Science.gov

Sample records for adjacent intronic regions

  1. Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.

    PubMed

    Zafrir, Zohar; Tuller, Tamir

    2015-10-01

    RNA splicing is the central process of intron removal in eukaryotes known to regulate various cellular functions such as growth, development, and response to external signals. The canonical sequences indicating the splicing sites needed for intronic boundary recognition are well known. However, the roles and evolution of the local folding of intronic and exonic sequence features adjacent to splice sites has yet to be thoroughly studied. Here, focusing on four fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Candida albicans), we performed for the first time a comprehensive high-resolution study aimed at characterizing the encoding of intronic splicing efficiency in pre-mRNA transcripts and its effect on intron evolution. Our analysis supports the conjecture that pre-mRNA local folding strength at intronic boundaries is under selective pressure, as it significantly affects splicing efficiency. Specifically, we show that in the immediate region of 12-30 nucleotides (nt) surrounding the intronic donor site there is a preference for weak pre-mRNA folding; similarly, in the region of 15-33 nt surrounding the acceptor and branch sites there is a preference for weak pre-mRNA folding. We also show that in most cases there is a preference for strong pre-mRNA folding further away from intronic splice sites. In addition, we demonstrate that these signals are not associated with gene-specific functions, and they correlate with splicing efficiency measurements (r = 0.77, P = 2.98 × 10(-21)) and with expression levels of the corresponding genes (P = 1.24 × 10(-19)). We suggest that pre-mRNA folding strength in the above-mentioned regions has a direct effect on splicing efficiency by improving the recognition of intronic boundaries. These new discoveries are contributory steps toward a broader understanding of splicing regulation and intronic/transcript evolution.

  2. BIALLELIC POLYMORPHISM IN THE INTRON REGION OF B-TUBULIN GENE OF CRYPTOSPORIDIUM PARASITES

    EPA Science Inventory

    Nucleotide sequencing of polymerase chain reaction-amplified intron region of the Cryptosporidium parvum B-tubulin gene in 26 human and 15 animal isolates revealed distinct genetic polymorphism between the human and bovine genotypes. The separation of 2 genotypes of C. parvum is...

  3. Replacement of two non-adjacent amino acids in the S.cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity.

    PubMed Central

    Szczepanek, T; Lazowska, J

    1996-01-01

    Two homologous group I introns, the second intron of the cyt b gene, from related Saccharomyces species differ in their mobility. The S.capensis intron is mobile and encodes the I-ScaI endonuclease promoting intron homing, whilst the homologous S.cerevisiae intron is not mobile, but functions as an RNA maturase promoting splicing. These two intron-encoded proteins differ by only four amino acid substitutions. Taking advantage of the remarkable similarity of the two intron open reading frames and using biolistic transformation of mitochondria, we show that the replacement of only two non-adjacent residues in the S.cerevisiae maturase carboxy-terminal sequence is sufficient to induce a homing-endonuclease activity without losing the splicing function. Also, we demonstrate that these two activities reside in the S.capensis bi2-encoded protein which functions in both splicing and intron mobility in the wild-type cells. These results provide new insight into our understanding of the activity and the evolution of group I intron-encoded proteins. Images PMID:8670880

  4. Characterization of rat c-myc and adjacent regions.

    PubMed Central

    Hayashi, K; Makino, R; Kawamura, H; Arisawa, A; Yoneda, K

    1987-01-01

    Rat genomic regions covering c-myc were cloned from the DNA of both normal liver and two lines of Morris hepatomas, one of which had c-myc amplification. The three restriction maps showed perfect agreement within the overlapping regions. The 7 kb regions, which included the entire normal rat c-myc and the region 2.2 kb upstream, and one from the hepatomas, were sequenced and found to be identical. The coding regions of exons 2 and 3 were highly conserved between rat, mouse and man, but some differences in amino acids were noted. Exon 1 and the non-coding region of exon 3 showed limited homology between the three species. Rat exon 1 contained several nonsense codons in each frame and no ATG codon, indicating there to be no coding capacity in this exon. The 2.2 kb upstream regions and the introns compared showed unusual conservation between the rat and human genes. Some motifs, previously proposed as having a functional role in human c-myc, were also found in equivalent positions of the rat sequence. Nucleas S1 protection mapping revealed the second promoter to be preferentially used in most tissues or in hepatoma cells, and the second poly A addition signal to be the only one functional in all the RNA sources examined. Images PMID:3306601

  5. Empires and percolation: stochastic merging of adjacent regions

    NASA Astrophysics Data System (ADS)

    Aldous, D. J.; Ong, J. R.; Zhou, W.

    2010-01-01

    We introduce a stochastic model in which adjacent planar regions A, B merge stochastically at some rate λ(A, B) and observe analogies with the well-studied topics of mean-field coagulation and of bond percolation. Do infinite regions appear in finite time? We give a simple condition on λ for this hegemony property to hold, and another simple condition for it to not hold, but there is a large gap between these conditions, which includes the case λ(A, B) ≡ 1. For this case, a non-rigorous analytic argument and simulations suggest hegemony.

  6. Distribution bias of the sequence matching between exons and introns in exon joint and EJC binding region in C. elegans.

    PubMed

    Zhang, Qiang; Li, Hong; Zhao, Xiaoqing; Zheng, Yan; Zhou, Deliang

    2015-01-07

    We propose a mechanism that there are matching relations between mRNA sequences and corresponding post-spliced introns, and introns play a significant role in the process of gene expression. In order to reveal the sequence matching features, Smith-Waterman local alignment method is used on C. elegans mRNA sequences to obtain optimal matched segments between exon-exon sequences and their corresponding introns. Distribution characters of matching frequency on exon-exon sequences and sequence characters of optimal matched segments are studied. Results show that distributions of matching frequency on exon-exon junction region have obvious differences, and the exon boundary is revealed. Distributions of the length and matching rate of optimal matched segments are consistent with sequence features of siRNA and miRNA. The optimal matched segments have special sequence characters compared with their host sequences. As for the first introns and long introns, matching frequency values of optimal matched segments with high GC content, rich CG dinucleotides and high λCG values show the minimum distribution in exon junction complex (EJC) binding region. High λCG values in optimal matched segments are main characters in distinguishing EJC binding region. Results indicate that EJC and introns have competitive and cooperative relations in the process of combining on protein coding sequences. Also intron sequences and protein coding sequences do have concerted evolution relations.

  7. Skipping of an alternative intron in the srsf1 3' untranslated region increases transcript stability.

    PubMed

    Akaike, Yoko; Kurokawa, Ken; Kajita, Keisuke; Kuwano, Yuki; Masuda, Kiyoshi; Nishida, Kensei; Kang, Seung Wan; Tanahashi, Toshihito; Rokutan, Kazuhito

    2011-08-01

    The srsf1 gene encodes serine/arginine-rich splicing factor 1 (SRSF1) that participates in both constitutive and alternative splicing reactions. This gene possesses two ultraconserved elements in the 3' untranslated region (UTR). Skipping of an alternative intron between the two elements has no effect on the protein-coding sequence, but it generates a premature stop codon (PTC)-containing mRNA isoform, whose degradation is considered to depend on nonsense-mediated mRNA decay (NMD). However, several cell lines (HCT116, RKO, HeLa, and WI38 cells) constitutively expressed significant amounts of the srsf1 PTC variant. HCT116 cells expressed the PTC variant nearly equivalent to the major isoform that includes the alternative intron in the 3' UTR. Inhibition of NMD by silencing a key effecter UPF1 or by treatment with cycloheximide failed to increase amounts of the PTC variant in HCT116 cells, and the PTC variant was rather more stable than the major isoform in the presence of actinomycin D. Our results suggest that the original stop codon may escape from the NMD surveillance even in skipping of the alternative intron. The srsf1 gene may produce an alternative splice variant having truncated 3' UTR to relief the microRNA- and/or RNA-binding protein-mediated control of translation or degradation.

  8. Expression of the (recombinant) endogenous immunoglobulin heavy-chain locus requires the intronic matrix attachment regions.

    PubMed Central

    Oancea, A E; Berru, M; Shulman, M J

    1997-01-01

    The elements which regulate gene expression have traditionally been identified by their effects on reporter genes which have been transfected into cell lines or animals. It is generally assumed that these elements have a comparable role in expression of the corresponding endogenous locus. Nevertheless, several studies of immunoglobulin heavy-chain (IgH) gene expression have reported that the requirements for expressing IgH-derived transgenes differ from the requirements for expression of the endogenous IgH locus. Thus, although expression of transgenes requires multiple elements from the J(H)-C mu intron--the E mu core enhancer, the matrix attachment regions (MARs) which flank E mu, and several switch-associated elements--B-cell lines in which expression of the endogenous heavy-chain gene is maintained at the normal level in the absence of these intronic elements have occasionally been reported. Gene targeting offers an alternative method for assessing regulatory elements, one in which the role of defined segments of endogenous genes can be evaluated in situ. We have applied this approach to the IgH locus of a hybridoma cell line, generating recombinants which bear predetermined modifications in the functional, endogenous mu heavy-chain gene. Our analysis indicates the following. (i) Ninety-eight percent of the expression of the recombinant endogenous mu gene depends on elements in the MAR-E mu-MAR segment. (ii) Expression of the recombinant mu gene depends strongly on the MARs of the J(H)-C mu intron but not on the adjoining E mu core enhancer and switch regions; because our recombinant cell lines bear only a single copy of the mu gene, our results indicate that mu expression is activated by MAR elements lying within that same mu transcription unit. (iii) The MAR segment includes at least one activating element in addition to those defined previously by the binding of presumptive activating proteins in the nuclear matrix. (iv) Close association of the MARs with

  9. Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel

    2012-01-01

    Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.

  10. Introns and Splicing Elements of Five Diverse Fungi†

    PubMed Central

    Kupfer, Doris M.; Drabenstot, Scott D.; Buchanan, Kent L.; Lai, Hongshing; Zhu, Hua; Dyer, David W.; Roe, Bruce A.; Murphy, Juneann W.

    2004-01-01

    Genomic sequences and expressed sequence tag data for a diverse group of fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa, and Cryptococcus neoformans) provided the opportunity to accurately characterize conserved intronic elements. An examination of large intron data sets revealed that fungal introns in general are short, that 98% or more of them belong to the canonical splice site (ss) class (5′GU…AG3′), and that they have polypyrimidine tracts predominantly in the region between the 5′ ss and the branch point. Information content is high in the 5′ ss, branch site, and 3′ ss regions of the introns but low in the exon regions adjacent to the introns in the fungi examined. The two yeasts have broader intron length ranges and correspondingly higher intron information content than the other fungi. Generally, as intron length increases in the fungi, so does intron information content. Homologs of U2AF spliceosomal proteins were found in all species except for S. cerevisiae, suggesting a nonconventional role for U2AF in the absence of canonical polypyrimidine tracts in the majority of introns. Our observations imply that splicing in fungi may be different from that in vertebrates and may require additional proteins that interact with polypyrimidine tracts upstream of the branch point. Theoretical protein homologs for Nam8p and TIA-1, two proteins that require U-rich regions upstream of the branch point to function, were found. There appear to be sufficient differences between S. cerevisiae and S. pombe introns and the introns of two filamentous members of the Ascomycota and one member of the Basidiomycota to warrant the development of new model organisms for studying the splicing mechanisms of fungi. PMID:15470237

  11. Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis.

    PubMed

    Sethuraman, Jyothi; Rudski, Shelly M; Wosnitza, Kari; Hafez, Mohamed; Guppy, Brent; Hausner, Georg

    2013-01-01

    The mtDNA rnl-U7 region has been examined for the presence of introns in selected species of the genus Ceratocystis. Comparative sequence analysis identified group I and group II introns encoding single and double motif LAGLIDADG open reading frames (ORFs) at the following positions L1671, L1787, and L1923. In addition downstream of the rnl-U7 region group I introns were detected at positions L1971 and L2231, and a group II intron at L2059. A GIY-YIG type ORF was located within one mL1923 LAGLIDADG type ORF and a degenerated GIY-YIG ORF fused to a nad2 gene fragment was found in association with the mL1971 group I intron. The diversity of composite elements that appear to be sporadically distributed among closely related species of Ceratocystis illustrates the potential for homing endonucleases and their associated introns to invade new sites. Phylogenetic analysis showed that single motif LADGLIDADG ORFs related to the mL1923 ORFs have invaded the L1787 group II intron and the L1671 group I intron. Phylogenetic analysis of intron encoded single and double motif LAGLIDADG ORFs also showed that these ORFs transferred four times from group I into group II B1 type introns.

  12. Spliceosomal introns in the 5′ untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression

    PubMed Central

    2013-01-01

    Background Introns located close to the 5′ end of a gene or in the 5′ untranslated region often exert positive effects on gene expression. This effect, known as intron-mediated enhancement (IME), has been observed in diverse eukaryotic organisms, including plants. The sequences involved in IME seem to be spread across the intron and function in an additive manner. The IMEter algorithm was developed to predict plant introns that may enhance gene expression. We have identified several plant members of the BTL class of E3s, which may have orthologs across eukaryotes, that contain a 5′UTR intron. The RING finger E3 ligases are key enzymes of the ubiquitination system that mediate the transfer of ubiquitin to substrates. Results In this study, we retrieved BTL sequences from several angiosperm species and found that 5′UTR introns showing a strong IMEter score were predicted, suggesting that they may be conserved by lineage. Promoter-GUS fusion lines were used to confirm the IME effect of these 5′UTR introns on gene expression. IMEter scores of BTLs were compared with the 5′UTR introns of two gene families MHX and polyubiquitin genes. Conclusions Analysis performed in two Arabidopsis BTL E3 ligases genes indicated that the 5′UTR introns were essential for gene expression in all the tissues tested. Comparison of the average 5′UTR intron size on three gene families in ten angiosperm species suggests that a prevalent size for a 5′UTR intron is in the range of 600 nucleotides, and that the overall IMEter score within a gene family is preserved across several angiosperms. Our results indicated that gene expression dependent on a 5′UTR intron is an efficient regulatory mechanism in BTL E3 ligases that has been preserved throughout plant evolution. PMID:24228887

  13. A silencer-proximal intronic region is required for sustained CD4 expression in post-selection thymocytes

    PubMed Central

    Henson, David M.; Chou, Chun; Sakurai, Nagisa; Egawa, Takeshi

    2014-01-01

    It has been proposed that differential kinetics of CD4/CD8 co-receptors regulate fate choice of selected thymocytes. Sustained signals by interaction between MHC class II and TCR/CD4 is required for commitment to the CD4 helper lineage. While prematurely terminated MHC-TCR/CD4 interaction in transgenic mouse models results in lineage redirection, it is unclear if CD4 expression is actively maintained by endogenous cis-elements to facilitate prolonged signaling under physiological conditions. Here we show that sustained CD4 expression in post-selection thymocytes requires an intronic sequence containing an uncharacterized DNase I hypersensitivity site (DHS) located 3’ to the silencer. Despite normal CD4 expression before selection, thymocytes lacking a 1.5 kb sequence in intron 1 including the 0.4 kb silencer and the DHS, but not the 0.4 kb silencer alone, failed to maintain CD4 expression upon positive selection and are redirected to the CD8 lineage following MHC class II-restricted selection. Furthermore, CpG dinucleotides adjacent to the DHS are hypermethylated in CD8+ T cells. These results indicate that the 1.5 kb cis-element is required in post-selection thymocytes for helper lineage commitment, presumably mediating the maintenance of CD4 expression, and suggest that inactivation of the cis-element by DNA methylation may contribute to epigenetic Cd4 silencing. PMID:24729613

  14. Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi.

    PubMed

    Zhang, Lei-Ying; Yang, Yu-Fei; Niu, Deng-Ke

    2010-12-01

    Although intron loss and gain have been widely observed, their mechanisms are still to be determined. In four Aspergillus genomes, we found 204 cases of intron loss and 84 cases of intron gain. Using this data, we tested common hypotheses of intron loss or gain. Statistical analysis showed that adjacent introns tend to be lost simultaneously and small introns were preferentially lost, supporting the model of mRNA-mediated intron loss. The lost introns reside in internal regions of genes, which is inconsistent with the traditional version of the model (partial length cDNAs are reverse transcribed from 3' ends of mRNAs), but consistent with an alternate version (partial length cDNAs are produced by self-primed reverse transcription). The latter version was not supported by examination of the abundance of T-rich segments in mRNAs. Preferential loss of internal introns might be explained by highly efficient recombination at internal regions of genes. Among the 84 cases of intron gain, we found a significantly higher frequency of short direct repeats near exon-intron boundary than in conserved introns, supporting the double-strand break repair model. We also found possible source sequences for two cases of intron gain, one by gene conversion and one by insertion of a mitochondrial sequence during double-strand break repair. Source sequences for most gained introns could not be identified and the possible reasons were discussed. In the four Aspergillus genomes studied, we did not find evidence of frequent parallel intron gains.

  15. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Sandvol, Eric; Ni, James; Hearn, Thomas; Chen, Yongshun John; Shen, Yang

    2011-08-01

    The Q of regional seismic phases Lg and Pg within the crust is assumed as a proxy for crustal Qβ and Qα, which is used as a constraint of crustal rheology. We measure regional-phase Q of the eastern Tibetan Plateau and adjacent areas. This method eliminates contributions from source and site responses and is an improvement on the Two-Station Method (TSM). We have generated tomographic images of crustal attenuation anomalies with resolution as high as 1°. In general we observe low Q in the northernmost portions of the Tibetan Plateau and high Q in the more tectonically stable regions such as the interior of the Qaidam basin. The calculated site responses appear to correlate with topography or sediment thickness. Furthermore the relationship between earthquake magnitudes and calculated source terms suggest that the RTM method effectively removes the source response and may be used as an alternative to source magnitude.

  16. Phaneorozoic sequence stratigraphy of Bolivia and adjacent regions

    SciTech Connect

    Sempere, T. )

    1993-02-01

    Phaneorozoic sequence stratigraphy of the Pacific margin of western South America, particularly the Bolivian section, has been completed and new interpretations and hypotheses have been proposed as a result of data analyses of this information. The Paleozoic margin was initially passive (late Cambrian-Llanvirn, [open quotes]Puna aulacogen[close quotes]), but became active during a middle Ordovician compressional episode. Most of late Cambrian to early Triassic Bolivian rocks are of marine origin, with dark shale units recording sea level rises, whereas middle Triassic to Recent rocks were mainly deposited in continental environments (except six restricted-marine ingressions in the late Cretaceous-Danian, and one in the late Miocene, all with hydrocarbon potential). A noteworthy similarity exists between the Devonian to Jurassic stratigraphies of Bolivia and the Parana basin, suggesting that Bolivia behaved as part of the Brazilian craton from late Cambrian to late Jurassic, when it was captured into the Pacific margin geotectonic system. Organic-rich units correlate with Paleozoic highstand deposits and younger ingressions. The Bolivian Phanerozoic strata is characterized by thick layers, partly due to middle Ordovician-Carboniferous and late Cretaceous-Cenozoic foreland basins. Paleozoic foreland geometries include northeastern onlaps and, potentially, stratigraphic traps. Hydrocarbon generation, migration and trapping mainly depended on Cenozoic structural loading and burial and on propagation of Andean deformation which are comprised of Paleozoic shale decollements. Precise knowledge of the evolution of the Phanerozoic geodynamic contexts and basin geometries through sedimentation and subsequent deformations is crucial for hydrocarbon exploration strategies in these regions.

  17. Regional tectonics of Myanmar (Burma) and adjacent areas

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.; Loyd, S.P.; Tabbutt, V.M. ); Dolan, Stein, A. )

    1990-05-01

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexity of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.

  18. Drosophila polytene chromosome bands formed by gene introns.

    PubMed

    Zhimulev, I F; Boldyreva, L V; Demakova, O V; Poholkova, G V; Khoroshko, V A; Zykova, T Yu; Lavrov, S A; Belyaeva, E S

    2016-01-01

    Genetic organization of bands and interbands in polytene chromosomes has long remained a puzzle for geneticists. It has been recently demonstrated that interbands typically correspond to the 5'-ends of house-keeping genes, whereas adjacent loose bands tend to be composed of coding sequences of the genes. In the present work, we made one important step further and mapped two large introns of ubiquitously active genes on the polytene chromosome map. We show that alternative promoter regions of these genes map to interbands, whereas introns and coding sequences found between those promoters correspond to loose grey bands. Thus, a gene having its long intron "sandwiched" between to alternative promoters and a common coding sequence may occupy two interbands and one band in the context of polytene chromosomes. Loose, partially decompacted bands appear to host large introns.

  19. Identification of a nuclear matrix attachment region like sequence in the last intron of PI3K{gamma}

    SciTech Connect

    Dai Bingbing; Ying Lei; Cai Rong; Li Ying; Zhang Xingqian; Lu Jian; Qian Guanxiang . E-mail: sundai0@163.com

    2006-03-10

    MARs are not only the structure bases of chromatin higher order structure but also have much biological significance. In this study, the whole sequence of about 100 kb in length from BAC clone of GS1-223D4 (GI: 5931478), in which human PI3K{gamma} gene is localized, was analyzed by two online-based computer programs, MARFinder and SMARTest. A strong potential MAR was predicted in the last and largest intron of PI3K{gamma}. The predicted 2 kb MAR, we refer to PIMAR, was further analyzed through biochemical methods in vitro and in vivo. The results showed that the PIMAR could be associated with nuclear matrices from HeLa cells both in vitro and in vivo. Further reporter gene analysis showed that in the transient transfection the expression of reporter gene linked with reversed PIMAR was repressed slightly, while in stably integrated state, the luciferase reporter both linked with reversed and orientated PIMAR was enhanced greatly in NIH-3T3 and K-562. These results suggest that the PIMAR maybe has the capacity of shielding integrated heterogeneous gene from chromatin position effect. Through combination of computer program analysis with confirmation by biochemical methods, we identified, for First time, a 2 kb matrix attachment region like sequence in the last intron of human PI3K{gamma}.

  20. New species of Amanita from the eastern Himalaya and adjacent regions.

    PubMed

    Yang, Zhu L; Weiß, M; Oberwinkler, F

    2004-01-01

    Four new species of Amanita, Amanita-ceae (Agaricales) are described from the eastern Himalaya and adjacent regions of southwestern China. Amanita altipes and A. parvipantherina are members of section Amanita, while A. orientifulva and A. liquii are representatives of section Vaginatae. They are compared with similar species and illustrated with line drawings.

  1. Seismic Monitoring Capabilities of the Caribbean and Adjacent Regions Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Saurel, Jean-Marie; von Hillebrandt-Andrade, Christa; Crespo, Hector; McNamara, Dan; Huerfano, Victor

    2014-05-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions during the past 500 years. Since 1500, at least 4484 people are reported to have perished in these killer waves. Hundreds of thousands are currently threatened along the Caribbean coastlines. In 2005 the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) was established. It recommended the following minimum seismic performance standards for the detection and analysis of earthquakes: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. The implementation plan of the CARIBE EWS currently includes 115 seismic stations in the Caribbean and Adjacent Regions. The NOAA National Weather Service Caribbean Tsunami Warning Program prepares and distributes monthly reports on real time and archived seismic data availability of the contributing stations at the US Tsunami Warning Centers, the Puerto Rico Seismic Network and IRIS. As of early 2014, 99 of the proposed stations are being contributed by national, regional and international seismological institutions. Recent network additions (Nicaragua, Colombia, Mexico, Cayman Islands, and Venezuela) have reduced detection threshold, time and location error throughout much of the Caribbean region and Central America. Specifically, earthquakes (>M4.0) can be detected within 1 minute throughout much of the Caribbean. The remaining exceptions to this standard for detection are portions of northern South America and Mexico. Another performance criterion is 90% data availability. Currently 60-70% of the stations meet this standard. The presentation will further report on the status of the CARIBE EWS seismic capability for the timely and accurate detection and analysis of earthquakes for tsunami warning purposes for the Caribbean and Adjacent Regions.

  2. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA

    PubMed Central

    Vincenti, Sara; Chiara, Valentina De; Bozzoni, Irene; Presutti, Carlo

    2007-01-01

    Genomic location of sequences encoding small nucleolar RNAs (snoRNAs) is peculiar in all eukaryotes from yeast to mammals: most of them are encoded within the introns of host genes. In Saccharomyces cerevisiae, seven snoRNAs show this location. In this work we demonstrate that the position of snoRNA-coding regions with respect to splicing consensus sequences is critical: yeast strains expressing mutant constructs containing shorter or longer spacers (the regions between snoRNA ends and intron splice sites) show a drop in accumulation of U24 and U18 snoRNAs. Further mutational analysis demonstrates that altering the distance between the 3′ end of the snoRNA and the branch point is the most important constraint for snoRNA biosynthesis, and that stable external stems, which are sometimes present in introns containing snoRNAs, can overcome the positional effect. Surprisingly enough, splicing of the host introns is clearly affected in most of these constructs indicating that, at least in S. cerevisiae, an incorrect location of snoRNA-coding sequences within the host intron is detrimental to the splicing process. This is different with respect to what was demonstrated in mammals, where the activity of the splicing machinery seems to be dominant with respect to the assembly of snoRNPs, and it is not affected by the location of snoRNA sequences. We also show that intronic box C/D snoRNA recognition and assembly of snoRNPs occur during transcription when splicing sequences are recognized. PMID:17135484

  3. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii) in China from Mitochondrial Control Region and Nuclear Intron Sequences.

    PubMed

    Li, Yanhe; Guo, Xianwu; Chen, Liping; Bai, Xiaohui; Wei, Xinlan; Zhou, Xiaoyun; Huang, Songqian; Wang, Weimin

    2015-06-29

    Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC) in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA) were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China.

  4. Beta-blockade improves adjacent regional sympathetic innervation during postinfarction remodeling.

    PubMed

    Kramer, C M; Nicol, P D; Rogers, W J; Seibel, P S; Park, C S; Reichek, N

    1999-10-01

    The effect of beta-blockade on left ventricular (LV) remodeling, when added to angiotensin-converting enzyme inhibition (ACEI) after anterior myocardial infarction (MI), is incompletely understood. On day 2 after coronary ligation-induced anteroapical infarction, 17 sheep were randomized to ramipril (ACEI, n = 8) or ramipril and metoprolol (ACEI-beta, n = 9). Magnetic resonance imaging was performed before and 8 wk after MI to measure changes in LV end-diastolic, end-systolic, and stroke volume indexes, LV mass index, ejection fraction (EF), and regional percent intramyocardial circumferential shortening. (123)I-labeled m-iodobenzylguanidine (MIBG) and fluorescent microspheres before and after adenosine were infused before death at 8 wk post-MI for quantitation of sympathetic innervation, blood flow, and blood flow reserve in adjacent and remote noninfarcted regions. Infarct size, regional blood flow, blood flow reserve, and the increase in LV mass and LV end-diastolic and end-systolic volume indexes were similar between groups. However, EF fell less over the 8-wk study period in the ACEI-beta group (-13 +/- 11 vs. -22 +/- 4% in ACEI, P < 0.05). The ratio of adjacent to remote region (123)I-MIBG uptake was greater in ACEI-beta animals than in the ACEI group (0.93 +/- 0.06 vs. 0.86 +/- 0.07, P < 0.04). When added to ACE inhibition after transmural anteroapical MI, beta-blockade improves EF and adjacent regional sympathetic innervation but does not alter LV size.

  5. Solution structure of an RNA fragment with the P7/P9.0 region and the 3'-terminal guanosine of the tetrahymena group I intron.

    PubMed Central

    Kitamura, Aya; Muto, Yutaka; Watanabe, Satoru; Kim, Insil; Ito, Takuhiro; Nishiya, Yoichi; Sakamoto, Kensaku; Ohtsuki, Takashi; Kawai, Gota; Watanabe, Kimitsuna; Hosono, Kazumi; Takaku, Hiroshi; Katoh, Etsuko; Yamazaki, Toshimasa; Inoue, Tan; Yokoyama, Shigeyuki

    2002-01-01

    In the second step of the two consecutive transesterifications of the self-splicing reaction of the group I intron, the conserved guanosine at the 3' terminus of the intron (omegaG) binds to the guanosine-binding site (GBS) in the intron. In the present study, we designed a 22-nt model RNA (GBS/omegaG) including the GBS and omegaG from the Tetrahymena group I intron, and determined the solution structure by NMR methods. In this structure, omegaG is recognized by the formation of a base triple with the G264 x C311 base pair, and this recognition is stabilized by the stacking interaction between omegaG and C262. The bulged structure at A263 causes a large helical twist angle (40 +/- 80) between the G264 x C311 and C262 x G312 base pairs. We named this type of binding pocket with a bulge and a large twist, formed on the major groove, a "Bulge-and-Twist" (BT) pocket. With another twist angle between the C262 x G312 and G413 x C313 base pairs (45 +/- 100), the axis of GBS/omegaG is kinked at the GBS region. This kinked axis superimposes well on that of the corresponding region in the structure model built on a 5.0 A resolution electron density map (Golden et al., Science, 1998, 282:345-358). This compact structure of the GBS is also consistent with previous biochemical studies on group I introns. The BT pockets are also found in the arginine-binding site of the HIV-TAR RNA, and within the 16S rRNA and the 23S rRNA. PMID:11991639

  6. Intron evolution in Saccharomycetaceae.

    PubMed

    Hooks, Katarzyna B; Delneri, Daniela; Griffiths-Jones, Sam

    2014-09-01

    Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoidy east species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.

  7. Hepatocyte nuclear factor 1 regulates the expression of the organic cation transporter 1 via binding to an evolutionary conserved region in intron 1 of the OCT1 gene.

    PubMed

    O'Brien, Valerie P; Bokelmann, Kristin; Ramírez, Jacqueline; Jobst, Karoline; Ratain, Mark J; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2013-10-01

    The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences.

  8. Digital depth horizon compilations of the Alaskan North Slope and adjacent Arctic regions

    USGS Publications Warehouse

    Saltus, Richard W.; Bird, Kenneth J.

    2003-01-01

    Data have been digitized and combined to create four detailed depth horizon grids spanning the Alaskan North Slope and adjacent offshore areas. These map horizon compilations were created to aid in petroleum system modeling and related studies. Topography/bathymetry is extracted from a recent Arctic compilation of global onshore DEM and satellite altimetry and ship soundings offshore. The Lower Cretaceous Unconformity (LCU), the top of the Triassic Shublik Formation, and the pre-Carboniferous acoustic basement horizon grids are created from numerous seismic studies, drill hole information, and interpolation. These horizons were selected because they mark critical times in the geologic evolution of the region as it relates to petroleum. The various horizons clearly show the major tectonic elements of this region including the Brooks Range, Colville Trough, Barrow Arch, Hanna Trough, Chukchi Platform, Nuwuk Basin, Kaktovik Basin, and Canada Basin. The gridded data are available in a variety of data formats for use in regional studies.

  9. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells

    PubMed Central

    2012-01-01

    Background The function of RNA from the non-coding (the so called “dark matter”) regions of the genome has been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found. However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised introns en route to degradation. Results We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we show that intronic RNAs have a number of features that would be expected from functional, standalone RNA species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall abundance, which changes throughout the inflammation timecourse, and other properties suggest that they function in yet unknown ways. Conclusions So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation – the sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such, they should not be ignored in surveys of functional transcripts or other genomic studies. PMID:23006825

  10. Tsunami Ready Recognition Program for the Caribbean and Adjacent Regions Launched in 2015

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Hinds, K.; Aliaga, B.; Brome, A.; Lopes, R.

    2015-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years with 4,561 associated deaths according to the NOAA Tsunami Database. The most recent devastating tsunamis occurred in 1946 in Dominican Republic; 1865 died. With the explosive increase in residents, tourists, infrastructure, and economic activity along the coasts, the potential for human and economic loss is enormous. It has been estimated that on any day, more than 500,000 people in the Caribbean could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. In 2005 the UNESCO Intergovernmental Oceanographic Commission established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (ICG CARIBE EWS) to coordinate tsunami efforts among the 48 participating countries in territories in the region. In addition to monitoring, modeling and communication systems, one of the fundamental components of the warning system is community preparedness, readiness and resilience. Over the past 10 years 49 coastal communities in the Caribbean have been recognized as TsunamiReady® by the US National Weather Service (NWS) in the case of Puerto Rico and the US Virgin Islands and jointly by UNESCO and NWS in the case of the non US jurisdictions of Anguilla and the British Virgin Islands. In response to the positive feedback of the implementation of TsunamiReady, the ICG CARIBE EWS in 2015 recommended the approval of the guidelines for a Community Performance Based Recognition program. It also recommended the adoption of the name "Tsunami Ready", which has been positively consulted with the NWS. Ten requirements were established for recognition and are divided among Preparedness, Mitigation and Response elements which were adapted from the proposed new US TsunamiReady guidelines and align well with emergency management functions. Both a

  11. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  12. Ancient, highly polymorphic human major histocompatibility complex DQA1 intron sequence

    SciTech Connect

    McGinnis, M.D.; Quinn, D.L.; Lebo, R.V.; Simons, M.J.

    1994-10-01

    A 438 basepair intron 1 sequence adjacent to exon 2 in the human major histocompatibility complex DQA1 gene defined 16 allelic variants in 69 individuals from wide ethnic backgrounds. In contrast, the most variable coding region spanned by the 247 basepair exon 2 defined 11 allelic variants. Our phylogenetic human intron 1 tree derived by the Bootstrap algorithm reflects the same relative allelic relationships as the reported DQA1 exon 2 have cosegregated since divergence of the human races. Comparison of human alleles to a Rhesus monkey DQA1 first intron sequence found only 10 nucleotide substitutions unique to Rhesus, with the other 428 positions (98%) found in at least one human allele. This high degree of homology reflects the evolutionary stability of intron sequences since these two species diverged over 20 million years ago. Because more intron 1 alleles exist than exon 2 alleles, these polymorphic introns can be used to improve tissue typing for transplantation, paternity testing, and forensics and to derive more complete phylogenetic trees. These results suggest that introns represent a previously underutilized polymorphic resource. 42 refs., 3 figs., 1 tab.

  13. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and

  14. Seasonal variations of transport time of freshwater exchanges between Changjiang Estuary and its adjacent regions

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Shen, Jian; He, Qing; Zhu, Lei; Zhang, Dai

    2015-05-01

    Seasonal variations of transport time of freshwater between the Changjiang Estuary (CJE) and its adjacent regions, Hangzhou Bay (HZB) and Jiangsu Coast (JSC), are investigated. The freshwater exchange between the CJE and HZB is controlled by the strength of the secondary plume, which initiates from the South Passage of the southernmost waterway of CJE. The transport time varies seasonally and is modulated by spring-neap tides. The water exchange between CJE and HZB exhibits a high spatial variation. A large water age is observed in the region near the southern coast of the HZB, which corresponds to high pollutant deposition and low water quality conditions observed in the field. A large exchange occurs in summer between CJE and HZB. The freshwater transported into the HZB is accumulated in the deep channel near the western shoreline of the HZB and weak horizontal exchange occurs in the southern region near the southern shoreline, resulting in an increase of water age in the southern region. Due to the increase of northerly and northwesterly winds in winter and fall, more horizontal exchange occurs, resulting in a decrease of water age. The transport time from Xuliujing to the Hangzhou Bay ranges from 30 to 60 days near Jinshanwei, and ranges from 100 to 140 days in the southern region. The advective transport is the dominant transport mechanism to move water out of the HZB, while shear-induced exchange flow transports freshwater into the HZB. Net flux is out of HZB in winter and fall, but into the HZB in summer when Changjiang discharge is high. A weak transport of freshwater between the CJE and Subei Coast exists. A portion of a freshwater plume transports freshwater northward during summer and fall. It takes approximately 60-140 days for the freshwater from Xuliujing to be transported to the Subei Coast.

  15. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.

    PubMed

    Sverdlov, Alexander V; Babenko, Vladimir N; Rogozin, Igor B; Koonin, Eugene V

    2004-08-18

    In an attempt to gain insight into the dynamics of intron evolution in eukaryotic protein-coding genes, the distributions of old introns, that are conserved between distant phylogenetic lineages, and new, lineage-specific introns along the gene length, were examined. A significant excess of old introns in 5'-regions of genes was detected. New introns, when analyzed in bulk, showed a nearly flat distribution from the 5'- to the 3'-end. However, analysis of new intron distributions in individual genomes revealed notable lineage-specific features. While in intron-poor genomes, particularly yeast Schizosaccharomyces pombe (Sp), the 5'-portions of genes contain a significantly greater number of new introns than the 3'-portions, the intron-rich genomes of humans and Arabidopsis show the opposite trend. These observations seem to be compatible with the view that introns are both lost and inserted in 3'-terminal portions of genes more often than in 5'-portions. Overrepresentation of 3'-terminal sequences among cDNAs that mediate intron loss appears to be the most likely explanation for the apparent preferential loss of introns in the distal parts of genes. Preferential insertion of introns in the 3'-portions suggests that introns might be inserted via a reverse-transcription-mediated pathway similar to that implicated in intron loss. This mechanism could involve duplication of a portion of the coding region during reverse transcription followed by homologous recombination and subsequent rapid sequence divergence in the copy that becomes a new intron.

  16. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron.

    PubMed

    Akua, Tsofit; Shaul, Orit

    2013-11-01

    The mechanisms that underlie the ability of some introns to increase gene expression, a phenomenon called intron-mediated enhancement (IME), are not fully understood. It is also not known why introns localized in the 5'-untranslated region (5' UTR) are considerably longer than downstream eukaryotic introns. It was hypothesized that this extra length results from the presence of some functional intronic elements. However, deletion analyses studies carried out thus far were unable to identify specific intronic regions necessary for IME. Using deletion analysis and a gain-of-function approach, an internal element that considerably increases translational efficiency, without affecting splicing, was identified in the 5' UTR intron of the Arabidopsis thaliana MHX gene. Moreover, the ability of this element to enhance translation was diminished by a minor downstream shift in the position of introns containing it from the 5' UTR into the coding sequence. These data suggest that some of the extra length of 5' UTR introns results from the presence of elements that enhance translation, and, moreover, from the ability of 5' UTR introns to provide preferable platforms for such elements over downstream introns. The impact of the identified intronic element on translational efficiency was augmented upon removal of neighbouring intronic elements. Interference between different intronic elements had not been reported thus far. This interference may support the bioinformatics-based idea that some of the extra sequence of 5' UTR introns is also necessary for separating different functional intronic elements.

  17. Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.; Cabral, J.; Baptista, R.; Matias, L.

    1996-06-01

    The Portuguese mainland territory is located close to the Azores-Gibraltar plate boundary, in a tectonic setting responsible for significant neotectonic and seismic activities. However, few data concerning the present regional lithospheric stress field were available, as testified by recently published maps of stress indicators for the Europe and Mediterranean regions. One of the authors already presented a synthesis on this subject [Cabral, 1993], where geological and geophysical stress indicators were considered. In this paper we introduce new information, mainly a considerable amount of borehole breakout data. The updated data set comprises 32 reliable stress indicators showing a mean azimuth of 145° (standard deviation 21°) for the maximum horizontal stress direction (SHmax). On the average, the geological data are rotated clockwise and the focal mechanism data deviated anticlockwise to that azimuth, while the borehole elongation results are consistent with the mean SHmax trend. These differences in stress trend suggest a regional progressive rotation of the SHmax direction from NNW-SSE to WNW-ESE since the upper Pliocene. To estimate stress trajectories, new and published stress indicators in the adjacent Atlantic area and northern Africa were also investigated, showing a very uniform NW-SE SHmax trend in west Iberia. A high level of horizontal compressive stress acting oblique to the western Portuguese continental margin is inferred and interpreted in view of a proposed regional geodynamical model, of activation of this passive margin, with the nucleation of a subduction zone in the Atlantic SW of Iberia, at the Gorringe submarine bank, which is propagating northward along the base of the continental slope, at the transition between thinned and normal continental crust.

  18. Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Heit, B.; Jakovlev, A.; Yuan, X.; Kay, S. M.; Sandvol, E.; Alonso, R. N.; Coira, B.; Brown, L.; Kind, R.; Comte, D.

