Science.gov

Sample records for adjacent mountain ranges

  1. Burial history and thermal maturity, Rocky Mountain front ranges, foothills, and foreland, east-central British Columbia and adjacent Alberta, Canada

    SciTech Connect

    Kalkreuth, W.; McMechan, M.

    1988-11-01

    The regional pattern of maturation of Cretaceous strata in the study area was determined from vitrinite-reflectance measurements. Maturation increases from west to east across the Foothills to a maximum near the eastern limit of Foothills deformation and decreases farther east. Maturation along the eastern limit of deformation also decreases northward significantly. Reflectance measurements from Carboniferous strata exposed in the Front Ranges are much lower than values from the Lower Cretaceous near the eastern limit of deformation. Modeling using burial history curves indicates the regional maturation pattern largely reflects variations in the depth and/or duration of burial beneath Maastrichtian-Eocene foredeep deposits. However, differential vertical movements associated with the Peace River arch/embayment in the Carboniferous, Triassic, Early Cretaceous and Maastrichtian-Eocene had an important effect on the maturation pattern. Determined and estimated maturation levels for reservoir strata are consistent with the known occurrences of gas fields and oil pools, except along the relatively unexplored western margin of the study area. There, moderate maturation levels indicate a potential for wet-gas or oil preservation in shallow structures containing Triassic and Lower Carboniferous carbonates in the south. In the north, structures in the western Foothills deforming Triassic strata with lower levels of maturation are breached. 15 figures.

  2. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  3. Reconnaissance of the Hot Springs Mountains and adjacent areas, Churchill County, Nevada

    SciTech Connect

    Voegtly, N.E.

    1981-01-01

    A geological reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas (KGRA's), resulted in a reinterpretation of the nature and location of some Basin and Range faults. This reconnaissance took place during June-December 1975. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by US Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie basement rocks of Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present.

  4. Atlas Mountain Range, Mali, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATLAS pallets are backdropped against the Atlas Mountains (31.0N, 1.0W). ATLAS is an acronym for ATmospheric Laboratory for Applications and Science. Taken from a point over Mali, in the western Sahara, the northwest looking view shows dunes in the Iguidi dune sea and colors characteristic of the Saharan side of the Atlas Mountains. The edge of a large sandstorm, that transported sand and dust to Yugoslavia and beyond, can also be seen.

  5. Makran Mountain Range, Iran and Pakistan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The long folded mountain ridges and valleys of the coastal Makran Ranges of Iran and Pakistan (26.0N, 63.0E) illustrate the classical Trellis type of drainage pattern, common in this region. The Dasht River and its tributaries is the principal drainage network for this area. To the left, the continental drift of the northward bound Indian sub-continent has caused the east/west parallel ranges to bend in a great northward arc.

  6. Himalayan Mountain Range, India/China

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The frontier between India (Kashmir) and China (Tibet) (33.5N, 79.5E) lies across the narrow land bridge between the two lakes near the center of this photo. Many of the peaks in this region of the Karakoram and Latakh ranges of the Himalayan Mountains, exceed 20,000 ft. making it one of the most remote regions of the Earth. The large end lake is the Kako in China and the long narrow lake is the Pangong in India.

  7. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  8. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  9. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-04-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  10. Evolution of Topography in Glaciated Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Brocklehurst, Simon H.

    2002-01-01

    This thesis examines the response of alpine landscapes to the onset of glaciation. The basic approach is to compare fluvial and glacial laudscapes, since it is the change from the former to the latter that accompanies climatic cooling. This allows a detailed evaluation of hypotheses relating climate change to tectonic processes in glaciated mountain belts. Fieldwork was carried out in the eastern Sierra Nevada, California, and the Sangre de Cristo Range, Colorado, alongside digital elevation model analyses in the western US, the Southern Alps of New Zealand, and the Himalaya of northwestern Pakistan. hypothesis is overstated in its appeal to glacial erosion as a major source of relief production and subsequent peak uplift. Glaciers in the eastern Sierra Nevada and the western Sangre de Cristos have redistributed relief, but have produced only modest relief by enlarging drainage basins at the expense of low-relief topography. Glaciers have lowered valley floors and ridgelines by similar amounts, limiting the amount of "missing mass' that can be generated, and causing a decrease in drainage basin relief. The principal response of glaciated landscapes to rapid rock uplift is the development of towering cirque headwalls. This represents considerable relief production, but is not caused by glacial erosion alone. Large valley glaciers can maintain their low gradient regardless of uplift rate, which supports the "glacial buzzsaw" hypothesis. However, the inability of glaciers to erode steep hillslopes as rapidly can cause mean elevations to rise. Cosmogenic isotope dating is used to show that (i) where plucking is active, the last major glaciation removed sufficient material to reset the cosmogenic clock; and (ii) former glacial valley floors now stranded near the crest of the Sierra Nevada are at varying stages of abandonment, suggesting a cycle of drainage reorganiszation and relief inversion due to glacial erosion similar to that observed in river networks. Glaciated

  11. Deformation mechanisms adjacent to a thrust fault, Sangre de Cristo Mountains, Colorado

    SciTech Connect

    Kelly, J.C.; McConnell, D.A.; Friberg, V.M. . Dept. of Geology)

    1994-04-01

    The purpose of this study is to examine the character of grain-scale deformation adjacent to a Laramide thrust fault in the Sangre de Cristo Mountains. This site represents a window through the hanging wall of a thrust sheet which juxtaposes Precambrian rocks over Pennsylvanian rocks. It provides a rare opportunity to examine deformation mechanisms in the footwall of a basement-involved thrust. Brittle deformation is evident at both outcrop and grain-scale. Filled fractures and slickensides composed of quartz and epidote are present throughout the area, and increase in abundance adjacent to the fault zone, as does the frequency of mesoscopic faulting. Variations in deformation mechanisms can be seen between the Precambrian rocks of the thrust sheet and the Pennsylvanian metasedimentary rocks, and between the metamorphosed arkoses and metapelites within the Pennsylvanian section. Cataclastic textures are present in deformed Precambrian rocks, and the degree of cataclasis is greatest immediately adjacent to the fault zone. Deformation in the Pennsylvanian rocks is largely dependent upon the abundance of fine-grained matrix within each sample. The degree of brittle deformation is negatively correlated to the percentage of matrix. Coarser-grained sections show microscopic faults which offset quartz and feldspar grains. Offsets decrease on the faults as they pass from coarse grains into the matrix.

  12. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  13. The ground beetles (Coleoptera: Carabidae) of the Strandzha Mountain and adjacent coastal territories (Bulgaria and Turkey)

    PubMed Central

    Guéorguiev, Borislav

    2016-01-01

    Abstract Background The knowledge of the ground-beetle fauna of Strandzha is currently incomplete, and is largely based on data from the Bulgarian part of the region and on records resulting from casual collecting. This study represents a critical revision of the available literature, museum collections and a three years field study of the carabid beetles of the Bulgarian and Turkish parts of Strandzha Mountain and the adjacent Black Sea Coast territories. New information A total of 328 species and subspecies of Carabidae, belonging to 327 species from the region of Strandzha Mountain and adjacent seacoast area, have been listed. Of these, 77 taxa represent new records for the Bulgarian part of the region, and 110 taxa new records for Turkish part of the studied region. Two taxa, one subgenus (Haptotapinus Reitter, 1886) and one species (Pterostichus crassiusculus), are new to the fauna of Bulgaria. Based on a misidentification, the species Apotomus testaceus is excluded from the list of the Bulgarian fauna. Seven species (Carabus violaceus azurescens, Apotomus rufus, Platynus proximus, Molops alpestris kalofericus, M. dilatatus angulicollis, Pterostichus merklii, and Calathus metallicus) are treated as doubtful for the regional fauna, and one (Apotomus rufus) also for the Bulgarian fauna. Altogether, 43 taxa collected in the Turkish part of the region are new for European Turkey. New taxa for Turkey are the genera Myas and Oxypselaphus, the subgenus Feronidius, and nine species and subspecies (Carabus granulatus granulatus, Dyschirius tristis, Bembidion normannum apfelbecki, B. subcostatum vau, Acupalpus exiguus, Myas chalybaeus, Oxypselaphus obscurus, Pterostichus leonisi, Pt. melas). In addition, there are a further seven species that are here confirmed for Turkey. PMID:27099564

  14. Mountains

    SciTech Connect

    Fuller, M.

    1989-01-01

    This book covers the following topics: Above the forest: the alpine tundra; Solar energy, water, wind and soil in mountains; Mountain weather; Mountain building and plate tectonics; Mountain walls: forming, changing, and disappearing; Living high: mountain ecosystems; Distribution of mountain plants and animals; On foot in the mountains: how to hike and backpack; Ranges and peaks of the world. Map and guidebook sources, natural history and mountain adventure trips, mountain environmental education centers and programs, and sources of information on trails for the handicapped are included.

  15. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  16. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  17. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    USGS Publications Warehouse

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  18. Moonrise over the Coastal Mountain Range, British Columbia, Canada

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This scenic moonrise scene was taken over the Coastal Mountain Range, British Columbia (56.0N, 135W) and shows the moon at the day/night terminator. The moon appears as a tiny dot on the earth limb, partially intersected by the thin blue line of airglow.

  19. Acute pulmonary oedema on the Ruwenzori mountain range.

    PubMed Central

    Naeije, R; Mélot, C

    1990-01-01

    A 40 year old man had an episode of severe pulmonary oedema at 4000-5000 m during the ascent of the Margherita peak (5109 m) of Mount Stanley on the Ruwenzori. He had taken acetazolamide and high dose dexamethasone to treat symptoms of acute mountain sickness. Six years before he had been studied by right heart catheterisation as a healthy volunteer during hypoxic breathing at sea level. His pulmonary vascular reactivity had been within the normal range for 32 healthy subjects. This man had high altitude pulmonary oedema despite currently recommended treatments for acute mountain sickness and normal pulmonary vascular reactivity to hypoxia at sea level. PMID:2271350

  20. An Aerial Radiological Survey of the Yucca Mountain Project Proposed Land Withdrawal and Adjacent Areas

    SciTech Connect

    Craig Lyons, Thane Hendricks

    2006-07-01

    An aerial radiological survey of the Yucca Mountain Project (YMP) proposed land withdrawal was conducted from January to April 2006, and encompassed a total area of approximately 284 square miles (73,556 hectares). The aerial radiological survey was conducted to provide a sound technical basis and rigorous statistical approach for determining the potential presence of radiological contaminants in the Yucca Mountain proposed Land withdrawal area. The survey site included land areas currently managed by the Bureau of Land Management, the U.S. Air Force as part of the Nevada Test and Training Range or the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as part of the Nevada Test Site (NTS). The survey was flown at an approximate ground speed of 70 knots (36 meters per second), at a nominal altitude of 150 ft (46 m) above ground level, along a set of parallel flight lines spaced 250 ft (76 m) apart. The flight lines were oriented in a north-south trajectory. The survey was conducted by the DOE NNSA/NSO Remote Sensing Laboratory-Nellis, which is located in Las Vegas, Nevada. The aerial survey was conducted at the request of the DOE Office of Civilian Radioactive Waste Management. The primary contaminant of concern was identified by YMP personnel as cesium-137 ({sup 137}Cs). Due to the proposed land withdrawal area's proximity to the historical Nuclear Rocket Development Station (NRDS) facilities located on the NTS, the aerial survey system required sufficient sensitivity to discriminate between dispersed but elevated {sup 137}Cs levels from those normally encountered from worldwide fallout. As part of that process, the survey also measured and mapped the exposure-rate levels that currently existed within the survey area. The inferred aerial exposure rates of the natural terrestrial background radiation varied from less than 3 to 22 microroentgens per hour. This range of exposure rates was primarily due to the

  1. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  2. Sedimentary Rocks of the Buckeye Range, Horlick Mountains, Antarctica.

    PubMed

    Long, W E

    1962-04-27

    In the Buckeye Range of the Horlick Mountains, 4000 feet of sedimentary rocks nonconformably overlie a granitic basement and underlie a thick diabasic sill. The sedimentary section consists of Devonian sandstone and shale (Horlick formation), Carboniferous (?) tillite (Buckeye formation), Permian (?) platy and carbonaceous shale (Discovery Ridge formation), and Permian arkose, shale, and numerous coal beds (Mount Glossopteris formation). This apparently is the first report of a Paleozoic tillite in Antarctica. PMID:17745908

  3. Flat-topped mountain ranges: Their global distribution and value for understanding the evolution of mountain topography

    NASA Astrophysics Data System (ADS)

    Calvet, Marc; Gunnell, Yanni; Farines, Bernard

    2015-07-01

    rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.

  4. Summary of ground-water data, Post Headquarters and adjacent areas, White Sands Missile Range

    USGS Publications Warehouse

    Kelly, T.E.

    1973-01-01

    Geohydrologic data have been obtained from more than 100 wells and test holes that have been drilled in the Post Headquarters and adjacent areas of White Sands Missile Range. Observation-well data show that, in general, a continuous decline of the water table has occurred in the vicinity of the well field since production began in 1949. Approximately 40,000 acre-feet of water has been produced from the aquifer to date (1972). A series of maps are presented which show the changes that have occurred in the well field as the result of development.

  5. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    USGS Publications Warehouse

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  6. Regional significance of Mississippian rocks at Pentagon Mountain, Lewis and Clark Range, northwestern Montana

    SciTech Connect

    Nichols, K.M.

    1985-05-01

    Pentagon Mountain exposes one of the best of the few sections of Mississippian rocks in the Lewis and Clark Range of northwestern Montana. This section consists of 225 m (738 ft) of marine carbonate rocks from which conodonts, ranging in age from earliest Osagean to early Meramecian, have been identified. Its stratigraphic base is well exposed, but the top has been eroded. Five units are recognized in this sequence, in ascending order: (1) phosphatized coarsely crinoidal and spiculitic wackestone, (2) dolomitic lime mudstone or wackestone, thinly interbedded with spiculitic biogenic chert, (3) partly dolomitized lime bioclastic wackestone showing much pressure-solution compaction, (4) partly dolomitized lime bioclastic packstone or wackestone, also showing much pressure-solution compaction, and (5) dolomitic mudstone. The Mississippian sequence at Pentagon Mountain can be readily correlated lithologically, across the Lewis thrust system with Mississippian rocks that crop out to the east in the Sawtooth Range. This implies either that Mississippian units were originally widespread or that the magnitude of thrusting between the Mississippian rocks in the Lewis and Clark Range and those in the Sawtooth Range was insignificant. However, Mississippian rocks at Pentagon Mountain exhibit extreme pressure-solution compaction, which suggests greater stratigraphic or structural burial of these rocks than their Mississippian counterparts in the Sawtooth Range. Secondary dolomite is pervasive in the lower part of the Mississippian section in the Lewis and Clark Range, and spectacular solution breccias locally disrupt the base of the section. These breccias and the adjacent dolomite are probably related, as both are thought to result from the passage of fluids through these rocks during Laramide uplift and/or post Laramide erosion and extension.

  7. Understanding Mountain Range Spatial Variability of Surface Hoar

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.

    2014-12-01

    Surface hoar, once buried often produce a persistent weak layer that is a common instability problem in the snow pack in SW Montana and many other areas around the world. Surface hoar is a common weak layer type in avalanche accidents in a continental and intermountain snowpack. It is however relatively well understood that aspect plays an important role in the spatial location of the growth, and survival of these grain forms, due to the unequal distribution of incoming radiation. However this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at larger, mountain range spatial scales. In this paper we present a unique data set including over one hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, detailed site scale observations (e.g. Sky view plots) we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale meteorological differences, site scale differences, and local scale lapse rates can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at this large, mountain range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.

  8. Sierra Nevada Mountain Range as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Sierra Nevada Mountain Range can be seen in this north-looking high oblique view taken in October, 1993, by the STS-58 crew. Visible in the view to the west of the Sierra Nevada are the San Joaquin and Sacramento Valleys of central California. The San Francisco/Oakland Bay Area can be seen to the west of the valley at the extreme left of the photograph. To the east or right of the Sierra Nevada, the basin and Range Region of central and northern Nevada is visible. Mono Lake, Lake Tahoe and Pyramid lake are also visible in this scene. The long northwest/southeast trending Walker Lane Shear Zone, which lies just to the east (right) of the Sierra Nevada is also visible. Near the top of the view (near the horizon), the snow covered volcanic peak Mount Shasta can be seen.

  9. Favorable areas for prospecting adjacent to the Roberts Mountains thrust in southern Lander County, Nevada

    USGS Publications Warehouse

    Stewart, John Harris; McKee, Edwin H.

    1968-01-01

    Recent geologic mapping by the U.S. Geological Survey of more than 2,500 square miles of a relatively little-studied part of central Nevada has outlined four areas favorable for the discovery of metallic mineral deposits. In these areas, lower Paleozoic carbonate rocks crop out below the Roberts Mountains thrust, a widespread fault in central and north-central Nevada. These areas have a stratigraphic and structural setting similar to that of the areas where large, open-pit gold deposits have been discovered recently at Carlin and Cortez in north-central Nevada.

  10. Climate and Floristic Variation in Great Basin Mountain Ranges (Invited)

    NASA Astrophysics Data System (ADS)

    Charlet, D. A.; Leary, P.

    2010-12-01

    are 316 in the Snake Range transect, and 425 along the Sheep Range transect. Near the Sheep Range lies the Spring Mountains where 769 samples were obtained. More than 30,000 geo-referenced photographs document the sites, and nearly 1000 vascular plant taxa have been encountered and their distributions documented. Recently completed soil maps, the PRISM precipitation model, and 10m Digital Elevation Models (DEMs) of the study areas exist. As a result, many environmental conditions can be explored with multivariate statistical methods. Preliminary results indicate that different kinds of physical data may be appropriate only at certain scales. Most useful for fine-scale investigations on mountains appears to be measures of irradiance at the solstices and equinox derived from the 10m DEM. Past climate in Nevada is readily evident on its landscapes, featuring glacial, periglacial and pluvial features. Pollen and remains left by woodrats provide vegetation records dating up to 40,000 years before present. The vegetation work described here provides a snapshot of biodiversity at fine scale of several mountain ranges. Efforts of the physical scientists and physiologists now, and repeat visits to the sample sites of this study later, will help us track the processes and manifestations of landscape change as responses to climate.

  11. Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee

    USGS Publications Warehouse

    Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Finkel, R.; Caffee, M.

    2003-01-01

    Analysis of 10Be and 26Al in bedrock (n=10), colluvium (n=5 including grain size splits), and alluvial sediments (n=59 including grain size splits), coupled with field observations and GIS analysis, suggest that erosion rates in the Great Smoky Mountains are controlled by subsurface bedrock erosion and diffusive slope processes. The results indicate rapid alluvial transport, minimal alluvial storage, and suggest that most of the cosmogenic nuclide inventory in sediments is accumulated while they are eroding from bedrock and traveling down hill slopes. Spatially homogeneous erosion rates of 25 - 30 mm Ky-1 are calculated throughout the Great Smoky Mountains using measured concentrations of cosmogenic 10Be and 26Al in quartz separated from alluvial sediment. 10Be and 26Al concentrations in sediments collected from headwater tributaries that have no upstream samples (n=18) are consistent with an average erosion rate of 28 ?? 8 mm Ky-1, similar to that of the outlet rivers (n=16, 24 ?? 6 mm Ky-1), which carry most of the sediment out of the mountain range. Grain-size-specific analysis of 6 alluvial sediment samples shows higher nuclide concentrations in smaller grain sizes than in larger ones. The difference in concentrations arises from the large elevation distribution of the source of the smaller grains compared with the narrow and relatively low source elevation of the large grains. Large sandstone clasts disaggregate into sand-size grains rapidly during weathering and downslope transport; thus, only clasts from the lower parts of slopes reach the streams. 26Al/10Be ratios do not suggest significant burial periods for our samples. However, alluvial samples have lower 26Al/10Be ratios than bedrock and colluvial samples, a trend consistent with a longer integrated cosmic ray exposure history that includes periods of burial during down-slope transport. The results confirm some of the basic ideas embedded in Davis' geographic cycle model, such as the reduction of relief

  12. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  13. The crustal section of the Siniktanneyak Mountain ophiolite, Brooks Range, Alaska

    SciTech Connect

    Bickerstaff, D.; Harris, R.A.; Miller, M.A. . Dept. of Geology and Geography)

    1993-04-01

    Fragments of the upper crustal section of the Brooks Range Ophiolite on the west flank of Siniktanneyak Mountain expose important contact relations and paleohorizontal indicators. The nearly complete crustal sequence faces northwest. Based on field observations, the crustal units encountered at Siniktanneyak Mountain from bottom to top are: (1) layered gabbro, (2) isotropic gabbro, (3) high level and late-stage intrusions of diorite and diabase, (4) rare sheeted dikes, (5) basalt, and (6) a bedded volcanic tuff. Potassium feldspar-bearing pegmatites are also found. Of particular interest is the orientation of the layered gabbro, sheeted dikes, and the bedded volcanic tuff. The steeply dipping gabbro layers strike N-S, the adjacent vertical sheeted dikes strike NE-SW. Bedded volcanic tuff and lavas are flat lying. Contacts within the upper crust units are often covered by talus. Contacts between various plutonic rocks are both sharp and gradational, suggesting syn- and post-cooling intrusions. Contacts between plutonic rock and higher volcanic rock appear to be fault contacts.

  14. Interpreting climate-driven aggradation and incision along the fringes of a decaying mountain range

    NASA Astrophysics Data System (ADS)

    Langston, A.; Tucker, G. E.; Anderson, R. S.; Foster, M. A.; Anderson, S. P.

    2012-12-01

    rates of terraces during interglacials can be attributed to reduced sediment supply alone or whether changes in hydrology must be invoked. We study an idealized catchment in which the upper half lies on resistant rock (representing the crystalline mountain range) and the lower half lies on soft rock (representing the adjacent sedimentary basin). In the model calculations, the efficiency of soil creep on hillslopes was varied based on recent estimates of frost-creep efficiency as a function of mean annual temperature over glacial-interglacial timescales. Preliminary results show that increasing hillslope transport efficiency over the model domain causes deposition in river channels in the low-relief basin, especially along the range front. Deposition also occurs to a lesser degree in river channels in the mountains. The model calculations also predict migrating channel positions in the basin during periods of increased sediment supply, and channel stability and entrenchment during periods of low sediment supply. These results suggest that temporal changes in hillslope diffusivity alone play an important role in sedimentation and incision in mountain-bounded basins.

  15. Landscape of a Glaciated Rift Flank: Structure of the Transantarctic Mountains From the Royal Society Range to the Churchill Mountains

    NASA Astrophysics Data System (ADS)

    Demyanick, E.; Wilson, T. J.

    2006-12-01

    Multiphase tectonic activity has shaped the regional landscape of the Transantarctic Mountains in Paleozoic, Jurassic, and Cenozoic times. The Antarctic ice sheets have covered the continent for the last 34 m.y. and coeval glacial activity and tectonism have affected mountain landscape evolution. Large-scale linear morphologic features within the mountains are controlled by bedrock structure. Satellite imagery and digital elevation models (DEMs) have been used in this study to map regional, linear morphologic trends along the mountain chain between the Royal Society Range and the Churchill Mountains. ASTER imagery was mosaicked and processed to enhance linear features and lineament analysis was employed to quantify major trends in the mountains. These trends were then compared to geologic maps and other structural and geomorphic data for the area. A low-resolution DEM derived from topographic map contours and new, higher- resolution DEMs created from ASTER imagery were used to create contour, shaded relief, slope steepness, and slope aspect maps. Geomorphology was assessed using these maps and related to mapped lineaments. Linear features that parallel known rift-related faults, or form typical rift-fault patterns, were used to develop a structural model for the architecture of this sector of the Transantarctic Mountains rift flank.

  16. Millennial-scale Denudation Rates of the Santa Lucia Mountains, CA: Implications for Landscape Thresholds from a Steep, High Relief, Coastal Mountain Range

    NASA Astrophysics Data System (ADS)

    Young, H.; Hilley, G. E.; Kiefer, K.; Blisniuk, K.

    2015-12-01

    We report new, 10-Be-derived denudation rates measured from river sands in basins of the Santa Lucia Range, central California. The Santa Lucia Mountains of the California Coast Range are an asymmetrical northwest-southeast trending range bounded by the San Gregorio-Hosgri (SG-HFZ ) and Rinconada-Reliz faults. This area provides an additional opportunity to analyze the relationships between topographic form, denudation rates, and mapped underlying geologic substrate in an actively deforming landscape. Analysis of in situ-produced 10-Be from alluvial sand samples collected in the Santa Lucia Mountains has yielded measurements of spatially varying basin-scale denudation rates. Despite the impressive relief of the Santa Lucia's, denudation rates within catchments draining the coastal side of the range are uniformly low, generally varying between ~90 m/Myr and ~350 m/Myr, with one basin eroding at ~500 m/Myr. Preliminary data suggest the lowest erosion rates are located within the northern interior of the range in sedimentary and granitic lithologies, while higher rates are located directly along the coast in metasedimentary bedrock. This overall trend is punctuated by a single high denudation rate, which is hosted by a watershed whose geometry suggests that it previously has, and continues to experience divide migration as it captures the adjacent watershed's area. Spatial distribution of basins with higher denudation rates is inferred to indicate a zone of uplift adjacent to the SG-HFZ. We compare erosion rates to basin mean channel steepness index, extracted from a 10 m digital elevation model. Denudation rate generally increases with channel steepness index until ~250 m/Myr, at which point the relationship becomes invariant, suggesting a non-linear erosion model may best characterize this region. These hypotheses will be tested further as additional denudation rate results are analyzed.

  17. Observed Changes in Mountain Hydrology Following a Mountain Pine Beetle Epidemic in the Snowy Range of Wyoming

    NASA Astrophysics Data System (ADS)

    Klatt, A. L.; Miller, S. N.; Paige, G. B.; Kelleners, T.; Ohara, N.; Hayes, M. M.

    2015-12-01

    A mountain pine beetle epidemic in the Snowy Range Mountains of Wyoming peaked in 2008 coinciding with changes in climate. The combination of the two effects have potentially changed hydrologic response in mountain watersheds. Shorter snowmelt duration and an earlier onset of snowmelt are hypothesized to occur as results of both mountain pine beetle epidemics and global climate change, while beetle effects likely point to increased total flows, baseflows, and peak flows. We used statistical analysis to identify changes in hydrologic response over the past four decades by comparing hydrograph components from 2012-2014 water years to hydrograph components from the 1960's-1980's water years using analysis of variance (ANOVA) and analysis of covariance (ANCOVA) including a precipitation covariate. The 2012-2014 group was found to be associated with (1) shorter snowmelt duration, (2) earlier onset of snowmelt, and (3) increased baseflows. No differences in total discharge, snowmelt discharge, stormflow discharge, peak discharge, or day of peak discharge were detected. Pearson's correlation coefficients between watershed and runoff characteristics for six mountain watersheds were calculated for the 2013 and 2014 water years. Watershed characteristics include percent green conifers, percent red phase conifers, and percent grey phase conifers derived from a Random Forest land classification map. For the 2013 water year, watershed area expressed as percent red phase conifer was found to be significantly correlated to watershed discharge expressed as percent baseflow with a Pearson's Correlation Coefficient of +0.95 (alpha level = 0.05). The positive correlation between red phase conifer and baseflow may be considered corroborating evidence of a mountain pine beetle induced change on mountain hydrology detected in the ANOVA/ANCOVA analysis. No significant correlations between beetle phase and either snowmelt duration or onset of snowmelt were detected.

  18. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F. )

    1996-01-01

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  19. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F.

    1996-12-31

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  20. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased. PMID:23803847

  1. Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region

    USGS Publications Warehouse

    Mull, C.G.; Glenn, R.K.; Adams, K.E.

    1997-01-01

    Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the

  2. The impact of embedded valleys on daytime pollution transport over a mountain range

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.

    2016-04-01

    Idealized large-eddy simulations were performed to investigate the impact of different mountain geometries on daytime pollution transport by thermally driven winds. The main objectives of this study were (i) to investigate the interactions between plain-to-mountain and slope wind systems and (ii) to analyze their influence on daytime pollution distribution over complex terrain. For this purpose, tracer analyses were conducted over a quasi-two-dimensional mountain range with embedded valleys bordered by ridges with different crest heights and a flat foreland in cross-mountain direction. The valley depth was varied systematically. It was found that different flow regimes develop dependent on the valley floor height. In the case of elevated valley floors, the plain-to-mountain wind descends into the potentially warmer valley and replaces the opposing upslope wind. This superimposed plain-to-mountain wind increases the pollution transport towards the main ridge by additional 20 \\unit{%} compared to the regime with a deep valley. Due to mountain and advective venting, a more than threefold increased earth-atmosphere exchange is found over the various mountain geometries when compared to the reference plain simulation. However, the calculated vertical exchange is strongly sensitive to the definition of the convective boundary layer height.

