental change, and (3) To improve ecosystem management and restoration practices in the future. The papers presented at this workshop contained information on the following subjects: Paleoclimatic data from the Pleistocene and Holocene epochs, climate change and past cultures, and ecological resources and environmental restoration. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. The evolution of an intron: Analysis of a long, deletion-prone intron in the human dystrophin gene

    SciTech Connect

    McNaughton, J.C.; Hughes, G.; Jones, W.A.

    1997-03-01

    The sequence of a 112-kb region of the human dystrophin (DMD/BMD) gene encompassing the deletion prone intron 7 (110 kb) and the much shorter intron 8 (1.1 kb) has been determined. Recognizable insertion sequences account for approximately 40% of intron 7. LINE-1 and THE-1/LTR sequences occur in intron 7 with significantly higher frequency than would be expected statistically while Alu sequences are underrepresented. Intron 7 also contains numerous mammalian-wide interspersed repeats, a diverse range of medium reiteration repeats of unknown origin, and a sequence derived from a mariner transposon. By contrast, the shorter intron 8 contains no detectable insertion sequences. Dating of the L1 and Alu sequences suggests that intron 7 has approximately doubled in size within the past 130 million years, and comparison with the corresponding intron from the pufferfish (Fugu rubripes) suggests that the intron has expanded some 44-fold over a period of 400 million years. The possible contribution of the insertion elements to the instability of intron 7 is discussed. 66 refs., 2 figs., 2 tabs.

  17. Invasion of protein coding genes by green algal ribosomal group I introns.

    PubMed

    McManus, Hilary A; Lewis, Louise A; Fučíková, Karolina; Haugen, Peik

    2012-01-01

    The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns. PMID:22056605

  18. Novel Intronic RNA Structures Contribute to Maintenance of Phenotype in Saccharomyces cerevisiae

    PubMed Central

    Hooks, Katarzyna B.; Naseeb, Samina; Parker, Steven; Griffiths-Jones, Sam; Delneri, Daniela

    2016-01-01

    The Saccharomyces cerevisiae genome has undergone extensive intron loss during its evolutionary history. It has been suggested that the few remaining introns (in only 5% of protein-coding genes) are retained because of their impact on function under stress conditions. Here, we explore the possibility that novel noncoding RNA structures (ncRNAs) are embedded within intronic sequences and are contributing to phenotype and intron retention in yeast. We employed de novo RNA structure prediction tools to screen intronic sequences in S. cerevisiae and 36 other fungi. We identified and validated 19 new intronic RNAs via RNA sequencing (RNA-seq) and RT-PCR. Contrary to the common belief that excised introns are rapidly degraded, we found that, in six cases, the excised introns were maintained intact in the cells. In another two cases we showed that the ncRNAs were further processed from their introns. RNA-seq analysis confirmed that introns in ribosomal protein genes are more highly expressed when they contain predicted RNA structures. We deleted the novel intronic RNA structure within the GLC7 intron and showed that this region, rather than the intron itself, is responsible for the cell’s ability to respond to salt stress. We also showed a direct association between the in cis presence of the intronic RNA and GLC7 expression. Overall, these data support the notion that some introns may have been maintained in the genome because they harbor functional RNA structures. PMID:27194751

  19. Functional studies on the ATM intronic splicing processing element

    PubMed Central

    Lewandowska, Marzena A.; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E.; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5′ and 3′ splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a ∼40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5′–3′ order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing. PMID:16030351

  20. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  1. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  2. Species-specific signals for the splicing of a short Drosophila intron in vitro.

    PubMed Central

    Guo, M; Lo, P C; Mount, S M

    1993-01-01

    The effects of branchpoint sequence, the pyrimidine stretch, and intron size on the splicing efficiency of the Drosophila white gene second intron were examined in nuclear extracts from Drosophila and human cells. This 74-nucleotide intron is typical of many Drosophila introns in that it lacks a significant pyrimidine stretch and is below the minimum size required for splicing in human nuclear extracts. Alteration of sequences of adjacent to the 3' splice site to create a pyrimidine stretch was necessary for splicing in human, but not Drosophila, extracts. Increasing the size of this intron with insertions between the 5' splice site and the branchpoint greatly reduced the efficiency of splicing of introns longer than 79 nucleotides in Drosophila extracts but had an opposite effect in human extracts, in which introns longer than 78 nucleotides were spliced with much greater efficiency. The white-apricot copia insertion is immediately adjacent to the branchpoint normally used in the splicing of this intron, and a copia long terminal repeat insertion prevents splicing in Drosophila, but not human, extracts. However, a consensus branchpoint does not restore the splicing of introns containing the copia long terminal repeat, and alteration of the wild-type branchpoint sequence alone does not eliminate splicing. These results demonstrate species specificity of splicing signals, particularly pyrimidine stretch and size requirements, and raise the possibility that variant mechanisms not found in mammals may operate in the splicing of small introns in Drosophila and possibly other species. Images PMID:8423778

  3. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    NASA Astrophysics Data System (ADS)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  4. Human decorin gene: Intron-exon junctions and chromosomal localization

    SciTech Connect

    Vetter, U.; Young, M.F.; Fisher, L.W. ); Vogel, W.; Just, W. )

    1993-01-01

    All of the protein-encoding exons and the 3[prime]flanking region of the human decorin gene have been cloned an partially sequenced. The locations of the intron-exon junctions within the coding portion of the gene were identical to those found for the homologous human gene, biglycan. The sizes of the introns in the decorin gene, however, were substantially larger than those of the same introns of the biglycan gene. Portions of introns 1, 2, and 3 as well as exon 1 were not found during our extensive screening process. The 5[prime] end of intron 2 was found to have an AG-rich region followed immediately by a CT-rich region. Furthermore, the 5[prime] end of intron 3 was very rich in thymidine, whereas the 3[prime] end of intron 7 was rich in adenosine. Several cDNA clones constructed from cultured human bone cell mRNA were found to contain a different sequence at the 5[prime] end compared to that previously published for mRNA from a human embryonic fibroblast cell line. We were also unable to find the alternate 3[prime] flanking region of the previously published cDNA sequence. We have mapped the human decorin gene by in situ methods to chromosome 12q2l.3. 30 refs., 3 figs., 1 tab.

  5. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  6. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons

    PubMed Central

    Minovitsky, Simon; Gee, Sherry L.; Schokrpur, Shiruyeh; Dubchak, Inna; Conboy, John G.

    2005-01-01

    Previous studies have identified UGCAUG as an intron splicing enhancer that is frequently located adjacent to tissue-specific alternative exons in the human genome. Here, we show that UGCAUG is phylogenetically and spatially conserved in introns that flank brain-enriched alternative exons from fish to man. Analysis of sequence from the mouse, rat, dog, chicken and pufferfish genomes revealed a strongly statistically significant association of UGCAUG with the proximal intron region downstream of brain-enriched alternative exons. The number, position and sequence context of intronic UGCAUG elements were highly conserved among mammals and in chicken, but more divergent in fish. Control datasets, including constitutive exons and non-tissue-specific alternative exons, exhibited a much lower incidence of closely linked UGCAUG elements. We propose that the high sequence specificity of the UGCAUG element, and its unique association with tissue-specific alternative exons, mark it as a critical component of splicing switch mechanism(s) designed to activate a limited repertoire of splicing events in cell type-specific patterns. We further speculate that highly conserved UGCAUG-binding protein(s) related to the recently described Fox-1 splicing factor play a critical role in mediating this specificity. PMID:15691898

  7. Population genetic diversity of the northern snakehead (Channa argus) in China based on the mitochondrial DNA control region and adjacent regions sequences.

    PubMed

    Zhou, Aiguo; Zhuo, Xiaolei; Zou, Qing; Chen, Jintao; Zou, Jixing

    2015-06-01

    Genetic variation and population structure of northern snakehead (Channa argus) from eight locations in China were investigated using mitochondrial DNA control region and adjacent regions sequences. Sequence analysis showed that there were 105 haplotypes in 260 individuals, 48 unique haplotypes and 57 shared haplotypes, but no common haplotype shared by all populations. As a whole, the haplotype diversity was high (h=0.989), while the nucleotide diversity was low (π=0.00482). AMOVA analysis detected significant genetic differentiation among all eight populations (FST=0.328, p<0.01) and 66.17% of the total variance was resulted from intra-population differentiation. UPGMA analysis indicated that the eight populations could be divided into four major clusters, which was consistent with that the eight sampled locations were belonged to four isolated river systems. The neutrality and mismatch distribution tests suggested that the eight populations of C. argus in the sampling locations underwent recent population expansion. Among the eight populations, the Erhai Lake population may represent a unique genetic resource and therefore needs to be conserved. PMID:24724976

  8. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    PubMed Central

    Ng, Wuey Min

    2016-01-01

    Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory. PMID:27213085

  9. Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes

    PubMed Central

    Francis, Sunday M.; Kistner-Griffin, Emily; Yan, Zhongyu; Guter, Stephen; Cook, Edwin H.; Jacob, Suma

    2016-01-01

    Background: There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. Methods: In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. Results: Results indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). Results show the three polymorphisms, OXT rs6084258, OXT

  10. Regular spliceosomal introns are invasive in Chlamydomonas reinhardtii: 15 introns in the recently relocated mitochondrial cox2 and cox3 genes.

    PubMed

    Watanabe, K I; Ohama, T

    2001-01-01

    In the unicellular green alga, Chlamydomonas reinhardtii, cytochrome oxidase subunit 2 (cox2) and 3 (cox3) genes are missing from the mitochondrial genome. We isolated and sequenced a BAC clone that carries the whole cox3 gene and its corresponding cDNA. Almost the entire cox2 gene and its cDNA were also determined. Comparison of the genomic and the corresponding cDNA sequences revealed that the cox3 gene contains as many as nine spliceosomal introns and that cox2 bears six introns. Putative mitochondria targeting signals were predicted at each N terminal of the cox genes. These spliceosomal introns were typical GT-AG-type introns, which are very common not only in Chlamydomonas nuclear genes but also in diverse eukaryotic taxa. We found no particular distinguishing features in the cox introns. Comparative analysis of these genes with the various mitochondrial genes showed that 8 of the 15 introns were interrupting the conserved mature protein coding segments, while the other 7 introns were located in the N-terminal target peptide regions. Phylogenetic analysis of the evolutionary position of C. reinhardtii in Chlorophyta was carried out and the existence of the cox2 and cox3 genes in the mitochondrial genome was superimposed in the tree. This analysis clearly shows that these cox genes were relocated during the evolution of Chlorophyceae. It is apparent that long before the estimated period of relocation of these mitochondrial genes, the cytosol had lost the splicing ability for group II introns. Therefore, at least eight introns located in the mature protein coding region cannot be the direct descendant of group II introns. Here, we conclude that the presence of these introns is due to the invasion of spliceosomal introns, which occurred during the evolution of Chlorophyceae. This finding provides concrete evidence supporting the "intron-late" model, which rests largely on the mobility of spliceosomal introns. PMID:11675593

  11. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  12. Spliceosomal introns as tools for genomic and evolutionary analysis

    PubMed Central

    Irimia, Manuel; Roy, Scott William

    2008-01-01

    Over the past 5 years, the availability of dozens of whole genomic sequences from a wide variety of eukaryotic lineages has revealed a very large amount of information about the dynamics of intron loss and gain through eukaryotic history, as well as the evolution of intron sequences. Implicit in these advances is a great deal of information about the structure and evolution of surrounding sequences. Here, we review the wealth of ways in which structures of spliceosomal introns as well as their conservation and change through evolution may be harnessed for evolutionary and genomic analysis. First, we discuss uses of intron length distributions and positions in sequence assembly and annotation, and for improving alignment of homologous regions. Second, we review uses of introns in evolutionary studies, including the utility of introns as indicators of rates of sequence evolution, for inferences about molecular evolution, as signatures of orthology and paralogy, and for estimating rates of nucleotide substitution. We conclude with a discussion of phylogenetic methods utilizing intron sequences and positions. PMID:18263615

  13. Biased exon/intron distribution of cryptic and de novo 3′ splice sites

    PubMed Central

    Královičová, Jana; Christensen, Mikkel B.; Vořechovský, Igor

    2005-01-01

    We compiled sequences of previously published aberrant 3′ splice sites (3′ss) that were generated by mutations in human disease genes. Cryptic 3′ss, defined here as those resulting from a mutation of the 3′YAG consensus, were more frequent in exons than in introns. They clustered in ∼20 nt region adjacent to authentic 3′ss, suggesting that their under-representation in introns is due to a depletion of AG dinucleotides in the polypyrimidine tract (PPT). In contrast, most aberrant 3′ss that were induced by mutations outside the 3′YAG consensus (designated ‘de novo’) were in introns. The activation of intronic de novo 3′ss was largely due to AG-creating mutations in the PPT. In contrast, exonic de novo 3′ss were more often induced by mutations improving the PPT, branchpoint sequence (BPS) or distant auxiliary signals, rather than by direct AG creation. The Shapiro–Senapathy matrix scores had a good prognostic value for cryptic, but not de novo 3′ss. Finally, AG-creating mutations in the PPT that produced aberrant 3′ss upstream of the predicted BPS in vivo shared a similar ‘BPS-new AG’ distance. Reduction of this distance and/or the strength of the new AG PPT in splicing reporter pre-mRNAs improved utilization of authentic 3′ss, suggesting that AG-creating mutations that are located closer to the BPS and are preceded by weaker PPT may result in less severe splicing defects. PMID:16141195

  14. Comparative Analyses between Retained Introns and Constitutively Spliced Introns in Arabidopsis thaliana Using Random Forest and Support Vector Machine

    PubMed Central

    Mao, Rui; Raj Kumar, Praveen Kumar; Guo, Cheng; Zhang, Yang; Liang, Chun

    2014-01-01

    One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention. PMID:25110928

  15. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.

    PubMed

    Mao, Rui; Raj Kumar, Praveen Kumar; Guo, Cheng; Zhang, Yang; Liang, Chun

    2014-01-01

    One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter [Formula: see text] in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention. PMID:25110928

  16. Exons, Introns, and DNA Thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlon, Enrico; Malki, Mehdi Lejard; Blossey, Ralf

    2005-05-01

    The genes of eukaryotes are characterized by protein coding fragments, the exons, interrupted by introns, i.e., stretches of DNA which do not carry useful information for protein synthesis. We have analyzed the melting behavior of randomly selected human cDNA sequences obtained from genomic DNA by removing all introns. A clear correspondence is observed between exons and melting domains. This finding may provide new insights into the physical mechanisms underlying the evolution of genes.

  17. Splice Sites Seldom Slide: Intron Evolution in Oomycetes

    PubMed Central

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-01-01

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10–20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. PMID:27412607

  18. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. PMID:27155472

  19. Modern origin of numerous alternatively spliced human introns from tandem arrays

    PubMed Central

    Zhuo, Degen; Madden, Richard; Elela, Sherif Abou; Chabot, Benoit

    2007-01-01

    Despite the widespread occurrence of spliceosomal introns in the genomes of higher eukaryotes, their origin remains controversial. One model proposes that the duplication of small genomic portions could have provided the boundaries for new introns. If this mechanism has occurred recently, the 5′ and 3′ boundaries of each resulting intron should display distinctive sequence similarity. Here, we report that the human genome contains an excess of introns with perfect matching sequences at boundaries. One-third of these introns interrupt the protein-coding sequences of known genes. Introns with the best-matching boundaries are invariably found in tandem arrays of direct repeats. Sequence analysis of the arrays indicates that many intron-breeding repeats have disseminated in several genes at different times during human evolution. A comparison with orthologous regions in mouse and chimpanzee suggests a young age for the human introns with the most-similar boundaries. Finally, we show that these human introns are alternatively spliced with exceptionally high frequency. Our study indicates that genomic duplication has been an important mode of intron gain in mammals. The alternative splicing of transcripts containing these intron-breeding repeats may provide the plasticity required for the rapid evolution of new human proteins. PMID:17210920

  20. Structure and activity of putative intronic miRNA promoters.

    PubMed

    Monteys, Alex Mas; Spengler, Ryan M; Wan, Ji; Tecedor, Luis; Lennox, Kimberly A; Xing, Yi; Davidson, Beverly L

    2010-03-01

    MicroRNAs (miRNAs) are RNA sequences of approximately 22 nucleotides that mediate post-transcriptional regulation of specific mRNAs. miRNA sequences are dispersed throughout the genome and are classified as intergenic (between genes) or intronic (embedded into a gene). Intergenic miRNAs are expressed by their own promoter, and until recently, it was supposed that intronic miRNAs are transcribed from their host gene. Here, we performed a genomic analysis of currently known intronic miRNA regions and observed that approximately 35% of intronic miRNAs have upstream regulatory elements consistent with promoter function. Among all intronic miRNAs, 30% have associated Pol II regulatory elements, including transcription start sites, CpG islands, expression sequence tags, and conserved transcription factor binding sites, while 5% contain RNA Pol III regulatory elements (A/B box sequences). We cloned intronic regions encompassing miRNAs and their upstream Pol II (miR-107, miR-126, miR-208b, miR-548f-2, miR-569, and miR-590) or Pol III (miR-566 and miR-128-2) sequences into a promoterless plasmid, and confirmed that miRNA expression occurs independent of host gene transcription. For miR-128-2, a miRNA overexpressed in acute lymphoblastic leukemia, ChIP analysis suggests dual regulation by both intronic (Pol III) and host gene (Pol II) promoters. These data support complex regulation of intronic miRNA expression, and have relevance to disregulation in disease settings. PMID:20075166

  1. Chloroplast phylogeny and phylogeography of Stellera chamaejasme on the Qinghai-Tibet Plateau and in adjacent regions.

    PubMed

    Zhang, Yong-Hong; Volis, Sergei; Sun, Hang

    2010-12-01

    Historic events such as the uplift of Qinghai-Tibet Plateau (Q-T Plateau) and climatic oscillations in the Quaternary period greatly affected the evolution and modern distribution of Sino-Tibetan flora. Stellera chamaejasme, a perennial herb with flower color polymorphism that is distributed from the mountainous southeastern Q-T Plateau (Hengduan Mountains, H-D Mountains) to the vast platform of the Q-T Plateau and the adjacent plain of northern China, provides an excellent model to explore the effects of historic events on the origination and variation of species. In this study, we conducted a phylogenetic and phylogeographical study using three chloroplast sequences (trnT-L, trnL-F and rpL16) in 26 populations of S. chamaejasme and 12 outgroups from the Thymeleaceae. Phylogenetic analysis and molecular clock estimation revealed that the monophyletic origin of S. chamaejasme occurred ca. 6.5892 Ma, which is consistent with the radical environment changes caused by the rapid uplift of the Q-T Plateau ca. 7 Ma. Intra-specific differentiation of S. chamaejasme is estimated to have occurred after ca. 2.1 Ma. Twelve haplotypes were revealed from combined trnL-F and rpL16 sequences. High genetic diversity (h(T)=0.834) and population differentiation (N(ST)=0.997 and G(ST)=0.982) imply restricted gene flow among populations and significant geographical or environmental isolation. All populations from the vast plain of northern China were dominated by one haplotype (H1), and the same haplotype was fixed in most populations from the high elevation platform of the western and northern Q-T Plateau. In contrast, the majority of the haplotypes were found in the relatively narrow area of the H-D Mountains, in the southeastern distribution of S. chamaejasme. The contrasting haplotype distribution patterns suggested that the H-D Mountains were either a refugium for S. chamaejasme during the Quaternary climatic oscillations or a diversification center of this species. The present

  2. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus.

    PubMed

    Teranishi, M; Shimada, Y; Hori, T; Nakabayashi, O; Kikuchi, T; Macleod, T; Pym, R; Sheldon, B; Solovei, I; Macgregor, H; Mizuno, S

    2001-01-01

    The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region. PMID:11321370

  3. Isolation and analysis of a novel gene, HXC-26, adjacent to the rab GDP dissociation inhibitor gene located at human chromosome Xq28 region.

    PubMed

    Toyoda, A; Sakai, T; Sugiyama, Y; Kusuda, J; Hashimoto, K; Maeda, H

    1996-10-31

    We screened potential promoter regions from NotI-linking cosmid clones mapped on human chromosome Xq28 region with our constructed trapping vector and isolated six fragments containing transcription activity. Using one of the obtained fragments as a probe, a novel gene was isolated by screening a human skeletal muscle cDNA library. The isolated cDNA, termed HXC-26, contained an open reading frame of 975 nucleotides encoding 325 amino acids (38,848 Da). The HXC-26 gene was composed of 13 exons that span approximately 8 kb. Several potential GC boxes were found in the putative promoter region, but no typical TATA box. The HXC-26 gene associated with a CpG island was located adjacent to the rab GDP dissociation inhibitor (GDI) gene. PMID:9039504

  4. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase.

    PubMed

    Ma, Ming-Yue; Lan, Xin-Ran; Niu, Deng-Ke

    2016-01-01

    The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals. PMID:27547574

  5. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase

    PubMed Central

    Ma, Ming-Yue; Lan, Xin-Ran

    2016-01-01

    The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3′ splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals. PMID:27547574

  6. The mantle transition zone beneath the Afar Depression and adjacent regions: Implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-03-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broadband seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14,500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper mantle low-velocity zone (LVZ) beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and is interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  7. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  8. Nearest-neighbor spacing distribution of basis in some intron-less and intron-containing DNA sequences

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Hernández-Saldaña, H.; Méndez-Sánchez, R. A.

    2006-12-01

    We show that the nearest neighbor distribution of distances between basis pairs of some intron-less and intron-containing coding regions are the same when a procedure, called unfolding, is applied. Such a procedure consists in separating the secular variations from the oscillatory terms. The form of the distribution obtained is quite similar to that of a random, i.e., Poissonian, sequence. This is done for the HUMBMYH7CD, DROMYONMA, HUMBMYH7 and DROMHC sequences. The first two correspond to highly coding regions while the last two correspond to non-coding regions. We also show that the distributions before the unfolding procedure depend on the secular part but, after the unfolding procedure we obtain an striking result: all distributions are similar to each other. The result becomes independent of the content of introns or the species we have chosen. This is in contradiction with the results obtained with the detrended fluctuation analysis in which the correlations yield different results for intron-less and intron-containing regions.

  9. Constraints on the deep structure and dynamic processes beneath the Alps and adjacent regions from an analysis of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Lyon-Caen, Helene; Molnar, Peter

    1989-01-01

    Gravity anomalies over the Alps and the Molasse Basin are examined, focusing on the relationship between the anomalies and the tectonic processes beneath the region. Bouguer gravity anomalies measured in France, Germany, Italy, and Switzerland are analyzed. No large isostatic anomalies are observed over the Alps and an elastic model is unable to account for gravity anomalies over the Molasse Basin. These results suggest that the dynamic processes that flexed the European plate down, forming the Molasse Basin and building the Alpine chain, have waned. It is proposed that the late Cenozoic uplift of the region may be due to a diminution or termination of downwelling of mantle material.

  10. On the tectonic problems of the southern East China Sea and adjacent regions: Evidence from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Shang, Luning; Zhang, Xunhua; Han, Bo; Du, Runlin

    2016-02-01

    In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the `Geological-geophysical map series of China Seas and adjacent areas' database and the other was newly collected by R/V Kexue III in 2011. Magnetic and gravity data were reorganized and processed using the software MMDP, MGDP and RGIS. In addition to the description of the anomaly patterns in different areas, deep and shallow structure studies were performed by using several kinds of calculation, including a spectrum analysis, upward-continuation of the Bouguer anomaly and horizontal derivatives of the total-field magnetic anomaly. The depth of the Moho and magnetic basement were calculated. Based on the above work, several controversial tectonic problems were discussed. Compared to the shelf area and Ryukyu Arc, the Okinawa Trough has an obviously thinned crust, with the thinnest area having thickness less than 14 km in the southern part. The Taiwan-Sinzi belt, which terminates to the south by the NW-SE trending Miyako fault belt, contains the relic volcanic arc formed by the splitting of the paleo Ryukyu volcanic arc as a result of the opening of the Okinawa Trough. As an important tectonic boundary, the strike-slip type Miyako fault belt extends northwestward into the shelf area and consists of several discontinuous segments. A forearc terrace composed of an exotic terrane collided with the Ryukyu Arc following the subduction of the Philippine Sea Plate. Mesozoic strata of varying thicknesses exist beneath the Cenozoic strata in the shelf basin and significantly influence the magnetic pattern of this area. The gravity and magnetic data support the existence of a Great East China Sea, which suggests that the entire southern East China Sea shelf area was a basin in the Mesozoic without alternatively arranged uplifts and depressions, and might have extended southwestward and connected with the

  11. Integration of permanent and epoch GPS measurements for estimation of regional intraplate velocity field for Sudety Mts. and adjacent areas

    NASA Astrophysics Data System (ADS)

    Kaplon, Jan; Kontny, Bernard; Grzempowski, Piotr; Schenk, Vladimir; Schenkova, Zdenka; Balek, Jan; Holesovsky, Jan

    2013-04-01

    to earlier solutions and network fit into given reference frame. At the end new map of GPS sites velocities is presented for the Sudety Mts. and adjacent area.

  12. Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis

    SciTech Connect

    Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

    2010-10-01

    Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3°N, 73°E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

  13. Origin of Spliceosomal Introns and Alternative Splicing

    PubMed Central

    Irimia, Manuel; Roy, Scott William

    2014-01-01

    In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages. PMID:24890509

  14. Evidence of low density sub-crustal underplating beneath western continental region of India and adjacent Arabian Sea: Geodynamical considerations

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Agrawal, P. K.; Negi, J. G.

    1996-07-01

    The known high mobility of the Indian subcontinent during the period from 80 to 53 Ma has evoked considerable interest in recent times. It appears to have played an important role in shaping the subcontinental structures of western India and the adjoining Arabian Sea. During this period, a major catastrophic event took place in the form of Deccan volcanism, which coincides with the biological mass extinction at the K-T boundary, including the death of dinosaurs. The origin of Deccan volcanism is still being debated. Geophysically, western India and its offshore regions exhibit numerous prominent anomalies which testify to the abnormal nature of the underlying crust-lithosphere. In this work, we develop a two-dimensional structural model of these areas along two long profiles extending from the eastern basin of the Arabian Sea to about 1000 km inland. The model, derived from the available gravity data in the oceanic and continental regions, is constrained by seismic and other relevant information in the area, and suggests, for the first time, the presence of an extensive low-density (2.95-3.05 g/cm 3) sub-crustal underplating. Such a layer is found to occur between depths of 11 and 20 km in the eastern basin of the Arabian Sea, and betweeen 45 and 60 km in the continental region where it is sandwiched in the lower lithosphere. The low density may have been caused as a result of serpentinization or fractionation of magma by a process related in some way to the Deccan volcanic event. Substantial depletion of both oceanic and continental lithosphere is indicated. We hypothesize that the present anatomy of the deformed lithosphere of the region at the K-T boundary is the result of substantial melt generated owing to frictional heat possibly giving rise to a hot cell like condition at the base of the lithosphere, resulting from the rapid movement of the Indian subcontinent between 80 and 53 Ma.

  15. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome

  16. Transthyretin Gene (TTR) Intron One Elucidates Crocodylian Relationships

    PubMed Central

    Willis, Ray E.

    2009-01-01

    Transthyretin (TTR) is an attractive candidate for use in phylogenetic analysis because it is a short, single-copy nuclear gene with regions that are highly conserved across evolutionarily-divergent organisms from Xenopus laevis to Homo sapiens. To explore its utility as a phylogenetic marker, the complete intron one region (789–805 bp) was sequenced in 22 crocodylian species. Detailed analyses of intron 1 resolved the three expected lineages, Alligatorids, Crocodylids, and Gavialids, and offered additional evidence for the utility of synapomorphic indels in elucidating higher-level phylogenetic relationships. When used in conjunction with other genetic and morphological data sets, intron 1 should be a valuable tool in the investigation of other closely-related taxa. PMID:19751836

  17. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  18. Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans.

    PubMed

    Nachman, M W; Crowell, S L

    2000-08-01

    The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites. PMID:10924480

  19. Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans.

    PubMed Central

    Nachman, M W; Crowell, S L

    2000-01-01

    The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites. PMID:10924480

  20. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity

    SciTech Connect

    Lubahn, D.B.; Simental, J.A.; Higgs, H.N.; Wilson, E.M.; French, F.S. ); Brown, T.R.; Migeon, C.J. )

    1989-12-01

    Androgens act through a receptor protein (AR) to mediate sex differentiation and development of the male phenotype. The authors have isolated the eight exons in the amino acid coding region of the AR gene from a human X chromosome library. Nucleotide sequences of the AR gene intron/exon boundaries were determined for use in designing synthetic oligonucleotide primers to bracket coding exons for amplification by the polymerase chain reaction. Genomic DNA was amplified from 46, XY phenotypic female siblings with complete androgen insensitivity syndrome. AR binding affinity for dihydrotestosterone in the affected siblings was lower than in normal males, but the binding capacity was normal. Sequence analysis of amplified exons demonstrated within the AR steroid-binding domain (exon G) a single guanine to adenine mutation, resulting in replacement of valine with methionine at amino acid residue 866. As expected, the carrier mother had both normal and mutant AR genes. Thus, a single point mutation in the steroid-binding domain of the AR gene correlated with the expression of an AR protein ineffective in stimulating male sexual development.

  1. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs.

    PubMed

    Valli, Adrian A; Santos, Bruno A C M; Hnatova, Silvia; Bassett, Andrew R; Molnar, Attila; Chung, Betty Y; Baulcombe, David C

    2016-04-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species,Chlamydomonas reinhardtii Among the mutants from this screen, there were three atDicer-like 3that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type anddcl3mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant indcl3mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing inC. reinhardtiidiffers from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  2. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs

    PubMed Central

    Valli, Adrian A.; Santos, Bruno A.C.M.; Hnatova, Silvia; Bassett, Andrew R.; Molnar, Attila; Chung, Betty Y.; Baulcombe, David C.

    2016-01-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  3. Detection of 98. 5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene

    SciTech Connect

    Cuppens, H.; Marynen, P.; Cassiman, J.J. ); De Boeck, C. )

    1993-12-01

    The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region and their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.

  4. Multi-Scale Interactions Associated with the Monsoon Onset Over South China Sea and Adjacent Regions during SCSMEX-98

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Li, X.; Wu, H.-T.

    1999-01-01

    Using data collected during The South China Sea Monsoon Experiment (SCSMEX) (1998) as well as from the TRMM Microwave-Imager (TMI) and precipitation radar (PR), we have studied the multi-scale interactions (meso-synoptic-intraseasonal) associated with monsoon onset over South China Sea (SCS) and its subsequent evolution. Results show that the monsoon onset (defined by development of steady wind direction and heavy precipitation) over the northern SCS occurred around May 15 -17. Prevailing southerlies and southwesterlies developed over the central SCS after May 20. Shortly after, monsoon convection developed over the whole SCS region around May 23-27. The entire onset process appeared to be delayed by about a week to 10 days compared with climatology. During late spring of 1998, mid-latitude frontal systems were particularly active. These systems strongly impacted the northern SCS convection and may have been instrumental in triggering the onset of the SCS monsoon. The Tropical Oceans and Global Atmosphere (TOGA) and Bureau of Meteorology Research Centre (BMRC) radar showed a wide variety of convective systems over the Intensive Flux Array, from frontal bands to shear-banded structure, deep convection, pop-corn type shallow convection, slow moving "fine lines" to water spout. Analysis of SSM/I wind and moisture data suggested that the delayed convective activity over the SCS may be linked to the weakened northward propagation of monsoon rain band, hence contributing to a persistence of the rainband south of the Yangtze River and the disastrous flood that occurred over this region during mid to late June, 1998.

  5. Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Petrunin, Alexey G.