    2013-02-01

    We performed a teleseismic P wave tomography study using seismic events at both teleseismic and regional distances, recorded by a temporary seismic array in the Argentine Puna Plateau and adjacent regions. The tomographic images show the presence of a number of positive and negative anomalies in a depth range of 20-300 km beneath the array. The most prominent of these anomalies corresponds to a low-velocity body, located in the crust, most clearly seen in the center of the array (27°S, 67°W) between the Cerro Peinado volcano, the Cerro Blanco caldera and the Farallon Negro in the east. This anomaly (southern Puna Magmatic Body) extends from the northern most part of the array and follows the line with the highest density of stations towards the south where it becomes smaller. It is flanked by high velocities on the west and the east respectively. On the west, the high velocities might be related to the subducted Nazca plate. On the northeast the high velocity block coincides with the position of the Hombre Muerto basin in the crust and could be indicating an area of lithospheric delamination where we detected a high velocity block at 100 km depth on the eastern border of the Puna plateau, north of Galan. This block might be related to a delamination event in an area with a thick crust of Paleozoic metamorphic rocks at the border between Puna and Eastern Cordillera. In the center of the array the Southern Puna magmatic body is also flanked by high velocities but the most prominent region is located on the east and is interpreted as part of the Sierras Pampeanas lithosphere with high velocities. The position of the Sierras Pampeanas geological province is key in this area as it appears to limit the extension of the plateau towards the south.

  19. Identification guide to skates (Family Rajidae) of the Canadian Atlantic and adjacent regions

    USGS Publications Warehouse

    Sulak, Kenneth J.; MacWhirter, P. D.; Luke, K.E.; Norem, A.D.; Miller, J.M.; Cooper, J.A.; Harris, L.E.

    2009-01-01

    Ecosystem-based management requires sound information on the distribution and abundance of species both common and rare. Therefore, the accurate identification for all marine species has assumed a much greater importance. The identification of many skate species is difficult as several are easily confused and has been found to be problematic in both survey data and fisheries data collection. Identification guides, in combination with training and periodic validation of taxonomic information, improve our accuracy in monitoring data required for ecosystem-based management and monitoring of populations. This guide offers a comparative synthesis of skate species known to occur in Atlantic Canada and adjacent regions. The taxonomic nomenclature and descriptions of key morphological features are based on the most up-to-date understanding of diversity among these species. Although this information will aid the user in accurate identification, some features vary geographically (such as colour) and others with life stage (most notably the proportion of tail length to body length; the presence of spines either sharper in juveniles or in some cases not yet present; and also increases in the number of tooth rows as species grow into maturity). Additional information on juvenile features are needed to facilitate problematic identifications (e.g. L. erinacea vs. L. ocellata). Information on size at maturity is still required for many of these species throughout their geographic distribution.

  20. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    Linked geological, geomorphological and tectonic features of Fennoscandia with adjacent regions of East-European plain and Barents-Kara shelf indirectly influenced the history of glacial grows and decays. The first-order bedrock landscape elements (often created or exhumed during pre-glacial Cenozoic stages) were the major factors that could partly control centers of ice nucleation and basal velocities, serve natural barriers shaping ice sheet margin during some time intervals, etc. On the hand, many landforms were powerfully modified by glacial and periglacial processes, in particular by strong glacial erosion with lithological and structural control. Quantitative estimation of Plio-Pleistocene erosion and deposition was performed combining regional geological-geomorphological analysis (GA) and modeling with rate-based time-scale reconstructions (RR), and mass-balance control. Of special GA importance was to compare and extract changes of preserved elements of pre-glacial Neogene topography from areas that underwent different duration of glacial activity, in comparison with bordering non-glaciated ones. More distinct radial glacial erosion pattern and larger basal ice velocities seem likely at the beginning of the early ice-age stage, with partial widening of pre-glacial drainage elements. Few wide lowlands with meandering rivers in permafrost condition could provoke early stage onset of topographic ice-streams. Over time, further complication of the pattern from radial to "spider web" is expected due to developing of topographic ice-streams. Worth to mention is progressive exhumation of resistant formations, additional complications of the pattern by fluvioglacial activity and glacial sedimentation, "pendulum" principle, with increasing amount of glacial and interglacial sedimentation in eroded material. Approximated variable permafrost distribution seems to be additional weighty aspect, changing erosion rates at some time intervals. To estimate mean annual

  1. Recurrent Loss of Specific Introns during Angiosperm Evolution

    PubMed Central

    Wang, Hao; Devos, Katrien M.; Bennetzen, Jeffrey L.

    2014-01-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. PMID:25474210

  2. Recurrent loss of specific introns during angiosperm evolution.

    PubMed

    Wang, Hao; Devos, Katrien M; Bennetzen, Jeffrey L

    2014-12-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss.

  3. An Intronic Locus Control Region Plays an Essential Role in the Establishment of an Autonomous Hepatic Chromatin Domain for the Human Vitamin D-Binding Protein Gene▿

    PubMed Central

    Hiroki, Tomoko; Liebhaber, Stephen A.; Cooke, Nancy E.

    2007-01-01

    The human vitamin D-binding protein (hDBP) gene exists in a cluster of four liver-expressed genes. A minimal hDBP transgene, containing a defined set of liver-specific DNase I hypersensitive sites (HSs), is robustly expressed in mouse liver in a copy-number-dependent manner. Here we evaluate these HSs for function. Deletion of HSI, located 5′ to the promoter (kb −2.1) had no significant effect on hDBP expression. In contrast, deletion of HSIV and HSV from intron 1 repressed hDBP expression and eliminated copy number dependency without a loss of liver specificity. Chromatin immunoprecipitation analysis revealed peaks of histone H3 and H4 acetylation coincident with HSIV in the intact hDBP locus. This region contains a conserved array of binding sites for the liver-enriched transcription factor C/EBP. In vitro studies revealed selective binding of C/EBPα to HSIV. In vivo occupancy of C/EBPα at HSIV was demonstrated in hepatic chromatin, and depletion of C/EBPα in a hepatic cell line decreased hDBP expression. A nonredundant role for C/EBPα was confirmed in vivo by demonstrating a reduction of hDBP expression in C/EBPα-null mice. Parallel studies revealed in vivo occupancy of the liver-enriched factor HNF1α at HSIII (at kb 0.13) within the hDBP promoter. These data demonstrate a critical role for elements within intron 1 in the establishment of an autonomous and productive hDBP chromatin locus and suggest that this function is dependent upon C/EBPα. Cooperative interactions between these intronic complexes and liver-restricted complexes within the target promoter are likely to underlie the consistency and liver specificity of the hDBP activation. PMID:17785430

  4. Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae).

    PubMed

    Nozaki, Hisayoshi; Takahara, Manabu; Nakazawa, Atsushi; Kita, Yoko; Yamada, Takashi; Takano, Hiroyoshi; Kawano, Shigeyuki; Kato, Masahiro

    2002-06-01

    Mobile group I introns sometimes contain an open reading frame (ORF) possibly encoding a site-specific DNA endonuclease. However, previous phylogenetic studies have not clearly deduced the evolutionary roles of the group I intron ORFs. In this paper, we examined the phylogeny of group IA2 introns inserted in the position identical to that of the chloroplast-encoded rbcL coding region (rbcL-462 introns) and their ORFs from 13 strains of five genera (Volvox, Pleodorina, Volvulina, Astrephomene, and Gonium) of the colonial Volvocales (Chlorophyceae) and a related unicellular green alga, Vitreochlamys. The rbcL-462 introns contained an intact or degenerate ORF of various sizes except for the Gonium multicoccum rbcL-462 intron. Partial amino acid sequences of some rbcL-462 intron ORFs exhibited possible homology to the endo/excinuclease amino acid terminal domain. The distribution of the rbcL-462 introns is sporadic in the phylogenetic trees of the colonial Volvocales based on the five chloroplast exon sequences (6021 bp). Phylogenetic analyses of the conserved intron sequences resolved that the G. multicoccum rbcL-462 intron had a phylogenetic position separate from those of other colonial volvocalean rbcL-462 introns, indicating the recent horizontal transmission of the intron in the G. multicoccum lineage. However, the combined data set from conserved intron sequences and ORFs from most of the rbcL-462 introns resolved robust phylogenetic relationships of the introns that were consistent with those of the host organisms. Therefore, most of the extant rbcL-462 introns may have been vertically inherited from the common ancestor of their host organisms, whereas such introns may have been lost in other lineages during evolution of the colonial Volvocales. In addition, apparently higher synonymous substitutions than nonsynonymous substitutions in the rbcL-462 intron ORFs indicated that the ORFs might evolve under functional constraint, which could result in homing of the

  5. Splicing signals in Drosophila: intron size, information content, and consensus sequences.

    PubMed Central

    Mount, S M; Burks, C; Hertz, G; Stormo, G D; White, O; Fields, C

    1992-01-01

    A database of 209 Drosophila introns was extracted from Genbank (release number 64.0) and examined by a number of methods in order to characterize features that might serve as signals for messenger RNA splicing. A tight distribution of sizes was observed: while the smallest introns in the database are 51 nucleotides, more than half are less than 80 nucleotides in length, and most of these have lengths in the range of 59-67 nucleotides. Drosophila splice sites found in large and small introns differ in only minor ways from each other and from those found in vertebrate introns. However, larger introns have greater pyrimidine-richness in the region between 11 and 21 nucleotides upstream of 3' splice sites. The Drosophila branchpoint consensus matrix resembles C T A A T (in which branch formation occurs at the underlined A), and differs from the corresponding mammalian signal in the absence of G at the position immediately preceding the branchpoint. The distribution of occurrences of this sequence suggests a minimum distance between 5' splice sites and branchpoints of about 38 nucleotides, and a minimum distance between 3' splice sites and branchpoints of 15 nucleotides. The methods we have used detect no information in exon sequences other than in the few nucleotides immediately adjacent to the splice sites. However, Drosophila resembles many other species in that there is a discontinuity in A + T content between exons and introns, which are A + T rich. PMID:1508718

  6. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.

    PubMed

    Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei

    2014-09-10

    Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals.

  7. Evolutionary genomics of Colias Phosphoglucose Isomerase (PGI) introns.

    PubMed

    Wang, Baiqing; Mason Depasse, J; Watt, Ward B

    2012-02-01

    Little is known of intron sequences' variation in cases where eukaryotic gene coding regions undergo strong balancing selection. Phosphoglucose isomerase, PGI, of Colias butterflies offers such a case. Its 11 introns include many point mutations, insertions, and deletions. This variation changes with intron position and length, and may leave little evidence of homology within introns except for their first and last few basepairs. Intron position is conserved between PGIs of Colias and the silkmoth, but no intron sequence homology remains. % GC content and length are functional properties of introns which can affect whole-gene transcription; we find a relationship between these properties which may indicate selection on transcription speed. Intragenic recombination is active in these introns, as in coding sequences. The small extent of linkage disequilibrium (LD) in the introns decays over a few hundred basepairs. Subsequences of Colias introns match subsequences of other introns, untranslated regions of cDNAs, and insect-related transposons and pathogens, showing that a diverse pool of sequence fragments is the source of intron contents via turnover due to deletion, recombination, and transposition. Like Colias PGI's coding sequences, the introns evolve reticulately with little phylogenetic signal. Exceptions are coding-region allele clades defined by multiple amino acid variants in strong LD, whose introns are closely related but less so than their exons. Similarity of GC content between introns and flanking exons, lack of small introns despite mutational bias toward deletion, and findings already mentioned suggest constraining selection on introns, possibly balancing transcription performance against advantages of higher recombination rate conferred by intron length.

  8. A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region.

    PubMed

    Chaw, Shu-Miaw; Walters, Terrence W; Chang, Chien-Chang; Hu, Shu-Hsuan; Chen, Shin-Hsiao

    2005-10-01

    Phylogenetic relationships among the three families and 12 living genera of cycads were reconstructed by distance and parsimony criteria using three markers: the chloroplast matK gene, the chloroplast trnK intron and the nuclear ITS/5.8S rDNA sequence. All datasets indicate that Cycadaceae (including only the genus Cycas) is remotely related to other cycads, in which Dioon was resolved as the basal-most clade, followed by Bowenia and a clade containing the remaining nine genera. Encephalartos and Lepidozamia are closer to each other than to Macrozamia. The African genus Stangeria is embedded within the New World subfamily Zamiodeae. Therefore, Bowenia is an unlikely sister to Stangeria, contrary to the view that they form the Stangeriaceae. The generic status of Dyerocycas and Chigua is unsupportable as they are paraphyletic with Cycas and the Zamia, respectively. Nonsense mutations in the matK gene and indels in the other two datasets lend evidence to reinforce the above conclusions. According to the phylogenies, the past geography of the genera of cycads and the evolution of character states are hypothesized and discussed. Within the suborder Zamiieae, Stangeria, and the tribe Zamieae evolved significantly faster than other genera. The matK gene and ITS/5.8S region contain more useful information than the trnK intron in addressing phylogeny. Redelimitations of Zamiaceae, Stangeriaceae, subfamily Encephalartoideae and subtribe Macrozamiineae are necessary.

  9. Identification of 15 novel partial SHOX deletions and 13 partial duplications, and a review of the literature reveals intron 3 to be a hotspot region.

    PubMed

    Benito-Sanz, Sara; Belinchon-Martínez, Alberta; Aza-Carmona, Miriam; de la Torre, Carolina; Huber, Celine; González-Casado, Isabel; Ross, Judith L; Thomas, N Simon; Zinn, Andrew R; Cormier-Daire, Valerie; Heath, Karen E

    2017-02-01

    Short stature homeobox gene (SHOX) is located in the pseudoautosomal region 1 of the sex chromosomes. It encodes a transcription factor implicated in the skeletal growth. Point mutations, deletions or duplications of SHOX or its transcriptional regulatory elements are associated with two skeletal dysplasias, Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), as well as in a small proportion of idiopathic short stature (ISS) individuals. We have identified a total of 15 partial SHOX deletions and 13 partial SHOX duplications in LWD, LMD and ISS patients referred for routine SHOX diagnostics during a 10 year period (2004-2014). Subsequently, we characterized these alterations using MLPA (multiplex ligation-dependent probe amplification assay), fine-tiling array CGH (comparative genomic hybridation) and breakpoint PCR. Nearly half of the alterations have a distal or proximal breakpoint in intron 3. Evaluation of our data and that in the literature reveals that although partial deletions and duplications only account for a small fraction of SHOX alterations, intron 3 appears to be a breakpoint hotspot, with alterations arising by non-allelic homologous recombination, non-homologous end joining or other complex mechanisms.

  10. Hydrology, geochemistry and geothermal aspects of the thermal waters from Switzerland and adjacent alpine regions

    NASA Astrophysics Data System (ADS)

    Vuataz, François-David

    1983-11-01

    Waters of 19 thermal areas in Switzerland and adjacent alpine regions were studied to acquire a better knowledge of their deep thermal circulation, geochemistry and low-temperature geothermal potential. A systematic multisampling and multitracing program was executed over a complete hydrologic cycle for each of the 19 thermal areas. Pertinent physical, chemical and isotopic parameters were measured and analyzed on thermal and nonthermal waters during nine sampling periods. Thermal water occurrences are generally related either to Triassic evaporites or to the weathered and fractured zone between crystalline basements (or ranges) and their sedimentary cover. Emergence areas are located in faulted or overthrust zones. Sulfate and calcium are the two principal ions responsible for the mineralization of most thermal waters. Actually, gypsum and anhydrite are more often encountered in Triassic evaporites than halite. Many variations of the water geochemistry, caused by seasonal changes, have been recorded during the hydrologic cycle. From mineralization, temperature and discharge variations, it has been possible to distinguish fast or delayed responses to rain or snow-melt events and mixing between deep-thermal and shallow-cold waters. Chemical geothermometers were tested on these warm waters. The chalcedony and Na-K-Ca geothermometers seem to be the only ones which display calculated temperatures in reasonable agreement with known local geothermal gradients or bottom-hole temperatures. The majority of inferred reservoir temperatures ranges from 40° to 60°C. Oxygen-18 and deuterium results show that most thermal waters fit along the meteoric water line, with some exceptions due to Mediterranean precipitation, possible water-rock isotopic exchange or mixing with connate waters. A regional oxygen-18 gradient has been established with altitude in order to locate and determine the elevation of intake areas. Tritium is very useful in the detection of mixing between deep

  11. Late cenozoic uplift of the southwestern colorado plateau and adjacent lower colorado river region

    USGS Publications Warehouse

    Lucchitta, I.

    1979-01-01

    Rocks deposited near sea level under marine, estuarine, and lacustrine conditions, and located along the course of the lower Colorado River from the mouth of the Grand Canyon as far as the Mexican border, have been displaced to present positions as high as 880 m a.s.l. and as low as 1600 m b.s.l. The rocks include the marine and estuarine Bouse Formation and the lacustrine or marine Hualapai Limestone Member of the Muddy Creek Formation. A profile joining spot elevations that represent the highest erosional remnants of these rocks preserved at any one locality gives an approximation (in most cases a minimum value) for the uplift or downdropping of the region relative to sea level since about 5.5 m.y. ago, the K/Ar age of the most widespread and critical unit. The profile shows that most of the lower Colorado region has risen at least 550 m through broad and rather uniform upwarping and at an average rate of about 100 m/m.y. In addition to these 550 m, the nearby Colorado Plateau has risen by discrete movement along Wheeler fault, which is parallel to and about 8 km west of the plateau's edge, to a total uplift of at least 880 m, at a rate that may be as high as 160 m/m.y. Before warping and faulting, the top of the plateau was about 1100 m above the fill of adjacent basins; the top of this fill probably was at or a little below sea level. p]The profile shows two major south-facing rises in slope. The bigger one, near Yuma, occurs where the profile intersects the northwest-trending San Andreas-Salton trough system of faults; it is interpreted as rifting resulting from transcurrent movement along the faults. At the Mexican border, the base of the Bouse Formation is 1600 m b.s.l., which corresponds to a rate of subsidence since the beginning of Bouse time that may be as high as 290 m/.m.y. The top of the Bouse is at 1000 m b.s.l., corresponding to a rate of subsidence of about 180 m/m.y. In this area, the "older marine sedimentary rocks" of Olmsted et al., (1973

  12. Linkage disequilibrium between polymorphisms at the 5{prime} untranslated region and intron 5 (Dde I) of the antithrombin III (ATIII) gene in the Chinese

    SciTech Connect

    Tay, J.S.H.; Liu, Y.; Low, P.S.

    1994-09-01

    A length polymorphism at the 5{prime} untranslated region of exon 1 and an RFLP (Dde I) in intron 5 (nt 160) of the ATIII gene were amplified by polymerase chain reaction with primers of published sequences. DNA fragments were size-fractionated by agarose gel electrophoresis (3% NuSieve and 1% Seakem GTG) and photographed over a UV transilluminator. A strong linkage disequilibrium was observed between these two polymorphisms of the ATIII gene in the Chinese ({chi}{sup 2} = 63.7; {triangle} 0.42, P < 0.001). The estimated frequencies of the three haplotypes were found to be 0.37 for SD+, 0.40 for LD+ and 0.23 for LD-.

  13. The Function of Introns

    PubMed Central

    Chorev, Michal; Carmel, Liran

    2012-01-01

    The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns. PMID:22518112

  14. Mechanisms of Intron Loss and Gain in the Fission Yeast Schizosaccharomyces

    PubMed Central

    Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels. PMID:23613904

  15. Oligonucleotide primers for PCR amplification of coelomate introns.

    PubMed

    Jarman, Simon N; Ward, Robert D; Elliott, Nicholas G

    2002-09-01

    Abstract Seven novel oligonucleotide primer pairs for polymerase chain reaction amplification of introns from nuclear genes in coelomates were designed and tested. Each pair bound to adjacent exons that are separated by a single intron in most coelomate species. The primer sets amplified introns in species as widely separated by the course of evolution as oysters (Mollusca: Protostoma) and salmon (Chordata: Deuterostoma). Each primer set was tested on a further 6 coelomate species and found to amplify introns in most cases. These primer sets may therefore be useful tools for developing nuclear DNA markers in diverse coelomate species for studies of population genetics, phylogenetics, or genome mapping.

  16. Changes in Climate over the South China Sea and Adjacent Regions: Response to and Feedback on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, Song

    2016-04-01

    El Niño-Southern Oscillation and the Asian monsoon have experienced significant long-term changes in the past decades. These changes, together with other factors, have in turn led to large climate change signals over the South China Sea and adjacent regions including Southeast Asia, the western Pacific, and the tropical Indian Ocean. An attribution analysis of the feedback processes of these signals indicate the predominant importance of water vapor and cloud radiative feedbacks. Experiments with multiple earth system models also show that these regional climate change signals exert significant influences on global climate. The increases in atmospheric heating over Southeast Asia and sea surface temperature in the adjacent oceans in the past decades have weakened the Indian and African monsoons, led to a drying effect over East Asia, and generated wave-train patterns in both the northern and southern hemispheres, explaining several prominent climate features in and outside Southeast Asia.

  17. Naturally occurring nucleosome positioning signals in human exons and introns.

    PubMed

    Baldi, P; Brunak, S; Chauvin, Y; Krogh, A

    1996-11-08

    We describe the structural implications of a periodic pattern found in human exons and introns by hidden Markov models. We show that exons (besides the reading frame) have a specific sequential structure in the form of a pattern with triplet consensus non-T(A/T)G, and a minimal periodicity of roughly ten nucleotides. The periodic pattern is also present in intron sequences, although the strength per nucleotide is weaker. Using two independent profile methods based on triplet bendability parameters from DNase I experiments and nucleosome positioning data, we show that the pattern in multiple alignments of internal exon and intron sequences corresponds to a periodic "in phase" bending potential towards the major groove of the DNA. The nucleosome positioning data show that the consensus triplets (and their complements) have a preference for locations on a bent double helix where the major groove faces inward and is compressed. The in-phase triplets are located adjacent to GCC/GGC triplets known to have the strongest bias in their positioning on the nuclesome. Analysis of mRNA sequences encoding proteins with known tertiary structure exclude the possibility that the pattern is a consequence of the previously well-known periodicity caused by the encoding of alpha-helices in proteins. Finally, we discuss the relation between the bending potential of coding and non-coding regions and its impact on the translational positioning of nucleosomes and the recognition of genes by the transcriptional machinery.

  18. Diets and food-web relationships of seabirds in the Gulf of Alaska and adjacent marine regions

    SciTech Connect

    Sanger, G.A.

    1983-01-01

    Overall diets of 39 species of marine birds (four procellariiforms, three cormorants, six sea ducks, one phalarope, two jaegers, 17 gulls, two terns, and 13 alcids) inhabiting the Gulf of Alaska and adjacent marine regions are summarized with food-web diagrams, tables, and text. Diets of the Northern Fulmar, Sooty and Short-tailed Shearwaters, Pelagic Cormorant, Black-legged Kittiwake, Common and Thick-billed Murres, Marbled and Kittlitz's Murrelets, and Horned and Tufted Puffins are compared among seasons and geographic regions.

  19. Inhomogeneous DNA: Conducting exons and insulating introns

    NASA Astrophysics Data System (ADS)

    Krokhin, A. A.; Bagci, V. M. K.; Izrailev, F. M.; Usatenko, O. V.; Yampol'Skii, V. A.

    2009-08-01

    Parts of DNA sequences known as exons and introns play very different roles in coding and storage of genetic information. Here we show that their conducting properties are also very different. Taking into account long-range correlations among four basic nucleotides that form double-stranded DNA sequence, we calculate electron localization length for exon and intron regions. Analyzing different DNA molecules, we obtain that the exons have narrow bands of extended states, unlike the introns where all the states are well localized. The band of extended states is due to a specific form of the binary correlation function of the sequence of basic DNA nucleotides.

  20. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  1. Evolution of the Exon-Intron Structure in Ciliate Genomes

    PubMed Central

    Gelfand, Mikhail S.

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  2. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  3. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  4. Identification and characterization of polymorphisms within the 5' flanking region, first exon and part of first intron of bovine GH gene.

    PubMed

    Ferraz, A L J; Bortolossi, J C; Curi, R A; Ferro, M I T; Ferro, J A; Furlan, L R

    2006-06-01

    The aim of the present study was to identify and characterize polymorphisms within the 5' flanking region, first exon and part of first intron of the bovine growth hormone gene among different beef cattle breeds: Nelore (n = 25), Simmental (n = 39), Simbrasil (n = 24), Simmental x Nelore (n = 30), Canchim x Nelore (n = 30) and Angus x Nelore (n = 30). Two DNA fragments (GH1, 464 bp and GH2, 453 bp) were amplified by polymerase chain reaction and then used for polymorphism identification by SSCP. Within the GH1 fragment, five polymorphisms were identified, corresponding to three different alleles: GH1.1, GH1.2 and GH1.3 (GenBank: AY662648, AY662649 and AY662650, respectively). These allele sequences were aligned and compared with bovine GH gene nucleotide sequence (GenBank: M57764 and AF118837), resulting in the identification of five insertion/deletions (INDELs) and five single nucleotide polymorphisms (SNPs). In the GH2 fragment two alleles were identified, GH2.1 and GH2.2 (GenBank: AY662651 and AY662652, respectively). The allele sequences were compared with GenBank sequences (M57764, AF007750 and AH009106) and three INDELs and four SNPs were identified. In conclusion, we were able to identify six new polymorphisms of the bovine GH gene (one INDEL and five SNPs), which can be used as molecular markers in genetic studies.

  5. The single nucleotide variant rs12722489 determines differential estrogen receptor binding and enhancer properties of an IL2RA intronic region

    PubMed Central

    Putlyaeva, Lidia V.; Demin, Denis E.; Kulakovskiy, Ivan V.; Vorontsov, Ilya E.; Fridman, Marina V.; Makeev, Vsevolod J.; Kuprash, Dmitry V.; Schwartz, Anton M.

    2017-01-01

    We studied functional effect of rs12722489 single nucleotide polymorphism located in the first intron of human IL2RA gene on transcriptional regulation. This polymorphism is associated with multiple autoimmune conditions (rheumatoid arthritis, multiple sclerosis, Crohn's disease, and ulcerative colitis). Analysis in silico suggested significant difference in the affinity of estrogen receptor (ER) binding site between alternative allelic variants, with stronger predicted affinity for the risk (G) allele. Electrophoretic mobility shift assay showed that purified human ERα bound only G variant of a 32-bp genomic sequence containing rs12722489. Chromatin immunoprecipitation demonstrated that endogenous human ERα interacted with rs12722489 genomic region in vivo and DNA pull-down assay confirmed differential allelic binding of amplified 189-bp genomic fragments containing rs12722489 with endogenous human ERα. In a luciferase reporter assay, a kilobase-long genomic segment containing G but not A allele of rs12722489 demonstrated enhancer properties in MT-2 cell line, an HTLV-1 transformed human cell line with a regulatory T cell phenotype. PMID:28234966

  6. Thorium concentrations in the lunar surface. IV - Deconvolution of the Mare Imbrium, Aristarchus, and adjacent regions

    NASA Technical Reports Server (NTRS)

    Etchegaray-Ramirez, M. I.; Metzger, A. E.; Haines, E. L.; Hawke, B. R.

    1983-01-01

    Several fields of orbital gamma ray spectroscopy data have been deconvolved in order to model the distribution of Th over the Mare Imbrium and northern Oceanus Procellarum portions of the Apollo 15 lunar ground track, which in combination with a prior study of the Apenninus region covers a continuous swath from 10 deg E to 60 deg W in the northwest quadrant. The crater of the Aristarchus region dominates the Th distribution, with a concentration of 20 ppm, and substantial enhancements are also found in the mare regions around Brayley and at the ejecta blankets of Timocharis and Lambert. The existence of enhanced Th concentrations in mare basalt regions suggests that reservoirs of some late stage mare basalts incorporated KREEP-rich material during formation or transit.

  7. Regions of strongly enhanced perpendicular electric fields adjacent to auroral arcs

    NASA Astrophysics Data System (ADS)

    Opgenoorth, H. J.; Haggstrom, I.; Williams, P. J. S.; Jones, G. O. L.

    1990-08-01

    A joint campaign involving EISCAT, the Cornell University Portable Radar Interferometer (CUPRI), and sounding rockets has observed short-lived elevations of E-region electron temperatures, indicating the presence of strong electric fields. The use of a new pulse-code technique has considerably improved the EISCAT data in regions of low ionospheric electron densities. It has been found that strong and apparently short-lived enhancements of electric fields and associated E-region electron temperatures occur more commonly than long-lived ones. However, earlier EISCAT data with simultaneous optical recordings (and also some CUPRI radar data from the ERRRIS campaign) indicate that many of these events are, in fact, not short-lived, but occur in localized regions and are associated with drifting auroral forms.

  8. Population Health in Regions Adjacent to the Semipalatinsk Nuclear Test Site

    DTIC Science & Technology

    1998-09-01

    The surplus cancer mortality in this group to archived material at Dispensary Number 4 be- was 6.6 x 106 cases and coincides with biological cause...type, with feather-grass, wild oats, desert East Kazakhstan region, Semipalatinsk region, timothy-grass, and different kinds of wormwood . southern part...Ust’- tons were provided. The limits on fats, fish, vege- Kamenogorsk, severe contamination of the atmos- tables, sweets , cookies, and other products

  9. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    NASA Astrophysics Data System (ADS)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  10. Regional prospectivity of Mesozoic and Tertiary in the eastern Adriatic and adjacent area

    SciTech Connect

    Scott, J.; Dolan, P.; Lunn, G. )

    1988-08-01

    Post-Hercynian deposits in the eastern Adriatic and the adjacent external zones of the Dinarides and Albanian Hellenides may be subdivided into four facies groups. (1) Permian-Lower Triassic clastics and carbonates with some evaporites, (2) Middle Triassic-lower Tertiary carbonate platform facies with associated continental margin deeper marine sequences, (3) Upper Cretaceous-lower Tertiary flysch, and (4) middle Tertiary molasse and postorogenic Neogene sediments. The Permian to lower Tertiary section was deposited during the complex Alpine cycle, while the upper Tertiary section is the product of post-Alpine deposition. This depositional history during markedly different tectonic regimes creates two groups of petroleum plays in the eastern Adriatic: (1) Alpine cycle plays in the Permian to lower Tertiary in the thrust-faulted and folded foreland of Adria and (2) post-Alpine plays in upper Tertiary postorogenic or late synorogenic basins. Around the Adriatic, the post-Alpine plays have so far proved the most successful. Major production occurs in the onshore Po basin and its extension beneath the Adriatic. Some of this production is from deep Alpine-cycle reservoirs, but the bulk is from the upper Tertiary-Quaternary. Similar horizons produce onshore and offshore the central-southern Adriatic coast of Italy. Major Tertiary production also occurs to the northeast in the Pannonian basin of Yugoslavia and Hungary from Miocene and younger sequences. Onshore Albania produces significant quantities of hydrocarbons; although data are scarce, much of this production is presumably from upper Tertiary molasse or lower Tertiary flysch.

  11. Thorium concentrations in the lunar surface: IV. Deconvolution of the mare imbrium, aristarchus, and adjacent regions

    SciTech Connect

    Etchegaray-Ramirez, M.I.; Metzger, A.E.; Haines, E.L.; Hawke, B.R.

    1983-02-15

    The distribution of Th over the Mare Imbrium and northern Oceanus Procellarum portions of the Apollo 15 lunar ground track has been modeled by deconvolving several fields of orbital gamma ray spectroscopy data. Including a prior study of the Apenninus region, a continuous swath from 10/sup 0/E to 60/sup 0/W in the northwest quadrant has now been analyzed. In the Aristarchus region, the crater dominates the Th distribution with a concentration of 20 ppm. Other enhancements are seen on the Aristarchus Plateau and south of the plateau. The concentration across the Aristarchus Plateau is not uniform. The average Th concentration in Oceanus Procellarum is less to the west than to the east of the Aristarchus Plateau. Substantial enhancements are found in mare regions around Brayley, and at the ejecta blankets of Timocharis and Lambert. Th in the Eratosthenian mare regions is generally low with one notable exception lying rouhgly between the craters Euler and Carlini. The existence of enhanced Th concentrations in mare basalt regions suggests that reservoirs of some late stage mare basalts incorporated KREEP-rich material during formation or transit.

  12. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    USGS Publications Warehouse

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The maximum beneficial utilization of the ground-water resources cannot be accomplished in haphazard fashion. It must be planned and controlled on the basis of sound, current information about the hydrology of the various aquifers. Continued and, in some areas, intensified investigations of the ground-water resources of the region should form the basis for such planning and control.

  13. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  14. The enduring mystery of intron-mediated enhancement.

    PubMed

    Gallegos, Jenna E; Rose, Alan B

    2015-08-01

    Within two years of their discovery in 1977, introns were found to have a positive effect on gene expression. Numerous examples of stimulatory introns have been described since then in very diverse organisms, including plants. In some cases, the mechanism through which the intron affects expression is readily understood. However, many introns that affect expression increase mRNA accumulation through an unknown mechanism, referred to as intron-mediated enhancement (IME). Despite several decades of research into IME, and the clear benefits of using introns to increase transgene expression, little progress has been made in understanding the mechanism of IME. Several fundamental questions regarding the role of transcription and splicing, the sequences responsible for IME, the involvement of other factors, and the relationship between introns and promoters remain unanswered. The more we learn about the properties of stimulating introns, the clearer it becomes that the effects of introns are unfamiliar and difficult to reconcile with conventional views of how transcription is controlled. We hypothesize that introns increase transcript initiation upstream of themselves by creating a localized region of accessible chromatin. Introns might represent a novel kind of downstream regulatory element for genes transcribed by RNA polymerase II.

  15. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  16. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  17. Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1991-01-01

    A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.

  18. Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset

    NASA Astrophysics Data System (ADS)

    Kucieńska, B.; Raga, G. B.; Rodríguez, O.

    2010-11-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from the World Wide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation ("spherics") associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Sub-tropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated with mid

  19. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, J.S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  20. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  1. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  2. Climate change in the four corners and adjacent regions: Implications for environmental restoration and land-use planning

    SciTech Connect

    Waugh, W.J.

    1995-09-01

    This document contains the workshop proceedings on Climate Change in the Four Corners and Adjacent Regions: Implications for Environmental Restoration and Land-Use Planning which took place September 12-14, 1994 in Grand Junction, Colorado. The workshop addressed three ways we can use paleoenvironmental data to gain a better understanding of climate change and its effects. (1) To serve as a retrospective baseline for interpreting past and projecting future climate-induced environmental change, (2) To differentiate the influences of climate and humans on past environmental change, and (3) To improve ecosystem management and restoration practices in the future. The papers presented at this workshop contained information on the following subjects: Paleoclimatic data from the Pleistocene and Holocene epochs, climate change and past cultures, and ecological resources and environmental restoration. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1975-01-01

    Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres

  4. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution.

    PubMed

    Verhelst, Bram; Van de Peer, Yves; Rouzé, Pierre

    2013-01-01

    Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several classes of introns and the occurrence of recent massive intron invasion. This study focuses on two strains, CCMP1545 and RCC299, and their related individuals from ocean samplings, showing that they not only harbor different classes of introns depending on their location in the genome, as for other Mamiellophyceae, but also uniquely carry several classes of repeat introns. These introns, dubbed introner elements (IEs), are found at novel positions in genes and have conserved sequences, contrary to canonical introns. This IE invasion has a huge impact on the genome, doubling the number of introns in the CCMP1545 strain. We hypothesize that each IE class originated from a single ancestral IE that has been colonizing the genome after strain divergence by inserting copies of itself into genes by intron transposition, likely involving reverse splicing. Along with similar cases recently observed in other organisms, our observations in Micromonas strains shed a new light on the evolution of introns, suggesting that intron gain is more widespread than previously thought.

  5. The evolution of an intron: Analysis of a long, deletion-prone intron in the human dystrophin gene

    SciTech Connect

    McNaughton, J.C.; Hughes, G.; Jones, W.A.

    1997-03-01

    The sequence of a 112-kb region of the human dystrophin (DMD/BMD) gene encompassing the deletion prone intron 7 (110 kb) and the much shorter intron 8 (1.1 kb) has been determined. Recognizable insertion sequences account for approximately 40% of intron 7. LINE-1 and THE-1/LTR sequences occur in intron 7 with significantly higher frequency than would be expected statistically while Alu sequences are underrepresented. Intron 7 also contains numerous mammalian-wide interspersed repeats, a diverse range of medium reiteration repeats of unknown origin, and a sequence derived from a mariner transposon. By contrast, the shorter intron 8 contains no detectable insertion sequences. Dating of the L1 and Alu sequences suggests that intron 7 has approximately doubled in size within the past 130 million years, and comparison with the corresponding intron from the pufferfish (Fugu rubripes) suggests that the intron has expanded some 44-fold over a period of 400 million years. The possible contribution of the insertion elements to the instability of intron 7 is discussed. 66 refs., 2 figs., 2 tabs.

  6. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.

    PubMed

    Shahzad, K; Rauf, M; Ahmed, M; Malik, Z A; Habib, I; Ahmed, Z; Mahmood, K; Ali, R; Masmoudi, K; Lemtiri-Chlieh, F; Gehring, C; Berkowitz, G A; Saeed, N A

    2015-07-01

    Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  7. Two regimes of cloud water over the Okhotsk Sea and the adjacent regions around Japan in summer

    NASA Astrophysics Data System (ADS)

    Shimada, Teruhisa; Iwasaki, Toshiki

    2015-03-01

    This study derived two regimes of cloud water with a dipole structure between over the Okhotsk Sea and over the adjacent regions around Japan in summer by using a climate index for cool summer. When the Okhotsk high develops, clouds are confined to a thin low-level layer owing to the enhanced stability in the lower atmosphere induced by the downward motion associated with the Okhotsk high. The resulting optically thin clouds allow more downward shortwave radiation to reach the surface of the Okhotsk Sea. In contrast, the low-level easterly winds blowing toward the Japanese Islands and the Eurasian continent enhance cloud formation. This is due to the convergence of the water vapor flux induced by the easterly winds associated with the Okhotsk high and the southerly winds associated with the Baiu frontal zone and the Pacific high and due to the orographic uplift of air mass. When a cyclonic circulation occurs over the Okhotsk Sea, a thick layer of low-level clouds extending close to the sea surface is formed. The convergence of the water vapor flux over the subarctic sea surface temperature (SST) frontal zone and the cool SST promote fog formation, and upward motion associated with the cyclonic circulation supports the high cloud water content from the lower to the upper troposphere. The resulting optically thick clouds reduce the downward shortwave radiation at the surface of the Okhotsk Sea. Over the regions around Japan, water vapor flux diverges owing to dry air originating from land and cloud water decreases.

  8. Association between dental implants in the posterior region and traumatic occlusion in the adjacent premolars: a long-term follow-up clinical and radiographic analysis

    PubMed Central

    2016-01-01

    Purpose The aim of this retrospective study was to determine the association between dental implants in the posterior region and traumatic occlusion in the adjacent premolars, using data collected during from 2002 to 2015. Methods Traumatic occlusion in the adjacent premolars was assessed by examining clinical parameters (bleeding on probing, probing pocket depth, fremitus, and tooth mobility) and radiographic parameters (loss of supporting bone and widening of the periodontal ligament space) over a mean follow-up of 5 years. Clinical factors (gender, age, implant type, maxillary or mandibular position, opposing teeth, and duration of functional loading) were evaluated statistically in order to characterize the relationship between implants in the posterior region and traumatic occlusion in the adjacent premolars. Results The study inclusion criteria were met by 283 patients, who had received 347 implants in the posterior region. The incidence of traumatic occlusion in the adjacent premolars was significantly higher for splinted implants (P=0.004), implants in the maxillary region (P<0.001), and when implants were present in the opposing teeth (P<0.001). The other clinical factors of gender, age, and duration of functional loading were not significantly associated with traumatic occlusion. Conclusions This study found that the risk of traumatic occlusion in the adjacent premolars increased when splinted implants were placed in the maxillary molar region and when the teeth opposing an implant also contained implants. PMID:28050317

  9. Invasion of protein coding genes by green algal ribosomal group I introns.

    PubMed

    McManus, Hilary A; Lewis, Louise A; Fučíková, Karolina; Haugen, Peik

    2012-01-01

    The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.

  10. Functional studies on the ATM intronic splicing processing element.

    PubMed

    Lewandowska, Marzena A; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5' and 3' splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a approximately 40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5'-3' order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing.