  3. Variability of the isotopic lapse rate across the mountain ranges in Wyoming

    NASA Astrophysics Data System (ADS)

    Brian, H.; Fan, M.

    2012-12-01

    Stable isotope based paleoaltimetry studies require knowledge of the isotope-elevation gradient during the time of interest, but this information is rarely available. As a result, many studies often apply the modern local lapse rate or a global average lapse rate and assume these values are valid for the area of interest and that they hold through time. However, natural variability in local-scale climate and mountain geometry and morphology can influence the isotope-elevation (and temperature-elevation) gradient. We evaluate the inter- and intra-mountain range variability of modern climate and isotope values of stream water for three Laramide ranges in Wyoming (Wind River Range, Bighorn and Laramie Mountains), as well as for a regional elevation transect across the central Rocky mountain front. Samples of steam water were taken from major catchments across Wyoming in 2007, 2011, and 2012. We find that the modern lapse rate for these ranges is -1.7‰/km, -2.2‰/km and -1.8‰/km respectively. Although these values are very similar to one another and to the global isotopic lapse rate (-2.1‰/km), large variation (up to 6‰/km) exists among individual small river catchments of the Bighorn Mountains. The variability in catchment-scale lapse rate does not appear to be systematically related to annual, or seasonal surface air temperature, precipitation amount, or catchment area. However, the range-scale lapse rates may yet reflect the regional climate, which is generally coolest and driest in the Wind River Range (lowest lapse rate) and warmest and wettest in the Bighorn Mountains (highest lapse rate). Similar d-excess values exist across individual mountain ranges, but inter-mountain range differences indicate that the Laramie Mountains (and regions of western Nebraska) receive evaporatively enriched rainwater compared to those in the Wind River Range and Bighorn Mountains. These differences do not necessarily require separate vapor sources as the lower d

  4. The Growth of Simple Mountain Ranges: 2. Geomorphic Evolution at Fault Linkage Sites

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; Densmore, A. L.; Davis, A. M.; Gupta, S.

    2002-12-01

    Large normal faults grow partly through linkage of fault segments and partly by fault tip propagation. The process by which fault segments interact and link is critical to understanding how topography is created along fault-bounded ranges. Structural studies and numerical models have shown that fault linkage is accompanied by localised increased displacement rate, which in turn drives rapid base level fall at the evolving range front. The changes in both along-strike fault structure and base level are most pronounced at and adjacent to sites of fault linkage. These areas, known as relay zones, thus preserve clues to both the tectonic history and the geomorphic evolution of large fault-bounded mountain ranges. We discuss the temporal and spatial constraints on the evolution of footwall-range topography, by comparing a number of active fault linkage sites, using field and DEM observations of the spatial pattern of footwall denudation. In particular, we focus on sites in Pleasant Valley, Nevada (Pearce and Tobin fault segments) and in the northeastern Basin and Range (the Beaverhead fault, Idaho, and the Star Valley fault, Wyoming). The study areas represent different stages in the structural and geomorphic evolution of relay zones, and allow us to propose a developmental model of large fault evolution and landscape response. Early in the growth of fault segments into an overlapping geometry, catchments may form within the evolving relay. However, increasing displacement rate associated with fault interaction and linkage makes these catchments prone to capture by streams that have incised headward from the range front. This scenario leads to locally increased footwall denudation in the vicinity of the capture site. Longitudinal profiles of streams differ with respect to position along relays and whether or not any particular stream has been able to capture early-formed drainages. The restricted space between interacting en echelon fault segments helps preserve close

  5. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  6. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes,...

  7. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes,...

  8. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes,...

  9. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes,...

  10. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes,...

  11. The impact of embedded valleys on daytime pollution transport over a mountain range

    NASA Astrophysics Data System (ADS)

    Lang, M. N.; Gohm, A.; Wagner, J. S.

    2015-10-01

    Idealized large-eddy simulations were performed to investigate the impact of different mountain geometries on daytime pollution transport by thermally driven winds. The main objective was to determine interactions between plain-to-mountain and slope wind systems, and their influence on the pollution distribution over complex terrain. For this purpose, tracer analyses were conducted over a quasi-two-dimensional mountain range with embedded valleys bordered by ridges with different crest heights and a flat foreland in cross-mountain direction. The valley depth was varied systematically. It was found that different flow regimes develop dependent on the valley floor height. In the case of elevated valley floors, the plain-to-mountain wind descends into the potentially warmer valley and replaces the opposing upslope wind. This superimposed plain-to-mountain wind increases the pollution transport towards the main ridge by an additional 20 % compared to the regime with a deep valley. Due to mountain and advective venting, the vertical exchange is 3.6 times higher over complex terrain than over a flat plain. However, the calculated vertical exchange is strongly sensitive to the definition of the convective boundary layer height. In summary, the impact of the terrain geometry on the mechanisms of pollution transport confirms the necessity to account for topographic effects in future boundary layer parameterization schemes.

  12. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  13. Lithology and structure within the basement terrain adjacent to Clark Mountains, California, mapped with calibrated data from the airborne visible/infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Vane, Gregg

    The Clark Mountains in eastern California form a rugged, highly dissected area nearly 5000 ft above sea level, with Clark Mountain rising to 8000 ft. The rocks of the Clark Mountains and the Mescal Range just to the south are Paleozoic carbonate and clastic rocks, and Mesozoic clastic and volcanic rocks standing in pronounced relief above the fractured Precambrian gneisses to the east. The Permian Kaibab Limestone and the Triassic Moenkopi and Chinle Formations are exposed in the Mescal Range, which is the only place in California where these rocks, which are typical of the Colorado Plateau, are found. To the west, the mountains are bordered by the broad alluvial plains of Shadow Valley. Cima Dome, which is an erosional remnant carved on a batholithic intrusion of quartz monzonite, is found at the south end of the valley. To the east of the Clark and Mescal Mountains is found the Ivanpah Valley, in the center of which is located the Ivanpah Play. Studies of the Clark Mountains with the airborne visible/infrared imaging spectrometer are briefly described.

  14. Studying of tritium content in snowpack of Degelen mountain range.

    PubMed

    Turchenko, D V; Lukashenko, S N; Aidarkhanov, A O; Lyakhova, O N

    2014-06-01

    The paper presents the results of investigation of tritium content in the layers of snow located in the streambeds of the "Degelen" massif contaminated with tritium. The objects of investigation were selected watercourses Karabulak, Uzynbulak, Aktybai located beyond the "Degelen" site. We studied the spatial distribution of tritium relative to the streambed of watercourses and defined the borders of the snow cover contamination. In the centre of the creek watercourses the snow contamination in the surface layer is as high as 40 000 Bq/L. The values of the background levels of tritium in areas not related to the streambed, which range from 40 to 50 Bq/L. The results of snow cover measurements in different seasonal periods were compared. The main mechanisms causing tritium transfer in snow were examined and identified. The most important mechanism of tritium transfer in the streams is tritium emanation from ice or soil surface. PMID:24657814

  15. Monitoring glacier variations in the Urubamba and Vilcabamba Mountain Ranges, Peru, using "Landsat 5" images

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian

    2013-04-01

    The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.

  16. Neogene structural evolution of Gold Mountain, Slate Ridge and adjacent areas, Esmeralda and Nye counties, SW Nevada

    SciTech Connect

    Noble, D.C.; Weiss, S.I.; Worthington, J.E. . Mackay School of Mines); McKee, E.H. )

    1993-04-01

    The onset of crustal instability in the Gold Mountain-Slate Ridge (GMSR) area took place prior to middle Miocene time, as shown by the irregular topography upon which the 16.8 Ma tuff of Mount Dunfee was deposited. Local wedges of fanglomerate and conglomerate between four overlying ash-flow sheets and complex patterns of thinning and thickening, nondeposition, and erosion show that normal faulting took place more-or-less continuously between 16.8 and 11.5 Ma. More intense listric( ) faulting, tilting, uplift, erosion and deposition of wedges of fanglomerate and conglomerate occurred between emplacement of the 11.5 Ma Timber Mountain Tuff (TMT) and the 7.5 Ma Stonewall Flat Tuff (SFT). The present topography west of long. 117[degree]W developed mostly after 7.5 Ma following deposition of the widespread SFT, which thickens westward with increasing elevation on the east end of Slate Ridge. major uplifted blocks include the GMSR area, Magruder Mountain, and Palmetto Mountain, where erosional remnants of the SFT are found at elevations as high as 8,200 ft. Uplift was accommodated by high-angle faulting with little tilting and by warping. In the GMSR area pre-7.5 Ma tilting was mainly to the south-southeast reflecting movement along N-dipping listric( ) faults, indicating northwest-directed extension. In contrast, southeast of Gold Mountain and in the northeastern part of the Grapevine Mountains post-11.5 Ma tilting resulted from movement on normal faults that dip to the SSE beneath Sarcobatus Flat and toward the WNW-vergent Boundary Canyon-Original Bullfrog detachment fault system further south; this implies SE-directed extensional strain within a general region of NW-directed extension. Slate Ridge also acted as a barrier to the 11.5 Ma TMT. These relations suggest that certain areas within this section of the Walker Lane belt tended to remain high from middle Miocene time until the present, with a major exception being the time of deposition of the SFT.

  17. Managing a Scarce Natural Resource: The High Altitude Mountaineering Setting.

    ERIC Educational Resources Information Center

    Ewert, Alan

    This study identifies some characteristics of mountaineering visitors, climbers' perceptions of the mountain environment, and certain preferred management options affecting both the mountain environment and the mountaineer on Mt. McKinley and adjacent Alaska Range peaks. Approximately 360 registered climbers were asked to complete a 26-item…

  18. Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains

    USGS Publications Warehouse

    Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Baron, J.S.; Stohlgren, T.J.

    1999-01-01

    Evidence from both meteorological stations and vegetational successional studies suggests that summer temperatures are decreasing in the mountain-plain system in northeast Colorado, particularly since the early 1980s. These trends are coincident with large changes in regional land cover. Trends in global, Northern Hemisphere and continental surface temperatures over the same period are insignificant. These observations suggest that changes in the climate of this mountain-plain system may be, in some part, a result of localized forcing mechanisms. In this study the effects of land use change on the northern Colorado plains, where large regions of grasslands have been transformed into both dry and irrigated agricultural lands, on regional weather is examined in an effort to understand this local deviation from larger-scale trends. We find with high-resolution numerical simulations of a 3-day summer period using a regional atmospheric-land surface model that replacing grasslands with irrigated and dry farmland can have impacts on regional weather and therefore climate which are not limited to regions of direct forcing. Higher elevations remote from regions of land use change are affected as well. Specifically, cases with altered landcover had cooler, moister boundary layers, and diminished low-level upslope winds over portions of the plains. At higher elevations, temperatures also were lower as was low-level convergence. Precipitation and cloud cover were substantially affected in mountain regions. We advance the hypothesis that observed land use changes may have already had a role in explaining part of the observed climate record in the northern Colorado mountain-plain system. Copyright 1999 by the American Geophysical Union.

  19. For Sale--Scotland's Most Famous Mountain Range: Land "Ownership" in Scotland

    ERIC Educational Resources Information Center

    Slattery, Deirdre

    2005-01-01

    The nature of land ownership is infrequently discussed by practitioners of outdoor education, though it is often central to the way they work. The recent controversy over the proposed sale of the Cuillin mountain range on the Isle of Skye in Scotland provoked heated discussion over rights to and benefits of this important place. The main point at…

  20. Long-range atmospheric transport and the distribution of polycyclic aromatic hydrocarbons in Changbai Mountain.

    PubMed

    Zhao, Xiangai; Kim, Seung-Kyu; Zhu, Weihong; Kannan, Narayanan; Li, Donghao

    2015-01-01

    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping. PMID:25036943

  1. Turkish Children's Drawing of Nature in a Certain Way: Range of Mountains in the Back, the Sun, Couple of Clouds, a River Rising from the Mountains

    ERIC Educational Resources Information Center

    Ulker, Riza

    2012-01-01

    This study reveals that Turkish kindergarten through 8th Grade (K-8) students draw nature pictures in a certain way; range of mountains in the background, a sun, a couple of clouds, a river rising from the mountains. There are similarities in the K-8 students' nature drawings in the way these nature items are organized on a drawing paper. We…

  2. Crustal structure of Wrangellia and adjacent terranes inferred from geophysical studies along a transect through the northern Talkeetna Mountains

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.; Pellerin, L.; McPhee, D.K.; O'Neill, J. M.

    2007-01-01

    Recent investigations of the Talkeetna Mountains in south-central Alaska were undertaken to study the region's framework geophysics and to reinterpret structures and crustal composition. Potential field (gravity and magnetic) and magnetotelluric (MT) data were collected along northwest-trending profiles as part of the U.S. Geological Survey's Talkeetna Mountains transect project. The Talkeetna Mountains transect area comprises eight 1:63,360 quadrangles (???9500 km2) in the Healy and Talkeetna Mountains 1?? ?? 3?? sheets that span four major lithostratigraphic terranes (Glen et al., this volume) including the Wrangellia and Peninsular terranes and two Mesozoic overlap assemblages inboard (northwest) of Wrangellia. These data were used here to develop 21/2-dimensional models for the three profiles. Modeling results reveal prominent gravity, magnetic, and MT gradients (???3.25 mGal/ km, ???100nT/km, ???300 ohm-m/km) corresponding to the Talkeetna Suture Zone-a first-order crustal discontinuity in the deep crust that juxtaposes rocks with strongly contrasting rock properties. This discontinuity corresponds with the suture between relatively dense magnetic crust of Wrangellia (likely of oceanic composition) and relatively less dense transitional crust underlying Jurassic to Cretaceous flysch basins developed between Wrangellia and North America. Some area of the oceanic crust beneath Wrangellia may also have been underplated by mafic material during early to mid-Tertiary volcanism. The prominent crustal break underlies the Fog Lakes basin approximately where theTalkeetna thrust faultwaspreviouslymappedas a surface feature. Potential fieldand MT models, however, indicate that the Talkeetna Suture Zone crustal break along the transect is a deep (2-8 km), steeply west-dipping structure-not a shallow east-dipping Alpine nappe-like thrust. Indeed, most of the crustal breaks in the area appear to be steep in the geophysical data, which is consistent with regional geologic

  3. Placing Absolute Timing on Basin Incision Adjacent to the Colorado Front Range: Results from Meteoric and in Situ 10BE Dating

    NASA Astrophysics Data System (ADS)

    Duehnforth, M.; Anderson, R. S.; Ward, D.

    2010-12-01

    A sequence of six levels of gravel-capped surfaces, mapped as Pliocene to Holocene in age, are cut into Cretaceous shale in the northwestern part of the Denver Basin immediately adjacent to the Colorado Front Range (CFR). The existing relative age constraints and terrace correlations suggest that the incision of the Denver Basin occurred at a steady and uniform rate of 0.1 mm yr-1 since the Pliocene. As absolute ages in this landscape are rare, they have the potential to test the reliability of the existing chronology, and to illuminate the detailed history of incision. We explore the timing of basin incision and the variability of geomorphic process rates through time by dating the three highest surfaces at the northwestern edge of the Denver Basin using both in situ and meteoric 10Be concentrations. As the tectonic conditions have not changed since the Pliocene, much of the variability of generation and abandonment of alluvial surfaces likely reflects the influence of glacial-interglacial climate variations. We selected Gunbarrel Hill (mapped as pre-Rocky Flats (Pliocene)), Table Mountain (mapped as Rocky Flats (early Pleistocene)), and the Pioneer surface (mapped as Verdos (Pleistocene, ~640 ka)) as sample locations. We took two amalgamated clast samples on the Gunbarrel Hill surface, and dated depth profiles using meteoric and in situ 10Be on the Table Mountain and Pioneer surfaces. In addition, we measured the in situ 10Be concentrations of 6 boulder samples from the Table Mountain surface. We find that all three surfaces are significantly younger than expected and that in situ and meteoric age measurements largely agree with each other. The samples from the pre-Rocky Flats site (Gunbarrel Hill) show ages of 250 and 310 ka, ignoring post-depositional surface erosion. The ages of the Table Mountain and Pioneer sites fall within the 120 to 150 ka window. These absolute ages overlap with the timing of the penultimate glaciation during marine isotope stage (MIS) 6

  4. The large karstic holes at the top of the Syrian coastal Mountain Range. Importance of structural setting for the karstogenesis.

    NASA Astrophysics Data System (ADS)

    Mocochain, Ludovic; Blanpied, Christian; Bigot, Jean-Yves; Peyronel, Olivier; Gorini, Christian; Abdalla, Abdelkarim Al; Azki, Fawaz

    2015-04-01

    Along the Eastern Mediterranean Sea, the Syria Coastal Mountain Range spreads from north to south over 150 km of long. This range is a monocline structure stopped by a major escarpment that domines Al-Gahb Graben to the East. The Coastal Mountain Range is mainly formed by Mesozoic limestone that show a major unconformity between the Upper Jurassic and Aptien deposits, and important erosions in the Upper Cretaceous deposits. Locally, the Juro-Cretaceous unconformity is characterized by a layer of continental basalts with fossil woods that reveal a long emersion of the platform. The most recent carbonate deposits at the top of the Coastal Mountain Range are Turonian age. In the center part of the Coastal Mountain Range, in a small area, the Cretaceous carbonates are affected by large karstic dolines. These dolines are curiously located at the top of the mountain range. This position is not beneficial for the development of large karstic holes.

  5. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  6. Devonian-Mississippian carbonate sequence in the Maiyumerak Mountains, western Brooks Range, Alaska

    SciTech Connect

    Dumoulin, J.A. ); Harris, A.G. )

    1990-05-01

    Essentially continuous, dominantly carbonate sedimentation occurred from at least the Early Devonian through the Mississippian in the area that is now the Maiyumerak Mountains, western Brooks Range. This succession is in striking contrast to Paleozoic sequences in the eastern Brooks Range and in the subsurface across northern Alaska, where uppermost Devonian-Mississippian clastic and Carboniferous carbonates unconformably overlie Proterozoic or lower Paleozoic metasedimentary or sedimentary rocks. Conodonts obtained throughout the Maiyumerak Mountains sequence indicate that any hiatus is less than a stage in duration, and there is no apparent physical evidence of unconformity within the succession. The sequence is best exposed northwest of the Eli River, where Emsian-Eifelian dolostones (Baird Group) are conformably overlain by Kinderhookian-Osagian sandy limestones (Utukok Formation) and Osagian-Chesterian fossiliferous limestones (Kogruk Formation) of the Lisburne Group. Conodont species assemblages and sedimentary structures indicate deposition in a range of shallow-water shelf environments. The sequence extends at least 30 km, from the Noatak Quadrangle northeast into the Baird Mountains Quadrangle; its easternmost extent has not been definitively determined. The Ellesmerian orogeny, thought to have produced the extensive middle Paleozoic unconformity seen through much of northern Alaska apparently had little effect on this western Brooks Range sedimentary succession.

  7. A geological reconnaissance across the Bitterroot Range and Clearwater Mountains in Montana and Idaho

    USGS Publications Warehouse

    Lindgren, Waldemar

    1904-01-01

    This report describes, in a preliminary way, a belt of country extending westward from the Bitterroot Valley, across the dividing range and the rugged mountains of the Clearwater system, down to the fertile plateaus which border the canyon of Snake River. It thus presents a reconnaissance section from western Montana across northern Idaho, and deals chiefly with areas about which, thus far, little geological information has been available.

  8. A geochemical perspective of Red Mountain: an unmined volcanogenic massive sulfide deposit in the Alaska Range

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.

    2014-01-01

    The U.S. Geological Survey (USGS) has investigated the environmental geochemistry of a group of unmined volcanogenic massive sulfide (VMS) deposits in the Bonnifield mining district, Alaska Range, east-central Alaska. The spectacularly colored Red Mountain deposit is the best exposed of these and provides excellent baseline geochemical data for natural environmental impacts of acidic rock drainage, metal dissolution and transport, and acidic salt and metal precipitation from an exposed and undisturbed VMS deposit.

  9. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran

    PubMed Central

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  10. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  11. Magnetostratigraphy susceptibility for the Guadalupian Series GSSPs (Middle Permian) in Guadalupe Mountains National Park and adjacent areas in West Texas

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Ellwood, Brooks B.; Lambert, Lance L.; Tomkin, Jonathan H.; Bell, Gordon L.; Nestell, Galina P.

    2012-01-01

    Here we establish a magnetostratigraphy susceptibility zonation for the three Middle Permian Global boundary Stratotype Sections and Points (GSSPs) that have recently been defined, located in Guadalupe Mountains National Park, West Texas, USA. These GSSPs, all within the Middle Permian Guadalupian Series, define (1) the base of the Roadian Stage (base of the Guadalupian Series), (2) the base of the Wordian Stage and (3) the base of the Capitanian Stage. Data from two additional stratigraphic successions in the region, equivalent in age to the Kungurian–Roadian and Wordian–Capitanian boundary intervals, are also reported. Based on low-field, mass specific magnetic susceptibility (χ) measurements of 706 closely spaced samples from these stratigraphic sections and time-series analysis of one of these sections, we (1) define the magnetostratigraphy susceptibility zonation for the three Guadalupian Series Global boundary Stratotype Sections and Points; (2) demonstrate that χ datasets provide a proxy for climate cyclicity; (3) give quantitative estimates of the time it took for some of these sediments to accumulate; (4) give the rates at which sediments were accumulated; (5) allow more precise correlation to equivalent sections in the region; (6) identify anomalous stratigraphic horizons; and (7) give estimates for timing and duration of geological events within sections.

  12. Basin and range-age reactivation of the ancestral Rocky Mountains in Texas Panhandle: evidence from Ogallala Formation

    SciTech Connect

    Budnik, R.T.

    1984-04-01

    The Ogallala Formation (Neogene) is a widespread syntectonic alluvial apron that was shed eastward from the Rio Grande rift and related uplifts in Colorado and New Mexico during Basin and Range extension. In the Texas Panhandle, the Ogallala completely buried Ancestral Rocky Mountain (Pennsylvanian) structures. Renewed movement on these older structures during the Neogene influenced the thickness and facies distribution of the Ogallala. The Ogallala thickens into the Palo Duro, Dalhart, and Anadarko basins. Major distributary channels on Ogallala alluvial fans coincide with the axes of these basins, whereas major interchannel areas overlie intervening uplifts. Second-order structures subtly influenced the unit as well. For example, the Carson basin, a Pennsylvanian rhomb graben along the Amarillo uplift, the Ogallala is over 250 m (820 ft) thick compared with 90 m (275 ft) in adjacent areas. Within the Palo Duro basin, local highs controlled the distribution of thin, interchannel flood-basin and lacustrine deposits. Thicker, braided-stream channel deposits follow local lows. Later movement on the Amarillo uplift broadly folded the Ogallala. The southern high plains surface subtly reflects basement structure, with topographic highs overlying basement highs, suggesting post-Ogallala deformation within the Palo Duro basin. The Amarillo uplift is approximately perpendicular to the Rio Grande rift and parallel to the direction of Basin and Range extension. Thus, the stress field that produced the rift may have caused strike-slip movement and reactivation of the Carson basin along the Amarillo uplift.

  13. Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.

    2001-01-01

    Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region

  14. Middle Jurassic U-Pb crystallization age for Siniktanneyak Mountain ophiolite, Brooks Range, Alaska

    SciTech Connect

    Moore, T.E. ); Aleinikoff, J.N.; Walter, M. )

    1993-04-01

    The authors report here a U-Pb age for the Siniktanneyak Mountain Ophiolite klippe in the west-central Brooks Range, the first U-Pb ophiolite age in northern Alaska. Like klippen of mafic and ultramafic rocks in the Brooks Range, the Siniktanneyak Mountain klippe is composed of a lower allochthon of Devonian and younger( ) diabase and metabasalt with trace-element characteristics of seamount basalts and an upper allochthon of ophiolite. The ophiolite is partial, consisting of (1) abundant dunite and subordinate harzburgite and wehrlite; (2) cumulate clinopyroxene gabbro, and (3) minor noncumulate clinopyroxene gabbro and subordinate plagiogranite; no sheeted dikes or volcanic rocks are known in the ophilitic allochthon. The plagiogranite forms small dikes and stocks that intrude the noncumulate gabbro and consists of zoned Na-rich plagioclase + clinopyroxene with interstial quartz and biotite. Five fractions of subhedral, tan zircon from the plagiogranite yield slightly discordant U-Pb data with an upper intercept age of 170 [+-] 3 Ma. The U-Pb data indicate that the Siniktanneyak Mountain ophiolite crystallized in the Middle Jurassic and was emplaced by thrusting onto mafic accretionary prism rocks within about 10 m.y. of crystallization. The U-Pb data provide an upper limit to the age of initiation of the Brookian orogeny.

  15. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  16. Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Reese, N. M.; Kelley, S. A.

    1985-01-01

    Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley.

  17. Anatomy of the Visual Word form Area: Adjacent Cortical Circuits and Long-Range White Matter Connections

    ERIC Educational Resources Information Center

    Yeatman, Jason D.; Rauschecker, Andreas M.; Wandell, Brian A.

    2013-01-01

    Circuitry in ventral occipital-temporal cortex is essential for seeing words. We analyze the circuitry within a specific ventral-occipital region, the visual word form area (VWFA). The VWFA is immediately adjacent to the retinotopically organized VO-1 and VO-2 visual field maps and lies medial and inferior to visual field maps within motion…

  18. An integrated remote sensing approach for identifying ecological range sites. [parker mountain

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A.

    1983-01-01

    A model approach for identifying ecological range sites was applied to high elevation sagebrush-dominated rangelands on Parker Mountain, in south-central Utah. The approach utilizes map information derived from both high altitude color infrared photography and LANDSAT digital data, integrated with soils, geological, and precipitation maps. Identification of the ecological range site for a given area requires an evaluation of all relevant environmental factors which combine to give that site the potential to produce characteristic types and amounts of vegetation. A table is presented which allows the user to determine ecological range site based upon an integrated use of the maps which were prepared. The advantages of identifying ecological range sites through an integrated photo interpretation/LANDSAT analysis are discussed.

  19. Multi-Temporal Monitoring of Slow Moving Landslides in South Pindus Mountain Range, Greece

    NASA Astrophysics Data System (ADS)

    Psychogyiou, Christina; Papoutsis, Ioannis; Kontoes, Charalambos; Poyiadji, Eleftheria; Spanou, Natalia; Klimis, Nikolaos

    2015-05-01

    The high frequency of landslide occurrences in Central and Western Greece, part of the Pindus mountain range, is now approached by exploiting the high temporal sampling rate of historical ERS-1/2 and ENVISAT SAR imagery in combination with the Multi Temporal Interferometry (MTI) technique. An existing well-established ground truth dataset is updated and enriched with the diachronic MTI results. Critical areas prone to slide are evaluated through susceptibility assessment and mapping taking into consideration the challenging environmental factors which dominate at the area of interest. A set of supplementary interesting geophysical and structural MTI detections at the region of analysis are additionally discussed.

  20. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the Western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 852 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the third year of the project, the Basin and Range and Rocky Mountain regions of PBO accelerated production goals in reconnaissance, permitting, and installation activities. The summer of 2006 saw the completion of nearly all of the reconnaissance field work for the regions, with permits submitted to landholders for 88% of the total number of stations. A major milestone in the permitting phase of the construction project was the approval of 33 GPS stations located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. Construction of these stations will be conducted throughout the fall of 2006. The focus for construction efforts in year 3 was in the state of Montana, where many of the backbone and Yellowstone cluster stations were completed. To date, construction is complete for 80 of 163 GPS stations.

  1. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 875 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the fourth year of the project, the Basin and Range and Rocky Mountain regions of PBO completed reconnaissance and nearly all permitting activities, and maintained a fast pace of station installations. The fall of 2006 and spring of 2007 were devoted to the construction of a large push of 50 stations, most located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. The Yellowstone area, including surrounding National Parks and Forests was the target of summer 2007, during which time 10 remote stations with difficult logistics were installed. To date, construction is complete for 135 of 163 GPS stations.

  2. Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections

    PubMed Central

    Yeatman, Jason D.; Rauschecker, Andreas M.; Wandell, Brian A.