    2016-06-01

    We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ˜ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (˜ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.

  6. Receiver function constraints on crustal seismic velocities and partial melting beneath the Red Sea rift and adjacent regions, Afar Depression

    NASA Astrophysics Data System (ADS)

    Reed, Cory A.; Almadani, Sattam; Gao, Stephen S.; Elsheikh, Ahmed A.; Cherie, Solomon; Abdelsalam, Mohamed G.; Thurmond, Allison K.; Liu, Kelly H.

    2014-03-01

    The Afar Depression is an ideal locale for the investigation of crustal processes involved in the transition from continental rifting to oceanic spreading. To provide relatively high resolution images of the crust beneath the Red Sea rift (RSR) represented by the Tendaho graben in the Afar Depression, we deployed an array of 18 broadband seismic stations in 2010 and 2011. Stacking of about 2300 receiver functions from the 18 and several nearby stations along the ~200 km long array reveals an average crustal thickness of 22±4 km, ranging from ~17 km near the RSR axis to 30 km within the overlap zone between the Red Sea and Gulf of Aden rifts. The resulting anomalously high Vp/Vs ratios decrease from 2.40 in the southwest to 1.85 within the overlap zone. We utilize theoretical Vp and melt fraction relationships to obtain an overall highly reduced average crustal Vp of ~5.1 km/s. The melt percentage is about 10% beneath the RSR while the overlap zone contains minor quantities of partial melt. The observed high Vp/Vs values beneath most of the study area indicate widespread partial melting beneath the southwest half of the profile, probably as a result of gradual eastward migration of the RSR axis. Our results also suggest that the current extensional strain in the lower crust beneath the region is diffuse, while the strain field in the upper crust is localized along narrow volcanic segments. These disparate styles of deformation imply a high degree of decoupling between the upper and lower crust.

  7. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  8. Regional tectonic interpretation of image enhanced gravity and magnetic data covering the mid-Norwegian shelf and adjacent mainland

    NASA Astrophysics Data System (ADS)

    Fichler, C.; Rundhovde, E.; Olesen, O.; Sæther, B. M.; Rueslåtten, H.; Lundin, E.; Doré, A. G.

    1999-06-01

    Gravity and magnetic field data covering mid-Norway and the Norwegian Sea were processed in order to enhance tectonic features on various scales. The local features were subjected to an unconventional processing technique involving a non-linear, adaptive Wallis filter designed to enhance the smallest wave lengths. When compared with recent structural information derived from seismic data, the processed gravity and magnetic maps show the main structural trends, major fault zones and basin boundaries, thus proving their worth for regional tectonic mapping. Previously undetected NW-SE-trending offshore crustal lineaments are revealed. A landward prolongation of the Bivrost Lineament appears to continue subparallel towards Proterozoic shear zones below the Caledonian nappes in the Rana area, either along the western margin of the Transscandinavian Granite-Porphyry Belt or the NW-SE-trending Malå-Skellefteå Tectonic Zone. A large lineament is also observed as a landward prolongation of the Surt Lineament indicating a relationship with the Storsjön-Edsbyn Deformation Zone, a major, deep, crustal shear zone in the Precambrian of Sweden. A slightly increased seismic activity, which is possibly related to the present ridge push force, is observed along parts of the previously unknown transfer zones. Combined gravity and magnetic modelling indicates a low crustal thickness in the northwesternmost part of the Vøring Basin, between the Surt and the Jan Mayen Lineaments. The lack of correlation between the gravity and the magnetic patterns observed on the residual field maps suggests the presence of a shallow Curie isotherm situated above or within the uppermost basement.

  9. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    PubMed

    Schaarschmidt, Jörg; Huth, Sandra; Meier, René; Paschke, Ralf; Jaeschke, Holger

    2014-01-01

    Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities. PMID:25340405

  10. Influence of the Hinge Region and Its Adjacent Domains on Binding and Signaling Patterns of the Thyrotropin and Follitropin Receptor

    PubMed Central

    Schaarschmidt, Jörg; Huth, Sandra; Meier, René; Paschke, Ralf; Jaeschke, Holger

    2014-01-01

    Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities. PMID:25340405

  11. Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions

    NASA Astrophysics Data System (ADS)

    Fang, Yin; Chen, Yingjun; Tian, Chongguo; Lin, Tian; Hu, Limin; Huang, Guopei; Tang, Jianhui; Li, Jun; Zhang, Gan

    2015-07-01

    This study conducted the first comprehensive investigation of sedimentary black carbon (BC) concentration, flux, and budget in the continental shelves of "Bohai Sea (BS) and Yellow Sea (YS)," based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported data set of the atmospheric samples from seven coastal cities in the Bohai Rim. BC concentrations in these matrices were measured using the method of thermal/optical reflectance. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas where fine-grained particles (median diameters > 6 Φ (i.e., <0.0156 mm)) were deposited. The BC burial flux in the BS and YS ranged from 4 to 1100 µg/cm2 yr, and averaged 166 ± 200 µg/cm2 yr, which was within the range of burial fluxes reported in other continental shelf regimes. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr, and the BS alone contributed ~50% (~157 Gg/yr). The BC budget calculated in the BS showed that atmospheric deposition, riverine discharge, and import from the Northern Yellow Sea (NYS) each contributed ~51%, ~47%, and ~2%. Therefore, atmospheric deposition and riverine discharge dominated the total BC influx (~98%). Sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the input BC. Water exchange between the BS and the NYS was also an important BC transport route, with net BC transport from the BS to the NYS.

  12. Surface circulation in Block Island Sound and adjacent coastal and shelf regions: A FVCOM-CODAR comparison

    NASA Astrophysics Data System (ADS)

    Sun, Yunfang; Chen, Changsheng; Beardsley, Robert C.; Ullman, Dave; Butman, Bradford; Lin, Huichan

    2016-04-01

    CODAR-derived surface currents in Block Island Sound over the period of June 2000 through September 2008 were compared to currents computed using the Northeast Coastal Ocean Forecast System (NECOFS). The measurement uncertainty of CODAR-derived currents, estimated using statistics of a screened nine-year time series of hourly-averaged flow field, ranged from 3 to 7 cm/s in speed and 4° to 14° in direction. The CODAR-derived and model-computed kinetic energy spectrum densities were in good agreement at subtidal frequencies, but the NECOFS-derived currents were larger by about 28% at semi-diurnal and diurnal tidal frequencies. The short-term (hourly to daily) current variability was dominated by the semidiurnal tides (predominantly the M2 tide), which on average accounted for ∼87% of the total kinetic energy. The diurnal tidal and subtidal variability accounted for ∼4% and ∼9% of the total kinetic energy, respectively. The monthly-averaged difference between the CODAR-derived and model-computed velocities over the study area was 6 cm/s or less in speed and 28° or less in direction over the study period. An EOF analysis for the low-frequency vertically-averaged model current field showed that the water transport in the Block Island Sound region was dominated by modes 1 and 2, which accounted for 89% and 7% of the total variance, respectively. Mode 1 represented a relatively stationary spatial and temporal flow pattern with a magnitude that varied with season. Mode 2 was characterized mainly by a secondary cross-shelf flow and a relatively strong along-shelf flow. Process-oriented model experiments indicated that the relatively stationary flow pattern found in mode 1 was a result of tidal rectification and its magnitude changed with seasonal stratification. Correlation analysis between the flow and wind stress suggested that the cross-shelf water transport and its temporal variability in mode 2 were highly correlated to the surface wind forcing. The mode 2

  13. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  14. Monte Carlo Simulations of the Inside Intron Recombination

    NASA Astrophysics Data System (ADS)

    Cebrat, Stanisław; PȨKALSKI, Andrzej; Scharf, Fabian

    Biological genomes are divided into coding and non-coding regions. Introns are non-coding parts within genes, while the remaining non-coding parts are intergenic sequences. To study evolutionary significance of the inside intron recombination we have used two models based on the Monte Carlo method. In our computer simulations we have implemented the internal structure of genes by declaring the probability of recombination between exons. One situation when inside intron recombination is advantageous is recovering functional genes by combining proper exons dispersed in the genetic pool of the population after a long period without selection for the function of the gene. Populations have to pass through the bottleneck, then. These events are rather rare and we have expected that there should be other phenomena giving profits from the inside intron recombination. In fact we have found that inside intron recombination is advantageous only in the case when after recombination, besides the recombinant forms, parental haplotypes are available and selection is set already on gametes.

  15. Bacterial group II introns: not just splicing.

    PubMed

    Toro, Nicolás; Jiménez-Zurdo, José Ignacio; García-Rodríguez, Fernando Manuel

    2007-04-01

    Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed. PMID:17374133

  16. The Genomic Signature of Splicing-Coupled Selection Differs between Long and Short Introns

    PubMed Central

    Farlow, Ashley; Dolezal, Marlies; Hua, Liushuai; Schlötterer, Christian

    2012-01-01

    Understanding the function of noncoding regions in the genome, such as introns, is of central importance to evolutionary biology. One approach is to assay for the targets of natural selection. On one hand, the sequence of introns, especially short introns, appears to evolve in an almost neutral manner. Whereas on the other hand, a large proportion of intronic sequence is under selective constraint. This discrepancy is largely dependent on intron length and differences in the methods used to infer selection. We have used a method based on DNA strand asymmetery that does not require comparison with any putatively neutrally evolving sequence, nor sequence conservation between species, to detect selection within introns. The strongest signal we identify is associated with short introns. This signal comes from a family of motifs that could act as cryptic 5′ splice sites during mRNA processing, suggesting a mechanistic justification underlying this signal of selection. Together with an analysis of intron length and splice site strength, we observe that the genomic signature of splicing-coupled selection differs between long and short introns. PMID:21878685

  17. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  18. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes.

    PubMed

    Petibon, Cyrielle; Parenteau, Julie; Catala, Mathieu; Elela, Sherif Abou

    2016-05-01

    Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3' untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3' untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein. PMID:26945043

  19. Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly

    NASA Astrophysics Data System (ADS)

    Muella, M. T. A. H.; Kherani, E. A.; de Paula, E. R.; Cerruti, A. P.; Kintner, P. M.; Kantor, I. J.; Mitchell, C. N.; Batista, I. S.; Abdu, M. A.

    2010-03-01

    Using ground-based GPS and digital ionosonde instruments, we have built up at latitudes of the equatorial ionization anomaly (EIA), in the Brazilian sector, a time-evolving picture of total electron content (TEC), L-band amplitude scintillations, and F region heights, and we have investigated likely reasons for the occurrence or suppression of equatorial scintillations during the disturbed period of 18-23 November 2003. During the prestorm quiet nights, scintillations are occurring postsunset, as expected; however, during the storm time period, their spatial-temporal characteristics and intensity modify significantly owing to the dramatic changes in the ionospheric plasma density distribution and in the temporal evolution of TEC. The two-dimensional maps showing both TEC and amplitude scintillations revealed strong evidence of turbulences at the Fresnel length (causing scintillations) concurrent with those regions of steepest TEC gradients adjacent to the crests of the EIA. The largest density gradients have been found to occur in an environment of increased background electron density, and their spatial distribution and location during the disturbed period may differ significantly from the magnetic quiet night pattern. However, in terms of magnitude the gradients at equatorial and low latitudes appear to not change during both magnetic quiet and disturbed conditions. The scenarios for the formation or suppression of scintillation-producing Fresnel-scale irregularities during the prestorm quiet nights and disturbed nights are discussed in view of different competing effects computed from numerical simulation techniques.

  20. Modern Seismic Observations in the Tatun Volcano Region of Northern Taiwan: Seismic/Volcanic Hazard Adjacent to the Taipei Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Kim, K.; Chang, C.; Ma, K.; Chiu, J.; Chen, K.

    2006-12-01

    The Tatun volcano group is located adjacent to the Taipei metropolitan area in northern Taiwan and was a result of episodic volcanisms between 2.8 and 0.2 Ma. Earthquake data collected over the last 30 years are analyzed to explore seismicity pattern and their associated mechanism of faulting in the area. Using a Joint Hypocenter Determination (JHD) method, a few sequences of relocated earthquake hypocenters are tightly clustered which seem to be blurry in the original catalog locations. Numerous earthquakes, previously unnoticed and not reported in the CWB catalog, have been identified from a careful examination of the continuous recordings from a nearby broadband seismic station. These newly identified earthquakes show similarities in waveforms and arrival time differences between the direct P- and S-waves indicating that their hypocenter locations are very close to each other and their source mechanisms are similar. A relatively high b- value of 1.22 is obtained from the analysis of crustal earthquakes (depth < 30 km) in the region, which may suggest that clustered local seismicity in the Tatun volcanic region probably resulted from subsurface hydrothermal or volcano-related activities. Focal mechanism solutions determined in this study are dominated by normal faulting. Thus, these earthquake clusters are most probably associated with hydrothermal/magmatic activities in a back-arc extensional environment. This work was funded by the Korea Meteorological Administration Research Development Program under Grant CATER 2006-5101.

  1. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding

    PubMed Central

    Maruyama, Atsushi; Mimura, Junsei; Itoh, Ken

    2014-01-01

    Recent studies have disclosed the function of enhancer RNAs (eRNAs), which are long non-coding RNAs transcribed from gene enhancer regions, in transcriptional regulation. However, it remains unclear whether eRNAs are involved in the regulation of human heme oxygenase-1 gene (HO-1) induction. Here, we report that multiple nuclear-enriched eRNAs are transcribed from the regions adjacent to two human HO-1 enhancers (i.e. the distal E2 and proximal E1 enhancers), and some of these eRNAs are induced by the oxidative stress-causing reagent diethyl maleate (DEM). We demonstrated that the expression of one forward direction (5′ to 3′) eRNA transcribed from the human HO-1 E2 enhancer region (named human HO-1enhancer RNA E2-3; hereafter called eRNA E2-3) was induced by DEM in an NRF2-dependent manner in HeLa cells. Conversely, knockdown of BACH1, a repressor of HO-1 transcription, further increased DEM-inducible eRNA E2-3 transcription as well as HO-1 expression. In addition, we showed that knockdown of eRNA E2-3 selectively down-regulated DEM-induced HO-1 expression. Furthermore, eRNA E2-3 knockdown attenuated DEM-induced Pol II binding to the promoter and E2 enhancer regions of HO-1 without affecting NRF2 recruitment to the E2 enhancer. These findings indicate that eRNAE2-3 is functional and is required for HO-1 induction. PMID:25404134

  2. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations

    PubMed Central

    Simmons, Melinda P.; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J.; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z.

    2015-01-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of

  3. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations.

    PubMed

    Simmons, Melinda P; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z

    2015-09-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica--a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this

  4. Reenacting the birth of an intron

    SciTech Connect

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-07-01

    An intron is an extended genomic feature whose function requires multiple constrained positions - donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers - that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half a billion years ago.

  5. Origins and evolution of spliceosomal introns.

    PubMed

    Rodríguez-Trelles, Francisco; Tarrío, Rosa; Ayala, Francisco J

    2006-01-01

    Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today. PMID:17094737

  6. Nucleolar introns from Physarum flavicomum contain insertion elements that may explain how mobile group I introns gained their open reading frames.

    PubMed Central

    Vader, A; Naess, J; Haugli, K; Haugli, F; Johansen, S

    1994-01-01

    Comparison of two group I intron sequences in the nucleolar genome of the myxomycete Physarum flavicomum to their homologs in the closely related Physarum polycephalum revealed insertion-like elements. One of the insertion-like elements consists of two repetitive sequence motifs of 11 and 101 bp in five and three copies, respectively. The smaller motif, which flanks the larger, resembles a target duplication and indicates a relationship to transposons or retroelements. The insertion-like elements are found in the peripheral loops of the RNA structure; the positions occupied by the ORFs of mobile nucleolar group I introns. The P. flavicomum introns are 1184 and 637 bp in size, located in the large subunit ribosomal RNA gene, and can be folded into group I intron structures at the RNA level. However, the intron 2s from both P. flavicomum and P. polycephalum contain an unusual core region that lacks the P8 segment. None of the introns are able to self-splice in vitro. Southern analysis of different isolates indicates that the introns are not optional in myxomycetes. Images PMID:7984404

  7. Importance of a distal proximal contact on load transfer by implant-supported single adjacent crowns in posterior region of the mandible: a photoelastic study

    PubMed Central

    de AGUIAR JÚNIOR, Fábio Afrânio; TIOSSI, Rodrigo; MACEDO, Ana Paula; de MATTOS, Maria da Gloria Chiarello; RIBEIRO, Ricardo Faria; RODRIGUES, Renata Cristina Silveira

    2013-01-01

    Objective This study aimed to evaluate the importance of a distal proximal contact on the load transfer to the posterior region of the mandible by non-splinted adjacent implant-supported crowns using photoelastic stress analysis. Material and Methods A rectangular model (68x30x15 mm) was made of polymethylmethacrylate resin to simulate half of the mandibular arch. One model was completed with resin replicas representing the first premolar and second molar and with two 3.75 mm dia.x11 mm internal hexagon threaded implants replacing the second premolar and first molar. The other model was manufactured in the same way but without the second molar. Both models were duplicated using photoelastic resin. The roots of the teeth replicas were covered with a layer of polyether impression material to simulate the periodontal ligament. Two different vertical loads were applied to the crowns as follows: 1 - single static point load alternately applied to the crowns replacing the second premolar and first molar (50 N); 2 - simultaneous static point loads applied to both of the crowns replacing the second premolar and first molar (100 N). The resulting isochromatic fringe pattern in the photoelastic model was monitored and photographed. Results All loading conditions studied showed that the presence of the second molar has changed the load transmission and the pattern of stresses. Conclusion Results showed that the presence of a second molar proximal contact can help minimize the stresses around the implants. PMID:24212984

  8. Fault-block structure and state of stress in the Earth's crust of the Gusinoozersky Basin and the adjacent territory, western Transbaikal region

    NASA Astrophysics Data System (ADS)

    Lunina, O. V.; Gladkov, A. S.

    2009-01-01

    The geological structure and tectonophysics of the Gusinoozersky Basin—a tectonotype of Mesozoic depressions in the western Transbaikal region—is discussed. New maps of the fault-block structure and state of stress in the Earth’s crust of the studied territory are presented. It is established that the Gusinoozersky Basin was formed in a transtensional regime with the leading role of extension oriented in the NW-SE direction. The transtensional conditions were caused by paths of regional tension stresses oriented obliquely to the axial line of the basin, which created a relatively small right-lateral strike-slip component of separation (in comparison with normal faulting) along the NE-trending master tectonic lines. The widespread shear stress tensors of the second order with respect to extension are related to inhomogeneities in the Earth’s crust, including those that are arising during displacement of blocks along normal faults. Folding at the basin-range boundary was brought about by gravity effects of normal faulting. The faults and blocks in the Gusinoozersky Basin remained active in the Neogene and Quaternary; however, it is suggested that their reactivation was a response to tectonic processes that occurred in the adjacent Baikal Rift Zone rather than to the effect of a local mantle source.

  9. Anthropogenic and authigenic uranium in marine sediments of the central Gulf of California adjacent to the Santa Rosalía mining region.

    PubMed

    Shumilin, Evgueni; Rodríguez-Figueroa, Griselda; Sapozhnikov, Dmitry; Sapozhnikov, Yuri; Choumiline, Konstantin

    2012-10-01

    To investigate the causes of uranium (U) enrichment in marine sediments in the eastern sector of the Gulf of California, surface sediments and sediment cores were collected adjacent to the Santa Rosalía copper mining region in the Baja California peninsula. Three coastal sediment cores were found to display high concentrations of U (from 54.2 ± 7.3 mg kg(-1) to 110 ± 13 mg kg(-1)) exceeding those found in the deeper cores (1.36 ± 0.26 mg kg(-1) in the Guaymas Basin to 9.31 ± 3.03 mg kg(-1) in the SR63 core from the suboxic zone). The contribution of non-lithogenic U (estimated using scandium to normalize) to the total U content in sediments of three coastal cores varied from 97.2 ± 0.4 % to 98.82 % versus 49.8 ± 3 % (Guaymas Basin) to 84.2 ± 8.2 % (SR62 core) in the deeper cores. The U content record in a lead-210 ((210)Pb)-dated core had two peaks (in 1923 and 1967) corresponding to the history of ancient mining and smelting activities in Santa Rosalía. PMID:22722804

  10. Crustal and upper-mantle Seismic Tomography beneath the Helan-Liupan-Ordos's western margin structural belt and its adjacent region in central China

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Cheng, B.; Zhang, G.; Zhao, D.

    2013-12-01

    Abstract We determined high-resolution 3-D P-wave velocity and anisotropic structures under the Helan-Liupan-Ordos's western margin (H-L-O) structural belt and its adjacent region using 13,506 P-wave high-quality arrival times from 2,666 regional earthquakes recorded by 87 seismic stations distributed in Northwestern China during 1980 to 2008. The results indicate that the prominent low-Vp anomalies widely exist in the lower crust beneath the study region and extend to the uppermost mantle in local area, which suggest that the lower crust contains relative high-temperature materials and/or fluids. The major fault zones especial the large boundary faults are distributed in the edge portion of the low-Vp anomalies or a transitional zone between the low- and high-Vp anomalies in the upper crust, and the obvious low-Vp anomalies are revealed in the lower crust even uppermost mantle under most of the faults. Most of the large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. The prominent low-Vp zones are visible in the lower crust even uppermost mantle beneath the large historical earthquakes and most of the regional earthquakes. The anisotropic patterns in the upper crust is good consistent with the surface structures. In the lower crust and uppermost mantle, the predominant fast velocity direction has the NNE-SSW under the Yinchuan Graben and NWW-SEE or NW-SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt with about NE-SW in local region such as eastern Qilian Orogenic Belt, respectively, being caused by the LPO of lower crustal minerals which may be result from the ductile flow of the lower crust with varied flow directions. Another velocity feature is being zonation with low- and high-velocity S-N strike and segments along S-N within the Crust. The present results shed new light on the structural heterogeneities and seismic anisotropy in the crust

  11. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    SciTech Connect

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking a long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to

  12. The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron.

    PubMed

    Brinkman, Kerry K; Mishra, Prakhar; Fraser, Nigel W

    2013-02-01

    Herpes simplex virus type 1 establishes a latent infection in the sensory neurons of the peripheral nervous system of humans. Although about 80 genes are expressed during the lytic cycle of the virus infection, essentially only one gene is expressed during the latent cycle. This gene is known as the latency-associated transcript (LAT), and it appears to play a role in the latency cycle through an anti-apoptotic function in the 5' end of the gene and miRNA encoded along the length of the transcript which downregulate some of the viral immediate-early gene products. The LAT gene is about 8.3 kb long and consists of two exons separated by an unusual intron. The intron between the exons consists of two nested introns. This arrangement of introns has been called a twintron. Furthermore, the larger (2 kb) intron has been shown to be very stable. In this study, we measure the stability of the shorter 1.5-kb nested intron and find its half-life is similar to the longer intron. This was achieved by deleting the 0.5-kb overlapping intron from a plasmid construct designed to express the LAT transcript from a tet-inducible promoter and measuring the half-life of the 1.5-kb intron in tissue culture cells. This finding supports the hypothesis that it is the common branch-point region of these nested introns that is responsible for their stability. PMID:23335177

  13. A survey on intron and exon lengths.

    PubMed Central

    Hawkins, J D

    1988-01-01

    The lengths of introns and exons in various parts of genes of vertebrates, insects, plants and fungi are tabulated. Differences between the various groups of organisms are apparent. The results are discussed and support the idea that, generally speaking, introns were present in primitive genomes, though in some cases they may have been inserted into pre-existing genes. PMID:3057449

  14. Group II Introns and Their Protein Collaborators

    NASA Astrophysics Data System (ADS)

    Solem, Amanda; Zingler, Nora; Pyle, Anna Marie; Li-Pook-Than, Jennifer

    Group II introns are an abundant class of autocatalytic introns that excise themselves from precursor mRNAs. Although group II introns are catalytic RNAs, they require the assistance of proteins for efficient splicing in vivo. Proteins that facilitate splicing of organellar group II introns fall into two main categories: intron-encoded maturases and host-encoded proteins. This chapter will focus on the host proteins that group II introns recruited to ensure their function. It will discuss the great diversity of these proteins, define common features, and describe different strategies employed to achieve specificity. Special emphasis will be placed on DEAD-box ATPases, currently the best studied example of host-encoded proteins with a role in group II intron splicing. Since the exact mechanisms by which splicing is facilitated is not known for any of the host proteins, general mechanistic strategies for protein-mediated RNA folding are described and assessed for their potential role in group II intron splicing.

  15. Group II Intron Self-Splicing.

    PubMed

    Pyle, Anna Marie

    2016-07-01

    Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines. PMID:27391926

  16. Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    PubMed Central

    2011-01-01

    Background Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the PaSSU intron in the rRNA small subunit gene of Phialophora americana isolate Wang 1046 is capable of in vitro splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme. Findings Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of Phialophora isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of Phialophora, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, Porpidia crustulata and Arthonia lapidicola. Conclusions The small putative group I introns in Phialophora have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses. PMID:21781325

  17. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality

    PubMed Central

    Agarwal, Neha; Ansari, Athar

    2016-01-01

    Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality. PMID:27152651

  18. Ocean-Atmosphere Environments of Antarctic-Region Cold-Air Mesocyclones: Evaluation of Reanalyses for Contrasting Adjacent 10-Day Periods ("Macro-Weather") in Winter.

    NASA Astrophysics Data System (ADS)

    Carleton, A. M.; Auger, J.; Birkel, S. D.; Maasch, K. A.; Mayewski, P. A.; Claud, C.

    2015-12-01

    Mesoscale cyclones in cold-air outbreaks (mesocyclones) feature in the weather and climate of the Antarctic (e.g., Ross Sea) and sub-antarctic (Drake Passage). They adversely impact field operations, and influence snowfall, the ice-sheet mass balance, and sea-air energy fluxes. Although individual mesocyclones are poorly represented on reanalyses, these datasets robustly depict the upper-ocean and troposphere environments in which multiple mesocyclones typically form. A spatial metric of mesocyclone activity—the Meso-Cyclogenesis Potential (MCP)—used ERA-40 anomaly fields of: sea surface temperature (SST) minus marine air temperature (MAT), near-surface winds, 500 hPa air temperature, and the sea-ice edge location. MCP maps composited by teleconnection phases for 1979-2001, broadly correspond to short-period satellite "climatologies" of mesocyclones. Here, we assess 3 reanalysis datasets (CFSR, ERA-I and MERRA) for their reliably to depict MCP patterns on weekly to sub-monthly periods marked by strong regional shifts in mesocyclone activity (frequencies, track densities) occurring during a La Niña winter: June 21-30, 1999 (SE Indian Ocean) and September 1-10, 1999 (Ross Sea sector). All reanalyses depict the marked variations in upper ocean and atmosphere variables between adjacent 10-day periods. Slight differences may owe to model resolution or internal components (land surface, coupled ocean models), and/or how the observations are assimilated. For June 21-30, positive SST-MAT, southerly winds, proximity to the ice edge, and negative T500, accompany increased meso-cyclogenesis. However, for September 1-10, surface forcing does not explain frequent comma cloud "polar lows" north-east of the Ross Sea. Inclusion of the upper-level diffluence (e.g., from Z300 field) in the MCP metric, better depicts the observed mesocyclone activity. MCP patterns on these "macro-weather" time scales appear relatively insensitive to the choice of reanalysis.

  19. Climatic stress events in the source region of modern man - Matching the last 20 ka of the Chew Bahir climate record with occupation history of adjacent refugia

    NASA Astrophysics Data System (ADS)

    Foerster, Verena; Vogelsang, Ralf; Junginger, Annett; Asrat, Asfawossen; Lamb, Henry F.; Viehberg, Finn; Trauth, Martin H.; Schaebitz, Frank

    2014-05-01

    A rapidly changing environment is considered an important driver not just for human evolution but also for cultural and technological innovation and migration. To evaluate the impact that climatic shifts on different timescales might have had on the living conditions of prehistoric humans is one of the cornerstones in current research, but continuous paleo-climate records in the vicinity of archaeological sites are still rare. As a contribution towards a better understanding of this human-climate interaction we here present a match between the last 20 ka of the just recently developed paleo-climate record from Chew Bahir in southern Ethiopia and the settlement history of adjacent possible refugia. The Chew Bahir basin, as a newly explored reliable climatic archive, lies in a biogeographically highly sensitive transition zone between the Main Ethiopian Rift and the Omo-Turkana basin and hence represents an ideal site to study climatic variability in the source region of modern man. The climatic history with a temporal resolution of up to 3 years is showing besides orbitally driven long-term transitions in and out of favourable living conditions several short abrupt excursions towards drier or wetter episodes. Comparing the frequency of archaeological findings as a parameter for human occupation to this close-by climate record that allows us to outline how complex the interplay between humans and environment during the last 20 ka really was, which dynamics might have been involved and which role the temporal dimension of environmental changes could have played for the adaption of humans.

  20. Reverse transcriptase and intron number evolution

    PubMed Central

    Kuo, Alan; Grigoriev, Igor V.

    2014-01-01

    Background Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. Methods Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. Results The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota’s ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss

  1. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns

    PubMed Central

    Crous, Pedro W.; de Wit, Pierre J. G. M.; van der Burgt, Ate

    2015-01-01

    Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom. PMID:26046656

  2. Intron Delays and Transcriptional Timing during Development

    PubMed Central

    Swinburne, Ian A.; Silver, Pamela A.

    2010-01-01

    The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics. PMID:18331713

  3. a Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2009-02-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences has some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algoritnm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  4. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  5. Intron-exon organization of the gene for the multifunctional animal fatty acid synthase.

    PubMed Central

    Amy, C M; Williams-Ahlf, B; Naggert, J; Smith, S

    1992-01-01

    The complete intron-exon organization of the gene encoding a multifunctional mammalian fatty acid synthase has been elucidated, and specific exons have been assigned to coding sequences for the component domains of the protein. The rat gene is interrupted by 42 introns and the sequences bordering the splice-site junctions universally follow the GT/AG rule. However, of the 41 introns that interrupt the coding region of the gene, 23 split the reading frame in phase I, 14 split the reading frame in phase 0, and only 4 split the reading frame in phase II. Remarkably, 46% of the introns interrupt codons for glycine. With only one exception, boundaries between the constituent enzymes of the multifunctional polypeptide coincide with the location of introns in the gene. The significance of the predominance of phase I introns, the almost uniformly short length of the 42 introns and the overall small size of the gene, is discussed in relation to the evolution of multifunctional proteins. Images PMID:1736293

  6. A 62,000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract.

    PubMed

    Wang, J; Pederson, T

    1990-10-25

    Incubation in HeLa nuclear extract of a 32P-labeled 61 nucleotide-long RNA corresponding to the lariat branch site/polypyrimidine tract/3' splice site of the first intron of human beta-globin pre-mRNA led to the crosslinking of a single protein of approximately 62,000 mol. wt. (p62). p62 corresponds to a polypyrimidine tract-binding protein recently described by Garcia-Blanco et al. (Genes & Dev. 3: 1874-1886, 1989). Crosslinking of p62 to the 61 nt RNA was highly sequence specific. No p62 crosslinking was observed with a 60 nt pGEM vector RNA, a 63 nt RNA antisense to the 61-mer or a 72 nt U2 RNA sequence. p62 crosslinking to the 61 nt RNA was competed by unlabeled 61 nt RNA, by beta-globin pre-mRNA containing intron 1, and by poly(U) and poly(C), but was competed to a lesser extent or not at all by pGEM RNA, a beta-globin RNA lacking intron 1, or poly(A). Experiments with mutated RNAs revealed that neither the lariat branch site adenosine nor the 3' splice site were required for p62 crosslinking to polypyrimidine tract-containing RNA. Elimination of the polypyrimidine tract reduced p62 crosslinking, as did mutation of a polypyrimidine tract UU dinucleotide to GA. However, replacement of a pyrimidine-rich tract immediately adjacent (3') to the lariat branch site with a 57% A + G pGEM vector RNA sequence also significantly reduced p62 crosslinking, indicating the involvement of both this pyrimidine-rich region and the classical polypyrimidine tract adjacent to the 3' splice site. The sites of protein interaction were further defined by RNase H protection experiments, the results of which confirmed the patterns of p62 crosslinking to mutant RNAs. p62 crosslinking was efficiently competed by a DNA oligonucleotide having the same sequence as the 61 nt RNA, showing that p62 requires neither ribose 2' OH groups nor uracil bases for its interaction with the polypyrimidine tract. p62 was not crosslinked to double-stranded 61 nt RNA. Q-Sepharose chromatography of He

  7. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  8. Mitochondrial intronic open reading frames in Podospora: Mobility and consecutive exonic sequence variations

    SciTech Connect

    Sellem, C.H.; Rossignol, M.; Belcour, L.