  11. Functional studies on the ATM intronic splicing processing element

    PubMed Central

    Lewandowska, Marzena A.; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E.; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5′ and 3′ splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a ∼40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5′–3′ order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing. PMID:16030351

  12. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    NASA Astrophysics Data System (ADS)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  13. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  14. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  15. Identification of an extended N-acetylated sequence adjacent to the protein-linkage region of fibroblast heparan sulphate.

    PubMed Central

    Lyon, M; Steward, W P; Hampson, I N; Gallagher, J T

    1987-01-01

    The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans. PMID:2954540

  16. Identification of Triplophysa species from the Qinghai-Tibetan Plateau (QTP) and its adjacent regions through DNA barcodes.

    PubMed

    Li, Jiuxuan; Wang, Ying; Jin, Huifang; Li, Wujiao; Yan, Chaochao; Yan, Pengfei; Zhang, Xiuyue; He, Shunping; Song, Zhaobin

    2017-03-20

    The genus Triplophysa is the largest and most difficult to identity morphologically fish group of superfamily Cobitoidea with 140 currently valid species, and is mainly distributed in the Qinghai-Tibetan Plateau (QTP) and adjacent regions. Most species within this genus possess highly similar morphological characteristics for adaption to the highland environment and are very difficult to be identified only based on morphology. The traditional species identification, mainly based on external morphological diagnostic characters, leads to inconsistent results in many cases. Herein, we provided a molecular method based on mitochondrial cytochrome c subunit I (COI) for the identification of Triplophysa fishes. Thirty-three Triplophysa species, 244 individuals, were used to determine whether barcoding was effective in discriminating species for this genus. The mean intraspecific and interspecific K2P distances ranged from 0 to 14.9% (mean, 2.9%) and 0 to 23.4% (mean, 9.7%), respectively. The tree-based analysis displayed most of species formed discrete clusters with strong bootstrap support values (>90%). The results showed that most of Triplophysa species could be identified by DNA barcode and indicated DNA barcode could be used as a molecular marker for these species.

  17. Virio- and bacterioplankton in the estuary zone of the Ob River and adjacent regions of the Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Kopylov, A. I.; Sazhin, A. F.; Zabotkina, E. A.; Romanenko, A. V.; Romanova, N. D.

    2017-01-01

    The distribution of structural and functional characteristics of virioplankton in the north of the Ob River estuary and the adjacent Kara Sea shelf (between latitudes 71°44'44″ N and 73°45'24″ N) was studied with consideration of the spatial variations in the number ( N B) and productivity ( P B) of bacteria and water properties (temperature, salinity, density) by analyzing samples taken in September 2013. The number of plankton viruses ( N V), the occurrence of visible infected bacteria cells, virus-induced mortality of bacteria, and virioplankton production in the studied region varied within (214-2917) × 103 particles/mL, 0.3-5.6% of NB, 2.2-64.4% of P B, and (6-17248) × 103 particles/(mL day), respectively. These parameters were the highest in water layers with a temperature of +7.3-7.5°C, salinity of 3.75-5.41 psu, and conventional density (στ) of 2.846-4.144. The number of bacterioplankton was (614-822) × 103 cells/mL, and the N V/ N B ratio was 1.1-4.5. A large amount of virus particles were attached to bacterial cells and suspended matter. The data testify to the considerable role of viruses in controlling the number and production of heterotrophic bacterioplankton in the interaction zone of river and sea waters.

  18. Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss.

    PubMed

    Hepburn, Nancy J; Schmidt, Derek W; Mower, Jeffrey P

    2012-10-01

    Intron loss is often thought to occur through retroprocessing, which is the reverse transcription and genomic integration of a spliced transcript. In plant mitochondria, several unambiguous examples of retroprocessing are supported by the parallel loss of an intron and numerous adjacent RNA edit sites, but in most cases, the evidence for intron loss via retroprocessing is weak or lacking entirely. To evaluate mechanisms of intron loss, we designed a polymerase chain reaction (PCR)-based assay to detect recent intron losses from the mitochondrial cox2 gene within genus Magnolia, which was previously suggested to have variability in cox2 intron content. Our assay showed that all 22 examined species have a cox2 gene with two introns. However, one species, Magnolia tripetala, contains an additional cox2 gene that lacks both introns. Quantitative PCR showed that both M. tripetala cox2 genes are present in the mitochondrial genome. Although the intronless gene has lost several ancestral RNA edit sites, their distribution is inconsistent with retroprocessing models. Instead, phylogenetic and gene conversion analyses indicate that the intronless gene was horizontally acquired from a eudicot and then underwent gene conversion with the native intron-containing gene. The models are presented to summarize the roles of horizontal gene transfer and gene conversion as a novel mechanism of intron loss.

  19. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear wave splitting analysis of Vietnam array data

    NASA Astrophysics Data System (ADS)

    Bai, L.; Iidaka, T.; Kawakatsu, H.; Morita, Y.; Dzung, N.

    2007-12-01

    Indochina block is located at the junction of Eurasia, Indian and Pacific plates. It has a close relationship with the uplift of Tibet plateau and the spreading of South China Sea basin in the geological evolution histories. The anisotropy is considered to directly relate to deformation in the mantle, and therefore provide constraints on tectonic and geodynamic processes. In this study, we present upper mantle anisotropy beneath Indochina block and adjacent regions from shear wave splitting analysis of Vietnam array and IRIS data. The data used here recorded by Vietnam array during the period between February 2000 and October 2005. The array consists of 6 broadband seismometers. We employed a compact HDD for data storage, which enables long-term and stable observation. We also used data form three IRIS stations around Vietnam for the same period. All records are band-pass filtered between 0.02 and 1.0 Hz to eliminate background noise. The dominant time windows used are 10-15 s around SKS phases based on the predicted travel times from the iasp91 model. We used the methodology of Silver and Chan (1991) as modified by Walker (2004) to determine the fast polarization direction and the delay time between the fast and slow components. In order to find the best splitting parameters, a grid search over possible values is performed to linearize the shear wave particle motion when the effect of the anisotropy if removed. The error estimation of each combination of splitting parameters is given by 95 percent confidence level of F test. We are able to characterize the splitting patterns in greater detail because of the use of new data. The average value of delay times in Indochina block is about 1.35 s, larger than that in adjacent regions. Tomographic studies also revealed low velocity anomalies in upper mantle beneath study area (Lebedev and Nolet, 2003). We estimate that the Indochina block might be affected by the mantle convection produced by the spreading of the South

  20. Present-day Focal Mechanisms and Stress Field of the Sichuan-Yunnan Active Block and Its Adjacent Region

    NASA Astrophysics Data System (ADS)

    zhao, cuiping; luo, jun; zhou, lianqing

    2013-04-01

    Focal mechanism solutions together with the depths of 66 M 3.5 moderate earthquakes occurred in the Sichuan Yunnan active block and its adjacent regions from Aug.1st, 2007 to Sep.15th, 2012was obtained by CAP method. Furthermore, by combining the results with the focal mechanism solutions from Harvard University, we investigated the characteristics of the stress field in the study area. We discussed the spatial distribution of the focal mechanisms and the focal depths, and then analyzed its dynamics. Four conclusions are drawn as follows. (1)Focal mechanism solutions show zoning characteristic. Along the ANH-ZMH-XJ faults(the eastern border of Sichuan-Yunnan block), the earthquakes are mostly left-lateral strike-slip mechanism. Along the HSH fault, the earthquakes are mostly right-lateral strike-slip mechanism. Around the XGLL block and in its interior, there exists remarkable normal fault mechanism with different fault striking and direction of P and T stress axis. Along the arc boundary of Sichuan-Yunnan block with the Sichuan basin, the earthquakes are reverse fault mechanism. (2) The inversed regional stress field shows complicated local feature. On and to the east side of the eastern border of Sichuan-Yunnan block, the stress field is similar with the stress field of the Eastern China block, which is from the relative motion of Philippine plate towards the Urasia plate. Whereas to the west side of the eastern border of Sichuan-Yunnan block, the stress field is much more complicated, indicting the strong influence of local structures to the stress field, especially the NE striking of JPS-YL over-thrusting tectonic structure located in the interior of Sichuan-Yunnan block.(3)The moment center depths of events occurred in the Sichuan-Yunnan active block are within 15km deep, and mostly among 5~15km, suggesting that the brittle seismic layer is among the depth of 5~15km in the upper and middle crust.

  1. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  2. 5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Hoshida, Hisashi; Kondo, Masaki; Kobayashi, Takafumi; Yarimizu, Tohru; Akada, Rinji

    2017-01-01

    Saccharomyces cerevisiae is one of the most suitable microorganisms for recombinant protein production. To enhance protein production, various expression systems have been intensively studied. However, the effect of introns on protein expression has not been examined deeply in S. cerevisiae. In this study, we analyzed the effect of some introns on protein expression. RPS25A, RPS26A, and RPS26B contain single introns within the 5´-untranslated regions (5´-UTRs), and RPS24A has an intron just downstream of the initiation codon. Expression activity of the promoter regions containing introns (intron promoters) were analyzed by luciferase reporter assays. These intron promoters showed higher expression than the TDH3 promoter (TDH3p), which is one of the strongest promoters in S. cerevisiae. Deletion of the introns from these promoters decreased luciferase expression, indicating that introns have a role in enhancing protein expression. To develop artificial strong intron promoters, several chimeric promoters were constructed using the TDH3p and the RPS25A intron promoter. A construct containing the entire TDH3p followed by the RPS25A intron showed about 50-fold higher expression than the TDH3p alone. Inducible expressions driven by the GAL10 promoter and the CUP1 promoter were also enhanced by the RPS25A intron. However, enhancement of mRNA accumulation by the TDH3p and the GAL10 promoter with the RPS25A intron was lower than the effect on luciferase activity, suggesting that the intron affects post-transcriptionally. The chimeric promoter, TDH3p-RPS25A-intron, enhanced expressions of some, but not all proteins examined, indicating that 5'-UTR introns increase production of a certain type of recombinant proteins in S. cerevisiae.

  3. Human decorin gene: Intron-exon junctions and chromosomal localization

    SciTech Connect

    Vetter, U.; Young, M.F.; Fisher, L.W. ); Vogel, W.; Just, W. )

    1993-01-01

    All of the protein-encoding exons and the 3[prime]flanking region of the human decorin gene have been cloned an partially sequenced. The locations of the intron-exon junctions within the coding portion of the gene were identical to those found for the homologous human gene, biglycan. The sizes of the introns in the decorin gene, however, were substantially larger than those of the same introns of the biglycan gene. Portions of introns 1, 2, and 3 as well as exon 1 were not found during our extensive screening process. The 5[prime] end of intron 2 was found to have an AG-rich region followed immediately by a CT-rich region. Furthermore, the 5[prime] end of intron 3 was very rich in thymidine, whereas the 3[prime] end of intron 7 was rich in adenosine. Several cDNA clones constructed from cultured human bone cell mRNA were found to contain a different sequence at the 5[prime] end compared to that previously published for mRNA from a human embryonic fibroblast cell line. We were also unable to find the alternate 3[prime] flanking region of the previously published cDNA sequence. We have mapped the human decorin gene by in situ methods to chromosome 12q2l.3. 30 refs., 3 figs., 1 tab.

  4. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    PubMed Central

    Ng, Wuey Min

    2016-01-01

    Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory. PMID:27213085

  5. Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes

    PubMed Central

    Francis, Sunday M.; Kistner-Griffin, Emily; Yan, Zhongyu; Guter, Stephen; Cook, Edwin H.; Jacob, Suma

    2016-01-01

    Background: There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. Methods: In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. Results: Results indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). Results show the three polymorphisms, OXT rs6084258, OXT

  6. Molecular Dissection of the 5' Region of no-on-transientA of Drosophila melanogaster Reveals cis-Regulation by Adjacent dGpi1 Sequences.

    PubMed Central

    Sandrelli, F; Campesan, S; Rossetto, M; Benna, C; Zieger, E; Megighian, A; Couchman, M; Kyriacou, C; Costa, R

    2001-01-01

    The nonA gene of Drosophila melanogaster is important for normal vision, courtship song, and viability and lies approximately 350 bp downstream of the dGpi1 gene. Full rescue of nonA mutant phenotypes can be achieved by transformation with a genomic clone that carries approximately 2 kb of 5' regulatory material and that encodes most of the coding sequence of dGpi1. We have analyzed this 5' region by making a series of deleted fragments, fusing them to yeast GAL4 sequences, and driving UAS-nonA expression in a mutant nonA background. Regions that both silence and enhance developmental tissue-specific expression of nonA and that are necessary for generating optomotor visual responses are identified. Some of these overlap the dGpi1 sequences, revealing cis-regulation by neighboring gene sequences. The largest 5' fragment was unable to rescue the normal electroretinogram (ERG) consistently, and no rescue at all was observed for the courtship song phenotype. We suggest that sequences within the nonA introns that were missing in the UAS-nonA cDNA may carry enhancer elements for these two phenotypes. Finally, we speculate on the striking observation that some of the cis-regulatory regions of nonA appear to be embedded within the coding regions of dGpi1. PMID:11156995

  7. Pentamer vocabularies characterizing introns and intron-like intergenic tracts from Caenorhabditis elegans and Drosophila melanogaster.

    PubMed

    Bultrini, Emanuele; Pizzi, Elisabetta; Del Giudice, Paolo; Frontali, Clara

    2003-01-30

    Overall compositional properties at the level of bases, dinucleotides and longer oligos characterize genomes of different species. In Caenorhabditis elegans, using recurrence analysis, we recognized the existence of a long-range correlation in the oligonucleotide usage of introns and intergenic regions. Through correlation analysis, this is confirmed here to be a genome-wide property of C. elegans non-coding portions. We then investigate the possibility of extracting a typical vocabulary through statistical analysis of experimentally confirmed introns of sufficient length (>1 kb), deprived of known splice signals, the focus being on distributed lexical features rather than on localized motifs. Lexical preferences typical of introns could be exposed using principal component analysis of pentanucleotide frequency distributions, both in C. elegans and in Drosophila melanogaster. In either species, the introns' pentamer preferences are largely shared by intergenic tracts. The pentamer vocabularies extracted for the two species exhibit interesting symmetry properties and overlap in part. A more extensive investigation of the interspecies relationship at the level of oligonucleotide preferences in non-coding regions, not related by sequence similarity, might form the basis of new approaches for the study of the evolutionary behaviour of these regions.

  8. Introns and their flanking sequences of Bombyx mori rDNA.

    PubMed Central

    Fujiwara, H; Ogura, T; Takada, N; Miyajima, N; Ishikawa, H; Maekawa, H

    1984-01-01

    We obtained two different clones (16 kb and 13 kb) of B. mori rDNA with intron sequence within the 28S-rRNA coding region. The sequence surrounding the intron was found to be highly conserved as indicated in several eukaryotes (Tetrahymena, Drosophila and Xenopus). The 28S rRNA-coding sequence of 16 kb and 13 kb clone was interrupted at precisely the same sites as those where the D. melanogaster rDNA interrupted by the type I and type II intron, respectively. The intron sequences of B. mori were different from those of D. melanogaster. In 16 kb clone, the intron was flanked by 14 bp duplication of the junction sequence, which was also present once within the 28S rRNA-coding region of rDNA without intron. This 14 bp sequence was identical with those surrounding the introns of Dipteran rDNAs. PMID:6091041

  9. Isolation and characterization of group II introns from Pseudomonas alcaligenes and Pseudomonas putida.

    PubMed

    Yeo, C C; Yiin, S; Tan, B H; Poh, C L

    2001-05-01

    Group II introns isolated from Pseudomonas alcaligenes NCIB 9867, Pseudomonas putida NCIB 9869, and P. putida KT2440 were closely related with nucleotide sequence identities of between 87 and 96%. The genome of P. alcaligenes also harbored a truncated group II intron of 682 bp that lacks the gene for the intron-encoded protein (IEP). Unlike most bacterial group II introns, the Pseudomonas introns were found to lack the Zn domains in their IEPs, did not appear to interrupt any genes, and were located downstream of open reading frames which were adjacent to hairpin loop structures that resemble rho-independent terminators. These structures also contain the intron binding sites 1 and 2 (IBS1 and IBS2 sequences) that were required for intron target site recognition in transposition. One of the group II introns found in P. alcaligenes, Xln3, was shown to have transposed from the chromosome to the endogenous pRA2 plasmid at a site adjacent to IBS1- and IBS2-like sequences.

  10. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.

    PubMed

    Mao, Rui; Raj Kumar, Praveen Kumar; Guo, Cheng; Zhang, Yang; Liang, Chun

    2014-01-01

    One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter [Formula: see text] in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention.

  11. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary.

  12. Exons, Introns, and DNA Thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlon, Enrico; Malki, Mehdi Lejard; Blossey, Ralf

    2005-05-01

    The genes of eukaryotes are characterized by protein coding fragments, the exons, interrupted by introns, i.e., stretches of DNA which do not carry useful information for protein synthesis. We have analyzed the melting behavior of randomly selected human cDNA sequences obtained from genomic DNA by removing all introns. A clear correspondence is observed between exons and melting domains. This finding may provide new insights into the physical mechanisms underlying the evolution of genes.

  13. Splice Sites Seldom Slide: Intron Evolution in Oomycetes.

    PubMed

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-08-25

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10-20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity.

  14. Splice Sites Seldom Slide: Intron Evolution in Oomycetes

    PubMed Central

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-01-01

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10–20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. PMID:27412607

  15. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  16. Intron or no intron: a matter for nuclear pore complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2015-01-01

    Nuclear pore complexes (NPCs) have been shown to regulate distinct steps of the gene expression process, from transcription to mRNA export. In particular, mRNAs expressed from intron-containing genes are surveyed by a specific NPC-dependent quality control pathway ensuring that unspliced mRNAs are retained within the nucleus. In this Extra View, we summarize the different approaches that have been developed to evaluate the contribution of various NPC components to the expression of intron-containing genes. We further present the mechanistic models that could account for pre-mRNA retention at the nuclear side of NPCs. Finally, we discuss the possibility that other stages of intron-containing gene expression could be regulated by nuclear pores, in particular through the regulation of mRNA biogenesis factors by the NPC-associated SUMO protease Ulp1. PMID:26709543

  17. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  18. On the tectonic problems of the southern East China Sea and adjacent regions: Evidence from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Shang, Luning; Zhang, Xunhua; Han, Bo; Du, Runlin

    2016-02-01

    In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the `Geological-geophysical map series of China Seas and adjacent areas' database and the other was newly collected by R/V Kexue III in 2011. Magnetic and gravity data were reorganized and processed using the software MMDP, MGDP and RGIS. In addition to the description of the anomaly patterns in different areas, deep and shallow structure studies were performed by using several kinds of calculation, including a spectrum analysis, upward-continuation of the Bouguer anomaly and horizontal derivatives of the total-field magnetic anomaly. The depth of the Moho and magnetic basement were calculated. Based on the above work, several controversial tectonic problems were discussed. Compared to the shelf area and Ryukyu Arc, the Okinawa Trough has an obviously thinned crust, with the thinnest area having thickness less than 14 km in the southern part. The Taiwan-Sinzi belt, which terminates to the south by the NW-SE trending Miyako fault belt, contains the relic volcanic arc formed by the splitting of the paleo Ryukyu volcanic arc as a result of the opening of the Okinawa Trough. As an important tectonic boundary, the strike-slip type Miyako fault belt extends northwestward into the shelf area and consists of several discontinuous segments. A forearc terrace composed of an exotic terrane collided with the Ryukyu Arc following the subduction of the Philippine Sea Plate. Mesozoic strata of varying thicknesses exist beneath the Cenozoic strata in the shelf basin and significantly influence the magnetic pattern of this area. The gravity and magnetic data support the existence of a Great East China Sea, which suggests that the entire southern East China Sea shelf area was a basin in the Mesozoic without alternatively arranged uplifts and depressions, and might have extended southwestward and connected with the

  19. Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis

    SciTech Connect

    Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

    2010-10-01

    Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3°N, 73°E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

  20. Nearest-neighbor spacing distribution of basis in some intron-less and intron-containing DNA sequences

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Hernández-Saldaña, H.; Méndez-Sánchez, R. A.

    2006-12-01

    We show that the nearest neighbor distribution of distances between basis pairs of some intron-less and intron-containing coding regions are the same when a procedure, called unfolding, is applied. Such a procedure consists in separating the secular variations from the oscillatory terms. The form of the distribution obtained is quite similar to that of a random, i.e., Poissonian, sequence. This is done for the HUMBMYH7CD, DROMYONMA, HUMBMYH7 and DROMHC sequences. The first two correspond to highly coding regions while the last two correspond to non-coding regions. We also show that the distributions before the unfolding procedure depend on the secular part but, after the unfolding procedure we obtain an striking result: all distributions are similar to each other. The result becomes independent of the content of introns or the species we have chosen. This is in contradiction with the results obtained with the detrended fluctuation analysis in which the correlations yield different results for intron-less and intron-containing regions.

  1. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression.

    PubMed

    Morello, Laura; Gianì, Silvia; Troina, Filippo; Breviario, Diego

    2011-01-01

    In many eukaryotes, spliceosomal introns are able to influence the level and site of gene expression. The mechanism of this Intron Mediated Enhancement (IME) has not yet been elucidated, but regulation of gene expression is likely to occur at several steps during and after transcription. Different introns have different intrinsic enhancing properties, but the determinants of these differences remain unknown. Recently, an algorithm called IMEter, which is able to predict the IME potential of introns without direct testing, has been proposed. A computer program was developed for Arabidopsis thaliana and rice (Oryza sativa L.), but was only tested experimentally in Arabidopsis by measuring the enhancement effect on GUS expression of different introns inserted within otherwise identical plasmids. To test the IMEter potential in rice, a vector bearing the upstream regulatory sequence of a rice β-tubulin gene (OsTub6) fused to the GUS reporter gene was used. The enhancing intron interrupting the OsTub6 5'-UTR was precisely replaced by seven other introns carrying different features. GUS expression level in transiently transformed rice calli does not significantly correlate with the calculated IMEter score. It was also found that enhanced GUS expression was mainly due to a strong increase in the mRNA steady-state level and that mutations at the splice recognition sites almost completely abolished the enhancing effect. Splicing also appeared to be required for IME in Arabidopsis cell cultures, where failure of the OsTub6 5' region to drive high level gene expression could be rescued by replacing the poorly spliced rice intron with one from Arabidopsis.

  2. Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: highly efficient homing of an exogenous intron containing its own promoter.

    PubMed

    Odom, O W; Holloway, S P; Deshpande, N N; Lee, J; Herrin, D L

    2001-05-01

    Introns 2 and 4 of the psbA gene of Chlamydomonas reinhardtii chloroplasts (Cr.psbA2 and Cr.psbA4, respectively) contain large free-standing open reading frames (ORFs). We used transformation of an intronless-psbA strain (IL) to test whether these introns undergo homing. Each intron, plus short exon sequences, was cloned into a chloroplast expression vector in both orientations and then cotransformed into IL along with a spectinomycin resistance marker (16S rrn). For Cr.psbA2, the sense construct gave nearly 100% cointegration of the intron whereas the antisense construct gave 0%, consistent with homing. For Cr.psbA4, however, both orientations produced highly efficient cointegration of the intron. Efficient cointegration of Cr.psbA4 also occurred when the intron was introduced as a restriction fragment lacking any known promoter. Deletion of most of the ORF, however, abolished cointegration of the intron, consistent with homing. The Cr.psbA4 constructs also contained a 3-(3,4-dichlorophenyl)-1,1-dimethylurea resistance marker in exon 5, which was always present when the intron integrated, thus demonstrating exon coconversion. Remarkably, primary selection for this marker gave >100-fold more transformants (>10,000/microgram of DNA) than did the spectinomycin resistance marker. A trans homing assay was developed for Cr.psbA4; the ORF-minus intron integrated when the ORF was cotransformed on a separate plasmid. This assay was used to identify an intronic region between bp -88 and -194 (relative to the ORF) that stimulated homing and contained a possible bacterial (-10, -35)-type promoter. Primer extension analysis detected a transcript that could originate from this promoter. Thus, this mobile, self-splicing intron also contains its own promoter for ORF expression. The implications of these results for horizontal intron transfer and organelle transformation are discussed.

  3. Evidence of low density sub-crustal underplating beneath western continental region of India and adjacent Arabian Sea: Geodynamical considerations

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Agrawal, P. K.; Negi, J. G.

    1996-07-01

    The known high mobility of the Indian subcontinent during the period from 80 to 53 Ma has evoked considerable interest in recent times. It appears to have played an important role in shaping the subcontinental structures of western India and the adjoining Arabian Sea. During this period, a major catastrophic event took place in the form of Deccan volcanism, which coincides with the biological mass extinction at the K-T boundary, including the death of dinosaurs. The origin of Deccan volcanism is still being debated. Geophysically, western India and its offshore regions exhibit numerous prominent anomalies which testify to the abnormal nature of the underlying crust-lithosphere. In this work, we develop a two-dimensional structural model of these areas along two long profiles extending from the eastern basin of the Arabian Sea to about 1000 km inland. The model, derived from the available gravity data in the oceanic and continental regions, is constrained by seismic and other relevant information in the area, and suggests, for the first time, the presence of an extensive low-density (2.95-3.05 g/cm 3) sub-crustal underplating. Such a layer is found to occur between depths of 11 and 20 km in the eastern basin of the Arabian Sea, and betweeen 45 and 60 km in the continental region where it is sandwiched in the lower lithosphere. The low density may have been caused as a result of serpentinization or fractionation of magma by a process related in some way to the Deccan volcanic event. Substantial depletion of both oceanic and continental lithosphere is indicated. We hypothesize that the present anatomy of the deformed lithosphere of the region at the K-T boundary is the result of substantial melt generated owing to frictional heat possibly giving rise to a hot cell like condition at the base of the lithosphere, resulting from the rapid movement of the Indian subcontinent between 80 and 53 Ma.

  4. Crustal structure beneath Liaoning province and the Bohai Sea and its adjacent region in China based on ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Pang, Guang-hua; Feng, Ji-Kun; Lin, Jun

    2017-03-01

    The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phase-velocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequency-time analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at 8-35 s periods and the Love wave at 9-32 s periods, respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps, respectively, were inverted simultaneously to determine the 3D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and the Tangshan region are mainly clustered in the transition zone between the low- and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.

  5. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  6. Multi-Scale Interactions Associated with the Monsoon Onset Over South China Sea and Adjacent Regions during SCSMEX-98

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Li, X.; Wu, H.-T.

    1999-01-01

    Using data collected during The South China Sea Monsoon Experiment (SCSMEX) (1998) as well as from the TRMM Microwave-Imager (TMI) and precipitation radar (PR), we have studied the multi-scale interactions (meso-synoptic-intraseasonal) associated with monsoon onset over South China Sea (SCS) and its subsequent evolution. Results show that the monsoon onset (defined by development of steady wind direction and heavy precipitation) over the northern SCS occurred around May 15 -17. Prevailing southerlies and southwesterlies developed over the central SCS after May 20. Shortly after, monsoon convection developed over the whole SCS region around May 23-27. The entire onset process appeared to be delayed by about a week to 10 days compared with climatology. During late spring of 1998, mid-latitude frontal systems were particularly active. These systems strongly impacted the northern SCS convection and may have been instrumental in triggering the onset of the SCS monsoon. The Tropical Oceans and Global Atmosphere (TOGA) and Bureau of Meteorology Research Centre (BMRC) radar showed a wide variety of convective systems over the Intensive Flux Array, from frontal bands to shear-banded structure, deep convection, pop-corn type shallow convection, slow moving "fine lines" to water spout. Analysis of SSM/I wind and moisture data suggested that the delayed convective activity over the SCS may be linked to the weakened northward propagation of monsoon rain band, hence contributing to a persistence of the rainband south of the Yangtze River and the disastrous flood that occurred over this region during mid to late June, 1998.

  7. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity.

    PubMed

    Lubahn, D B; Brown, T R; Simental, J A; Higgs, H N; Migeon, C J; Wilson, E M; French, F S

    1989-12-01

    Androgens act through a receptor protein (AR) to mediate sex differentiation and development of the male phenotype. We have isolated the eight exons in the amino acid coding region of the AR gene from a human X chromosome library. Nucleotide sequences of the AR gene intron/exon boundaries were determined for use in designing synthetic oligonucleotide primers to bracket coding exons for amplification by the polymerase chain reaction. Genomic DNA was amplified from 46,XY phenotypic female siblings with complete androgen insensitivity syndrome. AR binding affinity for dihydrotestosterone in the affected siblings was lower than in normal males, but the binding capacity was normal. Sequence analysis of amplified exons demonstrated within the AR steroid-binding domain (exon G) a single guanine to adenine mutation, resulting in replacement of valine with methionine at amino acid residue 866. As expected, the carrier mother had both normal and mutant AR genes. Thus, a single point mutation in the steroid-binding domain of the AR gene correlated with the expression of an AR protein ineffective in stimulating male sexual development.

  8. Detection of 98. 5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene

    SciTech Connect

    Cuppens, H.; Marynen, P.; Cassiman, J.J. ); De Boeck, C. )

    1993-12-01

    The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region and their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.

  9. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs

    PubMed Central

    Valli, Adrian A.; Santos, Bruno A.C.M.; Hnatova, Silvia; Bassett, Andrew R.; Molnar, Attila; Chung, Betty Y.; Baulcombe, David C.

    2016-01-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  10. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome

  11. Origin and evolution of spliceosomal introns.

    PubMed

    Rogozin, Igor B; Carmel, Liran; Csuros, Miklos; Koonin, Eugene V

    2012-04-16

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or

  12. Modeling the evolution dynamics of exon-intron structure with a general random fragmentation process

    PubMed Central

    2013-01-01

    Background Most eukaryotic genes are interrupted by spliceosomal introns. The evolution of exon-intron structure remains mysterious despite rapid advance in genome sequencing technique. In this work, a novel approach is taken based on the assumptions that the evolution of exon-intron structure is a stochastic process, and that the characteristics of this process can be understood by examining its historical outcome, the present-day size distribution of internal translated exons (exon). Through the combination of simulation and modeling the size distribution of exons in different species, we propose a general random fragmentation process (GRFP) to characterize the evolution dynamics of exon-intron structure. This model accurately predicts the probability that an exon will be split by a new intron and the distribution of novel insertions along the length of the exon. Results As the first observation from this model, we show that the chance for an exon to obtain an intron is proportional to its size to the 3rd power. We also show that such size dependence is nearly constant across gene, with the exception of the exons adjacent to the 5′ UTR. As the second conclusion from the model, we show that intron insertion loci follow a normal distribution with a mean of 0.5 (center of the exon) and a standard deviation of 0.11. Finally, we show that intron insertions within a gene are independent of each other for vertebrates, but are more negatively correlated for non-vertebrate. We use simulation to demonstrate that the negative correlation might result from significant intron loss during evolution, which could be explained by selection against multi-intron genes in these organisms. Conclusions The GRFP model suggests that intron gain is dynamic with a higher chance for longer exons; introns are inserted into exons randomly with the highest probability at the center of the exon. GRFP estimates that there are 78 introns in every 10 kb coding sequences for vertebrate genomes

  13. Eukaryotic evolution: early origin of canonical introns.

    PubMed

    Simpson, Alastair G B; MacQuarrie, Erin K; Roger, Andrew J

    2002-09-19

    Spliceosomal introns, one of the hallmarks of eukaryotic genomes, were thought to have originated late in evolution and were assumed not to exist in eukaryotes that diverged early -- until the discovery of a single intron with an aberrant splice boundary in the primitive 'protozoan' Giardia. Here we describe introns from a close relative of Giardia, Carpediemonas membranifera, that have boundary sequences of the normal eukaryotic type, indicating that canonical introns are likely to have arisen very early in eukaryotic evolution.

  14. Evolutionarily conserved genes preferentially accumulate introns

    PubMed Central

    Carmel, Liran; Rogozin, Igor B.; Wolf, Yuri I.; Koonin, Eugene V.

    2007-01-01

    Introns that interrupt eukaryotic protein-coding sequences are generally thought to be nonfunctional. However, for reasons still poorly understood, positions of many introns are highly conserved in evolution. Previous reconstructions of intron gain and loss events during eukaryotic evolution used a variety of simplified evolutionary models that yielded contradicting conclusions and are not suited to reveal some of the key underlying processes. We combine a comprehensive probabilistic model and an extended data set, including 391 conserved genes from 19 eukaryotes, to uncover previously unnoticed aspects of intron evolution—in particular, to assign intron gain and loss rates to individual genes. The rates of intron gain and loss in a gene show moderate positive correlation. A gene’s intron gain rate shows a highly significant negative correlation with the coding-sequence evolution rate; intron loss rate also significantly, but positively, correlates with the sequence evolution rate. Correlations of the opposite signs, albeit less significant ones, are observed between intron gain and loss rates and gene expression level. It is proposed that intron evolution includes a neutral component, which is manifest in the positive correlation between the gain and loss rates and a selection-driven component as reflected in the links between intron gain and loss and sequence evolution. The increased intron gain and decreased intron loss in evolutionarily conserved genes indicate that intron insertion often might be adaptive, whereas some of the intron losses might be deleterious. This apparent functional importance of introns is likely to be due, at least in part, to their multiple effects on gene expression. PMID:17495009

  15. Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Petrunin, Alexey G.

    2016-06-01

    We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ˜ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (˜ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.

  16. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions

    PubMed Central

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species. PMID:27891142

  17. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    PubMed

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides, and Quercus rehderiana) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  18. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Wang, Weilai; Wu, Jianping; Fang, Lihua; Lai, Guijuan; Cai, Yan

    2017-03-01

    The sedimentary and crustal thicknesses and Poisson's ratios of the NE Tibetan Plateau and its adjacent regions are estimated by the h- κ stacking and CCP image of receiver functions from the data of 1,317 stations. The horizontal resolution of the obtained results is as high as 0.5° × 0.5°, which can be used for further high resolution model construction in the region. The crustal thicknesses from Airy's equilibrium are smaller than our results in the Sichuan Basin, Qilian tectonic belt, northern Alxa block and Qaidam Basin, which is consistent with the high densities in the mantle lithosphere and may indicate that the high-density lithosphere drags crust down overall. High Poisson's ratios and low velocity zones are found in the mid- and lower crust beneath eastern Qilian tectonic belt and the boundary areas of the Ordos block, indicating that partial melting may exist in these regions. Low Poisson's ratios and low-velocity anomalies are observed in the crust in the NE Tibetan Plateau, implying that the mafic lower crust is thinning or missing and that the mid- and lower crust does not exhibit melting or partial melting in the NE Tibetan Plateau, and weak flow layers are not likely to exist in this region.

  19. The natural history of group I introns.

    PubMed

    Haugen, Peik; Simon, Dawn M; Bhattacharya, Debashish

    2005-02-01

    There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.

  20. Spliceosome twin introns in fungal nuclear transcripts.

    PubMed

    Flipphi, Michel; Fekete, Erzsébet; Ag, Norbert; Scazzocchio, Claudio; Karaffa, Levente

    2013-08-01

    The spliceosome is an RNA/protein complex, responsible for intron excision from eukaryotic nuclear transcripts. In bacteria, mitochondria and plastids, intron excision does not involve the spliceosome, but occurs through mechanisms dependent on intron RNA secondary and tertiary structure. For group II/III chloroplast introns, "twintrons" (introns within introns) have been described. The excision of the external intron, and thus proper RNA maturation, necessitates prior removal of the internal intron, which interrupts crucial sequences of the former. We have here predicted analogous instances of spliceosomal twintrons ("stwintrons") in filamentous fungi. In two specific cases, where the internal intron interrupts the donor of the external intron after the first or after the second nucleotide, respectively, we show that intermediates with the sequence predicted by the "stwintron" hypothesis, are produced in the splicing process. This implies that two successive rounds of RNA scanning by the spliceosome are necessary to produce the mature mRNA. The phylogenetic distributions of the stwintrons we have identified suggest that they derive from "late" events, subsequent to the appearance of the host intron. They may well not be limited to fungal nuclear transcripts, and their generation and eventual disappearance in the evolutionary process are relevant to hypotheses of intron origin and alternative splicing.

  1. Database for bacterial group II introns.

    PubMed

    Candales, Manuel A; Duong, Adrian; Hood, Keyar S; Li, Tony; Neufeld, Ryan A E; Sun, Runda; McNeil, Bonnie A; Wu, Li; Jarding, Ashley M; Zimmerly, Steven

    2012-01-01

    The Database for Bacterial Group II Introns (http://webapps2.ucalgary.ca/~groupii/index.html#) provides a catalogue of full-length, non-redundant group II introns present in bacterial DNA sequences in GenBank. The website is divided into three sections. The first section provides general information on group II intron properties, structures and classification. The second and main section lists information for individual introns, including insertion sites, DNA sequences, intron-encoded protein sequences and RNA secondary structure models. The final section provides tools for identification and analysis of intron sequences. These include a step-by-step guide to identify introns in genomic sequences, a local BLAST tool to identify closest intron relatives to a query sequence, and a boundary-finding tool that predicts 5' and 3' intron-exon junctions in an input DNA sequence. Finally, selected intron data can be downloaded in FASTA format. It is hoped that this database will be a useful resource not only to group II intron and RNA researchers, but also to microbiologists who encounter these unexpected introns in genomic sequences.

  2. Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans.

    PubMed Central

    Nachman, M W; Crowell, S L

    2000-01-01

    The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites. PMID:10924480

  3. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    PubMed

    Raupach, Michael J; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  4. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  5. Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation.

    PubMed

    Macedo, Paula G; Kapa, Suraj; Mears, Jennifer A; Fratianni, Amy; Asirvatham, Samuel J

    2010-07-01

    Ablation procedures for atrial fibrillation have become an established and increasingly used option for managing patients with symptomatic arrhythmia. The anatomic structures relevant to the pathogenesis of atrial fibrillation and ablation procedures are varied and include the pulmonary veins, other thoracic veins, the left atrial myocardium, and autonomic ganglia. Exact regional anatomic knowledge of these structures is essential to allow correlation with fluoroscopy and electrograms and, importantly, to avoid complications from damage of adjacent structures within the chest. We present this information as a series of 2 articles. In a prior issue, we have discussed the thoracic vein anatomy relevant to paroxysmal atrial fibrillation. In the present article, we focus on the atria themselves, the autonomic ganglia, and anatomic issues relevant for minimizing complications during atrial fibrillation ablation.

  6. Orthology confers intron position conservation

    PubMed Central

    2010-01-01

    Background With the wealth of genomic data available it has become increasingly important to assign putative protein function through functional transfer between orthologs. Therefore, correct elucidation of the evolutionary relationships among genes is a critical task, and attempts should be made to further improve the phylogenetic inference by adding relevant discriminating features. It has been shown that introns can maintain their position over long evolutionary timescales. For this reason, it could be possible to use conservation of intron positions as a discriminating factor when assigning orthology. Therefore, we wanted to investigate whether orthologs have a higher degree of intron position conservation (IPC) compared to non-orthologous sequences that are equally similar in sequence. Results To this end, we developed a new score for IPC and applied it to ortholog groups between human and six other species. For comparison, we also gathered the closest non-orthologs, meaning sequences close in sequence space, yet falling just outside the ortholog cluster. We found that ortholog-ortholog gene pairs on average have a significantly higher degree of IPC compared to ortholog-closest non-ortholog pairs. Also pairs of inparalogs were found to have a higher IPC score than inparalog-closest non-inparalog pairs. We verified that these differences can not simply be attributed to the generally higher sequence identity of the ortholog-ortholog and the inparalog-inparalog pairs. Furthermore, we analyzed the agreement between IPC score and the ortholog score assigned by the InParanoid algorithm, and found that it was consistently high for all species comparisons. In a minority of cases, the IPC and InParanoid score ranked inparalogs differently. These represent cases where sequence and intron position divergence are discordant. We further analyzed the discordant clusters to identify any possible preference for protein functions by looking for enriched GO terms and Pfam

  7. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  8. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    PubMed

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  9. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters

    PubMed Central

    Zhang, Ning; McHale, Leah K.; Finer, John J.

    2016-01-01

    Introns, especially the first intron in the 5’ untranslated region (5’UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement. PMID:27806110

  10. Characterization of strong polar mutations in a region immediately adjacent to the L-arabinose operator in Escherichia coli B-r.