    2012-01-01

    Circuitry in ventral occipital-temporal cortex is essential for seeing words. We analyze the circuitry within a specific ventral-occipital region, the visual word form area (VWFA). The VWFA is immediately adjacent to the retinotopically organized VO-1 and VO-2 visual field maps and lies medial and inferior to visual field maps within motion selective human cortex. Three distinct white matter fascicles pass within close proximity to the VWFA: (1) the inferior longitudinal fasciculus, (2) the inferior frontal occipital fasciculus and (3) the vertical occipital fasciculus. The vertical occipital fasciculus terminates in or adjacent to the functionally defined VWFA voxels in every individual. The vertical occipital fasciculus projects dorsally to language and reading related cortex. The combination of functional responses from cortex and anatomical measures in the white matter provides an overview of how the written word is encoded and communicated along the ventral occipital-temporal circuitry for seeing words. PMID:22632810

  3. The High Variability of Hydrologic Response in Mountain Watersheds: Snowy Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Miller, S. N.

    2015-12-01

    Three adjacent mountain streams that coalesce to form a single river have been monitored with a nested watershed design comprised of ten runoff stations for the past three years. Some of the stations are co-located on previous monitoring sites that allow for an extended period of record. Stage-discharge relationships have been built with high degrees of confidence at each station, and stream isotope data have been taken to better determine sources of water and fractionation of precipitation into runoff components. In addition to runoff observations we have multiple weather stations and use geophysical methods to investigate the subsurface and better characterize potential flow pathways and remote sensing and field methods to characterize the watersheds. From these data we have observed a high degree in variability in runoff characteristics among these sites, including significant differences in annual runoff, proportion of baseflow, rainfall/runoff efficiency, and hydrologic regime. Analyses of nested runoff data reveal longitudinal and seasonal changes in surface and subsurface flow, which allow us to identify the timing and location of groundwater contributions and channel transmission to regional aquifers. Differences among the watershed responses are augmented by precipitation, and we identify stream reaches that change from effluent to influent depending on timing and magnitude of runoff. We explored physical interpretations for the observed variability, including management, beetle impacts, and subsurface characteristics as inferred from geophysical data.

  4. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  5. Mountain gorilla ranging patterns: influence of group size and group dynamics.

    PubMed

    Caillaud, Damien; Ndagijimana, Felix; Giarrusso, Anthony J; Vecellio, Veronica; Stoinski, Tara S

    2014-08-01

    Since the 1980s, the Virunga mountain gorilla population has almost doubled, now reaching 480 individuals living in a 430-km(2) protected area. Analysis of the gorillas' ranging patterns can provide critical information on the extent and possible effects of competition for food and space. We analyzed 12 years of daily ranging data and inter-group encounter data collected on 11 gorilla groups monitored by the Karisoke Research Center in Rwanda. During that period, the study population increased in size by almost 50% and the number of groups tripled. Groups had small yearly home ranges compared to other known gorilla populations, with an average 90% kernel density estimate of 8.07 km2 and large between-group variations (3.17-23.59 km2). Most groups had consistent home range location over the course of the study but for some, we observed gradual range shifts of up to 4 km. Neighboring groups displayed high home range overlap, which increased dramatically after the formation of new groups. On average, each group used only 28.6% of its 90% kernel home range exclusively, and in some areas up to six different groups had overlapping home ranges with little or no exclusive areas. We found a significant intra-group positive relationship between the number of weaned individuals in a group and the home range size, but the fitted models only explained 17.5% and 13.7% of the variance in 50% and 90% kernel home range size estimates, respectively. This suggests that despite the increase in size, the study population is not yet experiencing marked effects of feeding competition. However, the increase in home range overlap resulting from the formation of new groups led to a sixfold increase in the frequency of inter-group encounters, which exposes the population to elevated risks of fight-related injuries and infanticide. PMID:24573634

  6. Home range characteristics of Mexican Spotted Owls in the Rincon Mountains, Arizona

    USGS Publications Warehouse

    Willey, David W.; Van Riper, Charpes III

    2014-01-01

    We studied a small isolated population of Mexican Spotted Owls (Strix occidentalis lucida) from 1996–1997 in the Rincon Mountains of Saguaro National Park, southeastern Arizona, USA. All mixed-conifer and pine-oak forest patches in the park were surveyed for Spotted Owls, and we located, captured, and radio-tagged 10 adult birds representing five mated pairs. Using radio-telemetry, we examined owl home range characteristics, roost habitat, and monitored reproduction within these five territories. Breeding season (Mar–Sep) home range size for 10 adult owls (95% adaptive kernel isopleths) averaged 267 ha (±207 SD), and varied widely among owls (range 34–652 ha). Mean home range size for owl pairs was 478 ha (±417 ha SD), and ranged from 70–1,160 ha. Owls that produced young used smaller home ranges than owls that had no young. Six habitat variables differed significantly between roost and random sites, including: percent canopy cover, number of trees, number of vegetation layers, average height of trees, average diameter of trees, and tree basal area. Radio-marked owls remained in their territories following small prescribed management fires within those territories, exhibiting no proximate effects to the presence of prescribed fire.

  7. Climate Change Effects on Treeline Communty Dynamics in Basin and Range Mountains

    NASA Astrophysics Data System (ADS)

    Smithers, B.; Millar, C.; North, M.

    2014-12-01

    Treeline advance is an expected sensitive indicator of climate change effects on species distributions. However, little evidence of treeline advance has been shown due to past disturbance or geomorphological limitations. The Basin and Range Mountains of Nevada and eastern California have seen minimal human impact and have been free of major glaciation, making these mountains an ideal location to test for climate change impacts on treeline. Great Basin treelines are dominated by bristlecone pine but recent observations show that usually downslope-growing limber pine appears to be pushing treeline upslope. In this study, we used modified belt transects at above and below adult treeline and at stand mid-elevation to compare species regeneration with adult, cone-bearing tree basal area. Our results show that limber pine regeneration surpasses bristlecone pine regeneration at treeline in terms of raw numbers of individuals. When adult basal area is taken into consideration, it appears that the very few adult limber pines have far more regeneration success at treeline than the bristlecone pine adults. This may have long-term ramifications on community composition of bristlecone pine forests, as these long-lived individuals largely exclude one another once established. Limber pine appears to be far better adapted to take advantage of rapid climate change. Even if bristlecone pine is ultimately better adapted to treeline in the long-term and this "changing of the guard" at treeline is temporary, due to their long lifespan, this effect could last thousands of years.

  8. Triangle zone and displacement transfer structures in the eastern Front Ranges, southern Canadian Rocky Mountains

    SciTech Connect

    Sanderson, D.A. ); Spratt, D.A. )

    1992-06-01

    The geometry of a relict triangle zone at the boundary of the Foothills and Front Ranges in the southern Canadian Rocky Mountains is constrained by detailed surface mapping over 700 m of relief and by seismic reflection data. The geometry and progressive development of the triangle zone along a strike length of 15-20 km, in the displacement transfer zone between the Coleman and Misty thrusts, is illustrated using closely spaced balanced cross sections, palinspastic restorations, and s sequentially restored cross section. Structural geometries show that a northeast- (foreland-) verging, mainly carbonate wedge of Mississippian to Triassic rock was inserted along a major upper detachment zone in shale, near the base of the Jurassic-Cretaceous clastic package. This was accompanied by southwest- (hinterland-) verging displacements along the upper detachment zone, tectonic thickening of the clastic package exceeding 200%, and backthrusting. Later northeast-verging deformation slightly modified the triangle zone by steepening structures, tightening folds, and minor thrusting. Recognition of relict triangle zones within the fold and thrust belt may document important changes in the rate of thrust front advancement, and aid in the delineation of potential hydrocarbon traps, similar to those discovered along the present-day thrust-belt margin in the southern Canadian Rocky Mountains.

  9. Managers' summary - ecological studies of the Pryor Mountain Wild Horse Range, 1992-1997

    USGS Publications Warehouse

    Singer, F.J.; Schoenecker, K.A.

    2000-01-01

    Ecological Studies of the Pryor Mountain Wild Horse Range, 1992-1997 provides a synthesis of key findings of landscape-scale, interdisciplinary studies of the effects of wild horses and native ungulates on a rugged, mountain ecosystem. This is perhaps the most comprehensive study of a wild horse herd conducted. This was a complex study and one involving a truly interagency approach. Six agencies either provided input to research priority setting, funding, or both. The agencies included the Bureau of Land Management, National Park Service, U.S. Geological Survey, Montana Department of Fish, Wildlife and Parks, Wyoming Game and Fish Department, and U.S. Forest Service. The major research direction and effort came from the U.S. Geological Survey and Natural Resources Ecology Lab, Colorado State University with Montana State University and the University of Kentucky also participating. Ungulate monitoring was conducted by the U.S. Geological Survey, Biological Resources Division, Bureau of Land Management, Billings Field Office and the Montana Fish and Wildlife Parks, with funding by Bighorn Canyon National Recreation Area. Many other individuals and groups were involved and deserve credit. The report printing was made possible with funds from the Bureau of Land Management, Wild Horse and Burro Program, Washington Office. This report was prepared by the Information Management Project, Midcontinent Ecological Science Center, U.S. Geological Survey.

  10. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  11. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  12. On the Geomorphological Status of the Central Mountain Range, Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    It has been known that the tectonic uplift forming the central mountain range (Taebaek Mtn.) in the Korean Peninsula has begun since the Tertiary (Kim, 1961). Recent studies suggest that most uplift events have occurred during the mid Miocene (Min et al., 2008). On the summits of the Taebaek mountain range are low-relief plateaus. They have long been interpreted as paleo erosional surfaces, and thus are considered as transient landscape. In other words, low-relief plateaus have been considered as evidences that the landscape has not responded to the tectonic uplift events yet. However, a recent study on the denudation rates of a plateau reported that the erosion rate of the plateau is much greater than several paleo surfaces reported in other parts of the world (Byun et al., under revision). Such high denudation rate raises a question on the previous hypothesis of paleo surfaces. To test these two contrasting hypotheses, we first identify characteristic features of the plateau landscape using topographic position index (Weiss, 2001). Then, we numerically evaluate the required time for the development into the plateau landscape starting from various initial reliefs. Our quantitative analysis shows that dominant features that compose the plateau are flat-convex ridge, straight mid slope, and slightly concave lower slope. Simulation results show that the highly weathered saprolite observed in the plateau accelerates the development into the representative hillslope profiles. As a result, we find that development from different initial reliefs into the representative profiles takes time less than expected by the previous paleo surfaces hypothesis. Such results reconfirm that the plateau is not originated from paleo surfaces, but from recent geomorphic processes aided by highly weathered saprolites. This can also imply that the plateau topography is not in transient state. References Byun, J., Heimsath, A. M., Seong, Y. B., and Lee, S. Y., Erosion of a high

  13. Effects of Landfall Location and Approach Angle of an Idealized Tropical Cyclone over a Long Mountain Range

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Lin, Yuh-Lang; Chen, Shu-Hua

    2016-02-01

    Effects of landfall location and approach angle on track deflection associated with a tropical cyclone (TC) passing over an idealized and Central Appalachian Mountain is investigated by a series of idealized numerical experiments. When the TC landfalls on the central portion of the mountain range, it is deflected to the south upstream, passes over the mountain anticyclonically, and then moves westward downstream. The TC motion is steered by the positive vorticity tendency (VT) which is dominated by horizontal vorticity advection upstream and downstream, but with additional influence from the stretching and residual terms, which are mainly associated with diabatic heating and frictional effects. The track deflection mechanism upstream and downstream is similar to the dry flow in previous study, but is very different in the vicinity of the mountain. When the TC landfalls near the northern (southern) tip, it experiences less (more) southward deflection due to stronger (weaker) vorticity advection around the tip. When the TC approaches the mountain range from the southeast and landfalls on the northern tip, center, or southern tip, the track deflections are similar to those embedded in an easterly flow but with weaker orographic blocking. These results are similar to the cases simulated in the dry flow in previous study, except that there is no track discontinuity due to the weaker orographic blocking associated with strong TC convection. When a TC moves along the north-south mountain range from the south, it tends to deflect toward the mountain and then crosses over to the other side at later time. In these cases, the positive VT is influenced by all horizontal vorticity advection, vorticity stretching (diabatic heating) and residual (friction) terms due to longer and stronger interaction with the mountain range. The vorticity stretching is mainly caused by diabatic heating in the moist flow, instead of by lee slope vorticity stretching in the previous study for dry

  14. A new species of the genus Leptobrachium (Anura: Megophryidae) from the Gaoligongshan Mountain Range, China.

    PubMed

    Yang, Jian-Huan; Wang, Ying-Yong; Chan, Bosco Pui-Lok

    2016-01-01

    We describe a new species of the genus Leptobrachium from the Gaoligongshan Mountain Range, Yunnan Province of China based on molecular and morphological evidences. The new species, Leptobrachium tengchongense sp. nov., can be distinguished from its congeners by a combination of the following characters: (1) relatively small size (adult males SVL 41.7-51.5 mm); (2) head width slightly larger than head length; (3) tympanum indistinct; (4) two palmar tubercles oval and distinct, inner one larger than outer one; (5) sexually active males without spines on the upper lip; (6) dorsal skin smooth with distinct network of ridges; (7) dorsum pinkish grey and scattered with irregular black markings; (8) venter dark purplish-gray with numerous small white spots on tubercles, solid white chest; (9) iris bicolored, upper one-third light blue, lower two-third dark brown. With the description of the new species, the number of Leptobrachium species currently known from China adds up to ten. PMID:27515651

  15. Orographic precipitation, wind-blown snow, and landscape evolution in glaciated mountain ranges

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.; Rowan, A. V.; Plummer, M. A.; Foster, D.; Schultz, D. M.; MacGregor, K. R.

    2011-12-01

    Orographic precipitation and wind-blown snow appear to significantly influence the evolution of glaciated mountain ranges, and in narrow ranges the effect is opposite from orographic precipitation in non-glaciated ranges. While fluvially-eroded ranges tend to be exhumed more on the windward side, glacially-eroded ranges can experience greater erosion on the leeward side. On the timescale of an individual glaciation, the distribution of precipitation and settling is a key component of glacier mass balance and ice extent, while on longer timescales, the interaction of precipitation and topography can play a major role in landscape evolution and range morphology. Numerical modelling of last glacial maximum (LGM) ice extents for catchments on the eastern side of the Southern Alps, New Zealand, highlights the importance of the distribution of precipitation. The accumulation areas of the glaciers would have experienced much greater precipitation than lower elevations, because of the pronounced orographic precipitation gradient, so glacier length is very sensitive to the precipitation distribution employed for any given temperature change. This is particularly challenging given the lack of modern snow monitoring at high altitudes within the Southern Alps, the likelihood of steep accumulation gradients amongst high topography, below the resolution of current datasets, and the difficulty of extrapolating modern values to the LGM. The Sangre de Cristo Range, southern Colorado, and the Bitterroot Range on the Idaho-Montana border both run close to north-south, cross-cutting the prevailing westerly winds. Drainage basins on both sides of the ranges cover similar areas, but moraines are much more substantial on the eastern sides, indicating greater glacial incision, which we suggest at least partly reflects snow blown over the range crest. The Uinta Mountains, Utah, run west-east, parallel to prevailing winds, and show topographic asymmetry across individual catchments, rather

  16. Spring Database for the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Pavelko, Michael T.

    2007-01-01

    A database containing nearly 3,400 springs was developed for the Basin and Range carbonate-rock aquifer system study area in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The spring database provides a foundation for field verification of springs in the study area. Attributes in the database include location, geographic and general geologic settings, and available discharge and temperature data for each spring.

  17. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    USGS Publications Warehouse

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it

  18. Conodont biostratigraphy and biofacies of the Wahoo Limestone (Carboniferous), Sadlerochit Mountains, northeast Brooks Range, Alaska

    SciTech Connect

    Krumhardt, A.P. ); Harris, A.G. )

    1990-05-01

    The Wahoo Limestone forms the upper part of the Lisburne Group (Carboniferous) in the Sadlerochit Mountains. The Lisburne Group is a thick (> 600 m) sequence of platform carbonate rocks that extends across the Brooks Range of northern Alaska and beneath the North Slope. At Prudhoe Bay, the Lisburne Group forms a major hydrocarbon reservoir. In the easternmost Sadlerochit Mountains, the Wahool Limestone is divisible into informal lower (64 m) and upper (192 m) members. The basal 46 m is chiefly bryozoan and pelmatozoan packstone that formed on a relatively shallow platform during the latest Mississippian lower muricatus subzone (as shown by the occurrence of the zonal index with representatives of Cavusgnathus). Cavusgnathus is dominant in this part of the section and occurs with representatives of Kladognathus, Ghathodus, Adetognathus, Hindeodus, and Rhachistognathus (in order of decreasing abundance). Declinognathodus noduliferus, the index for the base of the Pennsylvanian, first occurs at 49 m above the base of the Wahoo and 1 m above a discontinuity surface that marks the Mississippian-Pennsylvanian boundary. The unconformity represents the highest conodont subzone of the Mississippian and probably part of the earliest Pennsylvanian. Previously, the Mississippian-Pennsylvanian boundary was placed t the lower-upper Wahoo contact based on endothyroids; conodont data now indicate that this boundary is 15 m lower. The remaining lower Wahoo is possibly of noduliferus-primus zone age and chiefly yields, in order of decreasing abundance, species of Adetognathus, Declinognathodus, and Rhachistognathus, as well as redeposited Mississipian conodonts. The lower 15 m of the upper member of the Wahoo contains silty (5-40%) carbonate rock types that yield very few conodonts. Conodonts no older than the minutus-sinuatus zone are relatively abundant from 15 to 106 m above the base of the upper Wahoo.

  19. Characterizing Controls of Riparian Width for Mountain Streams in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Polvi, L. E.; Wohl, E. E.

    2007-12-01

    High variability of mountain streams causes riparian width to vary greatly from changes in drainage, valley and channel characteristics. GIS- based models for predicting flood-prone width, valley bottoms, or riparian zones may not accurately reflect processes at the reach scale, therefore field verification and reach-specific studies are needed. Management of riparian areas often designates a generalized width, which may under- or over-estimate the true riparian width. This study examines correlations between potential control variables and riparian zone width in the Colorado Front Range. Results from this study will be used to predict the riparian zone as a proxy for flood-prone width in the semi-arid Colorado Front Range. We hypothesize that local controls interact with large- scale controls to determine floodplain processes. Large-scale controls identified are elevation, which reflects hydroclimatology and glacial history, gradient and drainage area. Local controls are entrenchment, the ratio of the valley width to channel width, connectedness, defined as the distance from the channel to valley edge, presence of colluvium, and vegetation type, affecting roughness during flooding and bank stability. We chose twenty reaches based on elevation, connectedness, gradient and drainage area using a GIS base map in anthropogenically undisturbed areas of the Colorado Front Range, which included the Cache la Poudre and North St. Vrain drainages. Riparian width was defined using a three-tiered approach: evidence of fluvial processes and presence of riparian vegetation, compared with the Q100 stage. A longitudinal and two valley and channel cross-section surveys were completed at each stream reach to determine valley and channel geometry and bed gradient. Preliminary results show significant positive correlations between drainage area, entrenchment, and connectedness and riparian width, and negative correlations between gradient and riparian width, supporting the hypothesis

  20. Mountain pine beetle host-range expansion threatens the boreal forest

    PubMed Central

    Cullingham, Catherine I; Cooke, Janice E K; Dang, Sophie; Davis, Corey S; Cooke, Barry J; Coltman, David W

    2011-01-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant. PMID:21457381

  1. Mountain pine beetle host-range expansion threatens the boreal forest.

    PubMed

    Cullingham, Catherine I; Cooke, Janice E K; Dang, Sophie; Davis, Corey S; Cooke, Barry J; Coltman, David W

    2011-05-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant. PMID:21457381

  2. Global Trends in Glacial Cirque Floor Altitudes and Their Relationships with Climate, Equilibrium Line Altitudes, and Mountain Range Heights

    NASA Astrophysics Data System (ADS)

    Mitchell, S. G.; Humphries, E.

    2013-12-01

    Glacial erosion at the base of cirque headwalls and the creation of threshold slopes above cirque floors may contribute to the 'glacial buzzsaw' effect in limiting the altitude of some mountain ranges. Since glacial extent and therefore glacial erosion rate depends on the equilibrium line altitude (ELA) of a region, the altitude of cirque formation should be a function of the ELA. Several regional studies have shown that cirque floors form at an altitude approximating average Quaternary ELAs in some mountain ranges, but a global correlation has not yet been demonstrated. We examined the correlation between cirque altitudes and global ELA trends by compiling existing and new cirque altitude and morphometry data from > 30 mountain ranges at a wide range of latitudes. Where available, we calculate or present the average cirque altitude, relief, and latitude. We compared these altitudes to both the global East Pacific ELA and local ELAs where available. For the locations analyzed, the majority of average cirque altitudes fall between the Eastern Pacific modern and LGM ELAs, and mountain range height is typically limited to < 600 m above that altitude. This evidence supports the hypothesis that cirque formation is dependent upon the ELA, and that cirques likely form as a result of average, rather than extreme, glacial conditions. Furthermore, the correlation between cirque altitude and ELA, along with the restricted window of relief, implies that cirque formation is a factor in limiting peak altitude in ranges that rise above the ELA.

  3. Map showing mineral-resource potential of the King Range and Chemise Mountain Instant Study Areas, Humboldt and Mendocino counties, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Sorg, D.H.; Ohlin, H.N.; Beutner, E.C.

    1981-01-01

    Minor manganese resources occur adjacent to the southeast corner of the King Range Instant Study Area near Queen Peak. The manganese forms small stratabound deposits associated with radiolarian chert and pillow basalt. The known deposits are too small and the manganese too low in concentration for further economic exploitation. Similar manganese mineralization may be within the belt of melange in the southeast corner of the King Range area and within the Chemise Mountain Instant Study Area, but economic deposits are unlikely. Although there has been historical base- and precious-metal exploration activity north of the King Range in the Mattole River drainage, our geologic and geochemical field data indicate almost no gold potential and low potentials for lead, zinc, copper, and silver. During this investigation, one high-grade vein and several minor veins containing lead, zinc, copper, and silver were discovered at Point Delgada immediately south of the King Range Instant Study Area. The vein mineralization is Miocene and cuts Cretaceous basalt flows, dikes, flow breccia, and younger overlying sedimentary rocks of the King Range. The vein mineralization at Point Delgada could be remobilized from more extensive unexposed stratabound base-metal mineralization at depth. Traces of lead and zinc detected within the King Range Instant Study Area may have similar stratabound or vein origins, but no resource potential is indicated. Minor copper mineralization with associated lead, zinc, and manganese anomalies within the Chemise Mountain Instant Study Area is of low economic potential because of the shearing, isolation, and lenticularity of the basaltic and cherty rocks within the melange mineralization.

  4. Morphotectonic architecture of the Transantarctic Mountains rift flank between the Royal Society Range and the Churchill Mountains based on geomorphic analysis

    USGS Publications Warehouse

    Demyanick, Elizabeth; Wilson, Terry J.

    2007-01-01

    Extensional forces within the Antarctic Plate have produced the Transantarctic Mountains rift-flank uplift along the West Antarctic rift margin. Large-scale linear morphologic features within the mountains are controlled by bedrock structure and can be recognized and mapped from satellite imagery and digital elevation models (DEMs). This study employed the Antarctic Digital Database DEM to obtain slope steepness and aspect maps of the Transantarctic Mountains (TAM) between the Royal Society Range and the Churchill Mountains, allowing definition of the position and orientation of the morphological axis of the rift-flank. The TAM axis, interpreted as a fault-controlled escarpment formed by coast-parallel retreat, provides a marker for the orientation of the faulted boundary between the TAM and the rift system. Changes in position and orientation of the TAM axis suggests the rift flank is segmented into tectonic blocks bounded by relay ramps and transverse accommodation zones. The transverse boundaries coincide with major outlet glaciers, supporting interpretation of rift structures between them. The pronounced morphological change across Byrd Glacier points to control by structures inherited from the Ross orogen.

  5. Quantifying Sediment Delivery History in Mediterranean Mountain Watersheds from Lake Records (Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Valero-Garcés, Blas; Barreiro-Lostres, Fernando; Moreno, Ana; González-Sampériz, Penélope; Giralt, Santiago; Nadal-Romero, Estela

    2016-04-01

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains with long history of human occupation and strong seasonality of hydrological regimes. Monitoring studies in experimental catchments in the Pyrenees have identified main controlling factors on erosion dynamics but, because of the short time span, they do not integrate the diverse temporal and spatial variability of these environments. We propose a novel strategy based on multi-proxy analyses of lake sediments aimed to quantify sediment delivery and erosion dynamics. Karstic lakes in the Iberian Range (Spain) provide the opportunity to reconstruct the depositional evolution of Mediterranean mountain watersheds and to evaluate the response to both, anthropogenic and climate forcings during the last millennia. Precipitation (rainfall intensity, seasonality, runoff production) and land cover (forest area, degraded areas, land uses) are key factors controlling erosion in both experimental and lake catchments. Values for Minimum Denuded Mass (Mdc) and Total Denudation Rate (DRt) measured in experimental catchments and reconstructed from lake sequences are comparable. In both settings, most sediment yield occurs during flooding events. The reconstructed sediment delivery to the lakes during flood events spans several orders or magnitude (less than 100 T to 98000 T) and the denudation rate ranges from 6 to 480 T km-2 yr-1. Reconstructed mass denudation values per event in the forested lake catchments are similar (less than 30 T km-2 yr-1) to sediment yields from a high altitude experimental watershed. Flood sediment yield values from an abandoned farmland experimental catchment (69 T km2) are in the lower range of lake watersheds (from 60 to 480 T km-2 yr-1). No lake watershed has reached the values documented for the badland catchment (3094 T km-2). These results underline the punctuated nature of sediment dynamics in Mediterranean landscapes at decadal and centennial scales. Major

  6. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina

    NASA Astrophysics Data System (ADS)

    Hoke, Gregory D.; Giambiagi, Laura B.; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.

    2014-11-01

    The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world's second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.

  7. Diversity and gradients in cedar forests on Taurus mountain range (Turkey).

    PubMed

    Kavgai, Ali; Earni, Andra

    2012-09-01

    Cedrus libani forests have been under anthropogenic pressure for thousands of years. The unattainable topography of the Taurus mountain range (Southern Anatolia) has prevented cedar in this region from being extirpated, in contrast to its other distribution areas in Syria and Lebanon. Numerical analyses of relevés confirmed the individuality of associations, as well as the division of C. libani forests into two ecological and floristically different groups/alliances (Abieti-Cedrion and Lonicero-Cedrion). Abieti-Cedrion is distributed in the middle and eastern Taurus whereas Lonicero-Cedrion appears in the Western Taurus. The main gradients of C. libani forests were detected. It was noticed that the distribution and floristic composition of C. libani forests is strongly affected by the geographical factors. Topographical factors are also influential on their distribution. C. libani forests are fundemantal components of the Mediterranean phytogeographical region and floral elements, but under more continental conditions, where the influence of the Mediterranean climate decreased, the proportion of Iran-Turanian and Euro-Siberian floral elements increase, especially towards the east and north, as well at higher altitudes and on steeper sites. PMID:23734468

  8. STS-56 ESC Earth observation of a portion of the Himalayan mountain range

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image taken aboard Discovery, Orbiter Vehicle (OV) 103, shows a portion of the Himalayan mountain range. The image was recorded with a 180mm lens on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. In this observation, the center coordinates are 27.822 degrees north latitude and 84.173 degrees east longitude. Geolocation accuracy on this image is 0.7 nautical miles. The Kali River runs from the east (top left corner) to the west (bottom right corner). Nepal's capital city of Kathmandu lies (out of frame) about 96 nautical miles east of the center point. Digital file name is ESC01039.IMG.

  9. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment

  10. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    USGS Publications Warehouse

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  11. Timescale of erosion in high mountain range. What do U-series tell us

    NASA Astrophysics Data System (ADS)

    Pomies, C.; Bickle, M. J.; Tipper, E. T.; Chapman, H. J.; Fairchild, I. J.; Harris, N.

    2003-04-01

    We aim is to better understand the feedbacks which control long term climate by studying weathering yields in a rapidly eroding mountainous environment. This study focuses on one of the large Nepalese river, the Marsyandi which drains all the main structural units of the Nepalese Himalaya. Here we use, in addition to major element, Sr and Sr isotopes, the disequilibria of the 234U/238U and 238U/230Th activity ratios of river water, suspended load, bedload and rocks in an attempt to determine the weathering inputs and the timescale of the weathering processes. In addition a weekly sampling of the dissolved load at four sites enables us to measure the impact of the monsoon seasonality on the uranium activity of the dissolved load. This sampling helps to quantify the groundwater inputs and therefore the erosion processes involved. Throughout the dry and the monsoon season the main U source to the Marsyandi is the Dhudh khola which drains the uranium rich Manaslu granite. The uranium concentrations of the river waters exhibit a trend explicable in term of mixing of a silicate and carbonate end members. Surprisingly (234U/238U)a<1 in water and (234U/238U)a>1 in bedload suggest that, in parts of the range, the bedrock undergoes a first stage of weathering by groundwater at depth followed by further chemical weathering at the surface. The main uranium fractionation occurs during the first stage of groundwater weathering. The duration of this stage, within the last 1.5Ma, is mainly controlled by the uplift rate of the range currently estimated at 3mm/y. Highly variable (234U/238U) activity found in the dissolved load of rivers draining the TSS formation reflects the complexity of the interactions between weathering processes, lithology and tectonics.