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optical sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. 46 refs., 5 figs., 2 tabs.

  9. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  10. Crystal structure of group II intron domain 1 reveals a template for RNA assembly

    PubMed Central

    Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; Pyle, Anna Marie

    2015-01-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Comprised of intron domain 1 from the Oceanobacillus iheyensis group II intron (D1, 266 nts), this intermediate retains native-like features but adopts a compact conformation in which the active-site cleft is closed. Transition between this closed and open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a “first comes, first folds” strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  11. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  12. Near intron pairs and the metazoan tree.

    PubMed

    Lehmann, Jörg; Stadler, Peter F; Krauss, Veiko

    2013-03-01

    Gene structure data can substantially advance our understanding of metazoan evolution and deliver an independent approach to resolve conflicts among existing hypotheses. Here, we used changes of spliceosomal intron positions as novel phylogenetic marker to reconstruct the animal tree. This kind of data is inferred from orthologous genes containing mutually exclusive introns at pairs of sequence positions in close proximity, so-called near intron pairs (NIPs). NIP data were collected for 48 species and utilized as binary genome-level characters in maximum parsimony (MP) analyses to reconstruct deep metazoan phylogeny. All groupings that were obtained with more than 80% bootstrap support are consistent with currently supported phylogenetic hypotheses. This includes monophyletic Chordata, Vertebrata, Nematoda, Platyhelminthes and Trochozoa. Several other clades such as Deuterostomia, Protostomia, Arthropoda, Ecdysozoa, Spiralia, and Eumetazoa, however, failed to be recovered due to a few problematic taxa such as the mite Ixodesand the warty comb jelly Mnemiopsis. The corresponding unexpected branchings can be explained by the paucity of synapomorphic changes of intron positions shared between some genomes, by the sensitivity of MP analyses to long-branch attraction (LBA), and by the very unequal evolutionary rates of intron loss and intron gain during evolution of the different subclades of metazoans. In addition, we obtained an assemblage of Cnidaria, Porifera, and Placozoa as sister group of Bilateria+Ctenophora with medium support, a disputable, but remarkable result. We conclude that NIPs can be used as phylogenetic characters also within a broader phylogenetic context, given that they have emerged regularly during evolution irrespective of the large variation of intron density across metazoan genomes. PMID:23201572

  13. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  14. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits

    NASA Astrophysics Data System (ADS)

    Ni, Jing; You, Feng; Xu, Jianhe; Xu, Dongdong; Wen, Aiyun; Wu, Zhihao; Xu, Yongli; Zhang, Peijun

    2012-03-01

    The growth hormone gene ( GH) affects animal growth and is a potential target for genetic studies of variation related to growth traits. In this study, we analyzed single nucleotide polymorphisms (SNPs) in GH intron regions and their associations with growth traits in large yellow croaker, Larimichthys crocea, from Zhejiang and Fujian stocks. The results of PCR-single strand conformation polymorphism showed two haplotypes of intron 1, named AA and AB genotypes, in Zhejiang stock. AB exhibited an SNP at position 196 (G→A) that was negatively correlated with body height and positively correlated with standard length/body height ( P≤0.05). Two different genotypes, CC and CD, were identified in intron 2 in Fujian stock, with CD showing an SNP at position 692 (T→C). The CD genotype had a significantly positive correlation with both weight and total length ( P≤0.01). These basic data highlight the potential for using GH as a genetic marker of fish growth in marker assisted selection.

  15. How Common Is Parallel Intron Gain? Rapid Evolution Versus Independent Creation in Recently Created Introns in Daphnia.

    PubMed

    Roy, Scott William

    2016-08-01

    The evolutionary history of the spliceosomal introns that interrupt nuclear genes in eukaryotes has been debated for four decades. Positions of introns show a high degree of coincidence between various eukaryotes, implying either than many modern introns are very old and/or that intron creation is highly biased toward certain sites, leading to rampant parallel intron gain. A series of articles in this and other journals reported evidence for a strikingly high degree of parallel insertion of introns in different alleles of the water flea Daphnia pulex Here, I report several new analyses of these data. Among the 23 loci reported to be undergoing parallel intron gain, I find that in five cases introns reported to be unrelated show extended sequence similarity strongly suggesting that the introns are in fact homologous. Five additional cases show extended conserved motifs between allegedly unrelated introns. For nearly all loci including the 13 remaining loci, at least one intron shows hallmarks of rapid sequence evolution, thwarting confident inference about homology. In addition, I reanalyze gene trees reconstructed from flanking exonic sequences, claimed by the original authors as additional evidence for parallel gain. I show that these phylogenetic trees frequently fail to recover expected relationships, and in any case show relationships not consistent with parallel intron gains. In total, I conclude that the data do not support widespread parallel intron gain in D. pulex These findings strengthen the notion that shared intron positions generally reflect ancestral introns, and thus the notion of complex genes in early eukaryotes. PMID:27189562

  16. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes

    PubMed Central

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-01-01

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5′–3′ gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5′–3′ decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5′–3′ gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species. PMID:26450849

  17. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes.

    PubMed

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-10-01

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5'-3' gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5'-3' decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5'-3' gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species. PMID:26450849

  18. Nonsense-Mediated Decay Enables Intron Gain in Drosophila

    PubMed Central

    Dolezal, Marlies; Hua, Liushuai; Schlötterer, Christian

    2010-01-01

    Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution. PMID:20107520

  19. CYP17A1 intron mutation causing cryptic splicing in 17α-hydroxylase deficiency.

    PubMed

    Hwang, Daw-Yang; Hung, Chi-Chih; Riepe, Felix G; Auchus, Richard J; Kulle, Alexandra E; Holterhus, Paul-Martin; Chao, Mei-Chyn; Kuo, Mei-Chuan; Hwang, Shang-Jyh; Chen, Hung-Chun

    2011-01-01

    17α-Hydroxylase/17, 20-lyase deficiency (17OHD) is an autosomal recessive disease causing congenital adrenal hyperplasia and a rare cause of hypertension with hypokalemia. The CYP17A1 gene mutation leads to 17OHD and its clinical features. We described an 18 y/o female with clinical features of 17α-hydroxylase/17, 20-lyase deficiency and characterized the functional consequences of an intronic CYP17A1 mutation. The coding regions and flanking intronic bases of the CYP17A1 gene were amplified by PCR and sequenced. The patient is a compound heterozygote for the previously described p.R358X and IVS1 +2T>C mutations. A first intron splice donor site mutation was re-created in minigene and full-length expression vectors. Pre-mRNA splicing of the variant CYP17A1 intron was studied in transfected cells and in a transformed lymphoblastoid cell line. When the full-length CYP17A1 gene and minigene containing the intronic mutation was expressed in transfected cells, the majority (>90%) of mRNA transcripts were incorrectly spliced. Only the p.R358X transcript was detected in the EBV-transformed lymphoblastoid cell line. The IVS1 +2T>C mutation abolished most 17α-hydroxylase/17, 20-lyase enzyme activity by aberrant mRNA splicing to an intronic pseudo-exon, causing a frame shift and early termination. PMID:21966534

  20. CYP17A1 Intron Mutation Causing Cryptic Splicing in 17α-Hydroxylase Deficiency

    PubMed Central

    Hwang, Daw-Yang; Hung, Chi-Chih; Riepe, Felix G.; Auchus, Richard J.; Kulle, Alexandra E.; Holterhus, Paul-Martin; Chao, Mei-Chyn; Kuo, Mei-Chuan; Hwang, Shang-Jyh; Chen, Hung-Chun

    2011-01-01

    17α-hydroxylase/17, 20-lyase deficiency (17OHD) is an autosomal recessive disease causing congenital adrenal hyperplasia and a rare cause of hypertension with hypokalemia. The CYP17A1 gene mutation leads to 17OHD and its clinical features. We described an 18 y/o female with clinical features of 17α-hydroxylase/17, 20-lyase deficiency and characterized the functional consequences of an intronic CYP17A1 mutation. The coding regions and flanking intronic bases of the CYP17A1 gene were amplified by PCR and sequenced. The patient is a compound heterozygote for the previously described p.R358X and IVS1 +2T>C mutations. A first intron splice donor site mutation was re-created in minigene and full-length expression vectors. Pre-mRNA splicing of the variant CYP17A1 intron was studied in transfected cells and in a transformed lymphoblastoid cell line. When the full-length CYP17A1 gene and minigene containing the intronic mutation was expressed in transfected cells, the majority (>90%) of mRNA transcripts were incorrectly spliced. Only the p.R358X transcript was detected in the EBV-transformed lymphoblastoid cell line. The IVS1 +2T>C mutation abolished most 17α-hydroxylase/17, 20-lyase enzyme activity by aberrant mRNA splicing to an intronic pseudo-exon, causing a frame shift and early termination. PMID:21966534

  1. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  2. Homology Requirements for Double-Strand Break-Mediated Recombination in a Phage λ-Td Intron Model System

    PubMed Central

    Parker, M. M.; Court, D. A.; Preiter, K.; Belfort, M.

    1996-01-01

    Many group I introns encode endonucleases that promote intron homing by initiating a double-strand break-mediated homologous recombination event. A td intron-phage λ model system was developed to analyze exon homology effects on intron homing and determine the role of the λ 5'-3' exonuclease complex (Redαβ) in the repair event. Efficient intron homing depended on exon lengths in the 35- to 50-bp range, although homing levels remained significantly elevated above nonbreak-mediated recombination with as little as 10 bp of flanking homology. Although precise intron insertion was demonstrated with extremely limiting exon homology, the complete absence of one exon produced illegitimate events on the side of heterology. Interestingly, intron inheritance was unaffected by the presence of extensive heterology at the double-strand break in wild-type λ, provided that sufficient homology between donor and recipient was present distal to the heterologous sequences. However, these events involving heterologous ends were absolutely dependent on an intact Red exonuclease system. Together these results indicate that heterologous sequences can participate in double-strand break-mediated repair and imply that intron transposition to heteroallelic sites might occur at break sites within regions of limited or no homology. PMID:8807281

  3. DNA sequence analysis of a 5.27-kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria.

    PubMed Central

    Houchins, J P; Ginsburg, H; Rohrbaugh, M; Dale, R M; Schardl, C L; Hodge, T P; Lonsdale, D M

    1986-01-01

    The DNA sequence of the 5270-bp repeated DNA element from the mitochondrial genome of the fertile cytoplasm of maize has been determined. The repeat is a major site of recombination within the mitochondrial genome and sequences related to the R1(S1) and R2(S2) linear episomes reside immediately adjacent to the repeat. The terminal inverted repeats of the R1 and R2 homologous sequences form one of the two boundaries of the repeat. Frame-shift mutations have introduced 11 translation termination codons into the transcribed S2/R2 URFI gene. The repeated sequence, though recombinantly active, appears to serve no biological function. Images Fig. 7. PMID:3792299

  4. Module-intron correlation and intron sliding in family F/10 xylanase genes.

    PubMed

    Sato, Y; Niimura, Y; Yura, K; Go, M

    1999-09-30

    Xylanases are classified into two families, numbered F/10 and G/11 according to the similarity of amino acid sequences of their catalytic domain (Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788). Three-dimensional structure of the catalytic domain of the family F/10 xylanase was reported (White, A., Withers, S.G., Gilkes, N.R., Rose, D.R., 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546-12552). The domain was decomposed into 22 modules by centripetal profiles (Go, M., Nosaka, M., 1987. Protein architecture and the origin of introns. Cold Spring Harbor Symp. Quant. Biol. 52, 915-924; Noguti, T., Sakakibara, H., Go, M., 1993. Localization of hydrogen-bonds within modules in barnase. Proteins 16, 357-363). A module is a contiguous polypeptide segment of amino acid residues having a compact conformation within a globular domain. Collected 31 intron sites of the family F/10 xylanase genes from fungus were found to be correlated to module boundaries with considerable statistical force (p values <0.001). The relationship between the intron locations and protein structures provides supporting evidence for the ancient origin of introns, because such a relationship cannot be expected by random insertion of introns into eukaryotic genes, but it rather suggests pre-existence of introns in the ancestral genes of prokaryotes and eukaryotes. A phylogenetic tree of the fungal and bacterial xylanase sequences made two clusters; one includes both the bacterial and fungal genes, but the other consists of only fungal genes. The mixed cluster of bacterial genes without introns and the fungal genes with introns further supports the ancient origin of introns. Comparison of the conserved base sequences of introns indicates that sliding of a splice site occurred in Aspergillus kawachii gene by one base

  5. The complete sequence of the human CD79b (Ig{beta}/B29) gene: Identification of a conserved exon/intron organization, immunoglobulin-like regulatory regions, and allelic polymorphism

    SciTech Connect

    Hashimoto, S.; Chiorazzi, N.; Gregersen, P.K. |

    1994-12-31

    We determined the complete genomic sequence of the human CD79b (Ig{beta}/B29) gene. The CD79b gene product is associated with the membrane immunoglobulin signaling complex which is composed of immunoglobulin (Ig) itself, associated in a noncovalent fashion with CD79b and a second polypeptide chain, CD79a (Ig{alpha}/mb1). The sequence and exon/intron organization of the human and mouse CD79b genes are highly similar. The gene organization suggests that some variant forms of CD79b may arise by virtue of alternative splicing of mRNA. In addition, a number of conserved regulatory sequences commonly found in Ig genes are present in sequences which flank the human CD79b gene. Some of these sequences are distinct from those found in the CD79a promoter. These differences may explain why transcription of CD79b, but not CD79a, is observed in plasma cells. A new Taq 1 restriction fragment length polymorphism is described that is not associated with any structural polymorphisms of the expressed CD79b polypeptide. 13 refs., 3 figs., 1 tab.

  6. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae.

    PubMed

    Zumkeller, Simon Maria; Knoop, Volker; Knie, Nils

    2016-01-01

    Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues. PMID:27492234

  7. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae

    PubMed Central

    Zumkeller, Simon Maria; Knoop, Volker; Knie, Nils

    2016-01-01

    Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium. We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues. PMID:27492234

  8. Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas.

    PubMed Central

    Turmel, M; Mercier, J P; Côté, M J

    1993-01-01

    The polymerase chain reaction was used to identify novel IAI subgroup introns in cpDNA-enriched preparations from the interfertile green algae Chlamydomonas eugametos and Chlamydomonas moewusii. These experiments along with sequence analysis disclosed the presence, in both green algae, of a single IA1 intron in the psaB gene and of two group I introns (IA2 and IA1) in the psbC gene. In addition, two group I introns (IA1 and IB4) were found in the peptidyltransferase region of the mitochondrial large subunit rRNA gene at the same positions as previously reported Chlamydomonas chloroplast introns. The 188 bp segment preceding the first mitochondrial intron revealed extensive sequence similarity to the distantly spaced rRNA-coding modules L7 and L8 in the Chlamydomonas reinhardtii mitochondrial DNA, indicating that these two modules have undergone rearrangements in Chlamydomonas. The IA1 introns in psaB and psbC were found to be related in sequence to the first intron in the C. moewusii chloroplast psbA gene. The similarity between the former introns extends to the immediate 5' flanking exon sequence, suggesting that group I intron transposition occurred from one of the two genes to the other through reverse splicing. PMID:7504814

  9. Development of Rapidly Evolving Intron Markers to Estimate Multilocus Species Trees of Rodents

    PubMed Central

    Rodríguez-Prieto, Ana; Igea, Javier; Castresana, Jose

    2014-01-01

    One of the major challenges in the analysis of closely related species, speciation and phylogeography is the identification of variable sequence markers that allow the determination of genealogical relationships in multiple genomic regions using coalescent and species tree approaches. Rodent species represent nearly half of the mammalian diversity, but so far no systematic study has been carried out to detect suitable informative markers for this group. Here, we used a bioinformatic pipeline to extract intron sequences from rodent genomes available in databases and applied a series of filters that allowed the identification of 208 introns that adequately fulfilled several criteria for these studies. The main required characteristics of the introns were that they had the maximum possible mutation rates, that they were part of single-copy genes, that they had an appropriate sequence length for amplification, and that they were flanked by exons with suitable regions for primer design. In addition, in order to determine the validity of this approach, we chose ten of these introns for primer design and tested them in a panel of eleven rodent species belonging to different representative families. We show that all these introns can be amplified in the majority of species and that, overall, 79% of the amplifications worked with minimum optimization of the annealing temperature. In addition, we confirmed for a pair of sister species the relatively high level of sequence divergence of these introns. Therefore, we provide here a set of adequate intron markers that can be applied to different species of Rodentia for their use in studies that require significant sequence variability. PMID:24804779

  10. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes)

    PubMed Central

    Nyati, Shyam; Bhattacharya, Debashish; Werth, Silke; Honegger, Rosmarie

    2013-01-01

    We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. PMID:24415800

  11. Structural basis for exon recognition by a group II intron

    SciTech Connect

    Toor, Navtej; Rajashankar, Kanagalaghatta; Keating, Kevin S.; Pyle, Anna Marie

    2008-11-18

    Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-A crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns.

  12. Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries

    PubMed Central

    Ohno, K; Tsujino, A; Shen, X; Milone, M; Engel, A

    2005-01-01

    Background: Mutations in CHRNE, the gene encoding the muscle nicotinic acetylcholine receptor ε subunit, cause congenital myasthenic syndromes. Only three of the eight intronic splice site mutations of CHRNE reported to date have had their splicing consequences characterised. Methods: We analysed four previously reported and five novel splicing mutations in CHRNE by introducing the entire normal and mutant genomic CHRNEs into COS cells. Results and conclusions: We found that short introns (82–109 nucleotides) favour intron retention, whereas medium to long introns (306–1210 nucleotides) flanking either or both sides of an exon favour exon skipping. Two mutations are of particular interest. Firstly, a G→T substitution at the 3' end of exon 8 predicts an R286M missense mutation, but instead results in skipping of exon 8. In human genes, a mismatch of the last exonic nucleotide to U1 snRNP is frequently compensated by a matching nucleotide at intron position +6. CHRNE intron 8 has a mismatch at position +6, and accordingly fails to compensate for the exonic mutation at position –1. Secondly, a 16 bp duplication, giving rise to two 3' splice sites (g.IVS10-9_c.1167dup16), results in silencing of the downstream 3' splice site. This conforms to the scanning model of recognition of the 3' splice site, which predicts that the first "ag" occurring after the branch point is selected for splicing. PMID:16061559

  13. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes

    PubMed Central

    Petibon, Cyrielle; Parenteau, Julie; Catala, Mathieu; Elela, Sherif Abou

    2016-01-01

    Most budding yeast introns exist in the many duplicated ribosomal protein genes (RPGs) and it has been posited that they remain there to modulate the expression of RPGs and cell growth in response to stress. However, the mechanism by which introns regulate the expression of RPGs and their impact on the synthesis of ribosomal proteins remain unclear. In this study, we show that introns determine the ratio of ribosomal protein isoforms through asymmetric paralog-specific regulation of splicing. Exchanging the introns and 3′ untranslated regions of the duplicated RPS9 genes altered the splicing efficiency and changed the ratio of the ribosomal protein isoforms. Mutational analysis of the RPS9 genes indicated that splicing is regulated by variations in the intron structure and the 3′ untranslated region. Together these data suggest that preferential splicing of duplicated RPGs provides a means for adjusting the ratio of different ribosomal protein isoforms, while maintaining the overall expression level of each ribosomal protein. PMID:26945043

  14. In vivo labelling with halogenated pyrimidines of squamous cell carcinomas and adjacent non-involved mucosa of head and neck region.

    PubMed

    Kotelnikov, V M; Coon, J S; Taylor, S; Hutchinson, J; Panje, W; Caldarelli, D D; LaFollette, S; Preisler, H D

    1995-09-01

    The frequency and distribution of labelled cells were studied immunohistochemically in 37 squamous cell carcinomas (SCC) of head and neck after in vivo infusion of IdUrd and BrdUrd. Tumours were classified according to their labelling patterns. Low and moderate grade SCC consisted of tumour islands separated by interstitial tissue. In some tumours labelled cells only appeared near the basal layer while in others proliferative cells were evenly distributed within the neoplastic island. In anaplastic carcinomas labelled cells were distributed either randomly or around blood vessels (cord structures). While the basal layer in adjacent normal epithelium contained very few labelled cells (LI = 1.6 +/- 0.2%), the LI of basal cells in tumour islands were much higher than the average LI of the tumour (47.2 +/- 2.8% and 23.8 +/- 1.6%, respectively). In patients who had received cytotoxic therapy up to two months before the biopsy, the LI in the basal layer of normal epithelium was 19.0 +/- 3.5%. In sequential biopsies obtained 1-2 weeks after the infusion of IdUrd and BrdUrd some labelled tumour cells were found in necrotic foci and in pearl structures. Additionally, in six tumours, we found areas of cells labelled with IdUrd alone, even though the IdUrd infusion had been followed by a BrdUrd infusion 1 h later. This is in agreement with the phenomenon of intermittent tumour blood flow described earlier in experimental tumours. PMID:7578599

  15. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation

    PubMed Central

    Truong, David M.; Hewitt, F. Curtis; Hanson, Joseph H.; Cui, Xiaoxia; Lambowitz, Alan M.

    2015-01-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  16. Conceptual evaluation of regional ground-water flow in the carbonate-rock province of the Great Basin, Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Prudic, D.E.; Harrill, J.R.; Burbey, T.J.

    1993-01-01

    The regional groundwater flow system in the carbonate rocks of Nevada and Utah is conceptualized as shallow systems superimposed on deeper systems, which transmit water primarily through carbonate rocks. A computer model was used to simulate the two systems. The regional model includes simplifying assumptions that are probably valid for parts of the province; however, the validity of each assumption is unknown for the province as a whole. Therefore, simulation results do not perfectly replicate actual groundwater flow; instead they provide a conceptual evaluation of regional groundwater flow. The model was calibrated by adjusting transmissivity and vertical leakance until simulated water levels and simulated discharge generally agreed with known water levels, mapped areas of discharge, and estimates of discharge. Simulated flow is about 1.5 million acre-ft/yr. Most groundwater flow is simulated in the upper model layer where about 45 shallow flow regions were identified. In the lower layer, 17 deep-flow subregions were identified and grouped into 5 large regions on the basis of water-flow patterns. Simulated flow in this layer is about 28 percent of the total inflow and about half is discharged as springflow. Interbasin flow to several large springs is through thick, continuous, permeable carbonate rocks; elsewhere deep consolidated rocks are not highly transmissive, suggesting that carbonate rocks are not highly permeable everywhere or are not present everywhere. (USGS)

  17. Thyroid abnormality trend over time in northeastern regions of Kazakstan, adjacent to the Semipalatinsk nuclear test site: a case review of pathological findings for 7271 patients.

    PubMed

    Zhumadilov, Z; Gusev, B I; Takada, J; Hoshi, M; Kimura, A; Hayakawa, N; Takeichi, N

    2000-03-01

    From 1949 through 1989 nuclear weapons testing carried out by the former Soviet Union at the Semipalatinsk Nuclear Test Site (SNTS) resulted in local fallout affecting the residents of Semipalatinsk, Ust-Kamenogorsk and Pavlodar regions of Kazakstan. To investigate the possible relationship between radiation exposure and thyroid gland abnormalities, we conducted a case review of pathological findings of 7271 urban and rural patients who underwent surgery from 1966-96. Of the 7271 patients, 761 (10.5%) were men, and 6510 (89.5%) were women. The age of the patients varied from 15 to 90 years. Overall, a diagnosis of adenomatous goiter (most frequently multinodular) was found in 1683 patients (63.4%) of Semipalatinsk region, in 2032 patients (68.6%) of Ust-Kamenogorsk region and in 1142 patients (69.0%) of Pavlodar region. In the period 1982-96, as compared before, there was a noticeable increase in the number of cases of Hashimoto's thyroiditis and thyroid cancer. Among histological forms of thyroid cancer, papillary (48.1%) and follicular (33.1%) predominated in the Semipalatinsk region. In later periods (1987-96), an increased frequency of abnormal cases occurred among patients less than 40 years of age, with the highest proportion among patients below 20 in Semipalatinsk and Ust-Kamenogorsk regions of Kazakstan. Given the positive findings of a significant cancer-period interaction, and a significant trend for the proportion of cancer to increase over time, we recommend more detailed and etiologic studies of thyroid disease among populations exposed to radiation fallout from the SNTS in comparison to non-exposed population. PMID:10838808

  18. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident.

    PubMed

    Maderich, V; Bezhenar, R; Heling, R; de With, G; Jung, K T; Myoung, J G; Cho, Y-K; Qiao, F; Robertson, L

    2014-05-01

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945-2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011-2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from (137)Cs data for the period 1945-2010. Calculated concentrations of (137)Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y(-1) is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of (137)Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y(-1). Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a

  19. The 5'UTR Intron of Arabidopsis GGT1 Aminotransferase Enhances Promoter Activity by Recruiting RNA Polymerase II.

    PubMed

    Laxa, Miriam; Müller, Kristin; Lange, Natalie; Doering, Lennart; Pruscha, Jan Thomas; Peterhänsel, Christoph

    2016-09-01

    Photorespiration is essential for the detoxification of glycolate and recycling of carbon to the Calvin Benson Bassham cycle. Enzymes participating in the pathway have been identified, and investigations now focus on the regulation of photorespiration by transporters and metabolites. However, regulation of photorespiration on the gene level has not been intensively studied. Here, we show that maximum transcript abundance of Glu:glyoxylate aminotransferase 1 (GGT1) is regulated by intron-mediated enhancement (IME) of the 5' leader intron rather than by regulatory elements in the 5' upstream region. The intron is rich in CT-stretches and contains the motif TGTGATTTG that is highly similar to the IME-related motif TTNGATYTG. The GGT1 intron also confers leaf-specific expression of foreign promoters. Quantitative PCR analysis and GUS activity measurements revealed that IME of the GGT1 5'UTR intron is controlled on the transcriptional level. IME by the GGT1 5'UTR intron was at least 2-fold. Chromatin immunoprecipitation experiments showed that the abundance of RNA polymerase II binding to the intron-less construct is reduced. PMID:27418588

  20. Ancient nature of alternative splicing and functions of introns

    SciTech Connect

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  1. Characterization of Newly Gained Introns in Daphnia Populations

    PubMed Central

    Li, Wenli; Kuzoff, Robert; Wong, Chen Khuan; Tucker, Abraham; Lynch, Michael

    2014-01-01

    As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 105 and 1.45 × 104 years ago, with a spike in intron proliferation approximately 5.2 × 104 to 1.22 × 105 years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns. PMID:25123113

  2. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Wei, Wenbo; Ye, Gaofeng; Jin, Sheng; Jones, Alan G.; Jing, Jianen; Zhang, Letian; Xie, Chengliang; Zhang, Fan; Wang, Hui

    2014-06-01

    magnetotelluric (MT) data from project SINOPROBE were acquired and modeled, using three-dimensional (3D) MT inversion, to study the electrical structure of Ordos Block, a component of the North China Craton. For the first time, a high-resolution 3D resistivity model of the lithosphere is defined for the region. Contrary to what would be expected for a stable cratonic block, a prominent lithospheric conductive complex is revealed extending from the upper mantle to the mid-to-lower crust beneath the northern part of Ordos. Correlating well with results of seismic studies, the evidence from our independent magnetotelluric data supports regional modification of the lithosphere under the north Ordos and lithosphere thinning beneath Hetao Graben. The abnormally conductive structure may result from upwelling of mantle material in mid-to-late Mesozoic beneath the northern margin of the Ordos block.

  3. The 1987 estimate of undiscovered uranium endowment in solution-collapse breccia pipes in the Grand Canyon region of northern Arizona and adjacent Uta

    SciTech Connect

    Finch, W.I.; Sutphin, H.B.; Pierson, C.T.; McCammon, R.B.; Wenrich, K.J.

    1990-01-01

    This book is based on a new method published in U.S. Geological Survey Circular 994 and is the second assessment made in accordance with the 1984 Memorandum of Understanding between the U.S. Department of the Interior and the U.S. Department of Energy. The first estimate was published as U.S. Geological Survey Open-File Report 80-2. The endowment estimates are reported for 26 areas in the following 1{degrees} {times} 2{degrees} guadrangles: Grand Canyon, Marble Canyon, Williams, Flagstaff, Prescott, Holbrook, and St. Johns, Ariz., and Cedar City, Utah. The total uranium endowment is about eight times larger than reported in 1980 by the Department of Energy. The Grand Canyon region has the potential of becoming the second most important domestic uranium producer after the most production San Juan Basin uranium region in New Mexico.

  4. Integrating surface and mantle constraints for palaeo-ocean evolution: a tour of the Arctic and adjacent regions (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.

    2016-04-01

    Plate tectonic reconstructions heavily rely on absolute motions derived from hotspot trails or palaeomagnetic data and ocean-floor magnetic anomaies and fracture-zone geometries to constrain the detailed history of ocean basins. However, as oceanic lithosphere is progressively recycled into the mantle, kinematic data regarding the history of these now extinct-oceans is lost. In order to better understand their evolution, novel workflows, which integrate a wide range of complementary yet independent geological and geophysical datasets from both the surface and deep mantle, must be utilised. In particular, the emergence of time-dependent, semi or self-consistent geodynamic models of ever-increasing temporal and spatial resolution are revealing some critical constraints on the evolution and fate of oceanic slabs. The tectonic evolution of the circum-Arctic is no exception; since the breakup of Pangea, this enigmatic region has seen major plate reorganizations and the opening and closure of several ocean basins. At the surface, a myriad of potential kinematic scenarios including polarity, timing, geometry and location of subduction have emerged, including for systems along continental margins and intra-oceanic settings. Furthermore, recent work has reignited a debate about the origins of 'anchor' slabs, such as the Farallon and Mongol-Okhotsk slabs, which have been used to refine absolute plate motions. Moving to the mantle, seismic tomography models reveal a region peppered with inferred slabs, however assumptions about their affinities and subduction location, timing, geometry and polarity are often made in isolation. Here, by integrating regional plate reconstructions with insights from seismic tomography, satellite derived gravity gradients, slab sinking rates and geochemistry, I explore some Mesozoic examples from the palaeo-Arctic, northern Panthalassa and western margin of North America, including evidence for a discrete and previously undescribed slab under

  5. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  6. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM

    PubMed Central

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-01-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations. PMID:19773425

  7. Crystal structure of group II intron domain 1 reveals a template for RNA assembly.

    PubMed

    Zhao, Chen; Rajashankar, Kanagalaghatta R; Marcia, Marco; Pyle, Anna Marie

    2015-12-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  8. Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro.