    PubMed

    Eleuterio, M; Griffin, B; Sheppard, D E

    1972-08-01

    Seven l-arabinose-negative mutations are described that map in three genetically distinct regions immediately adjacent to the araO (operator) region of the l-arabinose operon. All seven mutants revert spontaneously, exhibit a cis-dominant, trans-recessive polarity effect upon the expression of l-arabinose isomerase (gene araA), and fail to respond to amber, ochre, or UGA suppressors. Three of these mutants exhibit absolute polarity and are not reverted by the mutangens 2-aminopurine, diethyl sulfate, and ICR-191. These may have arisen as a consequence of an insertion mutation in gene araB or in the initiator region of the l-arabinose operon. The four remaining mutants exhibit strong but not absolute polarity on gene araA and respond to the mutagens diethyl sulfate and ICR-191. Three of these mutants are suppressible by two independently isolated suppressors that fail to suppress known nonsense codons. Partially polar Ara(+) revertants with lesions linked to ara are obtained from three of the same four mutants. These polar mutants, their external suppressors, and their partially polar revertants are discussed in terms of the mechanism of initiation of expression of the l-arabinose operon.

  11. Monte Carlo Simulations of the Inside Intron Recombination

    NASA Astrophysics Data System (ADS)

    Cebrat, Stanisław; PȨKALSKI, Andrzej; Scharf, Fabian

    Biological genomes are divided into coding and non-coding regions. Introns are non-coding parts within genes, while the remaining non-coding parts are intergenic sequences. To study evolutionary significance of the inside intron recombination we have used two models based on the Monte Carlo method. In our computer simulations we have implemented the internal structure of genes by declaring the probability of recombination between exons. One situation when inside intron recombination is advantageous is recovering functional genes by combining proper exons dispersed in the genetic pool of the population after a long period without selection for the function of the gene. Populations have to pass through the bottleneck, then. These events are rather rare and we have expected that there should be other phenomena giving profits from the inside intron recombination. In fact we have found that inside intron recombination is advantageous only in the case when after recombination, besides the recombinant forms, parental haplotypes are available and selection is set already on gametes.

  12. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  13. Origin and evolution of a new retained intron on the vulcan gene in Drosophila melanogaster subgroup species.

    PubMed

    Zhan, Leilei; Meng, Qiaohong; Chen, Ran; Yue, Yuan; Jin, Yongfeng

    2014-10-01

    Although numerous intron gains have been discovered, the mechanisms of intron creation have proven to be elusive. Previous study revealed that the vulcan gene of Drosophila melanogaster contained four exons in its coding region. In the current study, a newly created intron (Intron L) was identified on exon 2 of vulcan in D. melanogaster by comparing expression sequence tags. The RT-PCR experiment revealed that Intron L was associated with intron retention, in which two alternative transcripts of the gene differ by the inclusion or removal of an intron. It was found that Intron L was created by intronization of exonic sequence, and its donor and acceptor splice sites were created by synonymous mutation, leading to the origin of a new vulcan protein that is 22 amino acids shorter than the previously reported vulcan protein. Moreover, to track the origin of Intron L, 36 orthologous genes of species of Drosophila were cloned or annotated, and phylogenetic analysis was carried out. It indicated that the common ancestor of D. melangaster subgroup species created Intron L about 15 million years ago.

  14. Planes formed with four intron-positions in tertiary structures of retinol binding protein and calpain domain VI.

    PubMed

    Nosaka, Michiko; Hirata, Katsuki; Tsuji, Ryotarou; Sunaba, Syunya

    2014-01-07

    Eukaryotic genes have intervening sequences, introns, in their coding regions. Since introns are spliced out from m-RNA before translation, they are considered to have no effect on the protein structure. Here, we report a novel relationship between introns and the tertiary structures of retinol binding protein and calpain domain VI. We identified "intron-positions" as amino acid residues on which or just after which introns are found in their corresponding nucleotide sequences, and then found that four intron-positions form a plane. We also found that the four intron-positions of retinol-binding protein encloses its ligand retinol. The tertiary structure of calpain domain VI changes after Ca(2+) binding, and the four intron-positions form a plane that includes its ligand calpastatin. To evaluate the statistical significance of the planarity, we calculated the mean distance of each intron-position from the plane defined by the other three intron-positions, and showed that it is significantly smaller than the one calculated for randomly generated locations based on exon size distribution. On the basis of this finding, we discuss the evolution of retinol binding protein and the origin of introns.

  15. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  16. Bacterial group I introns: mobile RNA catalysts

    PubMed Central

    2014-01-01

    Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed. PMID:24612670

  17. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data

    NASA Astrophysics Data System (ADS)

    Bai, Ling; Iidaka, Takashi; Kawakatsu, Hitoshi; Morita, Yuichi; Dzung, N. Q.

    2009-09-01

    The Indochina block is located at the junction of four major plates. It has a close relationship with the uplift of Tibet plateau and the sea-floor spreading of the South China Sea in the geological evolution histories. We deployed a temporary broadband seismograph array in Vietnam from February 2000 to October 2005, and measured shear-wave splitting of core-refracted phases to investigate the upper mantle anisotropy beneath the Indochina block and adjacent regions. The observed delay times of up to 1.5 s are large, indicating a mantle source for the anisotropy. Two distinct regimes of seismic anisotropy are revealed. The fast polarization directions in the northern Indochina block with a main trend of N100°E are almost consistent with the direction of both the surface displacement and the absolute plate motion. These observations suggest the anisotropy is possibly generated by the present-day asthenospheric flow caused by the India-Eurasia collision. The fast polarization directions in the southern Indochina block and the Hainan island are nearly N60°E. The anisotropy in this area may reflect a combination of the India-Eurasia collision and the past orogenies in the lithosphere, or an abrupt variation in the asthenospheric flow.

  18. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena; Kozhevnikov, Vladimir; Melnikova, Valentina; Solovey, Oksana

    2016-12-01

    Correlations between seismicity, seismotectonic deformation (STD) field and velocity structure of the crust and the upper mantle in the Baikal rift and the adjacent areas of the Siberian platform and the Mongol-Okhotsk fold belt have been investigated. The 3D S-wave velocity structure up to the depths of 500 km has been modeled using a representative sample of Rayleigh wave group velocity dispersion curves (about 3200 paths) at periods from 10 to 250 s. The STD pattern has been reconstructed from mechanisms of large earthquakes, and is in good agreement with GPS and structural data. Analysis of the results has shown that most of large shallow earthquakes fall in regions of low S-wave velocities in the uppermost mantle (western Mongolia and areas of recent mountain building in southern Siberia) and in zones of their relatively high lateral variations (northeastern flank of the Baikal rift). In the first case the dominant STD regime is compression manifested in a mixture of thrust and strike-slip deformations. In the second case we observe a general predominance of extension.

  19. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.

    PubMed

    Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter

    2011-04-01

    The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences

  20. Reenacting the birth of an intron

    SciTech Connect

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-07-01

    An intron is an extended genomic feature whose function requires multiple constrained positions - donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers - that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half a billion years ago.

  1. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations

    PubMed Central

    Simmons, Melinda P.; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J.; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z.

    2015-01-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of

  2. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations.

    PubMed

    Simmons, Melinda P; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z

    2015-09-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica--a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this

  3. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  4. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  5. Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    PubMed Central

    2009-01-01

    Background Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life. Results To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites. Conclusions These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity

  6. Information content of Caenorhabditis elegans splice site sequences varies with intron length.

    PubMed Central

    Fields, C

    1990-01-01

    A database of sequences of 139 introns from the nematode Caenorhabditis elegans was analyzed using the information measure of Schneider et al. (1986) J. Mol. Biol. 128: 415-431. Statistically significant information is encoded by at least the first 30 nt and last 20 nt of C. elegans introns. Both the quantity and the distribution of information in the 5' splice site sequences differs between the typical short (length less than 75 nt) and rarer long (length greater than 75 nt) introns, with the 5 sites of long introns containing approximately one bit more information. 3' splice site sequences of long and short C. elegans introns differ significantly in the region between -20 and -10 nt. PMID:2326191

  7. A 5' Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo.

    PubMed

    Lu, Jiamiao; Williams, James A; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5' UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo.

  8. Nucleolar introns from Physarum flavicomum contain insertion elements that may explain how mobile group I introns gained their open reading frames.

    PubMed Central

    Vader, A; Naess, J; Haugli, K; Haugli, F; Johansen, S

    1994-01-01

    Comparison of two group I intron sequences in the nucleolar genome of the myxomycete Physarum flavicomum to their homologs in the closely related Physarum polycephalum revealed insertion-like elements. One of the insertion-like elements consists of two repetitive sequence motifs of 11 and 101 bp in five and three copies, respectively. The smaller motif, which flanks the larger, resembles a target duplication and indicates a relationship to transposons or retroelements. The insertion-like elements are found in the peripheral loops of the RNA structure; the positions occupied by the ORFs of mobile nucleolar group I introns. The P. flavicomum introns are 1184 and 637 bp in size, located in the large subunit ribosomal RNA gene, and can be folded into group I intron structures at the RNA level. However, the intron 2s from both P. flavicomum and P. polycephalum contain an unusual core region that lacks the P8 segment. None of the introns are able to self-splice in vitro. Southern analysis of different isolates indicates that the introns are not optional in myxomycetes. Images PMID:7984404

  9. An intron-encoded protein assists RNA splicing of multiple similar introns of different bacterial genes.

    PubMed

    Meng, Qing; Wang, Yanfei; Liu, Xiang-Qin

    2005-10-21

    Four group II introns were found in an unusually intron-rich dnaN gene (encoding the beta subunit of DNA polymerase III) of the cyanobacterium Trichodesmium erythraeum, and they have strong similarities to two introns of the RIR gene (encoding ribonucleotide reductase) of the same organism. Of these six introns, only the RIR-3 intron encodes a maturase protein and showed efficient RNA splicing when expressed in Escherichia coli cells. The other five introns do not encode a maturase protein and did not show RNA splicing in E. coli. But these maturase-less introns showed efficient RNA splicing when the RIR-3 intron-encoded maturase protein was co-expressed from a freestanding gene in the same cell. These findings demonstrated that an intron-encoded protein could function as a general maturase for multiple introns of different genes. Major implications may include an intron-mediated co-regulation of the different genes and a resemblance of the evolutionary origin of spliceosomal introns.

  10. Splicing of intron 3 of human BACE requires the flanking introns 2 and 4.

    PubMed

    Annies, Maik; Stefani, Muriel; Hueber, Andreas; Fischer, Frauke; Paganetti, Paolo

    2009-10-16

    Regulation of proteolytic cleavage of the amyloid precursor protein by the aspartic protease BACE may occur by alternative splicing and the generation of enzymatically inactive forms. In fact, the presence of exonic donor and acceptor sites for intron 3 generates the two deficient variants BACE457 and BACE476. In HEK293 cells, when introns are inserted separately in the BACE cDNA, we found that whilst introns 2 and 4 are efficiently spliced out, intron 3 is not removed. On the other hand, splicing to wild-type BACE is restored when intron 3 is flanked by the two other introns. The presence of all three introns also leads to alternative splicing of intron 3 and the generation of BACE476. In contrast, BACE457 expression takes place only after mutating the donor splice site of intron 3, indicating that additional regulatory elements are necessary for the use of the splicing site within exon 4. Overall, our data demonstrate that a complex splicing of intron 3 regulates the maturation of the BACE mRNA. This appears orchestrated by domains present in the exons and introns flanking intron 3. Excessive BACE activity is a risk factor for Alzheimer's disease, therefore this complex regulation might guarantee low neuronal BACE activity and disease prevention.

  11. A complex twintron is excised as four individual introns.

    PubMed Central

    Drager, R G; Hallick, R B

    1993-01-01

    Twintrons are introns-within-introns excised by sequential splicing reactions. A new type of complex twintron comprised of four individual group III introns has been characterized. The external intron is interrupted by an internal intron containing two additional introns. This 434 nt complex twintron within a Euglena gracilis chloroplast ribosomal protein gene is excised by four sequential splicing reactions. Two of the splicing reactions utilize multiple 5'- and/or 3'-splice sites. These findings are evidence that introns with multiple active splice sites can be formed by the repeated insertion of introns into existing introns. Images PMID:7685079

  12. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    SciTech Connect

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking a long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to

  13. Climatic stress events in the source region of modern man - Matching the last 20 ka of the Chew Bahir climate record with occupation history of adjacent refugia

    NASA Astrophysics Data System (ADS)

    Foerster, Verena; Vogelsang, Ralf; Junginger, Annett; Asrat, Asfawossen; Lamb, Henry F.; Viehberg, Finn; Trauth, Martin H.; Schaebitz, Frank

    2014-05-01

    A rapidly changing environment is considered an important driver not just for human evolution but also for cultural and technological innovation and migration. To evaluate the impact that climatic shifts on different timescales might have had on the living conditions of prehistoric humans is one of the cornerstones in current research, but continuous paleo-climate records in the vicinity of archaeological sites are still rare. As a contribution towards a better understanding of this human-climate interaction we here present a match between the last 20 ka of the just recently developed paleo-climate record from Chew Bahir in southern Ethiopia and the settlement history of adjacent possible refugia. The Chew Bahir basin, as a newly explored reliable climatic archive, lies in a biogeographically highly sensitive transition zone between the Main Ethiopian Rift and the Omo-Turkana basin and hence represents an ideal site to study climatic variability in the source region of modern man. The climatic history with a temporal resolution of up to 3 years is showing besides orbitally driven long-term transitions in and out of favourable living conditions several short abrupt excursions towards drier or wetter episodes. Comparing the frequency of archaeological findings as a parameter for human occupation to this close-by climate record that allows us to outline how complex the interplay between humans and environment during the last 20 ka really was, which dynamics might have been involved and which role the temporal dimension of environmental changes could have played for the adaption of humans.

  14. The Half-Life of the HSV-1 1.5 kb LAT Intron is similar to the half-Life of the 2.0 kb LAT Intron

    PubMed Central

    Brinkman, Kerry K.; Mishra, Prakhar; Fraser, Nigel W.

    2013-01-01

    Herpes Simplex Virus type 1 (HSV-1) establishes a latent infection in the sensory neurons of the peripheral nervous system of humans. Although about 80 genes are expressed during the lytic cycle of the virus infection, essentially only one gene is expressed during the latent cycle. This gene is known as the latency associated transcript (LAT) and it appears to play a role in the latency cycle through an anti-apoptotic function in the 5’ end of the gene and miRNA encoded along the length of the transcript which down regulate some of the viral immediate early (IE) gene products. The LAT gene is about 8.3 kb long and consists of two exons separated by an unusual intron. The intron between the exons consists of two nested introns. This arrangement of introns has been called a twintron. Furthermore, the larger (2 kb) intron has been shown to be very stable. In this study we measure the stability of the shorter 1.5 kb nested intron and find its half-life is similar to the longer intron. This was achieved by deleting the 0.5 kb overlapping intron from a plasmid construct designed to express the LAT transcript from a tet-inducible promoter, and measuring the half-life of the 1.5 kb intron in tissue culture cells. This finding supports the hypothesis that it is the common branch-point region of these nested introns that is responsible for their stability. PMID:23335177

  15. The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron.

    PubMed

    Brinkman, Kerry K; Mishra, Prakhar; Fraser, Nigel W

    2013-02-01

    Herpes simplex virus type 1 establishes a latent infection in the sensory neurons of the peripheral nervous system of humans. Although about 80 genes are expressed during the lytic cycle of the virus infection, essentially only one gene is expressed during the latent cycle. This gene is known as the latency-associated transcript (LAT), and it appears to play a role in the latency cycle through an anti-apoptotic function in the 5' end of the gene and miRNA encoded along the length of the transcript which downregulate some of the viral immediate-early gene products. The LAT gene is about 8.3 kb long and consists of two exons separated by an unusual intron. The intron between the exons consists of two nested introns. This arrangement of introns has been called a twintron. Furthermore, the larger (2 kb) intron has been shown to be very stable. In this study, we measure the stability of the shorter 1.5-kb nested intron and find its half-life is similar to the longer intron. This was achieved by deleting the 0.5-kb overlapping intron from a plasmid construct designed to express the LAT transcript from a tet-inducible promoter and measuring the half-life of the 1.5-kb intron in tissue culture cells. This finding supports the hypothesis that it is the common branch-point region of these nested introns that is responsible for their stability.

  16. A survey on intron and exon lengths.

    PubMed Central

    Hawkins, J D

    1988-01-01

    The lengths of introns and exons in various parts of genes of vertebrates, insects, plants and fungi are tabulated. Differences between the various groups of organisms are apparent. The results are discussed and support the idea that, generally speaking, introns were present in primitive genomes, though in some cases they may have been inserted into pre-existing genes. PMID:3057449

  17. Intron Length Coevolution across Mammalian Genomes

    PubMed Central

    Keane, Peter A.; Seoighe, Cathal

    2016-01-01

    Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics. PMID:27550903

  18. Group II Introns and Their Protein Collaborators

    NASA Astrophysics Data System (ADS)

    Solem, Amanda; Zingler, Nora; Pyle, Anna Marie; Li-Pook-Than, Jennifer

    Group II introns are an abundant class of autocatalytic introns that excise themselves from precursor mRNAs. Although group II introns are catalytic RNAs, they require the assistance of proteins for efficient splicing in vivo. Proteins that facilitate splicing of organellar group II introns fall into two main categories: intron-encoded maturases and host-encoded proteins. This chapter will focus on the host proteins that group II introns recruited to ensure their function. It will discuss the great diversity of these proteins, define common features, and describe different strategies employed to achieve specificity. Special emphasis will be placed on DEAD-box ATPases, currently the best studied example of host-encoded proteins with a role in group II intron splicing. Since the exact mechanisms by which splicing is facilitated is not known for any of the host proteins, general mechanistic strategies for protein-mediated RNA folding are described and assessed for their potential role in group II intron splicing.

  19. Introns differ from exons by their redundancy

    SciTech Connect

    Popova, T.G.; Sadovskii, M.G.

    1995-10-01

    This paper is devoted to an analysis of the intrinsic structure of the gene from the point of view of the redundancy of different structural units - exons and introns. Human genes for which the exon-intron structure has been clearly established were studied. The redundancy of each exon and intron in the gene was determined. It was shown that, in human genes, introns are more redundant than exons. Redundancy is determined as the smallest length of a word (oliconucleotide) beginning with which all words in the studied nucleotide sequence are found exactly once. Mechanisms leading to the disruption of the general pattern of ratios of redundancy of exons and introns are studied. 12 refs., 3 tabs.

  20. A Novel Regulatory Mechanism of Type II Collagen Expression via a SOX9-dependent Enhancer in Intron 6.

    PubMed

    Yasuda, Hideyo; Oh, Chun-do; Chen, Di; de Crombrugghe, Benoit; Kim, Jin-Hoi

    2017-01-13

    Type II collagen α1 is specific for cartilaginous tissues, and mutations in its gene are associated with skeletal diseases. Its expression has been shown to be dependent on SOX9, a master transcription factor required for chondrogenesis that binds to an enhancer region in intron 1. However, ChIP sequencing revealed that SOX9 does not strongly bind to intron 1, but rather it binds to intron 6 and a site 30 kb upstream of the transcription start site. Here, we aimed to determine the role of the novel SOX9-binding site in intron 6. We prepared reporter constructs that contain a Col2a1 promoter, intron 1 with or without intron 6, and the luciferase gene. Although the reporter constructs were not activated by SOX9 alone, the construct that contained both introns 1 and 6 was activated 5-10-fold by the SOX9/SOX5 or the SOX9/SOX6 combination in transient-transfection assays in 293T cells. This enhancement was also observed in rat chondrosarcoma cells that stably expressed the construct. CRISPR/Cas9-induced deletion of intron 6 in RCS cells revealed that a 10-bp region of intron 6 is necessary both for Col2a1 expression and SOX9 binding. Furthermore, SOX9, but not SOX5, binds to this region as demonstrated in an electrophoretic mobility shift assay, although both SOX9 and SOX5 bind to a larger 325-bp fragment of intron 6 containing this small sequence. These findings suggest a novel mechanism of action of SOX5/6; namely, the SOX9/5/6 combination enhances Col2a1 transcription through a novel enhancer in intron 6 together with the enhancer in intron 1.

  1. Reverse transcriptase and intron number evolution

    PubMed Central

    Kuo, Alan; Grigoriev, Igor V.

    2014-01-01

    Background Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. Methods Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. Results The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota’s ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss

  2. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    PubMed

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  3. Genome-Wide Transcript Profiling Reveals Novel Breast Cancer-Associated Intronic Sense RNAs

    PubMed Central

    Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A. Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer. PMID:25798919

  4. Allosteric modulation of the HIV-1 gp120-gp41 association site by adjacent gp120 variable region 1 (V1) N-glycans linked to neutralization sensitivity.

    PubMed

    Drummer, Heidi E; Hill, Melissa K; Maerz, Anne L; Wood, Stephanie; Ramsland, Paul A; Mak, Johnson; Poumbourios, Pantelis

    2013-01-01

    The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and C-terminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn¹³⁶ in V1 (T138N mutation) in conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N¹³⁹INN sequence, which ablates the overlapping Asn¹⁴¹-Asn¹⁴²-Ser-Ser potential N-linked glycosylation sequons in V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu⁵⁹³, Trp⁵⁹⁶ and Lys⁶⁰¹. The 136 and/or 142 glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a

  5. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns

    PubMed Central

    Crous, Pedro W.; de Wit, Pierre J. G. M.; van der Burgt, Ate

    2015-01-01

    Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom. PMID:26046656

  6. Unique genome of dicyemid mesozoan: highly shortened spliceosomal introns in conservative exon/intron structure.

    PubMed

    Ogino, Kazutoyo; Tsuneki, Kazuhiko; Furuya, Hidetaka

    2010-01-01

    Dicyemids are enigmatic endoparasites, or endosymbionts, living in the renal sac of benthic cephalopod molluscs. The body of dicyemids consists of only 9-41 cells, with neither extracellular matrices nor differentiated tissues. Due to the unusually simple body organization, dicyemids have long been the subject of phylogenetic controversy. Molecular evidences suggest dicyemids are lophotrochozoans that have secondarily lost many morphological characters. We studied 40 genes of the dicyemid Dicyema japonicum and found that their spliceosomal introns are very short (mean length=26 bp). This size was shorter than that of introns of animals, such as Fugu rubripes and Oikopleura dioica which possess compact genome and introns. In the intron size, the dicyemid was nearly equal to the chlorarachniophyte Bigelowiella natans nucleomorph (18-21 bp) which has the shortest introns of any known eukaryote. Despite the short introns, the intron density (5.3 introns/gene) of the dicyemid is similar to that in model invertebrates. In addition, the exon/intron structure of the dicyemid is more similar to vertebrates than to the model invertebrates. These results suggest that the positions of the introns are possibly conserved under functional constraints.

  7. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns.

    PubMed

    Collemare, Jérôme; Beenen, Henriek G; Crous, Pedro W; de Wit, Pierre J G M; van der Burgt, Ate

    2015-01-01

    Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom.

  8. Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: effects on HDAC biology and antiproliferative activity.

    PubMed

    Tapadar, Subhasish; He, Rong; Luchini, Doris N; Billadeau, Daniel D; Kozikowski, Alan P

    2009-06-01

    A series of hydroxamic acid based histone deacetylase inhibitors 6-15, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.

  9. Intron Delays and Transcriptional Timing during Development

    PubMed Central

    Swinburne, Ian A.; Silver, Pamela A.

    2010-01-01

    The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics. PMID:18331713

  10. A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts.

    PubMed Central

    Kohchi, T; Umesono, K; Ogura, Y; Komine, Y; Nakahigashi, K; Komano, T; Yamada, Y; Ozeki, H; Ohyama, K

    1988-01-01

    The chloroplast gene rps12 for ribosomal protein S12 in a liverwort, Marchantia polymorpha, is split into three exons by two introns, one of which (intron 1) is discontinuous. Exon 1 of rps12 for the N-terminal portion of the S12 protein is far from exons 2 and 3 for the C-terminal portion on the opposite DNA strand. S1-nuclease protection analysis and Northern hybridization with RNA isolated from the liverwort chloroplasts showed that: (i) the exons 1 and 2-3 of the rps12 gene with the neighboring genes were transcribed separately, (ii) the trans-splicing of intron 1 occurred after the processing of two primary transcripts to two pre-mRNAs, and (iii) there was no particular order for the splicing of intron 1 (trans) and intron 2 (cis) in the rps12 gene. We propose a bimolecular interaction model for trans-splicing by assuming that intermolecular base pairings between two pre-mRNAs result in the formation of the structure typical of group II introns except for disruption in the loop III region. This structure could be constructed in intron 1 of tobacco rps12 gene. Images PMID:3194192

  11. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  12. a Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2009-02-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences has some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algoritnm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  13. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  14. At the origin of spliceosomal introns: Is multiplication of introner-like elements the main mechanism of intron gain in fungi?

    PubMed

    Collemare, Jérôme; van der Burgt, Ate; de Wit, Pierre J G M

    2013-03-01

    The recent discovery of introner-like elements (ILEs) in six fungal species shed new light on the origin of regular spliceosomal introns (RSIs) and the mechanism of intron gains. These novel spliceosomal introns are found in hundreds of copies, are longer than RSIs and harbor stable predicted secondary structures. Yet, they are prone to degeneration in sequence and length to become undistinguishable from RSIs, suggesting that ILEs are predecessors of most RSIs. In most fungi, other near-identical introns were found duplicated in lower numbers in the same gene or in unrelated genes, indicating that intron duplication is a widespread phenomenon. However, ILEs are associated with the majority of intron gains, suggesting that the other types of duplication are of minor importance to the overall gains of introns. Our data support the hypothesis that ILEs' multiplication corresponds to the main mechanism of intron gain in fungi.

  15. Two self-splicing group I introns interrupt two late transcribed genes of prolate-headed Lactobacillus delbrueckii phage JCL1032.

    PubMed

    Riipinen, K A; Alatossava, T

    2004-10-01

    Two group I introns were detected from the late gene region of the prolate-headed phage JCL1032 of Lactobacillus delbrueckii. Introns JCL-I1 and JCL-I2 interrupt orf602 and orf1868 encoding a phage terminase large subunit (TerL, 69.7 kDa) and a putative tape measure protein (TMP, 202 kDa), respectively. The introns JCL-I1 (226 bp) and JCL-I2 (322 bp) were efficiently self-spliced in vivo. Both introns were classified to the subgroup IA1 having all the conserved structures necessary for splicing, but lacking the ability to encode endonucleases or other gene products. The introns JCL-I1 and JCL-I2 shared restricted nucleotide sequence similarity with each other and with the group I terL intron of Lb. delbrueckii phage LL-H. No match was found for JCL-I1 in the homology searches. Instead, the primary sequence from the joining region of P8 and P7 to P9 of the intron JCL-I2 was homologous to the group I intron of Bacillus mojavensis; the orf142 introns I1, I2 and I3 of Staphylococcus aureus phage Twort; the group I intron of phage Bastille (Bacillus thuringiensis); and to the group IA3 intron of Monomastix species.

  16. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains.

    PubMed

    Keren, Ido; Klipcan, Liron; Bezawork-Geleta, Ayenachew; Kolton, Max; Shaya, Felix; Ostersetzer-Biran, Oren

    2008-08-22

    CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.

  17. Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae.

    PubMed

    Liss, M; Kirk, D L; Beyser, K; Fabry, S

    1997-03-01

    Three nuclear spliceosomal introns in conserved locations were amplified and sequenced from 28 strains representing 14 species and 4 genera of volvocalean green algae. Data derived from the three different introns yielded congruent results in nearly all cases. In pairwise comparisons, a spectrum of taxon-specific sequence differences ranging from complete identity to no significant similarity was observed, with the most distantly related organisms lacking any conserved elements apart from exon-intron boundaries and a pyrimidine-rich stretch near the 3' splice site. A metric (SI50), providing a measure of the degree of similarity of any pair of intron sequences, was defined and used to calculate phylogenetic distances between organisms whose introns displayed statistically significant similarities. The rate of sequences divergence in the introns was great enough to provide useful information about relationships among different geographical isolates of a single species, but in most cases was too great to provide reliable guides to relationships above the species level. A substitution rate of approximately 3 x 10(-8) per intron position per year was estimated, which is about 150-fold higher than in nuclear genes encoding rRNA and about 10-fold higher than the synonymous substitution rate in protein-coding regions. Thus, these homologous introns not only provide useful information about intraspecific phylogenetic relationships, but also illustrate the concept that different parts of a gene may be subject to extremely different intensities of selection. The intron data generated here (1) reliably resolve for the first time the relationships among the five most extensively studied strains of Volvox, (2) reveal that two other Volvox species may be more closely related than had previously been suspected, (3) confirm prior evidence that particular isolates of Eudorina elegans and Pleodorina illinoisensis appear to be sibling taxa, and (4) contribute to the resolution of

  18. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  19. Crust structure of the Northern Margin of North China Craton and adjacent region from Sinoprobe-02 North China seismic WAR/R experiment

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Li, Q.; Cox, C. M.; Hou, H.; Guan, Y.

    2011-12-01

    The Central Asian Orogen Belt (CAOB) or Altaids, situated between the Siberian craton(SC) to the north and north China craton (NCC) with tarim to the south, is one of the world's largest accretionary orogens formed by subduction and accretion of juvenile material from the Neoproterozoic through the Paleozoic. The NCC is the oldest craton in China, which suffered Yanshan intercontinental orogenic process and lithosphere thinning in Mesozoic. In the past 20 years, remarkable studies about this region have been carried out and different tectonic models were proposed, however, some crucial geologic problems remain controversial. In order to obtain better knowledge of deep structure and properties of crust on the northern margin of north China craton, a 450 km long WAR/R section was completed jointly by Institute of Geology, CAGS and University of Oklahoma. Our 450 km long NW-SE WAR/R line extends from west end of the Yanshan orogen, across the Bainaimiao arc, Ondor sum subduction accretion complex to the Solonker suture zone. The recording of seismic waves from 8 explorations was conducted in 4 deployments of 300 reftek-125A records and single-channel 4.5Hz geophones with station spacing of 1km. The shooting procedure was employ 500 or 1500kg explosives in 4-5 or 15-23 boreholes at 40-45m depth. The sampling rate was 100 HZ, and recording time window was 1200s. The P wave field on the sections got high quality data for most part of the profile, but have low signal-to-noise for the south end, where closed to Beijing with a lot of ambient noise from traffic, industry and human activity. Arrivals from of refracted and reflected waves from sediments and basement (Pg), intracrust (Pcp, Plp) and Moho (Pmp) were typically observed, but Pn phase through the upper most mantle was only observed for 2 shots. Identification and correlation of seismic phases was done manually on computer screen Zplot software. Each trace has been bandpass filtered (1-20Hz) and normalized with AGC

  20. Crystal structure of group II intron domain 1 reveals a template for RNA assembly

    PubMed Central

    Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; Pyle, Anna Marie

    2015-01-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Comprised of intron domain 1 from the Oceanobacillus iheyensis group II intron (D1, 266 nts), this intermediate retains native-like features but adopts a compact conformation in which the active-site cleft is closed. Transition between this closed and open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a “first comes, first folds” strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  1. Near intron pairs and the metazoan tree.

    PubMed

    Lehmann, Jörg; Stadler, Peter F; Krauss, Veiko

    2013-03-01

    Gene structure data can substantially advance our understanding of metazoan evolution and deliver an independent approach to resolve conflicts among existing hypotheses. Here, we used changes of spliceosomal intron positions as novel phylogenetic marker to reconstruct the animal tree. This kind of data is inferred from orthologous genes containing mutually exclusive introns at pairs of sequence positions in close proximity, so-called near intron pairs (NIPs). NIP data were collected for 48 species and utilized as binary genome-level characters in maximum parsimony (MP) analyses to reconstruct deep metazoan phylogeny. All groupings that were obtained with more than 80% bootstrap support are consistent with currently supported phylogenetic hypotheses. This includes monophyletic Chordata, Vertebrata, Nematoda, Platyhelminthes and Trochozoa. Several other clades such as Deuterostomia, Protostomia, Arthropoda, Ecdysozoa, Spiralia, and Eumetazoa, however, failed to be recovered due to a few problematic taxa such as the mite Ixodesand the warty comb jelly Mnemiopsis. The corresponding unexpected branchings can be explained by the paucity of synapomorphic changes of intron positions shared between some genomes, by the sensitivity of MP analyses to long-branch attraction (LBA), and by the very unequal evolutionary rates of intron loss and intron gain during evolution of the different subclades of metazoans. In addition, we obtained an assemblage of Cnidaria, Porifera, and Placozoa as sister group of Bilateria+Ctenophora with medium support, a disputable, but remarkable result. We conclude that NIPs can be used as phylogenetic characters also within a broader phylogenetic context, given that they have emerged regularly during evolution irrespective of the large variation of intron density across metazoan genomes.

  2. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  3. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-10-11

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years.

  4. NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition.

    PubMed

    Kruschel, Daniela; Skilandat, Miriam; Sigel, Roland K O

    2014-03-01

    A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5' exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5' exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5' exon and the intron. Here, we present the NMR solution structures of the d3' hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg(2+) ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.

  5. Group II intron-ribosome association protects intron RNA from degradation.

    PubMed

    Contreras, Lydia M; Huang, Tao; Piazza, Carol Lyn; Smith, Dorie; Qu, Guosheng; Gelderman, Grant; Potratz, Jeffrey P; Russell, Rick; Belfort, Marlene

    2013-11-01

    The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility.

  6. FGLamide Allatostatin genes in Arthropoda: introns early or late?

    PubMed

    Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S

    2009-07-01

    FGLamide allatostatins are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders and also show myomodulatory activity. The FGLamide allatostatin (AST) gene structure in Dictyoptera is intronless within the ORF, whereas in 9 species of Diptera, the FGLamide AST ORF has one intron. To investigate the evolutionary history of AST intron structure, (intron early versus intron late hypothesis), all available Arthropoda FGLamide AST gene sequences were examined from genome databases with reference to intron presence and position/phase. Three types of FGLamide AST ORF organization were found: intronless in I. scapularis and P. humanus corporis; one intron in D. pulex, A. pisum, A. mellifera and five Drosophila sp.; two introns in N. vitripennis, B. mori strains, A. aegypti, A. gambiae and C. quinquefasciatus. The literature suggests that for the majority of genes examined, most introns exist between codons (phase 0) which may reflect an ancient function of introns to separate protein modules. 60% of the FGLamide AST ORFs introns were between the first and second base within a codon (phase 1), 28% were between the second and third nucleotides within a codon (phase two) and 12% were phase 0. As would be required for correct intron splicing consensus sequence, 84% of introns were in codons starting with guanine. The positioning of introns was a maximum of 9 codons from a dibasic cleavage site. Our results suggest that the introns in the analyzed species support the intron late model.

  7. Ants of three adjacent habitats of a transition region between the cerrado and caatinga biomes: the effects of heterogeneity and variation in canopy cover.

    PubMed

    Neves, F S; Queiroz-Dantas, K S; da Rocha, W D; Delabie, J H C

    2013-06-01

    Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological-evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.

  8. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits

    NASA Astrophysics Data System (ADS)

    Ni, Jing; You, Feng; Xu, Jianhe; Xu, Dongdong; Wen, Aiyun; Wu, Zhihao; Xu, Yongli; Zhang, Peijun

    2012-03-01

    The growth hormone gene ( GH) affects animal growth and is a potential target for genetic studies of variation related to growth traits. In this study, we analyzed single nucleotide polymorphisms (SNPs) in GH intron regions and their associations with growth traits in large yellow croaker, Larimichthys crocea, from Zhejiang and Fujian stocks. The results of PCR-single strand conformation polymorphism showed two haplotypes of intron 1, named AA and AB genotypes, in Zhejiang stock. AB exhibited an SNP at position 196 (G→A) that was negatively correlated with body height and positively correlated with standard length/body height ( P≤0.05). Two different genotypes, CC and CD, were identified in intron 2 in Fujian stock, with CD showing an SNP at position 692 (T→C). The CD genotype had a significantly positive correlation with both weight and total length ( P≤0.01). These basic data highlight the potential for using GH as a genetic marker of fish growth in marker assisted selection.

  9. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer.

    PubMed

    Kamikawa, Ryoma; Masuda, Isao; Demura, Mikihide; Oyama, Kenichi; Yoshimatsu, Sadaaki; Kawachi, Masanobu; Sako, Yoshihiko

    2009-08-01

    In the cytochrome c oxidase subunit I (cox1) gene of four raphidophycean flagellates Chattonella antiqua, C. marina, C. ovata, and C. minima we found two group II introns described here as Chattonella cox1-i1 and Chattonella cox1-i2 encoding an open reading frame (ORF) comprised of three domains: reverse transcriptase (RT), RNA maturase (Ma) and zinc finger (H-N-H) endonuclease domains. The secondary structures show both Chattonella cox1-i1 and Chattonella cox1-i2 belong to group IIA1, albeit the former possesses a group IIB-like secondary structural character in the epsilon' region of arm I. Our phylogenetic analysis inferred from RT domain sequences of the intronic ORF, comparison of the insertion sites, and the secondary structures of the introns suggests that Chattonella cox1-i1 likely shares an evolutionary origin with the group II introns inserted in cox1 genes of five phylogenetically diverged eukaryotes. In contrast, Chattonella cox1-i2 was suggested to bear a close evolutionary affinity to the group II introns found in diatom cox1 genes. The RT domain-based phylogeny shows a tree topology in which Chattonella cox1-i2 is nested in the diatom sequences suggesting that a diatom-to-Chattonella intron transfer has taken place. Finally, we found no intron in cox1 genes from deeper-branching raphidophyceans. Based on parsimonious discussion, Chattonella cox1-i1 and Chattonella cox1-i2 have invaded into the cox1 gene of an ancestral Chattonella cell after diverging from C. subsalsa.

  10. How Common Is Parallel Intron Gain? Rapid Evolution Versus Independent Creation in Recently Created Introns in Daphnia.

    PubMed

    Roy, Scott William

    2016-08-01

    The evolutionary history of the spliceosomal introns that interrupt nuclear genes in eukaryotes has been debated for four decades. Positions of introns show a high degree of coincidence between various eukaryotes, implying either than many modern introns are very old and/or that intron creation is highly biased toward certain sites, leading to rampant parallel intron gain. A series of articles in this and other journals reported evidence for a strikingly high degree of parallel insertion of introns in different alleles of the water flea Daphnia pulex Here, I report several new analyses of these data. Among the 23 loci reported to be undergoing parallel intron gain, I find that in five cases introns reported to be unrelated show extended sequence similarity strongly suggesting that the introns are in fact homologous. Five additional cases show extended conserved motifs between allegedly unrelated introns. For nearly all loci including the 13 remaining loci, at least one intron shows hallmarks of rapid sequence evolution, thwarting confident inference about homology. In addition, I reanalyze gene trees reconstructed from flanking exonic sequences, claimed by the original authors as additional evidence for parallel gain. I show that these phylogenetic trees frequently fail to recover expected relationships, and in any case show relationships not consistent with parallel intron gains. In total, I conclude that the data do not support widespread parallel intron gain in D. pulex These findings strengthen the notion that shared intron positions generally reflect ancestral introns, and thus the notion of complex genes in early eukaryotes.

  11. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes

    PubMed Central

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-01-01

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5′–3′ gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5′–3′ decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5′–3′ gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species. PMID:26450849

  12. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes.

    PubMed

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-10-07

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5'-3' gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5'-3' decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5'-3' gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species.

  13. Primary and secondary structure analyses of the rDNA group-I introns of the Zygnematales (Charophyta).

    PubMed

    Bhattacharya, D; Damberger, S; Surek, B; Melkonian, M

    1996-02-01

    The Zygnematales (Charophyta) contain a group-I intron (subgroupIC1) within their nuclear-encoded small subunit ribosomal DNA (SSU rDNA) coding region. This intron, which is inserted after position 1506 (relative to the SSU rDNA of Escherichia coli), is proposed to have been vertically inherited since the origin of the Zygnematales approximately 350-400 million years ago. Primary and secondary structure analyses were carried out to model group-I intron evolution in the Zygnematales. Secondary structure analyses support genetic data regarding sequence conservation within regions known to be functionally important for in vitro self-splicing of group-I introns. Comparisons of zygnematalean group-I intron secondary structures also provided some new insights into sequences that may have important roles in in vivo RNA splicing. Sequence analyses showed that sequence divergence rates and the nucleotide compositions of introns and coding regions within any one taxon varied widely, suggesting that the "1506" group-I introns and rDNA coding regions in the Zygnematales evolve independently.