  12. Numerical modeling of cosmogenic deglaciation records, Front Range and San Juan mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Ward, Dylan J.; Anderson, Robert S.; Guido, Zackry S.; Briner, Jason P.

    2009-03-01

    We use cosmogenic radionuclide (CRN) exposure ages from polished, striated bedrock to constrain numerical simulations of deglaciation in the Middle Boulder Creek Valley, Colorado Front Range, and the Animas River Valley, San Juan Mountains, Colorado. In both valleys, the cosmogenic ages suggest initiation of deglaciation ˜20 ka and ongoing retreat until 12-13 ka. While the first-order trend in CRN concentrations in each valley suggests a monotonic glacial retreat, we evaluate other retreat scenarios with different implications for post-Last Glacial Maximum regional climate. We use a 2-D numerical glacier simulation with a CRN layer to investigate how CRN-based deglaciation records are affected by retreat histories that are punctuated by periods of glacier readvance. The CRN layer simulates both production during periods of exposure and reduction by glacial erosion during readvances. We simulate glacial occupation of the valleys as they respond to equilibrium line altitude (ELA) histories characterized by stepwise change, gradual rise, or a rise punctuated by short periods of lowering. Each scenario generates a distinct spatial pattern of concentrations in the CRN layer. These results and the spatial pattern of measured concentrations in bedrock constrain the range of ELA histories that reproduce the CRN pattern in each valley. In the Animas River Valley, the exposure ages are well explained by a linear ELA rise from full glacial to deglacial conditions. Ages in Middle Boulder Creek Valley are best explained by a deglaciation history including a stillstand or partial readvance between 16 and 14 ka, followed by rapid retreat.

  13. The Significance of High, Isolated, Low-relief Surfaces in Glaciated Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.

    2015-12-01

    The highest regions of glaciated mountain ranges are characterised by cirques, arêtes and steep hillslopes. In addition, though, many ranges exhibit high, isolated, low-relief surfaces, which may provide an important record of landscape evolution. Broad, low-curvature surfaces, for example in the Laramide Ranges of the western United States, reflect periglacial regolith production and transport (e.g., Anderson, 2002). Here, the focus is on smaller surfaces that appear to be out of equilibrium with current/recent surface processes, and are interpreted as former glacial valley floors isolated from the current valley network. The low-relief surfaces at the crest of the Sierra Nevada, California, are diamict covered. The top of Sardine Canyon is a beheaded cirque, while the cirque on the western side of Baxter Pass is in the process of being beheaded. Meanwhile, the isolated patch of diamict on the northeastern ridge of University Peak is surrounded on all sides by steep cliffs, and presumably represents a more evolved surface. It is inferred that the glaciated eastern Sierra Nevada is subject to a cycle of drainage capture and relief inversion, driven by headward erosion by cirque glaciers. The central Himalaya contains a number of low-relief, ice-covered surfaces far above the rest of the glacial valley network (e.g., the Sakyetang Glacier, >6,600m, above the Kazhen Glacier, <5,400m). The ice at > 6,000m is frozen to the bedrock, so sub-glacial erosion will be outpaced by rock uplift. The extreme relief and active tectonics of the central Himalaya mean that drainage capture is not necessarily required in the generation of high, isolated, low-relief surfaces; glacial steps can become exaggerated to form reconstituted glaciers. High, isolated, low-relief surfaces are found across the Southern Alps, New Zealand, from Miserable Ridge and Kelly Saddle close to the western range front, through Urquhart Peak and Lake Browning near the Main Divide, to Kaimakamaka Peaks east

  14. Remagnetization of the Coast Range ophiolite at Stanley Mountain, California, during accretion near 10 degree N paleolatitude

    SciTech Connect

    Hagstrum, J.T. )

    1992-06-01

    Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11{degree} {plus minus} 3{degree}) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6{degree} {plus minus} 5{degree}) are consistent with remagnetization of the ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10{degree}N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.

  15. [Redescription of Dermacentor raskemensis Pomerantzev, 1946 (Ixodidae)--a representative of the mountain fauna of the southern regions of the USSR and adjacent territories].

    PubMed

    Filippova, N A

    1983-01-01

    A redescription of female and male of the little-known species Dermacentor raskemensis Pomerantzev has been made on the holotype (male, West China, Sinkiang) and on collection material of Zoological Institute of the Academy of Sciences of the USSR and Institute of Zoology of Armenian SSR: three females and males from Armenia and western Pakistan. Despite a considerable remoteness of their distribution areas all studied specimens show stability of their specific characters and differ distinctly from the close species D. niveus Neumann and D. everestianus Hirst. The both sexes (especially female) of D. raskemensis differ in having peculiar, most complete (in the ranges of the genus) filing of the dorsal shield area with dense light pigment and by prevalence of very small punctation and the lack of contrast between it and larger punctation. Peritreme of D. raskemensis male has a long narrow dorsal process which is at the right angel to its longitudinal axis and slightly concave along the hind edge. The dorsal process of the female is well developed and is at the right or acute angles to the longitudinal axis. In addition the both sexes have a wide smooth thickening along the anterior edge of the process, the proportions of peritreme are specific in species. In close species the dorsal process of peritreme is at the blunt angle to its longitudinal axis, in D. everestianus the thickening along the anterior edge is missing. Female of D. raskemensis lacks wing-shaped appendages of the genital opening while in D. niveus they are distinct (the structure is not mentioned in the description of D everestianus). D. raskenmensis apparently inhabits highlands and meadow-steppe, steppe and mountain sparce forest zones most part of which is covered by rocks and screes. In Armenia it was recorded from Armenian mouflon and wild goat; in other countries (Iran, Afghanistan, western Pakistan, India and China) it occurs on sheep and goats from alpine pastures. Most collections were done

  16. Exhumation History of the Taebaek Mountain Range in Korean Peninsula: Implications for Miocene Tectonic Evolution of East Asia

    NASA Astrophysics Data System (ADS)

    Min, K. K.; Cho, M.; Reiners, P. W.

    2008-12-01

    The Taebaek mountain range is the major, N-S trending belt running along the eastern margin of the Korean Peninsula. This range has a relatively gentle slope to the west (inland) whereas its eastern side is significantly steeper being bounded by the East Sea (or Japan Sea). The Daegwanryeong, a ~850-m- high mountain located approximately in the middle (latitude 37.5°N) of the Taebaek range, is mainly composed of a single body of Jurassic granite. In order to study exhumation histories of the Taebaek mountain range, we applied single-grain apatite (U-Th)/He thermochronometry to the eastern crustal section of the Daegwanryeong. Apatite samples from the elevation of 25 - 500 m yielded average (U-Th)/He ages in the range of ~21 - 26 Ma with an overall weighted mean age of ~23 Ma. The variation of ages over this elevation span is negligible. In contrast, two samples collected at higher elevations show apparently older ages of 30 Ma (770 m) and 36 Ma (840 m). The elevation-independent ages below 500 m suggest a pulse of rapid exhumation at ~23 Ma, and the positive correlation between age and elevation detected above 700 m indicates a less intense cooling event prior to ~23 Ma. By extrapolating the observed patterns for the low (<500 m) and high (>700 m) elevation data in the age-elevation plot, we inferred a breakage of the slope near the elevation of 600 - 700 m which is interpreted as the base of the previous He partial retention zone (He- PRZ) of apatite. The inferred onset of rapid exhumation in the Daegwanryeong is coeval with the opening of East Sea (or Japan Sea). Although the exact timing of initial separation of the Japanese islands from the Eurasian continent is controversial, several lines of evidence support Late Oligocene - Early Miocene development of initial rift as a precursor of the East Sea. The remarkable temporal match between the exhumation of Daegwanryeong and the opening of East Sea provides an example for the coupled development of mountain

  17. Characterization of Groundwater Flow at a Mountainous Watershed, Niwot Ridge, Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Evans, S. G.; Ge, S.

    2013-12-01

    We present a 3D coupled flow and solute transport hydrogeologic model for the Niwot Ridge Watershed in the Front Range of Colorado. This is the first 3D modeling attempt at detailing groundwater recharges at this site. The 7.6 km2 watershed ranges in elevation from 3241 to 4082 m and is representative of an alpine setting. Its climate is characterized by a mean annual precipitation of 1.95 m, mean annual air temperature of -2.1 °C, and extensive snow coverage six months of the year with 80% of the precipitation falling as snow. At the study site, Proterozoic metamorphic and igneous bedrock is intruded by Tertiary stocks and overlain by Quaternary deposits. In the middle of the watershed are six paternoster lakes connected by North Boulder Creek, the headwaters of the South Platte River. We use a steady state 3D finite element coupled flow and solute transport model to characterize the groundwater and solute transport systems and quantify mountain recharge under averaged long-term conditions. Field data including effective porosity, hydraulic conductivity, and solute concentration in surface water are utilized to constrain and calibrate model parameters. We conduct model sensitivity analysis to examine how uncertainties in model input parameters may influence model results. Preliminary model results indicate that regional groundwater flow is from northwest to southeast, towards North Boulder Creek. This groundwater flow pattern is consistent with field observations. The average hydraulic head gradient over the entire modeled area is approximately 0.12 m/m. Groundwater velocity varies from 1.4 x 10-6 to 1.8 x 10-3 m/s. Groundwater flow is primarily driven by a topographically influenced precipitation regime, with 7% of the total precipitation recharging into the subsurface. Groundwater contribution to baseflow of North Boulder Creek is at an average rate of 0.03 m3/s, which is on the same magnitude as observed values. Modeled discharge solute concentration (Na

  18. Chloroplast DNA Phylogeography Reveals Repeated Range Expansion in a Widespread Aquatic Herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and Adjacent Areas

    PubMed Central

    Sun, Shan-Shan; Gituru, Robert Wahiti; Wang, Qing-Feng

    2013-01-01

    Background The Qinghai-Tibetan Plateau (QTP) is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown. Methodology and Principal Findings We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA) non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (GST = 0.819) but the phylogeographical structure remained obscure (NST = 0.853>GST = 0.819, P>0.05). Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr). Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr) might have begun from the different refugees before the Last Glacial Maximum (LGM). Conclusions/Significance This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations. PMID:23565290

  19. The Nazeris Fauna of the Luoxiao Mountain Range, China. (Coleoptera, Staphylinidae, Paederinae)

    PubMed Central

    Hu, Jia-Yao; Li, Li-Zhen

    2015-01-01

    Fourteen species of Nazeris Fauvel are recorded from the Luoxiao Mountains. Twelve of them are described as new: N. luoxiaoshanus, N. pengzhongi, N. divisus, N. paradivisus, N. xiaobini, N. congchaoi, N. nannani, N. rufus, N. ziweii, N. daweishanus, N. prominens, and N. zekani. N. inaequalis Assing, 2014 is newly recorded from Hunan Province. PMID:26161533

  20. Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.

    PubMed

    Miyamoto, Yumiko; Sakai, Atsushi; Hattori, Masahira; Nara, Kazuhide

    2015-08-01

    Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant-fungus associations. PMID:25647348

  1. Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains).

    PubMed

    Pérez-Luque, Antonio Jesús; Zamora, Regino; Bonet, Francisco Javier; Pérez-Pérez, Ramón

    2015-01-01

    In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range. PMID:26491387

  2. Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)

    PubMed Central

    Pérez-Luque, Antonio Jesús; Zamora, Regino; Bonet, Francisco Javier; Pérez-Pérez, Ramón

    2015-01-01

    Abstract In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range. PMID:26491387

  3. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  4. Hungry Horse Dam Wildlife Habitat Enhancement Project: Long-Term Habitat Management Plan, Elk and Mule Deer Winter Range Enhancement, Firefighter Mountain and Spotted Bear Winter Ranges.

    SciTech Connect

    Casey, Daniel; Malta, Patrick

    1990-06-01

    Project goals are to rehabilitate 1120 acres of big game (elk and mule deer, Odocoileus hemionus) winter range on the Hungry Horse and Spotted Bear Districts of Flathead National Forest lands adjacent to Hungry Horse Reservoir. This project represents the initial phase of implementation toward the mitigation goal. A minimum of 547 acres Trust-funded enhancements are called for in this plan. The remainder are part of the typical Forest Service management activities for the project area. Monitor and evaluate the effects of project implementation on the big game forage base and elk and mule deer populations in the project area. Monitor enhancement success to determine effective acreage to be credited against mitigation goal. Additional enhancement acreage will be selected elsewhere in the Flathead Forest or other lands adjacent'' to the reservoir based on progress toward the mitigation goal as determined through monitoring. The Wildlife Mitigation Trust Fund Advisory Committee will serve to guide decisions regarding future enhancement efforts. 7 refs.

  5. Multi-Faceted Geophysical Analysis of a Mountain Watershed in the Snowy Range, WY: from Airborne Electromagnetics to NMR

    NASA Astrophysics Data System (ADS)

    Armstrong, R. S.; Holbrook, W. S.; Flinchum, B. A.; Provart, M.; Carr, B. J.; Auken, E.; Pedersen, J. B.

    2014-12-01

    Surface/groundwater interactions are an important, but poorly understood, facet of mountain hydrology. We utilize ground electrical resistivity data as a key tool for mapping groundwater pathways and aquifers. However, surface resistivity profiling is limited in both spatial extent and depth, especially in mountainous headwater environments because of inaccessibility and terrain. Because this important groundwater recharge environment is poorly understood, WyCEHG has focused efforts to increase knowledge about the dynamics and location of groundwater recharge. Currently, traditional hydrologic measurements estimate that only 10% of annual snowmelt enters the groundwater system while the rest is immediately available to surface flow. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) collected a 40 sq. km survey of helicopter transient electromagnetic (HTEM) and aeromagnetic data during the fall of 2013 as the first step in a "top down" geophysical characterization of a mountainous headwater catchment in the Snowy Range, Wyoming. Furthermore, mountain springs in the Snowy Range suggests that the "groundwatershed" acts as both a sink and source to surface watersheds. HTEM data show horizontal electrical conductors at depth, which are currently interpreted as fluid-filled subsurface fractures. Because these fractures eventually connect to the surface, they could be geophysical evidence of connectivity between the watershed and "groundwatershed." However, current HTEM inversion techniques assume a layered homogenous subsurface model, which directly contradicts two characteristics of the Snowy Range: the subvertical bedding of the Cheyenne Belt and heterogeneous distribution of surface water. Ground electrical resistivity surveys and surface nuclear magnetic resonance (NMR) measurements collected during the summer of 2014 target these anomalies to determine their validity and further understand the complicated dynamic of surface and groundwater flow.

  6. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  7. Peneplains of the Front Range and Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Lee, Willis T.

    1923-01-01

    The purpose of this paper is to call attention to some of the major surface features in the Rocky Mountain National Park and to point out their probable correlation with similar features in neighboring regions. The observations on which the paper is based were made in the summer of 1916, during an investigation in which other work demanded first consideration. This paper may therefore be considered a by-product. For the same reason many of the observations were not followed to conclusions, yet the data obtained seem to be sufficient to establish a certain order of events, the recognition of which may be of assistance in working out in detail the geologic and geographic history of the Rocky Mountain region.

  8. Redistribution of Snowfall across a Mountain Range by Artificial Seeding: A Case Study.

    PubMed

    Hobbs, P V; Radke, L F

    1973-09-14

    Clouds over the western slopes of the Cascade Mountains were artificially seeded to reduce the riming and fall speeds of snow crystals and to divert snowfall across the crest. Aircraft observations showed that the clouds were glaciated by the seeding. The crystal habits and the degrees of riming of snow crystals reaching the target area were modified. Snowfall rates decreased at the crest and simultaneously increased 20 kilometers east of the crest. PMID:17731264

  9. A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.

    2015-12-01

    A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt Yuan-Hsi Lee1, Wei Lo2, Wei-Hau Wang1, Tim-Byrne 3, Ruey-Juen Rau 41. Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, R.O.C. 2. Department of Materials and Mineral Resources Engineering, Taipei, National Taipei University of Technology, Taiwan, R.O.C. 3. Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA 4. Department of Earth Science, National Chen-Kung University, Taiwan, R.O.C. Taiwan mountain belt results from collision between Eurasia continental crust and Philippine Sea plate that result in exposing the metamorphic complex with high exhumation rate in eastern Central Range of Taiwan orogenic belt. In this study we combine with field survey, zircon fission track (ZFT), metamorphic grade, and tomography data to identify there exists a major out of sequence fault (MOSF) in eastern Central Range of Taiwan orogenic belt. This MOSF extends from north to south of eastern central Range with several segments and the total length is more than 250 km. The ZFT shows total annealing age of ca.1-3 Ma on the hanging wall and partial annealing ages on the foot wall. The seismicity data indicates the MOSF is still active from central to southern central Range. We consider that the MOSF is related with crustal channel flow in depth. To the western side of crustal flow it shows thrusting mechanism associated with MOSF and the normal faults (or normal shearing zone) develop in eastern side of the crustal channel flow. This crustal channel flow is also related with exposing the metamorphic complex in Central Range that is important mechanism for the mountain building process of Taiwan orogenic belt.

  10. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    USGS Publications Warehouse

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  11. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains.

    PubMed

    Meng, Lihua; Chen, Gang; Li, Zhonghu; Yang, Yongping; Wang, Zhengkun; Wang, Liuyang

    2015-01-01

    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis. PMID:26013161

  12. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains

    PubMed Central

    Meng, Lihua; Chen, Gang; Li, Zhonghu; Yang, Yongping; Wang, Zhengkun; Wang, Liuyang

    2015-01-01

    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis. PMID:26013161

  13. Effects of urban development on stream ecosystems alongthe Front Range of the Rocky Mountains, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.

  14. Idealised large-eddy-simulation of thermally driven flows over an isolated mountain range with multiple ridges

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian

    2014-05-01

    Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.

  15. Key to the species of Eotrechinae (Hemiptera: Heteroptera: Gerridae) of Thailand and review of the fauna of the Phetchabun Mountain Range.

    PubMed

    Nakthong, La-Au; Vitheepradit, Akekawat; Sites, Robert W

    2014-01-01

    Water striders of the subfamily Eotrechinae from the Phetchabun Mountain Range can be found at the margins of rock pools and puddles, and in hygropetric habitats including waterfalls. Twenty-two species in three genera are known from Thailand. In the Phetchabun Mountain Range, 12 species representing all three genera were recorded from over a decade of collections (2002-2012). This paper provides taxonomic, biological, and ecological information for taxa of the Phetchabun Mountain Range in Thailand and a taxonomic key to all known species from Thailand.  PMID:25283189

  16. Seismicity Near the Bighorn Mountain Range, Wyoming, During the Earthscope USArray Deployment

    NASA Astrophysics Data System (ADS)

    O'Rourke, C. T.; Nakai, J.; Sheehan, A. F.; Erslev, E.

    2013-12-01

    In this study we combine a temporary seismic array with the existing USArray network in order to establish a more complete earthquake record for northern Wyoming and to better understand the current state of stress in the area. To accomplish this, we incorporate data gathered during a temporary array of 35 broadband and 156 short-period seismometers deployed across the Bighorn Mountains and flanking basins in northern Wyoming as part of the Bighorn Arch Seismic Experiment (BASE). These stations were installed in an array designed to densify the existing USArray network in the area, achieving a spatial resolution of ~30km (broadband) and ~5km spacing (short-period) vs. ~70km of a typical USArray grid. We focus on the area surrounding the Bighorn Mountains, ~250km east of Yellowstone, which is listed as a moderate seismic hazard by the USGS and has a record of several intensity-V earthquakes in the past several decades. The area is also poorly covered by the World Stress Map; to help fill this gap in data we solve for focal mechanisms and collect industry borehole breakout and fracture data to provide a better picture of the overall stress of the area. The Bighorn Mountains were created during the late Eocene and are considered to be an archetype of Laramide basement-involved foreland arches. Though the Bighorn Mountain region appears to tectonically inactive today, the USArray Array Network Facility (ANF) has identified several dozen small-magnitude earthquakes (and many mine blasts) that occurred during the USArray deployment. We believe this list can be improved by using a lower station threshold and other improved detection parameters, as well as the inclusion of the dense BASE array. We perform initial hypocenter relocation calculations using detection, association, and location algorithms that are part of the Antelope Environmental Data Collection Software, which present a simple user interface and allow for quick event identification and relocation. This study

  17. The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, USA

    USGS Publications Warehouse

    Denning, A. Scott

    1993-01-01

    We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain National Park, and are transported via up-valley funneling winds or convective instability from differential heating of the mountains and the plains to the east. These influence the composition of precipitation at Beaver Meadows, the low elevation site, throughout the year, while their effect on precipitation at Loch Vale, the high elevation site, is felt most strongly during the summer. During the winter, Loch Vale precipitation is very dilute, and occurs in conjunction with westerly winds resulting from the southerly location of the jet stream.

  18. DC-8 Airborne Laboratory in flight over snow-capped Sierra Nevada mountain range

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The DC-8 in flight near Lone Pine, Calif. In the foreground are the Sierra Nevada Mountains, covered with winter snow. In the distance are the White Mountains. The DC-8's fuselage is painted white with a dark blue stripe down the side. The wings are silver, while the engine pods are white. In this view of the airplane's right-hand side, only a few of its antennas are visible. The experimental payload can be as great as 30,000 pounds of equipment for gathering data of various sorts. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  19. Geologic, biogeomorphic, and hydrologic controls on floodplain organic carbon retention in mountainous headwater streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Sutfin, N. A.; Wohl, E.

    2014-12-01

    Unaltered mountainous streams provide insight into natural processes and mechanisms of organic carbon (OC) retention in riparian ecosystems. Our prior work indicates that downed large wood and soil OC are the primary reservoirs for OC storage in mountainous headwaters streams of the Colorado Front Range. We surveyed downed large wood and floodplain soil along 24 study reaches in mountainous headwater streams in and around Rocky Mountain National Park, CO. Comparison of study reaches with various degrees of valley confinement in old growth (>200 yrs) and younger subalpine and montane forests reveals geologic and biogeomorphic controls for OC retention. Preliminary results indicate that unconfined valley segments store much more OC per area (783 Mg/ha) compared to partly confined and confined valley segments (153 Mg/ha). Unconfined valley segments store a significant amount of OC along single thread channels and facilitate potential for development of multithread channels. Multithread channels in old-growth forests, with trees large enough to create persistent channel-spanning logjams, store relatively little sediment and a disproportionately large amount of OC as large wood. Beaver dams also facilitate the development of multithread channels and high soil OC content in beaver meadows constitutes the largest OC pools among all channel types. Preliminary reach-average radiocarbon ages from charcoal in floodplain sediment of three study reaches with drainage areas <20 km2 (1438 ± 84 yBP), 20 - 100 km2 (539 ± 110 yBP), and >100 km2 (887 ± 84 yBP) indicate that floodplain sediment turnover time is much longer in small streams at higher, subalpine elevations. Snowmelt-dominated hydrographs in these high-elevation streams rarely exhibit bimodal characteristics typical of the hydrologic disturbance regime in lower elevation montane forests of the region, which are influenced by large convective thunderstorms and monsoons of the southwestern US. The downstream cumulative

  20. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  1. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  2. More than one way to stretch: A tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Smith, R.P.

    1998-01-01

    The eastern Snake River Plain of southern Idaho poses a paradoxical problem because it is nearly aseismic and unfaulted although it appears to be actively extending in a SW-NE direction continuously with the adjacent block-faulted Basin and Range Province. The plain represents the 100-km-wide track of the Yellowstone hotspot during the last ???16-17 m.y., and its crust has been heavily intruded by mafic magma, some of which has erupted to the surface as extensive basalt flows. Outside the plain's distinct topographic boundaries is a transition zone 30-100 km wide that has variable expression of normal faulting and magmatic activity as compared with the surrounding Basin and Range Province. Many models for the evolution of the Snake River Plain have as an integral component the suggestion that the crust of the plain became strong enough through basaltic intrusion to resist extensional deformation. However, both the boundaries of the plain and its transition zone lack any evidence of zones of strike slip or other accommodation that would allow the plain to remain intact while the Basin and Range Province extended around it; instead, the plain is coupled to its surroundings and extending with them. We estimate strain rates for the northern Basin and Range Province from various lines of evidence and show that these strains would far exceed the elastic limit of any rocks coupled to the Basin and Range; thus, if the plain is extending along with its surroundings, as the geologic evidence indicates, it must be doing so by a nearly aseismic process. Evidence of the process is provided by volcanic rift zones, indicators of subsurface dikes, which trend across the plain perpendicular to its axis. We suggest that variable magmatic strain accommodation, by emplacement and inflation of dikes perpendicular to the least principal stress in the elastic crust, allows the crust of the plain to extend nearly aseismically. Dike injection releases accumulated elastic strain but

  3. DC-8 Airborne Laboratory in flight over snow-capped Sierra Nevada mountain range

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Laboratory during a flight over the snow-covered Sierra Nevada Mountains. Over the past several years the DC-8 has conducted research missions in such diverse places as the Pacific in spring and Sweden in winter. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  4. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    PubMed

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. PMID

  5. Glacial modifications of short-wavelength topography and potential feedbacks on the denudation of a deglaciated mountain range

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Kober, Florian; Kissling, Eduard; Willett, Sean

    2014-05-01

    Distinct erosional landforms in the European Alps and other mid- to high-latitude mountain belts highlight the importance of glacial erosion in shaping mountain topography. Here we focus on the glacially induced modifications to the short-wavelength topography of the European Central Alps in an attempt to characterize the impact of glacial erosion on topography and to highlight potential feedback mechanisms on the denudation of the deglaciated mountain range. Glacial induced changes to the short-wavelength topography were analyzed by measuring the variations of drainage density and hillslope relief across the range. Variations of denudation rates were analyzed by compiling catchment-averaged concentrations of cosmogenic 10Be from existing studies covering Alpine and Foreland basins. Our results underline the importance of the LGM ELA elevation (i.e. the Equilibrium Line Altitude at the Late Glacial Maximum) as an important limit for the destruction of short-wavelength topography: The cumulative impact of glacial erosion above the LGM ELA has progressively decreased (i) drainage density, (ii) channel integration and (iii) commensurately increased hillslopes length (or hillslope relief). Exceptions from this trend are the highest and steepest peaks and ridges, nunataks even during the LGM. Alpine catchments in the orogen parts below this limit (i.e. Alpine foothills) lack strong modifications by glaciers. Here, glacial erosion is largely restricted to glacial troughs. There is also a statistically significant correlation between drainage density (or hillslope length) and catchment-wide denudation rates. The correlation does not define a single-valued function; rather there are two populations above and below the LGM ELA, one with a positive correlation for low-elevation, fluvially-dominated landscapes and a second for high-elevation, glacially-eroded basins in which this correlation is negative. We speculate that the commensurate lengthening of hillslopes increase

  6. Denudation of Actively Growing Mountain Ranges in the Foreland of NE Tibet Inferred From in- Situ Produced Cosmogenic Be-10

    NASA Astrophysics Data System (ADS)

    Palumbo, L.; Hetzel, R.; Tao, M.; Li, X.

    2007-12-01

    At the northeastern edge of the Tibetan Plateau ranges bounded by active thrust faults offer the unique opportunity to study the competing effects of uplift and erosion during the early stages of mountain building. Owing to along- strike variations in relief, slope, and lithology, these ranges are an ideal target for studying the influence of topography, lithology, and active faulting on denudation. Here we report spatially-averaged erosion rates for catchments situated along two of these ranges based on Be-10 concentrations of quartz in stream sediments. The Yumu Shan and the western Long Shou Shan are about 60 km long and their overall shape as well as the presence of wind gaps illustrates their vertical-lateral growth during Plio-Quaternary thrust faulting (Hetzel et al. 2004a). Erosion rates determined so far for 20 small catchments are variable and range from 20 to 550 mm/kyr. The observed variability results from at least three factors: (1) the erosion rate in catchments exposing the same lithology is positively correlated with relief and mean slope, (2) weakly consolidated Cretaceous sediments generally erode faster than low-grade Paleozoic bedrock, and (3) the erosion rate seems to decrease from the centre of the fault-bounded ranges towards their propagating tips. As rates of thrust faulting and rock uplift in the region (600-1200 mm/kyr; Hetzel et al., 2004a, b) exceed the denudation rates, the active growth of mountains and the lateral growth of Tibet has not yet come to rest. References Hetzel, R., Tao, M., Niedermann, S., Strecker, M.R., Ivy-Ochs, S., Kubik, P.W., Gao, B. (2004a). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet, Terra Nova 16, 157-162. Hetzel, R., Tao, M., Stokes, S., Niedermann, S., Ivy-Ochs, S., Gao, B., Strecker, M.R., Kubik, P.W. (2004b). Late Pleistocene-Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the

  7. Climatic Factors Drive Population Divergence and Demography: Insights Based on the Phylogeography of a Riparian Plant Species Endemic to the Hengduan Mountains and Adjacent Regions

    PubMed Central

    Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang

    2015-01-01

    Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae

  8. Reforestation Sites Show Similar and Nested AMF Communities to an Adjacent Pristine Forest in a Tropical Mountain Area of South Ecuador

    PubMed Central

    Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo

    2013-01-01

    Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts. PMID:23671682

  9. Reforestation sites show similar and nested AMF communities to an adjacent pristine forest in a tropical mountain area of South Ecuador.