    PubMed Central

    Chan, R C; Black, D L

    1995-01-01

    The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cells. In this study, we examined the sequence requirements for the exclusion of this exon in nonneuronal HeLa cell nuclear extracts. We found that the repression of the N1 exon is mediated by specific intron sequences that flank the N1 exon. Mutagenesis experiments identified conserved CUCUCU elements within these intron regions that are required for the repression of N1 splicing. The addition of an RNA competitor containing the upstream regulatory sequence to the HeLa extract induced splicing of the intron downstream of N1, indicating that the competitor sequence binds to splicing repressor proteins. The similarities between this mechanism for src splicing repression and the repression of other regulated exons point to a common role of exon-spanning interactions in splicing repression. PMID:7565790

  9. Climatic Factors Drive Population Divergence and Demography: Insights Based on the Phylogeography of a Riparian Plant Species Endemic to the Hengduan Mountains and Adjacent Regions

    PubMed Central

    Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang

    2015-01-01

    Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae

  10. The intronic minisatellite OsMin1 within a serine protease gene in the Chinese caterpillar fungus Ophiocordyceps sinensis.

    PubMed

    Zhang, Yong-Jie; Hou, Jun-Xiu; Zhang, Shu; Hausner, Georg; Liu, Xing-Zhong; Li, Wen-Jia

    2016-04-01

    Repetitive DNA sequences make up a significant portion of all genomes and may occur in intergenic, regulatory, coding, or even intronic regions. Partial sequences of a serine protease gene csp1 was previously used as a population genetic marker of the Chinese caterpillar fungus Ophiocordyceps sinensis, but its first intron region was excluded due to ambiguous alignment. Here in this study, we report the presence of a minisatellite OsMin1 within this intron, where a 20(19)-bp repeat motif is duplicated two to six times in different isolates. Fourteen intron alleles and 13 OsMin1 alleles were identified among 125 O. sinensis samples distributed broadly on the Tibetan Plateau. Two OsMin1 alleles were prevalent, corresponding to either two or five repeats of the core sequence motif. OsMin1 appears to be a single locus marker in the O. sinensis genome, but its origin is undetermined. Abundant recombination signals were detected between upstream and downstream flanking regions of OsMin1, suggesting that OsMin1 mutate by unequal crossing over. Geographic distribution, fungal phylogeny, and host insect phylogeny all significantly affected intron distribution patterns but with the greatest influence noted for fungal genotypes and the least for geography. As far as we know, OsMin1 is the first minisatellite found in O. sinensis and the second found in fungal introns. OsMin1 may be useful in designing an efficient protocol to discriminate authentic O. sinensis from counterfeits. PMID:26754819

  11. The Enhancer of Split Complex and Adjacent Genes in the 96f Region of Drosophila Melanogaster Are Required for Segregation of Neural and Epidermal Progenitor Cells

    PubMed Central

    Schrons, H.; Knust, E.; Campos-Ortega, J. A.

    1992-01-01

    The Enhancer of split complex [E(spl)-C] of Drosophila melanogaster is located in the 96F region of the third chromosome and comprises at least seven structurally related genes, HLH-mδ, HLH-mγ, HLH-mβ, HLH-m3, HLH-m5, HLH-m7 and E(spl). The functions of these genes are required during early neurogenesis to give neuroectodermal cells access to the epidermal pathway of development. Another gene in the 96F region, namely groucho, is also required for this process. However, groucho is not structurally related to, and appears to act independently of, the genes of the E(spl)-C; the possibility is discussed that groucho acts upstream to the E(spl)-C genes. Indirect evidence suggests that a neighboring transcription unit (m4) may also take part in the process. Of all these genes, only gro is essential; m4 is a dispensable gene, the deletion of which does not produce detectable morphogenetic abnormalities, and the genes of the E(spl)-C are to some extent redundant and can partially substitute for each other. This redundancy is probably due to the fact that the seven genes of the E(spl)-C encode highly conserved putative DNA-binding proteins of the bHLH family. The genes of the complex are interspersed among other genes which appear to be unrelated to the neuroepidermal lineage dichotomy. PMID:1427039

  12. The Promoter of a Lysosomal Membrane Transporter Gene, CTNS, Binds Sp-1, Shares Sequences with the Promoter of an Adjacent Gene, CARKL, and Causes Cystinosis If Mutated in a Critical Region

    PubMed Central

    Phornphutkul, Chanika; Anikster, Yair; Huizing, Marjan; Braun, Paula; Brodie, Chaya; Chou, Janice Y.; Gahl, William A.

    2001-01-01

    Although >55 CTNS mutations occur in patients with the lysosomal storage disorder cystinosis, no regulatory mutations have been reported, because the promoter has not been defined. Using CAT reporter constructs of sequences 5′ to the CTNS coding sequence, we identified the CTNS promoter as the region encompassing nucleotides −316 to +1 with respect to the transcription start site. This region contains an Sp-1 regulatory element (GGCGGCG) at positions −299 to −293, which binds authentic Sp-1, as shown by electrophoretic-mobility–shift assays. Three patients exhibited mutations in the CTNS promoter. One patient with nephropathic cystinosis carried a −295 G→C substitution disrupting the Sp-1 motif, whereas two patients with ocular cystinosis displayed a −303 G→T substitution in one case and a −303 T insertion in the other case. Each mutation drastically reduced CAT activity when inserted into a reporter construct. Moreover, each failed either to cause a mobility shift when exposed to nuclear extract or to compete with the normal oligonucleotide’s mobility shift. The CTNS promoter region shares 41 nucleotides with the promoter region of an adjacent gene of unknown function, CARKL, whose start site is 501 bp from the CTNS start site. However, the patients’ CTNS promoter mutations have no effect on CARKL promoter activity. These findings suggest that the CTNS promoter region should be examined in patients with cystinosis who have fewer than two coding-sequence mutations. PMID:11505338

  13. Mutation analysis in Duchenne and Becker muscular dystrophy patients from Bulgaria shows a peculiar distribution of breakpoints by intron

    SciTech Connect

    Todorova, A.; Bronzova, J.; Kremensky, I.

    1996-10-02

    For the first time in Bulgaria, a deletion/duplication screening was performed on a group of 84 unrelated Duchenne/Becker muscular dystrophy patients, and the breakpoint distribution in the dystrophin gene was analyzed. Intragenic deletions were detected in 67.8% of patients, and intragenic duplications in 2.4%. A peculiar distribution of deletion breakpoints was found. Only 13.2% of the deletion breakpoints fell in the {open_quotes}classical{close_quotes} hot spot in intron 44, whereas the majority (> 54%) were located within the segment encompassing introns 45-51, which includes intron 50, the richest in breakpoints (16%) in the Bulgarian sample. Comparison with data from Greece and Turkey points at the probable existence of a deletion hot spot within intron 50, which might be a characteristic of populations of the Balkan region. 17 refs., 2 figs.

  14. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  15. Distribution, risk assessment, and statistical source identification of heavy metals in aqueous system from three adjacent regions of the Yellow River.

    PubMed

    Ma, Xiaoling; Zuo, Hang; Liu, Jingjun; Liu, Ying

    2016-05-01

    Distribution of five heavy metals (Cr, Pb, Cd, Cu, and Zn) and some physicochemical variables were studied from ten sites (S1-S10) in filtered water, suspended particles, and sediment samples from Gansu Province, Ningxia, and Inner Mongolia Autonomous Regions of the Yellow River in Northern China. The results showed that heavy metal concentrations in filtered water were relatively lower, while they were higher and approximated in suspended particles and sediment samples. Metal chemical fractions showed that high proportions of Cd were found in the exchangeable fractions, while others likely to be existed in lithology. Heavy metal pollution index (HPI) indicated that the quality of filtered water was relatively better, and the potential ecological risk index (PERI) revealed that only Cd has the higher ecological risk in suspended particles and sediment samples, which is accordance with the results obtained by the chemical fractions analysis; at the same time, the higher ecological risks existed in S3, S6, S9, and S10 in suspended particles and sediment samples due to the waste emission of a variety of industries. Results of cluster analysis (CA) indicated that contamination sources in the sediment samples were from both natural processes and anthropogenic activities. PMID:26822214

  16. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  17. New deep ocean Iravadiidae of the genus Ceratia (Caenogastropoda: Truncatelloidea) from an underwater canyon and adjacent regions of
    the southwestern Atlantic (northeastern Brazil).

    PubMed

    Lima, Silvio Felipe B; Júnior, Ivan Cardoso L; Guimarães, Carmen Regina P; Dominguez, José Maria L

    2016-01-01

    Previous studies on the mollusks from Brazilian underwater canyons have addressed the record and description of new species of aplacophorans, bivalves, scaphopods and/or gastropods (Leal & Simone 2000; Absalão 2010; Corrêa et al. 2014). Leal & Simone (2000) described a new bathyal gastropod of the family Pseudococculinidae collected from the continental slope and Doce River Canyon (960 m) off the state of Espírito Santo (southeastern Brazil). Absalão (2010) reported a number of species of gastropods, bivalves and scaphopods from Campos Basin off the state of Rio de Janeiro (southeastern Brazil). It is likely that some of these species reported by Absalão (2010) were collected from underwater canyons in the northern portion of the Campos Basin. Corrêa et al. (2014) recorded two species of aplacophorans of the genus Falcidens Salvini-Plawen, 1968 obtained from the continental slope and underwater canyons of Campos Basin. Certainly more species of mollusks were studied from Brazilian underwater canyons, but not duly mentioned in publications (i.e., the region of canyons may have been referred to as the continental slope or deep sea). PMID:27395545

  18. Metagenomics of Water Column Microbes Near Brine Pool NR1 and adjacent regions of the Northern Gulf of Mexico Collected in Fall 2009

    NASA Astrophysics Data System (ADS)

    Wood, A. M.; Goodwin, K. D.; Brami, D.; Schwartz, A.; Toledo, G.

    2012-12-01

    High-throughput sequencing was applied to eight water column samples collected from the Gulf of Mexico in 2009 in regions SW and west of the 2010 Macondo oil spill. Samples were collected by Niskin-equipped CTD (~200 and ~650 m depths) at two locations, including a site over a methane brine pool (Brine Pool NR1). In addition, seawater was collected ~3m lateral of the pool (649m depth) via Niskin bottle equipped on the Johnson-Sea-Link submersible. Unassembled reads were submitted to the Synthetic Genomics bioinformatics pipeline for taxonomic analysis. The distribution of Bacteria (56-73%), Archae (7-16%), Eukaryotes (12-23%), and unclassified sequences (6-10%) were similar for all samples. However, certain taxonomic classifications were relatively more abundant in deeper samples, and differences were noted for samples collected by submersible. For example, Methylophaga was classified as 38% of the order Thiotrichales for the Niskin/submersible sample compared to 0% in the 200m-depth samples and 3-11% in the 650m samples. Methylophaga is a genus of indigenous methylotrophs reported to respond during the Deepwater Horizon event of 2010. In contrast, sequence abundance for Oceanospirillales, also reported to respond during the event, was similar for all samples (6-9% of the gamma-proteobacteria).

  19. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

    PubMed Central

    2010-01-01

    Background A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Results Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. Conclusions The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition. PMID:20704715

  20. Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield

    NASA Astrophysics Data System (ADS)

    Berthelsen, Asger; Marker, Mogens

    1986-06-01

    As preparation for the deep-seismic and other geophysical experiments along the Polar Profile, which transects the Granulite belt and the Kola collision suture, structural field work has been performed in northernmost Finland and Norway, and published geological information including data from the neighbouring Soviet territory of the Kola Peninsula, have been compiled and reinterpreted. Based on these studies and a classification according to crustal and structural ages, the northeastern region of the Baltic Shield is divided into six major tectonic units. These units are separated and outlined by important low-angle, ductile shear or thrust zones of Late Archaean to Early Proterozoic age. The lateral extension of these units into Soviet territory and their involvement in large-scale crustal deformation structures, are described. Using the "view down the plunge" method, a generalised tectonic cross-section that predicts the crustal structures along the Polar Profile is compiled, and the structures around the Kola deep drill-hole are reinterpreted. The Kola suture belt, through parts of which the Kola deep bore-hole has been drilled, is considered to represent a ca. 1900 Ma old arc-continent and continent-continent collision suture. It divides the northeastern Shield region into two major crustal compartments: a Northern compartment (comprising the Murmansk and Sörvaranger units) and a Southern compartment (including the Inari unit, the Granulite belt and the Tanaelv belt, as well as the more southernly situated South Lapland-Karelia "craton" of the Karelian province of the Svecokarelian fold belt). The Kola suture belt is outlined by a 2-40 km wide and ca. 500 km long crustal belt composed of (1) Early Proterozoic (ca. 2400-2000 Ma old) metavolcanic and metasedimentary sequences which originally formed part of the attenuated margin of the Northern Archaean compartment, and (2) the remains of a ca. 2000-1900 Ma old, predominantly andesitic island-arc terrain. This

  1. Intron-loss evolution of hatching enzyme genes in Teleostei

    PubMed Central

    2010-01-01

    Background Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution. Results We investigated the evolutionary pathway of intron-losses in hatching enzyme genes of 27 species of Teleostei. Hatching enzyme genes of basal teleosts are of only one type, which conserves the 9-exon-8-intron structure of an assumed ancestor. On the other hand, otocephalans and euteleosts possess two types of hatching enzyme genes, suggesting a gene duplication event in the common ancestor of otocephalans and euteleosts. The duplicated genes were classified into two clades, clades I and II, based on phylogenetic analysis. In otocephalans and euteleosts, clade I genes developed a phylogeny-specific structure, such as an 8-exon-7-intron, 5-exon-4-intron, 4-exon-3-intron or intron-less structure. In contrast to the clade I genes, the structures of clade II genes were relatively stable in their configuration, and were similar to that of the ancestral genes. Expression analyses revealed that hatching enzyme genes were high-expression genes, when compared to that of housekeeping genes. When expression levels were compared between clade I and II genes, clade I genes tends to be expressed more highly than clade II genes. Conclusions Hatching enzyme genes evolved to lose their introns, and the intron-loss events occurred at

  2. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae

    PubMed Central

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-01-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785

  3. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785

  4. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage.

    PubMed Central

    Sharma, M; Ellis, R L; Hinton, D M

    1992-01-01

    The bacteriophage T4 segA gene lies in a genetically unmapped region between the gene beta gt (beta-glucosyltransferase) and uvsX (recombination protein) and encodes a protein of 221 amino acids. We have found that the first 100 amino acids of the SegA protein are highly similar to the N termini of four other predicted T4 proteins, also of unknown function. Together these five proteins, SegA-E (similar to endonucleases of group I introns), contain regions of similarity to the endonuclease I-Tev I, which is encoded by the mobile group I intron of the T4 td gene, and to putative endonucleases of group I introns present in the mitochondria of Neurospora crassa, Podospora anserina, and Saccharomyces douglasii. Intron-encoded endonucleases are required for the movement (homing) of the intron DNA into an intronless gene, cutting at or near the site of intron insertion. Our in vitro assays indicate that SegA, like I-Tev I, is a Mg(2+)-dependent DNA endonuclease that has preferred sites for cutting. Unlike the I-Tev I gene, however, there is no evidence that segA (or the other seg genes) resides within introns. Thus, it is possible that segA encodes an endonuclease that is involved in the movement of the endonuclease-encoding DNA rather than in the homing of an intron. Images PMID:1631169

  5. Detained introns are a novel, widespread class of post-transcriptionally spliced introns

    PubMed Central

    Boutz, Paul L.; Bhutkar, Arjun

    2015-01-01

    Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. PMID:25561496

  6. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-01-01

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants. PMID:27618611

  7. Intronic polymorphisms of cytochromes P450

    PubMed Central

    2010-01-01

    The cytochrome P450 enzymes active in drug metabolism are highly polymorphic. Most allelic variants have been described for enzymes encoded by the cytochrome P450 family 2 (CYP2) gene family, which has 252 different alleles. The intronic polymorphisms in the cytochrome P450 genes account for only a small number of the important variant alleles; however, the most important ones are CYP2D6*4 and CYP2D6*41, which cause abolished and reduced CYP2D6 activity, respectively, and CYP3A5*3 and CYP3A5*5, common in Caucasian populations, which cause almost null activity. Their discoveries have been based on phenotypic alterations within individuals in a population, and their identification has, in several cases, been difficult and taken a long time. In light of the next-generation sequencing projects, it is anticipated that further alleles with intronic mutations will be identified that can explain the hitherto unidentified genetic basis of inter-individual differences in cytochrome P450-mediated drug and steroid metabolism. PMID:20846929

  8. Application of intron 9 and intron 25 dinucleotide repeats of the factor VIII gene for carrier diagnosis in haemophilia A.

    PubMed

    Venceslá, A; Baena, M; Fares Taie, L; Cornet, M; Baiget, M; Tizzano, E F

    2008-05-01

    We describe the usefulness of two dinucleotide repeats located in intron 9 and in intron 25 of the factor VIII gene for carrier diagnosis of haemophilia A. We analyzed 100 unrelated Spanish women and 34 women from haemophilia A (HA) families in whom known intragenic markers were unhelpful in determining their carrier status. The heterozygosity rate of intron 9 and intron 25 markers in the 100 control women was lower (0.28 and 0.38, respectively) than the values obtained with common markers routinely used in our laboratory. However, the application of intron 9 and intron 25 markers was effective in identifying the at-risk X chromosome in 11 of 34 (32%) of the uninformative women from HA families. The combined use of these repeats with current markers may facilitate the identification of the X chromosome in HA families for application in carrier, prenatal and pre-implantation diagnoses. PMID:18384354

  9. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    PubMed Central

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  10. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    PubMed

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  11. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication

    PubMed Central

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-01-01

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615

  12. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus.

    PubMed

    Xiao, Gang; Zhang, Zhen Qian; Yin, Chang Fa; Liu, Rui Yang; Wu, Xian Meng; Tan, Tai Long; Chen, She Yuan; Lu, Chang Ming; Guan, Chun Yun

    2014-07-15

    In the present study, we characterized the transcriptional regulatory region (KF038144) controlling the expression of a constitutive FAD2 in Brassica napus. There are multiple FAD2 gene copies in B. napus genome. The FAD2 gene characterized and analyzed in the study is located on chromosome A5 and was designated as BnFAD2A5-1. BnFAD2A5-1 harbors an intron (1,192 bp) within its 5'-untranslated region (5'-UTR). This intron demonstrated promoter activity. Deletion analysis of the BnFAD2A5-1 promoter and intron through the β-glucuronidase (GUS) reporter system revealed that the -220 to -1 bp is the minimum promoter region, while -220 to -110 bp and +34 to +285 bp are two important regions conferring high-levels of transcription. BnFAD2 transcripts were induced by light, low temperature, and abscisic acid (ABA). These observations demonstrated that not only the promoter but also the intron are involved in controlling the expression of the BnFAD2A5-1 gene. The intron-mediated regulation is an essential aspect of the gene expression regulation. PMID:24811682

  13. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells.

    PubMed

    Khateb, Mamduh; Fourier, Nitsan; Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion

    2016-01-01

    Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron's properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682

  14. Sequence variation of the tRNA(Leu) intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens.

    PubMed

    Paulsrud, P; Lindblad, P

    1998-01-01

    We examined the genetic diversity of Nostoc symbionts in some lichens by using the tRNA(Leu) (UAA) intron as a genetic marker. The nucleotide sequence was analyzed in the context of the secondary structure of the transcribed intron. Cyanobacterial tRNA(Leu) (UAA) introns were specifically amplified from freshly collected lichen samples without previous DNA extraction. The lichen species used in the present study were Nephroma arcticum, Peltigera aphthosa, P. membranacea, and P. canina. Introns with different sizes around 300 bp were consistently obtained. Multiple clones from single PCRs were screened by using their single-stranded conformational polymorphism pattern, and the nucleotide sequence was determined. No evidence for sample heterogenity was found. This implies that the symbiont in situ is not a diverse community of cyanobionts but, rather, one Nostoc strain. Furthermore, each lichen thallus contained only one intron type, indicating that each thallus is colonized only once or that there is a high degree of specificity. The same cyanobacterial intron sequence was also found in samples of one lichen species from different localities. In a phylogenetic analysis, the cyanobacterial lichen sequences grouped together with the sequences from two free-living Nostoc strains. The size differences in the intron were due to insertions and deletions in highly variable regions. The sequence data were used in discussions concerning specificity and biology of the lichen symbiosis. It is concluded that the tRNA(Leu) (UAA) intron can be of great value when examining cyanobacterial diversity. PMID:9435083

  15. The Peculiarities of Large Intron Splicing in Animals

    PubMed Central

    Fedorov, Alexei

    2009-01-01

    In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These “large introns” must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5′ and 3′ acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing—a consecutive splicing from the 5′-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs) that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites. PMID:19924226

  16. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA.

    PubMed Central

    Sirand-Pugnet, P; Durosay, P; Brody, E; Marie, J

    1995-01-01

    Computer analysis of human intron sequences have revealed a 50 nucleotide (nt) GC-rich region downstream of the 5' splice site; the trinucleotide GGG occurs almost four times as frequently as it would in a random sequence. The 5' part of a beta-tropomyosin intron exhibits six repetitions of the motif (A/U)GGG. In order to test whether these motifs play a role in the splicing process we have mutated some or all of them. Mutated RNAs show a lower in vitro splicing efficiency when compared with the wild-type, especially when all six motifs are mutated (> 70% inhibition). Assembly of the spliceosome complex B and, to a lesser extent, of the pre-spliceosome complex A also appears to be strongly affected by this mutation. A 55 kDa protein within HeLa cell nuclear extract is efficiently cross-linked to the G-rich region. This protein is present in the splicing complexes and its cross-linking to the pre-mRNA requires the presence of one or several snRNP. Altogether our results suggest that the G-rich sequences present in the 5' part of introns may act as an enhancer of the splicing reaction at the level of spliceosome assembly. Images PMID:7567462

  17. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  18. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species

    PubMed Central

    Kanzi, Aquillah Mumo; Wingfield, Brenda Diana; Steenkamp, Emma Theodora; Naidoo, Sanushka; van der Merwe, Nicolaas Albertus

    2016-01-01

    In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far. PMID:27272523

  19. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  20. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding

    PubMed Central

    Taberlet, Pierre; Coissac, Eric; Pompanon, François; Gielly, Ludovic; Miquel, Christian; Valentini, Alice; Vermat, Thierry; Corthier, Gérard; Brochmann, Christian; Willerslev, Eske

    2007-01-01

    DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254–767 bp) and of a shorter fragment of this intron (the P6 loop, 10–143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trnL intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies. PMID:17169982

  1. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  2. Mammalian Introns: When the Junk Generates Molecular Diversity

    PubMed Central

    Hubé, Florent; Francastel, Claire

    2015-01-01

    Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate. PMID:25710723

  3. The excess of 5' introns in eukaryotic genomes.

    PubMed

    Lin, Kui; Zhang, Da-Yong

    2005-01-01

    In this work, 21 completely sequenced eukaryotic genomes were analyzed using an intragene comparison approach. We found that all of these genomes show a significant 5'-biased distribution of introns of protein-coding genes. Our findings are different from previous studies based on the intergene method, where introns are biased towards the 5' end of genes only in intron-poor genomes, but are evenly distributed in intron-rich genomes. In addition, by analyzing the patterns of intron distribution of a set of well-compiled housekeeping genes from human and their respective orthologs identified by a bidirectional best BLAST hit method from the other genomes, we found that the trend of 5'-biased intron positions of the set of housekeeping genes for each genome is much more skewed than that of all genes of the same genome, and rarely if any of the housekeeping genes examined have an extremely 3'-biased position distribution in which all introns of a gene are located only at the 3' portion of the gene. The most parsimonious explanation for our findings may be the model in which intron loss is caused by homologous recombination between the genomic copy of a gene and a reverse transcriptase product of a spliced mRNA. PMID:16314314

  4. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  5. Intron conservation in the fragile X gene (FMR 1)

    SciTech Connect

    Panther, R.; Ostrowski, R.S.; Stoerker, J.

    1994-09-01

    The intron probe STB12.3 was used to search for conservation of the intron sequence corresponding to the PstI fragment located approximately 450 bp downstream of the end of the first exon of the fragile X (FMR 1) gene. Standard techniques for DNA extraction, isolation, restriction enzyme digestion, blotting and probing were employed. The probe STB12.3 that hybridizes to an intron sequence in the human MR 1 gene is 1.2 bp long. Our results demonstrated that the STB12.3 sequence is conserved across at least two Kindgoms. Specifically, we have observed cross-hybridization between STB12.3 and sequences in Drosophila, Apis and Saccharomyces. Hybridization was not observed in Triticum. Most surprising was our observation of intron hybridization in Drosophila since Annemieke et al. (1991) did not find FMR 1 exon conservation in Drosophila. Intron sequence conservation had been previously reported but only between closely related (same Order) species.

  6. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing.

    PubMed

    Lamech, Lilian T; Saoji, Maithili; Paukstelis, Paul J; Lambowitz, Alan M

    2016-05-27

    The mitochondrial tyrosyl-tRNA synthetases (mtTyrRSs) of Pezizomycotina fungi, a subphylum that includes many pathogenic species, are bifunctional proteins that both charge mitochondrial tRNA(Tyr) and act as splicing cofactors for autocatalytic group I introns. Previous studies showed that one of these proteins, Neurospora crassa CYT-18, binds group I introns by using both its N-terminal catalytic and C-terminal anticodon binding domains and that the catalytic domain uses a newly evolved group I intron binding surface that includes an N-terminal extension and two small insertions (insertions 1 and 2) with distinctive features not found in non-splicing mtTyrRSs. To explore how this RNA binding surface diverged to accommodate different group I introns in other Pezizomycotina fungi, we determined x-ray crystal structures of C-terminally truncated Aspergillus nidulans and Coccidioides posadasii mtTyrRSs. Comparisons with previous N. crassa CYT-18 structures and a structural model of the Aspergillus fumigatus mtTyrRS showed that the overall topology of the group I intron binding surface is conserved but with variations in key intron binding regions, particularly the Pezizomycotina-specific insertions. These insertions, which arose by expansion of flexible termini or internal loops, show greater variation in structure and amino acids potentially involved in group I intron binding than do neighboring protein core regions, which also function in intron binding but may be more constrained to preserve mtTyrRS activity. Our results suggest a structural basis for the intron specificity of different Pezizomycotina mtTyrRSs, highlight flexible terminal and loop regions as major sites for enzyme diversification, and identify targets for therapeutic intervention by disrupting an essential RNA-protein interaction in pathogenic fungi. PMID:27036943

  7. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  8. Identification of a large bent DNA domain and binding sites for serum response factor adjacent to the NFI repeat cluster and enhancer region in the major IE94 promoter from simian cytomegalovirus.

    PubMed Central

    Chang, Y N; Jeang, K T; Chiou, C J; Chan, Y J; Pizzorno, M; Hayward, G S

    1993-01-01

    The major immediate-early (MIE) transactivator proteins of cytomegaloviruses (CMV) play a pivotal role in the initiation of virus-host cell interactions. Therefore, cis- and trans-acting factors influencing the expression of these proteins through their upstream promoter-enhancer regions are important determinants of the outcome of virus infection. S1 nuclease analysis and in vitro transcription assays with the MIE (or IE94) transcription unit of simian CMV (SCMV) (Colburn) revealed a single prominent mRNA start site associated with a canonical TATATAA motif. This initiator region lies adjacent to a 2,400-bp 5'-upstream noncoding sequence that encompasses a newly identified 1,000-bp (A+T)-rich segment containing intrinsically bent DNA (domain C), together with the previously described proximal cyclic AMP response element locus (domain A) and a tandemly repeated nuclear factor I binding site cluster (domain B). Deleted MIE reporter gene constructions containing domain A sequences only yield up to 4-fold stronger basal expression in Vero cells than the intact simian virus 40 promoter-enhancer region, and sequences from position -405 to -69 (ENH-A1) added to a minimal heterologous promoter produced a 50-fold increase of basal expression in an enhancer assay. In contrast, neither the nuclear factor I cluster nor the bent DNA region possessed basal enhancer properties and neither significantly modulated the basal activity of the ENH-A1 segment. A second segment of domain A from position -580 to -450 was also found to possess basal enhancer activity in various cell types. This ENH-A2 region contains three copies of a repeated element that includes the 10-bp palindromic sequence CCATATATGG, which resembles the core motif of serum response elements and proved to bind specifically to the cellular nuclear protein serum response transcription factor. Reporter gene constructions containing four tandem copies of these elements displayed up to 13-fold increased basal enhancer

  9. Plant Spliceosomal Introns: Not Only Cut and Paste

    PubMed Central

    Morello, L; Breviario, D

    2008-01-01

    Spliceosomal introns in higher eukaryotes are present in a high percentage of protein coding genes and represent a high proportion of transcribed nuclear DNA. In the last fifteen years, a growing mass of data concerning functional roles carried out by such intervening sequences elevated them from a selfish burden carried over by the nucleus to important active regulatory elements. Introns mediate complex gene regulation via alternative splicing; they may act in cis as expression enhancers through IME (intron-mediated enhancement of gene expression) and in trans as negative regulators through the generation of intronic microRNA. Furthermore, some introns also contain promoter sequences for alternative transcripts. Nevertheless, such regulatory roles do not require long conserved sequences, so that introns are relatively free to evolve faster than exons: this feature makes them important tools for evolutionary studies and provides the basis for the development of DNA molecular markers for polymorphisms detection. A survey of introns functions in the plant kingdom is presented. PMID:19452040

  10. Reverse transcriptase activity of an intron encoded polypeptide.

    PubMed Central

    Fassbender, S; Brühl, K H; Ciriacy, M; Kück, U

    1994-01-01

    A number of group II introns from eukaryotic organelles and prokaryotes contain open reading frames for polypeptides with homology to retroviral reverse transcriptases (RTs). We have used the yeast transposon (Ty) system to express ORFs for RTs from eukaryotic organelles. This includes the mitochondrial coxI intron i1 from the fungus Podospora anserina, the plastid petD intron from the alga Scenedesmus obliquus and the mitochondrial RTL gene from the alga Chlamydomonas reinhardtii. The ORFs were fused with the TYA ORF from the yeast retrotransposon Ty to produce virus-like particles in the recipient strains with detectable amounts of the RT-like polypeptides. Analysis of the heterologous gene products revealed biochemical evidence that the P. anserina intron encodes an RNA-directed DNA polymerase with properties typically found for RTs of viral or retrotransposable origin. In vitro assays showed that the intron encoded RT is sensitive to RT inhibitors such as N-ethylmaleimide and dideoxythymidine triphosphate but is insensitive against the DNA polymerase inhibitor aphidicolin. The direct biochemical evidence provided here supports the idea that intron encoded RTs are involved in intron transposition events. Images PMID:7514530

  11. Circularization pathway of a bacterial group II intron.

    PubMed

    Monat, Caroline; Cousineau, Benoit

    2016-02-29

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3' splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  12. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  13. Intron-genome size relationship on a large evolutionary scale.

    PubMed

    Vinogradov, A E

    1999-09-01

    The intron-genome size relationship was studied across a wide evolutionary range (from slime mold and yeast to human and maize), as well as the relationship between genome size and the ratio of intervening/coding sequence size. The average intron size is scaled to genome size with a slope of about one-fourth for the log-transformed values; i.e., on the global scale its increase in evolution is lower than the increase in genome size by four orders of magnitude. There are exceptions to the general trend. In baker's yeast introns are extraordinarily long for its genome size. Tetrapods also have longer introns than expected for their genome sizes. In teleost fish the mean intron size does not differ significantly, notwithstanding the differences in genome size. In contrast to previous reports, avian introns were not found to be significantly shorter than introns of mammals, although avian genomes are smaller than genomes of mammals on average by about a factor of 2.5. The extra-/intragenic ratio of noncoding DNA can be higher in fungi than in animals, notwithstanding the smaller fungal genomes. In vertebrates and invertebrates taken separately, this ratio is increasing as the increase in genome size. Two hypotheses are proposed to explain the variation in the extra-/intragenic ratio of noncoding DNA in organisms with similar numbers of genes: transition (dynamic) and equilibrium (static). According to the transition model, this variation arises with the rapid shift of genome size because the bulk of extragenic DNA can be changed more rapidly than the finely interspersed intron sequences. The equilibrium model assumes that this variation is a result of selective adjustment of genome size with constraints imposed on the intron size due to its putative link to chromatin structure (and constraints of the splicing machinery). PMID:10473779

  14. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1.