  14. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.

    PubMed

    Koonin, Eugene V; Csuros, Miklos; Rogozin, Igor B

    2013-01-01

    In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.

  15. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  16. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.

    PubMed Central

    Guo, Feng; Cech, Thomas R

    2002-01-01

    In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo. PMID:12022231

  17. Homology Requirements for Double-Strand Break-Mediated Recombination in a Phage λ-Td Intron Model System

    PubMed Central

    Parker, M. M.; Court, D. A.; Preiter, K.; Belfort, M.

    1996-01-01

    Many group I introns encode endonucleases that promote intron homing by initiating a double-strand break-mediated homologous recombination event. A td intron-phage λ model system was developed to analyze exon homology effects on intron homing and determine the role of the λ 5'-3' exonuclease complex (Redαβ) in the repair event. Efficient intron homing depended on exon lengths in the 35- to 50-bp range, although homing levels remained significantly elevated above nonbreak-mediated recombination with as little as 10 bp of flanking homology. Although precise intron insertion was demonstrated with extremely limiting exon homology, the complete absence of one exon produced illegitimate events on the side of heterology. Interestingly, intron inheritance was unaffected by the presence of extensive heterology at the double-strand break in wild-type λ, provided that sufficient homology between donor and recipient was present distal to the heterologous sequences. However, these events involving heterologous ends were absolutely dependent on an intact Red exonuclease system. Together these results indicate that heterologous sequences can participate in double-strand break-mediated repair and imply that intron transposition to heteroallelic sites might occur at break sites within regions of limited or no homology. PMID:8807281

  18. Electron microscopic analysis of synaptic inputs from the median preoptic nucleus and adjacent regions to the supraoptic nucleus in the rat.

    PubMed

    Armstrong, W E; Tian, M; Wong, H

    1996-09-16

    The median preoptic nucleus (MnPo) is critical for normal fluid balance, mediating osmotically evoked drinking and neurohypophysial hormone secretion. The influence of the MnPo on vasopressin and oxytocin release is in part through direct connections to the supraoptic and paraventricular nucleus. In the present investigation the synaptic contacts between the MnPo and supraoptic neurons were investigated in rats by ultrastructural examination of terminals labeled anterogradely with the tracers Phaseolus vulgaris-leucoagglutinin or biotinylated dextran. At the light microscopic level, labeled fibers within the supraoptic nucleus branched frequently, were punctuated by varicosities, and were distributed throughout the nucleus without preference for the known distributions of oxytocin and vasopressin neurons. At the ultrastructural level, synapses were associated with many of these varicosities. The ratio of labeled axodendritic to axosomatic synapses encountered was roughly consistent with a uniform innervation of dendrites and somata. The great majority of synapses were characterized by symmetrical contacts. Similar results were found for a few injections made in the organum vasculosum of the lamina terminalis, just rostral to the MnPo, and in the immediately adjacent periventricular preoptic area. Coupled with other recent anatomical and electrophysiological evidence, these results suggest there is a strong monosynaptic pathway from structures along the ventral lamina terminalis to the supraoptic nucleus.

  19. FUNCTIONAL UNDERSTANDING OF THE DIVERSE EXON-INTRON STRUCTURES OF HUMAN GPCR GENES

    PubMed Central

    HAMMOND, DOROTHY A.; OLMAN, VICTOR

    2014-01-01

    The GPCR genes have a variety of exon-intron structures even though their proteins are all structurally homologous. We have examined all human GPCR genes with at least two functional protein isoforms, totaling 199, aiming to gain an understanding of what may have contributed to the large diversity of the exon-intron structures of the GPCR genes. The 199 genes have a total of 808 known protein splicing isoforms with experimentally verified functions. Our analysis reveals that 1,301 (80.6%) adjacent exon-exon pairs out of the total of 1,613 in the 199 genes have either exactly one exon skipped or the intron in-between retained in at least one of the 808 protein splicing isoforms. This observation has a statistical significance p-value of 2.051762* e−09, assuming that the observed splicing isoforms are independent of the exon-intron structures. Our interpretation of this observation is that the exon boundaries of the GPCR genes are not randomly determined; instead they may be selected to facilitate specific alternative splicing for functional purposes. PMID:24467758

  20. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae

    PubMed Central

    Zumkeller, Simon Maria; Knoop, Volker; Knie, Nils

    2016-01-01

    Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium. We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues. PMID:27492234

  1. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii.

    PubMed

    Raj-Kumar, Praveen-Kumar; Vallon, Olivier; Liang, Chun

    2017-03-31

    Alternatively spliced introns are the ones that are usually spliced but can be occasionally retained in a transcript isoform. They are the most frequently used alternative splice form in plants (~50% of alternative splicing events). Chlamydomonas reinhardtii, a unicellular alga, is a good model to understand alternative splicing (AS) in plants from an evolutionary perspective as it diverged from land plants a billion years ago. Using over 7 million cDNA sequences from both pyrosequencing and Sanger sequencing, we found that a much higher percentage of genes (~20% of multi-exon genes) undergo AS than previously reported (3-5%). We found a full component of SR and SR-like proteins possibly involved in AS. The most prevalent type of AS event (40%) was retention of introns, most of which were supported by multiple cDNA evidence (72%) while only 20% of them have coding capacity. By comparing retained and constitutive introns, we identified sequence features potentially responsible for the retention of introns, in the framework of an "intron definition" model for splicing. We find that retained introns tend to have a weaker 5' splice site, more Gs in their poly-pyrimidine tract and a lesser conservation of nucleotide 'C' at position -3 of the 3' splice site. In addition, the sequence motifs found in the potential branch-point region differed between retained and constitutive introns. Furthermore, the enrichment of G-triplets and C-triplets among the first and last 50 nt of the introns significantly differ between constitutive and retained introns. These could serve as intronic splicing enhancers. All the alternative splice forms can be accessed at http://bioinfolab.miamioh.edu/cgi-bin/PASA_r20140417/cgi-bin/status_report.cgi?db=Chre_AS .

  2. Developmental regulation of a proinsulin messenger RNA generated by intron retention

    PubMed Central

    Mansilla, Alicia; López-Sánchez, Carmen; de la Rosa, Enrique J; García-Martínez, Virginio; Martínez-Salas, Encarna; de Pablo, Flora; Hernández-Sánchez, Catalina

    2005-01-01

    Proinsulin gene expression regulation and function during early embryonic development differ remarkably from those found in postnatal organisms. The embryonic proinsulin protein content decreased from gastrulation to neurulation in contrast with the overall proinsulin messenger RNA increase. This is due to increasing levels of a proinsulin mRNA variant generated by intron 1 retention in the 5′ untranslated region. Inclusion of intron 1 inhibited proinsulin translation almost completely without affecting nuclear export or cytoplasmic decay. The novel proinsulin mRNA isoform expression was developmentally regulated and tissue specific. The proportion of intron retention increased from gastrulation to organogenesis, was highest in the heart tube and presomitic region, and could not be detected in the pancreas. Notably, proinsulin addition induced cardiac marker gene expression in the early embryonic stages when the translationally active transcript was expressed. We propose that regulated unproductive splicing and translation is a mechanism that regulates proinsulin expression in accordance with specific requirements in developing vertebrates. PMID:16179943

  3. Structural basis for exon recognition by a group II intron

    SciTech Connect

    Toor, Navtej; Rajashankar, Kanagalaghatta; Keating, Kevin S.; Pyle, Anna Marie

    2008-11-18

    Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-A crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns.

  4. Thyroid abnormality trend over time in northeastern regions of Kazakstan, adjacent to the Semipalatinsk nuclear test site: a case review of pathological findings for 7271 patients.

    PubMed

    Zhumadilov, Z; Gusev, B I; Takada, J; Hoshi, M; Kimura, A; Hayakawa, N; Takeichi, N

    2000-03-01

    From 1949 through 1989 nuclear weapons testing carried out by the former Soviet Union at the Semipalatinsk Nuclear Test Site (SNTS) resulted in local fallout affecting the residents of Semipalatinsk, Ust-Kamenogorsk and Pavlodar regions of Kazakstan. To investigate the possible relationship between radiation exposure and thyroid gland abnormalities, we conducted a case review of pathological findings of 7271 urban and rural patients who underwent surgery from 1966-96. Of the 7271 patients, 761 (10.5%) were men, and 6510 (89.5%) were women. The age of the patients varied from 15 to 90 years. Overall, a diagnosis of adenomatous goiter (most frequently multinodular) was found in 1683 patients (63.4%) of Semipalatinsk region, in 2032 patients (68.6%) of Ust-Kamenogorsk region and in 1142 patients (69.0%) of Pavlodar region. In the period 1982-96, as compared before, there was a noticeable increase in the number of cases of Hashimoto's thyroiditis and thyroid cancer. Among histological forms of thyroid cancer, papillary (48.1%) and follicular (33.1%) predominated in the Semipalatinsk region. In later periods (1987-96), an increased frequency of abnormal cases occurred among patients less than 40 years of age, with the highest proportion among patients below 20 in Semipalatinsk and Ust-Kamenogorsk regions of Kazakstan. Given the positive findings of a significant cancer-period interaction, and a significant trend for the proportion of cancer to increase over time, we recommend more detailed and etiologic studies of thyroid disease among populations exposed to radiation fallout from the SNTS in comparison to non-exposed population.

  5. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs.

    PubMed

    Bégu, Dominique; Araya, Alejandro

    2009-02-01

    We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.

  6. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident.

    PubMed

    Maderich, V; Bezhenar, R; Heling, R; de With, G; Jung, K T; Myoung, J G; Cho, Y-K; Qiao, F; Robertson, L

    2014-05-01

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945-2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011-2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from (137)Cs data for the period 1945-2010. Calculated concentrations of (137)Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y(-1) is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of (137)Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y(-1). Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a

  7. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.

    PubMed

    Clark, Francis; Thanaraj, T A

    2002-02-15

    By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/~thanaraj/altExtron/.

  8. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation

    PubMed Central

    Truong, David M.; Hewitt, F. Curtis; Hanson, Joseph H.; Cui, Xiaoxia; Lambowitz, Alan M.

    2015-01-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  9. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation.

    PubMed

    Truong, David M; Hewitt, F Curtis; Hanson, Joseph H; Cui, Xiaoxia; Lambowitz, Alan M

    2015-08-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a "ribozyme") and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed "retrohoming". Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  10. Phylogenetically close group I introns with different positions among Paramecium bursaria photobionts imply a primitive stage of intron diversification.

    PubMed

    Hoshina, Ryo; Imamura, Nobutaka

    2009-06-01

    Group I introns are a distinct RNA group that catalyze their excision from precursor RNA transcripts and ligate the exons. Group I introns have a sporadic and highly biased distribution due to the two intron transfer mechanisms of homing and reverse splicing. These transfer pathways recognize assigned sequences even when introns are transferred beyond the species level. Consequently, introns at homologous gene sites between different host organisms are more related than those at heterologous sites within an organism. We describe the subgroup IE introns of two Chlorella species that are symbiotic green algae (photobionts) of a ciliate, Paramecium bursaria. One strain Chlorella sp. SW1-ZK (Csw.) had two IE introns at S651 and L2449, and the other strain Chlorella sp. OK1-ZK (Cok.) had four IE introns at S943, L1688, L1926, and L2184 (numbering reflects their homologous position in Escherichia coli rRNA gene: S = small subunit rRNA, L = large subunit rRNA). Despite locating on six heterologous sites, the introns formed a monophyletic clade independent of other groups. Phylogenetic and structural analyses of the introns indicated that Csw.L2449 has an archaic state, and the other introns are assumed to be originated from this intron. Some of the introns shared common internal guide sequences, which are necessary for misdirected transfer (i.e., transposition) via reverse splicing. Other introns, however, shared similar sequence fragments further upstream, after the insertions. We propose a hypothetical model to explain how these intron transpositions may have occurred in these photobionts; they transposed by a combination of homing-like event requiring relaxed sequence homology of recognition sequences and reverse splicing. This case study may represent a key to describe how group I intron explores new insertion sites.

  11. Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3.

    PubMed

    Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie

    2006-04-01

    Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.

  12. The 1987 estimate of undiscovered uranium endowment in solution-collapse breccia pipes in the Grand Canyon region of northern Arizona and adjacent Uta

    SciTech Connect

    Finch, W.I.; Sutphin, H.B.; Pierson, C.T.; McCammon, R.B.; Wenrich, K.J.

    1990-01-01

    This book is based on a new method published in U.S. Geological Survey Circular 994 and is the second assessment made in accordance with the 1984 Memorandum of Understanding between the U.S. Department of the Interior and the U.S. Department of Energy. The first estimate was published as U.S. Geological Survey Open-File Report 80-2. The endowment estimates are reported for 26 areas in the following 1{degrees} {times} 2{degrees} guadrangles: Grand Canyon, Marble Canyon, Williams, Flagstaff, Prescott, Holbrook, and St. Johns, Ariz., and Cedar City, Utah. The total uranium endowment is about eight times larger than reported in 1980 by the Department of Energy. The Grand Canyon region has the potential of becoming the second most important domestic uranium producer after the most production San Juan Basin uranium region in New Mexico.

  13. Integrating surface and mantle constraints for palaeo-ocean evolution: a tour of the Arctic and adjacent regions (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.

    2016-04-01

    Plate tectonic reconstructions heavily rely on absolute motions derived from hotspot trails or palaeomagnetic data and ocean-floor magnetic anomaies and fracture-zone geometries to constrain the detailed history of ocean basins. However, as oceanic lithosphere is progressively recycled into the mantle, kinematic data regarding the history of these now extinct-oceans is lost. In order to better understand their evolution, novel workflows, which integrate a wide range of complementary yet independent geological and geophysical datasets from both the surface and deep mantle, must be utilised. In particular, the emergence of time-dependent, semi or self-consistent geodynamic models of ever-increasing temporal and spatial resolution are revealing some critical constraints on the evolution and fate of oceanic slabs. The tectonic evolution of the circum-Arctic is no exception; since the breakup of Pangea, this enigmatic region has seen major plate reorganizations and the opening and closure of several ocean basins. At the surface, a myriad of potential kinematic scenarios including polarity, timing, geometry and location of subduction have emerged, including for systems along continental margins and intra-oceanic settings. Furthermore, recent work has reignited a debate about the origins of 'anchor' slabs, such as the Farallon and Mongol-Okhotsk slabs, which have been used to refine absolute plate motions. Moving to the mantle, seismic tomography models reveal a region peppered with inferred slabs, however assumptions about their affinities and subduction location, timing, geometry and polarity are often made in isolation. Here, by integrating regional plate reconstructions with insights from seismic tomography, satellite derived gravity gradients, slab sinking rates and geochemistry, I explore some Mesozoic examples from the palaeo-Arctic, northern Panthalassa and western margin of North America, including evidence for a discrete and previously undescribed slab under

  14. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  15. Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA.

    PubMed

    Suzuki, Hitoshi; Kameyama, Toshiki; Ohe, Kenji; Tsukahara, Toshifumi; Mayeda, Akila

    2013-03-18

    The mechanisms by which huge human introns are spliced out precisely are poorly understood. We analyzed large intron 7 (110199 nucleotides) generated from the human dystrophin (DMD) pre-mRNA by RT-PCR. We identified branching between the authentic 5' splice site and the branch point; however, the sequences far from the branch site were not detectable. This RT-PCR product was resistant to exoribonuclease (RNase R) digestion, suggesting that the detected lariat intron has a closed loop structure but contains gaps in its sequence. Transient and concomitant generation of at least two branched fragments from nested introns within large intron 7 suggests internal nested splicing events before the ultimate splicing at the authentic 5' and 3' splice sites. Nested splicing events, which bring the authentic 5' and 3' splice sites into close proximity, could be one of the splicing mechanisms for the extremely large introns.

  16. Climatic Factors Drive Population Divergence and Demography: Insights Based on the Phylogeography of a Riparian Plant Species Endemic to the Hengduan Mountains and Adjacent Regions

    PubMed Central

    Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang

    2015-01-01

    Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae

  17. Ordovician of the Sauk megasequence in the Ozark region of northern Arkansas and parts of Missouri and adjacent states: Chapter 11

    USGS Publications Warehouse

    Ethington, Raymond L.; Repetski, John E.; Derby, James R.

    2012-01-01

    The oldest formation that crops out in the region is the Jefferson City Dolomite, which may be present in outcrops along incised river valleys near the Missouri-Arkansas border. Rare fossil gastropods, bivalves, brachiopods, conodonts, and trilobites permit correlation of the Cotter through Powell Dolomites with Ibexian strata elsewhere in Laurentia. Conodonts in the Black Rock Limestone Member of the Smithville Formation and the upper part of the Powell Dolomite confirm regional relationships that have been suggested for these units; those of the Black Rock Limestone Member are consistent with deposition under more open marine conditions than existed when older and younger units were forming. Brachiopods and conodonts from the overlying Everton Formation assist in interpreting complex facies within that formation and its correlation to equivalent rocks elsewhere. The youngest conodonts in the Everton Formation provide an age limit for the Sauk-Tippecanoe unconformity near the southern extremity of the great American carbonate bank. The correlation to coeval strata in the Ouachita Mountains of central Arkansas and in the Arbuckle Mountains of Oklahoma and to rocks penetrated in wells drilled in the Reelfoot rift basin has been improved greatly in recent years by integration of biostratigraphic data with lithologic information.

  18. The Enhancer of Split Complex and Adjacent Genes in the 96f Region of Drosophila Melanogaster Are Required for Segregation of Neural and Epidermal Progenitor Cells

    PubMed Central

    Schrons, H.; Knust, E.; Campos-Ortega, J. A.

    1992-01-01

    The Enhancer of split complex [E(spl)-C] of Drosophila melanogaster is located in the 96F region of the third chromosome and comprises at least seven structurally related genes, HLH-mδ, HLH-mγ, HLH-mβ, HLH-m3, HLH-m5, HLH-m7 and E(spl). The functions of these genes are required during early neurogenesis to give neuroectodermal cells access to the epidermal pathway of development. Another gene in the 96F region, namely groucho, is also required for this process. However, groucho is not structurally related to, and appears to act independently of, the genes of the E(spl)-C; the possibility is discussed that groucho acts upstream to the E(spl)-C genes. Indirect evidence suggests that a neighboring transcription unit (m4) may also take part in the process. Of all these genes, only gro is essential; m4 is a dispensable gene, the deletion of which does not produce detectable morphogenetic abnormalities, and the genes of the E(spl)-C are to some extent redundant and can partially substitute for each other. This redundancy is probably due to the fact that the seven genes of the E(spl)-C encode highly conserved putative DNA-binding proteins of the bHLH family. The genes of the complex are interspersed among other genes which appear to be unrelated to the neuroepidermal lineage dichotomy. PMID:1427039

  19. Revision of Errhomeninae and Aphrodinae (Hemiptera, Cicadomorpha) in Italy with remarks on their variability and distribution in adjacent regions and description of three new taxa.

    PubMed

    Guglielmino, Adalgisa; Bückle, Christoph

    2015-01-15

    A revision of the subfamilies Errhomeninae and Aphrodinae in Italy is presented. Two new species, Anoscopus gorloppus and Anoscopus carlebippus, and one new subspecies Anoscopus albifrons mappus are described. Anoscopus dubius Gębicki & Bednarzyk is established as subspecies of Anoscopus flavostriatus (Donovan) (stat. nov.), Aphrodes siracusae (Matsumura) is transferred to the genus Anoscopus (comb. nov.). Anoscopus samuricus Tshmir is recorded in Italy for the first time. Information concerning ecology and regional distribution is given for all taxa present in Italy. Genital morphology and variability of colouration are figured for many taxa. A morphometric analysis based on measurements of aedeagus and body is conducted for the taxa of the Aphrodes bicincta group. Keys for the Italian species of Aphrodes and Anoscopus are given. Distribution and specific characters of Anoscopus assimilis (Signoret) and Anoscopus alpinus (Wagner) are presented. Differences between Italian populations and conspecific ones in other European regions, and reasons for the particularly high variability in the Alpine areas of Italy are discussed. A list of 19 species and two subspecies, presently recorded from Italy is given. 

  20. A high density of ancient spliceosomal introns in oxymonad excavates

    PubMed Central

    Slamovits, Claudio H; Keeling, Patrick J

    2006-01-01

    Background Certain eukaryotic genomes, such as those of the amitochondriate parasites Giardia and Trichomonas, have very low intron densities, so low that canonical spliceosomal introns have only recently been discovered through genome sequencing. These organisms were formerly thought to be ancient eukaryotes that diverged before introns originated, or at least became common. Now however, they are thought to be members of a supergroup known as excavates, whose members generally appear to have low densities of canonical introns. Here we have used environmental expressed sequence tag (EST) sequencing to identify 17 genes from the uncultivable oxymonad Streblomastix strix, to survey intron densities in this most poorly studied excavate group. Results We find that Streblomastix genes contain an unexpectedly high intron density of about 1.1 introns per gene. Moreover, over 50% of these are at positions shared between a broad spectrum of eukaryotes, suggesting theyare very ancient introns, potentially present in the last common ancestor of eukaryotes. Conclusion The Streblomastix data show that the genome of the ancestor of excavates likely contained many introns and the subsequent evolution of introns has proceeded very differently in different excavate lineages: in Streblomastix there has been much stasis while in Trichomonas and Giardia most introns have been lost. PMID:16638131

  1. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani.

    PubMed

    Ág, Norbert; Flipphi, Michel; Karaffa, Levente; Scazzocchio, Claudio; Fekete, Erzsébet

    2015-12-01

    Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.

  2. Hitchhiking selection is driving intron gain in a pathogenic fungus.

    PubMed

    Brunner, Patrick C; Torriani, Stefano F F; Croll, Daniel; Stukenbrock, Eva H; McDonald, Bruce A

    2014-07-01

    The variability of intron density among eukaryotes is puzzling and still debated. Most previous studies have been limited because of the near absence of intron presence-absence polymorphism (IPAP) within species or because comparisons could be made only between distantly related species. We conducted population genetic analyses on eight loci showing IPAP to investigate the effect of natural selection on intron dynamics in a global collection of the panmictic fungal plant pathogen Zymoseptoria tritici and its very close relatives. Five of these loci likely represent recent intron gains because their absence is fixed among the closest relatives of Z. tritici, and three likely represent recent intron losses because their presence is fixed among the close relatives. We analyzed signatures of selection by comparing allele frequencies, nucleotide diversities, and rates of recombination and found compelling evidence that at least two out of the five intron-gain loci, a SWIM zinc-finger gene and a sugar transporter, are under directional selection favoring alleles that gained the intron. Our results suggest that the intron-present alleles of these loci are sweeping to fixation, providing a genetic hitchhiking mechanism to explain rapid intron gain in Z. tritici. The overall findings are consistent with the hypothesis that intron gains are more likely to be driven by selection while intron losses are more likely to be due to neutral processes such as genetic drift.

  3. Characterization of newly gained introns in Daphnia populations.

    PubMed

    Li, Wenli; Kuzoff, Robert; Wong, Chen Khuan; Tucker, Abraham; Lynch, Michael

    2014-08-14

    As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.

  4. Ancient nature of alternative splicing and functions of introns

    SciTech Connect

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  5. An SF1 affinity model to identify branch point sequences in human introns

    PubMed Central

    Pastuszak, Alexander W.; Joachimiak, Marcin P.; Blanchette, Marco; Rio, Donald C.; Brenner, Steven E.; Frankel, Alan D.

    2011-01-01

    Splicing factor 1 (SF1) binds to the branch point sequence (BPS) of mammalian introns and is believed to be important for the splicing of some, but not all, introns. To help identify BPSs, particularly those that depend on SF1, we generated a BPS profile model in which SF1 binding affinity data, validated by branch point mapping, were iteratively incorporated into computational models. We searched a data set of 117 499 human introns for best matches to the SF1 Affinity Model above a threshold, and counted the number of matches at each intronic position. After subtracting a background value, we found that 87.9% of remaining high-scoring matches identified were located in a region upstream of 3′-splice sites where BPSs are typically found. Since U2AF65 recognizes the polypyrimidine tract (PPT) and forms a cooperative RNA complex with SF1, we combined the SF1 model with a PPT model computed from high affinity binding sequences for U2AF65. The combined model, together with binding site location constraints, accurately identified introns bound by SF1 that are candidates for SF1-dependent splicing. PMID:21071404

  6. Micropaleontological Record of Post-glacial History in Lake Champlain and Adjacent Regions: Implications for Glacial Lake Drainage and Abrupt Climate Events

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Manley, P. L.; Guilbault, J.; Berke, M.; Rayburn, J. A.; Franzi, D. A.; Knuepfer, P. L.

    2005-12-01

    Post-glacial lacustrine and marine sediments of the Lake Champlain region range from 20 to >50 meters in thickness presenting an opportunity to assess the timing of North American glacial lake drainage at multidecadal timescales and evaluate its effect on North Atlantic salinity and abrupt climate events 13.5 to 10 kyr B.P. High-resolution analysis of foraminifera and ostracodes from cores taken onshore in the Plattsburgh, N.Y. vicinity and southern Quebec and offshore in southern Lake Champlain reveal complex changes in salinity during and after the transition from pro-glacial Lake Vermont (Lake Candona in Canada) to marine sedimentation in the Champlain Sea. The microfaunal sequence (bottom to top) includes: non-marine ostracodes ( Candona) in lacustrine varves, foraminiferal assemblages (common Cassidulina reniforme), another interval of Candona-bearing sediments (sometimes containing foraminifera), and, finally, sediments from the main phase of the Champlain sea episode containing diverse foraminiferal and marine ostracode assemblages. A decrease in salinity during the Champlain Sea is also in evidence from the shift in dominance of distinct variants of Elphidium in the deep basin. The marine episode ended with a progressive salinity decrease and the formation of Lake Champlain about 10 kyr B.P. Observed salinity changes could be caused by catastrophic fresh-water influx from large glacial lakes west of the Lake Champlain region, meltwater from the retreating Laurentide Ice Sheet margin, diminished influx of marine water from the St. Lawrence due to changes in the position of the ice sheet margin and isostatic adjustment, or a combination of factors. The ages of these events were determined by estimating the reservoir effect on radiocarbon dates on marine shells through comparison with AMS dates on plant material and palynology, and shed light on the hypothesis that glacial lake discharges catalyzed abrupt climate events.

  7. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM.

    PubMed

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-11-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.

  8. Transcriptomic analysis of diplomonad parasites reveals a trans-spliced intron in a helicase gene in Giardia

    PubMed Central

    2017-01-01

    Background The mechanisms by which DNA sequences are expressed is the central preoccupation of molecular genetics. Recently, ourselves and others reported that in the diplomonad protist Giardia lamblia, the coding regions of several mRNAs are produced by ligation of independent RNA species expressed from distinct genomic loci. Such trans-splicing of introns was found to affect nearly as many genes in this organism as does classical cis-splicing of introns. These findings raised questions about the incidence of intron trans-splicing both across the G. lambliatranscriptome and across diplomonad diversity in general, however a dearth of transcriptomic data at the time prohibited systematic study of these questions. Methods I leverage newly available transcriptomic data from G. lamblia and the related diplomonad Spironucleus salmonicidato search for trans-spliced introns. My computational pipeline recovers all four previously reported trans-spliced introns in G. lamblia, suggesting good sensitivity. Results Scrutiny of thousands of potential cases revealed only a single additional trans-spliced intron in G. lamblia, in the p68 helicase gene, and no cases in S. salmonicida. The p68 intron differs from the previously reported trans-spliced introns in its high degree of streamlining: the core features of G. lamblia trans-spliced introns are closely packed together, revealing striking economy in the implementation of a seemingly inherently uneconomical molecular mechanism. Discussion These results serve to circumscribe the role of trans-splicing in diplomonads both in terms of the number of genes effected and taxonomically. Future work should focus on the molecular mechanisms, evolutionary origins and phenotypic implications of this intriguing phenomenon. PMID:28090405

  9. Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.

    PubMed

    Amon, Siavash; Gupta, Bhagwati P

    2017-04-01

    The diversity of neurons in the nervous system is specified by many genes, including those that encode transcription factors (TFs) and play crucial roles in coordinating gene transcription. To understand how the spatiotemporal expression of TF genes is regulated to generate neuronal diversity, we used one member of the LIM-Hox family, lin-11, as a model that is necessary for the differentiation of amphid neurons in the nematode C. elegans and a related species C. briggsae. We characterized transcriptional regulation of lin-11 and uncovered regulatory roles of two of the largest introns, intron 3 and intron 7. These introns promote lin-11 expression in non-overlapping sets of neurons. Phenotypic rescue experiments in C. elegans revealed that intron 3 is capable of restoring lin-11 function based on gene expression patterns and behavioral assays. Interestingly, intron 3-driven reporter expression showed differences in neuronal cell types between C. briggsae and C. elegans, indicating evolutionary changes in lin-11 regulation between the two species. Reciprocal transformation experiments provided further evidence consistent with functional changes in both cis and trans regulation of lin-11. To further investigate transcriptional regulation of lin-11, we dissected the intronic regions in C. elegans and identified cell-specific enhancers. These enhancers possess multiple sequence blocks that are conserved among Caenorhabditis species and possess TF binding sites. We tested the role of a subset of predicted TFs and discovered that while three of them (SKN-1, CEH-6, and CRH-1) act via the intron 3 enhancer to negatively regulate lin-11 expression in neurons, another TF (CES-1) acts positively via the intron 7 enhancer. Overall, our findings demonstrate that neuronal expression of lin-11 involves multiple TF regulators and regulatory modules some of which have diverged in Caenorhabditis nematodes.

  10. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  11. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  12. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques.

    PubMed

    Ma, Xiaoling; Zuo, Hang; Tian, Mengjing; Zhang, Liyang; Meng, Jia; Zhou, Xuening; Min, Na; Chang, Xinyuan; Liu, Ying

    2016-02-01

    Metal chemical fractions obtained by optimized BCR three-stage extraction procedure and multivariate analysis techniques were exploited for assessing 7 heavy metals (Cr, Pb, Cd, Co, Cu, Zn and Ni) in sediments from Gansu province, Ningxia and Inner Mongolia Autonomous Regions of the Yellow River in Northern China. The results indicated that higher susceptibility and bioavailability of Cr and Cd with a strong anthropogenic source were due to their higher availability in the exchangeable fraction. A portion of Pb, Cd, Co, Zn, and Ni in reducible fraction may be due to the fact that they can form stable complexes with Fe and Mn oxides. Substantial amount of Pb, Co, Ni and Cu was observed as oxidizable fraction because of their strong affinity to the organic matters so that they can complex with humic substances in sediments. The high geo-accumulation indexes (I(geo)) for Cr and Cd showed their higher environmental risk to the aquatic biota. Principal component analysis (PCA) revealed that high toxic Cr and Cd in polluted sites (Cd in S10, S11 and Cr in S13) may be contributed to anthropogenic sources, it was consistent with the results of dual hierarchical clustering analysis (DHCA), which could give more details about contributing sources.

  13. Intron retention as a component of regulated gene expression programs.

    PubMed

    Jacob, Aishwarya G; Smith, Christopher W J

    2017-04-08

    Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as "noise". Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.

  14. Mobile Introns Shape the Genetic Diversity of Their Host Genes

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron–exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations. PMID:28193728

  15. Mutation analysis in Duchenne and Becker muscular dystrophy patients from Bulgaria shows a peculiar distribution of breakpoints by intron

    SciTech Connect

    Todorova, A.; Bronzova, J.; Kremensky, I.

    1996-10-02

    For the first time in Bulgaria, a deletion/duplication screening was performed on a group of 84 unrelated Duchenne/Becker muscular dystrophy patients, and the breakpoint distribution in the dystrophin gene was analyzed. Intragenic deletions were detected in 67.8% of patients, and intragenic duplications in 2.4%. A peculiar distribution of deletion breakpoints was found. Only 13.2% of the deletion breakpoints fell in the {open_quotes}classical{close_quotes} hot spot in intron 44, whereas the majority (> 54%) were located within the segment encompassing introns 45-51, which includes intron 50, the richest in breakpoints (16%) in the Bulgarian sample. Comparison with data from Greece and Turkey points at the probable existence of a deletion hot spot within intron 50, which might be a characteristic of populations of the Balkan region. 17 refs., 2 figs.

  16. Patterns of intron gain and conservation in eukaryotic genes

    PubMed Central

    Carmel, Liran; Rogozin, Igor B; Wolf, Yuri I; Koonin, Eugene V

    2007-01-01

    Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed sharing of intron positions

  17. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  18. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids.

    PubMed

    Hubler, Tina R; Scammell, Jonathan G

    2004-01-01

    Expression of FKBP51, a large molecular weight immunophilin, is strongly enhanced by glucocorticoids, progestins, and androgens. However, the activity of a 3.4-kb fragment of the FKBP51 gene (FKBP5) promoter was only weakly increased by progestin and we show here that it is unresponsive to glucocorticoids and androgens. The entire FKBP5 was scanned for consensus hormone response elements (HREs) using MatInspector. We found that 2 regions of intron E, which are conserved in rat and mouse FKBP5, contain HRE-like sequences with high match scores. Deoxyribonucleic acid fragments (approximately 1 kb in length) containing these regions were amplified and tested in reporter gene assays for steroid responsiveness. One region of intron E of FKBP5 (pIE2) conferred both glucocorticoid and progestin responsiveness to 2 heterologous reporter genes, whereas the other, less-conserved region of intron E (pIE1) was responsive only to progestins. The inclusion of pIE1 upstream of pIE2 (pIE1IE2) enhanced progestin but not glucocorticoid responsiveness. None of the constructs containing intronic sequences was responsive to androgens. Mutation of the putative HREs within pIE1 and pIE2 eliminated hormone responsiveness. Electrophoretic mobility shift assays demonstrated that progesterone receptors (PR) bound to the HRE in pIE1, whereas both PR and glucocorticoid receptors interacted with the HRE in pIE2. These data suggest that distal intronic elements significantly contribute to transcriptional regulation of FKBP5 by glucocorticoids and progestins.

  19. Cis-regulatory elements are harbored in Intron5 of the RUNX1 gene

    PubMed Central

    2014-01-01

    Background Human RUNX1 gene is one of the most frequent target for chromosomal translocations associated with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). The highest prevalence in AML is noted with (8; 21) translocation; which represents 12 to 15% of all AML cases. Interestingly, all the breakpoints mapped to date in t(8;21) are clustered in intron 5 of the RUNX1 gene and intron 1 of the ETO gene. No homologous sequences have been found at the recombination regions; but DNase I hypersensitive sites (DHS) have been mapped to the areas of the genes involved in t(8;21). Presence of DHS sites is commonly associated with regulatory elements such as promoters, enhancers and silencers, among others. Results In this study we used a combination of comparative genomics, cloning and transfection assays to evaluate potential regulatory elements located in intron 5 of the RUNX1 gene. Our genomic analysis identified nine conserved non-coding sequences that are evolutionarily conserved among rat, mouse and human. We cloned two of these regions in pGL-3 Promoter plasmid in order to analyze their transcriptional regulatory activity. Our results demonstrate that the identified regions can indeed regulate transcription of a reporter gene in a distance and position independent manner; moreover, their transcriptional effect is cell type specific. Conclusions We have identified nine conserved non coding sequence that are harbored in intron 5 of the RUNX1 gene. We have also demonstrated that two of these regions can regulate transcriptional activity in vitro. Taken together our results suggest that intron 5 of the RUNX1 gene contains multiple potential cis-regulatory elements. PMID:24655352

  20. The peculiarities of large intron splicing in animals.

    PubMed

    Shepard, Samuel; McCreary, Mark; Fedorov, Alexei

    2009-11-16

    In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These "large introns" must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5' and 3' acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing-a consecutive splicing from the 5'-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs) that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites.

  1. Epigenetic Regulation of Intronic Transgenes in Arabidopsis

    PubMed Central

    Osabe, Kenji; Harukawa, Yoshiko; Miura, Saori; Saze, Hidetoshi

    2017-01-01

    Defense mechanisms of plant genomes can epigenetically inactivate repetitive sequences and exogenous transgenes. Loss of mutant phenotypes in intronic T-DNA insertion lines by interaction with another T-DNA locus, termed T-DNA suppression, has been observed in Arabidopsis thaliana, although the molecular basis of establishment and maintenance of T-DNA suppression is poorly understood. Here we show that maintenance of T-DNA suppression requires heterochromatinisation of T-DNA sequences and the nuclear proteins, INCREASED IN BONSAI METHYLATION 2 (IBM2) and ENHANCED DOWNY MILDEW 2 (EDM2), which prevent ectopic 3′ end processing of mRNA in atypically long introns containing T-DNA sequences. Initiation of T-DNA suppression is mediated by the canonical RdDM pathway after hybridisation of two T-DNA strains, accompanied by DNA hypermethylation of T-DNA sequences in the F1 generation. Our results reveal the presence of a genome surveillance mechanism through genome hybridisation that masks repetitive DNAs intruding into transcription units. PMID:28338020

  2. Mechanism for DNA transposons to generate introns on genomic scales.

    PubMed

    Huff, Jason T; Zilberman, Daniel; Roy, Scott W

    2016-10-27

    The discovery of introns four decades ago was one of the most unexpected findings in molecular biology. Introns are sequences interrupting genes that must be removed as part of messenger RNA production. Genome sequencing projects have shown that most eukaryotic genes contain at least one intron, and frequently many. Comparison of these genomes reveals a history of long evolutionary periods during which few introns were gained, punctuated by episodes of rapid, extensive gain. However, although several detailed mechanisms for such episodic intron generation have been proposed, none has been empirically supported on a genomic scale. Here we show how short, non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from the gene sequence that is duplicated upon transposon insertion, allowing perfect splicing out of the RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between pre-existing nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases and prevalence of nucleosome-sized exons observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism that can plausibly account for episodes of rapid, extensive intron gain during eukaryotic evolution.

  3. A segmental genomic duplication generates a functional intron

    PubMed Central

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-01-01

    An intron is an extended genomic feature whose function requires multiple constrained positions—donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers—that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half-a-billion years ago. PMID:21878908

  4. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis.

    PubMed

    Vesteg, Matej; Vacula, Rostislav; Steiner, Jürgen M; Mateásiková, Bianka; Löffelhardt, Wolfgang; Brejová, Brona; Krajcovic, Juraj

    2010-08-01

    The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41-93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45-50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5'-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.

  5. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.

    PubMed

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  6. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus.

    PubMed

    Xiao, Gang; Zhang, Zhen Qian; Yin, Chang Fa; Liu, Rui Yang; Wu, Xian Meng; Tan, Tai Long; Chen, She Yuan; Lu, Chang Ming; Guan, Chun Yun

    2014-07-15

    In the present study, we characterized the transcriptional regulatory region (KF038144) controlling the expression of a constitutive FAD2 in Brassica napus. There are multiple FAD2 gene copies in B. napus genome. The FAD2 gene characterized and analyzed in the study is located on chromosome A5 and was designated as BnFAD2A5-1. BnFAD2A5-1 harbors an intron (1,192 bp) within its 5'-untranslated region (5'-UTR). This intron demonstrated promoter activity. Deletion analysis of the BnFAD2A5-1 promoter and intron through the β-glucuronidase (GUS) reporter system revealed that the -220 to -1 bp is the minimum promoter region, while -220 to -110 bp and +34 to +285 bp are two important regions conferring high-levels of transcription. BnFAD2 transcripts were induced by light, low temperature, and abscisic acid (ABA). These observations demonstrated that not only the promoter but also the intron are involved in controlling the expression of the BnFAD2A5-1 gene. The intron-mediated regulation is an essential aspect of the gene expression regulation.

  7. Multiple Group I Introns in the Small-Subunit rDNA of Botryosphaeria dothidea: Implication for Intraspecific Genetic Diversity

    PubMed Central

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L.; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea. PMID:23844098

  8. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity.

    PubMed

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.

  9. The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway.

    PubMed

    Monat, Caroline; Quiroga, Cecilia; Laroche-Johnston, Felix; Cousineau, Benoit

    2015-07-01

    Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.

  10. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  11. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  12. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-06-10

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.