    PubMed

    Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo

    2013-01-01

    Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts. PMID:23671682

  10. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  11. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range.

    PubMed

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863

  12. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range

    PubMed Central

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I.

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863

  13. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  14. 75 FR 27361 - Notice of Public Meeting, Whiskey Mountain Bighorn Sheep Range Locatable Mineral Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... range and capital investments on the land described in the Public Land Order (PLO) at 55 FR 37878 (1990..., which was published in the Federal Register on January 8, 2010 (76 FR 1076-1077), is hereby modified to... Mineral Withdrawal Extension, WY AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY:...

  15. Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum.

    PubMed

    Corredor, Vladimir; Murillo, Claribel; Echeverry, Diego F; Benavides, Julie; Pearce, Richard J; Roper, Cally; Guerra, Angela P; Osorio, Lyda

    2010-08-01

    The therapeutic efficacy of sulfadoxine-pyrimethamine (SP) in treating uncomplicated Plasmodium falciparum malaria is unevenly distributed in Colombia. The Andes mountain range separates regions in the west where malaria is endemic from those in the east and constitutes a barrier against gene flow and the dispersal of parasite populations. The distribution of dhfr and dhps genotypes of 146 P. falciparum samples from the eastern Amazon and Orinoco basins and Northwest and Southwest Pacific regions of Colombia was consistent with the documented levels of therapeutic efficacy of SP. The diversity of four dhfr- and dhps-linked microsatellites indicated that double- and triple-mutant alleles for both resistance loci have a single origin. Likewise, multilocus association genotypes, including two unlinked microsatellite loci, suggested that genetic exchanges between the eastern Orinoco and Northwest Pacific populations has taken place across the Andes, most probably via migration of infected people. PMID:20498318

  16. Late Pleistocene Earthquakes Along the Simpson Park Mountains Fault: Long-term Contribution to Basin and Range Extension, Nevada.

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Wesnousky, S. G.

    2006-12-01

    Technological advances in remote sensing fields of GPS and InSAR have advanced our understanding of short- term strain accumulation rates related to Pacific/North American Plate boundary deformation. In Central Nevada, a region characterized by distributed, active faulting, efforts to compare geodetic observations to late Quaternary fault slip rates have been encumbered by slow deformation rates and insufficient paleoseismic data. Therefore, we have performed Quaternary geologic mapping along parts of 8 ranges across HWY 50 in order to identify sites that record long-term deformation and are amenable to paleoseismic investigation. We have excavated fault trenches along the Eastern Toiyabe Range and Simpson Park Range Faults. Additional ranges mapped and planned for future paleoseismic investigation include the Antelope, Monitore, Fish Creek, Butte, Egan, and Schell Creek Ranges. Preliminary paleoseismic results from two recent trench excavations along the Simpson Park Mountains fault suggest the occurrence of two earthquakes in late Pleistocene time. The first trench, SPT1, excavated across a recessional shoreline of pluvial lake Gilbert exposed a package of nearshore pluvial deposits overlain by beach gravels and soil. The penultimate event is evidenced by juxtaposition of nearshore deposits along a nearly vertical fault plane. The topographic expression of the penultimate event was modified by beach processes, prior to the most recent earthquake; noted by offset of the beach gravels (~1.8 m), fissure fills, and a graben feature. Tephra correlated to the Maazama ash within lagoonal mud deposited on Lake Gilbert highstand beach gravels suggest that the highstand may be as young as 7 ka. Alternatively, the highstand may correlate to the timing of the highstand of Lake Lahontan, ~13 ka. Because the offset shoreline is lower than the highstand, the MRE postdates the highstand, which is broadly constrained between 7 and 13 ka. Based on the lack of soil development in

  17. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    PubMed Central

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution

  18. Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins

    USGS Publications Warehouse

    Hagstrum, J.T.; Murchey, B.L.

    1996-01-01

    Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic

  19. 3D Virtual Reality Applied in Tectonic Geomorphic Study of the Gombori Range of Greater Caucasus Mountains

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Lasha; Javakhishvili, Zurab

    2016-04-01

    Gombori Range represents the southern part of the young Greater Caucasus Mountains and stretches from NW to SE. The range separates Alazani and Iori basins within the eastern Georgian province of Kakheti. The active phase of Caucasian orogeny started in the Pliocene, but according to alluvial sediments of Gombori range (mapped in the Soviet geologic map), we observe its uplift process to be Quaternary event. The highest peak of the Gombori range has an absolute elevation of 1991 m, while its neighboring Alazani valley gains only 400 m. We assume the range has a very fast uplift rate and it could trigger streams flow direction course reverse in Quaternary. To check this preliminary assumptions we are going to use a tectonic and fluvial geomorphic and stratigraphic approaches including paleocurrent analyses and various affordable absolute dating techniques to detect the evidence of river course reverses and date them. For these purposes we have selected river Turdo outcrop. The river itself flows northwards from the Gombori range and nearby region`s main city of Telavi generates 30-40 m high continuous outcrop along 1 km section. Turdo outcrop has very steep walls and requires special climbing skills to work on it. The goal of this particularly study is to avoid time and resource consuming ground survey process of this steep, high and wide outcrop and test 3D aerial and ground base photogrammetric modelling and analyzing approaches in initial stage of the tectonic geomorphic study. Using this type of remote sensing and virtual lab analyses of 3D outcrop model, we roughly delineated stratigraphic layers, selected exact locations for applying various research techniques and planned safe and suitable climbing routes for getting to the investigation sites.

  20. Climate Change Impacts on the Cryosphere of Mountain Regions: Validation of a Novel Model Using the Alaska Range

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2015-12-01

    Mountain regions are natural water towers, storing water seasonally as snowpack and for much longer as glaciers. Understanding the response of these systems to climate change is necessary in order to make informed decisions about prevention or mitigation measures. Yet, mountain regions are often data sparse, leading many researchers to implement simple or enhanced temperature index (ETI) models to simulate cryosphere processes. These model structures do not account for the thermal inertia of snowpack and glaciers and do not robustly capture differences in system response to climate regimes that differ from those the model was calibrated for. For instance, a temperature index calibration parameter will differ substantially in cold-dry conditions versus warm-wet ones. To overcome these issues, we have developed a cryosphere hydrology model, called the Significantly Enhanced Temperature Index (SETI), which uses an energy balance structure but parameterizes energy balance components in terms of minimum, maximum and mean temperature, precipitation, and geometric inputs using established relationships. Additionally, the SETI model includes a glacier sliding model and can therefore be used to estimate long-term glacier response to climate change. Sensitivity of the SETI model to changing climate is compared with an ETI and a simple temperature index model for several partially-glaciated watersheds within Alaska, including Wolverine glacier where multi-decadal glacier stake measurements are available, to highlight the additional fidelity attributed to the increased complexity of the SETI structure. The SETI model is then applied to the entire Alaska Range region for an ensemble of global climate models (GCMs), using representative concentration pathways 4.5 and 8.5. Comparing model runs based on ensembles of GCM projections to historic conditions, total annual snowfall within the Alaska region is not expected to change appreciably, but the spatial distribution of snow

  1. A paleomagnetic investigation of rocks from the Ohio Range and the Dry Valleys, Transantarctic Mountains, Antarctica

    USGS Publications Warehouse

    Kellogg, K.S.

    1988-01-01

    Two well-deinfed virtual geomagnetic poles (VGPs) for East Antarctica were obtained from the Middle Jurassic Ferrar Dolerite, sampled from a thick sill on Mt Schofp in the Ohio Range, and from a horizontal sheet intruding Paleozoic granitic rocks at Mt Cerberus in the Dry Valleys. The VGP from the sill at Mt Schopf lies at lat. 58??.0S, long. 129??.0W (dm = 13??, dp = 12??), and the VGP from Mt Cerberus lies at lat. 57??.8S, long. 135??.7W (dm = 6??, dp = 6??). These data, together with 15 other acceptable pole positions reported in the literature, define a Middle Jurassic paleomagnetic pole at 52??.7S, 139??.6W (??95 = 4??.4). -from Author

  2. Structure of Franciscan complex in the Stanley Mountain window, Southern Coast ranges, California

    SciTech Connect

    Korsch, R.J.

    1982-11-01

    Three sets of deformational events are recognized in the Franciscan Complex of the Stanley Mt. area, S. Coast ranges, California. First, in pre-melange time, shortening of the relatively cohesive sequence of interbedded graywacke and mudstone formed isoclinal folds and an axial-plane slaty cleavage. Second, fragmentation of the once cohesive sequence, probably over a considerable period of time, produced the configuration now considered a melange. Third, after the melange developed, the Franciscan Complex was deformed along with the surrounding upper Mesozoic Great Valley sequence into the Stanley Mt. antiform. In the cohesive Upper Cretaceous Carrie Creek Formation, macroscopic and mesoscopic folds have 2 predominant orientations. The less cohesive Franciscan Complex attempted to fold, as shown by the distribution of shear foliations on stereographic projections, but lack of lithologic continuity and slip along previously formed shear fractures prevents the recognition of macroscopic folds. Hence, in the Franciscan Complex of the Stanley Mt. window, several lines of evidence show that the melange structure is tectonic in origin, not just a tectonic imprint superimposed upon already chaotic rocks of sedimentary origin (olistostromes). 43 references.

  3. Modeling Potential Climatic Treeline of Great Basin Bristlecone Pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bruening, J. M.; Tran, T. J.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a valuable paleoclimate resource due to the climatic sensitivity of its annually-resolved rings. Recent work has shown that low growing season temperatures limit tree growth at the upper treeline ecotone. The presence of precisely dated remnant wood above modern treeline shows that this ecotone shifts at centennial timescales; in some areas during the Holocene climatic optimum treeline was 100 m higher than at present. A recent model from Paulsen and Körner (2014, doi:10.1007/s00035-014-0124-0) predicts global potential treeline position as a function of climate. The model develops three parameters necessary to sustain a temperature-limited treeline; a growing season longer than 94 days, defined by all days with a mean temperature >0.9 °C, and a mean temperature of 6.4 °C across the entire growing season. While maintaining impressive global accuracy in treeline prediction, these parameters are not specific to the semi-arid Great Basin bristlecone pine treelines in Nevada. In this study, we used 49 temperature sensors arrayed across approximately one square kilometer of complex terrain at treeline on Mount Washington to model temperatures using topographic indices. Results show relatively accurate prediction throughout the growing season (e.g., July average daily temperatures were modeled with an R2 of 0.80 and an RMSE of 0.29 °C). The modeled temperatures enabled calibration of a regional treeline model, yielding different parameters needed to predict potential treeline than the global model. Preliminary results indicate that modern Bristlecone pine treeline on and around Mount Washington occurs in areas with a longer growing season length (~160 days defined by all days with a mean temperature >0.9 °C) and a warmer seasonal mean temperature (~9 °C) than the global average. This work will provide a baseline data set on treeline position in the Snake Range derived only from parameters physiologically relevant to

  4. Geologic and Fossil Locality Maps of the West-Central Part of the Howard Pass Quadrangle and Part of the Adjacent Misheguk Mountain Quadrangle, Western Brooks Range, Alaska

    USGS Publications Warehouse

    Dover, James H.; Tailleur, Irvin L.; Dumoulin, Julie A.

    2004-01-01

    The map depicts the field distribution and contact relations between stratigraphic units, the tectonic relations between major stratigraphic sequences, and the detailed internal structure of these sequences. The stratigraphic sequences formed in a variety of continental margin depositional environments, and subsequently underwent a complexde formational history of imbricate thrust faulting and folding. A compilation of micro and macro fossil identifications is included in this data set.

  5. Fission track thermochronologic constraints on the timing and nature of major Middle Tertiary extension, Ruby Mountains - East Humboldt Range, Nevada

    SciTech Connect

    Dokka, R.K.; Mahaffie, M.J.; Snoke, A.W.

    1985-01-01

    Fission Track (FT) apatite, zircon, and sphene ages were determined from both mylonitic and non-mylonitic rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The analyzed sample suite included various mylonitic orthogneisses as well as amphibolitic orthogneisses from the non-mylonitic infrastructural core. Porphyritic biotite granodiorite of the Oligocene Harrison Pass pluton was also dated. FT ages are concordant and range in age from 27 - 24 Ma. These dates reflect rapid cooling of the lower plate from temperatures above 250/sup 0/C to below 100/sup 0/C during the early Miocene. The general concordance of the FT dates with /sup 40/Ar//sup 39/Ar biotite and hornblende plateau ages from the same sample suite suggest an even more pronounced cooling history. This rapid cooling history is considered to reflect large-scale tectonic denudation (intracrustal thinning), a manifestation of intense crustal extension. Mylonitic rocks that originally formed along ductile shear zones in the middle crust (10-15 km) were quickly brought near the surface and juxtaposed against brittly distended rocks deformed under upper crustal conditions. FT data firmly establish the upper age limit on the timing of mylonitization during the shear zone deformation. This rapid cooling interval also coincides with the inferred age of extensive landscape disruption and the development of an alluvial fan-lacustrine system which included the periodic emplacement of landslide deposits (megabreccias).

  6. K-Ar geochronology of the Survey Pass, Ambler River and Eastern Baird Mountains quadrangles, southwestern Brooks Range, Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, R.B.; Mayfield, C.F.

    1978-01-01

    We report 76 previously unpublished K-Ar mineral ages from 47 metamorphic and igneous rocks in the southwestern Brooks Range. The pattern of radiometric ages is complex, reflecting the complex geologic history of this area. Local and regional radiometric evidence suggests that the southern Brooks Range schist belt has, at least in part, undergone a late Precambrian metamorphism and that the parent sedimentary and igneous rocks for the metamorphic rocks dated as late Precambrian are at least this old (Precambrian Z). This schist terrane experienced a major thermal event in mid-Cretaceous time, causing widespread resetting of nearly all K-Ar mica ages. A series of apparent ages intermediate between late Precambrian and mid-Cretaceous are interpreted as indicating varying amounts of partial argon loss from older rocks during the Cretaceous event. The schist belt is characterized by dominant metasediments and subordinate metabasites and metafelsites. Blueschists occur within the schist belt from the Chandalar quadrangle westward to the Baird Mountains quadrangle, but geologic evidence does not support the existence of a fossil subduction zone.

  7. Reactive nitrogen in Rocky Mountain National Park during the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Benedict, K. B.; Evanoski-Cole, A. R.; Zhou, Y.; Sullivan, A.; Day, D.; Sive, B. C.; Zondlo, M. A.; Schichtel, B. A.; Vimont, J.; Collett, J. L., Jr.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) took place in July-August 2014. This collaborative study was aimed at characterizing those processes which control air quality along Colorado's Front Range. Although the study was largely focused on ozone, an additional goal of the study included characterizing contributions from Front Range sources and long-range transport to total reactive nitrogen in Rocky Mountain National Park (ROMO). Import of reactive nitrogen into ROMO and other pristine, high elevation areas has the potential to negatively impact terrestrial and aquatic ecosystems. We present measurements of reactive nitrogen species measured within ROMO during FRAPPÉ, and compare these data to measurements made in the surrounding areas. At our monitoring site in ROMO, co-located with IMPROVE and CASTNet monitoring, measurements of NO, NO2, NOx, NOy, NH3, and total reactive nitrogen (TNx) were made at high time resolution. Additional measurements of NH3, HNO3 and PM2.5 ions were made at hourly resolution using a MARGA and also at 24-hour time resolution using URG denuder-filter pack sampling. Precipitation samples also were collected to quantify wet deposition of ammonium, nitrate, and organic nitrogen. Finally, measurements of organic gases were made using online gas chromatography and proton transfer reaction-mass spectrometry. Preliminary results for ammonia show both a diel pattern, with concentrations increasing each morning, and a strong dependence on wind direction, implicating the importance of transport. Higher concentrations of NOx and NOy also were observed in the daytime, but in general these patterns differed from that of ammonia. Several upslope events were observed during the measurement period during which NOx, NH3, 2-propylnitrate, 2-butylnitrate, ethane, butane, and pentane were observed to increase in concentration along with ozone.

  8. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    PubMed

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. PMID:21073591

  9. 1. Characterizing contributions of glacier melt and groundwater in alpine glacierized watersheds of the Saint-Elias Mountain range (Canada)

    NASA Astrophysics Data System (ADS)

    Bouchard, Emilie; Baraer, Michel; Chesnokova, Anna

    2016-04-01

    Changes in the hydrological processes of alpine glacierized watersheds have been observed in most regions of the world; these have an important impact on water resources and can affect downstream ecosystems and populations. Subarctic catchments such as those found in southern Yukon (Canada) are particularly sensitive to climate related hydrological changes. To further understand the ongoing evolution of subarctic hydrological systems, we applied natural tracers based investigations in the Saint-Elias mountain range of the Yukon. The main goal was to identify water sources and their relative contributions to outflows in an alpine glacierized catchment. During the summer of 2015, we collected more than 100 water samples in two sub-watersheds of the glacier-fed Duke River watershed. Samples were analyzed for organic carbon, major ions and stable water isotopes (δ18O and δ2H). The resulting dataset was then processed using statistical methods and the hydrochemical basin characterization method (HBCM). Results show that on the sampling period, watershed outflows consisted mainly of glacier meltwater with a non-negligible contribution of other water sources such as icings and ice-cored moraines. In this study, supraglacial processes are shown playing a particularly important role in the watersheds' hydrology.

  10. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges

    NASA Astrophysics Data System (ADS)

    Hodges, Kip; Bowring, Samuel; Davidek, Kathleen; Hawkins, David; Krol, Michael

    1998-06-01

    East-striking, low-angle normal faults of the South Tibetan detachment system have played an important role in exposing the high-grade metamorphic core of the Himalayan orogen. In the Mount Everest region of southern Tibet, granites both pre- and postdate an important fault of the system, the Qomolangma detachment. New U-Pb and 40Ar/39Ar geochronologic data for these rocks constrain the age of brittle faulting to between 16.67 ± 0.04 and 16.37 ± 0.40 Ma, significantly expanding the known age range for extension in the central Himalaya (widely regarded as ca. 20 22 Ma). More importantly, they indicate an average displacement rate of ≥47 mm/yr and a consequent tectonic unroofing rate of ≥8.2 mm/yr. Such unroofing is faster than all but the highest estimates of combined physical and chemical erosion rates in mountainous regions, suggesting that large-displacement normal faulting can be an extremely efficient agent of mass redistribution in orogenic systems.

  11. A study on the structure and precipitation of Morakot (2009) induced by the Central Mountain Range of Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2014-02-01

    The three-dimensional structures and ingredients leading to extremely heavy precipitation associated with the passage of Typhoon Morakot (2009) over the Central Mountain Range (CMR) of Taiwan are investigated. Using a numerical model, the track, track deflection, characteristic rainbands, and precipitation patterns and maxima are successfully reproduced after verification against observational data. The high-level outward flow of the secondary circulation around the eyewall is not very clear even during Morakot's strongest stage. In the control case, the eyewall collapses within 5 h after landfall that is closely associated with limited precipitation along the track after landfall. During the early stage of landfall, the deep convection on the windward (west) side of the CMR helps strengthening the secondary circulation. A quantitative comparison of total precipitable water, translation speed, and orographic lifting among 12 typhoons in recent years causing large accumulated rainfall in Taiwan shows that the abundant water vapor around Taiwan outweighs translation speed and orographic lifting in resulting in the record-breaking precipitation. It is found that the major processes leading to strong upward motion in the extremely heavy precipitation during 0000 UTC 8 August-0000 UTC 9 August are initiated by orographic lifting by CMR.

  12. PERSISTENCE AND FATE OF POLYNUCLEAR AROMATIC HYDROCARBONS DEPOSITED ON SLASH BURN SITES IN THE CASCADE MOUNTAINS AND COAST RANGE OF OREGON

    EPA Science Inventory

    The persistence of polynuclear aromatic hydrocarbons (PNAH) on slash burn sites and movement of these compounds between compartments of the sites has been investigated in the Cascade Mountains and Coast Range of Oregon. Phenanthrene and fluoranthene were gradually lost from the l...

  13. Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges

    PubMed Central

    Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

    2010-01-01

    Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For

  14. Shallow seismic reflection profiling over a Mylonitic Shear Zone, Ruby Mountains-East Humboldt Range Metamorphic Core Complex, NE Nevada

    NASA Astrophysics Data System (ADS)

    Hawman, Robert B.; Ahmed, Hishameldin O.

    Seismic reflection profiling carried out with a sledgehammer source has imaged Tertiary extensional structures over a depth range of 45-500 m within lower plate rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The 400-m CMP profile straddles an exposed contact between tectonic slices of dolomitic marble and metaquartzite emplaced by low-angle ductile-brittle normal faulting. Subhorizontal reflections from layering within the tectonic slices give way at 160 ms (160-220 m depth) to reflections that dip 15-45° to the east, in contrast with dips indicated in a poorly imaged segment of a coincident regional seismic line but in agreement with dips of foliation mapped for nearby up-plunge exposures of a late Proterozoic - early Cambrian sequence of metaquartzites, marbles, schists, and granitic rocks that forms the bulk of the underlying shear zone. Differences with the regional profile are attributed to the higher frequencies (30-100 Hz) generated by the smaller hammer source and the enhanced lateral resolution provided by the straighter profile and much smaller shot-receiver offsets (46-157 m) contributing to the stack for each CMP. The results suggest that the near-surface, east-dipping component of the anastomozing shear zone extends at least 2 km farther east than previously interpreted. Rough estimates of interval velocities (1500-4500 m/s) inferred from stacking velocities are consistent with velocities of mylonitic rocks measured perpendicular to foliation at low confining pressures when the effects of macroscopic fractures and joints are taken into account. Peaks in amplitude spectra of stacked traces suggest long-wavelength components of layering resolved at scales from 5-8 m (depth: 50 m) to 15-25 m (depth: 500 m).

  15. Testing the Climate Sensitivity of Mountain Hemlock (Tsuga mertensiana (Bong.) Carr.) Near the Southern Limit of Its Range

    NASA Astrophysics Data System (ADS)

    Appleton, S.; St George, S.

    2014-12-01

    This study investigates the climate sensitivity of mountain hemlock (Tsuga mertensiana (Bong.) Carr.) near the southern limit of its range, tests the stability of its climate-tree relations over the last few decades, and explores its potential as a hydroclimatic proxy for Crater Lake National Park. We collected tree cores at seven locations around the caldera rim, focusing on hemlock growing at higher elevations (2000-2400 masl). The median length of all ring-width series is 283 years, and the oldest hemlock sample extends back to C.E. 1450. Several types of anatomical anomalies, including frost rings, traumatic resin ducts, false rings, and light late-wood bands were observed within the specimens, the most common feature being a false ring in C.E. 1810. Each set of standardized ring-width measurements has a strong common signal, with between-tree correlations (r-bar) ranging from 0.31 to 0.49. Preliminary analysis suggests hemlock growth across the park is strongly and inversely related to total cool-season precipitation, and is also influenced positively (albeit more weakly) by mean summer temperature. Most sites are significantly and negatively correlated with total December-to-February precipitation (r = -0.41) and total precipitation from December to August (r = -0.48). Compared to other ring-width records exhibiting similar negative responses to winter precipitation, these hemlocks appear to track that specific signal quite clearly and, as a result, these data may be suitable to reconstruct past changes in cool-season moisture in Crater Lake National Park and across the broader southern Cascades.

  16. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk.

    PubMed

    Selariu, Anca; Powers, Jenny G; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A; Goldmann, Wilfred; Zabel, Mark M; Wild, Margaret A; Hoover, Edward A; Mathiason, Candace K

    2015-11-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations. PMID:26358706

  17. Installation restoration program, remedial investigation/feasibility study report addendum for Indian Mountain Long Range Radar Station, Alaska. Final report, 1 August-18 December 1995

    SciTech Connect

    1996-01-01

    The following report is an addendum to the Indian Mountain Long Range Radar Station (LRRS) Remedial Investigation/Feasibility Study (RI/FS) report dated October 1995 (Air Force 1995a). This report and the activities described were undertaken to fulfill the goals and objectives of the Air Force Installation Restoration Program (IRP). This report includes findings from additional characterization activities conducted in August 1995 at five of 11 Indian Mountain IRP source areas and revisions to RI/FS report conclusions for those source areas.

  18. D- 18O enriched waters of the Coast Range Mountains, northern California: Connate and ore-forming fluids

    NASA Astrophysics Data System (ADS)

    Peters, E. Kirsten

    1993-03-01

    D and 18O enriched waters of several weight percent salinity issue from hot and cold springs in Franciscan Complex and Great Valley Sequence rocks in the northern Coast Range Mountains of California. Although these waters have been described separately in the past and called "metamorphic," "connate," and "serpentinizing fluids," this study shows that the hot and cold springs are all fed by one source of water—trapped Cretaceous seawater modified by a variety of reactions. The district is an example of the complexities of subsurface waters and their importance for our understanding of metamorphic fluid sources, oil-field waters, and ore transport problems. The subsurface waters have a range of δ 34S values, including some near marine sulfate values (+20%.), and δ 13C near marine calcite values (0%.). Strontium isotopic signatures in the spring waters are derived from the Great Valley Sequence ( 87Sr /86Sr values near 0.705). The most saline spring pool is lined with serpentine phases found together as a fine white precipitate and has a pH of 11. One portion of the subsurface water is heated and reduced; it transports Au, Ag, Sb, As, and Hg to the surface (gold grades of the hot spring precipitates range from less than 1 ppm to over 10 ppm). These heated waters are chemically and isotopically similar to the fluids which formed Au mineralization at the nearby McLaughlin gold mine. The hot springs precipitate pyrite and native sulfur and are supersaturated with respect to calcite. Other springs are less saline and are oxidized, cooler, and diluted versions of the hot spring fluid. They do not carry ore metals but they are supersaturated with respect to silica and calcite. 3He /4He ratios of the springs gases are all above atmospheric values and indicate a possible magmatic component, consistent with the presence of Quaternary Clear Lake Volcanics. 129I data yield a minimum age of 60-80 Ma for the source of the iodide in the waters, consistent with the connate

  19. Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Finkenbinder, Matthew S.; Abbott, Mark B.; Ofstun, Adam R.

    2016-04-01

    Sediments contained in lake basins positioned along the eastern front of the Teton Mountain Range preserve a continuous and datable record of deglaciation and postglacial environmental conditions. Here, we develop a multiproxy glacier and paleoenvironmental record using a combination of seismic reflection data and multiple sediment cores recovered from Jenny Lake and other nearby lakes. Age control of Teton lake sediments is established primarily through radiocarbon dating and supported by the presence of two prominent rhyolitic tephra deposits that are geochemically correlated to the widespread Mazama (∼7.6 ka) and Glacier Peak (∼13.6 ka) tephra layers. Multiple glacier and climate indicators, including sediment accumulation rate, bulk density, clastic sediment concentration and flux, organic matter (concentration, flux, δ13C, δ15N, and C/N ratios), and biogenic silica, track changes in environmental conditions and landscape development. Sediment accumulation at Jenny Lake began centuries prior to 13.8 ka and cores from three lakes demonstrate that Teton glacier extents were greatly reduced by this time. Persistent ice retreat in Cascade Canyon was slowed by an interval of small glacier activity between ∼13.5 and 11.5 ka, prior to the end of glacial lacustrine sedimentation ∼11.5 ka. The transition to non-glacial sediments marks the onset of Holocene conditions at Jenny Lake and reflects a shift toward warmer summers, increased vegetation cover, and landscape stability in the Tetons. We discuss the Teton lake sediment records within the context of other regional studies in an effort to construct a comprehensive overview of deglaciation and postglacial environmental conditions at Grand Teton National Park.

  20. Lithostratigraphy, microlithofacies, and conodont biostratigraphy and biofacies of the Wahoo Limestone (Carboniferous), eastern Sadlerochit Mountains, Northeast Brooks Range, Alaska

    SciTech Connect

    Krumhardt, A.P.; Harris, A.G.; Watts, K.F.