    PubMed

    Hamdan, Hamdan; Kockara, Neriman T; Jolly, Lee Ann; Haun, Shirley; Wight, Patricia A

    2015-01-01

    Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin. PMID:25694552

  15. Genetic Network Programming with Intron-Like Nodes

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Chen, Yan; Eto, Shinji; Shimada, Kaoru; Hirasawa, Kotaro

    Recently, Genetic Network Programming (GNP) has been proposed, which is an extension of Genetic Algorithm(GA) and Genetic Programming(GP). GNP can make compact programs and can memorize the past history in it implicitly, because it expresses the solution by directed graphs and therefore, it can reuse the nodes. In this research, intron-like nodes are introduced for improving the performance of GNP. The aim of introducing intron-like nodes is to use every node as much as possible. It is found from simulations that the intron-like nodes are useful for improving the training speed and generalization ability.

  16. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells

    PubMed Central

    Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion

    2016-01-01

    Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682

  17. RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1

    PubMed Central

    Wang, Xingang; Duan, Cheng-Guo; Tang, Kai; Wang, Bangshing; Zhang, Huiming; Lei, Mingguang; Lu, Kun; Mangrauthia, Satendra K.; Wang, Pengcheng; Zhao, Yang; Zhu, Jian-Kang

    2013-01-01

    DNA methylation-dependent heterochromatin formation is a conserved mechanism of epigenetic silencing of transposons and other repeat elements in many higher eukaryotes. Genes adjacent to repetitive elements are often also subjected to this epigenetic silencing. Consequently, plants have evolved antisilencing mechanisms such as active DNA demethylation mediated by the REPRESSOR OF SILENCING 1 (ROS1) family of 5-methylcytosine DNA glycosylases to protect these genes from silencing. Some transposons and other repeat elements have found residence in the introns of genes. It is unclear how these intronic repeat elements-containing genes are regulated. We report here the identification of ANTI-SILENCING 1 (ASI1), a bromo-adjacent homology domain and RNA recognition motif-containing protein, from a forward genetic screen for cellular antisilencing factors in Arabidopsis thaliana. ASI1 is required to prevent promoter DNA hypermethylation and transcriptional silencing of some transgenes. Genome-wide DNA methylation analysis reveals that ASI1 has a similar role to that of the histone H3K9 demethylase INCREASE IN BONSAI METHYLATION 1 (IBM1) in preventing CHG methylation in the bodies of thousands of genes. We found that ASI1 is an RNA-binding protein and ensures the proper expression of IBM1 full-length transcript by associating with an intronic heterochromatic repeat element of IBM1. Through mRNA sequencing, we identified many genes containing intronic transposon elements that require ASI1 for proper expression. Our results suggest that ASI1 associates with intronic heterochromatin and binds the gene transcripts to promote their 3′ distal polyadenylation. The study thus reveals a unique mechanism by which higher eukaryotes deal with the collateral effect of silencing intronic repeat elements. PMID:24003136

  18. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells.

    PubMed Central

    Chapman, B S; Thayer, R M; Vincent, K A; Haigwood, N L

    1991-01-01

    A 2.4 kb fragment of hCMV (Towne strain), containing the 5' end of the major immediate-early gene, has been cloned, sequenced, and used to construct a series of mammalian cell expression plasmids. The effects of regulatory regions present on this fragment were assessed using human glycoproteins as reporter molecules. We compared secreted levels of Factor VIII, t-PA, and HIV-1 envelope glycoproteins in cells transfected with plasmids in which intron A of the immediate-early gene was present or absent. Secretion of several glycoproteins was significantly higher when cells were transfected with intron A-containing plasmids. Mutation of three basepairs in the strong nuclear factor 1 (NF1) binding site in intron A led to reduced transient expression levels, but not to the level observed in the absence of intron A. Reduced expression from NF1 mutant plasmids was roughly correlated with reduced binding in vitro of NF1 proteins to a synthetic oligonucleotide containing the mutation. The evidence indicates that sequences in intron A positively regulate expression from the hCMV immediate-early enhancer/promoter in transformed monkey kidney cells. Images PMID:1650459

  19. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities. PMID:26895044

  20. Group II Intron-Anchored Gene Deletion in Clostridium

    PubMed Central

    Jia, Kaizhi; Zhu, Yan; Zhang, Yanping; Li, Yin

    2011-01-01

    Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron “ClosTron” system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493–1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established. PMID:21304965

  1. Splicing of many human genes involves sites embedded within introns

    PubMed Central

    Kelly, Steven; Georgomanolis, Theodore; Zirkel, Anne; Diermeier, Sarah; O'Reilly, Dawn; Murphy, Shona; Längst, Gernot; Cook, Peter R.; Papantonis, Argyris

    2015-01-01

    The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3′ end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon–exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome. PMID:25897131

  2. Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism

    SciTech Connect

    Nielsen, D.A.; Goldman, D. ); Dean, M. )

    1992-12-01

    The identification of polymorphic alleles at loci coding for functional genes is crucial for genetic association and linkage studies. Since the tryptophan hydroxylase (TPH) gene codes for the rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, it would be advantageous to identify a polymorphism in this gene. By examining introns of the human TPH gene by PCR amplification and analysis by the single-strand conformation polymorphism (SSCP) technique, an SSCP was revealed with two alleles that occur with frequencies of .40 and .60 in unrelated Caucasians. DNAs from 24 informative CEPH families were typed for the TPH intron polymorphism and analyzed with respect to 10 linked markers on chromosome 11, between p13 and p15, with the result that TPH was placed between D11S151 and D11S134. This region contains loci for several important genes, including those for Beckwith-Wiedemann syndrome and tyrosine hydroxylase. 37 refs., 2 figs., 1 tab.

  3. Distributions of transposable elements reveal hazardous zones in mammalian introns.

    PubMed

    Zhang, Ying; Romanish, Mark T; Mager, Dixie L

    2011-05-01

    Comprising nearly half of the human and mouse genomes, transposable elements (TEs) are found within most genes. Although the vast majority of TEs in introns are fixed in the species and presumably exert no significant effects on the enclosing gene, some markedly perturb transcription and result in disease or a mutated phenotype. Factors determining the likelihood that an intronic TE will affect transcription are not clear. In this study, we examined intronic TE distributions in both human and mouse and found several factors that likely contribute to whether a particular TE can influence gene transcription. Specifically, we observed that TEs near exons are greatly underrepresented compared to random distributions, but the size of these "underrepresentation zones" differs between TE classes. Compared to elsewhere in introns, TEs within these zones are shorter on average and show stronger orientation biases. Moreover, TEs in extremely close proximity (<20 bp) to exons show a strong bias to be near splice-donor sites. Interestingly, disease-causing intronic TE insertions show the opposite distributional trends, and by examining expressed sequence tag (EST) databases, we found that the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher within their underrepresentation zones. In addition, an analysis of predicted splice sites within human long terminal repeat (LTR) elements showed a significantly lower total number and weaker strength for intronic LTRs near exons. Based on these factors, we selectively examined a list of polymorphic mouse LTR elements in introns and showed clear evidence of transcriptional disruption by LTR element insertions in the Trpc6 and Kcnh6 genes. Taken together, these studies lend insight into the potential selective forces that have shaped intronic TE distributions and enable identification of TEs most likely to exert transcriptional effects on genes. PMID:21573203

  4. Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates.

    PubMed

    Yim, Jae-Joon; Adams, Amelia A; Kim, Ju Han; Holland, Steven M

    2006-09-01

    Nonhuman primates express varying responses to Mycobacterium tuberculosis: New World monkeys appear to be resistant to tuberculosis (TB) while Old World monkeys seem to be particularly susceptible. The aim of this study was to elucidate the presence of the regulatory guanine-thymine (GT) repeat polymorphisms in intron 2 of Toll-like receptor 2 (TLR2) associated with the development of TB in humans and to determine any variations in these microsatellite polymorphisms in primates. We sequenced the region encompassing the regulatory GT repeat microsatellites in intron 2 of TLR2 in 12 different nonhuman primates using polymerase chain reaction amplification, TA cloning, and automatic sequencing. The nonhuman primates included for this study were as follows: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), Celebes ape (Macaca nigra), rhesus monkey (Macaca mulatta), pigtail macaque (Macaca nemestrina), patas monkey (Erythrocebus patas), spider monkey (Ateles geoffroyi), Woolly monkey (Lagothrix lagotricha), tamarin (Saguinus labiatus), and ring-tailed lemur (Lemur catta). Nucleotide sequences encompassing the regulatory GT repeat region are similar across species and are completely conserved in great apes. However, Old World monkeys lack GT repeats altogether, while New World monkeys and ring-tailed lemurs have much more complex structures around the position of the repeats. In conclusion, the genetic structures encompassing the regulatory GT repeats in intron 2 of human TLR2 are similar among nonhuman primates. The sequence is most conserved in New World monkeys and less in Old World monkeys. PMID:16912902

  5. In vivo recognition of a vertebrate mini-exon as an exon-intron-exon unit.

    PubMed Central

    Sterner, D A; Berget, S M

    1993-01-01

    Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron. Images PMID:7682652

  6. Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments.

    PubMed Central

    Goguel, V; Delahodde, A; Jacq, C

    1992-01-01

    The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase

  7. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  8. Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing

    PubMed Central

    Childs, Jessica L.; Disney, Matthew D.; Turner, Douglas H.

    2002-01-01

    RNA is becoming an important therapeutic target. Many potential RNA targets require secondary or tertiary structure for function. Examples include ribosomal RNAs, RNase P RNAs, mRNAs with untranslated regions that regulate translation, and group I and group II introns. Here, a method is described to inhibit RNA function by exploiting the propensity of RNA to adopt multiple folded states that are of similar free energy. This method, called oligonucleotide directed misfolding of RNA (ODMiR), uses short oligonucleotides to stabilize inactive structures. The ODMiR method is demonstrated with the group I intron from Candida albicans, a human pathogen. The oligonucleotides, L(TACCTTTC) and TLCTLACLGALCGLGCLC, with L denoting a locked nucleic acid residue, inhibit 50% of group I intron splicing in a transcription mixture at about 150 and 30 nM oligonucleotide concentration, respectively. Both oligonucleotides induce misfolds as determined by native gel electrophoresis and diethyl pyrocarbonate modification. The ODMiR approach provides a potential therapeutic strategy applicable to RNAs with secondary or tertiary structures required for function. PMID:12169671

  9. Ancient intron insertion sites and palindromic genomic duplication evolutionally shapes an elementally functioning membrane protein family

    PubMed Central

    Tanaka-Kunishima, Motoko; Ishida, Yoshihiro; Takahashi, Kunitaro; Honda, Motoo; Oonuma, Takashi

    2007-01-01

    Background In spite of the recent accumulation of genomic data, the evolutionary pathway in the individual genes of present-day living taxa is still elusive for most genes. Among ion channels, inward K+ rectifier (IRK) channels are the fundamental and well-defined protein group. We analyzed the genomic structures of this group and compared them among a phylogenetically wide range with our sequenced Halocynthia roretzi, a tunicate, IRK genomic genes. Results A total of 131 IRK genomic genes were analyzed. The phylogenic trees of amino acid sequences revealed a clear diversification of deuterostomic IRKs from protostomic IRKs and suggested that the tunicate IRKs are possibly representatives of the descendants of ancestor forms of three major groups of IRKs in the vertebrate. However, the exon-intron structures of the tunicate IRK genomes showed considerable similarities to those of Caenorhabditis. In the vertebrate clade, the members in each major group increased at least four times those in the tunicate by various types of global gene duplication. The generation of some major groups was inferred to be due to anti-tandem (palindromic) duplication in early history. The intron insertion points greatly decreased during the evolution of the vertebrates, remaining as a unique conservation of an intron insertion site in the portion of protein-protein interaction within the coding regions of all vertebrate G-protein-activated IRK genes. Conclusion From the genomic survey of a family of IRK genes, it was suggested that the ancient intron insertion sites and the unique palindromic genomic duplication evolutionally shaped this membrane protein family. PMID:17708769

  10. Transcriptional regulation of human ferredoxin reductase through an intronic enhancer in steroidogenic cells.

    PubMed

    Imamichi, Yoshitaka; Mizutani, Tetsuya; Ju, Yunfeng; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Yazawa, Takashi; Miyamoto, Kaoru

    2014-01-01

    Ferredoxin reductase (FDXR, also known as adrenodoxin reductase) is a mitochondrial flavoprotein that transfers electrons from NADPH to mitochondrial cytochrome P450 enzymes, mediating the function of an iron-sulfur cluster protein, ferredoxin. FDXR functions in various metabolic processes including steroidogenesis. It is well known that multiple steroidogenic enzymes are regulated by a transcription factor steroidogenic factor-1 (SF-1, also known as Ad4BP). Previously, we have shown that SF-1 transduction causes human mesenchymal stem cell differentiation into steroidogenic cells. Genome-wide analysis of differentiated cells, using a combination of DNA microarray and promoter tiling array analyses, showed that FDXR is a novel SF-1 target gene. In this study, the transcriptional regulatory mechanism of FDXR was examined in steroidogenic cells. A chromatin immunoprecipitation assay revealed that a novel SF-1 binding region was located within intron 2 of the human FDXR gene. Luciferase reporter assays showed that FDXR transcription was activated through the novel SF-1 binding site within intron 2. Endogenous SF-1 knockdown in human adrenocortical H295R and KGN cells decreased FDXR expression. In H295R cells, strong binding of two histone markers of active enhancers, histones H3K27ac and H3K4me2, were detected near the SF-1 binding site within intron 2. Furthermore, the binding of these histone markers was decreased concurrent with SF-1 knockdown in H295R cells. These results indicated that abundant FDXR expression in these steroidogenic cells was maintained through SF-1 binding to the intronic enhancer of the FDXR gene. PMID:24321386

  11. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  12. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications.

    PubMed Central

    Bell-Pedersen, D; Quirk, S; Clyman, J; Belfort, M

    1990-01-01

    Although mobility of the phylogenetically widespread group I introns appears to be mechanistically similar, the phage T4 intron-encoded endonucleases that promote mobility of the td and sunY introns are different from their eukaryotic counterparts. Most notably, they cleave at a distance from the intron insertion sites. The td enzyme was shown to cleave 23-26 nt 5' and the sunY endonuclease 13-15 nt 3' to the intron insertion site to generate 3-nt or 2-nt 3'-OH extensions, respectively. The absolute coconversion of exon markers between the distant cleavage and insertion sites is consistent with the double-strand-break repair model for intron mobility. As a further critical test of the model we have demonstrated that the mobility event is independent of DNA sequences that encode the catalytic intron core structure. Thus, in derivatives in which the lacZ or kanR coding sequences replace the intron, these marker genes are efficiently inserted into intron-minus alleles when the cognate endonuclease is provided in trans. The process is therefore endonuclease-dependent, rather than dependent on the intron per se. These findings, which imply that the endonucleases rather than the introns themselves were the primordial mobile elements, are incorporated into a model for the evolution of mobile introns. Images PMID:2165250

  13. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    PubMed

    Nisa-Martínez, Rafael; Molina-Sánchez, María Dolores; Toro, Nicolás

    2016-01-01

    Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns. PMID:27588750

  14. Tertiary architecture of the Oceanobacillus iheyensis group II intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Fedorova, Olga; Rajashankar, Kanagalaghatta; Wang, Jimin; Pyle, Anna Marie

    2010-05-03

    Group II introns are large ribozymes that act as self-splicing and retrotransposable RNA molecules. They are of great interest because of their potential evolutionary relationship to the eukaryotic spliceosome, their continued influence on the organization of many genomes in bacteria and eukaryotes, and their potential utility as tools for gene therapy and biotechnology. One of the most interesting features of group II introns is their relative lack of nucleobase conservation and covariation, which has long suggested that group II intron structures are stabilized by numerous unusual tertiary interactions and backbone-mediated contacts. Here, we provide a detailed description of the tertiary interaction networks within the Oceanobacillus iheyensis group IIC intron, for which a crystal structure was recently solved to 3.1 {angstrom} resolution. The structure can be described as a set of several intricately constructed tertiary interaction nodes, each of which contains a core of extended stacking networks and elaborate motifs. Many of these nodes are surrounded by a web of ribose zippers, which appear to further stabilize local structure. As predicted from biochemical and genetic studies, the group II intron provides a wealth of new information on strategies for RNA folding and tertiary structural organization.

  15. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences.

    PubMed

    Cervera, Isabel; Herraiz, Miguel Angel; Peñaloza, Jorge; Barbolla, Maria Luz; Jurado, Maria Luisa; Macedo, Jacqueline; Vidart, José Antonio; Martinez-Laso, Jorge

    2010-11-01

    Human leukocyte antigen (HLA)-G alleles follow a different pattern of polymorphism generation from those of the HLA classical I alleles. These polymorphisms have been defined as a result of random permitted point mutations in exons. However, this polymorphism maintenance could have an evolutionary specific pathways based on noncoding regions as introns, 14-bp deletion/insertion (exon 8), or promoter regions. Therefore a systematic sequencing study of HLA-G alleles was done obtaining the complete genomic sequence of 16 different HLA-G alleles: nine alleles were intron and exon confirmatory sequences, four were exon confirmatory and new intron described sequences, and three were new alleles. A 14-bp deletion/insertion polymorphism was also sequenced in these alleles. These sequences, together with those previously published, were compared, and phylogenetic and molecular evolutionary analyses were performed. Results showed the presence of three major specific evolutionary patterns, tentatively named lineages, and the other four as minor lineages (only one allele). The relative age of the major lineages could also be established based on the number of lineage-specific positions and the number of alleles of each lineage. Two main mechanisms are clearly defined in the generation of the lineages (introns), gene conversion, and/or convergent evolution following specific patterns. PMID:20650296

  16. Brain-specific genes have identifier sequences in their introns.

    PubMed Central

    Milner, R J; Bloom, F E; Lai, C; Lerner, R A; Sutcliffe, J G

    1984-01-01

    The 82-nucleotide identifier (ID) sequence is present in the rat genome in 1-1.5 X 10(5) copies and in cDNA clones of precursors of brain-specific mRNAs. One brain-specific gene contains more than one ID sequence in its introns. There is an excess of ID sequences to brain genes, and some ID sequences appear to have been inserted as mobile elements into other genetic locations. Therefore, brain genes contain ID sequences in their introns, but not all ID sequences are located in brain gene introns. A brain ID consensus sequence has been obtained by comparing 8 ID nucleotide sequences. Images PMID:6583673

  17. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms. PMID:26194054

  18. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy

    PubMed Central

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido

    2015-01-01

    Purpose To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Methods Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. Results The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron–exon junction, we observed a homozygous 10 bp deletion between positions −26 and −17 (c.2281–26_-17del). The deletion was linked to a known SNP, c.2281–6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281–26_-17del leads to

  19. Interaction between adjacent lightning discharges in clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Zhang, Guangshu; Zhang, Tong; Li, Yajun; Wu, Bin; Zhang, Tinglong

    2013-07-01

    Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.

  20. Regulatory elements in the first intron contribute to transcriptional control of the human. cap alpha. 1(I) collagen gene

    SciTech Connect

    Bornstein, P.; McKay, J.; Morishima, J.K.; Devarayalu, S.; Gelinas, R.E.

    1987-12-01

    Several lines of evidence have suggested that the regulation of type I collagen gene transcription is complex and that important regulatory elements reside 5' to, and within, the first intron of the ..cap alpha..1(I) gene. The authors therefore sequenced a 2.3-kilobase HindIII fragment that encompasses 804 base pairs of 5' flanking sequence, the first exon, and most of the first intron of the ..cap alpha..1(I) human collagen gene. A 274-base-pair intronic sequence, flanked by Ava I sites (A274), contained a sequence identical to a high-affinity decanucleotide binding site for transcription factor Sp1 and a viral core enhancer sequence. DNase I protection experiments indicated zones of protection that corresponded to these motifs. When A274 was cloned 5' to the chloramphenicol acetyltransferase (CAT) gene, driven by an ..cap alpha..1(I) collagen promoter sequence, and expression was assessed by transfection, significant orientation-specific inhibition of CAT activity was observed. This effect was most apparent in chicken tendon fibroblasts, which modulate their level of collagen synthesis in culture. They propose that normal regulation of ..cap alpha..1(I) collagen gene transcription results from an interplay of positive and negative elements present in the promoter region and within the first intron.

  1. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  2. Frequent Gain and Loss of Introns in Fungal Cytochrome b Genes

    PubMed Central

    Yin, Liang-Fen; Hu, Meng-Jun; Wang, Fei; Kuang, Hanhui; Zhang, Yu; Schnabel, Guido; Li, Guo-Qing; Luo, Chao-Xi

    2012-01-01

    In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms. PMID:23145081

  3. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  4. Intron retention-dependent gene regulation in Cryptococcus neoformans.

    PubMed

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  5. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae).

    PubMed

    Gu, Cuihua; Tembrock, Luke R; Johnson, Nels G; Simmons, Mark P; Wu, Zhiqiang

    2016-01-01

    Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701

  6. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae)

    PubMed Central

    Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang

    2016-01-01

    Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701

  7. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator?

    PubMed

    Paredes, Ursula M; Bubb, Vivien J; Haddley, Kate; Macho, Gabriele A; Quinn, John P

    2012-06-01

    The serotonin transporter gene (SLC6A4) is heavily involved in the regulation of social behaviour of primates. Old World monkeys (e.g. macaques, baboons) have been used to study interactions between variation in the SLC6A4 gene and behaviour. Correlations of variation at one polymorphism located in the promoter region (known as 5HTTLPR) and variation at SLC6A4 expression levels, serotonin turnover and behaviour has been widely studied. In Old World monkeys, the third intron of the SLC6A4 gene also presents a tandem repeat, which sequence varies across species by a few point substitutions. We predict that in these species, this repeated region also acts as transcriptional regulatory domain and that sequence variation at this polymorphic locus might result in differential levels of expression in gene-environment interactions. For testing these hypotheses, the tandem repeat of Mandrillus sphinx and Cercopithecus aethiops from the third intron were cloned into a reporter gene vector and delivered to either primary cultures of rat neonate frontal cortex or the human cell line (JAr) to analyse their transcriptional activities. These repeated sequences supported significantly different levels of gene expression only when delivered into frontal cortex cultures. Furthermore, we tested in silico if such substitutions could have an effect on their binding profile to RNA- and DNA-binding proteins and on splicing. Taken together our results suggest that the tandem repeat in the third intron of the SLC6A4 gene of Old World monkeys could constitute a second transcriptional regulator as suggested for the 5HTTLPR and therefore contribute to diversification of serotonin-related behaviour in these primates. PMID:22038691

  8. Intron V, not intron I of human thrombopoietin, improves expression in the milk of transgenic mice regulated by goat beta-casein promoter.

    PubMed

    Li, Yan; Hao, Hu; Zhou, Mingqian; Zhou, Hongwei; Ye, Jianbin; Ning, Lijun; Ning, Yunshan

    2015-01-01

    Introns near 5' end of genes generally enhance gene expression because of an enhancer /a promoter within their sequence or as intron-mediated enhancement. Surprisingly, our previous experiments found that the vector containing the last intron (intron V) of human thromobopoietin (hTPO) expressed higher hTPO in cos-1 cell than the vector containing intron I regulated by cytomegalovirus promoter. Moreover, regulated by 1.0 kb rat whey acidic protein promoter, hTPO expression was higher in transgenic mice generated by intron V-TPOcDNA than in transgenic mice generated by TPOcDNA and TPOgDNA. However, it is unknown whether the enhancement of hTPO expression by intron I is decreased by uAUG7 at 5'-UTR of hTPO in vivo. Currently, we constructed vectors regulated by stronger 6.5 kb β-casein promoter, including pTPOGA (containing TPOcDNA), pTPOGB (containing TUR-TPOcDNA, TUR including exon1, intron I and non-coding exon2 of hTPO gene), pTPOGC (containing ΔTUR-TPOcDNA, nucleotides of TUR from uAUG7 to physiological AUG were deleted), pTPOGD (containing intron V-TPOcDNA) and pTPOGE (containing TPOgDNA), to evaluate the effect of intron I on hTPO expression and to further verify whether intron V enhances hTPO expression in the milk of transgenic mice. The results demonstrated that intron V, not intron I improved hTPO expression. PMID:26527459

  9. Intron V, not intron I of human thrombopoietin, improves expression in the milk of transgenic mice regulated by goat beta-casein promoter

    PubMed Central

    Li, Yan; Hao, Hu; Zhou, Mingqian; Zhou, Hongwei; Ye, Jianbin; Ning, Lijun; Ning, Yunshan

    2015-01-01

    Introns near 5′ end of genes generally enhance gene expression because of an enhancer /a promoter within their sequence or as intron-mediated enhancement. Surprisingly, our previous experiments found that the vector containing the last intron (intron V) of human thromobopoietin (hTPO) expressed higher hTPO in cos-1 cell than the vector containing intron I regulated by cytomegalovirus promoter. Moreover, regulated by 1.0 kb rat whey acidic protein promoter, hTPO expression was higher in transgenic mice generated by intron V-TPOcDNA than in transgenic mice generated by TPOcDNA and TPOgDNA. However, it is unknown whether the enhancement of hTPO expression by intron I is decreased by uAUG7 at 5′-UTR of hTPO in vivo. Currently, we constructed vectors regulated by stronger 6.5kb β-casein promoter, including pTPOGA (containing TPOcDNA), pTPOGB (containing TUR-TPOcDNA, TUR including exon1, intron I and non-coding exon2 of hTPO gene), pTPOGC (containing ΔTUR-TPOcDNA, nucleotides of TUR from uAUG7 to physiological AUG were deleted), pTPOGD (containing intron V-TPOcDNA) and pTPOGE (containing TPOgDNA), to evaluate the effect of intron I on hTPO expression and to further verify whether intron V enhances hTPO expression in the milk of transgenic mice. The results demonstrated that intron V, not intron I improved hTPO expression. PMID:26527459

  10. Structure and expression of the human Lysyl hydroxylase gene (PLOD): Introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients

    SciTech Connect

    Heikkinen, J.; Hautala, T.; Kivirikko, K.I.

    1994-12-01

    Lysyl hydroxylase (EC 1.14.11.4) catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. This enzyme activity is known to be reduced in patients with the type VI variant of the Ehlers-Danlos syndrome, and the first mutations in the lysyl hydroxylase gene (PLOD) have recently been identified. We have now isolated genomic clones for human lysyl hydroxylase and determined the complete structure of the gene, which contains 19 exons and a 5{prime} flanking region with characteristics shared by housekeeping genes. The constitutive expression of the gene in different tissues further suggests that lysyl hydroxylase has an essential function. We have sequenced the introns of the gene in the region where many mutations and rearrangements analyzed to date are concentrated. Intron 9 and intron 16 show extensive homology resulting from the many Alu sequences found in these introns. Intron 9 contains five and intron 16 eight Alu sequences. The high homology and many short identical or complementary sequences in these introns generate many potential recombination sites with the gene. The delineation of the structure of the lysyl hydroxylase gene contributes significantly to our understanding of the rearrangements in the genome of Ehlers-Danlos type VI patients. 21 refs., 2 figs., 2 tabs.

  11. Characterization of rbcL group IA introns from two colonial volvocalean species (Chlorophyceae).

    PubMed

    Nozaki, H; Ohta, N; Yamada, T; Takano, H

    1998-05-01

    Group I introns were reported for the first time in the large subunit of Rubisco (rbcL) genes, using two colonial green algae, Pleodorina californica and Gonium multicoccum (Volvocales). The rbcL gene of P. californica contained an intron (PIC intron) of 1320 bp harboring an open reading frame (ORF). The G. multicoccum rbcL gene had two ORF-lacking introns of 549 (GM1 intron) and 295 (GM2 intron) base pairs. Based on the conserved nucleotide sequences of the secondary structure, the PIC and GM1 introns were assigned to group IA2 whereas the GM2 intron belonged to group IA1. Southern hybridization analyses of nuclear and chloroplast DNAs indicated that such intron-containing rbcL genes are located in the chloroplast genome. Sequencing RNAs from the two algae revealed that these introns are spliced out during mRNA maturation. In addition, the PIC and GM1 introns were inserted in the same position of the rbcL exons, and phylogenetic analysis of group IA introns indicated a close phylogenetic relationship between the PIC and GM1 introns within the lineage of bacteriophage group IA2 introns. However, P. californica and G. multicoccum occupy distinct clades in the phylogenetic trees of the colonial Volvocales, and the majority of other colonial volvocalean species do not have such introns in the rbcL genes. Therefore, these introns might have been recently inserted in the rbcL genes independently by horizontal transmission by viruses or bacteriophage. PMID:9620266

  12. Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the Eastern coast of South America

    PubMed Central

    2008-01-01

    Background Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG

  13. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae.

    PubMed Central

    Spingola, M; Grate, L; Haussler, D; Ares, M

    1999-01-01

    Introns have typically been discovered in an ad hoc fashion: introns are found as a gene is characterized for other reasons. As complete eukaryotic genome sequences become available, better methods for predicting RNA processing signals in raw sequence will be necessary in order to discover genes and predict their expression. Here we present a catalog of 228 yeast introns, arrived at through a combination of bioinformatic and molecular analysis. Introns annotated in the Saccharomyces Genome Database (SGD) were evaluated, questionable introns were removed after failing a test for splicing in vivo, and known introns absent from the SGD annotation were added. A novel branchpoint sequence, AAUUAAC, was identified within an annotated intron that lacks a six-of-seven match to the highly conserved branchpoint consensus UACUAAC. Analysis of the database corroborates many conclusions about pre-mRNA substrate requirements for splicing derived from experimental studies, but indicates that splicing in yeast may not be as rigidly determined by splice-site conservation as had previously been thought. Using this database and a molecular technique that directly displays the lariat intron products of spliced transcripts (intron display), we suggest that the current set of 228 introns is still not complete, and that additional intron-containing genes remain to be discovered in yeast. The database can be accessed at http://www.cse.ucsc.edu/research/compbi o/yeast_introns.html. PMID:10024174

  14. Association of Intron Loss with High Mutation Rate in Arabidopsis: Implications for Genome Size Evolution

    PubMed Central

    Yang, Yu-Fei; Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    Despite the prevalence of intron losses during eukaryotic evolution, the selective forces acting on them have not been extensively explored. Arabidopsis thaliana lost half of its genome and experienced an elevated rate of intron loss after diverging from A. lyrata. The selective force for genome reduction was suggested to have driven the intron loss. However, the evolutionary mechanism of genome reduction is still a matter of debate. In this study, we found that intron-lost genes have high synonymous substitution rates. Assuming that differences in mutability among different introns are conserved among closely related species, we used the nucleotide substitution rate between orthologous introns in other species as the proxy of the mutation rate of Arabidopsis introns, either lost or extant. The lost introns were found to have higher mutation rates than extant introns. At the genome-wide level, A. thaliana has a higher mutation rate than A. lyrata, which correlates with the higher rate of intron loss and rapid genome reduction of A. thaliana. Our results indicate that selection to minimize mutational hazards might be the selective force for intron loss, and possibly also for genome reduction, in the evolution of A. thaliana. Small genome size and lower genome-wide intron density were widely reported to be correlated with phenotypic features, such as high metabolic rates and rapid growth. We argue that the mutational-hazard hypothesis is compatible with these correlations, by suggesting that selection for rapid growth might indirectly increase mutational hazards. PMID:23516254

  15. Autocatalytic activities of intron 5 of the cob gene of yeast mitochondria.

    PubMed Central

    Partono, S; Lewin, A S

    1988-01-01

    The terminal intron of the mitochondrial cob gene of Saccharomyces cerevisiae can undergo autocatalytic splicing in vitro. Efficient splicing of this intron required a high concentration of monovalent ion (1 M). We found that at a high salt concentration this intron was very active and performed many of the reactions described for other group I introns. The rate of the splicing reaction was dependent on the choice of the monovalent ion; the reaction intermediate, the intron-3' exon molecule, accumulated in NH4Cl but not in KCl. In addition, the intron was more reactive in KCl, accumulating in two different circular forms: one cyclized at the 5' intron boundary and the other at 236 nucleotides from the 5' end. These circular forms were able to undergo the opening and recyclization reactions previously described for the Tetrahymena rRNA intron. Cleavage of the 5' exon-intron boundary by the addition of GTP did not require the 3' terminus of the intron and the downstream exon. An anomalous guanosine addition at the 3' exon and at the middle of the intron was also detected. Hence, this intron, which requires a functional protein to splice in vivo, demonstrated a full spectrum of characteristic reactions in the absence of proteins. Images PMID:3043183

  16. The procollagen type III, alpha 1 (COL3A1) gene first intron expresses poly-A+ RNA corresponding to multiple ESTs and putative miRNAs.