  13. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species

    PubMed Central

    Kanzi, Aquillah Mumo; Wingfield, Brenda Diana; Steenkamp, Emma Theodora; Naidoo, Sanushka; van der Merwe, Nicolaas Albertus

    2016-01-01

    In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far. PMID:27272523

  14. Mammalian Introns: When the Junk Generates Molecular Diversity

    PubMed Central

    Hubé, Florent; Francastel, Claire

    2015-01-01

    Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate. PMID:25710723

  15. Microhomology-mediated intron loss during metazoan evolution.

    PubMed

    van Schendel, Robin; Tijsterman, Marcel

    2013-01-01

    How introns are lost from eukaryotic genomes during evolution remains an enigmatic question in biology. By comparative genome analysis of five Caenorhabditis and eight Drosophila species, we found that the likelihood of intron loss is highly influenced by the degree of sequence homology at exon-intron junctions: a significant elevated degree of microhomology was observed for sequences immediately flanking those introns that were eliminated from the genome of one or more subspecies. This determinant was significant even at individual nucleotides. We propose that microhomology-mediated DNA repair underlies this phenomenon, which we termed microhomology-mediated intron loss. This hypothesis is further supported by the observations that in both species 1) smaller introns are preferentially lost over longer ones and 2) genes that are highly transcribed in germ cells, and are thus more prone to DNA double strand breaks, display elevated frequencies of intron loss. Our data also testify against a prominent role for reverse transcriptase-mediated intron loss in metazoans.

  16. Intron conservation in the fragile X gene (FMR 1)

    SciTech Connect

    Panther, R.; Ostrowski, R.S.; Stoerker, J.

    1994-09-01

    The intron probe STB12.3 was used to search for conservation of the intron sequence corresponding to the PstI fragment located approximately 450 bp downstream of the end of the first exon of the fragile X (FMR 1) gene. Standard techniques for DNA extraction, isolation, restriction enzyme digestion, blotting and probing were employed. The probe STB12.3 that hybridizes to an intron sequence in the human MR 1 gene is 1.2 bp long. Our results demonstrated that the STB12.3 sequence is conserved across at least two Kindgoms. Specifically, we have observed cross-hybridization between STB12.3 and sequences in Drosophila, Apis and Saccharomyces. Hybridization was not observed in Triticum. Most surprising was our observation of intron hybridization in Drosophila since Annemieke et al. (1991) did not find FMR 1 exon conservation in Drosophila. Intron sequence conservation had been previously reported but only between closely related (same Order) species.

  17. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  18. Identifying the mechanisms of intron gain: progress and trends

    PubMed Central

    2012-01-01

    Abstract Continued improvements in Next-Generation DNA/RNA sequencing coupled with advances in gene annotation have provided researchers access to a plethora of annotated genomes. Subsequent analyses of orthologous gene structures have identified numerous intron gain and loss events that have occurred both recently and in the very distant past. This research has afforded exceptional insight into the temporal and lineage-specific rates of intron gain and loss among various species throughout evolution. Numerous studies have also attempted to identify the molecular mechanisms of intron gain and loss. However, even after considerable effort, very little is known about these processes. In particular, the mechanism(s) of intron gain have proven exceptionally enigmatic and remain topics of considerable debate. Currently, there exists no definitive consensus as to what mechanism(s) may generate introns. Because many introns are known to affect gene expression, it is necessary to understand the molecular process(es) by which introns may be gained. Here we review the seven most commonly purported mechanisms of intron gain and, when possible, summarize molecular evidence for or against the occurrence of each of these mechanisms. Furthermore, we catalogue indirect evidence that supports the occurrence of each mechanism. Finally, because these proposed mechanisms fail to explain the mechanistic origin of many recently gained introns, we also look at trends that may aid researchers in identifying other potential mechanism(s) of intron gain. Reviewers This article was reviewed by Eugene Koonin, Scott Roy (nominated by W. Ford Doolittle), and John Logsdon. PMID:22963364

  19. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M.

    2010-10-01

    The Late Paleozoic to Triassic tectonics of northwestern South America have major implications for the understanding of Laurentia-Gondwana interactions that formed Pangea, and the origin of several tectonostratigraphic terranes dispersed by the break-up of this supercontinent during the formation of the Caribbean. Two mylonitic and orthogneissic granitoid suites have been recognized in the northeastern segment of the Sierra Nevada de Santa Marta, the lower Magdalena basin and the Guajira Serranias, within the Caribbean region of Colombia. For the Santa Marta region U/Pb LAM-ICP-MS analysis yielded zircon crystallization ages of 288.1 ± 4.5 Ma, 276.5 ± 5,1 Ma and 264.9 ± 4.0 Ma, related to the magmatic intrusion. Geochemical and modal variations show a compositional spectrum between diorite and granite, whereas LREE enrichment, Ti and Nb anomalies and geochemical discrimination suggest that this granitoid suite was formed within a magmatic arc setting. Inherited zircons suggest that this Early Permian plutonism was formed with the participation of Neoproterozoic and Grenvillian basement proximal to the South American continent. Evidence of a superimposed Early Triassic (ca. 250 Ma) deformational event in Santa Marta, together with a well defined S-type magmatism in the basement rocks from the adjacent lower Magdalena Valley and Guajira Peninsula regions are related to a major shift in the regional tectonic evolution. It's envisioned that this event records either terrane accretion or strong plate coupling during the final stages of Pangea agglutination. Connections with the main Alleghanian-Ouachitan Pangean orogen are precluded due to their timing differences. The plutons temporally and compositionally correlate with an arc found in the northern Andes and Mexican Gondwana terranes, and represent a broader magmatic event formed at the proto-Pacific margin, outside the nucleus of the Laurentia-Gondwana Alleghanian-Oachitan orogens. Evidence of lower temperature

  20. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line

    PubMed Central

    Ma, Jing-E.; Lang, Qian-Qian; Qiu, Feng-Fang; Zhang, Li; Li, Xiang-Guang; Luo, Wen; Wang, Juan; Wang, Xing; Lin, Xi-Ran; Liu, Wen-Sheng; Nie, Qing-Hua; Zhang, Xi-Quan

    2016-01-01

    The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5′-AGGCTTGACAGTGACCTCC-3′) containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression. PMID:27834851

  1. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing.

    PubMed

    Lamech, Lilian T; Saoji, Maithili; Paukstelis, Paul J; Lambowitz, Alan M

    2016-05-27

    The mitochondrial tyrosyl-tRNA synthetases (mtTyrRSs) of Pezizomycotina fungi, a subphylum that includes many pathogenic species, are bifunctional proteins that both charge mitochondrial tRNA(Tyr) and act as splicing cofactors for autocatalytic group I introns. Previous studies showed that one of these proteins, Neurospora crassa CYT-18, binds group I introns by using both its N-terminal catalytic and C-terminal anticodon binding domains and that the catalytic domain uses a newly evolved group I intron binding surface that includes an N-terminal extension and two small insertions (insertions 1 and 2) with distinctive features not found in non-splicing mtTyrRSs. To explore how this RNA binding surface diverged to accommodate different group I introns in other Pezizomycotina fungi, we determined x-ray crystal structures of C-terminally truncated Aspergillus nidulans and Coccidioides posadasii mtTyrRSs. Comparisons with previous N. crassa CYT-18 structures and a structural model of the Aspergillus fumigatus mtTyrRS showed that the overall topology of the group I intron binding surface is conserved but with variations in key intron binding regions, particularly the Pezizomycotina-specific insertions. These insertions, which arose by expansion of flexible termini or internal loops, show greater variation in structure and amino acids potentially involved in group I intron binding than do neighboring protein core regions, which also function in intron binding but may be more constrained to preserve mtTyrRS activity. Our results suggest a structural basis for the intron specificity of different Pezizomycotina mtTyrRSs, highlight flexible terminal and loop regions as major sites for enzyme diversification, and identify targets for therapeutic intervention by disrupting an essential RNA-protein interaction in pathogenic fungi.

  2. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  3. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus.

    PubMed

    Soler, Nuria; Plomer, Montserrat; Fagoaga, Carmen; Moreno, Pedro; Navarro, Luis; Flores, Ricardo; Peña, Leandro

    2012-06-01

    Citrus tristeza virus (CTV), the causal agent of the most devastating viral disease of citrus, has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and/or intercellular level (p20 and p25) to overcome host antiviral defence. Previously, we showed that Mexican lime transformed with an intron-hairpin construct including part of the gene p23 and the adjacent 3' untranslated region displays partial resistance to CTV, with a fraction of the propagations from some transgenic lines remaining uninfected. Here, we transformed Mexican lime with an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20 and p23 from CTV strain T36 to silence the expression of these critical genes in CTV-infected cells. Three transgenic lines presented complete resistance to viral infection, with all their propagations remaining symptomless and virus-free after graft inoculation with CTV-T36, either in the nontransgenic rootstock or in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Inoculation with a divergent CTV strain led to partially breaking the resistance, thus showing the role of sequence identity in the underlying mechanism. Our results are a step forward to developing transgenic resistance to CTV and also show that targeting simultaneously by RNA interference (RNAi) the three viral silencing suppressors appears critical for this purpose, although the involvement of concurrent RNAi mechanisms cannot be excluded.

  4. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  5. Circularization pathway of a bacterial group II intron

    PubMed Central

    Monat, Caroline; Cousineau, Benoit

    2016-01-01

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  6. Reverse transcriptase activity of an intron encoded polypeptide.

    PubMed Central

    Fassbender, S; Brühl, K H; Ciriacy, M; Kück, U

    1994-01-01

    A number of group II introns from eukaryotic organelles and prokaryotes contain open reading frames for polypeptides with homology to retroviral reverse transcriptases (RTs). We have used the yeast transposon (Ty) system to express ORFs for RTs from eukaryotic organelles. This includes the mitochondrial coxI intron i1 from the fungus Podospora anserina, the plastid petD intron from the alga Scenedesmus obliquus and the mitochondrial RTL gene from the alga Chlamydomonas reinhardtii. The ORFs were fused with the TYA ORF from the yeast retrotransposon Ty to produce virus-like particles in the recipient strains with detectable amounts of the RT-like polypeptides. Analysis of the heterologous gene products revealed biochemical evidence that the P. anserina intron encodes an RNA-directed DNA polymerase with properties typically found for RTs of viral or retrotransposable origin. In vitro assays showed that the intron encoded RT is sensitive to RT inhibitors such as N-ethylmaleimide and dideoxythymidine triphosphate but is insensitive against the DNA polymerase inhibitor aphidicolin. The direct biochemical evidence provided here supports the idea that intron encoded RTs are involved in intron transposition events. Images PMID:7514530

  7. Control of Human PLP1 Expression Through Transcriptional Regulatory Elements and Alternatively Spliced Exons in Intron 1

    PubMed Central

    Hamdan, Hamdan; Kockara, Neriman T.; Jolly, Lee Ann; Haun, Shirley

    2015-01-01

    *These authors contributed equally to this work.Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin. PMID:25694552

  8. I-BasI and I-HmuI: two phage intron-encoded endonucleases with homologous DNA recognition sequences but distinct DNA specificities.

    PubMed

    Landthaler, Markus; Shen, Betty W; Stoddard, Barry L; Shub, David A

    2006-05-12

    I-HmuI and I-BasI are two highly similar nicking DNA endonucleases, which are each encoded by a group I intron inserted into homologous sites within the DNA polymerase genes of Bacillus phages SPO1 and Bastille, respectively. Here, we present a comparison of the DNA specificities and cleavage activities of these enconucleases with homologous target sites. I-BasI has properties that are typical of homing endonucleases, nicking the intron-minus polymerase genes in either host genome, three nucleotides downstream of the intron insertion site. In contrast, I-HmuI nicks both the intron-plus and intron-minus site in its own host genome, but does not act on the target from Bastille phage. Although the enzymes have distinct DNA substrate specificities, both bind to an identical 25bp region of their respective intron-minus DNA polymerase genes surrounding the intron insertion site. The endonucleases appear to interact with the DNA substrates in the downstream exon 2 in a similar manner. However, whereas I-HmuI is known to make its only base-specific contacts within this exon region, structural modeling analyses predict that I-BasI might make specific base contacts both upstream and downstream of the site of intron insertion. The predicted requirement for base-specific contacts in exon 1 for cleavage by I-BasI was confirmed experimentally. This explains the difference in substrate specificities between the two enzymes, including the observation that the former enzyme is relatively insensitive to the presence of an intron upstream of exon 2. These differences are likely a consequence of divergent evolutionary constraints.

  9. Genetic Network Programming with Intron-Like Nodes

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Chen, Yan; Eto, Shinji; Shimada, Kaoru; Hirasawa, Kotaro

    Recently, Genetic Network Programming (GNP) has been proposed, which is an extension of Genetic Algorithm(GA) and Genetic Programming(GP). GNP can make compact programs and can memorize the past history in it implicitly, because it expresses the solution by directed graphs and therefore, it can reuse the nodes. In this research, intron-like nodes are introduced for improving the performance of GNP. The aim of introducing intron-like nodes is to use every node as much as possible. It is found from simulations that the intron-like nodes are useful for improving the training speed and generalization ability.

  10. Structural and mutational analysis of a conserved gene (DGSI) from the minimal DiGeorge syndrome critical region.

    PubMed

    Gong, W; Emanuel, B S; Galili, N; Kim, D H; Roe, B; Driscoll, D A; Budarf, M L

    1997-02-01

    The majority of patients with DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), conotruncal anomaly face syndrome (CTAFS) and some individuals with familial or sporadic conotruncal cardiac defects have hemizygous deletions of chromosome 22. Most patients with these disorders share a common large deletion, spanning > 1.5 Mb within 22q11.21-q11.23. Recently, the smallest region of deletion overlap has been narrowed to a 250 kb area, the minimal DGS critical region (MDGCR), which includes the locus D22S75 (N25). We have isolated and characterized a novel, highly conserved gene, DGSI, within the MDGCR. DGSI has 10 exons and nine introns encompassing 1702 bp of cDNA sequence and 11 kb of genomic DNA. The encoded protein has 476 amino acids with a predicted mol. wt of 52.6 kDa. The intron-exon boundaries have been analyzed and conform to the consensus GT/AG motif. The corresponding murine Dgsi has been isolated and localized to proximal mouse chromosome 16. The mouse gene contains the same number of exons and introns, and the predicted protein has 479 amino acids with 93.2% identity to that of the human DGSI gene. By database searching, both genes have significant homology to a Caenorhabditis elegans hypothetical protein, F42H10.7. Further, mutation analysis has been performed in 16 patients, who have no detectable 22q11.2 deletion and some of the characteristic clinical features of DGS/VCFS. We have detected eight sequence variants in DGSI. These occurred in the 5'-untranslated region, the coding region and the intronic regions adjacent to the intron-exon boundaries of the gene. Seven of the eight variants were also present in normal controls or unaffected family members, suggesting they may not be of etiologic significance.

  11. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.

    PubMed

    Basu, Malay Kumar; Rogozin, Igor B; Deusch, Oliver; Dagan, Tal; Martin, William; Koonin, Eugene V

    2008-01-01

    Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and green plants. After endosymbiosis, there was large-scale migration of genes from the endosymbiont to the nuclear genome of the host such that approximately 18% of the nuclear genes in Arabidopsis appear to be of chloroplast origin. To gain insights into the process of evolution of gene structure in these, originally, intronless genes, we compared the properties and the evolutionary dynamics of introns in genes of plastid origin and ancestral eukaryotic genes in Arabidopsis, poplar, and rice genomes. We found that intron densities in plastid-derived genes were slightly but significantly lower than those in ancestral eukaryotic genes. Although most of the introns in both categories of genes were conserved between monocots (rice) and dicots (Arabidopsis and poplar), lineage-specific intron gain was more pronounced in plastid-derived genes than in ancestral genes, whereas there was no significant difference in the intron loss rates between the 2 classes of genes. Thus, after the transfer to the nuclear genome, the plastid-derived genes have undergone a massive intron invasion that, by the time of the divergence of dicots and monocots (150-200 MYA), yielded intron densities only slightly lower than those in ancestral genes. Nevertheless, the accumulation of introns in plastid-derived genes appears not to have reached saturation and continues to this time, albeit at a low rate. The overall pattern of intron gain and loss in the plastid-derived genes is shaped by this continuing gain and the more general tendency for loss that is characteristic of the recent evolution of plant genes.

  12. Molecular basis of the size polymorphism of the first intron of the Adh-1 gene of the mediterranean fruit fly, Ceratitis capitata.

    PubMed

    Gomulski, Ludvik M; Brogna, Saverio; Babaratsas, Alekos; Gasperi, Giuliano; Zacharopoulou, Antigoni; Savakis, Charalambos; Bourtzis, Kostas

    2004-06-01

    The first intron of the gene encoding one of the alcohol dehydrogenase isoenzymes (ADH-1) in Ceratitis capitata is highly polymorphic in size. Five size variants of this intron were isolated from different strains and populations and characterized. Restriction map and sequence analysis showed that the intron size polymorphism is due to the presence or absence of (a) a copy of a defective mariner-like element, postdoc; (b) an approximately 550-bp 3' indel which exhibits no similarity to any known sequence; and (c) a central duplication of 704 bp consisting of part of the 3' end of the postdoc element, the region between postdoc and the 3' indel, and the first 20 bp of the 3' indel. The homologous Adh-1 intron was amplified from the congeneric species, Ceratitis rosa, in order to obtain an outgroup for comparative and phylogenetic analyses. The C. rosa introns were polymorphic in size, ranging from about 1100 to 2000 bp, the major difference between them being the presence or absence of a mariner-like element Crmar2, unrelated to the postdoc element. Phylogenetic analysis suggests that the shorter intron variants in C. capitata may represent the ancestral form of the intron, the longest variants apparently being the most recent.

  13. The reverse transcriptase encoded by ai1 intron is active in trans in the retro-deletion of yeast mitochondrial introns.

    PubMed

    Gargouri, Ali

    2005-06-01

    Genomic mitochondrial intron deletion occurs frequently during the reversion of mitochondrial intronic mutations in Saccharomyces cerevisiae. The multiplicity as well as the apparent polarity of intron deletion led us to propose the implication of reverse transcription in this process. The two first introns of the COX1 (cytochrome oxidase I) gene, ai1 and ai2, are known to be homologous to viral reverse transcriptase and to encode such activity. We have tested the involvement of these introns in the deletion process by constructing three isogenic strains. They contain the same reporter mutation in the second intron of the CYTb (cytochrome b) gene but differ from each other by the presence or the absence of the ai1 and/or ai2 introns in the other gene encoding the COX1 subunit. Only the strain lacking ai1 and ai2 introns is no more able to revert by intron deletion. The strain retaining only the ai1 intron was able to revert by intron deletion. We conclude that the reverse transcriptase activity, even when encoded by only ai1 intron, can act in trans in the intron deletion process, during the reversion of intronic mutations.

  14. Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns.

    PubMed

    Sasaki-Haraguchi, Noriko; Shimada, Makoto K; Taniguchi, Ichiro; Ohno, Mutsuhito; Mayeda, Akila

    2012-06-29

    It is unknown how very short introns (<65 nt; termed 'ultra-short' introns) could be spliced in a massive spliceosome (>2.7 MDa) without steric hindrance. By screening an annotated human transcriptome database (H-InvDB), we identified three model ultra-short introns: the 56-nt intron in the HNRNPH1 (hnRNP H1) gene, the 49-nt intron in the NDOR1 (NADPH dependent diflavin oxidoreductase 1) gene, and the 43-nt intron in the ESRP2 (epithelial splicing regulatory protein 2) gene. We verified that these endogenous ultra-short introns are spliced, and also recapitulated this in cultured cells transfected with the corresponding mini-genes. The splicing of these ultra-short introns was repressed by a splicing inhibitor, spliceostatin A, suggesting that SF3b (a U2 snRNP component) is involved in their splicing processes. The 56-nt intron containing a pyrimidine-rich tract was spliced out in a lariat form, and this splicing was inhibited by the disruption of U1, U2, or U4 snRNA. In contrast, the 49- and 43-nt introns were purine-rich overall without any pyrimidine-rich tract, and these lariat RNAs were not detectable. Remarkably, shared G-rich intronic sequences in the 49- and 43-nt introns were required for their splicing, suggesting that these ultra-short introns may recruit a novel auxiliary splicing mechanism linked to G-rich intronic splicing enhancers.

  15. Geochemistry and geochronology of the Late Permian mafic intrusions along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, northeastern China: Petrogenesis and implications for the tectonic evolution of the Mudanjiang Ocean

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Ge, Wen-chun; Yang, Hao; Xu, Wen-liang; Bi, Jun-hui; Wang, Zhi-hui

    2017-01-01

    This paper presents zircon U-Pb ages, whole-rock major and trace element data, and Hf isotope data for the metagabbros from the Zhushan pluton and gabbros from the Taiping pluton along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, which will not only place important constraints on the rock-forming ages, source characteristics and tectonic setting of these gabbros, but will also provide insights into understanding the Permian tectonic evolution between the Jiamusi Massif and the Songnen-Zhangguangcai Range Massif. Zircon U-Pb dating, determined using laser ablation-inductively coupled plasma-mass spectrometry and secondary-ion mass spectrometry, indicates that the magmatic zircons from the Zhushan and Taiping plutons yield 206Pb/238U ages of 256 ± 2 Ma and 259 ± 3 Ma, respectively, interpreted as the emplacement ages of the intrusions. The metagabbros from the Zhushan pluton display the geochemical characteristics of calc-alkaline series rocks, and are enriched in light rare earth and large ion lithophile elements, and depleted in Nb, Ta, P, Zr and Hf. The εHf(t) values of magmatic zircons in these metagabbros vary from - 5.47 to + 0.74. All these geochemical features indicate that the primary magma of the Zhushan pluton was derived from an enriched lithospheric mantle source that was metasomatized by subducted slab-derived fluids. The gabbros from the Taiping pluton are also enriched in large ion lithophile elements (e.g., Rb, Ba and U) relative to high field strength elements, and have negative Nb-Ta-P anomalies, with εHf(t) values of - 4.02 to - 1.70. It is inferred that they also formed from a primary magma generated by the partial melting of enriched lithospheric mantle that was metasomatized by subducted slab-derived fluids. The rocks from the Zhushan and Taiping plutons have similar petrogenetic processes, but their primary magmas are likely to be derived from two distinct magma sources based on geochemical and

  16. Intron evolution in Neurospora: the role of mutational bias and selection.

    PubMed

    Sun, Yu; Whittle, Carrie A; Corcoran, Pádraic; Johannesson, Hanna

    2015-01-01

    We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78-6.89 × 10(-13) intron gains per nucleotide site per year) and a high intron loss rate (7.53-13.76 × 10(-10) intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5' intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.

  17. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.

  18. Splicing of many human genes involves sites embedded within introns

    PubMed Central

    Kelly, Steven; Georgomanolis, Theodore; Zirkel, Anne; Diermeier, Sarah; O'Reilly, Dawn; Murphy, Shona; Längst, Gernot; Cook, Peter R.; Papantonis, Argyris

    2015-01-01

    The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3′ end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon–exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome. PMID:25897131

  19. Visualizing group II intron catalysis through the stages of splicing

    PubMed Central

    Marcia, Marco; Pyle, Anna Marie

    2012-01-01

    SUMMARY Group II introns are self-splicing ribozymes that share a reaction mechanism and a common ancestor with the eukaryotic spliceosome, thereby providing a model system for understanding the chemistry of pre-mRNA splicing. Here we report fourteen crystal structures of a group II intron at different stages of catalysis. We provide a detailed mechanism for the first step of splicing, we describe a reversible conformational change between the first and the second steps of splicing, and we present the ligand-free intron structure after splicing, in an active state that corresponds to the retrotransposable form of the intron. During each reaction, the reactants are aligned and activated by a heteronuclear four-metal-ion center that contains a metal cluster and obligate monovalent cations, adopting a structural arrangement similar to that of protein endonucleases. Based on our data, we propose a model for the splicing cycle and show that it is applicable to the eukaryotic spliceosome. PMID:23101623

  20. Control elements targeting Tgfb3 expression to the palatal epithelium are located intergenically and in introns of the upstream Ift43 gene

    PubMed Central

    Lane, Jamie; Yumoto, Kenji; Pisano, Justin; Azhar, Mohamad; Thomas, Penny S.; Kaartinen, Vesa

    2014-01-01

    Tgfb3 is strongly and specifically expressed in the epithelial tips of pre-fusion palatal shelves where it plays a critical non-redundant role in palatal fusion in both medial edge epithelial (MEE) cells and in a thin layer of flattened peridermal cells that covers the MEE. It is not known how Tgfb3 expression is regulated in these specific cell types. Using comparative genomics and transgenic reporter assays, we have identified cis-regulatory elements that could control Tgfb3 expression during palatogenesis. Our results show that a 61-kb genomic fragment encompassing the Tgfb3 gene drives remarkably specific reporter expression in the MEE and adjacent periderm. Within this fragment, we identified two small, non-coding, evolutionarily conserved regions in intron 2 of the neighboring Ift43 gene, and a larger region in the intervening sequence between the Ift43 and Tgfb3 genes, each of which could target reporter activity to the tips of pre-fusion/fusing palatal shelves. Identification of the cis-regulatory sequences controlling spatio-temporal Tgfb3 expression in palatal shelves is a key step toward understanding upstream regulation of Tgfb3 expression during palatogenesis and should enable the development of improved tools to investigate palatal epithelial fusion. PMID:25071603

  1. Cloning and characterization of a c-myc intron binding protein (MIBP1).

    PubMed

    Makino, R; Akiyama, K; Yasuda, J; Mashiyama, S; Honda, S; Sekiya, T; Hayashi, K

    1994-12-25

    The cDNA for a c-myc intron 1 binding protein 1 (MIBP1) in the rat was isolated from lambda gt11 and lambda ZAPII cDNA libraries. Sequencing of the cDNA clones revealed a long ORF which encoded a putative protein of 2437 amino acid residues. This protein has two widely separated zinc finger regions, each of which carries C2H2 motifs. When expressed in E. coli as a fusion protein, part of the MIBP1 showed sequence-specific binding to the target sequence, i.e., a 9-bp sequence in the rat c-myc intron 1. MIBP1 is most likely the rat counterpart of human MHC binding protein-2 (MBP-2/HIV-EP2), based on the 86% similarity in nucleotide sequence and 93% similarity in amno acid sequence. Northern blotting revealed a high level of MIBP1 mRNA in the brain.

  2. Remarkable intron and exon sequence conservation in human and mouse homeobox Hox 1. 3 genes

    SciTech Connect

    Tournier-Lasserve, E.; Odenwald, W.F.; Garbern, J.; Trojanowski, J.; Lazzarini, R.A.

    1989-05-01

    A high degree of conservation exists between the Hox 1.3 homeobox genes of mice and humans. The two genes occupy the same relative positions in their respective Hox 1 gene clusters, they show extensive sequence similarities in their coding and noncoding portions, and both are transcribed into multiple transcripts of similar sizes. The predicted human Hox 1.3 protein differs from its murine counterpart in only 7 of 270 amino acids. The sequence similarity in the 250 base pairs upstream of the initiation codon is 98%, the similarity between the two introns, both 960 base pairs long, is 72%, and the similarity in the 3' noncoding region from termination codon to polyadenylation signal is 90%. Both mouse and human Hox 1.3 introns contain a sequence with homology to a mating-type-controlled cis element of the yeast Ty1 transposon. DNA-binding studies with a recombinant mouse Hox 1.3 protein identified two binding sites in the intron, both of which were within the region of shared homology with this Ty1 cis element.

  3. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  4. The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences.

    PubMed

    Férandon, Cyril; Xu, Jianping; Barroso, Gérard

    2013-06-01

    At 135,005 nt, the mitochondrial genome in Agaricus bisporus represents the largest fungal mitochondrial genome sequenced to date. Its large size is mainly due to the presence of mobile genetic elements, including a total of 43 group I introns, three group II introns, and five DNA fragments that show sequence similarity to linear invertron-like plasmids. The introns are distributed in eight of the 15 protein coding genes. These introns contain a total of 61,092 nt (∼45.3% of the whole mitochondrial genome) and include representatives of most of the group I introns so far found in mitochondrial genomes of Basidiomycota. The plasmid-like sequences include 6730 nt total representing 5.0% of the genome. These sequences showed high-level similarities to two different mitochondrial plasmids reported for basidiomycete mushrooms: the autonomously replicating pEM in Agaricus bitorquis and the integrated linear plasmid sequences in Agrocybe aegerita and Moniliophthora perniciosa. Moreover, the plasmid-related sequences are located within or adjacent to two large (4559 nt) inverted repeats containing also two sets of mitochondrial tRNA genes. Our analyses are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution of the A. bisporus mitochondrial genome.

  5. Human and mouse introns are linked to the same processes and functions through each genome's most frequent non-conserved motifs.

    PubMed

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2008-06-01

    We identified the most frequent, variable-length DNA sequence motifs in the human and mouse genomes and sub-selected those with multiple recurrences in the intergenic and intronic regions and at least one additional exonic instance in the corresponding genome. We discovered that these motifs have virtually no overlap with intronic sequences that are conserved between human and mouse, and thus are genome-specific. Moreover, we found that these motifs span a substantial fraction of previously uncharacterized human and mouse intronic space. Surprisingly, we found that these genome-specific motifs are over-represented in the introns of genes belonging to the same biological processes and molecular functions in both the human and mouse genomes even though the underlying sequences are not conserved between the two genomes. In fact, the processes and functions that are linked to these genome-specific sequence-motifs are distinct from the processes and functions which are associated with intronic regions that are conserved between human and mouse. The findings show that intronic regions from different genomes are linked to the same processes and functions in the absence of underlying sequence conservation. We highlight the ramifications of this observation with a concrete example that involves the microsatellite instability gene MLH1.

  6. Explosive invasion of plant mitochondria by a group I intron

    PubMed Central

    Cho, Yangrae; Qiu, Yin-Long; Kuhlman, Peter; Palmer, Jeffrey D.

    1998-01-01

    Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now show that this intron is in fact widespread among angiosperm cox1 genes, but with an exceptionally patchy phylogenetic distribution. Four lines of evidence—the intron’s highly disjunct distribution, many incongruencies between intron and organismal phylogenies, and two sources of evidence from exonic coconversion tracts—lead us to conclude that the 48 angiosperm genera found to contain this cox1 intron acquired it by 32 separate horizontal transfer events. Extrapolating to the over 13,500 genera of angiosperms, we estimate that this intron has invaded cox1 genes by cross-species horizontal transfer over 1,000 times during angiosperm evolution. This massive wave of lateral transfers is of entirely recent occurrence, perhaps triggered by some key shift in the intron’s invasiveness within angiosperms. PMID:9826685

  7. A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification

    PubMed Central

    Cenik, Can; Chua, Hon Nian; Singh, Guramrit; Akef, Abdalla; Snyder, Michael P.; Palazzo, Alexander F.

    2017-01-01

    Introns are found in 5′ untranslated regions (5′UTRs) for 35% of all human transcripts. These 5′UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5′UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5′UTR intron status, we developed a classifier that can predict 5′UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5′ proximal-intron-minus-like-coding regions (“5IM” transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5′ cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5′ proximal positions. Finally, N1-methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5′ proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC. PMID:27994090

  8. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.

    PubMed

    Milanowski, Rafał; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bozena

    2014-03-01

    The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.

  9. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer

    PubMed Central

    2011-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is known by its aggressiveness and lack of effective therapeutic options. Thus, improvement in current knowledge of molecular changes associated with pancreatic cancer is urgently needed to explore novel venues of diagnostics and treatment of this dismal disease. While there is mounting evidence that long noncoding RNAs (lncRNAs) transcribed from intronic and intergenic regions of the human genome may play different roles in the regulation of gene expression in normal and cancer cells, their expression pattern and biological relevance in pancreatic cancer is currently unknown. In the present work we investigated the relative abundance of a collection of lncRNAs in patients' pancreatic tissue samples aiming at identifying gene expression profiles correlated to pancreatic cancer and metastasis. Methods Custom 3,355-element spotted cDNA microarray interrogating protein-coding genes and putative lncRNA were used to obtain expression profiles from 38 clinical samples of tumor and non-tumor pancreatic tissues. Bioinformatics analyses were performed to characterize structure and conservation of lncRNAs expressed in pancreatic tissues, as well as to identify expression signatures correlated to tissue histology. Strand-specific reverse transcription followed by PCR and qRT-PCR were employed to determine strandedness of lncRNAs and to validate microarray results, respectively. Results We show that subsets of intronic/intergenic lncRNAs are expressed across tumor and non-tumor pancreatic tissue samples. Enrichment of promoter-associated chromatin marks and over-representation of conserved DNA elements and stable secondary structure predictions suggest that these transcripts are generated from independent transcriptional units and that at least a fraction is under evolutionary selection, and thus potentially functional. Statistically significant expression signatures comprising protein-coding mRNAs and lncRNAs that correlate

  10. Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.

    PubMed

    Chen, Bing; Shao, Jingru; Zhuang, Huifu; Wen, Jianfan

    2017-02-20

    Intron evolution, including its dynamics in the evolutionary transitions and diversification of eukaryotes, remains elusive. Inadequate taxon sampling due to data shortage, unclear phylogenetic framework, and inappropriate outgroup application might be among the causes. Besides, the integrity of all the introns within a gene was often neglected previously. Taking advantage of the ancient conserved triosephosphate isomerase gene (tim), the relatively robust phylogeny of Metazoa, and choanoflagellates as outgroup, the evolutionary dynamics of tim intron location pattern (ILP) in Metazoa was investigated. From 133 representative species of ten phyla, 30 types of ILPs were identified. A most common one, which harbors the maximum six intron positions, is deduced to be the common ancestral tim ILP of Metazoa, which almost had formed in their protozoan ancestor and was surprisingly retained and passed down till to each ancestors of metazoan phyla. In the subsequent animal diversification, it underwent different evolutionary trajectories: within Deuterostomia, it was almost completely retained only with changes in a few species with relatively recently fast-evolving histories, while within the rapidly radiating Protostomia, besides few but remarkable retention, it usually displayed extensive intron losses and a few gains. Therefore, a common ancestral exon-intron arrangement pattern of an animal gene is definitely discovered; besides the 'intron-rich view' of early animal genes being confirmed, the novel insight that high exon-intron re-arrangements of genes seem to be associated with the relatively recently rapid evolution of lineages/species/genomes but have no correlation with the ancient major evolutionary transitions in animal evolution, is revealed.

  11. Yin Yang 1 Intronic Binding Sequences and Splicing Elicit Intron-Mediated Enhancement of Ubiquitin C Gene Expression

    PubMed Central

    Bianchi, Marzia; Crinelli, Rita; Giacomini, Elisa; Carloni, Elisa; Radici, Lucia; Magnani, Mauro

    2013-01-01

    In a number of organisms, introns affect expression of the gene in which they are contained. Our previous studies revealed that the 5′-UTR intron of human ubiquitin C (UbC) gene is responsible for the boost of reporter gene expression and is able to bind, in vitro, Yin Yang 1 (YY1) trans-acting factor. In this work, we demonstrate that intact YY1 binding sequences are required for maximal promoter activity and YY1 silencing causes downregulation of luciferase mRNA levels. However, YY1 motifs fail to enhance gene expression when the intron is moved upstream of the proximal promoter, excluding the typical enhancer hypothesis and supporting a context-dependent action, like intron-mediated enhancement (IME). Yet, almost no expression is seen in the construct containing an unspliceable version of UbC intron, indicating that splicing is essential for promoter activity. Moreover, mutagenesis of YY1 binding sites and YY1 knockdown negatively affect UbC intron removal from both endogenous and reporter transcripts. Modulation of splicing efficiency by YY1 cis-elements and protein factor may thus be part of the mechanism(s) by which YY1 controls UbC promoter activity. Our data highlight the first evidence of the involvement of a sequence-specific DNA binding factor in IME. PMID:23776572

  12. Intron Gains and Losses in the Evolution of Fusarium and Cryptococcus Fungi

    PubMed Central

    Croll, Daniel; McDonald, Bruce A.

    2012-01-01

    The presence of spliceosomal introns in eukaryotic genes poses a major puzzle for the study of genome evolution. Intron densities vary enormously among distant lineages. However, the mechanisms driving intron gains are poorly understood and very few intron gains and losses have been documented over short evolutionary time spans. Fungi emerged recently as excellent models to study intron evolution and “reverse splicing” was found to be a major driver of recent intron gains in a clade of ascomycete fungi. We screened a total of 38 genomes from two fungal clades important in medicine and agriculture to identify intron gains and losses both within and between species. We detected 86 and 198 variable intron positions in the Cryptococcus and Fusarium clades, respectively. Some genes underwent extensive changes in their exon–intron structure, with up to six variable intron positions per gene. We identified a very recently gained intron in a group of tomato-infecting strains belonging to the F. oxysporum species complex. In the human pathogen C. gattii, we found recent intron losses in subtypes of the species. The two studied fungal clades provided evidence for extensive changes in their exon–intron structure within and among closely related species. We show that both intronization of previously coding DNA and insertion of exogenous DNA are the major drivers of intron gains. PMID:23054310

  13. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  14. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity

    PubMed Central

    Nisa-Martínez, Rafael; Molina-Sánchez, María Dolores; Toro, Nicolás

    2016-01-01

    Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns. PMID:27588750

  15. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    PubMed

    Nisa-Martínez, Rafael; Molina-Sánchez, María Dolores; Toro, Nicolás

    2016-01-01

    Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  16. Evolution of Pleopsidium (lichenized Ascomycota) S943 group I introns and the phylogeography of an intron-encoded putative homing endonuclease.

    PubMed

    Reeb, Valérie; Haugen, Peik; Bhattacharya, Debashish; Lutzoni, François

    2007-03-01

    The sporadic distribution of nuclear group I introns among different fungal lineages can be explained by vertical inheritance of the introns followed by successive losses, or horizontal transfers from one lineage to another through intron homing or reverse splicing. Homing is mediated by an intron-encoded homing endonuclease (HE) and recent studies suggest that the introns and their associated HE gene (HEG) follow a recurrent cyclical model of invasion, degeneration, loss, and reinvasion. The purpose of this study was to compare this model to the evolution of HEGs found in the group I intron at position S943 of the nuclear ribosomal DNA of the lichen-forming fungus Pleopsidium. Forty-eight S943 introns were found in the 64 Pleopsidium samples from a worldwide screen, 22 of which contained a full-length HEG that encodes a putative 256-amino acid HE, and 2 contained HE pseudogenes. The HEGs are divided into two closely related types (as are the introns that encode them) that differ by 22.6% in their nucleotide sequences. The evolution of the Pleopsidium intron-HEG element shows strong evidence for a cyclical model of evolution. The intron was likely acquired twice in the genus and then transmitted via two or three interspecific horizontal transfers. Close geographical proximity plays an important role in intron-HEG horizontal transfer because most of these mobile elements were found in Europe. Once acquired in a lineage, the intron-HEG element was also vertically transmitted, and occasionally degenerated or was lost.

  17. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer.

    PubMed

    Qi, Junlin; Su, Shihuang; Mattox, William

    2007-01-01

    The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.