    1996-12-31

    The Lisburne Group (chiefly Carboniferous) is a wide-spread succession of platform carbonate rocks that apparently developed along a south-facing passive continental margin in northern Alaska. Marine transgressions onlapped northward across northeast Alaska allowing the Lisburne platform to extend over terrigenous deposits of the Endicott Group and local pre-Mississippian paleotopographic highs. The Wahoo Limestone is the youngest formation of the Lisburne Group in northeasternmost Alaska, ranging from latest Mississippian (latest Chesterian) to Middle Pennsylvanian (at least early Atokan) in age. The Wahoo Limestone was systematically sampled for lithostratigraphy and conodont biostratigraphy and biofacies at a relatively continuous section (about 262 m in thickness) in the eastern Sadlerochit Mountains. Existing Carboniferous conodont zonations could not be readily applied to the study section because most zonal indicators are absent. Species diversity is low for a section that spans at least 10 million years. Twenty-four species, distributed among 14 genera, were identified in 72 productive samples; no new species were distinguished. The following biostratigraphic zones and faunal intervals were recognized: Upper muricatus Subzone (latest Chesterian); noduliferus-primus Zone (earliest Morrowan); minutus Fauna (Morrowan) containing a lower subdivision (lower minutus Fauna of early to middle? Morrowan age); and an Idiognathodus Fauna (Morrowan? to early Atokan). The presence of Idiognathodus incurvus? and Rhachistognathus minutus subspp. above the first occurrence of the foraminifer Pseudostaffella sp. in the uppermost part of the Wahoo Limestone indicates that the youngest beds are early Atokan in age. The Mississippian-Pennsylvanian boundary is placed at 56 m above the base of the lower member of the Wahoo Limestone on the basis of the lowest occurrence of Declinognathodus noduliferus japonicus above forms transitional from Gnathodus girtyl simplex.

  1. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    SciTech Connect

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

  2. Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China

    PubMed Central

    2013-01-01

    Background Baylisascaris schroederi is one of the most common nematodes of the giant panda, and can cause severe baylisascarosis in both wild and captive giant pandas. Previous studies of the giant pandas indicated that this population is genetically distinct, implying the presence of a new subspecies. Based on the co-evolution between the parasite and the host, the aim of this study was to investigate the genetic differentiation in the B. schroederi population collected from giant pandas inhabiting different mountain ranges, and further to identify whether the evolution of this parasite correlates with the evolution of giant pandas. Methods In this study, 48 B. schroederi were collected from 28 wild giant pandas inhabiting the Qinling, Minshan and Qionglai mountain ranges in China. The complete sequence of the mitochondrial cytochrome b (mtCytb) gene was amplified by PCR, and the corresponding population genetic diversity of the three mountain populations was determined. In addition, we discussed the evolutionary relationship between B. schroederi and its host giant panda. Results For the DNA dataset, insignificant Fst values and a significant, high level of gene flow were detected among the three mountain populations of B. schroederi, and high genetic variation within populations and a low genetic distance were observed. Both phylogenetic analyses and network mapping of the 16 haplotypes revealed a dispersed pattern and an absence of branches strictly corresponding to the three mountain range sampling sites. Neutrality tests and mismatch analysis indicated that B. schroederi experienced a population expansion in the past. Conclusions Taken together, the dispersed haplotype map, extremely high gene flow among the three populations of B. schroederi, low genetic structure and rapid evolutionary rate suggest that the B. schroederi populations did not follow a pattern of isolation by distance, indicating the existence of physical connections before these populations

  3. Direct-path acoustic ranging across the Japan Trench axis, Adjacent to the Large Shallow Thrusting in the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.

    2014-12-01

    Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process.  To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for

  4. Structural analysis of terrane accretions in the eastern Brooks Range and adjacent areas in central Alaska and Canada. Technical progress report No. 6

    SciTech Connect

    Coney, P.J.; Harms, T.A.

    1985-03-14

    Work on radiolarian separation and identification of samples from the Sylvester Allochthon is nearing completion. A preliminary chronostratigraphic chart showing the age range and lithologic type of all dated units has been drawn. The comparative petrography of lithologies from the Sylvester Allochthon and the Angayucham and Mosquito Terranes, and from deformed clastic rocks of the Venetie Terrane is being studied. Several preliminary structure sections have been drawn across the Sylvester Terrane. (ACR)

  5. Chronology of rock falls and slides in a desert mountain range: Case study from the Sonoran Desert in south-central Arizona

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.

    2014-10-01

    In order to respond to the general paucity of information on the chronology of ubiquitous small rock falls and slides that litter the slopes of desert mountain ranges, a case study in the Sonoran Desert reveals new insight into the desert geomorphology of mountain slopes. Rock falls and rock slides in the McDowell Mountains that abut metropolitan Phoenix, USA, fall in three chronometric groupings dated by conventional radiocarbon and rock varnish microlamination methods. First, the oldest events are > 74 ka and take the form of stable colluvial boulder fields - positive relief features that are tens of meters long and a few meters wide. Second, randomly sampled slides and falls of various sizes and positions wasted during wetter periods of the terminal Pleistocene and Holocene. Third, an anomalous clustering of slides and falls occurred during the late Medieval Warm Period (Medieval Climatic Anomaly) when an extreme storm was a possible but unlikely trigger. One speculative hypothesis for the cluster of Medieval Warm Period events is that a small to moderate sized earthquake shook heavily shattered bedrock - close to failure - just enough to cause a spate of rock falls and slides. A second speculative hypothesis is that this dry period enhanced physical weathering processes such as dirt cracking. However, the reasons for the recent clustering of rock falls remain enigmatic. While the temporal distribution of slides and falls suggests a minimal hazard potential for homes and roads on the margins of the McDowell Mountains, this finding may not necessary match other desert ranges in metropolitan Phoenix or mountains with different rock types and structures that abut other arid urban centers.

  6. Diurnal activity of Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) grazing a northeastern Oregon summer range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) exist in a complex social environment that is marked by diurnal activities such as periods of foraging, ruminating, resting, and sheltering. Elk unlike cattle, must be continually alert to potential predators. We hypothesize that elk...

  7. Late Mesozoic and Cenozoic thermotectonic evolution of the central Brooks Range and adjacent North Slope foreland basin, Alaska: Including fission track results from the Trans-Alaska Crustal Transect (TACT)

    USGS Publications Warehouse

    O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.

    1997-01-01

    Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.

  8. Multi-scale responses of vegetation to removal of horse grazing from Great Basin (USA) mountain ranges

    USGS Publications Warehouse

    Beever, E.A.; Tausch, R.J.; Thogmartin, W.E.

    2008-01-01

    Although free-roaming equids occur on all of the world's continents except Antarctica, very few studies (and none in the Great Basin, USA) have either investigated their grazing effects on vegetation at more than one spatial scale or compared characteristics of areas from which grazing has been removed to those of currently grazed areas. We compared characteristics of vegetation at 19 sites in nine mountain ranges of the western Great Basin; sites were either grazed by feral horses (Equus caballus) or had had horses removed for the last 10-14 years. We selected horse-occupied and horse-removed sites with similar aspect, slope, fire history, grazing pressure by cattle (minimal to none), and dominant vegetation (Artemisia tridentata). During 1997 and 1998, line-intercept transects randomly located within sites revealed that horse-removed sites exhibited 1.1-1.9 times greater shrub cover, 1.2-1.5 times greater total plant cover, 2-12 species greater plant species richness, and 1.9-2.9 times greater cover and 1.1-2.4 times greater frequency of native grasses than did horse-occupied sites. In contrast, sites with horses tended to have more grazing-resistant forbs and exotic plants. Direction and magnitude of landscape-scale results were corroborated by smaller-scale comparisons within horse-occupied sites of horse-trail transects and (randomly located) transects that characterized overall site conditions. Information-theoretic analyses that incorporated various subsets of abiotic variables suggested that presence of horses was generally a strong determinant of those vegetation-related variables that differed significantly between treatments, especially frequency and cover of grasses, but also species richness and shrub cover and frequency. In contrast, abiotic variables such as precipitation, site elevation, and soil erodibility best predicted characteristics such as forb cover, shrub frequency, and continuity of the shrub canopy. We found species richness of plants

  9. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  10. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981

    SciTech Connect

    Not Available

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  11. Depositional framework and regional correlation of pre-Carboniferous metacarbonate rocks of the Snowden Mountain area, central Brooks Range, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, J.A.; Harris, A.G.

    1994-01-01

    This report describes lithofacies, conodont biostratigraphy and biofacies, and depositional environments of Proterozoic(?) through Devonian metacarbonate rocks in the Snowden Mountain area. These rocks are correlated with successions on the Seward Peninsula and across the Brooks Range. Lithologic and paleobiogeographic data suggest that these successions formed along a single continental margin which had faunal exchange with both North America and Siberia, rather than on a series of discrete platforms juxtaposed by later tectonic events.

  12. A discussion of the results of the rainflow counting of a wide range of dynamics associated with the simultaneous operation of adjacent wind turbines

    SciTech Connect

    Kelley, N.; Desrochers, G.; Tangler, J.; Smith, B.

    1992-10-01

    The objective of this study was to provide a fatigue load comparison between two identical wind turbines employing different rotor designs. One turbine was fitted with a rotor consisting of a set of NREL (SERI) thin-airfoil blades while the other rotor included the original-equipment AeroStar blades. The data discussed are based on sample load populations derived from the rainflow cycle counting of 405, 10-minute records specifically collected over a wide range of inflow turbulence conditions. The results have shown that the statistical structure of the alternating load cycles on both turbines can be described as a mixture of three stochastic processes. We noted a high degree of load distribution similarity between the two turbines, with the differences attributable to either rotor weight or swept area.

  13. Physical modeling of sedimentation adjacent to diapirs and comparison with late precambrian Oratunga Breccia body in central Flinders Ranges, South Australia

    SciTech Connect

    Lemon, N.M.

    1985-09-01

    The interaction of sedimentation with the change in shape of a developing diapir is modeled in a series of simple sandbox experiments. This model replicates the pillow, diapir, and postdiapir stages of salt movement. Modeling produced rim synclines, crestal unconformities, and turtle-structure anticlines-all features known to be associated with diapirs. By changing experimental parameters such as diapir shape, sedimentation was simulated around various diapiric situations. One experiment closely matches the sediment distribution around the Oratunga diapir one of the controversial breccia bodies in the late Precambrian-Cambrian Adelaide geosyncline exposed in the Flinders Ranges of South Australia. Rim synclines, unconformities, and bedding attitude around Oratunga resemble those described around salt domes. In addition, the distribution, size, orientation, and lithology of breccia within the Oratunga diapir resemble breccia associated with active salt diapirs in Iran. These data suggest the breccia was emplaced as a salt diapir.

  14. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae)

    PubMed Central

    Pitt, Caitlin; Carroll, Allan L.; Lindgren, B. Staffan; Huber, Dezene P.W.

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to

  15. Land use pattern at Alacam mountainous range land (submediterranean-Turkey) due to edaphic and physiographical factors.

    PubMed

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Tecimen, Huseyin Baris; Carus, Serdar; Kavgaci, Ali

    2012-04-01

    Soil degradation is perceived as a major threat in the Mediterranean region due to land use pattern and projected climate change. As the high altitudinal mountainous lands are sensitive lands, the land use patterns atAlaçam mountains were investigated in this study. The assessment of land use distribution is arranged with the altitude, exposure, slope and bedrock parameters. The spatial database of project was created using GRASS GIS open source software (GRASS Development Team, 2008). The scanned land use and main rock map of the project area rectified, digitized, and attributes of land use and bedrocks were entered into the database tables. Also raster SRTM3 data were imported into these databases for making physiographical factor (elevation, slope, aspect) maps. Our findings illustrated thatthe whole area of Alaçam mountains is 282 480 ha where most of the area of the mass is located between 700-1300 m asl with 200 585 ha corresponding to 71% of the whole area. We detected two kinds of mis-land use; (1) agricultural activities applied at the slopes above 17% (representing 35 220 ha) and agricultural activities applied on metamorphic rocks (representing 872 ha). Total misuse of lands reached 36 092 ha comprised 12.77% of the whole area. PMID:23424838

  16. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    PubMed

    Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; McManus, Reilly B; Brantley, Sandra L; Henkel, Jeff; Marek, Paul E; Hall, W Eugene; Olson, Carl A; McInroy, Ryan; Bernal Loaiza, Emmanuel M; Brusca, Richard C; Moore, Wendy

    2015-01-01

    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  17. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change

    PubMed Central

    Meyer, Wallace M.; Eble, Jeffrey A.; Franklin, Kimberly; McManus, Reilly B.; Brantley, Sandra L.; Henkel, Jeff; Marek, Paul E.; Hall, W. Eugene; Olson, Carl A.; McInroy, Ryan; Bernal Loaiza, Emmanuel M.; Brusca, Richard C.; Moore, Wendy

    2015-01-01

    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11–25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  18. A Comparison of Aerosol-Layer and Convective Boundary-Layer Structure over a Mountain Range during STAAARTE '97

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Nyeki, Stephan

    2004-11-01

    The temporal evolution and spatial structure of the aerosol layer (AL) height as observed with an airborne downlooking lidar over the Swiss Alps was investigated with a three dimensional mesoscale numerical model and a particle dispersion model. Convective boundary layer (CBL) heights were derived from the mesoscale model output, and the behavior of surface-released particles was investigated with the particle dispersion model. While a previous investigation, using data from the same field study, equated the observed AL height with the CBL height, the results of the current investigation indicate that there is a considerable difference between AL and CBL heights caused by mixing and transport processes between the CBL and the free atmosphere. CBL heights show a more terrain-following behavior and are lower than AL heights. We argue that processes causing the difference between AL and CBL heights are common over mountainous terrain and that the AL height is a length scale that needs t o be considered in air pollution studies in mountainous terrain.

  19. Mountain research

    NASA Astrophysics Data System (ADS)

    The newly incorporated International Mountain Society (IMS) will in May begin publication of an interdisciplinary scientific journal, Mountain Research and Development. The quarterly will be copublished with the United National University; additional support will come from UNESCO.A primary objective of IMS is to ‘help solve mountain land-use problems by developing a foundation of scientific and technical knowledge on which to base management decisions,’ according to Jack D. Ives, president of the Boulder-based organization. ‘The Society is strongly committed to the belief that a rational worldwide approach to mountain problems must involve a wide range of disciplines in the natural and human sciences, medicine, architecture, engineering, and technology.’

  20. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  1. Installation restoration program, construction report for interim remedial action and treatability study for Indian Mountain Long Range Radar Station, Alaska. Final report, 1 August-8 December 1995

    SciTech Connect

    1995-12-13

    During the summer of 1995, two construction tasks were conducted at Indian Mountain Long Range Radar Station (LRRS). This work was completed under the U.S. Air Force (Air Force) Installation Restoration Program (IRP). The construction tasks included excavation of a water diversion ditch as an interim remedial action (IRA). Also, a biotreatment cell was constructed to conduct a treatability study of contaminated soils excavated during 1994 sampling activities. This report describes the completion of these two construction tasks, analytical results from associate soil and water sampling, and conclusions based on observations and sampling results.

  2. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    USGS Publications Warehouse

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E., Jr.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  3. Petroleum occurrences associated with Uinta mountains, Utah and Colorado

    SciTech Connect

    Osmond, J.C.

    1984-07-01

    The Uinta Mountains in northeastern Utah and northwestern Colorado are among the rare major structures in the western United States with east-west trends. The east-west trend may have an ancestry in a Precambrian aulacogen and a lower Paleozoic arch. The area was quiescent until the Paleocene or Eocene when the mountain block began to rise and the basins on the trending arches formed during the Cretaceous, and it uplifted the belt of Sevier-Laramide overthrusts. The eastern part of the mountain block collapsed during the mid-Tertiary. The range is an anticline with a core of Precambrian metasediments and steeply dipping Paleozoic and Mesozoic rocks on the flanks. Tertiary debris from the mountains overlaps onto older rocks. Anticlines along the flanks of the mountains produce oil and gas from Paleozoic and Mesozoic rocks. Stratigraphic traps on the structures cut by the mountain block are enhanced by the intersection, and they produce from Cretaceous and Tertiary rocks. Uplift of the mountains was important in creating unconformity and stratigraphic traps in several oil and gas fields and in bituminous sand deposits. Geophysical work and drilling have shown the flanks of the mountains to be thrust over or to overhand the adjacent basins. The numerous structural intersections, overhanging flanks, and the facies changes caused by the Uinta Mountains provide good opportunities for continued exploration and success.

  4. Nutrient addition does not enhance leaf decomposition in a Southeastern Brazilian stream (Espinhaço mountain range).

    PubMed

    Abelho, M; Moretti, M; França, J; Callisto, M

    2010-10-01

    A decomposition experiment using eucalyptus leaves was carried out in a Southeastern Brazilian mountain stream located at the transition between the Cerrado and the Atlantic Forest to test whether nutrient addition increases microbial and invertebrate colonisation and accelerates breakdown rates. The results show that none of the tested variables was significantly affected by nutrient addition, despite the average increase in ATP concentrations and invertebrate colonisation observed in the fertilised leaf bags. This could mean that breakdown in the stream was already at its maximum due to the relatively high water temperature and nutrient content, or that the breakdown rate of eucalyptus leaves was too fast to allow the detection of any effects of nutrient addition. Breakdown rates of eucalyptus leaves were much faster than the values reported in literature for most species in Brazilian Cerrado streams, suggesting that the replacement of the natural vegetation by eucalyptus may affect nutrient dynamics in the region. PMID:21085781

  5. Structure, production and resource use in some old-growth spruce/fir forests in the front range of the Rocky Mountains, USA

    USGS Publications Warehouse

    Binkley, D.; Olsson, U.; Rochelle, R.; Stohlgren, T.; Nikolov, N.

    2003-01-01

    Old-growth forests of Engelmann spruce (Picea engelmannii Parry ex. Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) dominate much of the landscape of the Rocky Mountains. We characterized the structure, biomass and production of 18 old-growth (200-450-year-old) spruce/fir forests in Rocky Mountain National Park, Colorado, as well as the stand-level supply and use of light and nitrogen. Stands were chosen to span a broad range of elevation, aspect, and topography. Aboveground tree biomass in these old-growth forests averaged 253 Mg/ha (range 130-488 Mg/ha), with aboveground net primary production of 3700 kg ha-1 yr-1 (range from 2700 to 5200 kg ha-1 yr-1). Within stands, trees >35 cm in diameter accounted for 70% of aboveground biomass, but trees <35 cm contributed 70% of the production of woody biomass. Differences in slope and aspect among sites resulted in a range of incoming light from 58 to 74 TJ ha-1 yr-1, and tree canopies intercepted an average of 71% of incoming light (range 50-90%). Aboveground net primary production (ANPP) of trees did not relate to the supply of light or N, but ANPP correlated strongly with the amount of light and N used (r2 = 0.45-0.54, P < 0.01). Uptake of 1 kg of N was associated with about 260 kg of ANPP, and one TJ of intercepted shortwave radiation produced about 78 kg of ANPP. Across these old-growth stands, stands with greater biomass showed higher rates of both ANPP and resource use; variation in aboveground biomass was associated with 24% of the variation in N use (P = 0.04), 44% of the light use (P = 0.003), and 45% of the ANPP (P = 0.002). ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Contributions of local sources, long-range and mountain wind transport for aerosols over an eastern Himalayan high-altitude station in India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Sarkar, Chirantan; Singh, Ajay; Ghosh, Sanjay; Raha, Sibaji; Das, Sanat

    A long-term study (2010-2013) on aerosols mass concentrations (PM2.5), number concentrations of size segregated aerosols and mass concentration of total suspended black carbon aerosols has been made over Darjeeling (27.01 N, 88.15 E), a high altitude (2200 m asl) station at eastern Himalaya in India. Seasonal and diurnal variation of all types of aerosols, their chemical composition and source apportionment revealed that aerosols over this part of Himalaya are mainly of two types; locally generated and long-range transported aerosols. The diurnal variation of aerosols including black carbon showed distinct feature of up-slope mountain wind transport mainly during premonsoon (Mar-May) which brings aerosol particles from low land regions. This present study focuses on the estimation of the individual contributions from local emissions (LE), long-range transport (LRT) and mountain wind transport (MWT) towards the total aerosol loading over Darjeeling. Several strike events (called by local political party) were observed at Darjeeling over the entire period of study (2008-2013) when all the local activities (schools, colleges, offices, vehicular, industrial etc) were stopped fully. Most of the strike events occurred during premonsoon. We have observed three types of events during premonsoon over the entire study period; 1) strike events with the contribution of LRT+MWT with zero local emissions (LE=0), 2) normal days with the contribution of LE+LRT+MWT, 3) normal days with the contribution of LE+MWT with zero long-range contribution (LRT=0). On normal days, the diurnal variation of aerosols during premonsoon showed sharp morning and evening peaks associated to local anthropogenic activities with the effect of up-slope mountain wind during afternoon. During strike events, the morning and evening peaks were absent but a broad peak was observed during afternoon associated to up-slope mountain wind. The increase in aerosol concentrations during afternoon on strike days

  7. Magnificent Mountains

    ERIC Educational Resources Information Center

    Anderson, Heather

    2004-01-01

    One way to increase awareness of endangered national heritage is to teach youth the importance of the land through the study of selected works of art. This article describes a lesson, in which students will study the work of Thomas Moran and create a mountain range collage. A short biography of Thomas Moran is included.

  8. Uplift and denudation rates of an actively growing mountain range inferred from in-situ produced cosmogenic 10Be: the Yumu Shan (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Palumbo, L.; Hetzel, R.; Minxing, T.; Li, X.; Guo, J.

    2009-04-01

    Located in the foreland of the Quilian Shan (NE Tibet), the Yumu Shan is an isolated mountain range bounded by an active NW-SE striking thrust fault. Geomorphic and structural features such as fault scarps and wind gaps suggest that the ~70 km long range is actively growing (Hetzel et al., 2004; Tapponnier et al., 1990), hence the tectonic uplift should exceed the rate of denudation. Here we quantify the rate of these two competing processes using in-situ produced cosmogenic 10Be. Catchment-wide denudation rates are derived from 10Be concentrations in stream sediments, whereas rock uplift rates are obtained by combining scarp topographic profiles with dating of geomorphic surfaces deformed by active thrust faults at the Yumu Shan mountain front. Both denudation and rock uplift rates integrate over a similar temporal scale (~10-100 ka) and thus over many earthquake cycles. Our data document that catchment wide-denudation rates vary from ~100 to ~400 mm ka-1 as a function of morphology and lithology, while rock uplift takes place at the rate of ~0.7 mm ka-1. The difference between these values confirms that the Yumu Shan is in a topographic pre-steady state and in accordance with geomorphic and structural features. Tectonic features indicate that over few millions of years the Yumu Shan may rise to a similar height as the main ranges of the Qilian Shan farther south, which have peaks with elevations between ~5 and ~5.5 km. References: Hetzel R., Tao M., Niedermann S., Strecker M.R., Ivy-Ochs S., Kubik P.W., Gao B. (2004). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet, Terra Nova, 16, 157-162. Tapponnier P., Meyer B., Avouac J.P., Peltzer G., Gaudemer Y., Guo S., Xiang H., Yin K., Chen Z., Cai S., Dai H. (1990). Active thrusting and folding in the Quilian Shan, and decoupling between upper crust and mantle in northeastern Tibet, Earth Planet. Sci. Lett., 97, 382-403.

  9. Gravitational slope deformation in the western Swiss Alps: characterization, spatial distribution and implication for recent mountain range evolution

    NASA Astrophysics Data System (ADS)

    Pedrazzini, A.; Jaboyedoff, M.; Humair, F.

    2014-12-01

    The influence of Gravitational Slope Deformations (GSD) on mountain belts' erosion rate has been identified worldwide and more particularly in valleys that were affected by quaternary glacial retreat. However, owing to the lack of comprehensive identification of the predisposing factor influencing their spatial distribution, size and failure mechanisms, their effective impact on the landscape evolution remain difficult to quantify. In this contribution, we present the first regional-scale detailed GSD inventory of the entire upper Rhone catchment (Western Switzerland). The detection and mapping of GSD are performed by combining different remote sensing approaches. Moreover, a detailed characterization of the different inventoried events is proposed, taking into account their geometry, morphology and failure mechanism. Based on these analyses, more than 300 GSDs, corresponding to 11% of the entire study area, are identified. Spatial and statistical analyses highlight that GSDs are not uniformly distributed within the study area but that six clusters, encompassing more than 80% of the detected instabilities, can be highlighted. Our investigations demonstrate that the GSD clusters are mainly related to the coexistence of active tectonic processes (including high uplift gradients and seismic activity), large scale brittle tectonic weakness zones and high local relief. In addition, climate forcing is also identified to influence the distribution of GSD, via relief creation and in particular by the formation of overdeepened areas operated by glaciers during LGM. Conversely, lithological and structural conditions appear to primarily control the failure mechanism and the size of the detected GSDs but do not influence their spatial distribution. The strong impact of active tectonic processes on GSD distribution suggests that its effective role needs to be revaluated in order to better understand and quantify post-glacial erosion rate.

  10. Alpine plant community trends on the elk summer range of Rocky Mountain National Park, Colorado: An analysis of existing data

    USGS Publications Warehouse

    Zeigenfuss, Linda C.

    2006-01-01

    The majority of the elk (Cervus elaphus) population of Rocky Mountain National Park in Colorado summer in the park’s high-elevation alpine and subalpine meadows and willow krummholz. The park’s population of white-tailed ptarmigan (Lagopus leucurus altipetens) depends on both dwarf and krummholz willows for food and cover. Concern about the effects of elk herbivory on these communities prompted the monitoring of 12 vegetation transects in these regions from 1971 to 1996. Over this 25-year period, data were collected on plant species cover and frequency and shrub heights. These data have not been statistically analyzed for trends in the measured variables over time to determine changes in species abundance. Krummholz willow species (Salix planifolia, S. brachycarpa) declined 17–20 percent in cover and about 25 centimeters in height over the study period. Graminoids (particularly Deschampsia caespitosa, Carex, and Poa) increased slightly from 1971 to 1996. No significant increases of nonnative plant species were observed. An increase in presence of bare ground over the 25-year period warrants continued measurement of these transects. Lack of good data on elk density, distribution, or use levels precludes correlating changes in plant species cover, frequency, or heights with elk population trends. I recommend development of a more rigorously designed monitoring program that includes these transects as well as others chosen on a random or stratified design and consistent measurement protocol and sampling intervals. Some method of quantifying elk use, either through measurement of plant utilization, pellet counts, or census-type surveys, would allow correlation of changes in plant species over time with changes in elk distribution and density on the park’s alpine and subalpine regions.

  11. Caucasus Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Often regarded as the southeastern border of Europe, the Caucasus Mountains can be seen here stretching from the Black Sea (left) to the Caspian Sea (right). The mountain range spans 700 miles (1125 km), crossing the countries of Russian Federation, Georgia, and Azerbaijan from left to right respectively. With a snowline of approximately 11,000 feet and peaks such as Mt. Elbrus, that reach 15,000 feet, much of the snow visible in this image is present year round. Also visible in this image are apparent phytoplankton blooms in the Caspian Sea, marked by blue-green swirls.

  12. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  13. Late glacial 10Be ages for glacial landforms in the upper region of the Taibai glaciation in the Qinling Mountain range, China

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Liang; Chen, Yixin; Liu, Beibei; Harbor, Jonathan M.; Cui, Zhijiu; Liu, Rui; Liu, Xiao; Zhao, Xu

    2016-01-01

    Glacial landforms are well preserved on Taibai Mountain (3767 m), the main peak of the Qinling mountain range located south of the Loess Plateau and east of the Qinghai-Tibet Plateau. The timing and extent of Quaternary glaciation in the study area is important for reconstructing Quaternary environmental change however numerical ages for glaciation in this study area have not previously been well resolved. Using terrestrial in situ cosmogenic nuclides we dated four samples collected from two glacially eroded rock steps in the upper part of a valley near the main peak, in an area previously identified as having been occupied by ice during the Taibai glaciation. The 10Be results are all late glacial in age: 18.6 ± 1.1 ka, 16.9 ± 1.0 ka, 16.9 ± 1.1 ka and 15.1 ± 1.0 ka. The spatial pattern of ages in the valley suggests fast retreat, with horizontal and vertical retreat rates estimated to be on the order of 0.4 and 0.09 m a-1, respectively. A simple extrapolation of these retreat rates from the ages at the two sample sites suggests that the glacier retreat began during Last Glacial Maximum and that glaciers disappeared from the main peak by about 15 ka.

  14. Flexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topography

    NASA Technical Reports Server (NTRS)

    Lowery, Anthony R.; Smith, Robert B.