    PubMed

    Sterling, Kenneth M

    2011-02-01

    The mouse COL3A1 first intron is 9684 bp. RNA's of approximately 1.6 and 3.0 kb were detected by Northern hybridization analysis of poly-A RNA from fetal mice and total RNA from suckling and adult mouse intestine using (32)P-labeled, anti-sense RNA synthesized from a mouse COL3A1 first intron, 5 prime region, 5.4 kb Xba I fragment (1655-7030 bp), recombinant plasmid (pPI5.4x). Expression of the 1.6 and 3.0 kb RNA's was significantly reduced in adult mouse intestine, indicating that these RNAs are developmentally regulated. "BLAST" analysis indicated that the mouse first intron 5 prime sequence has 94-100% identity to 13 mouse ESTs. These mouse first intron EST's lie within the 5.4 Xba I fragment of the mouse COL3A1 first intron. Two of the mouse first intron EST's have significant identity to known miRNA, mature sequences, mmu-miR-466f-3P, mmu-miR-1187, and mmu-miR-574-5P as well as others. Predicted targets for mmu-miR-466f-3P include COL1A1, COL19A1, COL11A2, COL4A1, and COL4A5 indicating that COL3A1 intronic miRNAs may regulate the expression of other collagen genes in development. PMID:21268075

  17. Three alpha-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization.

    PubMed

    Wirsel, S; Lachmund, A; Wildhardt, G; Ruttkowski, E

    1989-01-01

    We have cloned three genes (amy1, amy2 and amy3) encoding alpha-amylase in the filamentous fungus Aspergillus oryzae. The established overall sequences have a very high degree of homology, showing divergences mainly in the 3'-untranslated regions. The positions and the sequences of the eight introns were found to be absolutely identical in the three genes. The sequence analysis of the 5'-regions revealed presumptive TATA, CAAT and GC boxes. Primer extension analysis was performed to determine the transcription start. We were able to detect mRNAs from amy1 and amy3 but not from amy2 with gene-specific oligonucleotide probes complementary to the 3'-noncoding regions. PMID:2785629

  18. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  19. An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture

    PubMed Central

    Murgiano, Leonardo; Waluk, Dominik P.; Towers, Rachel; Wiedemar, Natalie; Dietrich, Joëlle; Jagannathan, Vidhya; Drögemüller, Michaela; Balmer, Pierre; Druet, Tom; Galichet, Arnaud; Penedo, M. Cecilia; Müller, Eliane J.; Roosje, Petra; Welle, Monika M.; Leeb, Tosso

    2016-01-01

    We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses. PMID:27449517

  20. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene.

    PubMed

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J; Palvimo, Jorma J; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  1. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    PubMed Central

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  2. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  3. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  4. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  5. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  6. Molecular disorganization of axons adjacent to human lacunar infarcts

    PubMed Central

    Lee, Monica D.; Tung, Spencer; Vinters, Harry V.; Carmichael, S. Thomas

    2015-01-01

    Cerebral microvascular disease predominantly affects brain white matter and deep grey matter, resulting in ischaemic damage that ranges from lacunar infarcts to white matter hyperintensities seen on magnetic resonance imaging. These lesions are common and result in both clinical stroke syndromes and accumulate over time, resulting in cognitive deficits and dementia. Magnetic resonance imaging studies suggest that these lesions progress over time, accumulate adjacent to prior lesions and have a penumbral region susceptible to further injury. The pathological correlates of this adjacent injury in surviving myelinated axons have not been previously defined. In this study, we sought to determine the molecular organization of axons in tissue adjacent to lacunar infarcts and in the regions surrounding microinfarcts, by determining critical elements in axonal function: the morphology and length of node of Ranvier segments and adjacent paranodal segments. We examined post-mortem brain tissue from six patients with lacunar infarcts and tissue from two patients with autosomal dominant retinal vasculopathy and cerebral leukoencephalopathy (previously known as hereditary endotheliopathy with retinopathy, nephropathy and stroke) who accumulate progressive white matter ischaemic lesions in the form of lacunar and microinfarcts. In axons adjacent to lacunar infarcts yet extending up to 150% of the infarct diameter away, both nodal and paranodal length increase by ∼20% and 80%, respectively, reflecting a loss of normal cell-cell adhesion and signalling between axons and oligodendrocytes. Using premorbid magnetic resonance images, brain regions from patients with retinal vasculopathy and cerebral leukoencephalopathy that harboured periventricular white matter hyperintensities were selected and the molecular organization of axons was determined within these regions. As in regions adjacent to lacunar infarcts, nodal and paranodal length in white matter of these patients is

  7. Split-Intron Retroviral Vectors: Enhanced Expression with Improved Safety

    PubMed Central

    Ismail, Said I.; Kingsman, Susan M.; Kingsman, Alan J.; Uden, Mark

    2000-01-01

    The inclusion of retrovirus-derived introns within retrovirus-based expression vectors leads to a fraction of the resulting transcripts being spliced. Such splicing has been shown to markedly improve expression (W. J. Krall et al., Gene Ther. 3:37–48, 1996). One way to improve upon this still further might involve the use of more efficient introns instead of those from the provirus. Currently, however, incorporation of such introns remains self-defeating since they are removed in the nucleus of the producer cell. In the past, elaborate ways to overcome this problem have included the use of alphaviruses to make the vector transcripts within the cytoplasm, thus avoiding the nuclear splicing machinery during vector production (K. J. Li and H. Garoff, Proc. Natl. Acad. Sci. USA 95:3650–3654, 1998). We now present a novel design for the inclusion of introns within a retroviral vector. In essence, this is achieved by exploiting the retroviral replication process to copy not only the U3 promoter but also a synthetic splice donor to the 5′-long-terminal-repeat position during reverse transcription. Once copied, synthesized transcripts then contain a splice donor at their 5′ end capable of interacting with a consensus splice acceptor engineered downstream of the packaging signal. Upon transduction, we demonstrate these vectors to produce enhanced expression from near fully spliced (and thus packaging signal minus) transcripts. The unique design of these high titer and high-expression retroviral vectors may be of use in a number of gene therapy applications. PMID:10666267

  8. Split-intron retroviral vectors: enhanced expression with improved safety.

    PubMed

    Ismail, S I; Kingsman, S M; Kingsman, A J; Uden, M

    2000-03-01

    The inclusion of retrovirus-derived introns within retrovirus-based expression vectors leads to a fraction of the resulting transcripts being spliced. Such splicing has been shown to markedly improve expression (W. J. Krall et al., Gene Ther. 3:37-48, 1996). One way to improve upon this still further might involve the use of more efficient introns instead of those from the provirus. Currently, however, incorporation of such introns remains self-defeating since they are removed in the nucleus of the producer cell. In the past, elaborate ways to overcome this problem have included the use of alphaviruses to make the vector transcripts within the cytoplasm, thus avoiding the nuclear splicing machinery during vector production (K. J. Li and H. Garoff, Proc. Natl. Acad. Sci. USA 95:3650-3654, 1998). We now present a novel design for the inclusion of introns within a retroviral vector. In essence, this is achieved by exploiting the retroviral replication process to copy not only the U3 promoter but also a synthetic splice donor to the 5'-long-terminal-repeat position during reverse transcription. Once copied, synthesized transcripts then contain a splice donor at their 5' end capable of interacting with a consensus splice acceptor engineered downstream of the packaging signal. Upon transduction, we demonstrate these vectors to produce enhanced expression from near fully spliced (and thus packaging signal minus) transcripts. The unique design of these high titer and high-expression retroviral vectors may be of use in a number of gene therapy applications. PMID:10666267

  9. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    PubMed

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-01-01

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. PMID:27435795

  10. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria. PMID:26970277

  11. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome

    PubMed Central

    Cuenca, Argelia; Ross, T. Gregory; Graham, Sean W.; Barrett, Craig F.; Davis, Jerrold I.; Seberg, Ole; Petersen, Gitte

    2016-01-01

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. PMID:27435795

  12. 2mit, an Intronic Gene of Drosophila melanogaster timeless2, Is Involved in Behavioral Plasticity

    PubMed Central

    Benna, Clara; Leonardi, Emanuela; Romoli, Ottavia; Cognolato, Moira; Tosatto, Silvio C. E.; Costa, Rodolfo; Sandrelli, Federica

    2013-01-01

    Background Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogaster timeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11th tim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. In silico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, in silico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2

  13. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    SciTech Connect

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  14. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans

    PubMed Central

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J.

    2016-01-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  15. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans.

    PubMed

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J

    2016-02-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  16. In vitro genetic analysis of the structural features of the pre-tRNA required for determination of the 3' splice site in the intron excision reaction.

    PubMed Central

    Bufardeci, E; Fabbri, S; Baldi, M I; Mattoccia, E; Tocchini-Valentini, G P

    1993-01-01

    During processing of intron-containing pre-tRNAs, the Xenopus laevis splicing endonuclease binds the precursor and cleaves it at both the 5' and 3' splice sites. In vitro selection was used to determine structural features characteristic of precursor tRNA molecules that are active in this reaction. We performed two types of selection, one for molecules that are not cut, the other for molecules that are cut at only one site. The results shed light on various aspects of the intron excision reaction, including the importance of the three-dimensional structure of the mature domain for recognition and binding of the enzyme, the active role played by the single-stranded region of the intron, and the importance of the cardinal positions which, although not necessarily occupied by the same base in all precursors, nevertheless play a fundamental role in the splicing reaction. A precursor can be cut at the 3' site if a base in the single-stranded loop of the intron is allowed to pair (A-I pair) with the base of the 5' exon situated at the position immediately following the anticodon stem [first cardinal position (CP1)]. The nature of the bases involved in the A-I pair is important, as is the position of the base in the single-stranded loop of the intron. We discuss the role of the cardinal positions in the reaction. Images PMID:8223479

  17. Mobile group II intron targeting: applications in prokaryotes and perspectives in eukaryotes.

    PubMed

    Cui, Xiaoxia; Davis, Greg

    2007-01-01

    Mobile group II introns are ribozymes and use a novel mechanism--target DNA-primed reverse transcription--to proliferate in DNA. Group II introns are a unique mobile element for their high sequence-specific, yet readily flexible target site recognition. Both the intron RNA and the intron-encoded protein (IEP) are involved in target site recognition, and the specificity is determined primarily by base pairing between the intron RNA and DNA target. Therefore, the intron RNA can be modified according to the desired target sequence for specific gene disruption. Group II intron knockout technology is mature in bacteria and is currently being developed in eukaryotes. This technology has great potential to revolutionize fields such as functional genomics, gene therapy, and cell line engineering. PMID:17569624

  18. Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum.

    PubMed Central

    Muscarella, D E; Ellison, E L; Ruoff, B M; Vogt, V M

    1990-01-01

    A novel and only recently recognized class of enzymes is composed of the site-specific endonucleases encoded by some group I introns. We have characterized several aspects of I-Ppo, the endonuclease that mediates the mobility of intron 3 in the ribosomal DNA of Physarum polycephalum. This intron is unique among mobile group I introns in that it is located in nuclear DNA. We found that I-Ppo is encoded by an open reading frame in the 5' half of intron 3, upstream of the sequences required for self-splicing of group I introns. Either of two AUG initiation codons could start this reading frame, one near the beginning of the intron and the other in the upstream exon, leading to predicted polypeptides of 138 and 160 amino acid residues. The longer polypeptide was the major form translated in vitro in a reticulocyte extract. From nuclease assays of proteins synthesized in vitro with partially deleted DNAs, we conclude that both polypeptides possess endonuclease activity. We also have expressed I-Ppo in Escherichia coli, using a bacteriophage T7 RNA polymerase expression system. The longer polypeptide also was the predominant form made in this system. It showed enzymatic activity in bacteria in vivo, as demonstrated by the cleavage of a plasmid carrying the target site. Like several other intron-encoded endonucleases, I-Ppo makes a four-base staggered cut in its ribosomal DNA target sequence, very near the site where intron 3 becomes integrated in crosses of intron 3-containing and intron 3-lacking Physarum strains. Images PMID:2355911

  19. Conservation of the positions of metazoan introns from sponges to humans.

    PubMed

    Müller, Werner E G; Böhm, Markus; Grebenjuk, Vladislav A; Skorokhod, Alexander; Müller, Isabel M; Gamulin, Vera

    2002-08-01

    Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula, genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Introns interrupt most of the conserved kinase subdomains I-XI and are found in all three phases (0, 1 and 2). We analyzed in details p38 and JNK genes from human, Caenorhabditis elegans and Drosophila melanogaster and found in most genes introns at the positions identical to those in sponge genes. The exceptions are two p38 genes from D. melanogaster that have lost all introns in the coding sequence. The positions of 11 introns in each of four human p38 genes are fully conserved and ten introns occupy identical positions as the introns in sponge p38 or JNK genes. The same is true for nine, out of ten introns in the human JNK-1 gene. The introns in human p38 and JNK genes are on average more than ten times longer than corresponding introns in sponges. It was proposed that yeast HOG1-like kinases (from i.e. Saccharomyces cerevisiae and Emericella nidulans) and metazoan p38 and JNK kinases are orthologues. p38 and JNK genes were created after the split from fungi by the duplication and diversification of the HOG1-like progenitor gene. Our results further support the common origin of p38 and JNK genes and speak in favor of a very early time of duplication. The ancestral gene contained at least ten introns, which are still present at the very conserved positions in p38 and JNK genes of extant

  20. A composite regulatory element in the first intron of the estrogen-responsive very low density apolipoprotein II gene.

    PubMed

    Shuler, F D; Chu, W W; Wang, S; Evans, M I

    1998-08-01

    During periods of egg laying in the chicken, when circulating levels of estrogen are increased, the liver-specific estrogen-dependent very low density apolipoprotein II (apoVLDLII) gene is expressed. This expression takes place primarily at the level of transcription, driven by two estrogen response elements that reside in the promoter. In transient transfection assays, expression is increased fourfold when the first intron is added to the promoter construct, indicating that 75% of the regulation comes from intron A. Using in vitro DNase I footprinting, six protein-binding sites were revealed throughout the first intron. The functional significance of these binding sites was evaluated by mutation and transient transfection. Two of the protein-binding regions were shown to increase transcription. Site-specific mutations introduced at either the +66 to +86 or +112 to +129 sites disrupted trans-factor binding and reduced the estrogen-dependent expression by 45% and 34%, respectively. A plasmid containing both mutations resulted in a 43% decrease in expression, indicating that the contributions of these regions are not additive. Competition with known sequences in electrophoretic mobility shift assays suggested that the +66 to +86 site binds a chicken member of the nuclear receptor transcription factor family. PMID:9726251

  1. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA

    PubMed Central

    Devany, Emral; Park, Ji Yeon; Murphy, Michael R; Zakusilo, George; Baquero, Jorge; Zhang, Xiaokan; Hoque, Mainul; Tian, Bin; Kleiman, Frida E

    2016-01-01

    The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis. PMID:27462460

  2. An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of vif mRNA

    PubMed Central

    Widera, Marek; Erkelenz, Steffen; Hillebrand, Frank; Krikoni, Aikaterini; Widera, Darius; Kaisers, Wolfgang; Deenen, René; Gombert, Michael; Dellen, Rafael; Pfeiffer, Tanya; Kaltschmidt, Barbara; Münk, Carsten; Bosch, Valerie; Köhrer, Karl

    2013-01-01

    Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3′ splice site (3′ss) A1 but lack splicing at 5′ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3′ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3′ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5′ss D2. Here we show that an intronic G run (GI2-1) represses the use of a second 5′ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of GI2-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here. PMID:23255806

  3. The thermodynamic patterns of eukaryotic genes suggest a mechanism for intron-exon recognition.

    PubMed

    Nedelcheva-Veleva, Marina N; Sarov, Mihail; Yanakiev, Ivan; Mihailovska, Eva; Ivanov, Miroslav P; Panova, Greta C; Stoynov, Stoyno S

    2013-01-01

    The essential cis- and trans-acting elements required for RNA splicing have been defined, however, the detailed molecular mechanisms underlying intron-exon recognition are still unclear. Here we demonstrate that the ratio between stability of mRNA/DNA and DNA/DNA duplexes near 3'-spice sites is a characteristic feature that can contribute to intron-exon differentiation. Remarkably, throughout all transcripts, the most unstable mRNA/DNA duplexes, compared with the corresponding DNA/DNA duplexes, are situated upstream of the 3'-splice sites and include the polypyrimidine tracts. This characteristic instability is less pronounced in weak alternative splice sites and disease-associated cryptic 3'-splice sites. Our results suggest that this thermodynamic pattern can prevent the re-annealing of mRNA to the DNA template behind the RNA polymerase to ensure access of the splicing machinery to the polypyrimidine tract and the branch point. In support of this mechanism, we demonstrate that RNA/DNA duplex formation at this region prevents pre-spliceosome A complex assembly. PMID:23817463

  4. Regulatory single nucleotide polymorphisms at the beginning of intron 2 of the human KRAS gene.

    PubMed

    Antontseva, Elena V; Matveeva, Marina Yu; Bondar, Natalia P; Kashina, Elena V; Leberfarb, Elena Yu; Bryzgalov, Leonid O; Gervas, Polina A; Ponomareva, Anastasia A; Cherdyntseva, Nadezhda V; Orlov, Yury L; Merkulova, Tatiana I

    2015-12-01

    There are two regulatory single nucleotide polymorphisms (rSNPs) at the beginning of the second intron of the mouse K-ras gene that are strongly associated with lung cancer susceptibility. We performed functional analysis of three SNPs (rs12228277: T greater than A, rs12226937: G greater than A, and rs61761074: T greater than G) located in the same region of human KRAS. We found that rs12228277 and rs61761074 result in differential binding patterns of lung nuclear proteins to oligonucleotide probes corresponding two alternative alleles; in both cases, the transcription factor NF-Y is involved. G greater than A substitution (rs12226937) had no effect on the binding of lung nuclear proteins. However, all the nucleotide substitutions under study showed functional effects in a luciferase reporter assay. Among them, rs61761074 demonstrated a significant correlation with allele frequency in non-small-cell lung cancer (NSCLC). Taken together, the results of our study suggest that a T greater than G substitution at nucleotide position 615 in the second intron of the KRAS gene (rs61761074) may represent a promising genetic marker of NSCLC. PMID:26648033

  5. Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations

    PubMed Central

    Richards, Allan J; McNinch, Annie; Whittaker, Joanne; Treacy, Becky; Oakhill, Kim; Poulson, Arabella; Snead, Martin P

    2012-01-01

    UK NHS diagnostic service sequence analysis of genes generally examines and reports on variations within a designated region 5′ and 3′ of each exon, typically 30 bp up and downstream. However, because of the degenerate nature of the splice sites, intronic variants outside the AG and GT dinucleotides of the acceptor and donor splice sites (ASS and DSS) are most often classified as being of unknown clinical significance, unless there is some functional evidence of their pathogenicity. It is now becoming clear that mutations deep within introns can also interfere with normal processing of pre-mRNA and result in pathogenic effects on the mature transcript. In diagnostic laboratories, these deep intronic variants most often fall outside of the regions analysed and so are rarely reported. With the likelihood that next generation sequencing will identify more of these unclassified variants, it will become important to perform additional studies to determine the pathogenicity of such sequence anomalies. Here, we analyse variants detected in either COL2A1 or COL11A1 in patients with Stickler syndrome. These have been analysed both in silico and functionally using either RNA isolated from the patient's cells or, more commonly, minigenes as splicing reporters. We show that deep intronic mutations are not a rare occurrence, including one variant that results in multiple transcripts, where both de novo donor and ASS are created by the mutation. Another variant produces transcripts that result in either haploinsufficiency or a dominant negative effect, potentially modifying the disease phenotype. PMID:22189268

  6. The Evolution of Intron Size in Amniotes: A Role for Powered Flight?

    PubMed Central

    Zhang, Qu; Edwards, Scott V.

    2012-01-01

    Intronic DNA is a major component of eukaryotic genes and genomes and can be subject to selective constraint and have functions in gene regulation. Intron size is of particular interest given that it is thought to be the target of a variety of evolutionary forces and has been suggested to be linked ultimately to various phenotypic traits, such as powered flight. Using whole-genome analyses and comparative approaches that account for phylogenetic nonindependence, we examined interspecific variation in intron size variation in three data sets encompassing from 12 to 30 amniotes genomes and allowing for different levels of genome coverage. In addition to confirming that intron size is negatively associated with intron position and correlates with genome size, we found that on average mammals have longer introns than birds and nonavian reptiles, a trend that is correlated with the proliferation of repetitive elements in mammals. Two independent comparisons between flying and nonflying sister groups both showed a reduction of intron size in volant species, supporting an association between powered flight, or possibly the high metabolic rates associated with flight, and reduced intron/genome size. Small intron size in volant lineages is less easily explained as a neutral consequence of large effective population size. In conclusion, we found that the evolution of intron size in amniotes appears to be non-neutral, is correlated with genome size, and is likely influenced by powered flight and associated high metabolic rates. PMID:22930760

  7. Structural and Functional Characterization of Ribosomal Protein Gene Introns in Sponges

    PubMed Central

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with “higher” metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales. PMID:22880015

  8. Structural and functional characterization of ribosomal protein gene introns in sponges.

    PubMed

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales. PMID:22880015

  9. Identification and Validation of Evolutionarily Conserved Unusually Short Pre-mRNA Introns in the Human Genome

    PubMed Central

    Shimada, Makoto K.; Sasaki-Haraguchi, Noriko; Mayeda, Akila

    2015-01-01

    According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere. By conducting BLAST searches of the databases, we screened 22 introns (37–65 nt) with conserved lengths and sequences among closely related species. We then provide experimental and bioinformatic evidence for the splicing of 15 introns, of which 12 introns were remarkably G-rich and 9 introns contained completely inefficient splice sites and/or branch sites. These unorthodox characteristics of ultra-short introns suggest that there are unknown splicing mechanisms that differ from the well-established mechanism. PMID:25961948

  10. Identification and Validation of Evolutionarily Conserved Unusually Short Pre-mRNA Introns in the Human Genome.

    PubMed

    Shimada, Makoto K; Sasaki-Haraguchi, Noriko; Mayeda, Akila

    2015-01-01

    According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere. By conducting BLAST searches of the databases, we screened 22 introns (37-65 nt) with conserved lengths and sequences among closely related species. We then provide experimental and bioinformatic evidence for the splicing of 15 introns, of which 12 introns were remarkably G-rich and 9 introns contained completely inefficient splice sites and/or branch sites. These unorthodox characteristics of ultra-short introns suggest that there are unknown splicing mechanisms that differ from the well-established mechanism. PMID:25961948

  11. Intron loss and gain during evolution of the catalase gene family in angiosperms.

    PubMed Central

    Frugoli, J A; McPeek, M A; Thomas, T L; McClung, C R

    1998-01-01

    Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5'-most and 3'-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites. PMID:9584109

  12. Sequence of human tryptophan 2,3-dioxygenase (TDO2): Presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat

    SciTech Connect

    Comings, D.E.; Muhleman, D.; Dietz, G.

    1995-09-20

    Abnormalities in serotonin levels have been implicated in a wide range of psychiatric disorders. Tryptophan 2,3-dioxygenase is the rate-limiting enzyme in the catabolism of tryptophan, the precursor of serotonin. As such it is a potential major candidate gene in psychiatric genetics. The regulatory, intron, and exon regions of the human TDO2 gene have been sequenced. Twelve exons were identified. The amino acid sequence of the enzyme was 88% homologous to that of the rat. Compared to the rat, the regulatory region of the human TDO2 gene had an insertion of approximately 1064 bp of random DNA beginning at -293 bp and extending to -1357 bp. This displaced the glucocorticoid response element (GRE) occurring at -1174 bp in the rat to -1500 in the human. The proximal GRE at -419 in the rat was missing in the human. However, within the DNA insert there was a GRE-like microsatellite region containing multiple GTT repeats plus additional GT(n) sequences. This could produce several staggered regions of the sequence TGTTGTnnnTGTTGT similiar to a GRE consensus sequence of TGTTCAnnnTGTTCT. The intron regions 5` and 3` to each exon were sequenced. This allowed each exon to be screened for mutations. This showed a His{r_arrow}Val mutation polymorphism in exon 7. Three introns, 1, 5, and 6, were completely sequenced and examined for polymorphisms. This identified two polymorphisms consisting of G{r_arrow}T and G{r_arrow}A mutations 2 bp apart in intron 6. The 3` end of intron 5` showed an extensive CCCCT pentanucleotide repeat that was markedly polymorphic. These polymorphisms allow the TDO2 gene to be examined for a possible role in psychiatric disorders. 35 refs., 4 figs., 1 tab.

  13. A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region.

    PubMed Central

    Chastain, C J; Brusca, J S; Ramasubramanian, T S; Wei, T F; Golden, J W

    1990-01-01

    A DNA-binding factor (VF1) partially purified from Anabaena sp. strain PCC 7120 vegetative cell extracts by heparin-Sepharose chromatography was found to have affinity for the xisA upstream region. The xisA gene is required for excision of an 11-kilobase element from the nifD gene during heterocyst differentiation. Previous studies of the xisA upstream sequences demonstrated that deletion of this region is required for the expression of xisA from heterologous promoters in vegetative cells. Mobility shift assays with a labeled 250-base-pair fragment containing the binding sites revealed three distinct DNA-protein complexes. Competition experiments showed that VF1 also bound to the upstream sequences of the rbcL and glnA genes, but the rbcL and glnA fragments showed only single complexes in mobility shift assays. The upstream region of the nifH gene formed a weak complex with VF1. DNase footprinting and deletion analysis of the xisA binding site mapped the binding to a 66-base-pair region containing three repeats of the consensus recognition sequence ACATT. Images PMID:2118506

  14. Variants in an Hdac9 intronic enhancer plasmid impact Twist1 expression in vitro.

    PubMed

    Siekmann, Tyler E; Gerber, Madelyn M; Toland, Amanda Ewart

    2016-04-01

    Skin tumor susceptibility 5 (Skts5) was previously mapped to mouse chromosome 12 through linkage analysis of skin tumor susceptible Mus musculus (NIH/Ola-S) and skin tumor resistant outbred Mus spretus (SPRET/Out-R) mice. Hdac9 was identified as a potential candidate for Skts5 based on conserved non-synonymous sequence variants and expression analyses. Studies by others identified an enhancer in human HDAC9 that correlated with TWIST1 expression. We identified 45 sequence variants between NIH/Ola-S and SPRET/Out-R mice from the orthologous region of the human HDAC9 enhancer. Variants mapping to intron 18 differentially affected luciferase expression in vitro. NIH/Ola-S clones showed an approximate 1.7-fold increased luciferase expression relative to vector alone or the equivalent clones from SPRET/Out-R-R. Furthermore, cells transfected with a portion of the NIH/Ola-S intron induced 2.2-fold increases in Twist1 expression, but the same region from SPRET/Out-R mice resulted in no up-regulation of Twist1. In silico transcription factor analyses identified multiple transcription factors predicted to differentially bind NIH/Ola-S and SPRET/Out-R polymorphic sites. Chromatin immunoprecipitation studies of two transcription factors, Gata3 and Oct1, demonstrated differential binding between NIH/Ola-S and SPRET/Out-R plasmids that corroborated the in silico predictions. Together these studies provide evidence that the murine orthologous region to a human HDAC9 enhancer also acts as a transcriptional enhancer for mouse Twist1. As ectopic sequence variants between NIH/Ola-S and SPRET/Out-R differentially impacted luciferase expression, correlated with Twist1 expression in vitro, and affected Gata3 and Oct1 binding, these variants may explain part of the observed differences in skin tumor susceptibility at Skts5 between NIH/Ola-S and SPRET/Out-R. PMID:26721262

  15. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  16. Influence of Intron Length on Alternative Splicing of CD44

    PubMed Central

    Bell, Martyn V.; Cowper, Alison E.; Lefranc, Marie-Paule; Bell, John I.; Screaton, Gavin R.

    1998-01-01

    Although the splicing of transcripts from most eukaryotic genes occurs in a constitutive fashion, some genes can undergo a process of alternative splicing. This is a genetically economical process which allows a single gene to give rise to several protein isoforms by the inclusion or exclusion of sequences into or from the mature mRNA. CD44 provides a unique example; more than 1,000 possible isoforms can be produced by the inclusion or exclusion of a central tandem array of 10 alternatively spliced exons. Certain alternatively spliced exons have been ascribed specific functions; however, independent regulation of the inclusion or skipping of each of these exons would clearly demand an extremely complex regulatory network. Such a network would involve the interaction of many exon-specific trans-acting factors with the pre-mRNA. Therefore, to assess whether the exons are indeed independently regulated, we have examined the alternative exon content of a large number of individual CD44 cDNA isoforms. This analysis shows that the downstream alternatively spliced exons are favored over those lying upstream and that alternative exons are often included in blocks rather than singly. Using a novel in vivo alternative splicing assay, we show that intron length has a major influence upon the alternative splicing of CD44. We propose a kinetic model in which short introns may overcome the poor recognition of alternatively spliced exons. These observations suggest that for CD44, intron length has been exploited in the evolution of the genomic structure to enable tissue-specific patterns of splicing to be maintained. PMID:9742110

  17. Functional analysis of a stable transcription arrest site in the first intron of the murine adenosine deaminase gene.

    PubMed Central

    Kash, S F; Innis, J W; Jackson, A U; Kellems, R E

    1993-01-01

    Transcription arrest plays a role in regulating the expression of a number of genes, including the murine adenosine deaminase (ADA) gene. We have previously identified two prominent arrest sites at the 5' end of the ADA gene: one in the first exon and one in the first intron (J. W. Innis and R. E. Kellems, Mol. Cell. Biol. 11:5398-5409, 1991). Here we report the functional characterization of the intron 1 arrest site, located 137 to 145 nucleotides downstream of the cap site. We have determined, using gel filtration, that the intron 1 arrest site is a stable RNA polymerase II pause site and that the transcription elongation factor SII promotes read-through at this site. Additionally, the sequence determinants for the pause are located within a 37-bp fragment encompassing this site (+123 to +158) and can direct transcription arrest in an orientation-dependent manner in the context of the ADA and adenovirus major late promoters. Specific point mutations in this region increase or decrease the relative pausing efficiency. We also show that the sequence determinants for transcription arrest can function when placed an additional 104 bp downstream of their natural position. Images PMID:8474437

  18. Assessing the geographic scale of genetic population management with microsatellites and introns in the clam Ruditapes decussatus.