  18. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  19. Cutting a Long Intron Short: Recursive Splicing and Its Implications

    PubMed Central

    Georgomanolis, Theodore; Sofiadis, Konstantinos; Papantonis, Argyris

    2016-01-01

    Over time eukaryotic genomes have evolved to host genes carrying multiple exons separated by increasingly larger intronic, mostly non-protein-coding, sequences. Initially, little attention was paid to these intronic sequences, as they were considered not to contain regulatory information. However, advances in molecular biology, sequencing, and computational tools uncovered that numerous segments within these genomic elements do contribute to the regulation of gene expression. Introns are differentially removed in a cell type-specific manner to produce a range of alternatively-spliced transcripts, and many span tens to hundreds of kilobases. Recent work in human and fruitfly tissues revealed that long introns are extensively processed cotranscriptionally and in a stepwise manner, before their two flanking exons are spliced together. This process, called “recursive splicing,” often involves non-canonical splicing elements positioned deep within introns, and different mechanisms for its deployment have been proposed. Still, the very existence and widespread nature of recursive splicing offers a new regulatory layer in the transcript maturation pathway, which may also have implications in human disease. PMID:27965595

  20. Tertiary architecture of the Oceanobacillus iheyensis group II intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Fedorova, Olga; Rajashankar, Kanagalaghatta; Wang, Jimin; Pyle, Anna Marie

    2010-05-03

    Group II introns are large ribozymes that act as self-splicing and retrotransposable RNA molecules. They are of great interest because of their potential evolutionary relationship to the eukaryotic spliceosome, their continued influence on the organization of many genomes in bacteria and eukaryotes, and their potential utility as tools for gene therapy and biotechnology. One of the most interesting features of group II introns is their relative lack of nucleobase conservation and covariation, which has long suggested that group II intron structures are stabilized by numerous unusual tertiary interactions and backbone-mediated contacts. Here, we provide a detailed description of the tertiary interaction networks within the Oceanobacillus iheyensis group IIC intron, for which a crystal structure was recently solved to 3.1 {angstrom} resolution. The structure can be described as a set of several intricately constructed tertiary interaction nodes, each of which contains a core of extended stacking networks and elaborate motifs. Many of these nodes are surrounded by a web of ribose zippers, which appear to further stabilize local structure. As predicted from biochemical and genetic studies, the group II intron provides a wealth of new information on strategies for RNA folding and tertiary structural organization.

  1. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences.

    PubMed

    Cervera, Isabel; Herraiz, Miguel Angel; Peñaloza, Jorge; Barbolla, Maria Luz; Jurado, Maria Luisa; Macedo, Jacqueline; Vidart, José Antonio; Martinez-Laso, Jorge

    2010-11-01

    Human leukocyte antigen (HLA)-G alleles follow a different pattern of polymorphism generation from those of the HLA classical I alleles. These polymorphisms have been defined as a result of random permitted point mutations in exons. However, this polymorphism maintenance could have an evolutionary specific pathways based on noncoding regions as introns, 14-bp deletion/insertion (exon 8), or promoter regions. Therefore a systematic sequencing study of HLA-G alleles was done obtaining the complete genomic sequence of 16 different HLA-G alleles: nine alleles were intron and exon confirmatory sequences, four were exon confirmatory and new intron described sequences, and three were new alleles. A 14-bp deletion/insertion polymorphism was also sequenced in these alleles. These sequences, together with those previously published, were compared, and phylogenetic and molecular evolutionary analyses were performed. Results showed the presence of three major specific evolutionary patterns, tentatively named lineages, and the other four as minor lineages (only one allele). The relative age of the major lineages could also be established based on the number of lineage-specific positions and the number of alleles of each lineage. Two main mechanisms are clearly defined in the generation of the lineages (introns), gene conversion, and/or convergent evolution following specific patterns.

  2. PIXE analysis of elements in gastric cancer and adjacent mucosa

    NASA Astrophysics Data System (ADS)

    Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao

    1990-04-01

    The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.

  3. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  4. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort—Impact of Selected Deep Intronic Variants and Common SNPs

    PubMed Central

    Schulz, Heidi L.; Grassmann, Felix; Kellner, Ulrich; Spital, Georg; Rüther, Klaus; Jägle, Herbert; Hufendiek, Karsten; Rating, Philipp; Huchzermeyer, Cord; Baier, Maria J.; Weber, Bernhard H. F.; Stöhr, Heidi

    2017-01-01

    Purpose Stargardt disease (STGD1) is an autosomal recessive retinopathy, caused by mutations in the retina-specific ATP-binding cassette transporter (ABCA4) gene. To establish the mutational spectrum and to assess effects of selected deep intronic and common genetic variants on disease, we performed a comprehensive sequence analysis in a large cohort of German STGD1 patients. Methods DNA samples of 335 STGD1 patients were analyzed for ABCA4 mutations in its 50 coding exons and adjacent intronic sequences by resequencing array technology or next generation sequencing (NGS). Parts of intron 30 and 36 were screened by Sanger chain-terminating dideoxynucleotide sequencing. An in vitro splicing assay was used to test selected variants for their splicing behavior. By logistic regression analysis we assessed the association of common ABCA4 alleles while a multivariate logistic regression model calculated a genetic risk score (GRS). Results Our analysis identified 148 pathogenic or likely pathogenic mutations, of which 48 constitute so far unpublished ABCA4-associated disease alleles. Four rare deep intronic variants were found once in 472 alleles analyzed. In addition, we identified six risk-modulating common variants. Genetic risk score estimates suggest that defined common ABCA4 variants influence disease risk in carriers of a single pathogenic ABCA4 allele. Conclusions Our study adds to the mutational spectrum of the ABCA4 gene. Moreover, in our cohort, deep intronic variants in intron 30 and 36 likely play no or only a minor role in disease pathology. Of note, our findings demonstrate a possible modifying effect of common sequence variants on ABCA4-associated disease. PMID:28118664

  5. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns.

    PubMed

    Olivera, B M; Walker, C; Cartier, G E; Hooper, D; Santos, A D; Schoenfeld, R; Shetty, R; Watkins, M; Bandyopadhyay, P; Hillyard, D R

    1999-05-18

    All 500 species of cone snails (Conus) are venomous predators. From a biochemical/genetic perspective, differences among Conus species may be based on the 50-200 different peptides in the venom of each species. Venom is used for prey capture as well as for interactions with predators and competitors. The venom of every species has its own distinct complement of peptides. Some of the interspecific divergence observed in venom peptides can be explained by differential expression of venom peptide superfamilies in different species and of peptide superfamily branching in various Conus lineages into pharmacologic groups with different targeting specificity. However, the striking interspecific divergence of peptide sequences is the dominant factor in the differences observed between venoms. The small venom peptides (typically 10-35 amino acids in length) are processed from larger prepropeptide precursors (ca. 100 amino acids). If interspecific comparisons are made between homologous prepropeptides, the three different regions of a Conus peptide precursor (signal sequence, pro-region, mature peptide) are found to have diverged at remarkably different rates. Analysis of synonymous and nonsynonymous substitution rates for the different segments of a prepropeptide suggests that mutation frequency varies by over an order of magnitude across the segments, with the mature toxin region undergoing the highest rate. The three sections of the prepropeptide which exhibit apparently different mutation rates are separated by introns. This striking segment-specific rate of divergence of Conus prepropeptides suggests a role for introns in evolution: exons separated by introns have the potential to evolve very different mutation rates. Plausible mechanisms that could underlie differing mutational frequency in the different exons of a gene are discussed.

  6. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    PubMed Central

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  7. Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns.

    PubMed

    Kowerko, Danny; König, Sebastian L B; Skilandat, Miriam; Kruschel, Daniela; Hadzic, Mélodie C A S; Cardo, Lucia; Sigel, Roland K O

    2015-03-17

    RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.

  8. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  9. Inheritance of the group I rDNA intron in Tetrahymena pigmentosa.

    PubMed

    Nielsen, H; Simon, E M; Engberg, J

    1992-01-01

    We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron- strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron- alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron- rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis.

  10. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  11. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.

    PubMed

    Lambowitz, Alan M; Belfort, Marlene

    2015-02-01

    This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.

  12. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  13. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae)

    PubMed Central

    Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang

    2016-01-01

    Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701

  14. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator?

    PubMed

    Paredes, Ursula M; Bubb, Vivien J; Haddley, Kate; Macho, Gabriele A; Quinn, John P

    2012-06-01

    The serotonin transporter gene (SLC6A4) is heavily involved in the regulation of social behaviour of primates. Old World monkeys (e.g. macaques, baboons) have been used to study interactions between variation in the SLC6A4 gene and behaviour. Correlations of variation at one polymorphism located in the promoter region (known as 5HTTLPR) and variation at SLC6A4 expression levels, serotonin turnover and behaviour has been widely studied. In Old World monkeys, the third intron of the SLC6A4 gene also presents a tandem repeat, which sequence varies across species by a few point substitutions. We predict that in these species, this repeated region also acts as transcriptional regulatory domain and that sequence variation at this polymorphic locus might result in differential levels of expression in gene-environment interactions. For testing these hypotheses, the tandem repeat of Mandrillus sphinx and Cercopithecus aethiops from the third intron were cloned into a reporter gene vector and delivered to either primary cultures of rat neonate frontal cortex or the human cell line (JAr) to analyse their transcriptional activities. These repeated sequences supported significantly different levels of gene expression only when delivered into frontal cortex cultures. Furthermore, we tested in silico if such substitutions could have an effect on their binding profile to RNA- and DNA-binding proteins and on splicing. Taken together our results suggest that the tandem repeat in the third intron of the SLC6A4 gene of Old World monkeys could constitute a second transcriptional regulator as suggested for the 5HTTLPR and therefore contribute to diversification of serotonin-related behaviour in these primates.

  15. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue.

    PubMed

    Quiroz-Zárate, Alejandro; Harshfield, Benjamin J; Hu, Rong; Knoblauch, Nick; Beck, Andrew H; Hankinson, Susan E; Carey, Vincent; Tamimi, Rulla M; Hunter, David J; Quackenbush, John; Hazra, Aditi

    2017-01-01

    We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses' Health Study (NHS) diagnosed from 1990-2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses.

  16. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue

    PubMed Central

    Quiroz-Zárate, Alejandro; Harshfield, Benjamin J.; Hu, Rong; Knoblauch, Nick; Beck, Andrew H.; Hankinson, Susan E.; Carey, Vincent; Tamimi, Rulla M.; Hunter, David J.; Quackenbush, John; Hazra, Aditi

    2017-01-01

    We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses’ Health Study (NHS) diagnosed from 1990–2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses. PMID:28152060

  17. Intron V, not intron I of human thrombopoietin, improves expression in the milk of transgenic mice regulated by goat beta-casein promoter.

    PubMed

    Li, Yan; Hao, Hu; Zhou, Mingqian; Zhou, Hongwei; Ye, Jianbin; Ning, Lijun; Ning, Yunshan

    2015-11-03

    Introns near 5' end of genes generally enhance gene expression because of an enhancer /a promoter within their sequence or as intron-mediated enhancement. Surprisingly, our previous experiments found that the vector containing the last intron (intron V) of human thromobopoietin (hTPO) expressed higher hTPO in cos-1 cell than the vector containing intron I regulated by cytomegalovirus promoter. Moreover, regulated by 1.0 kb rat whey acidic protein promoter, hTPO expression was higher in transgenic mice generated by intron V-TPOcDNA than in transgenic mice generated by TPOcDNA and TPOgDNA. However, it is unknown whether the enhancement of hTPO expression by intron I is decreased by uAUG7 at 5'-UTR of hTPO in vivo. Currently, we constructed vectors regulated by stronger 6.5 kb β-casein promoter, including pTPOGA (containing TPOcDNA), pTPOGB (containing TUR-TPOcDNA, TUR including exon1, intron I and non-coding exon2 of hTPO gene), pTPOGC (containing ΔTUR-TPOcDNA, nucleotides of TUR from uAUG7 to physiological AUG were deleted), pTPOGD (containing intron V-TPOcDNA) and pTPOGE (containing TPOgDNA), to evaluate the effect of intron I on hTPO expression and to further verify whether intron V enhances hTPO expression in the milk of transgenic mice. The results demonstrated that intron V, not intron I improved hTPO expression.

  18. Structure and expression of the human Lysyl hydroxylase gene (PLOD): Introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients

    SciTech Connect

    Heikkinen, J.; Hautala, T.; Kivirikko, K.I.

    1994-12-01

    Lysyl hydroxylase (EC 1.14.11.4) catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. This enzyme activity is known to be reduced in patients with the type VI variant of the Ehlers-Danlos syndrome, and the first mutations in the lysyl hydroxylase gene (PLOD) have recently been identified. We have now isolated genomic clones for human lysyl hydroxylase and determined the complete structure of the gene, which contains 19 exons and a 5{prime} flanking region with characteristics shared by housekeeping genes. The constitutive expression of the gene in different tissues further suggests that lysyl hydroxylase has an essential function. We have sequenced the introns of the gene in the region where many mutations and rearrangements analyzed to date are concentrated. Intron 9 and intron 16 show extensive homology resulting from the many Alu sequences found in these introns. Intron 9 contains five and intron 16 eight Alu sequences. The high homology and many short identical or complementary sequences in these introns generate many potential recombination sites with the gene. The delineation of the structure of the lysyl hydroxylase gene contributes significantly to our understanding of the rearrangements in the genome of Ehlers-Danlos type VI patients. 21 refs., 2 figs., 2 tabs.

  19. Characterization of rbcL group IA introns from two colonial volvocalean species (Chlorophyceae).

    PubMed

    Nozaki, H; Ohta, N; Yamada, T; Takano, H

    1998-05-01

    Group I introns were reported for the first time in the large subunit of Rubisco (rbcL) genes, using two colonial green algae, Pleodorina californica and Gonium multicoccum (Volvocales). The rbcL gene of P. californica contained an intron (PIC intron) of 1320 bp harboring an open reading frame (ORF). The G. multicoccum rbcL gene had two ORF-lacking introns of 549 (GM1 intron) and 295 (GM2 intron) base pairs. Based on the conserved nucleotide sequences of the secondary structure, the PIC and GM1 introns were assigned to group IA2 whereas the GM2 intron belonged to group IA1. Southern hybridization analyses of nuclear and chloroplast DNAs indicated that such intron-containing rbcL genes are located in the chloroplast genome. Sequencing RNAs from the two algae revealed that these introns are spliced out during mRNA maturation. In addition, the PIC and GM1 introns were inserted in the same position of the rbcL exons, and phylogenetic analysis of group IA introns indicated a close phylogenetic relationship between the PIC and GM1 introns within the lineage of bacteriophage group IA2 introns. However, P. californica and G. multicoccum occupy distinct clades in the phylogenetic trees of the colonial Volvocales, and the majority of other colonial volvocalean species do not have such introns in the rbcL genes. Therefore, these introns might have been recently inserted in the rbcL genes independently by horizontal transmission by viruses or bacteriophage.

  20. Vertical evolution and intragenic spread of lichen-fungal group I introns.

    PubMed

    Bhattacharya, Debashish; Friedl, Thomas; Helms, Gert

    2002-07-01

    One family within the Euascomycetes (Ascomycota), the lichen-forming Physciaceae, is particularly rich in nuclear ribosomal [r]DNA group I introns. We used phylogenetic analyses of group I introns and lichen-fungal host cells to address four questions about group I intron evolution in lichens, and generally in all eukaryotes: 1) Is intron spread in the lichens associated with the intimate association of the fungal and photosynthetic cells that make up the lichen thallus? 2) Are the multiple group I introns in the lichen-fungi of independent origins, or have existing introns spread into novel sites in the rDNA? 3) If introns have moved to novel sites, then does the exon context of these sites provide insights into the mechanism of intron spread? and 4) What is the pattern of intron loss in the small subunit rDNA gene of lichen-fungi? Our analyses show that group I introns in the lichen-fungi and in the lichen-algae (and lichenized cyanobacteria) do not share a close evolutionary relationship, suggesting that these introns do not move between the symbionts. Many group I introns appear to have originated in the common ancestor of the Lecanorales, whereas others have spread within this lineage (particularly in the Physciaceae) putatively through reverse-splicing into novel rRNA sites. We suggest that the evolutionary history of most lichen-fungal group I introns is characterized by rare gains followed by extensive losses in descendants, resulting in a sporadic intron distribution. Detailed phylogenetic analyses of the introns and host cells are required, therefore, to distinguish this scenario from the alternative hypothesis of widespread and independent intron gains in the different lichen-fungal lineages.

  1. Predicted group II intron lineages E and F comprise catalytically active ribozymes.

    PubMed

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-09-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.

  2. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing

    PubMed Central

    Taube, Jennifer R.; Sperle, Karen; Banser, Linda; Seeman, Pavel; Cavan, Barbra Charina V.; Garbern, James Y.; Hobson, Grace M.

    2014-01-01

    Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5′ splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD. PMID:24890387

  3. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  4. Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution.

    PubMed

    Yang, Yu-Fei; Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    Despite the prevalence of intron losses during eukaryotic evolution, the selective forces acting on them have not been extensively explored. Arabidopsis thaliana lost half of its genome and experienced an elevated rate of intron loss after diverging from A. lyrata. The selective force for genome reduction was suggested to have driven the intron loss. However, the evolutionary mechanism of genome reduction is still a matter of debate. In this study, we found that intron-lost genes have high synonymous substitution rates. Assuming that differences in mutability among different introns are conserved among closely related species, we used the nucleotide substitution rate between orthologous introns in other species as the proxy of the mutation rate of Arabidopsis introns, either lost or extant. The lost introns were found to have higher mutation rates than extant introns. At the genome-wide level, A. thaliana has a higher mutation rate than A. lyrata, which correlates with the higher rate of intron loss and rapid genome reduction of A. thaliana. Our results indicate that selection to minimize mutational hazards might be the selective force for intron loss, and possibly also for genome reduction, in the evolution of A. thaliana. Small genome size and lower genome-wide intron density were widely reported to be correlated with phenotypic features, such as high metabolic rates and rapid growth. We argue that the mutational-hazard hypothesis is compatible with these correlations, by suggesting that selection for rapid growth might indirectly increase mutational hazards.

  5. Higher frequency of intron loss from the promoter proximally paused genes of Drosophila melanogaster.

    PubMed

    Jiang, Li; Li, Xue-Nan; Niu, Deng-Ke

    2014-01-01

    Although intron losses have been widely reported, it is not clear whether they are neutral and therefore random or driven by positive selection. Intron transcription and splicing are time-consuming and can delay the expression of its host gene. For genes that must be activated quickly to respond to physiological or stress signals, intron delay may be deleterious. Promoter proximally paused (PPP) genes are a group of rapidly expressed genes. To respond quickly to activation signals, they generally initiate transcription competently but stall after synthesizing a short RNA. In this study, performed in Drosophila melanogaster, the PPP genes were found to have a significantly higher rate of intron loss than control genes. However, further analysis did not find more significant shrinkage of intron size in PPP genes. Referring to previous studies on the rates of transcription and splicing and to the time saved by deletion of the introns from mouse gene Hes7, it is here suggested that transcription delay is comparable to splicing delay only when the intron is 28.5 kb or larger, which is greater in size than 95% of vertebrate introns, 99.5% of Drosophila introns, and all the annotated introns of Saccharomyces cerevisiae and Arabidopsis thaliana. Delays in intron splicing are probably a selective force, promoting intron loss from quickly expressed genes. In other genes, it may have been an exaptation during the emergency of developmental clocks.

  6. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  11. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    PubMed Central

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  12. Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes.

    PubMed

    Lozinsky, Sharla; Yang, Hui; Forseille, Li; Cook, Gillian R; Ramirez-Erosa, Irving; Smith, Mark A

    2014-02-01

    Mining of an EST sequence collection representing genes expressed during seed development in Physaria fendleri identified abundant sequences encoding apparent homologues of the Arabidopsis oleate 12-desaturase (AtFAD2 At3g12120). Of the 62 sequenced clones, 59 were identified as encoding the previously characterized bifunctional oleate 12-hydroxylase/desaturase (LFAH12/PfFAH12). The remaining 3 clones encoded a second FAD2 homologue. Isolation of a full length ORF and heterologous expression in yeast revealed that this sequence, designated PfFAD2, is the first full length sequence from any Physaria species that encodes an oleate 12-desaturase. PfFAD2 was expressed in both leaf and developing seed with activity on palmitate (16:1(Δ9)) and oleate (18:1(Δ9)). Sequence comparison revealed that PfFAD2 shares 93% amino acid identity with Arabidopsis FAD2 and only 84% identity with PfFAH12. By comparison of EST and genomic sequences it was revealed that the PfFAD2 gene encodes a transcript with a single intron of 1120 bp in the 5'-untranslated region (5'UTR). A short intron, 81 bp in length, was also discovered in the 5'UTR of the PfFAH12 gene, 16 bp upstream of the translation initiation codon. In silico examination of FAD2 like genes from the genome of castor (Ricinus communis) identified putative 5'UTR introns in genes encoding the castor oleate 12-desaturase (RcFAD2) and oleate 12-hydroxylase (CFAH12). By sequencing of genomic DNA the presence of single 5'UTR introns in each gene, and the size of these introns, was confirmed. These findings suggest that 5'UTR introns may be a characteristic feature of FAD2 genes and also of divergent FAD2 genes encoding fatty acid modifying enzymes, and that the selection pressure maintaining these introns is very different.

  13. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.

    PubMed

    Mercado, Pablo Arrisi; Ayala, Youhna M; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.

  14. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  15. Arabidopsis chloroplast mini-ribonuclease III participates in rRNA maturation and intron recycling.

    PubMed

    Hotto, Amber M; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B

    2015-03-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3' end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3' extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation.

  16. An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture

    PubMed Central

    Murgiano, Leonardo; Waluk, Dominik P.; Towers, Rachel; Wiedemar, Natalie; Dietrich, Joëlle; Jagannathan, Vidhya; Drögemüller, Michaela; Balmer, Pierre; Druet, Tom; Galichet, Arnaud; Penedo, M. Cecilia; Müller, Eliane J.; Roosje, Petra; Welle, Monika M.; Leeb, Tosso

    2016-01-01

    We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses. PMID:27449517

  17. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns

    PubMed Central

    Haugen, Peik; Bhattacharya, Debashish; Palmer, Jeffrey D; Turner, Seán; Lewis, Louise A; Pryer, Kathleen M

    2007-01-01

    Background Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria. Results Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria. Conclusion We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown. PMID:17825109

  18. The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: twintrons, introns, and intron-encoded proteins.

    PubMed

    Hafez, Mohamed; Majer, Anna; Sethuraman, Jyothi; Rudski, Shelly M; Michel, François; Hausner, Georg

    2013-04-01

    Comparative sequence analysis of the mitochondrial small subunit ribosomal RNA (rns) gene among species of Ophiostoma, Grosmannia, Ceratocystiopsis and related taxa provides an overview of the types of introns that have invaded this gene within the ophiostomatoid fungi. The rns gene appears to be a reservoir for a number of group I and group II introns along with intron-associated open reading frames such as homing endonucleases and reverse transcriptases. This study uncovered two twintrons, one at position mS917 where a group ID intron encoding a LAGLIDADG ORF invaded another ORF-less group ID intron. Another twintron complex was detected at position mS1247 here a group IIA1 intron invaded the open reading frame embedded within a group IC2 intron. Overall the distribution of the introns does not appear to follow evolutionary lineages suggesting the possibility of rare horizontal gains and frequent losses. Results of this study will make a significant contribution to the understanding of the complexity of the mitochondrial intron landscape, and offer a resource to those annotating mitochondrial genomes. It will also serve as a resource to those that bioprospect for ribozymes and homing endonucleases.

  19. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis.

    PubMed

    Dorsch, J A; Candas, M; Griko, N B; Maaty, W S A; Midboe, E G; Vadlamudi, R K; Bulla, L A

    2002-09-01

    Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.

  20. Intron analyses reveal multiple calmodulin copies in Littorina.

    PubMed

    Simpson, R J; Wilding, C S; Grahame, J

    2005-04-01

    Intron 3 and the flanking exons of the calmodulin gene have been amplified, cloned, and sequenced from 18 members of the gastropod genus Littorina. From the 48 sequences, at least five different gene copies have been identified and their functionality characterized using a strategy based upon the potential protein product predicted from flanking exon data. The functionality analyses suggest that four of the genes code for functional copies of calmodulin. All five copies have been identified across a wide range of littorinid species although not ubiquitously. Using this novel approach based on intron sequences, we have identified an unprecedented number of potential calmodulin copies in Littorina, exceeding that reported for any other invertebrate. This suggests a higher number of, and more ancient, gene duplications than previously detected in a single genus.

  1. Targeted gene disruption in Francisella tularensis by group II introns.

    PubMed

    Rodriguez, Stephen A; Davis, Greg; Klose, Karl E

    2009-11-01

    Francisella tularensis is a highly infectious Gram-negative bacterium that is the causative agent of tularemia. Very little is known about the molecular mechanisms responsible for F. tularensis virulence, in part due to the paucity of genetic tools available for the study of F. tularensis. We have developed a gene knockout system for F. tularensis that utilizes retargeted mobile group II introns, or "targetrons". These targetrons disrupt both single and duplicated target genes at high efficiency in three different F. tularensis subspecies. Here we describe in detail the targetron-based method for insertional mutagenesis of F. tularensis genes, which should facilitate a better understanding of F. tularensis pathogenesis. Group II introns can be adapted to inactivate genes in bacteria for which few genetic tools exist, thus providing a powerful tool to study the genetic basis of bacterial pathogenesis.

  2. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    SciTech Connect

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  3. Tempo and mode of spliceosomal intron evolution in actin of foraminifera.

    PubMed

    Flakowski, Jérôme; Bolivar, Ignacio; Fahrni, José; Pawlowski, Jan

    2006-07-01

    Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago.

  4. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome

    PubMed Central

    Cuenca, Argelia; Ross, T. Gregory; Graham, Sean W.; Barrett, Craig F.; Davis, Jerrold I.; Seberg, Ole; Petersen, Gitte

    2016-01-01

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. PMID:27435795

  5. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    PubMed Central

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-01-01

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations. PMID:27999334

  6. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene.

    PubMed

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-12-17

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations.

  7. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans

    PubMed Central

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J.

    2016-01-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  8. Genotyping of Intron Inversions and Point Mutations in Exon 14 of the FVIII Gene in Iranian Azeri Turkish Families with Hemophilia A.

    PubMed

    Shekari Khaniani, Mahmoud; Ebrahimi, Abdollah; Daraei, Setareh; Derakhshan, Sima Mansoori

    2016-12-01

    Hemophilia A (HA) is an inherited X-linked bleeding disorder caused by a variety of mutations that are distributed throughout the large FVIII gene (F8). The most common mutations in studied populations with severe HA are introns 22 and 1 inversions, gross exon deletions and point mutations in exon 14. The aim of this study was to define the frequency of these common mutations in Iranian population of Azeri Turkish in North West of Iran. Fifty patients with severe HA and forty-three female potential carriers were genotyped by inverse shifting polymerase chain reaction (IS-PCR), long-range PCR, multiplex PCR, and sequencing methods for the detection of Intron 22 and 1 inversions, gross exon deletions, and exon 14 point mutations, respectively. F8 intron 22 inversion was detected in 22 (44 %) out of 50 patients. Moreover, we detected one intron 1 inversion (2 %), and one point mutation in exon 14 (2 %). In this population, 52 % of the patients with hemophilia A did not show to carry a mutation in the analyzed regions by three mentioned methods. F8 intron 22 inversion was the major causative mutation in nearly 50 % of severe HA cases in an Azerbaijani Turkish population, which is similar to the incidence of other populations. IS-PCR is a robust, rapid, efficient, and cost-effective method for the genetic analysis of patients with severe HA and for HA carrier detection, especially in developing countries.

  9. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an 'intron' bearing a hidden break site.

    PubMed Central

    Melen, G J; Pesce, C G; Rossi, M S; Kornblihtt, A R

    1999-01-01

    Splitting and apparent splicing of ribosomal RNA, both previously unknown in vertebrates, were found in rodents of the genus Ctenomys. Instead of being formed by a single molecule of 4.4 kb, 28S rRNA is split in two molecules of 2.6 and 1.8 kb. A hidden break, mapping within a 106 bp 'intron' located in the D6 divergent region, is expressed in mature ribosomes of liver, lung, heart and spleen, as well as in primary fibroblast cultures. Testis-specific processing eliminates the intron and concomitantly the break site, producing non-split 28S rRNA molecules exclusively in this organ. The intron is flanked by two 9 bp direct repeats, revealing the acquisition by insertion of a novel rRNA processing strategy in the evolution of higher organisms. PMID:10357822

  10. Systematic analysis of intron size and abundance parameters in diverse lineages.

    PubMed

    Wu, Jiayan; Xiao, Jingfa; Wang, Lingping; Zhong, Jun; Yin, Hongyan; Wu, Shuangxiu; Zhang, Zhang; Yu, Jun

    2013-10-01

    All eukaryotic genomes have genes with introns in variable sizes. As far as spliceosomal introns are concerned, there are at least three basic parameters to stratify introns across diverse eukaryotic taxa: size, number, and sequence context. The number parameter is highly variable in lower eukaryotes, especially among protozoan and fungal species, which ranges from less than 4% to 78% of the genes. Over greater evolutionary time scales, the number parameter undoubtedly increases as observed in higher plants and higher vertebrates, reaching greater than 12.5 exons per gene in average among mammalian genomes. The size parameter is more complex, where multiple modes appear at work. Aside from intronless genes, there are three other types of intron-containing genes: half-sized, minimal, and size-expandable introns. The half-sized introns have only been found in a limited number of genomes among protozoan and fungal lineages and the other two types are prevalent in all animal and plant genomes. Among the size-expandable introns, the sizes of plant introns are expansion-limited in that the large introns exceeding 1000 bp are fewer in numbers and transposon-free as compared to the large introns among animals, where the larger introns are filled with transposable elements and appear expansion-flexible, reaching several kilobasepairs (kbp) and even thousands of kbp in size. Most of the intron parameters can be studied as signatures of the specific splicing machineries of different eukaryotic lineages and are highly relevant to the regulation of gene expression and functionality. In particular, the transcription-splicing-export coupling of eukaryotic intron dispensing leads to a working hypothesis that all intron parameters are evolved to be efficient and function-related in processing and routing the spliced transcripts.

  11. The human thyroglobulin gene contains two 15-17 kb introns near its 3'-end.

    PubMed

    van Ommen, G J; Arnberg, A C; Baas, F; Brocas, H; Sterk, A; Tegelaers, W H; Vassart, G; de Vijlder, J J

    1983-04-25

    We have cloned overlapping segments of the human thyroglobulin gene from a genomic cosmid library. Restriction mapping and electron microscopy show that a region of 38 kb at or near the 3'-end of this gene encodes only 850 nucleotides or 10% of the messenger RNA (mRNA) sequence. The region contains five exons of 130-210 nucleotides, split by introns of 1 to 15-17 kb. This represents the lowest ratio of coding to non-coding DNA (2.2%) found thus far in any eukaryotic gene. Blot hybridization under non-stringent conditions shows the presence of only one copy of this gene in the human genome and the absence of other closely related sequences.

  12. An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of vif mRNA

    PubMed Central

    Widera, Marek; Erkelenz, Steffen; Hillebrand, Frank; Krikoni, Aikaterini; Widera, Darius; Kaisers, Wolfgang; Deenen, René; Gombert, Michael; Dellen, Rafael; Pfeiffer, Tanya; Kaltschmidt, Barbara; Münk, Carsten; Bosch, Valerie; Köhrer, Karl

    2013-01-01

    Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3′ splice site (3′ss) A1 but lack splicing at 5′ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3′ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3′ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5′ss D2. Here we show that an intronic G run (GI2-1) represses the use of a second 5′ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of GI2-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here. PMID:23255806

  13. Different susceptibility to lung tumorigenesis in mice with an identical Kras 2 intron 2

    SciTech Connect

    Manenti, G.; Falvella, F.S.; Gariboldi, M.; Dragani, T.A.; Pierotti, M.A.

    1995-09-20

    The A/J mouse strain is genetically susceptible to pulmonary tumorigenesis. We have performed a genetic linkage analysis to map pulmonary adenoma susceptibility (Pas) loci in an urethane-treated (A/J X Mus spretus) x C57BL/6J (ASB) interspecific testcross. In this interspecific cross we have confirmed our previous results in AC3F2 mice on the mapping of the Pas1 locus to the digital region of chromosome 6, near Kras2. The A/J and M. spretus strains differed as the Pas1 locus, with the M. spretus providing the resistant allele. In the latter strain, we studied the nucleotide sequence of a portion of the second intron of Kras2 that contains polymorphisms associated with lung tumor susceptibility in several inbred strains. The lung tumor-resistant M. spretus strain had the same specific nucleotide sequence of susceptible strains. Mutations in codon 61 of Kras2 in urethane-induced lung tumors from ASF1 hybrids involved the A/J allele in all cases, while the M. spretus allele was never affected. Our results indicate that the M. spretus and A/J mice have an identical structure of the second intron of the Kras2 gene, but they differ in genetic susceptibility to pulmonary tumorigenesis and in mutability of their Kras2 allele. 30 refs., 4 figs., 3 tabs.

  14. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5′ splice site

    PubMed Central

    Yadegari, Hamideh; Biswas, Arijit; Akhter, Mohammad Suhail; Driesen, Julia; Ivaskevicius, Vytautas; Marquardt, Natascha

    2016-01-01

    Disease-associated silent mutations are considered to affect the accurate pre–messenger RNA (mRNA) splicing either by influencing regulatory elements, leading to exon skipping, or by creating a new cryptic splice site. This study describes a new molecular pathological mechanism by which a silent mutation inhibits splicing and leads to intron retention. We identified a heterozygous silent mutation, c.7464C>T, in exon 44 of the von Willebrand factor (VWF) gene in a family with type 1 von Willebrand disease. In vivo and ex vivo transcript analysis revealed an aberrantly spliced transcript, with intron 44 retained in the mRNA, implying disruption of the first catalytic step of splicing at the 5′ splice site (5′ss). The abnormal transcript with the retained intronic region coded a truncated protein that lacked the carboxy-terminal end of the VWF protein. Confocal immunofluorescence characterizations of blood outgrowth endothelial cells derived from the patient confirmed the presence of the truncated protein by demonstrating accumulation of VWF in the endoplasmic reticulum. In silico pre-mRNA secondary and tertiary structure analysis revealed that this substitution, despite its distal position from the 5′ss (85 bp downstream), induces cis alterations in pre-mRNA structure that result in the formation of a stable hairpin at the 5′ss. This hairpin sequesters the 5′ss residues involved in U1 small nuclear RNA interactions, thereby inhibiting excision of the pre-mRNA intronic region. This study is the first to show the allosteric-like/far-reaching effect of an exonic variation on pre-mRNA splicing that is mediated by structural changes in the pre-mRNA. PMID:27543438

  15. A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region.

    PubMed Central

    Chastain, C J; Brusca, J S; Ramasubramanian, T S; Wei, T F; Golden, J W

    1990-01-01

    A DNA-binding factor (VF1) partially purified from Anabaena sp. strain PCC 7120 vegetative cell extracts by heparin-Sepharose chromatography was found to have affinity for the xisA upstream region. The xisA gene is required for excision of an 11-kilobase element from the nifD gene during heterocyst differentiation. Previous studies of the xisA upstream sequences demonstrated that deletion of this region is required for the expression of xisA from heterologous promoters in vegetative cells. Mobility shift assays with a labeled 250-base-pair fragment containing the binding sites revealed three distinct DNA-protein complexes. Competition experiments showed that VF1 also bound to the upstream sequences of the rbcL and glnA genes, but the rbcL and glnA fragments showed only single complexes in mobility shift assays. The upstream region of the nifH gene formed a weak complex with VF1. DNase footprinting and deletion analysis of the xisA binding site mapped the binding to a 66-base-pair region containing three repeats of the consensus recognition sequence ACATT. Images PMID:2118506

  16. Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking.

    PubMed

    Noah, James W; Lambowitz, Alan M

    2003-11-04

    The Lactococcus lactis Ll.LtrB group II intron encodes a reverse transcriptase/maturase (LtrA protein) that promotes RNA splicing by stabilizing the catalytically active RNA structure. Here, we mapped 17 UV cross-links induced in both wild-type Ll.LtrB RNA and Ll.LtrB-Delta2486 RNA, which has a branch-point deletion that prevents splicing, and we used these cross-links to follow tertiary structure formation under different conditions in the presence or absence of the LtrA protein. Twelve of the cross-links are long-range, with six near known tertiary interaction sites in the active RNA structure. In a reaction medium containing 0.5 M NH(4)Cl, eight of the 17 cross-links were detected in the absence of Mg(2+) or the presence of EDTA, and all were detected at 5 mM Mg(2+), where efficient splicing requires the LtrA protein. The frequencies of all but four cross-links increased with increasing Mg(2+) concentrations, becoming maximal between 4 and 50 mM Mg(2+), where the intron is self-splicing. These findings suggest that a high Mg(2+) concentration induces self-splicing by globally stabilizing tertiary structure, including key tertiary interactions that are required for catalytic activity. Significantly, the binding of the maturase under protein-dependent splicing conditions (0.5 M NH(4)Cl and 5 mM Mg(2+)) increased the frequency of only nine cross-links, seven of which are long-range, suggesting that, in contrast to a high Mg(2+) concentration, LtrA promotes splicing by stabilizing critical tertiary structure interactions, while leaving other regions of the intron relatively flexible. This difference may contribute to the high rate of protein-dependent splicing, relative to the rate of self-splicing. The propensity of the intron RNA to form tertiary structure even at relatively low Mg(2+) concentrations raises the possibility that the maturase functions at least in part by tertiary structure capture. Finally, an abundant central wheel cross-link, present in >50% of

  17. Intron retention in mRNA: No longer nonsense: Known and putative roles of intron retention in normal and disease biology.

    PubMed

    Wong, Justin J-L; Au, Amy Y M; Ritchie, William; Rasko, John E J

    2016-01-01

    Until recently, retention of introns in mature mRNAs has been regarded as a consequence of mis-splicing. Intron-retaining transcripts are thought to be non-functional because they are readily degraded by nonsense-mediated decay. However, recent advances in next-generation sequencing technologies have enabled the detection of numerous transcripts that retain introns. As we review herein, intron-retaining mRNAs play an essential conserved role in normal physiology and an emergent role in diverse diseases. Intron retention should no longer be overlooked as a key mechanism that independently reduces gene expression in normal biology. Exploring its contribution to the development and/or maintenance of diseases is of increasing importance.

  18. Sequence of human tryptophan 2,3-dioxygenase (TDO2): Presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat

    SciTech Connect

    Comings, D.E.; Muhleman, D.; Dietz, G.

    1995-09-20

    Abnormalities in serotonin levels have been implicated in a wide range of psychiatric disorders. Tryptophan 2,3-dioxygenase is the rate-limiting enzyme in the catabolism of tryptophan, the precursor of serotonin. As such it is a potential major candidate gene in psychiatric genetics. The regulatory, intron, and exon regions of the human TDO2 gene have been sequenced. Twelve exons were identified. The amino acid sequence of the enzyme was 88% homologous to that of the rat. Compared to the rat, the regulatory region of the human TDO2 gene had an insertion of approximately 1064 bp of random DNA beginning at -293 bp and extending to -1357 bp. This displaced the glucocorticoid response element (GRE) occurring at -1174 bp in the rat to -1500 in the human. The proximal GRE at -419 in the rat was missing in the human. However, within the DNA insert there was a GRE-like microsatellite region containing multiple GTT repeats plus additional GT(n) sequences. This could produce several staggered regions of the sequence TGTTGTnnnTGTTGT similiar to a GRE consensus sequence of TGTTCAnnnTGTTCT. The intron regions 5` and 3` to each exon were sequenced. This allowed each exon to be screened for mutations. This showed a His{r_arrow}Val mutation polymorphism in exon 7. Three introns, 1, 5, and 6, were completely sequenced and examined for polymorphisms. This identified two polymorphisms consisting of G{r_arrow}T and G{r_arrow}A mutations 2 bp apart in intron 6. The 3` end of intron 5` showed an extensive CCCCT pentanucleotide repeat that was markedly polymorphic. These polymorphisms allow the TDO2 gene to be examined for a possible role in psychiatric disorders. 35 refs., 4 figs., 1 tab.

  19. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements.

    PubMed

    Burnette, James M; Miyamoto-Sato, Etsuko; Schaub, Marc A; Conklin, Jamie; Lopez, A Javier

    2005-06-01

    Many genes with important roles in development and disease contain exceptionally long introns, but special mechanisms for their expression have not been investigated. We present bioinformatic, phylogenetic, and experimental evidence in Drosophila for a mechanism that subdivides many large introns by recursive splicing at nonexonic elements and alternative exons. Recursive splice sites predicted with highly stringent criteria are found at much higher frequency than expected in the sense strands of introns >20 kb, but they are found only at the expected frequency on the antisense strands, and they are underrepresented within introns <10 kb. The predicted sites in long introns are highly conserved between Drosophila melanogaster and Drosophila pseudoobscura, despite extensive divergence of other sequences within the same introns. These patterns of enrichment and conservation indicate that recursive splice sites are advantageous in the context of long introns. Experimental analyses of in vivo processing intermediates and lariat products from four large introns in the unrelated genes kuzbanian, outspread, and Ultrabithorax confirmed that these introns are removed by a series of recursive splicing steps using the predicted nonexonic sites. Mutation of nonexonic site RP3 within Ultrabithorax also confirmed that recursive splicing is the predominant processing pathway even with a shortened version of the intron. We discuss currently known and potential roles for recursive splicing.