    1994-01-01

    Stochastic inversion for flexural loads and flexural rigidity of the continental elastic layer can be accomplished most effectively by using the coherence of gravity and topography. However, the spatial resolution of coherence analysis has been limited by use of two-dimensional periodogram spectra from very large (greater than 10(exp 5)sq km) windows that generally include multiple tectonic features. Using a two-dimensional spectral estimator based on the maximum entropy method, the spatial resolution of flexural proerties can be enhanced by a factor of 4 or more, enabling more detailed analysis at the scale of individual tectonic features. This new approach is used to map the spatial variation of flexural rigidity along the Basin and Range transition to the Colorado Plateau and Middle Rocky Mountains physiographic provinces. Large variations in flexural isostatic responses are found, with rigidities ranging from as low as 8.7 x 10(exp 20) N m (elastic thickness (T(sub e) = 4.6 km) in the Basin and Range to as high as 4.1 x 10(exp 24) N m T(sub e) = 77 km) in the Middle Rocky Mountains. These results compare favorably woith independent determinations of flexural rigidity in the region. Areas of low flexural rigidity correlate strongly with areas of high surface heat flow, as is expected from the contingence of flexural rigidity on a temperature-dependent flow law. Also, late Cenozoic normal faults with large displacements are found primarily in area of low flexural rigidity region. The highest flexural rigidity is found within the Archean Wyoming craton, where evidence suggests that deeply rooted cratonic lithosphere may play a role in determining the distribution of tectonism at the surface.

  15. Thermal evolution of a portion of the Sevier hinterland: The northern Ruby Mountains - east Humboldt Range and Wood Hills, northwestern Nevada

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.; Snoke, A. W.; Hurlow, H. A.

    1992-02-01

    Conventional thermobarometry and Gibbs' Method modeling have been used to obtain new information pertaining to the Mesozoic-Tertiary thermal evolution of the Ruby Mountains-East Humboldt Range and Wood Hills metamorphic complexes, northeastern Nevada. Kyanite-grade assemblages from Clover Hill, in the extreme northeastern part of the East Humboldt Range, were produced at temperatures of 780-810 K and depths in excess of 35 km; previously published geochronologic data suggest an Early Cretaceous or Late Jurassic age for this event. The Clover Hill area subsequently experienced a major unroofing interval prior to Late Cretaceous time, during which it was brought roughly 20 km closer to the surface. The lack of stratigraphic evidence for substantial Cretaceous erosion in the region and the topology of the pressure-temperature paths for the Clover Hill samples suggest that the unroofing mechanism may have been tectonic denudation related to the relaxation of large topographic gradients produced by crustal thickening in the hinterland of the Sevier orogen. Metamorphic rocks at Clover Hill and within the Wood Hills core complex equilibrated at 820-900 K and 500-640 MPa (18-24 km) in Cretaceous time, prior to 115 Ma. Other parts of the Ruby Mountains-East Humboldt Range metamorphic complex, presently structurally separated from the Clover Hill sequence, were intruded extensively by Late Cretaceous granitic magmas and attained substantially higher temperatures than the Clover Hill-Wood Hills block. Sillimanite-grade assemblages from these areas apparently underwent roughly 10 km of unroofing and 130 K of cooling prior to final equilibration at 820-920 K and 360-430 MPa (13-16 km) during Oligocene extension.

  16. Lithostratigraphy, microlithofacies, and conodont biostratigraphy and biofacies of the Wahoo Limestone (Carboniferous), eastern Sadlerochit Mountains, Northeast Brooks Range, Alaska

    USGS Publications Warehouse

    Krumhardt, A.P.; Harris, A.G.; Watts, K.F.

    1996-01-01

    The lithostratigraphy, microlithofacies, and conodonts are described in a key section of the Wahoo Limestone (Middle Carboniferous); this unit forms a hydrocarbon reservoir at Prudhoe Bay. The Wahoo was deposited in a range of environments on the inner part of a high-energy carbonate ramp. Microfacies and conodont biofacies used together refine paleoenvironmental interpretations. Only 24 conodont species distributed among 14 genera were recognized in a section that spans about 10 million years. Significant conodont collections from the Wahoo across the Northeast Brooks Range are described in an appendix.

  17. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  18. Ellesmerian (. ) and Brookian deformation in the Franklin Mountains, northeastern Brooks Range, Alaska, and its bearing on the origin of the Canada Basin

    SciTech Connect

    Oldow, J.S.; Ave Lallemant, H.G.; Julian, F.E.; Seidensticker, C.M.

    1987-01-01

    Structural analysis of deformed rocks in the Franklin Mountains, northeastern Alaska, indicates that (1) pre-Carboniferous rocks were transported southeastward during mid-Devonian (Ellesmerian.) thrusting, (2) Cretaceous and older rocks were transported northward during Mesozoic-Cenozoic Brookian thrusting, and (3) the pre-Carboniferous rocks were strongly involved in the Brookian deformation. The strong involvement of these rocks in Brookian structures suggests that the magnitude of northward thrusting during Brookian tectonism is virtually uniform from west to east along the axis of the Brooks Range fold and thrust belt. In addition, the newly recognized southern vergence of pre-Carboniferous structures is comparable with that of coeval structures exposed in Arctic Canada to the east. These data are not easily reconciled with the orocline model for the origin of the Canada Basin but are consistent with left-lateral transport on a north-south-striking transform fault along the Canadian Arctic islands. 19 references.

  19. Tertiary tectonics of the Border Ranges Fault system, north-central Chugach Mountains, Alaska: Sedimentation, deformation and uplift along the inboard edge of a subduction complex

    SciTech Connect

    Little, T.A.

    1988-01-01

    In south-central Alaska the Border Ranges Fault system (BRFS) separates lower Paleogene rocks of a forearc basin sequence from a Cretaceous subduction complex. In a north-central part of the Chugach Mountains the upper Paleocene-lower Eocene Chickaloon Formation was deposited along the seaward margin of the forearc basin as an alluvial fan complex. A field study combining geologic mapping of a {approximately}200 km{sup 2} region, stratigraphic studies, K-Ar and fission-track geochronology, metamorphic petrology, and detailed structural analysis of deformed rocks on both sides of the BRFS has been used to reconstruct the Tertiary history of displacements and uplift events along the inboard edge of Alaska's subduction-accretion complex.

  20. Climate impacts on groundwater storage, hydrochemistry and residence time in geologically variable, snowmelt-dominated mountain catchments, Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Zeliff, M. M.; Williams, M. W.

    2012-12-01

    Groundwater storage, hydrochemistry and residence time are all known to vary widely depending on hydrogeologic conditions. In mountainous terrain hydrogeology can vary greatly over short distances, from bedrock aquifers on ridge tops to colluvial and fluvial aquifers in valleys. Determining how climate alters groundwater in the context of variable hydrogeologic conditions is needed to understand in-stream flows and biogeochemical cycles in these climactically sensitive alpine settings. In 2005 at the Niwot LTER six piezometers were installed in surficial diamicton and colluvium at the base of a semi-permanent snowfield at the Martinelli site (3440 m). Eight piezometers were also installed at the Saddle on a ridge-top in the alpine tundra (3528 m). In 2010 12 piezometers were installed at the C1 site (3025 m) in the subalpine atop moraine deposits. Groundwater monitoring for all sites is year-round and is comprised of depth-to-water measurements by hand and pressure transducers for select wells, as well as chemistry samples for major solutes including dissolved organic matter and stable isotopes of water, δ18O and δD. Across the Niwot LTER precipitation falls predominately as snow creating a strongly snowmelt-dominated hydrograph. Groundwater response to this seasonality is reflected in both physical and hydrochemical groundwater measurements. Snowmelt leads to sharp increases in water level in all piezometers including up to 7 m of water table change at the Saddle, up to 3 m of change at Martinelli and up to 5 m of water table change at C1. Minimum water table levels are not always measureable as the water table can drop below the extent of the piezometers, however, at the Saddle there are decreasing trends in annual minimum groundwater level in 3 of the 4 deep piezometers, possibly reflecting a decrease in total aquifer storage. Hydrochemical groundwater response to snowmelt is evident in distinct harmonic trends in major solute and isotope chemistry. Time

  1. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    PubMed Central

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (−):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest. PMID:26042134

  2. Ellsworth mountains: Position in West Antarctica due to sea-floor spreading

    USGS Publications Warehouse

    Schopf, J.M.

    1969-01-01

    Similarities of middle and upper Paleozoic deposits of the Ellsworth Mountains with those of the Pensacola, Horlick, and other Transantarctic mountains indicate that all these ranges may have had a related geologic history. A tentative explanation is now suggested which involves sea-floor spreading and translocation of the Ellsworth crustal block from its original location adjacent to the East Antarctic Shield. Accordingly, the islands of West Antarctica may differ in origin and the Transantarctic Mountains of East Antarctica may represent one margin of an ancient rift.

  3. Detection of aspen/conifer forest mixes from multitemporal LANDSAT digital data. [Bear River Range, Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Merola, J. A.; Jaynes, R. A.; Harniss, R. O.

    1983-01-01

    Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner (MSS) data. The digital MSS data were utilized to devise quantitative indices which correlate with apparently stable and seral aspen forests. The extent to which a two-date LANDSAT MSS analysis may permit the delineation of different categories of aspen/conifer forest mix was explored. Multitemporal analyses of MSS data led to the identification of early, early to mid, mid to late, and late seral stages of aspen/conifer forest mixing.

  4. Escaping to the summits: phylogeography and predicted range dynamics of Cerastium dinaricum, an endangered high mountain plant endemic to the western Balkan Peninsula.

    PubMed

    Kutnjak, Denis; Kuttner, Michael; Niketić, Marjan; Dullinger, Stefan; Schönswetter, Peter; Frajman, Božo

    2014-09-01

    The Balkans are a major European biodiversity hotspot, however, almost nothing is known about processes of intraspecific diversification of the region's high-altitude biota and their reaction to the predicted global warming. To fill this gap, genome size measurements, AFLP fingerprints, plastid and nuclear sequences were employed to explore the phylogeography of Cerastium dinaricum. Range size changes under future climatic conditions were predicted by niche-based modeling. Likely the most cold-adapted plant endemic to the Dinaric Mountains in the western Balkan Peninsula, the species has conservation priority in the European Union as its highly fragmented distribution range includes only few small populations. A deep phylogeographic split paralleled by divergent genome size separates the populations into two vicariant groups. Substructure is pronounced within the southeastern group, corresponding to the area's higher geographic complexity. Cerastium dinaricum likely responded to past climatic oscillations with altitudinal range shifts, which, coupled with high topographic complexity of the region and warmer climate in the Holocene, sculptured its present fragmented distribution. Field observations revealed that the species is rarer than previously assumed and, as shown by modeling, severely endangered by global warming as viable habitat was predicted to be reduced by more than 70% by the year 2080. PMID:24857887

  5. Multi-proxy record of Holocene glacial history of the Spearhead and Fitzsimmons ranges, southern Coast Mountains, British Columbia

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Koch, Johannes; Clague, John J.; Vallis, Vanessa

    2007-02-01

    Evidence from glacier forefields and lakes is used to reconstruct Holocene glacier fluctuations in the Spearhead and Fitzsimmons ranges in southwest British Columbia. Radiocarbon ages on detrital wood and trees killed by advancing ice and changes in sediment delivery to downstream proglacial lakes indicate that glaciers expanded from minimum extents in the early Holocene to their maximum extents about two to three centuries ago during the Little Ice Age. The data indicate that glaciers advanced 8630-8020, 6950-6750, 3580-2990, and probably 4530-4090 cal yr BP, and repeatedly during the past millennium. Little Ice Age moraines dated using dendrochronology and lichenometry date to early in the 18th century and in the 1830s and 1890s. Limitations inherent in lacustrine and terrestrial-based methods of documenting Holocene glacier fluctuations are minimized by using the two records together.

  6. Pleistocene divergence across a mountain range and the influence of selection on mitogenome evolution in threatened Australian freshwater cod species.

    PubMed

    Harrisson, K; Pavlova, A; Gan, H M; Lee, Y P; Austin, C M; Sunnucks, P

    2016-06-01

    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus. PMID:26883183

  7. Thermal and unroofing history of a thick, tilted Basin-and-Range crustal section in the Tortilla Mountains, Arizona

    USGS Publications Warehouse

    Howard, K.A.; Foster, D.A.

    1996-01-01

    We estimate here a geothermal gradient of only 17 ?? 5??C km-1 for the tilted Grayback fault block in southeastern Arizona when extension began ???25 Ma. This gradient is lower than preextension gradients estimated elsewhere in the Basin and Range, is only about 50% of typical gradients in the Basin and Range today, and needs to be accounted for in models of continental extension. The Grayback block exposes a 12-km-thick crustal section of Proterozoic and Cretaceous granitoids, which was tilted 90?? during extension between 25 and 15 Ma. Zircon fission-track ages decrease structurally downward (westward) across the block and were all within a zone of partial track annealing prior to tilting and quenching. The zircon age gradient suggests that the 220??-240??C isotherm migrated downward 5-6 km during Paleogene erosion and regional cooling. Apatite fission-track ages decrease westward from ???83 Ma in the structurally highest crystalline rocks to ???24 Ma at ???6-km paleodepth and then to ???15 Ma another 6 km farther west. Track-length analysis confirms that apatites above the break in slope in age at ???5.7-km paleodepth resided in a zone of partial annealing prior to tilting, and deeper apatites record rapid cooling upon tilting and unroofing beginning ???25 Ma. At that time the 110 ?? 10??C isotherm determined by the depth at which tracks in apatite were fully erased was at a basement paleodepth of ???5.7 km, and the 220 ?? 30??C isotherm as estimated from zircon data resided at a pretilting basement depth of ???12.15 km. From consistent values of paleogeothermal gradient for two depth intervals we estimate the pretilt gradient was 17 ?? 5??C km-1. From 25 to 15 Ma the rotating Grayback block cooled rapidly as higher, westward moving blocks unroofed it tectonically at a rate of ???1 km m.y.-1.

  8. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  9. High resolution, high frequency, close-range laser scanning to monitor bedrock erosion after mountain river dam removal

    NASA Astrophysics Data System (ADS)

    Cook, K. L.; Stark, C. P.

    2011-12-01

    The Chijiawan river, located in the Hsuehshan Range in central Taiwan, is a steep, coarse-grained, mixed bedrock-alluvial channel subject to heavy monsoonal rainfall, occasional typhoons and frequent floods. In May 2011, a 15m-high check dam holding back around 200,000m3 of sediment was removed. To monitor subsequent channel response, an array of instruments were deployed prior to dam removal. Given the anticipated magnitude of sediment transport and excellent empirical constraints, the Chijiawan channel is an ideal location to study fluvial incision processes into bedrock. There is abundant bedrock exposed in the river bed downstream of the dam, and we are interested in how the pulse of sediment following dam removal will impact bedrock erosion rates. We monitor erosion using repeat high resolution laser scanning at 8 sites spread along a 3 km long reach, 2 sites upstream of the dam and 6 downstream. We scan two sites with a Konica Minolta Vivid 910 scanner (with an accuracy of 1.4mm), and the remaining sites with a Faro Photon 120 scanner (with an accuracy of 2mm). Scanning at ranges of ~1m (Vivid) to ~10m (Faro), we obtain resolutions of 1 to 3mm. Based on the system developed by Wilson and Hovius (2010), reference frames for repeat surveys consist of permanent stainless steel sockets installed in 14 cm deep holes drilled into the bedrock, combined with removable targets that screw into the sockets for scanning. Vivid data are processed and 3D models are constructed using Rapidform 2004 software. Faro data is processed using Faro's Scene software. In order to compare the high resolution scanning with more traditional low-tech monitoring methods, we have also installed two sets of concrete expansion bolts. We obtain profiles between bolts with both a contour gauge and the scanners. The high accuracy and resolution of these scanners, and the system of precise benchmarks enable us to detect extremely small amounts of erosion. By repeat scanning after individual

  10. Thermal and unroofing history of a thick, tilted Basin-and-Range crustal section in the Tortilla Mountains, Arizona

    NASA Astrophysics Data System (ADS)

    Howard, Keith A.; Foster, David A.

    1996-01-01

    We estimate here a geothermal gradient of only 17 ± 5°C km-1 for the tilted Grayback fault block in southeastern Arizona when extension began ˜25 Ma. This gradient is lower than preextension gradients estimated elsewhere in the Basin and Range, is only about 50% of typical gradients in the Basin and Range today, and needs to be accounted for in models of continental extension. The Grayback block exposes a 12-km-thick crustal section of Proterozoic and Cretaceous granitoids, which was tilted 90° during extension between 25 and 15 Ma. Zircon fission-track ages decrease structurally downward (westward) across the block and were all within a zone of partial track annealing prior to tilting and quenching. The zircon age gradient suggests that the 220°-240°C isotherm migrated downward 5-6 km during Paleogene erosion and regional cooling. Apatite fission-track ages decrease westward from ˜83 Ma in the structurally highest crystalline rocks to ˜24 Ma at ˜6-km paleodepth and then to ˜15 Ma another 6 km farther west. Track-length analysis confirms that apatites above the break in slope in age at ˜5.7-km paleodepth resided in a zone of partial annealing prior to tilting, and deeper apatites record rapid cooling upon tilting and unroofing beginning ˜25 Ma. At that time the 110 ± 10°C isotherm determined by the depth at which tracks in apatite were fully erased was at a basement paleodepth of ˜5.7 km, and the 220 ± 30°C isotherm as estimated from zircon data resided at a pretilting basement depth of ˜12.15 km. From consistent values of paleogeothermal gradient for two depth intervals we estimate the pretilt gradient was 17 ± 5°C km-1. From 25 to 15 Ma the rotating Grayback block cooled rapidly as higher, westward moving blocks unroofed it tectonically at a rate of ˜1 km m.y.-1.

  11. Blue Mountains Ecoregion: Chapter 16 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Soulard, Christopher E.

    2012-01-01

    The Blue Mountains Ecoregion encompasses approximately 65,461 km² (25,275 mi²) of land bordered on the north by the Columbia Plateau Ecoregion, on the east by the Northern Rockies Ecoregion, on the south by the Snake River Basin and the Northern Basin and Range Ecoregions, and on the west by the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Most of the Blue Mountains Ecoregion is located within Oregon (83.5 percent); 13.8 percent is in Idaho, and 2.7 percent is in Washington. The Blue Mountains are composed of primarily Paleozoic volcanic rocks, with minor sedimentary, metamorphic, and granitic rocks. Lower mountains and numerous basin-and-range areas, as well as the lack of Quaternary-age volcanoes, distinguish the Blue Mountains from the adjacent Cascade Range (Thorson and others, 2003).

  12. Evolution of Cretaceous granitoids in the western cordillera: An example from the Santa Rose Mountain Range, Nevada

    SciTech Connect

    Stuck, R.J.; Hart, W.K. )

    1992-01-01

    The Santa Rosa Range is located in Humboldt County, Nevada. Two textural/compositional groups exist within the granitoid suite. The bulk of the granitoids, exposed in the main stock and a smaller flanking stock, belong to the Santa Rosa/Andorno (SR/A) group. These rocks are primarily met- to peraluminous, equigranular, hornblende-biotite granodiorite. These granitoids are enclave bearing and are cross cut by syn-plutonic rholite/dacite dikes and fine grained aplite dikes. The second group exposed in the Sawtooth (ST) and Granite Peak (GP) stocks, are primarily met- to peraluminous, equigranular to porphyritic biotite granite/granodiorite. The rocks of this group are also cut by fine grained aplite dikes. Petrographic and elemental analyses indicate a broad northward evolutionary trend with rocks of the GP stock being the most highly evolved of the suite. Major element variation diagrams show patterns of enrichment or depletion consistent with fractional crystallization. There is a change in the slope of these trends, however, at the SR/A and ST/GP transition indicating these two groups many not be petrogenetically linked. Sr vs SiO[sub 2] displays two distinct, overlapping, sub parallel trends of Sr depletion with increasing SiO[sub 2] again indicating the two granitoid groups are not related. Trace element characteristics suggest that it is not possible to derive the most evolved granitoid in the SR/A group from the least evolved sample available by fractional crystallization alone. Crustal contamination of the magma, or the mixing of an additional liquid(s), coupled with fractionation of both plagioclase and biotite are required to produce the trace element trends observed in the SR/A groups. In contrast, the GP/ST group has undergone K-feldspar fractionation.

  13. Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Bookhagen, Bodo; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50 %). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20 % of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20°S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20°S and the Puna Plateau originates from southeastern South America.

  14. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  15. A new species of Crossodactylodes (Anura: Leptodactylidae) from Minas Gerais, Brazil: first record of genus within the Espinhaço Mountain Range.

    PubMed

    Barata, Izabela M; Santos, Marcus T T; Leite, Felipe S F; Garcia, Paulo C A

    2013-01-01

    The genus Crossodactylodes comprises three species of Atlantic Rainforest endemic frogs strictly dependent on bromeliads where they spend their entire life cycle. The current geographic distribution of the genus covers highland areas of Atlantic Rainforest in the States of Rio de Janeiro and Espírito Santo, Southeastern Brazil. We describe a new species of the genus from Parque Estadual do Pico do Itambé, at Santo Antônio do Itambé municipality, State of Minas Gerais, Southeastern Brazil. Crossodactylodes itambe sp. nov. is characterized by the following combination of traits: male SVL 16.2 ± 1.3 (14.0-17.6 mm, n = 10), female SVL 16.2 ± 1.0 (13.5-18.0 mm, n = 15); snout short, rounded in dorsal view, sloping in lateral view; absence of vocal sac and vocal slits in males; absence of vomerine teeth; males with upper arms and forearms hypertrophied; cloacal flap prominent, simple; dorsal skin coarsely granular. The new species inhabits rupicolous bromeliads in open areas of rocky fields, and is recorded in altitudes between 1836 and 2062 m above sea level. This record extends the genus distribution for about 325 km northwest from where it was known. Crossodactylodes sp. nov. is the only species of the genus that occurs in open field habitats (campos rupestres), in very high altitudes of a non-costal mountain range (the Espinhaço Range).  PMID:25277590

  16. Simulations of Orographic Mixed-Phase Clouds at Mountain Range Site using COSMO-ART-M7

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Henneberger, Jan; Lohmann, Ulrike

    2015-04-01

    Aerosol-cloud interactions constitute the highest uncertainties in radiative forcing estimation since preindustrial times. Clouds living in temperature range between 0° C and -38° C may contain supercooled water drops as well as ice particles formed by heterogeneous freezing. The coexistence of the three water-phases: vapor, liquid and ice in mixed-phase clouds (MPCs) leads to an enhanced number of microphysical processes that further complicates the estimation of radiative effects furthermore and challenges models on every scale. Due to a lower saturation pressure over ice than over water ice growth is favoured and a rapid glaciation of MPCs is expected. Even though MPCs are considered unstable, observations have shown that they can persist over long periods up to several hours. In-situ measurements at the high altitude research station Jungfraujoch (JFJ) show the occurrence of MPCs under certain conditions. In addition to the longevity of MPCs an unexpected high ice crystal concentration exceeding the number of ice nuclei was also observed. Due to the lack of information about updraft velocities in this complex orographic region and the constraint of measurements on a single location it is not fully understood how MPCs can persist over such a long time in this region, whether microphysical or dynamical processes are dominantly determining their longevity and what causes the high ice crystal concentration. The measurements taken at JFJ delivering mass content as well as number concentration of particles on one hand require a detailed model study to fully understand processes of mixed phase clouds and on the other hand deliver a great opportunity to study the performance of the newly developed COSMO version: COSMO-ART-M7 on the kilometer-scale in comparison with measurement results. Furthermore it has to be proven whether a resolution of 1 km is sufficient enough to capture relevant processes in MPC. First model simulations with COSMO, including the two

  17. The Contribution of Trans-Pacific Submicron Aerosols and Local Particle Nucleation Bursts to California's Air Quality as Seen from the Pacific Coast Mountain Range

    NASA Astrophysics Data System (ADS)

    Asher, E. C. C.; Christensen, J. N.; Post, A.; Faloona, I. C.

    2015-12-01

    The long-range transport of dust and anthropogenic aerosols to the Western US has received considerable attention due to the growing disparity between North American and Asian air quality. Using MODIS and space-borne LIDAR measurements some have argued that the transcontinental transport of dust from Asia, Africa, and Europe outweighs that of locally produced combustion aerosols (Yu et al. 2012). This study seeks to compare the aerosol composition, number, and size distribution of locally derived submicron aerosols (including particle nucleation events) vs. long-range transported aerosols observed at a remote mountain site near the Pacific Coast. Toward this aim, rotating drum impactor (RDI) and scanning mobility particle size (SMPS) measurements of size-segregated elemental compositions and size spectra were collected from February to November of 2012 at Chews Ridge (elevation 1450 m) in Monterey County, California. This mountaintop site experiences two main wind modes. The main mode is ohshore-directed winds from the southwest, which are most likely to bring trans-Pacific aerosols to the site; and offshore-directed, northeasterly winds that bring continental aerosols to the site from the interior of California. Elemental ratios (normalized to Al), matrix factorization, and a k-cluster analysis of these data suggest distinct crustal, combustion, and marine sources with considerable seasonal as well as short-term variability. HYSPLIT model back trajectories support the hypothesized sources of these submicron aerosols. Locally, SMPS data reveal consistent nucleation bursts and subsequent growth in the 20-60 nm range during the afternoons. A distinct but weaker diel cycle was observed in the 70 - 100 nm range, corresponding to the smallest RDI impactor stage. Finally, the Pb isotopic composition (206Pb/207Pb and 208Pb/207Pb) of aerosol samples from selected dates will be measured by MC-ICPMS to further identify aerosol origins (e.g. Ewing et al. 2010).

  18. An expeditious risk analysis of intense rainfall events in low mountain ranges of Central German Uplands under the aspect of a sustainable and decentralised flood retention

    NASA Astrophysics Data System (ADS)

    Bertermann, D.; Bialas, C.; Zacherl, A.

    2012-04-01

    Due to increasing settlement pressure, intensifying pressure as a result of the utilisation of flood-threatened surfaces and also in consequence of the climate change with its effects even on local scales an accumulation of flood events is to be expected. Areas that have not been influenced by flood events in the past, like low mountain ranges, can certainly be affected in the near future. Against this background applicable solution and adjustment strategies are required in practice to mitigate such events or to even prevent them. The key aim of the research activities is the development of a standardised and expeditious risk analysis of intense rainfall events in low mountain ranges of Central German Uplands under the aspect of sustainable and decentralised flood retention and protection. Hydrologic characteristics, expressed by the 'run-off-coefficient' and the 'surface roughness', for clearly defined biotope types of German low mountain ranges should be derived with the help of already existing standardised soil/utilisation/vegetation units. According to the current state-of-the-art of flood models land use changes do not have great impact on the slow-flowing, large flood events in widespread watersheds. On the contrary, small, swift-flowing floods in small watersheds can be influenced by land use or management changes. Thus, the focus of the research work is aimed on these small quick flood events. However, also differentiated information for the solution of flood problems in large watersheds can be reached by the summation of statements about small watersheds. The development of a standardised planning method (incl. the GI-System implementation) for the optimization of the drain regulation serves for the reduction of the flood danger. Land use and vegetation is so optimised in adaptation to soil and land management and by taking into account prevailing drain roads that an essential contribution to the regulation of the surface run-off can be performed. The

  19. Geochemical Characteristics of Overbank Deposits after a Flood Event in a Small, Mountainous River System in the Oregon Coast Range, USA

    NASA Astrophysics Data System (ADS)

    Guerrero, F. J.; Hatten, J. A.; Goni, M. A.; Gray, A. B.; Pasternack, G. B.

    2014-12-01

    The geochemical characteristics of particulate organic matter (POM) transported by rivers has broad implications in our understanding of aquatic nutrient dynamics, the fate of contaminants, environmental change in watersheds, and carbon export to depositional environments. The major fraction of this POM is mobilized during storms, especially in small mountainous river systems (SMRS) producing complex spatial-temporal POM patterns poorly documented due to logistical difficulties. In this study, we examine the use of overbank flood deposits as a surrogate of a quasi-Lagrangian POM sampling scheme to supplement the conventional Eulerian sampling scheme for POM. We report on the geochemical characteristics of 11 overbank deposits created after a significant flood (10 X mean discharge) along 80 km in the Alsea River, a SMRS in the Oregon Coast Range. We measure organic carbon, nitrogen, stable isotopes, and biomarkers such as lignin-derived phenols as well as particle size distribution and surface area of the deposited sediments. We compared those characteristics with the POM sampled during several storms at a fixed location. Our results suggest that despite the differences in local depositional conditions inferred from particle size distributions and texture, the geochemical properties of overbank deposits resemble the properties of the material in transport, mainly derived from a terrestrial source with a clear signal of gymnosperm wood. Furthermore, the normalized ranges of the geochemical indicators measured across space for one single event are comparable to, or even higher than, the normalized range of the same indicators measured along time at the fixed location. The implications of the amount and quality of the additional information offered by the overbank deposits in POM dynamics in watershed is discussed.