    PubMed

    Arias-Pérez, Alberto; Cordero, David; Borrell, Yaisel; Sánchez, Jose Antonio; Blanco, Gloria; Freire, Ruth; Insua, Ana; Saavedra, Carlos

    2016-05-01

    The clam Ruditapes decussatus is commercially important in southwestern Europe, suffering from population decline and hybridization with exotic Manila clam (R. philippinarum). Previous studies with intronic markers showed a genetic subdivision of the species in three races (Atlantic, West Mediterranean, and Adriatic-Aegean). However, detailed population genetic studies to help management of the main production areas in the southwest of Europe are missing. We have analyzed eight Atlantic and two Mediterranean populations from the Spanish coasts using 14 microsatellites and six intronic markers. Microsatellites confirmed the Atlantic and West Mediterranean races detected with introns and showed that genetic variability was higher in Mediterranean than in Atlantic populations. Both marker types showed that genetic differentiation of Atlantic populations was low and indicated that populations could be managed at the regional level in the case of Cantabrian and Gulf of Cadiz areas, but not in the case of Rias Baixas and the Mediterranean. This study shows the interest of including different types of markers in studies of genetic population structure of marine organisms. PMID:27127607

  19. The region adjacent to the C-end of the inner gate in transient receptor potential melastatin 8 (TRPM8) channels plays a central role in allosteric channel activation.

    PubMed

    Taberner, Francisco José; López-Córdoba, Ainara; Fernández-Ballester, Gregorio; Korchev, Yuri; Ferrer-Montiel, Antonio

    2014-10-10

    The ability of transient receptor potential (TRP) channels to sense and respond to environmental and endogenous cues is crucial in animal sensory physiology. The molecular mechanism of channel gating is yet elusive. The TRP box, a conserved region in the N-end of the C terminus domain, has been signaled as pivotal for allosteric activation in TRP channels. Here, we have examined the role of the linker region between the TRPM8 inner gate and the TRP box (referred to as the S6-TRP box linker) to identify structural determinants of channel gating. Stepwise substitutions of segments in the S6-TRP box linker of TRPM8 channel with the cognate TRPV1 channel sequences produced functional chimeric channels, and identified Tyr(981) as a central molecular determinant of channel function. Additionally, mutations in the 986-990 region had a profound impact on channel gating by voltage and menthol, as evidenced by the modulation of the conductance-to-voltage (G-V) relationships. Simulation of G-V curves using an allosteric model for channel activation revealed that these mutations altered the allosteric constants that couple stimuli sensing to pore opening. A molecular model of TRPM8, based on the recently reported TRPV1 structural model, showed that Tyr(981) may lie in a hydrophobic pocket at the end of the S6 transmembrane segment and is involved in inter-subunit interactions with residues from neighbor subunits. The 986-990 region holds intrasubunit interactions between the TRP domain and the S4-S5 linker. These findings substantiate a gating mechanism whereby the TRP domain acts as a coupling domain for efficient channel opening. Furthermore, they imply that protein-protein interactions of the TRP domain may be targets for channel modulation and drug intervention. PMID:25157108

  20. The Grenvillian Namaqua-Natal fold belt adjacent to the Kaapvaal Craton: 1. Distribution of Mesoproterozoic collisional terranes deduced from results of regional surveys and selected profiles in the western and southern parts of the fold belt

    NASA Astrophysics Data System (ADS)

    Colliston, W. P.; Schoch, A. E.; Cole, J.

    2014-12-01

    Sixteen tectonic terranes of the Namaqua-Natal metamorphic complex are distinguished (the Aggeneys, Agulhas, Bladgrond, Gamka, Grootdrink, Grünau, Fraserburg, Upington, Margate, Mossel, Mzumbe, Okiep, Olifantshoek, Steinkopf, Pofadder, and Tugela terranes). Evidence obtained from field investigations in the outcrop regions of Namaqualand and Natal are correlated with the geophysical data, enabling recognition of terrane suboutcrops in the regions covered by Phanerozoic deposits in the south. This is illustrated by nine selected profiles over the western and southern parts of the metamorphic complex. Four terranes that have not been observed in outcrop are postulated (Agulhas, Fraserburg, Gamka and Mossel terranes) and may represent extensions of some of the Natal terranes (Mzumbe and Margate terranes). The depth to Moho is generally about 40 km, diminishing dramatically at the present continental edge to as little as 15 km. Listric thrust ramps may originate on rises of the gently undulating topography of the Moho zone. Zones of thrusting and later shearing often exploit older structures and fabrics. The terranes that participated in the Grenvillian Namaqua-Natal Orogeny exhibit a dichotomy of vergences regionally. Those that moved to the northeast and north accreted onto the Archaean Kaapvaal Craton before becoming part of the Kalahari Craton. Terranes with vergences to the south and southwest were amalgamated onto other Archaean cratons. All of the composite cratons took part in the assembly of Rodinia.

  1. Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain

    PubMed Central

    Carter, James R.; Taylor, Samantha; Fraser, Tresa S.; Kucharski, Cheryl A.; Dawson, James L.; Fraser, Malcolm J.

    2015-01-01

    In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses. PMID:26580561

  2. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  3. Crystal structure of a group II intron in the pre-catalytic state

    SciTech Connect

    Chan, Russell T.; Robart, Aaron R.; Rajashankar, Kanagalaghatta R.; Pyle, Anna Marie; Toor, Navtej

    2012-12-10

    Group II introns are self-splicing catalytic RNAs that are thought to be ancestral to the spliceosome. Here we report the 3.65-{angstrom} crystal structure of the group II intron from Oceanobacillus iheyensis in the pre-catalytic state. The structure reveals the conformation of the 5' splice site in the catalytic core and represents the first structure of an intron prior to the first step of splicing.

  4. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene.

    PubMed

    Mullineux, Sahra-Taylor; Willows, Karla; Hausner, Georg

    2011-06-01

    Examination of the mitochondrial small subunit ribosomal RNA (rns) gene of five species of the fungal genus Leptographium revealed that the gene has been invaded at least once at position 952 by a group II intron encoding a LAGLIDADG homing endonuclease gene. Phylogenetic analyses of the intron and homing endonuclease sequences indicated that each element in Leptographium species forms a single clade and is closely related to the group II intron/homing endonuclease gene composite element previously reported at position 952 of the mitochondrial rns gene of Cordyceps species and of Cryphonectria parasitica. The results of an intron survey of the mt rns gene of Leptographium species superimposed onto the phylogenetic analysis of the host organisms suggest that the composite element was transmitted vertically in Leptographium lundbergii. However, its stochastic distribution among strains of L. wingfieldii, L. terebrantis, and L. truncatum suggests that it has been horizontally transmitted by lateral gene transfer among these species, although the random presence of the intron may reflect multiple random loss events. A model is proposed describing the initial invasion of the group II intron in the rns gene of L. lundbergii by a LAGLIDADG homing endonuclease gene and subsequent evolution of this gene to recognize a novel DNA target site, which may now promote the mobility of the intron and homing endonuclease gene as a composite element. PMID:21479820

  5. Dipole angular entropy techniques for intron-exon segregation in DNA

    NASA Astrophysics Data System (ADS)

    Subramanian, Nithya; Bose, R.

    2012-04-01

    We propose techniques for computing the angular entropies of DNA sequences, based on the orientations of the dipole moments of the nucleotide bases. The angles of the dipole moment vectors of the bases are used to compute the dipole angular entropy and the Fourier harmonics of the angles are used to compute the dipole angular spectral entropy for a given sequence. We also show that the coding (exons) and noncoding (introns) regions of the DNA can be segregated based on their dipole angular entropies and dipole angular spectral entropies. Segregation using these techniques is found to be computationally faster and more accurate than the previously reported methods. The proposed techniques can also be improvised to use the magnitude of the dipole moments of the bases in addition to the angles.

  6. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  7. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  8. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...

  9. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  10. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  11. Selection for reduced translation costs at the intronic 5′ end in fungi

    PubMed Central

    Zafrir, Zohar; Zur, Hadas; Tuller, Tamir

    2016-01-01

    It is generally believed that introns are not translated; therefore, the potential intronic features that may be related to the translation step (occurring after splicing) have yet to be thoroughly studied. Here, focusing on four fungi, we performed for the first time a comprehensive study aimed at characterizing how translation efficiency is encoded in introns and affects their evolution. By analysing their intronome we provide evidence of selection for STOP codons close to the intronic 5′ end, and show that the beginning of introns are selected for significantly high translation, presumably to reduce translation and metabolic costs in cases of non-spliced introns. Ribosomal profiling data analysis in Saccharomyces cerevisiae supports the conjecture that in this organism intron retention frequently occurs, introns are partially translated, and their translation efficiency affects organismal fitness. We show that the reported results are more significant in highly translated and highly spliced genes, but are not associated only with genes with a specific function. We also discuss the potential relation of the reported signals to efficient nonsense-mediated decay due to splicing errors. These new discoveries are supported by population-genetics considerations. In addition, they are contributory steps towards a broader understanding of intron evolution and the effect of silent mutations on gene expression and organismal fitness. PMID:27260512

  12. Using intron position conservation for homology-based gene prediction

    PubMed Central

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L.; Schattat, Martin H.; Grau, Jan; Hartung, Frank

    2016-01-01

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest. Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well. Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  13. Using intron position conservation for homology-based gene prediction.

    PubMed

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L; Schattat, Martin H; Grau, Jan; Hartung, Frank

    2016-05-19

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest.Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well.Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  14. Stress-induced endogenous siRNAs targeting regulatory intron sequences in Brachypodium

    PubMed Central

    Wang, Hsiao-Lin V.; Dinwiddie, Brandon L.; Lee, Herman

    2015-01-01

    Exposure to abiotic stresses triggers global changes in the expression of thousands of eukaryotic genes at the transcriptional and post-transcriptional levels. Small RNA (smRNA) pathways and splicing both function as crucial mechanisms regulating stress-responsive gene expression. However, examples of smRNAs regulating gene expression remain largely limited to effects on mRNA stability, translation, and epigenetic regulation. Also, our understanding of the networks controlling plant gene expression in response to environmental changes, and examples of these regulatory pathways intersecting, remains limited. Here, to investigate the role of smRNAs in stress responses we examined smRNA transcriptomes of Brachypodium distachyon plants subjected to various abiotic stresses. We found that exposure to different abiotic stresses specifically induced a group of novel, endogenous small interfering RNAs (stress-induced, UTR-derived siRNAs, or sutr-siRNAs) that originate from the 3′ UTRs of a subset of coding genes. Our bioinformatics analyses predicted that sutr-siRNAs have potential regulatory functions and that over 90% of sutr-siRNAs target intronic regions of many mRNAs in trans. Importantly, a subgroup of these sutr-siRNAs target the important intron regulatory regions, such as branch point sequences, that could affect splicing. Our study indicates that in Brachypodium, sutr-siRNAs may affect splicing by masking or changing accessibility of specific cis-elements through base-pairing interactions to mediate gene expression in response to stresses. We hypothesize that this mode of regulation of gene expression may also serve as a general mechanism for regulation of gene expression in plants and potentially in other eukaryotes. PMID:25480817

  15. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron

    PubMed Central

    Wurdack, Kenneth J.; Kanagaraj, Anderson; Lee, Seung-Bum; Saski, Christopher; Jansen, Robert K.

    2008-01-01

    The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3′ end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss. PMID:18214421

  16. Exon-intron organization and sequence comparison of human and murine T11 (CD2) genes

    SciTech Connect

    Diamond, D.J.; Clayton, L.K.; Sayre, P.H.; Reinherz, E.L.

    1988-03-01

    Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is approx. = 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide (amino acids (aa) -24 to -5). Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine region T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed.

  17. In trangenic rice, alpha- and beta-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression.

    PubMed

    Gianì, Silvia; Altana, Andrea; Campanoni, Prisca; Morello, Laura; Breviario, Diego

    2009-04-01

    The genomic upstream sequence of the rice tubulin gene OsTub6 has been cloned, sequenced and characterized. The 5'UTR sequence is interrupted by a 446 bp long leader intron. This feature is shared with two other rice beta-tubulin genes (OsTub4 and OsTub1) that, together with OsTub6, group in the same clade in the evolutionary phylogenetic tree of plant beta-tubulins. Similarly to OsTub4, the leader intron of OsTub6 is capable of sustaining intron mediated enhancement (IME) of gene expression, in transient expression assays. A general picture is drawn for three rice alpha-tubulin and two rice beta-tubulin genes in which the first intron of the coding sequence for the formers and the intron present in the 5'UTR for the latters, are important elements for controlling gene expression. We used OsTua2:GUS, OsTua3:GUS, OsTub4:GUS and OsTub6:GUS chimeric constructs to investigate the in vivo pattern of beta-glucuronidase (GUS) expression in transgenic rice plants. The influence of the regulatory introns on expression patterns was evaluated for two of them, OsTua2 and OsTub4. We have thus characterized distinct patterns of expression attributable to each tubulin isotype and we have shown that the presence of the regulatory intron can greatly influence both the amount and the actual site of expression. We propose the term Intron Dependent Spatial Expression (IDSE) to highlight this latter effect. PMID:18668337

  18. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus.

    PubMed

    Sato, Yukiyo; Ando, Sugihiro; Takahashi, Hideki

    2014-01-01

    The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y) (RCY1), a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of strong CaMV35S promoter. Remarkably, a relative amount of RCY1 protein accumulation in the transformants was much lower than that in plants expressing genomic RCY1 under the control of its native promoter. To identify a regulatory element of RCY1 that could cause such differential levels of RCY1 accumulation, a series of RCY1 cDNA and genomic RCY1 constructs were transiently expressed in Nicotiana benthamiana leaves by the Agrobacterium-mediated infiltration method. Comparative analysis of the level of RCY1 accumulation in the leaf tissues transiently expressing each construct indicated that the intron located in the RCY1-coding region of genomic RCY1, but not the native RCY1 genomic promoter or the 5'-and 3'-untranslated regions of RCY1, was indispensable for high level RCY1 accumulation. The increased levels of RCY1 accelerated plant disease defense reactions. Interestingly, such intron-mediated enhancement of RCY1 accumulation depended neither on the abundance of the RCY1 transcript nor on the RCY1 specific-intron sequence. Taken together, intron-mediated RCY1 expression seems to play a key role in the expression of complete resistance to CMV(Y) by maintaining RCY1 accumulation at high levels. PMID:24915153

  19. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers.

    PubMed

    Rocas, M; Jakubauskiene, E; Kanopka, A

    2011-11-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA. PMID:22052373

  20. Visualizing the ai5γ group IIB intron

    PubMed Central

    Somarowthu, Srinivas; Legiewicz, Michal; Keating, Kevin S.; Pyle, Anna Marie

    2014-01-01

    It has become apparent that much of cellular metabolism is controlled by large well-folded noncoding RNA molecules. In addition to crystallographic approaches, computational methods are needed for visualizing the 3D structure of large RNAs. Here, we modeled the molecular structure of the ai5γ group IIB intron from yeast using the crystal structure of a bacterial group IIC homolog. This was accomplished by adapting strategies for homology and de novo modeling, and creating a new computational tool for RNA refinement. The resulting model was validated experimentally using a combination of structure-guided mutagenesis and RNA structure probing. The model provides major insights into the mechanism and regulation of splicing, such as the position of the branch-site before and after the second step of splicing, and the location of subdomains that control target specificity, underscoring the feasibility of modeling large functional RNA molecules. PMID:24203709

  1. Group II intron–ribosome association protects intron RNA from degradation

    PubMed Central

    Contreras, Lydia M.; Huang, Tao; Piazza, Carol Lyn; Smith, Dorie; Qu, Guosheng; Gelderman, Grant; Potratz, Jeffrey P.; Russell, Rick; Belfort, Marlene

    2013-01-01

    The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility. PMID:24046482

  2. Molecular characterization of a new member of the lariat capping twin-ribozyme introns

    PubMed Central

    2014-01-01

    Background Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. Results We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2′,5′ lariat cap at the 5′ end of the homing endonuclease mRNA, and thus contributes to intron mobility. Conclusions The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component. PMID:25342998

  3. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times

    PubMed Central

    Malek, Olaf; Brennicke, Axel; Knoop, Volker

    1997-01-01

    Trans-splicing in angiosperm plant mitochondria connects exons from independent RNA molecules by means of group II intron fragments. Homologues of trans-splicing introns in the angiosperm mitochondrial nad2 and nad5 genes are now identified as uninterrupted group II introns in the ferns Asplenium nidus and Marsilea drummondii. These fern introns are correctly spliced from the pre-mRNA at the sites predicted from their well-conserved secondary structures. The flanking exon sequences of the nad2 and nad5 genes in the ferns require RNA editing, including the removal of in-frame stop codons by U-to-C changes for correct expression of the genetic information. We conclude that cis-splicing introns like the ones now identified in ferns are the ancestors of trans-splicing introns in angiosperm mitochondria. Intron disruption is apparently due to a size increase of the structurally variable group II intron domain IV followed by DNA recombination in the plant mitochondrial genome. PMID:9012822

  4. Functional comparison of three transformer gene introns regulating conditional female lethality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  5. Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size

    PubMed Central

    2014-01-01

    Background A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. Results Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. Conclusion Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles. PMID:24734980

  6. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  7. Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation.

    PubMed

    Osman, Ismail; Tay, Mandy Li-Ian; Pek, Jun Wei

    2016-09-01

    Upon splicing, introns are rapidly degraded. Hence, RNAs derived from introns are commonly deemed as junk sequences. However, the discoveries of intronic-derived small nucleolar RNAs (snoRNAs), small Cajal body associated RNAs (scaRNAs) and microRNAs (miRNAs) suggested otherwise. These non-coding RNAs are shown to play various roles in gene regulation. In this review, we highlight another class of intron-derived RNAs known as stable intronic sequence RNAs (sisRNAs). sisRNAs have been observed since the 1980 s; however, we are only beginning to understand their biological significance. Recent studies have shown or suggested that sisRNAs regulate their own host's gene expression, function as molecular sinks or sponges, and regulate protein translation. We propose that sisRNAs function as an additional layer of gene regulation in the cells. PMID:27147469

  8. Petroleum basins of Sakhalin and adjacent shelf

    SciTech Connect

    Mavrinski, Y.; Koblov, E. )

    1993-09-01

    Sixty-seven oil and gas fields have been discovered on Sakhalin and the adjacent shelf but the distribution of fields is uneven in north Sakhalin, south Sakhalin, and the Tatar basins. The sedimentary cover is composed of sandy, clayey, and siliceous rocks, with volcanogenic and coal-bearing deposits of Upper Cretaceous, Paleogene, and Neogene 8-12 km thick. Marine clayey and siliceous oil source rocks are regionally developed in the section at different stratigraphic levels; the organic matter is of mixed type and the content varies from 0.5 to 1.5%. The upper Oligocene and middle-upper Miocene source rocks in the north Sakhalin basin are typical, and the organic carbon content ranges from 1 to 5%. The level of organic matter catagenesis and conversion into hydrocarbons is high because of the high differential geothermal gradient in the basins, 30-50[degrees]C per km. Porous sandstones in the Miocene form the reservoirs in all fields with the exception of Okruzhnoye, where the pay zone is a siliceous claystone. Growth-fault rollovers and anticlines form the main traps ranging in area from 5 to 300 km[sup 2], with amplitudes between 100 and 600 m. both stratigraphic and structural traps have been identified. Considerable volumes of reserves are associated with the Miocene deposits of north Sakhalin, which are characterized by an optimum combination of oil source rocks, focused migration paths, and thick sequences of reservoirs and cap rocks. Six large fields have been discovered in the past 15 yr. Oil and condensate reserves stand at over 300 million MT, and gas reserves are about 900 billion m[sup 3].

  9. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis.

    PubMed

    Palagano, Eleonora; Blair, Harry C; Pangrazio, Alessandra; Tourkova, Irina; Strina, Dario; Angius, Andrea; Cuccuru, Gianmauro; Oppo, Manuela; Uva, Paolo; Van Hul, Wim; Boudin, Eveline; Superti-Furga, Andrea; Faletra, Flavio; Nocerino, Agostino; Ferrari, Matteo C; Grappiolo, Guido; Monari, Marta; Montanelli, Alessandro; Vezzoni, Paolo; Villa, Anna; Sobacchi, Cristina

    2015-10-01

    Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes. PMID:25829125

  10. Sequence variations in the introns of the triosephosphate isomerase genes of Oesophagostomum dentatum and O. quadrispinulatum.

    PubMed

    Joachim, A; von Samson-Himmelstjerna, G

    2001-09-01

    Degenerated primers were used to amplify DNA fragments of the triosephosphate isomerase (TPI) gene from complementary DNA (cDNA) and from genomic DNA of two species of porcine gastrointestinal nematodes, Oesophagostomum dentatum and O.quadrispinulatum. Polymerase chain reaction (PCR) fragments amplified from cDNA were 520 bp in size for both species, while genomic fragments were 1,035 bp for O. dentatum (GC-content: 45%) and 1,331 bp for O. quadrispinulatum (44%). Sequence analyses revealed blocks of high homology in the exons interrupted by more variable parts in the intron regions. Five exons were predicted from the genomic sequences in the conserved regions which corresponded to the respective cDNA sequences with 6% interspecific differences. The predicted protein sequences (161 amino acids) were 98% similar between the species and showed 71% similarity to the putative protein of Caenorhabditis elegans. As a housekeeping gene, TPI could be amplified from cDNA of both infectious third-stage larvae and adults. Interspecific variations in the non-coding regions allow the PCR-based differentiation of the two Oesophagostomum spp. PMID:11570563

  11. Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating.

    PubMed

    Lian, Tiantian; Yang, Tao; Sun, Junde; Guo, Suping; Yang, Huaijun; Dong, Caihong

    2014-08-01

    Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns. PMID:24996897

  12. The first intron of the 4F2 heavy-chain gene contains a transcriptional enhancer element that binds multiple nuclear proteins

    SciTech Connect

    Karpinski, B.A.; Yang, L.H.; Cacheris, P.; Morle, G.D.; Leiden, J.M.

    1989-06-01

    The authors utilized the human 4F2 heavy-chain (4F2HC) gene as a model system to study the regulation of inducible gene expression during normal human T-cell activation. Previous studies have demonstrated that 4F2HC gene expression is induced during normal T-cell activation and that the activity of the gene is regulated, at least in part, by the interaction of a constitutively active 5'-flanking housekeeping promoter and a phorbol ester-responsive transcriptional attenuator element located in the exon 1-intron 1 region of the gene. They now report that 4F2HC intron 1 contains a transcriptional enhancer element which is active on a number of heterologous promoters in a variety of murine and human cells. This enhancer element has been mapped to a 187-base-pair RsaI-AluI fragment from 4F2HC intron 1. DNase I footprinting and gel mobility shift analyses demonstrated that this fragment contains two nuclear protein-binding sites (NF-4FA and NF-4FB) which flank a consensus binding site for the inducible AP-1 transcription factor. Deletion analysis showed that the NF-4FA, NF-4FB, and AP-1 sequences are each necessary for full enhancer activity. Murine 4F2HC intron 1 displayed enhancer activity similar to that of its human counterpart. Comparison of the sequences of human and murine 4F2HC intron 1s demonstrated that the NF-4FA, NF-4FB, and AP-1 sequence motifs have been highly conserved during mammalian evolution.

  13. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris.

    PubMed

    Zhang, Yongjie; Zhang, Shu; Zhang, Guozhen; Liu, Xingzhong; Wang, Chengshu; Xu, Jianping

    2015-04-01

    Intra-specific comparison of mitochondrial genomes can help elucidate the evolution of a species, however it has not been performed for hypocrealean fungi that form diverse symbiotic associations with other organisms. In this study, comparative analyses of three completely sequenced mitochondrial genomes of a hypocrealean fungus, Cordyceps militaris, the type species of Cordyceps genus, revealed that the introns were the main contributors to mitochondrial genome size variations among strains. Mitochondrial genes in C. militaris have been invaded by group I introns in at least eight positions. PCR assays of various C. militaris isolates showed abundant variations of intron presence/absence among strains at seven of the eight intronic loci. Although the ancestral intron pattern was inferred to contain all eight introns, loss and/or gain events occurred for seven of the eight introns. These introns invaded the C. militaris mitochondrial genome probably by horizontal transfer from other fungi, and intron insertions into intronless genes in C. militaris were accompanied by co-conversions of upstream exon sequences especially for those introns targeting protein-coding genes. We also detected phylogenetic congruence between the intron and exon trees at each individual locus, consistent with the ancestral mitochondria of C. militaris as having all eight introns. This study helps to explain the evolution of C. militaris mitochondrial genomes and will facilitate population genetic studies of this medicinally important fungus. PMID:25896956

  14. Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome.

    PubMed

    Niemelä, Elina H; Oghabian, Ali; Staals, Raymond H J; Greco, Dario; Pruijn, Ger J M; Frilander, Mikko J

    2014-06-01

    U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels. PMID:24848017

  15. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  16. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  17. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    SciTech Connect

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J.; Goswami, Chandan

    2014-07-18

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.

  18. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  19. Identification of a Chloroplast Ribonucleoprotein Complex Containing Trans-splicing Factors, Intron RNA, and Novel Components*

    PubMed Central

    Jacobs, Jessica; Marx, Christina; Kock, Vera; Reifschneider, Olga; Fränzel, Benjamin; Krisp, Christoph; Wolters, Dirk; Kück, Ulrich

    2013-01-01

    Maturation of chloroplast psaA pre-mRNA from the green alga Chlamydomonas reinhardtii requires the trans-splicing of two split group II introns. Several nuclear-encoded trans-splicing factors are required for the correct processing of psaA mRNA. Among these is the recently identified Raa4 protein, which is involved in splicing of the tripartite intron 1 of the psaA precursor mRNA. Part of this tripartite group II intron is the chloroplast encoded tscA RNA, which is specifically bound by Raa4. Using Raa4 as bait in a combined tandem affinity purification and mass spectrometry approach, we identified core components of a multisubunit ribonucleoprotein complex, including three previously identified trans-splicing factors (Raa1, Raa3, and Rat2). We further detected tscA RNA in the purified protein complex, which seems to be specific for splicing of the tripartite group II intron. A yeast-two hybrid screen and co-immunoprecipitation identified chloroplast-localized Raa4-binding protein 1 (Rab1), which specifically binds tscA RNA from the tripartite psaA group II intron. The yeast-two hybrid system provides evidence in support of direct interactions between Rab1 and four trans-splicing factors. Our findings contribute to our knowledge of chloroplast multisubunit ribonucleoprotein complexes and are discussed in support of the generally accepted view that group II introns are the ancestors of the eukaryotic spliceosomal introns. PMID:23559604

  20. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  1. Group IIC Intron with an Unusual Target of Integration in Enterobacter cloacae

    PubMed Central

    Rodríguez-Martínez, José-Manuel; Poirel, Laurent

    2012-01-01

    A potential role of group IIC-attC introns in integron gene cassette formation, that is, the way in which they could provide the attC sequence essential for recombination, has been proposed. Group IIC introns usually target the attC site of gene cassettes and more specifically their inverse core. Here we characterized a novel group IIC intron targeting the core site of the aadA1 gene cassette attC site (aadA1-qacEΔ1 gene cassette junction) from enterobacterial isolates. Intron mobility (retrohoming) was analyzed using a two-plasmid assay performed in Escherichia coli. Intron mobility assays confirmed the mobilization-integration of the group II intron into the core site of the aadA2, blaVIM-2, blaCARB-2, aac(6′)-Ib, dfrXVb, arr2, cmlA4, and aadB gene cassettes but not into the attI site. This mobility was dependent on maturase activity. Reverse transcriptase PCR showed that this intron was transcriptionally active, and an intermediate circular form was detected by inverse PCR. This element was linked to the blaVEB-1 extended-spectrum β-lactamase gene in a high number of enterobacterial isolates. A phylogenetic tree showed that the identified element was located in a branch separate from group IIC-attC introns, being an IIC intron possessing the ability to integrate using the core site of the attC sites as target. PMID:22020643

  2. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish.

    PubMed

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J; Goswami, Chandan

    2014-07-18

    C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1'. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys. PMID:24878530

  3. Dipole entropy based techniques for segmentation of introns and exons in DNA

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Nithya; Bose, R.

    2012-08-01

    We have used superinformation, which is a measure of the disorder of the entropy content of different portions of a sequence, to analyze the structural variations of the introns and exons in DNA. We have computed superinformation for the angles of the dipole moments of the base-pairs and nucleotides in the double and single-stranded forms of DNA, respectively. We show that the computed dipole-angular superinformation of the introns are significantly higher than those of the exons and that these techniques could be used for intron-exon segmentation. They also yield more accurate and computationally faster results than the previously reported methods.

  4. A distant cis acting intronic element induces site-selective RNA editing.

    PubMed

    Daniel, Chammiran; Venø, Morten T; Ekdahl, Ylva; Kjems, Jørgen; Öhman, Marie

    2012-10-01

    Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated the requirements for editing at the I/M site in the Gabra-3 transcript of the GABA(A) receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce editing of coding regions throughout the transcriptome. PMID:22848101

  5. A distant cis acting intronic element induces site-selective RNA editing

    PubMed Central

    Daniel, Chammiran; Venø, Morten T.; Ekdahl, Ylva; Kjems, Jørgen; Öhman, Marie

    2012-01-01

    Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated the requirements for editing at the I/M site in the Gabra-3 transcript of the GABAA receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce editing of coding regions throughout the transcriptome. PMID:22848101

  6. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression

    PubMed Central

    Becker, Philipp W.; Sacilotto, Natalia; Nornes, Svanhild; Neal, Alice; Thomas, Max O.; Liu, Ke; Preece, Chris; Ratnayaka, Indrika; Davies, Benjamin; Bou-Gharios, George

    2016-01-01

    Objective— The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. Approach and Results— A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor–binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. Conclusions— This study demonstrates a novel mechanism of arterial–venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators. PMID:27079877

  7. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  8. Border separation for adjacent orthogonal fields

    SciTech Connect

    Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )

    1991-06-01

    Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.

  9. Introns of plant pri-miRNAs enhance miRNA biogenesis

    PubMed Central

    Bielewicz, Dawid; Kalak, Malgorzata; Kalyna, Maria; Windels, David; Barta, Andrea; Vazquez, Franck; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur

    2013-01-01

    Plant MIR genes are independent transcription units that encode long primary miRNA precursors, which usually contain introns. For two miRNA genes, MIR163 and MIR161, we show that introns are crucial for the accumulation of proper levels of mature miRNA. Removal of the intron in both cases led to a drop-off in the level of mature miRNAs. We demonstrate that the stimulating effects of the intron mostly reside in the 5′ss rather than on a genuine splicing event. Our findings are biologically significant as the presence of functional splice sites in the MIR163 gene appears mandatory for pathogen-triggered accumulation of miR163 and proper regulation of at least one of its targets. PMID:23681439

  10. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  11. U6 snRNA intron insertion occurred multiple times during fungi evolution.

    PubMed

    Canzler, Sebastian; Stadler, Peter F; Hertel, Jana

    2016-01-01

    U6 small nuclear RNAs are part of the splicing machinery. They exhibit several unique features setting them appart from other snRNAs. Reports of introns in structured non-coding RNAs have been very rare. U6 genes, however, were found to be interrupted by an intron in several Schizosaccharomyces species and in 2 Basidiomycota. We conducted a homology search across 147 currently available fungal genome and identified the U6 genes in all but 2 of them. A detailed comparison of their sequences and predicted secondary structures showed that intron insertion events in the U6 snRNA were much more common in the fungal lineage than previously thought. Their positional distribution across the entire mature snRNA strongly suggests a large number of independent events. All the intron sequences reported here show canonical splice site and branch site motifs indicating that they require the splicesomal pathway for their removal. PMID:26828373

  12. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein

    SciTech Connect

    Lewin, A.S.; Thomas, J. Jr.; Tirupati, H.K.