  20. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe.

    PubMed

    Romfo, C M; Alvarez, C J; van Heeckeren, W J; Webb, C J; Wise, J A

    2000-11-01

    Schizosaccharomyces pombe pre-mRNAs are generally multi-intronic and share certain features with pre-mRNAs from Drosophila melanogaster, in which initial splice site pairing can occur via either exon or intron definition. Here, we present three lines of evidence suggesting that, despite these similarities, fission yeast splicing is most likely restricted to intron definition. First, mutating either or both splice sites flanking an internal exon in the S. pombe cdc2 gene produced almost exclusively intron retention, in contrast to the exon skipping observed in vertebrates. Second, we were unable to induce skipping of the internal microexon in fission yeast cgs2, whereas the default splicing pathway excludes extremely small exons in mammals. Because nearly quantitative removal of the downstream intron in cgs2 could be achieved by expanding the microexon, we propose that its retention is due to steric occlusion. Third, several cryptic 5' junctions in the second intron of fission yeast cdc2 are located within the intron, in contrast to their generally exonic locations in metazoa. The effects of expanding and contracting this intron are as predicted by intron definition; in fact, even highly deviant 5' junctions can compete effectively with the standard 5' splice site if they are closer to the 3' splicing signals. Taken together, our data suggest that pairing of splice sites in S. pombe most likely occurs exclusively across introns in a manner that favors excision of the smallest segment possible.

  1. An analysis of the human and mouse CXCR5 gene introns.

    PubMed

    Panaro, Maria Antonietta; Calvello, Rosa; Mitolo, Carlo Ivan; Sisto, Margherita; Saccia, Matteo; Cianciulli, Antonia

    2011-06-01

    Both mouse and human chemokine receptor CXC motif 5 (CXCR5) genes exhibit one single intron interrupting the coding sequence. The mouse intron is 12053 nucleotides (nt) long; the human intron is 9603 nt long. Sections of the mouse intron significantly align plus/plus with sections of the human intron; the aligned segments are in the same order in mouse as in man and overall cover 13% of the mouse sequence and 17% of the human sequence. The human CXCR5 intron harbors sequences derived from retroviruses (human endogenous retroviruses). The mouse intron comprises very similar sequences. About 70% of the mouse intron sequence is 'specific' to this gene, while sequences in the rest of the intron are shared with many other genes located on different chromosomes. In the human the coverage by specific sequences is about 87%. Thus, the contribution of transposable elements is significantly higher in mouse (30%) than in man (13%). Intra-intronic plus/minus alignments exist in mouse (10 couples) and man (two couples): these may form stem and loop structures determining the secondary structure of the corresponding pre-mRNAs.

  2. Intron loss and gain during evolution of the catalase gene family in angiosperms.

    PubMed Central

    Frugoli, J A; McPeek, M A; Thomas, T L; McClung, C R

    1998-01-01

    Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5'-most and 3'-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites. PMID:9584109

  3. "Cryptic" group-I introns in the nuclear SSU-rRNA gene of Verticillium dahliae.

    PubMed

    Papaioannou, Ioannis A; Dimopoulou, Chrysoula D; Typas, Milton A

    2014-08-01

    Group-I introns are widespread--though irregularly distributed--in eukaryotic organisms, and they have been extensively used for discrimination and phylogenetic analyses. Within the Verticillium genus, which comprises important phytopathogenic fungi, a group-I intron was previously identified in the SSU-rRNA (18S) gene of only V. longisporum. In this work, we aimed at elucidating the SSU-located intron distribution in V. dahliae and other Verticillium species, and the assessment of heterogeneity regarding intron content among rDNA repeats of fungal strains. Using conserved PCR primers for the amplification of the SSU gene, a structurally similar novel intron (sub-group IC1) was detected in only a few V. dahliae isolates. However, when intron-specific primers were used for the screening of a diverse collection of Verticillium isolates that originally failed to produce intron-containing SSU amplicons, most were found to contain one or both intron types, at variable rDNA repeat numbers. This marked heterogeneity was confirmed with qRT-PCR by testing rDNA copy numbers (varying from 39 to 70 copies per haploid genome) and intron copy ratios in selected isolates. Our results demonstrate that (a) IC1 group-I introns are not specific to V. longisporum within the Verticillium genus, (b) V. dahliae isolates of vegetative compatibility groups (VCGs) 4A and 6, which bear the novel intron at most of their rDNA repeats, are closely related, and (c) there is considerable intra-genomic heterogeneity for the presence or absence of introns among the ribosomal repeats. These findings underline that distributions of introns in the highly heterogeneous repetitive rDNA complex should always be verified with sensitive methods to avoid misleading conclusions for the phylogeny of fungi and other organisms.

  4. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana.

    PubMed

    Emami, Shahram; Arumainayagam, Dinah; Korf, Ian; Rose, Alan B

    2013-06-01

    Introns are often added to transgenes to increase expression, although the mechanism through which introns stimulate gene expression in plants and other eukaryotes remains mysterious. While introns vary in their effect on expression, it is unknown whether different genes respond similarly to the same stimulatory intron. Furthermore, the degree to which gene regulation is preserved when expression is increased by an intron has not been thoroughly investigated. To test the effects of the same intron on the expression of a range of genes, GUS translational fusions were constructed using the promoters of eight Arabidopsis genes whose expression was reported to be constitutive (GAE1, CNGC2 and ROP10), tissue specific (ADL1A, YAB3 and AtAMT2) or regulated by light (ULI3 and MSBP1). For each gene, a fusion containing the first intron from the UBQ10 gene was compared to fusions containing the gene's endogenous first intron (if the gene has one) or no intron. In every case, the UBQ10 intron increased expression relative to the intronless control, although the magnitude of the change and the level of expression varied. The UBQ10 intron also changed the expression patterns of the CNGC2 and YAB3 fusions to include strong activity in roots, indicating that tissue specificity was disrupted by this intron. In contrast, the regulation of the ULI3 and MSBP1 genes by light was preserved when their expression was stimulated by the intron. These findings have important implications for biotechnology applications in which a high level of transgene expression in only certain tissues is desired.

  5. Specific metal-ion binding sites in a model of the P4-P6 triple-helical domain of a group I intron.

    PubMed

    Lindqvist, M; Sandström, K; Liepins, V; Strömberg, R; Gräslund, A

    2001-08-01

    Divalent metal ions play a crucial role in RNA structure and catalysis. Phosphorothioate substitution and manganese rescue experiments can reveal phosphate oxygens interacting specifically with magnesium ions essential for structure and/or activity. In this study, phosphorothioate interference experiments in combination with structural sensitive circular dichroism spectroscopy have been used to probe molecular interactions underlying an important RNA structural motif. We have studied a synthetic model of the P4-P6 triple-helical domain in the bacteriophage T4 nrdB group I intron, which has a core sequence analogous to the Tetrahymena ribozyme. Rp and Sp sulfur substitutions were introduced into two adjacent nucleotides positioned at the 3' end of helix P6 (U452) and in the joining region J6/7 (U453). The effects of sulfur substitution on triple helix formation in the presence of different ratios of magnesium and manganese were studied by the use of difference circular dichroism spectroscopy. The results show that the pro-Sp oxygen of U452 acts as a ligand for a structurally important magnesium ion, whereas no such effect is seen for the pro-Rp oxygen of U452. The importance of the pro-Rp and pro-Sp oxygens of U453 is less clear, because addition of manganese could not significantly restore the triple-helical interactions within the isolated substituted model systems. The interpretation is that U453 is so sensitive to structural disturbance that any change at this position hinders the proper formation of the triple helix.

  6. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  7. Assessing the geographic scale of genetic population management with microsatellites and introns in the clam Ruditapes decussatus.

    PubMed

    Arias-Pérez, Alberto; Cordero, David; Borrell, Yaisel; Sánchez, Jose Antonio; Blanco, Gloria; Freire, Ruth; Insua, Ana; Saavedra, Carlos

    2016-05-01

    The clam Ruditapes decussatus is commercially important in southwestern Europe, suffering from population decline and hybridization with exotic Manila clam (R. philippinarum). Previous studies with intronic markers showed a genetic subdivision of the species in three races (Atlantic, West Mediterranean, and Adriatic-Aegean). However, detailed population genetic studies to help management of the main production areas in the southwest of Europe are missing. We have analyzed eight Atlantic and two Mediterranean populations from the Spanish coasts using 14 microsatellites and six intronic markers. Microsatellites confirmed the Atlantic and West Mediterranean races detected with introns and showed that genetic variability was higher in Mediterranean than in Atlantic populations. Both marker types showed that genetic differentiation of Atlantic populations was low and indicated that populations could be managed at the regional level in the case of Cantabrian and Gulf of Cadiz areas, but not in the case of Rias Baixas and the Mediterranean. This study shows the interest of including different types of markers in studies of genetic population structure of marine organisms.

  8. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    PubMed Central

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  9. Novel nuclear intron-spanning primers for Arecaceae evolutionary biology.

    PubMed

    Bacon, Christine D; Feltus, F Alex; Paterson, Andrew H; Bailey, C Donovan

    2008-01-01

    In this study, 96 nuclear 'conserved intron-scanning primers' were screened across subfamilies the Arecaceae (palms) for potential use in research focused on palm evolutionary biology. Primers were evaluated based on their ability to amplify single polymerase chain reaction products in Arecaceae, the clarity of sequencing reads, and the interspecific variability observed. Ultimately, the results suggest that: (i) seven of the loci are likely to be suitable when comparing non-Arecaceae outgroups and Arecaceae ingroups; (ii) seven loci may be of use when comparing subfamilies of Arecaceae; and (iii) four of the loci may be of use when comparing closely related genera.

  10. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron.

    PubMed

    Johnson, Cayla M; Fisher, Derek J

    2013-01-01

    Chlamydia trachomatis is an obligate, intracellular bacterial pathogen that has until more recently remained recalcitrant to genetic manipulation. However, the field still remains hindered by the absence of tools to create selectable, targeted chromosomal mutations. Previous work with mobile group II introns demonstrated that they can be retargeted by altering DNA sequences within the intron's substrate recognition region to create site-specific gene insertions. This platform (marketed as TargeTron™, Sigma) has been successfully employed in a variety of bacteria. We subsequently modified TargeTron™ for use in C. trachomatis and as proof of principle used our system to insertionally inactivate incA, a chromosomal gene encoding a protein required for homotypic fusion of chlamydial inclusions. C. trachomatis incA::GII(bla) mutants were selected with ampicillin and plaque purified clones were then isolated for genotypic and phenotypic analysis. PCR, Southern blotting, and DNA sequencing verified proper GII(bla) insertion, while continuous passaging in the absence of selection demonstrated that the insertion was stable. As seen with naturally occurring IncA(-) mutants, light and immunofluorescence microscopy confirmed the presence of non-fusogenic inclusions in cells infected with the incA::GII(bla) mutants at a multiplicity of infection greater than one. Lack of IncA production by mutant clones was further confirmed by Western blotting. Ultimately, the ease of retargeting the intron, ability to select for mutants, and intron stability in the absence of selection makes this method a powerful addition to the growing chlamydial molecular toolbox.

  11. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae)

    PubMed Central

    Jansen, Robert K.; Wojciechowski, Martin F.; Sanniyasi, Elumalai; Lee, Seung-Bum; Daniell, Henry

    2008-01-01

    Chickpea (Cicer arietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319 bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5′exon, similar to other legumes. Two genes have lost their introns, one in the 3′exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate “IR-lacking clade” (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering. PMID:18638561

  12. Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain

    PubMed Central

    Carter, James R.; Taylor, Samantha; Fraser, Tresa S.; Kucharski, Cheryl A.; Dawson, James L.; Fraser, Malcolm J.

    2015-01-01

    In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses. PMID:26580561

  13. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.

    1993-01-01

    The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.

  14. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  15. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  16. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  17. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  18. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  19. A pair of adjacent genes, cry5Ad and orf2-5Ad, encode the typical N- and C-terminal regions of a Cry5Adelta-endotoxin as two separate proteins in Bacillus thuringiensis strain L366.

    PubMed

    Lenane, Ian J; Bagnall, Neil H; Josh, Peter F; Pearson, Roger D; Akhurst, Ray J; Kotze, Andrew C

    2008-01-01

    A new DNA sequence cry5Ad/orf2-5Ad (GenBank accession number EF219060) was isolated from Bacillus thuringiensis strain L366. This DNA sequence contains two ORFs: cry5Ad (a previously unreported member of the cry5A gene family) and orf2-5Ad. cry5Ad is unique among cry5A genes in that it encodes only the N-terminal region of a typical Cry5Adelta-endotoxin. The cry5Ad sequence includes homology blocks 1-5, which are present in most B. thuringiensisdelta-endotoxins. The usual C-terminal region of a Cry5Adelta-endotoxin (including homology blocks 6-8) is encoded by orf2-5Ad. Both proteins encoded by cry5Ad and orf2-5Ad were found in IPTG-induced Escherichia coli, after a copy of cry5Ad/orf2-5Ad was cloned into the pQE32 expression vector and transformed into pREP4 E. coli cells. Both proteins were also found in parasporal crystal inclusions of B. thuringiensis L366. Sequencing of cDNA derived from transformed E. coli cells showed that the two ORFs are transcribed as a single mRNA. Extracts prepared from the recombinant E. coli expressing Cry5Ad and Orf2-5Ad were not toxic to nematode larvae (Haemonchus contortus), indicating that these two proteins are most likely not responsible for the nematocidal activity seen previously in the B. thuringiensis strain L366.

  20. Dipole angular entropy techniques for intron-exon segregation in DNA

    NASA Astrophysics Data System (ADS)

    Subramanian, Nithya; Bose, R.

    2012-04-01

    We propose techniques for computing the angular entropies of DNA sequences, based on the orientations of the dipole moments of the nucleotide bases. The angles of the dipole moment vectors of the bases are used to compute the dipole angular entropy and the Fourier harmonics of the angles are used to compute the dipole angular spectral entropy for a given sequence. We also show that the coding (exons) and noncoding (introns) regions of the DNA can be segregated based on their dipole angular entropies and dipole angular spectral entropies. Segregation using these techniques is found to be computationally faster and more accurate than the previously reported methods. The proposed techniques can also be improvised to use the magnitude of the dipole moments of the bases in addition to the angles.

  1. Correct in vivo RNA splicing of a mitochondrial intron in algal chloroplasts.

    PubMed Central

    Herdenberger, F; Holländer, V; Kück, U

    1994-01-01

    The self-splicing group II intron (rl1) from Scenedesmus obliquus mitochondria together with its 6 bp intron binding site (IBS1) were inserted in the correct and inverse orientation into the chloroplast tscA gene from C.reinhardtii. Precursor RNA derived from the chimeric tscA-rl1 gene can be used to demonstrate in vitro self-splicing of the rl1 intron RNA. Using the particle bombardment technique, the tscA-rl1 construct was transferred into the chloroplast of the unicellular alga Chlamydomonas reinhardtii. We recovered transformants which contain the chimeric tscA-rl1 gene as shown by Southern analysis. Hybridization and PCR analysis of transcripts confirmed that the heterologous intron is correctly spliced in vivo. From sequencing of cDNA clones we conclude that the IBS1 sequence is sufficient for correct splicing of the mitochondrial intron in C. reinhardtii chloroplasts. Using specific probes, we demonstrate by Northern hybridization that the mature RNA, as well as an intron-3' exon intermediate, accumulate in transformants containing the rl1 intron, correctly inserted into the tscA gene. As expected, no RNA splicing at all was observed when the intron had an inverted orientation within the tscA gene. In addition, a mutated intron RNA with an altered 3' terminal nucleotide was tested in vivo. In contrast to similar mutants examined in vitro, this mutated RNA shows accumulated intron and intron-3' exon intermediates, but no ligated exons at all. Our approach should prove useful for elucidating nucleotide residues involved in splicing of organelle introns in vivo. Images PMID:7520566

  2. Crystal structure of a group II intron in the pre-catalytic state

    SciTech Connect

    Chan, Russell T.; Robart, Aaron R.; Rajashankar, Kanagalaghatta R.; Pyle, Anna Marie; Toor, Navtej

    2012-12-10

    Group II introns are self-splicing catalytic RNAs that are thought to be ancestral to the spliceosome. Here we report the 3.65-{angstrom} crystal structure of the group II intron from Oceanobacillus iheyensis in the pre-catalytic state. The structure reveals the conformation of the 5' splice site in the catalytic core and represents the first structure of an intron prior to the first step of splicing.

  3. Evidence That Base-pairing Interaction between Intron and mRNA Leader Sequences Inhibits Initiation of HAC1 mRNA Translation in Yeast*

    PubMed Central

    Sathe, Leena; Bolinger, Cheryl; Mannan, M. Amin-ul; Dever, Thomas E.; Dey, Madhusudan

    2015-01-01

    The Hac1 transcription factor in yeast up-regulates a collection of genes that control protein homeostasis. Base-pairing interactions between sequences in the intron and the 5′-untranslated region (5′ UTR) of the HAC1 mRNA represses Hac1 protein production under basal conditions, whereas cytoplasmic splicing of the intron by the Ire1 kinase-endonuclease, activated under endoplasmic reticulum stress conditions, relieves the inhibition and enables Hac1 synthesis. Using a random mutational screen as well as site-directed mutagenesis, we identify point mutations within the 5′ UTR-intron interaction site that derepress translation of the unspliced HAC1 mRNA. We also show that insertion of an in-frame AUG start codon upstream of the interaction site releases the translational block, demonstrating that an elongating ribosome can disrupt the interaction. Moreover, overexpression of translation initiation factor eIF4A, a helicase, enhances production of Hac1 from an mRNA containing an upstream AUG start codon at the beginning of the base-paired region. These results suggest that the major block of translation occurs at the initiation stage. Supporting this interpretation, the point mutations that enhanced Hac1 production resulted in an increased percentage of the HAC1 mRNA associating with polysomes versus free ribosomal subunits. Thus, our results provide evidence that the 5′ UTR-intron interaction represses translation initiation on the unspliced HAC1 mRNA. PMID:26175153

  4. Splicing enhancement in the yeast rp51b intron.

    PubMed Central

    Libri, D; Lescure, A; Rosbash, M

    2000-01-01

    Splicing enhancement in higher eukaryotes has been linked to SR proteins, to U1 snRNP, and to communication between splice sites across introns or exons mediated by protein-protein interactions. It has been previously shown that, in yeast, communication mediated by RNA-RNA interactions between the two ends of introns is a basis for splicing enhancement. We designed experiments of randomization-selection to isolate splicing enhancers that would work independently from RNA secondary structures. Surprisingly, one of the two families of sequences selected was essentially composed of 5' splice site variants. We show that this sequence enhances splicing independently of secondary structure, is exportable to heterologous contexts, and works in multiple copies with additive effects. The data argue in favor of an early role for splicing enhancement, possibly coincident with commitment complex formation. Genetic compensation experiments with U1 snRNA mutants suggest that U1 snRNP binding to noncanonical locations is required for splicing enhancement. PMID:10744020

  5. Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Best, Aaron A.; Broussard, Gregory W.; Connerly, Pamela L.; Dedrick, Rebekah M.; Kremer, Timothy A.; Offner, Susan; Ogiefo, Amenawon H.; Pizzorno, Marie C.; Rockenbach, Kate; Russell, Daniel A.; Stowe, Emily L.; Stukey, Joseph; Thibault, Sarah A.; Conway, James F.; Hendrix, Roger W.; Hatfull, Graham F.

    2013-01-01

    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. PMID:23874930

  6. Using intron position conservation for homology-based gene prediction

    PubMed Central

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L.; Schattat, Martin H.; Grau, Jan; Hartung, Frank

    2016-01-01

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest. Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well. Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  7. Selection for reduced translation costs at the intronic 5′ end in fungi

    PubMed Central

    Zafrir, Zohar; Zur, Hadas; Tuller, Tamir

    2016-01-01

    It is generally believed that introns are not translated; therefore, the potential intronic features that may be related to the translation step (occurring after splicing) have yet to be thoroughly studied. Here, focusing on four fungi, we performed for the first time a comprehensive study aimed at characterizing how translation efficiency is encoded in introns and affects their evolution. By analysing their intronome we provide evidence of selection for STOP codons close to the intronic 5′ end, and show that the beginning of introns are selected for significantly high translation, presumably to reduce translation and metabolic costs in cases of non-spliced introns. Ribosomal profiling data analysis in Saccharomyces cerevisiae supports the conjecture that in this organism intron retention frequently occurs, introns are partially translated, and their translation efficiency affects organismal fitness. We show that the reported results are more significant in highly translated and highly spliced genes, but are not associated only with genes with a specific function. We also discuss the potential relation of the reported signals to efficient nonsense-mediated decay due to splicing errors. These new discoveries are supported by population-genetics considerations. In addition, they are contributory steps towards a broader understanding of intron evolution and the effect of silent mutations on gene expression and organismal fitness. PMID:27260512

  8. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends.

    PubMed

    Dabbagh, Nadja; Preisfeld, Angelika

    2017-01-01

    A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.

  9. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus.

    PubMed Central

    Silver, J; Keerikatte, V

    1989-01-01

    We describe a modification of the polymerase chain reaction technique which allows amplification of cellular DNA adjacent to an integrated provirus given sequence information for the provirus only. The modified technique should be generally useful for studies of insertional mutagenesis and other situations in which one wishes to isolate DNA adjacent to a region of known sequence. Images PMID:2704070

  10. Exon-intron organization and sequence comparison of human and murine T11 (CD2) genes

    SciTech Connect

    Diamond, D.J.; Clayton, L.K.; Sayre, P.H.; Reinherz, E.L.

    1988-03-01

    Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is approx. = 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide (amino acids (aa) -24 to -5). Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine region T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed.

  11. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron

    PubMed Central

    Wurdack, Kenneth J.; Kanagaraj, Anderson; Lee, Seung-Bum; Saski, Christopher; Jansen, Robert K.

    2008-01-01

    The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3′ end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss. PMID:18214421

  12. I-PfoP3I: A Novel Nicking HNH Homing Endonuclease Encoded in the Group I Intron of the DNA Polymerase Gene in Phormidium foveolarum Phage Pf-WMP3

    PubMed Central

    Kong, Shuanglei; Liu, Xinyao; Fu, Liwen; Yu, Xiangchun; An, Chengcai

    2012-01-01

    Homing endonucleases encoded in a group I self-splicing intron in a protein-coding gene in cyanophage genomes have not been reported, apart from some free-standing homing edonucleases. In this study, a nicking DNA endonuclease, I-PfoP3I, encoded in a group IA2 intron in the DNA polymerase gene of a T7-like cyanophage Pf-WMP3, which infects the freshwater cyanobacterium Phormidium foveolarum is described. The Pf-WMP3 intron splices efficiently in vivo and self-splices in vitro simultaneously during transcription. I-PfoP3I belongs to the HNH family with an unconventional C-terminal HNH motif. I-PfoP3I nicks the intron-minus Pf-WMP3 DNA polymerase gene more efficiently than the Pf-WMP4 DNA polymerase gene that lacks any intervening sequence in vitro, indicating the variable capacity of I-PfoP3I. I-PfoP3I cleaves 4 nt upstream of the intron insertion site on the coding strand of EXON 1 on both intron-minus Pf-WMP3 and Pf-WMP4 DNA polymerase genes. Using an in vitro cleavage assay and scanning deletion mutants of the intronless target site, the minimal recognition site was determined to be a 14 bp region downstream of the cut site. I-PfoP3I requires Mg2+, Ca2+ or Mn2+ for nicking activity. Phylogenetic analysis suggests that the intron and homing endonuclease gene elements might be inserted in Pf-WMP3 genome individually after differentiation from Pf-WMP4. To our knowledge, this is the first report of the presence of a group I self-splicing intron encoding a functional homing endonuclease in a protein-coding gene in a cyanophage genome. PMID:22952751

  13. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  14. Unusual intron in the second exon of a Type III polyketide synthase gene of Alpinia calcarata Rosc.

    PubMed Central

    2010-01-01

    Plant phenolic compounds form a valuable resource of secondary metabolites having a broad spectrum of biological activities. Type III polyketide synthases play a key role in the formation of basic structural skeleton of the phenolic compounds. As a group of medicinal plants, PKSs with novel features are expected in the genome of Zingiberaceae. The genomic exploration of PKS in Alpinia calcarata conducted in this study identified the presence of an unusual intron at the region forming the second exon of typical PKSs, forming a gateway information of distribution of novel PKSs in Zingiberaceae. PMID:21637618

  15. Functional comparison of three transformer gene introns regulating conditional female lethality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  16. Structure of a Group II Intron Complexed with its Reverse Transcriptase

    PubMed Central

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-01-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice to yield mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein, with multiple activities including reverse transcriptase. This activity is responsible for copying the intron RNA into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8 Å resolution and in its protein-depleted form at 4.5 Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship of the reverse transcriptase catalytic domain to telomerase, whereas the active center for splicing resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility. PMID:27136327

  17. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times

    PubMed Central

    Malek, Olaf; Brennicke, Axel; Knoop, Volker

    1997-01-01

    Trans-splicing in angiosperm plant mitochondria connects exons from independent RNA molecules by means of group II intron fragments. Homologues of trans-splicing introns in the angiosperm mitochondrial nad2 and nad5 genes are now identified as uninterrupted group II introns in the ferns Asplenium nidus and Marsilea drummondii. These fern introns are correctly spliced from the pre-mRNA at the sites predicted from their well-conserved secondary structures. The flanking exon sequences of the nad2 and nad5 genes in the ferns require RNA editing, including the removal of in-frame stop codons by U-to-C changes for correct expression of the genetic information. We conclude that cis-splicing introns like the ones now identified in ferns are the ancestors of trans-splicing introns in angiosperm mitochondria. Intron disruption is apparently due to a size increase of the structurally variable group II intron domain IV followed by DNA recombination in the plant mitochondrial genome. PMID:9012822

  18. Development of Type I Markers in Channel Catfish Through Intron Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type I markers are useful for comparative gene mapping, but they have not been widely available in catfish. Here we took the approach of sequencing the intron sequences of genes with the assumption that the introns are more prone to mutations and may have higher chances of containing microsatellite...

  19. Group II intron–ribosome association protects intron RNA from degradation

    PubMed Central

    Contreras, Lydia M.; Huang, Tao; Piazza, Carol Lyn; Smith, Dorie; Qu, Guosheng; Gelderman, Grant; Potratz, Jeffrey P.; Russell, Rick; Belfort, Marlene

    2013-01-01

    The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility. PMID:24046482

  20. Molecular characterization of a new member of the lariat capping twin-ribozyme introns

    PubMed Central

    2014-01-01

    Background Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. Results We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2′,5′ lariat cap at the 5′ end of the homing endonuclease mRNA, and thus contributes to intron mobility. Conclusions The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component. PMID:25342998

  1. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin

    PubMed Central

    Mutazono, Masatoshi; Morita, Misato; Tsukahara, Chihiro; Chinen, Madoka; Nishioka, Shiori; Yumikake, Tatsuhiro; Dohke, Kohei; Sakamoto, Misuzu; Ideue, Takashi; Nakayama, Jun-ichi; Ishii, Kojiro

    2017-01-01

    In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin. PMID:28231281

  2. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin.

    PubMed

    Mutazono, Masatoshi; Morita, Misato; Tsukahara, Chihiro; Chinen, Madoka; Nishioka, Shiori; Yumikake, Tatsuhiro; Dohke, Kohei; Sakamoto, Misuzu; Ideue, Takashi; Nakayama, Jun-Ichi; Ishii, Kojiro; Tani, Tokio

    2017-02-01

    In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin.

  3. Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome.

    PubMed

    Molina-Sánchez, María Dolores; Toro, Nicolás

    2015-07-09

    Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3'-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.

  4. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts.

    PubMed

    Asakura, Yukari; Bayraktar, Omer Ali; Barkan, Alice

    2008-11-01

    Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.

  5. Evolution of Gene Structural Complexity: An Alternative-Splicing-Based Model Accounts for Intron-Containing Retrogenes1[W

    PubMed Central

    Zhang, Chengjun; Gschwend, Andrea R.; Ouyang, Yidan; Long, Manyuan

    2014-01-01

    The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures. PMID:24520158

  6. Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes.

    PubMed

    Zhang, Chengjun; Gschwend, Andrea R; Ouyang, Yidan; Long, Manyuan

    2014-05-01

    The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures.

  7. Conservation of the sizes of 53 introns and over 100 intronic sequences for the binding of common transcription factors in the human and mouse genes for type II procollagen (COL2A1).

    PubMed Central

    Ala-Kokko, L; Kvist, A P; Metsäranta, M; Kivirikko, K I; de Crombrugghe, B; Prockop, D J; Vuorio, E

    1995-01-01

    Over 11,000 bp of previously undefined sequences of the human COL2A1 gene were defined. The results made it possible to compare the intron structures of a highly complex gene from man and mouse. Surprisingly, the sizes of the 53 introns of the two genes were highly conserved with a mean difference of 13%. After alignment of the sequences, 69% of the intron sequences were identical. The introns contained consensus sequences for the binding of over 100 different transcription factors that were conserved in the introns of the two genes. The first intron of the gene contained 80 conserved consensus sequences and the remaining 52 introns of the gene contained 106 conserved sequences for the binding of transcription factors. The 5'-end of intron 2 in both genes had a potential for forming a stem loop in RNA transcripts. Images Figure 4 PMID:8948452

  8. Geologic framework of the offshore region adjacent to Delaware

    USGS Publications Warehouse

    Benson, R.N.; Roberts, J.H.

    1989-01-01

    Several multichannel, common depth point (CDP) seismic reflection profiles concentrated in the area of the entrance to Delaware Bay provide a tie between the known onshore geology of the Coastal Plain of Delaware and the offshore geology of the Baltimore Canyon Trough. The data provide a basis for understanding the geologic framework and petroleum resource potential of the area immediately offshore Delaware. Our research has focused on buried early Mesozoic rift basins and their geologic history. Assuming that the buried basins are analogous to the exposed Newark Supergroup basins of Late Triassic-Early Jurassic age, the most likely possibility for occurrence of hydrocarbon source beds in the area of the landward margin of the Baltimore Canyon Trough is presumed to be lacustrine, organic-rich shales probably present in the basins. Although buried basins mapped offshore Delaware are within reach of drilling, no holes have been drilled to date; therefore, direct knowledge of source, reservoir, and sealing beds is absent. Buried rift basins offshore Delaware show axial trends ranging from NW-SE to NNE-SSW. Seismic reflection profiles are too widely spaced to delineate basin boundaries accurately. Isopleths of two-way travel time representing basin fill suggest that, structurally, the basins are grabens and half-grabens. As shown on seismic reflection profiles, bounding faults of the basins intersect or merge with low-angle fault surfaces that cut the pre-Mesozoic basement. The rift basins appear to have formed by Mesozoic extension that resulted in reverse motion on reactivated basement thrust faults that originated from compressional tectonics during the Paleozoic. Computer-plotted structure contour maps derived from analysis of seismic reflection profiles provide information on the burial history of the rift basins. The postrift unconformity bevels the rift basins and, in the offshore area mapped, ranges from 2000 to 12,000 m below present sea level. The oldest postrift sediments that cover the more deeply buried rift basins are estimated to be of Middle Jurassic age (Bajocian-Bathonian), the probable time of opening of the Atlantic Ocean basin and onset of continental drift about 175-180 m.y. ago. By late Oxfordian-early Kimmeridgian time, the less deeply buried basins nearshore Delaware had been covered. A time-temperature index of maturity plot of one of the basins indicates that only dry gas would be present in reservoirs in synrift rocks buried by more than 6000 m of postrift sediments and in the oldest (Bathonian?-Callovian?) postrift rocks. Less deeply buried synrift rocks landward of the basin modeled might still be within the oil generation window. ?? 1989.

  9. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis.

    PubMed

    Palagano, Eleonora; Blair, Harry C; Pangrazio, Alessandra; Tourkova, Irina; Strina, Dario; Angius, Andrea; Cuccuru, Gianmauro; Oppo, Manuela; Uva, Paolo; Van Hul, Wim; Boudin, Eveline; Superti-Furga, Andrea; Faletra, Flavio; Nocerino, Agostino; Ferrari, Matteo C; Grappiolo, Guido; Monari, Marta; Montanelli, Alessandro; Vezzoni, Paolo; Villa, Anna; Sobacchi, Cristina

    2015-10-01

    Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes.

  10. Structural requirements for selection of 5'- and 3' splice sites of group II introns.

    PubMed Central

    Wallasch, C; Mörl, M; Niemer, I; Schmelzer, C

    1991-01-01

    The group II intron bl1 in the gene for apocytochrome b in yeast mitochondrial DNA (COB) is self-splicing in vitro. It could recently be shown that self-splicing of this intron is fully reversible in vitro. In addition, intron integration is not restricted to parental exons, since the intron can also integrate into a foreign RNA. The position of insertion seems to be immediately 3' to a cryptic intron binding site 1 (IBS1). We confirmed and extended these results by sequencing 26 individual RNAs with transposed introns after reverse transcription and PCR amplification. Results show that intron integration into authentic exons is generally correct, but that integration into a foreign RNA is often inaccurate, i.e. insertion is one nt downstream or upstream of the 3' end of IBS1. This leads to the generation of 5' splice junctions of the new intron-harbouring 'preRNAs' with addition (or deletion) of a single A residue at the 3' end of IBS1. To investigate which structures help to define the position of 5'- and 3' cleavage, preRNAs of i) these clones with aberrant 5' splice junctions and ii) preRNAs with artificial hairpins between domains 5 and 6 of the intron were spliced under different reaction conditions. Results obtained let us conclude that i) branchpoint dependent 5' cleavage is directed by the 5' terminal G residue of the intron and, ii) the first nucleotide(s) of the 3' exon play an important role in defining the 3' splice site. Images PMID:2062646

  11. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells.

    PubMed

    Kung, M H; Lee, Y J; Hsu, J T; Huang, M C; Ju, Y T

    2015-06-01

    Goat β-casein (CSN2) promoter has been extensively used to derive expression of recombinant therapeutic protein in transgenic goats; however, little direct evidence exists for signaling molecules and the cis-elements of goat CSN2 promoter in response to lactogenic hormone stimulation in goat mammary epithelial cells. Here, we use an immortalized caprine mammary epithelial cell line (CMC) to search for evidence of the above. Serial 5'-flanking regions deleted of promoter and intron 1 in goat CSN2 (-4,047 to +2,054) driven by firefly luciferase reporter gene were constructed and applied to measure promoter activity in CMC. The intron 1 region (+393 to +501) significantly decreased basal activity of the promoter. This finding contradicts other studies of the role of intron 1. The signal transducer and activator of transcription (STAT)5a played a significant role in activating promoter activity by prolactin stimulation. Hydrocortisone enhanced and prolonged the activity of STAT5a and promoter in CMC, but was independent of the glucocorticoid receptor response element. The minimum length of the CSN2 promoter segment in response to lactogenic stimulation was confirmed by 5' serial deletions. A cis-element located from -300 to -90 in proximal goat CSN2 promoter that is absent in bovine and human CSN2 promoter was newly identified. We demonstrated the presence of a STAT5a binding site (-102 to -82) and preservation of the guanosine nucleotide at position -90 based on responses to the presence of lactogenic hormone using internal deletions and point mutations of the predicted STAT5a binding site, and chromatin immunoprecipitation assay. Together, these findings demonstrate that the proximal -300 bp of goat CSN2 promoter containing the STAT5a binding site (-102 to -82) is the response element for lactogenic hormone stimulation. Additionally, intron 1 may be required for tissue or developmental stage-specific expression in mammary gland. The role of the far-distal regions of

  12. Three transposed elements in the intron of a human VK immunoglobulin gene.

    PubMed

    Straubinger, B; Osterholzer, E; Zachau, H G

    1987-11-25

    Two gene segments coding for the variable region of human immunoglobulin light chains of the kappa type (VK genes, ref. 2) were found to have unusual structures. The two genes which are called A6 and A22 are located in duplicated gene clusters. Their restriction maps are very similar. About 4 kb of the A22 gene region were sequenced. It turned out that the intron contains an insert with the characteristics of a transposed element. The inserted DNA of 1.2 kb length contains imperfect direct and inverted repeats at its ends; at the insertion site a duplication of five nucleotides was found. Within the inserted DNA one copy each of an Alu element and of the simple sequence motif (T-G)17 were identified. Also these two repetitive sequences are themselves flanked by short direct repeats. The major inserted DNA has no significant homology to published human nucleic acid sequences. The whole structure is interpreted best by assuming a sequential insertion of the three elements. The coding region of the VK gene itself has several mutations which by themselves would render it a pseudogene; we assume that the insertion event(s) occurred prior to the mutations. According to mapping and hybridization data A6 is very similar to A22.

  13. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  14. Gene encoding the human beta-hexosaminidase beta chain: extensive homology of intron placement in the alpha- and beta-chain genes.

    PubMed Central

    Proia, R L

    1988-01-01

    Lysosomal beta-hexosaminidase (EC 3.2.1.52) is composed of two structurally similar chains, alpha and beta, that are the products of different genes. Mutations in either gene causing beta-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the alpha and beta chains, the beta-chain gene was isolated, and its organization was characterized. The beta-chain coding region is divided into 14 exons distributed over approximately 40 kilobases of DNA. Comparison with the alpha-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions. This extensive sharing of intron placement demonstrates that the alpha and beta chains evolved by way of the duplication of a common ancestor. PMID:2964638

  15. Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

    PubMed Central

    Da Lage, Jean-Luc; Maczkowiak, Frédérique; Cariou, Marie-Louise

    2011-01-01

    Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures. PMID:21611157

  16. Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating.

    PubMed

    Lian, Tiantian; Yang, Tao; Sun, Junde; Guo, Suping; Yang, Huaijun; Dong, Caihong

    2014-08-01

    Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns.

  17. Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5' splice site.

    PubMed

    Popovic, Milena; Greenbaum, Nancy L

    2014-01-01

    Recognition of the 5' splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem-loop of domain 1 and a complementary sequence at the 3' end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem-loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5' splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1-IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.

  18. Comparative evolution of the mitochondrial cytochrome b gene and nuclear beta-fibrinogen intron 7 in woodpeckers.

    PubMed

    Prychitko, T M; Moore, W S

    2000-07-01

    Most molecular phylogenetic studies of vertebrates have been based on DNA sequences of mitochondrial-encoded genes. MtDNA evolves rapidly and is thus particularly useful for resolving relationships among recently evolved groups. However, it has the disadvantage that all of the mitochondrial genes are inherited as a single linkage group so that only one independent gene tree can be inferred regardless of the number of genes sequenced. Introns of nuclear genes are attractive candidates for independent sources of rapidly evolving DNA: they are pervasive, most of their nucleotides appear to be unconstrained by selection, and PCR primers can be designed for sequences in adjacent exons where nucleotide sequences are conserved. We sequenced intron 7 of the beta-fibrinogen gene (beta-fibint7) for a diversity of woodpeckers and compared the phylogenetic signal and nucleotide substitution properties of this DNA sequence with that of mitochondrial-encoded cytochrome b (cyt b) from a previous study. A few indels (insertions and deletions) were found in the beta-fibint7 sequences, but alignment was not difficult, and the indels were phylogentically informative. The beta-fibint7 and cyt b gene trees were nearly identical to each other but differed in significant ways from the traditional woodpecker classification. Cyt b evolves 2.8 times as fast as beta-fibint7 (14. 0 times as fast at third codon positions). Despite its relatively slow substitution rate, the phylogenetic signal in beta-fibint7 is comparable to that in cyt b for woodpeckers, because beta-fibint7 has less base composition bias and more uniform nucleotide substitution probabilities. As a consequence, compared with cyt b, beta-fibint7 nucleotide sites are expected to enter more distinct character states over the course of evolution and have fewer multiple substitutions and lower levels of homoplasy. Moreover, in contrast to cyt b, in which nearly two thirds of nucleotide sites rarely vary among closely related taxa

  19. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each maj