    1995-12-01

    This report investigates the coupling between transcription and splicing of a mitochondrial group I intron in Saccharomyces cerevisiae and the effect of the Cbp2 protein on splicing. 65 refs., 7 figs.

  13. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications.

    PubMed

    Dombrovska, Olena; Qiu, Yin-Long

    2004-07-01

    Forty-six species of diverse land plants were investigated by sequencing for their intron content in the mitochondrial gene nad1. A total of seven introns, all belonging to group II, were found, and two were newly discovered in this study. All 13 liverworts examined contain no intron, the same condition as in green algae. Mosses and hornworts, however, share one intron by themselves and another one with vascular plants. These intron distribution patterns are consistent with the hypothesis that liverworts represent the basal-most land plants and that the two introns were gained in the common ancestor of mosses-hornworts-vascular plants after liverworts had diverged. Hornworts also possess a unique intron of their own. A fourth intron was found only in Equisetum L., Marattiaceae, Ophioglossum L., Osmunda L., Asplenium L., and Adiantum L., and was likely acquired in their common ancestor, which supports the monophyly of moniliformopses. Three introns that were previously characterized in angiosperms and a few pteridophytes are now all extended to lycopods, and were likely gained in the common ancestor of vascular plants. Phylogenetic analyses of the intron sequences recovered topologies mirroring those of the plants, suggesting that the introns have all been vertically inherited. All seven nad1 group II introns show broad phylogenetic distribution patterns, with the narrowest being in moniliformopses and hornworts, lineages that date back to at least the Devonian (345 million years ago) and Silurian (435 million years ago), respectively. Hence, these introns must have invaded the genes via ancient transpositional events during the early stage of land plant evolution. Potentially heavy RNA editing was observed in nad1 of Haplomitrium Dedecek, Takakia Hatt. & Inoue, hornworts, Isoetes L., Ophioglossum, and Asplenium. A new nomenclature is proposed for group II introns. PMID:15186811

  14. An intron capture strategy used to identify and map a lysyl oxidase-like gene on chromosome 9 in the mouse

    SciTech Connect

    Wydner, K.S.; Passmore, H.C.; Kim, Houngho; Csiszar, K.; Boyd, C.D.

    1997-03-01

    An intron capture strategy involving use of polymerase chain reaction was used to identify and map the mouse homologue of a human lysyl oxidase-like gene (LOXL). Oligonucleotides complementary to conserved domains within exons 4 and 5 of the human lysyl oxidase-like gene were used to amplify the corresponding segment from mouse genomic DNA. Sequencing of the resulting mouse DNA fragment of approximately 1 kb revealed that the exon sequences at the ends of the amplified fragment are highly homologous (90% nucleotide identity) to exons 4 and 5 of the human lysyl oxidase-like gene. An AluI restriction site polymorphism within intron 4 was used to map the mouse lysyl oxidase-like gene (Loxl) to mouse Chromosome 9 in a region that shares linkage conservation with human chromosome 15q24, to which the LOXL was recently mapped. 22 refs., 3 figs.

  15. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice.

    PubMed

    Talamas, Elijah; Jackson, Lavinia; Koeberl, Matthew; Jackson, Todd; McElwee, John L; Hawes, Norman L; Chang, Bo; Jablonski, Monica M; Sidjanin, D J

    2006-07-01

    Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens. PMID:16595169

  16. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice

    PubMed Central

    Talamas, Elijah; Jackson, Lavinia; Koeberl, Matthew; Jackson, Todd; McElwee, John L.; Hawes, Norman L.; Chang, Bo; Jablonski, Monica M.; Sidjanin, D.J.

    2006-01-01

    Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens. PMID:16595169

  17. Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information.

    PubMed

    Hill, Natascha; Leow, Alexander; Bleidorn, Christoph; Groth, Detlef; Tiedemann, Ralph; Selbig, Joachim; Hartmann, Stefanie

    2013-06-01

    Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary. PMID:23248024

  18. Distinctive origins of group I introns found in the COXI genes of three gree algae.

    PubMed

    Watanabe, K I; Ehara, M; Inagaki, Y; Ohama, T

    1998-06-15

    Upon surveying the cytochrome c oxidase subunit I (COXI) gene of green algae, we found group I introns in three species of algae, Chlorella vulgaris (Cv), Scenedesmus quadricauda (Sq) and Protosiphon botryoides (Pb). The comparative analysis of these nucleotide sequences and their secondary structures revealed that the introns of Cv, Sq, and Pb belong to groups IB1, ID, and IB2, respectively. Each of the three introns contained an open reading frame (ORF) that showed a similarity to the sequence of the LAGLIDADG endonuclease family. However, each of the intronic ORFs in Sq and Pb had a discontinuity in the middle of' the sequences coding for the LAGLIDADG endonuclease. Either of the two ORFs could be restored to a sequence homologous to the LAGLIDADG endonuclease by the insertion of a nucleotide in the appropriate position. In Sq, a putative pseudo-knot structure was detected in the intronic ORF This suggests the occurrence of a ribosomal frameshift in the translation of the ORF. because such pseudo-knot structures are common in viral ORFs employing a (-1) ribosomal frameshift. In the phylogenetic tree that was inferred from the amino acid sequences of algal and non-algal intronic ORFs, the three algal ORFs did not make a cluster, but were scattered throughout the tree. In addition. each of the three algal ORFs showed a close relationship to the ORFs of non-algal introns that were inserted at the corresponding site of the COX] gene, suggesting distinctive origins of the three algal introns via independent horizontal transfers. PMID:9714606

  19. The first intron of human c-fms proto-oncogene contains a processed pseudogene (RPL7P) for ribosomal protein L7

    SciTech Connect

    Sapi, E.; Flick, M.B.; Kacinski, B.M.

    1994-08-01

    During sequence analysis of the first intron of the human c-fms oncogene, we identified an open reading frame encoding the ribosomal protein L7 (RPL7). The presence of this sequence within intron 1 of the c-fms gene was confirmed by Southern blot hybridization and by sequence analysis of two independent cosmid clones (cos2-e and cos1-22) that span the human genomic c-fms locus. The RPL7 sequence was detected in a region of sequence overlapped by the cos2-e and cos1-22 cosmid clones but oriented opposite to the c-fms gene. We demonstrate that the sequence is identical to the full-length RPL7 cDNA sequence, but lacks any recognizable introns, has a 30-bp poly(A) tail, and is bracketed by two perfect direct repeats of 14 bp. We also showed that despite the fact that the 5{prime} flanking region of the RPL7 sequence contains a potential TATA box upstream of an intact open reading frame, this pseudogene (RPL7P) is not actively transcribed. 28 refs., 4 figs.

  20. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    NASA Astrophysics Data System (ADS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-05-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  1. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    SciTech Connect

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  2. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment1

    PubMed Central

    Johnson, Matthew G.; Gardner, Elliot M.; Liu, Yang; Medina, Rafael; Goffinet, Bernard; Shaw, A. Jonathan; Zerega, Nyree J. C.; Wickett, Norman J.

    2016-01-01

    Premise of the study: Using sequence data generated via target enrichment for phylogenetics requires reassembly of high-throughput sequence reads into loci, presenting a number of bioinformatics challenges. We developed HybPiper as a user-friendly platform for assembly of gene regions, extraction of exon and intron sequences, and identification of paralogous gene copies. We test HybPiper using baits designed to target 333 phylogenetic markers and 125 genes of functional significance in Artocarpus (Moraceae). Methods and Results: HybPiper implements parallel execution of sequence assembly in three phases: read mapping, contig assembly, and target sequence extraction. The pipeline was able to recover nearly complete gene sequences for all genes in 22 species of Artocarpus. HybPiper also recovered more than 500 bp of nontargeted intron sequence in over half of the phylogenetic markers and identified paralogous gene copies in Artocarpus. Conclusions: HybPiper was designed for Linux and Mac OS X and is freely available at https://github.com/mossmatters/HybPiper. PMID:27437175

  3. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    SciTech Connect

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J. . E-mail: jianlu@shsmu.edu.cn

    2007-04-27

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron.

  4. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc

    PubMed Central

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies. PMID:26098760

  5. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    PubMed

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies. PMID:26098760

  6. SERRATE is required for intron suppression of RNA silencing in Arabidopsis

    PubMed Central

    Christie, Michael; Carroll, Bernard J.

    2011-01-01

    Transposons and viruses are generally devoid of introns and are prime targets for small interfering RNAs (siRNAs) and RNA silencing. Conversely, endogenous genes often contain introns and are not usually subjected to post-transcriptional gene silencing by siRNAs. In a recent study, we reported that efficient intron splicing directly suppresses siRNA biogenesis and RNA silencing of a Green Fluorescence Protein (GFP) transgene. Splicing-mediated suppression of GFP silencing was dependent on ABH1, the Arabidopsis ortholog of human mRNA cap-binding protein 80. Furthermore, genome-wide analyses of Arabidopsis small RNA libraries showed that exons from intron-containing genes accumulate less small RNAs than exons from intronless genes. Our in silico analysis therefore suggested that intron splicing has a fundamental role in protecting endogenous genes from becoming templates for siRNA biogenesis and RNA silencing. Here, we show that SERRATE (SE) is also required for splicing-mediated suppression of RNA silencing in Arabidopsis. SE encodes a zinc finger protein that, like ABH1, functions in micro-RNA (miRNA) biogenesis and intron splicing. The implications of our findings are also discussed in a broader context. PMID:22112452

  7. Detection of prion gene promoter and intron1 indel polymorphisms in Anatolian water buffalo (Bubalus bubalis).

    PubMed

    Oztabak, K; Ozkan, E; Soysal, I; Paya, I; Un, C

    2009-12-01

    Bovine spongiform encephalopathy (BSE) is a fatal disease caused by miss folded prion protein. Studies in the cattle, comparing genetic data from BSE diseased and healthy animals have shown that indel polymorphisms in the promoter and intron 1 of PRNP gene were associated with disease susceptibility. Several studies were conducted to find out allele and genotypic frequencies of indel polymorphisms in promoter and intron 1 of the cattle PRNP gene. Unlike domestic cattle and bison, no indel polymorphisms of the PRNP promoter and intron 1 were examined in any population of the water buffalo (Bubalus bubalis). Aim of this study was to analyse frequencies of allele, genotype, and haplotype of the indel polymorphisms (23 bp indel in promoter and 12 bp indel in intron 1) in prion protein coding gene (PRNP) of water buffalo. Therefore a PCR based procedure, previously used in cattle to detect indel polymorphisms of PRNP promoter and intron 1 locus, was applied to 106 Anatolian water buffalo DNAs. Our results have revealed high frequency of in variants and in23/in12 haplotype for PRNP promoter and intron 1 indel polymorphisms in water buffalo. The results of the study have demonstrated that frequencies of allele, genotype, and haplotype of the indel polymorphisms in PRNP gene of the Anatolian water buffalo are significantly different those from cattle and bison PRNP indel polymorphisms. PMID:19912420

  8. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  9. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  10. Polymorphisms within the promoter and the intron 2 of the serotonin transporter gene in a population of bulimic patients.

    PubMed

    Lauzurica, N; Hurtado, A; Escartí, A; Delgado, M; Barrios, V; Morandé, G; Soriano, J; Jáuregui, I; González-Valdemoro, M I; García-Camba, E; Fuentes, J A

    2003-12-11

    The serotonin transporter (5-HTT) gene is a firm candidate to explain eating disorders. In this association study, two different polymorphisms were analysed: a variable number of tandem repeat (VNTR) polymorphism in intron 2 and a deletion/insertion polymorphism (5-HTTLPR) in the promoter region. The hypothesis that these gene polymorphisms may be a susceptibility factor in bulimia nervosa (BN) was explored in a female population of 102 purgative bulimics. BN patients who have suffered preceding anorexia nervosa (AN) episodes formed the so-called previous AN bulimic patient group. In our sample of normal-eater controls and purging type bulimics, regardless of whether or not the BN patients had suffered prior AN episodes, no differences were found considering the frequencies of genotypes, alleles or haplotypes of both polymorphic regions of the 5-HTT gene. PMID:14625025

  11. Canine Polydactyl Mutations With Heterogeneous Origin in the Conserved Intronic Sequence of LMBR1

    PubMed Central

    Park, Kiyun; Kang, Joohyun; Subedi, Krishna Pd.; Ha, Ji-Hong; Park, Chankyu

    2008-01-01

    Canine preaxial polydactyly (PPD) in the hind limb is a developmental trait that restores the first digit lost during canine evolution. Using a linkage analysis, we previously demonstrated that the affected gene in a Korean breed is located on canine chromosome 16. The candidate locus was further limited to a linkage disequilibrium (LD) block of <213 kb composing the single gene, LMBR1, by LD mapping with single nucleotide polymorphisms (SNPs) for affected individuals from both Korean and Western breeds. The ZPA regulatory sequence (ZRS) in intron 5 of LMBR1 was implicated in mammalian polydactyly. An analysis of the LD haplotypes around the ZRS for various dog breeds revealed that only a subset is assigned to Western breeds. Furthermore, two distinct affected haplotypes for Asian and Western breeds were found, each containing different single-base changes in the upstream sequence (pZRS) of the ZRS. Unlike the previously characterized cases of PPD identified in the mouse and human ZRS regions, the canine mutations in pZRS lacked the ectopic expression of sonic hedgehog in the anterior limb bud, distinguishing its role in limb development from that of the ZRS. PMID:18689889

  12. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences. PMID:25491390

  13. Natural courtship song variation caused by an intronic retroelement in an ion channel gene.

    PubMed

    Ding, Yun; Berrocal, Augusto; Morita, Tomoko; Longden, Kit D; Stern, David L

    2016-08-18

    Animal species display enormous variation for innate behaviours, but little is known about how this diversity arose. Here, using an unbiased genetic approach, we map a courtship song difference between wild isolates of Drosophila simulans and Drosophila mauritiana to a 966 base pair region within the slowpoke (slo) locus, which encodes a calcium-activated potassium channel. Using the reciprocal hemizygosity test, we confirm that slo is the causal locus and resolve the causal mutation to the evolutionarily recent insertion of a retroelement in a slo intron within D. simulans. Targeted deletion of this retroelement reverts the song phenotype and alters slo splicing. Like many ion channel genes, slo is expressed widely in the nervous system and influences a variety of behaviours; slo-null males sing little song with severely disrupted features. By contrast, the natural variant of slo alters a specific component of courtship song, illustrating that regulatory evolution of a highly pleiotropic ion channel gene can cause modular changes in behaviour. PMID:27509856

  14. Associations between intronic non-B DNA structures and exon skipping

    PubMed Central

    Tsai, Zing Tsung-Yeh; Chu, Wen-Yi; Cheng, Jen-Hao; Tsai, Huai-Kuang

    2014-01-01

    Non-B DNA structures are abundant in the genome and are often associated with critical biological processes, including gene regulation, chromosome rearrangement and genome stabilization. In particular, G-quadruplex (G4) may affect alternative splicing based on its ability to impede the activity of RNA polymerase II. However, the specific role of non-B DNA structures in splicing regulation still awaits investigation. Here, we provide a genome-wide and cross-species investigation of the associations between five non-B DNA structures and exon skipping. Our results indicate a statistically significant correlation of each examined non-B DNA structures with exon skipping in both human and mouse. We further show that the contributions of non-B DNA structures to exon skipping are influenced by the occurring region. These correlations and contributions are also significantly different in human and mouse. Finally, we detailed the effects of G4 by showing that occurring on the template strand and the length of G-run, which is highly related to the stability of a G4 structure, are significantly correlated with exon skipping activity. We thus show that, in addition to the well-known effects of RNA and protein structure, the relative positional arrangement of intronic non-B DNA structures may also impact exon skipping. PMID:24153112

  15. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription.

    PubMed

    Kleinjan, Dirk A; Seawright, Anne; Childs, Andrew J; van Heyningen, Veronica

    2004-01-15

    Pax6 is a transcription factor with an essential role in eye, central nervous system, and pancreas development. Its expression pattern is restricted to these specific domains within the developing embryo. Here four conserved elements are identified in Pax6 intron 7, showing a high level of sequence conservation between human, mouse, pufferfish, and zebrafish. Three of these are shown to act as cis-regulatory elements, directing expression of a reporter gene to distinct subsets of the Pax6 expression domain. CE1 regulates gene expression in late eye development, CE2 drives expression in the diencephalon and in the developing heart tube where Pax6 is not normally expressed, while CE3 directs expression in rhombencephalon. CE2 is shown to be autoregulated in the diencephalon, responding to absence of Pax6. We identify a highly conserved Pax6 recognition site and demonstrate its ability to bind Pax6 specifically. CE1 is embedded in a CpG island, and we identify a novel Pax6 transcript which initiates from this region. Functional analysis of evolutionary conserved sequences pinpoints novel cis-acting elements that govern the regulation of the complex spatio-temporal and quantitative expression of Pax6. PMID:14732405

  16. Proteomic Analysis of Nuclear Factors Binding to an Intronic Enhancer in the Myelin Proteolipid Protein Gene

    PubMed Central

    Dobretsova, Anna; Johnson, Jennifer W.; Jones, Richard C.; Edmondson, Ricky D.; Wight, Patricia A.

    2015-01-01

    The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. EMSA analysis demonstrated that specific DNA binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over twenty sequence-specific DNA-binding proteins. Supplementary Western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. PMID:18266931

  17. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  18. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  19. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  20. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent omegaG binding to a group I intron.

    PubMed

    Bao, Penghui; Wu, Qi-Jia; Yin, Ping; Jiang, Yanfei; Wang, Xu; Xie, Mao-Hua; Sun, Tao; Huang, Lin; Mo, Ding-Ding; Zhang, Yi

    2008-12-01

    Self-splicing of group I introns is accomplished by two sequential ester-transfer reactions mediated by sequential binding of two different guanosine ligands, but it is yet unclear how the binding is coordinated at a single G-binding site. Using a three-piece trans-splicing system derived from the Candida intron, we studied the effect of the prior GTP binding on the later omegaG binding by assaying the ribozyme activity in the second reaction. We showed that adding GTP simultaneously with and prior to the esterified omegaG in a substrate strongly accelerated the second reaction, suggesting that the early binding of GTP facilitates the subsequent binding of omegaG. GTP-mediated facilitation requires C2 amino and C6 carbonyl groups on the Watson-Crick edge of the base but not the phosphate or sugar groups, suggesting that the base triple interactions between GTP and the binding site are important for the subsequent omegaG binding. Strikingly, GTP binding loosens a few local structures of the ribozyme including that adjacent to the base triple, providing structural basis for a rapid exchange of omegaG for bound GTP. PMID:18978026

  1. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter

    PubMed Central

    Cooper, Aaron R.; Lill, Georgia R.; Gschweng, Eric H.; Kohn, Donald B.

    2015-01-01

    Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors. PMID:25520191

  2. Alternative splicing of human T-cell-specific MAL mRNA and its correlation with the exon/intron organization of the gene

    SciTech Connect

    Rancano, C.; Rubio, T.; Alonso, M.A. )

    1994-05-15

    Sequence analysis of the T-cell-specific MAL gene revealed four exons, each encoding a hydrophobic, presumably membrane-associated, segment and its adjacent hydrophilic sequence. Amplification by the polymerase chain reaction of cDNA from different T-cell samples indicated the existence of four different forms of MAL mRNA, termed MAL-a, -b, -c, and -d, that arise from differential usage of exons II and/or III. As the three introns were located between complete codons, the reading frame was maintained in all the transcripts. A model resembling the structures postulated for different proteolipid proteins is proposed for the protein encoded by each alternative mRNA species. 9 refs., 3 figs.

  3. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  4. Historical volcanoes of Armenia and adjacent areas: What is revisited?

    NASA Astrophysics Data System (ADS)

    Karakhanian, A.; Jrbashyan, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagyan, A.; Baghdassaryan, H.; Davtian, V.

    2006-07-01

    The validity of some data in Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62] that are revisited by R. Haroutiunian is considered. A conclusion is made that the revisions suggested by Haroutiunian concern unessential parts of the content of work by Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62]. This article presents new evidence and re-proves the earlier conclusions that are disputed or revised by R. Haroutiunian.

  5. Intron retention and 3'-UTR analysis of Arabidopsis Dicer-like 2 transcripts.

    PubMed

    He, Qiongji; Peng, Jiejun; Yan, Fei; Lin, Lin; Lu, Yuwen; Zheng, Hongying; Chen, Hairu; Chen, Jianping

    2012-03-01

    Arabidopsis thaliana Dicer-like protein 2 (AtDCL2) plays an essential role in the RNA interference pathway. The function of AtDCL2 and other DCLs has been much studied but little has been done to characterize the DCLs transcripts before they are translated into proteins. Here, we investigated AtDCL2 transcripts and showed that all 21 introns of AtDCL2 except intron 9, 18, 20 and 21 could be retained although spliced sequences usually predominated. Intron 10 was more frequently retained and transient expression assays in Nicotiana benthamiana leaves showed that when AG/C at the 3' splicing site of the intron was changed to AG/G, the intron was more frequently spliced out. Conversely, a high retention of intron 18 was obtained if the AG/G at the 3' splicing site was changed to AG/C. These results suggest that the sequence at the 3' splicing site affects the efficiency of intron splicing. The 3'-UTRs of AtDCL2 had lengths between 54 and 154 nts, and the different 3'-UTRs differentially affected the transcriptional levels of fused GFP expressed transiently in N. benthamiana. Further comparisons and mutation experiments suggested that a putative SBF-1 binding site and an AU-rich element in the 3'-UTR both down-regulated expression of the upstream GFP fused to the 3'-UTR. Conversely, a second poly(A) consensus signal sequence in one 3'-UTR up-regulated gene expression. Our results provide insight into the character of AtDCL2 transcripts and demonstrate the potential complexity of factors that affect the frequency and patterns of alternative splicing. PMID:21698366

  6. Petunia actin-depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron.

    PubMed

    Mun, Jeong-Hwan; Lee, So-Young; Yu, Hee-Ju; Jeong, Young-Min; Shin, Mi-Young; Kim, Hoyeun; Lee, Ilha; Kim, Sang-Gu

    2002-06-12

    Actin-depolymerizing factor (ADF) is one of the actin cytoskeleton-modulating proteins. We have characterized the accumulation pattern of petunia ADF proteins. PhADF proteins are accumulated in every petunia organ and their accumulation is differentially regulated by developmental signals. Their cellular localization is vascular tissue-preferential in vegetative organs, whereas somewhat different in reproductive organs. In reproductive organs, PhADFs are present in outer integument, endocarp of ovary wall, transmitting tissue of style, and epidermis and endothecium of young anther. From a petunia genomic library, we have isolated a genomic clone encoding PhADF1. Comparison to complementary DNA sequence revealed that the coding region of PhADF1 gene consists of three exons and two introns. Analysis of chimeric gene expression using beta-glucuronidase as a reporter gene in transgenic Arabidopsis revealed that PhADF1 was strongly expressed in every vegetative tissue except petal. In addition, expression of the gene was highly enhanced by its first intron. These results suggest that PhADF1 gene of petunia is mainly expressed in vascular tissues and its expression is regulated by intron-mediated enhancement mechanism. PMID:12119118

  7. The structure of the human intron-containing S8 ribosomal protein gene and determination of its chromosomal location at 1p32-p32. 4

    SciTech Connect

    Davies, B.; Fried, M. )

    1993-01-01

    The intron-containing gene encoding human ribosomal protein SS (RPS8) has been cloned and characterized, and its chromosomal position determined. Using a PCR-based cloning strategy, we have isolated the intron-containing gene in the presence of its many processed pseudogenes and determined the DNA sequence of the entire gene and its upstream and downstream flanking regions. The human RPS8 gene is 3161 bp in length and comprises six exons. Despite lacking a consensus TATA box, primer extension analysis indicates that the start of transcription is precisely located at a C residue within an 11-bp oligopyrimidine tract. The first exon, which contains the ATG start codon, is just 27 bp in length. The DNA sequence 5[prime] to the RPS8 gene and within the first exon and intron shows several features of a CpG island. A combination of Southern blotting, PCR, and fluorescence in situ hybridization analyses has enabled the chromosomal location of the human RPSS gene to be determined as lp32-p34.1. 51 refs., 5 figs.

  8. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.

    PubMed

    Rimessi, Paola; Fabris, Marina; Bovolenta, Matteo; Bassi, Elena; Falzarano, Sofia; Gualandi, Francesca; Rapezzi, Claudio; Coccolo, Fabio; Perrone, Daniela; Medici, Alessandro; Ferlini, Alessandra

    2010-09-01

    Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches. PMID:20486769

  9. Geomorphology of portions of western Kentucky and adjacent areas

    SciTech Connect

    Dilamarter, R.C.

    1982-07-01

    The geomorphology of portions of western Kentucky and adjacent areas in Indiana, Illinois and Tennessee is presented as a background for interpreters evaluating the present land surface using remotely sensed imagery. Eight physiographic units were analyzed and are briefly discussed with reference to topography and surface deposits. Great diversity was found to be characteristic of the region, the result of different structural influences and geomorphic processes. The landscape bears the marks of fluvial, glacial, eolian, lacustrine and karstic environments, so a regional geomorphic history was compiled from the literature as an aid to understanding the land surface. Three smaller zones in Kentucky were analyzed in greater detail regarding topography and geomorphic development because of their potential importance in subsurface exploration.

  10. Reconstructing genome mixtures from partial adjacencies.

    PubMed

    Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J

    2012-01-01

    Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028

  11. Allelic associations of two polymorphic microsatellites in intron 40 of the human von Willebrand factor gene

    SciTech Connect

    Pena, S.D.J.; De Souza, K.T. ); De Andrade, M.; Chakraborty, R. )

    1994-01-18

    At intron 40 of the von Willebrand factor (vWF) gene, two GATA-repeat polymorphic sites exist that are physically separated by 212 bp. At the first site (vWF1 locus), seven segregating repeat alleles were observed in a Brazilian Caucasian population, and at the second (vWF2 locus) there were eight alleles, detected through PCR amplifications of this DNA region. Haplotype analysis of individuals revealed 36 different haplotypes in a sample of 338 chromosomes examined. Allele frequencies between generations and gender at each locus were not significantly different, and the genotype frequencies were consistent with their Hardy-Weinberg expectations. Linkage disequilibrium between loci is highly significant with positive allele size association; that is, large alleles at the loci tend to occur together, and so do the same alleles. Variability at each locus appeared to have arisen in a stepwise fashion, suggesting replication slippage as a possible mechanism of production of new alleles. However, the authors observed an increased number of haplotypes, in contrast with the predictions of a stepwise production of variation in the entire region, suggesting some form of cooperative changes between loci that could be due to either gene conversion, or a common control mechanism of production of new variation at these repeat polymorphism sites. The high degree of polymorphism (gene diversity values of 72% and 78% at vWF1 and vWF2, respectively, and of 93% at the haplotype level) makes these markers informative for paternity testing, genetic counseling, and individual-identification purposes.

  12. Characterization of a New DGKE Intronic Mutation in Genetically Unsolved Cases of Familial Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Mele, Caterina; Lemaire, Mathieu; Iatropoulos, Paraskevas; Piras, Rossella; Bresin, Elena; Bettoni, Serena; Bick, David; Helbling, Daniel; Veith, Regan; Valoti, Elisabetta; Donadelli, Roberta; Murer, Luisa; Neunhäuserer, Maria; Breno, Matteo; Frémeaux-Bacchi, Véronique; Lifton, Richard; Noris, Marina

    2015-01-01

    Background and objectives Genetic and acquired abnormalities causing dysregulation of the complement alternative pathway contribute to atypical hemolytic uremic syndrome (aHUS), a rare disorder characterized by thrombocytopenia, nonimmune microangiopathic hemolytic anemia, and acute kidney failure. However, in a substantial proportion of patients the disease-associated alterations are still unknown. Design, setting, participants, & measurements Whole-exome and whole-genome sequencing were performed in two unrelated families with infantile recessive aHUS. Sequencing of cDNA from affected individuals was used to test for the presence of aberrant mRNA species. Expression of mutant diacylglycerol kinase epsilon (DGKE) protein was evaluated with western blotting. Results Whole-exome sequencing analysis with conventional variant filtering parameters did not reveal any obvious candidate mutation in the first family. The report of aHUS-associated mutations in DGKE, encoding DGKE, led to re-examination of the noncoding DGKE variants obtained from next-generation sequencing, allowing identification of a novel intronic DGKE mutation (c.888+40A>G) that segregated with disease. Sequencing of cDNA from affected individuals revealed aberrant forms of DGKE mRNA predicted to cause profound abnormalities in the protein catalytic site. By whole-genome sequencing, the same mutation was found in compound heterozygosity with a second nonsense DGKE mutation in all affected siblings of another unrelated family. Homozygous and compound heterozygous patients presented similar clinical features, including aHUS presentation in the first year of life, multiple relapsing episodes, and proteinuria, which are prototypical of DGKE-associated aHUS. Conclusions This is the first report of a mutation located beyond the exon-intron boundaries in aHUS. Intronic mutations such as these are underreported because conventional filtering parameters used to process next-generation sequencing data routinely

  13. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core

    PubMed Central

    Truong, David M.; Sidote, David J.; Russell, Rick; Lambowitz, Alan M.

    2013-01-01

    Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA (“ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites (“retrohoming”). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg2+ concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg2+ transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg2+ concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg2+ concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg2+ binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg2+-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg2+ concentrations, with implications for evolution and potential applications in gene targeting. PMID:24043808

  14. Nuclear pore components affect distinct stages of intron-containing gene expression

    PubMed Central

    Bonnet, Amandine; Bretes, Hugo; Palancade, Benoit

    2015-01-01

    Several nuclear pore-associated factors, including the SUMO-protease Ulp1, have been proposed to prevent the export of intron-containing messenger ribonucleoparticles (mRNPs) in yeast. However, the molecular mechanisms of this nuclear pore-dependent mRNA quality control, including the sumoylated targets of Ulp1, have remained unidentified. Here, we demonstrate that the apparent ‘pre-mRNA leakage’ phenotype arising upon ULP1 inactivation is shared by sumoylation mutants of the THO complex, an early mRNP biogenesis factor. Importantly, we establish that alteration of THO complex activity differentially impairs the expression of intronless and intron-containing reporter genes, rather than triggering bona fide ‘pre-mRNA leakage’. Indeed, we show that the presence of introns within THO target genes attenuates the effect of THO inactivation on their transcription. Epistasis analyses further clarify that different nuclear pore components influence intron-containing gene expression at distinct stages. Ulp1, whose maintenance at nuclear pores depends on the Nup84 complex, impacts on THO-dependent gene expression, whereas the nuclear basket-associated Mlp1/Pml39 proteins prevent pre-mRNA export at a later stage, contributing to mRNA quality control. Our study thus highlights the multiplicity of mechanisms by which nuclear pores contribute to gene expression, and further provides the first evidence that intronic sequences can alleviate early mRNP biogenesis defects. PMID:25845599

  15. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2016-01-01

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  16. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  17. Mosses share mitochondrial group II introns with flowering plants, not with liverworts.

    PubMed

    Pruchner, D; Nassal, B; Schindler, M; Knoop, V

    2001-12-01

    Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants. PMID:11810232

  18. A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA.

    PubMed Central

    Ernst, R K; Bray, M; Rekosh, D; Hammarskjöld, M L

    1997-01-01

    A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors. PMID:8972193

  19. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGESBeta

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  20. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    SciTech Connect

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  1. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2016-01-29

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823