  20. The amphibians and reptiles of Luzon Island, Philippines, VIII: the herpetofauna of Cagayan and Isabela Provinces, northern Sierra Madre Mountain Range.

    PubMed

    Brown, Rafe M; Siler, Cameron D; Oliveros, Carl H; Welton, Luke J; Rock, Ashley; Swab, John; Weerd, Merlijn Van; van Beijnen, Jonah; Jose, Edgar; Rodriguez, Dominic; Jose, Edmund; Diesmos, Arvin C

    2013-01-01

    We provide the first report on the herpetological biodiversity (amphibians and reptiles) of the northern Sierra Madre Mountain Range (Cagayan and Isabela provinces), northeast Luzon Island, Philippines. New data from extensive previously unpublished surveys in the Municipalities of Gonzaga, Gattaran, Lasam, Santa Ana, and Baggao (Cagayan Province), as well as fieldwork in the Municipalities of Cabagan, San Mariano, and Palanan (Isabela Province), combined with all available historical museum records, suggest this region is quite diverse. Our new data indicate that at least 101 species are present (29 amphibians, 30 lizards, 35 snakes, two freshwater turtles, three marine turtles, and two crocodilians) and now represented with well-documented records and/or voucher specimens, confirmed in institutional biodiversity repositories. A high percentage of Philippine endemic species constitute the local fauna (approximately 70%). The results of this and other recent studies signify that the herpetological diversity of the northern Philippines is far more diverse than previously imagined. Thirty-eight percent of our recorded species are associated with unresolved taxonomic issues (suspected new species or species complexes in need of taxonomic partitioning). This suggests that despite past and present efforts to comprehensively characterize the fauna, the herpetological biodiversity of the northern Philippines is still substantially underestimated and warranting of further study. PMID:23653519

  1. Revealing the diversity of Cloeodes Traver, 1938 (Ephemeroptera: Baetidae) in the Neotropics: description of eleven new species from Brazilian mountain ranges.

    PubMed

    Salles, F F; Massariol, F C; Angeli, K B; Lima, M M; Gattolliat, J-L; Sartori, M

    2015-01-01

    In the present work, based on material from distinct mountain ranges in Brazil, 11 new species of Cloeodes with hind wings or hind wing pads are described, illustrated and discussed. Among the new species, in C. aiuruoca, C. amantykyra, C. atlanticus, C. boldrinii and C. ioachimi, the apex of the fore femora in the nymphs is extremely projected (a characteristic previously found only in two species of the genus). Cloeodes guara and C. tracheatus share the presence of unusual large and dark gills. Cloeodes melanotarsus is readily distinguished by conspicuous blackish tarsi, C. lucifer by the bright yellow coloration of tergum I, and C. xyrognathos by blade-like incisors. Cloeodes magnus, besides being the largest species of the genus, with a body size reaching 12 mm, possess short maxillary palp. Comments on the presence of C. irvingi and C. opacus in Brazil are also provided. An interactive online key is provided for the nymphs of all the species of Cloeodes in which hind wing pads are present. PMID:26624088

  2. The amphibians and reptiles of Luzon Island, Philippines, VIII: the herpetofauna of Cagayan and Isabela Provinces, northern Sierra Madre Mountain Range

    PubMed Central

    Brown, Rafe M.; Siler, Cameron D.; Oliveros, Carl. H; Welton, Luke J.; Rock, Ashley; Swab, John; Weerd, Merlijn Van; van Beijnen, Jonah; Jose, Edgar; Rodriguez, Dominic; Jose, Edmund; Diesmos, Arvin C.

    2013-01-01

    Abstract We provide the first report on the herpetological biodiversity (amphibians and reptiles) of the northern Sierra Madre Mountain Range (Cagayan and Isabela provinces), northeast Luzon Island, Philippines. New data from extensive previously unpublished surveys in the Municipalities of Gonzaga, Gattaran, Lasam, Santa Ana, and Baggao (Cagayan Province), as well as fieldwork in the Municipalities of Cabagan, San Mariano, and Palanan (Isabela Province), combined with all available historical museum records, suggest this region is quite diverse. Our new data indicate that at least 101 species are present (29 amphibians, 30 lizards, 35 snakes, two freshwater turtles, three marine turtles, and two crocodilians) and now represented with well-documented records and/or voucher specimens, confirmed in institutional biodiversity repositories. A high percentage of Philippine endemic species constitute the local fauna (approximately 70%). The results of this and other recent studies signify that the herpetological diversity of the northern Philippines is far more diverse than previously imagined. Thirty-eight percent of our recorded species are associated with unresolved taxonomic issues (suspected new species or species complexes in need of taxonomic partitioning). This suggests that despite past and present efforts to comprehensively characterize the fauna, the herpetological biodiversity of the northern Philippines is still substantially underestimated and warranting of further study. PMID:23653519

  3. The Granite Mountain Atmospheric Sciences Testbed (GMAST): A Facility for Long Term Complex Terrain Airflow Studies

    NASA Astrophysics Data System (ADS)

    Zajic, D.; Pace, J. C.; Whiteman, C. D.; Hoch, S.

    2011-12-01

    This presentation describes a new facility at Dugway Proving Ground (DPG), Utah that can be used to study airflow over complex terrain, and to evaluate how airflow over a mountain barrier affects wind patterns over adjacent flatter terrain. DPG's primary mission is to conduct testing, training, and operational assessments of chemical and biological weapon systems. These operations require very precise weather forecasts. Most test operations at DPG are conducted on fairly flat test ranges having uniform surface cover, where airflow patterns are generally well-understood. However, the DPG test ranges are located alongside large, isolated mountains, most notably Granite Mountain, Camelback Mountain, and the Cedar Mountains. Airflows generated over, or influenced by, these mountains can affect wind patterns on the test ranges. The new facility, the Granite Mountain Atmospheric Sciences Testbed, or GMAST, is designed to facilitate studies of airflow interactions with topography. This facility will benefit DPG by improving understanding of how mountain airflows interact with the test range conditions. A core infrastructure of weather sensors around and on Granite Mountain has been developed including instrumented towers and remote sensors, along with automated data collection and archival systems. GMAST is expected to be in operation for a number of years and will provide a reference domain for mountain meteorology studies, with data useful for analysts, modelers and theoreticians. Visiting scientists are encouraged to collaborate with DPG personnel to utilize this valuable scientific resource and to add further equipment and scientific designs for both short-term and long-term atmospheric studies. Several of the upcoming MATERHORN (MountAin TERrain atmospHeric mOdeling and obseRvatioNs) project field tests will be conducted at DPG, giving an example of GMAST utilization and collaboration between DPG and visiting scientists.

  4. Do Small Mammals and Vegetation Metacommunity Dynamics Determine the Extent and Pattern of Treeline in the High Elevation Zone of the Sierra Nevada Mountain Range?

    NASA Astrophysics Data System (ADS)

    Klinger, R. C.; Chase, J. T.

    2014-12-01

    There has been a general expectation that warming temperatures will facilitate transformation of high elevation meadows to woody dominated communities. We have been using observational and experimental approaches to analyze potential state changes of meadows and the role seed and seedling predation play in conifer expansion in the high elevation zone of the Sierra Nevada mountain range of the western United States. The observational component consists of 256 plots spanning 3 degrees of latitude and an elevation range from 3000 m to 4000 m. The experimental component consists of mammal seed predator exclosures (N = 252) allocated among three arrays at each of two sites separated by > 100 km. Three cohorts of seeds at five seed densities (1, 2, 3, 5 and 10 seeds per 0.25 m2) and one seedling cohort were placed within and immediately outside the exclosures at each site. Trend surface and distance decay analyses of community composition indicate vegetation communities in the high elevation zone have not assembled predictably along environmental or spatial gradients. Rather, we have found strong support for neutral dynamics, implying that communities assemble more stochastically as a result of dispersal limitation or priority effects. Density of mature and sapling conifers decrease as a function of distance from conifer patches, but seedling density has no relationship with distance from conifer patches. Germination of seeds outside of the exclosures was 19% compared to 65% within, and these were mainly at densities of 1 seed per 0.25 m2. None of the seeds that germinated outside the exclosures survived more than 1.5 years compared to 23% within the exclosures. Virtually all of the seedlings planted outside the exclosures were removed within a year. Collectively, these findings indicate a highly patchy rather than uniform pattern of treeline extension in the high elevation zone of the Sierra Nevada. Moreover, smaller mammals appear to be playing a critical role in

  5. Style and magnitude of Mesozoic thrust faulting in the hinterland of the Sevier thrust belt Pequop Mountains-Wood Hills-East Humboldt Range region, northeast Nevada

    SciTech Connect

    Camilleri, P.A. . Dept. of Geology and Geophysics)

    1993-04-01

    The Pequop Mountains (PM), Wood Hills (WH) and East Humboldt Range (EHR), NE Nevada, provide evidence that the hinterland of the Sevier thrust belt experienced large-magnitude Mesozoic shortening ([>=]55 km) and crustal thickening ([>=] 30 km). These ranges expose a structurally continuous crustal cross section of unmetamorphosed to high pressure upper amphibolite facies Triassic to Precambrian miogeoclinal strata. This sequence lies structurally beneath unmetamorphosed extensional klippen that omit metamorphic grade and crustal section, but also repeat stratigraphic units. Because they repeat stratigraphic units, the underlying miogeoclinal section, or footwall, must have once lain beneath a thrust fault (herein named the Windermere thrust). The footwall of the Windermere thrust was exhumed by two generations of top-to-the-W-NW low-angle normal faults that are distinguished by whether they are depositionally overlapped by Eocene volcanic rocks or if they cut the volcanic rocks in their hanging walls. The latter phase is associated with development of the mid-Tertiary extensional mylonitic shear zone in the EHR. An integration of geobarometric, metamorphic, and map data suggest (1) a NW dip of the footwall of the Windermere thrust with metamorphic facies belts trending perpendicular to dip direction and metamorphic grade increasing down dip, and (2) a top-to-the-SE sense-of-slip for the Windermere thrust. Assuming that the Windermere thrust comprised a flat on the youngest rocks exposed in the footwall (Triassic), the Mesozoic depth to the Windermere thrust in the northern PM is [>=] 7 km, in WH is [approximately]10--16 km, and in the EHR[>=]30 km. The Windermere thrust accommodated a minimum of 50 km of shortening associated with the Independence thrust is [>=] 5 km. These data indicate that the amount of hinterland shortening in NE Nevada greatly exceeds that to the south in the Eureka belt.

  6. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    PubMed

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). PMID:26186465

  7. Ozone trends in Great Smoky Mountains National Park over the past two decades: Implications for plants and ecosystems

    EPA Science Inventory

    Hourly ozone data from five sampling locations in Great Smoky Mountains National Park and one low elevation location adjacent to the Park in NC were analyzed over the period 1989 to 2012 for diurnal and season trends. Sampling locations spanned an elevational range from 564 m at...

  8. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m-3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests

  9. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-09-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W) is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 μg m-3; on average organic aerosol contributes the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol measurements were positively correlated (with an r2 ≥ 0.80) with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC) species extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days). Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in

  10. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.

    PubMed

    Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir

    2015-10-01

    Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates. PMID:26037523

  11. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  12. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain front range

    USGS Publications Warehouse

    Caine, J.S.; Tomusiak, S.R.A.

    2003-01-01

    Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow

  13. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  14. Air quality at a snowmobile staging area and snow chemistry on and off trail in a Rocky Mountain subalpine forest, Snowy Range, Wyoming.

    PubMed

    Musselman, Robert C; Korfmacher, John L

    2007-10-01

    A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO( x ), NO), carbon monoxide (CO), ozone (O(3)) and particulate matter (PM(10) mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow. PMID:17286173

  15. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonella koehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats

    PubMed Central

    Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  16. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonellakoehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats.

    PubMed

    Chomel, Bruno B; Molia, Sophie; Kasten, Rickie W; Borgo, Gina M; Stuckey, Matthew J; Maruyama, Soichi; Chang, Chao-Chin; Haddad, Nadia; Koehler, Jane E

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  17. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  18. Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan mountain ranges of India and Nepal.

    PubMed

    Venkatachalam, Siddarthan; Gowdaman, Vasudevan; Prabagaran, Solai Ramatchandirane

    2015-04-01

    Bacterial diversity of soil samples collected from different geographical regions of Himalayan mountains was studied through culturable (13 samples) and culture-independent approaches (5 samples based on abundance of diversity indices in each ecological niche). Shannon-Wiener diversity index and total bacterial count ranged from 1.50 ± 0.1 to 2.57 ± 0.15 and 7.8 ± 1.6 × 10(5) to 30.9 ± 1.7 × 10(5) cfu ml(-1) of soil, respectively. Based on morphology and pigmentation, 406 isolates were selected by culturing in different cultivable media at various strengths and concentrations. All the strains were subjected to amplified ribosomal DNA restriction analysis and the representative isolates from each cluster were chosen for 16S rRNA gene sequence-based identification. Soil habitat in Himalayan foot hills was dominated by the genera Arthrobacter, Exiguobacterium, Bacillus, Cedecea, Erwinia, and Pseudomonas. Five 16S rRNA gene libraries from the selected five samples yielded 268 clones and were grouped into 53 phylotypes covering 25 genera including the genus of Ferribacterium, Rothia, and Wautersiella, which were reported for the first time in Himalayan tracks. Principal coordinates analysis indicates that all the clone libraries were clearly separated and found to be significantly different from each other. Further, extracellular investigation of cold-active enzymes showed activity of cellulase (23.71%), pectinase (20.24%), amylase (17.32%), phytase (13.87%), protease (12.72%), and lipase (23.71%) among the isolates. Four isolates namely Exiguobacterium mexicanum (BSa14), Exiguobacterium sibiricum (BZa11), Micrococcus antarcticus (BSb10), and Bacillus simplex (BZb3) showed multiple enzyme activity for five different types of enzymes. In addition, various genera like Exiguobacterium, Erwinia, Mycetecola, Cedecea, Pantoea, and Trichococcus have also shown novel hydrolytic enzyme activity in the Himalayan foothills. PMID:25204748

  19. The Impact of Biomass Burning and North American Monsoon On the Surface Ozone in the Western U.S. mountain ranges

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, Q.; Zhang, L.; Mao, Y.; Murray, L. T.; Martin, R.; Lamsal, L. N.

    2013-12-01

    We analyze the surface O3 observations from the Clean Air Status and Trend Network (CASTNet) using a global chemical transport model (GEOS-Chem) to investigate the impact of biomass burning on surface O3 in the western U.S. (WUS) mountain ranges during the June-October fire season of 2007, one of the stronger fire years in the WUS in the past decade. GEOS-Chem O3 captures the observed seasonal, synoptic and daily variations. Model daily afternoon average surface O3 concentrations at the CASTNet sites are within 2 ppb of the observations, with correlation coefficients of 0.51-0.83 and Taylor scores of 0.64-0.92. Model results show July-September maximum surface O3 enhancement of ~9 ppb on average because of biomass burning. Peaks in fire-contributed surface O3 correspond broadly with high levels of potassium (K), reaffirming a strong fire influence. We find a policy relevant background (PRB) O3 of 45.6 ppb on average during July-September. Fire-contributed O3 accounts for up to 30% of the PRB O3, highest in the intense fire region (Montana, Idaho, and Wyoming) with maxima in August and September. At most of the CASTNet sites in the Southwestern (SW) U.S. including the state of Utah, Nevada, Arizona, Colorado and New Mexico, we find sudden decreases in surface O3 from late July through early August, when North American (NA) summer monsoon is at its peak strength. This corresponds to the period when model results are biased high by up to 30 ppb these sites in the SW U.S. Sensitivity simulation indicates that the overestimation is primarily due to the excessive lightning NOx emission in the model. After redistributing the lightning flash rates with that from National Lightning Data Network, the model better agrees with observation. We use CMAP and GPCP precipitation as a proxy for NA monsoon, and find there is a strong anti-correlation between surface O3 and precipitation (-0.5~-0.7 averaged over 2003~2012 for CASTNet sites in SW U.S.). We use GEOS-Chem simulation to

  20. TranSCorBe Project: A high-resolution seismic-passive profile to study the variation of the crustal and upper mantle structures under the Betic mountain ranges

    NASA Astrophysics Data System (ADS)

    Morales, José; Martín, Rosa; Stich, Daniel; Heit, Benjamín; Yuan, Xiaohui; Mancilla, Flor; Benito, José; Carrion, Francisco; Serrano, Inmaculada; López-Comino, Jose Angel; Abreu, Rafael; Alguacil, Gerardo; Almendros, Javier; Carmona, Enrique; Ontiveros, Alfonso; García-Quiroga, Daniel; García-Jerez, Antonio

    2014-05-01

    The goal of this project is to study the crustal and upper mantle structures under the Betic mountain ranges and their variations between the different geological domains. We deployed 50 broadband and short period seismic stations during 18 months following two profiles. We collect teleseismic events to perform a high-resolution P-to-S and S-to-P receiver function analysis. The main profile (TranSCorBe), of 160 km length, starts near the coast in Mazarrón (Murcia) and follows a NW-SE direction, crossing the Cazorla mountain range. It probes, from south to north, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The spacing between stations is around 3-4 km. This inter-station distance allows us mapping with high accuracy the variations of the crust and upper mantle discontinuities in the Betic Range and their transition to the Iberian Massif. A second profile (HiRe II) with a larger spacing between seismic stations, is a continuation of a previously installed HiRe I profile, a NS profile starting near the Mediterranean coast in Adra (Almería) through Sierra Nevada Mountains. HiRe II profile prolongs HiRe I profile until the Variscan intersecting with TranSCorBe profile near Cazorla.

  1. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  2. Christmas Mountains

    Atmospheric Science Data Center

    2013-04-17

    article title:  Christmas Mountains     View Larger Image ... New Brunswick. Located above image center are the Christmas Mountains, a region of old-growth forest nestled in a remote wilderness. Within ...

  3. The Mysterious Martian Mountains of Mitchel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image covers an 800 by 300 km (500 by 190 mi) area located deep within the boundary of the seasonal south polar frost cap of Mars. Centered at 70oS, 320oW, this view--taken in early spring when sunlight has just begun to shine on the region for the first time in many months--includes a bright region (diagonal from center-left to lower right) known for nearly two centuries as the 'Mountains of Mitchel.' This feature was named for Ormsby McKnight Mitchel (1809-1862), an astronomer at the University of Cincinnati, Ohio, who discovered it while observing Mars through a telescope in 1846. Mitchel noticed that this area is typically 'left behind' as a bright peninsula when the rest of the polarcap recedes past this area later in the spring.

    Mitchel deduced that this area might be mountainous because it seemed analogous to the snow that is left on Earth's mountain ranges in late spring and into summer. Snow can remain on high peaks because the air temperature decreases with elevation (or altitude). MGS Mars Orbiter Laser Altimeter (MOLA) observations of this region show the bright 'Mountains of Mitchel' to be a somewhat elevated region of rough, heavily cratered southern highlands. However, the 'Mountains of Mitchel' do not appear to be mountains-there are other areas nearby at similar elevation that do not retain frost well into southern spring. Part of the Mountains of Mitchel feature includes a prominent, south-facing scarp (at center-left) that would tend to retain frost longer in the spring because it is somewhat protected from sunlight (which comes from the north). The persistence of frost on the Mountains of Mitchel remains mysterious, but new observations from the MGS MOC are helping to unravel the story. Thus far, it seems that the frost here--for whatever reason--tends to be brighter than frost in most other places within the polar cap. This brighter frost reflects sunlight and thus sublimes more

  4. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Appalachian Mountains     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . The true-color image at left is a ... from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The three images to the right are also in true-color, ...

  5. Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex, Nevada

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Wickham, Stephen M.; O'Neil, James R.

    1992-06-01

    Stable isotope analyses of rocks and minerals associated with the detachment fault and underlying mylonite zone exposed at Secret Creek gorge and other localities in the Ruby-East Humboldt Range metamorphic core complex in northeastern Nevada provide convincing evidence for meteoric water infiltration during mylonitization. Whole-rock δ18O values of the lower plate quartzite mylonites (≥95% modal quartz) have been lowered by up to 10 per mil compared with structurally lower, compositionally similar, unmylonitized material. Biotite from these rocks has δD values ranging from -125 to -175, compared to values of -55 to-70 in biotite from unmylonitized rocks. Mylonitized leucogranites have large disequilibrium oxygen isotope fractionations ( Δ quartz-feldspar up to ˜8 per mil) relative to magmatic values ( Δ quartz-feldspar˜1 to 2 per mil)). Meteoric water is the only major oxygen and hydrogen reservoir with an isotopic composition capable of generating the observed values. Fluid inclusion water from unstrained quartz in silicified breccia has a δD value of-119 which provides a plausible estimate of the δD of the infiltrating fluid, and is similar to the isotopic composition of present-day and Tertiary local meteoric water. The quartzite mylonite biotites would have been in equilibrium with such a fluid at temperatures of 480 620° C, similar to independent estimates of the temperature of mylonitization. The relatively high temperatures required for isotopic exchange between quartz and water, the occurrence of fluid inclusion trails and deformed veins in quartzite mylonites, and the spatial association of the low-18O, low-D rocks with the shear zone all constrain isotopic exchange to the mylonitic (plastic) deformation event. These observations suggest thata significant amount of meteoric water infiltrated the shear zone during mylonitization to depths of at least 5 to 10 km below the surface. The depth of penetration of meteoric fluids into the lower plate

  6. Deciphering the Tectonic History of the Northern Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Hansen, Samantha; Graw, Jordan; Brenn, Gregory; Kenyon, Lindsey; Park, Yongcheol; DuBay, Brian

    2016-04-01

    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range in the world, and their structure plays a key role in the climatic and tectonic development of Antarctica. While numerous uplift mechanisms for the TAMs have been proposed, there is little consensus on their origin. Over the past three years, we have operated a network of 15 broadband seismic stations within a previously unexplored portion of the northern TAMs. Using data collected by this array, we have undertaken numerous studies to further assess the crustal and lithospheric structure beneath the mountain range and to differentiate between competing origin models. Receiver functions indicate crustal thickening inland from the Ross Sea coast but comparable crustal thickness beneath the TAMs and the East Antarctic plateau, indicating little evidence for a substantial crustal root beneath the mountain range. Body and surface wave analyses show a pronounced low-velocity anomaly beneath Terror Rift, adjacent to the TAMs, and extending beneath Victoria Land in the upper mantle. Together, these findings support a thermally-buoyant source of uplift for the northern TAMs and broad flexure of the East Antarctic lithosphere.

  7. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    than scientific; his second, more scientific trip was made 2 years later. Powell revisited the Uinta Mountains in 1874 and 1875 to complete the studies begun 6 years earlier. His classic 'Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto' was published in 1876. King's survey?officially 'The United States Geological Exploration of the Fortieth Parallel'?is better known simply as the '40th Parallel Survey.' King began working eastward from California in 1867. The Uinta Mountains region, however, was mapped by S. F. Emmons, under the supervision of King, in the summers of 1869 and 1871. Emmons' work was monumental, and although he emphasized in his letter of transmittal to King the exploratory nature of the work?as the formal title of the report indicates?his maps, descriptions, and conclusions reflect a comprehensive understanding of the country and its rocks. The 40th Parallel report contains the best, most complete early descriptions of the Uinta Mountains. It, indeed, is a treasurechest of information and a landmark contribution to the emerging science of geology. Hayden visited the Uinta Mountains in 1870, descending the valley of Henrys Fork to Flaming Gorge in the fall after having earlier examined the higher part of the range to the west. Most of Hayden's observations were cursory, and he repeatedly expressed regret at having insufficient time for more detailed studies. In reference to the area between Clay Basin and Browns Park, he remarked (Hayden, 1871, p. 67) somewhat dryly that 'the geology of this portion of the Uinta range is very complicated and interesting. To have solved the problem to my entire satisfaction would have required a week or two.' Eighty-odd years later I spent several months there?looking at the same rocks. Powell was perhaps more creative?more intuitive?than either King or Hayden, and his breadth of interest in the fields of geology, physiography, ethnology, an

  8. Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge Areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, September 2005-August 2006

    USGS Publications Warehouse

    Moreo, Michael T.; Laczniak, Randell J.; Stannard, David I.

    2007-01-01

    Evapotranspiration was measured at six eddy-correlation sites for a 1-year period between September 1, 2005, and August 31, 2006. Five sites were in phreatophytic shrubland dominated by greasewood, and one site was in a grassland meadow. The measured annual evapotranspiration ranged from 10.02 to 12.77 inches at the shrubland sites and 26.94 inches at the grassland site. Evapotranspiration rates correlated to measured vegetation densities and to satellite-derived vegetation indexes. Evapotranspiration rates were greater at sites with denser vegetation. The primary water source supporting evapotranspiration was water derived from local precipitation at the shrubland sites, and ground water at the grassland site. Measured precipitation, ranging from 6.21 to 11.41 inches, was within 20 percent of the computed long-term annual mean. The amount of ground water consumed by phreatophytes depends primarily on local precipitation and vegetation density. The ground-water contribution to local evapotranspiration ranged from 6 to 38 percent of total evapotranspiration at the shrubland sites, and 70 percent of total evapotranspiration at the grassland site. Average depth to water ranged from 7.2 to 32.4 feet below land surface at the shrubland sites, and 3.9 feet at the grassland site. Water levels declined throughout the growing season and recovered during the non-growing season. Diurnal water-level fluctuations associated with evapotranspiration were evident at some sites but not at others.

  9. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, U.S.A.

    PubMed

    Eby, Lisa A; Helmy, Olga; Holsinger, Lisa M; Young, Michael K

    2014-01-01

    Many freshwater fish species are considered vulnerable to stream temperature warming associated with climate change because they are ectothermic, yet there are surprisingly few studies documenting changes in distributions. Streams and rivers in the U.S. Rocky Mountains have been warming for several decades. At the same time these systems have been experiencing an increase in the severity and frequency of wildfires, which often results in habitat changes including increased water temperatures. We resampled 74 sites across a Rocky Mountain watershed 17 to 20 years after initial samples to determine whether there were trends in bull trout occurrence associated with temperature, wildfire, or other habitat variables. We found that site abandonment probabilities (0.36) were significantly higher than colonization probabilities (0.13), which indicated a reduction in the number of occupied sites. Site abandonment probabilities were greater at low elevations with warm temperatures. Other covariates, such as the presence of wildfire, nonnative brook trout, proximity to areas with many adults, and various stream habitat descriptors, were not associated with changes in probability of occupancy. Higher abandonment probabilities at low elevation for bull trout provide initial evidence validating the predictions made by bioclimatic models that bull trout populations will retreat to higher, cooler thermal refuges as water temperatures increase. The geographic breadth of these declines across the region is unknown but the approach of revisiting historical sites using an occupancy framework provides a useful template for additional assessments. PMID:24897341

  10. Preliminary analysis of the role of lake basin morphology on the modern diatom flora in the Ruby Mountains and East Humboldt Range, Nevada, USA

    USGS Publications Warehouse

    Starratt, Scott W.

    2014-01-01

    As paleolimnologists, we often look at the world through a 5-cm-diameter hole in the bottom of a lake, and although a number of studies have shown that a single core in the deepest part of a lake does not necessarily reflect the entire diatom flora, time and money often limit our ability to collect more than one core from a given site. This preliminary study is part of a multidisciplinary research project to understand Holocene climate variability in alpine regions of the Great Basin, and ultimately, to compare these high elevation records to the better studied pluvial records from adjacent valleys, in this case, the Ruby Valley.

  11. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  12. Mid-range sidescan-sonar images covering parts of proposed tracts for OCS lease sale 56 and contiguous areas, Manteo, Cape Fear, and adjacent quadrangles off North Carolina

    USGS Publications Warehouse

    Popenoe, Peter; Cashman, K.V.; Chayes, Dale; Ryan, William B. F.

    1981-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Land Management (BLM) and the Lamont-Doherty Geological Observatory (LDGO), collected 335 km of mid-range sidescan-sonar data in some of the tracts proposed for inclusion in Federal OCS (Outer Continental Shelf) Oil and Gas Lease Sale 56 and in some contiguous areas (R.V. GYRE, September 18-25, 1980 [GYRE 80-9, leg 1]).

  13. (U-Th)/He Apatite Age Data From the Inyo Mountains, California: Implications for the Timing of Extension and Dextral Slip Rates Along the Western Boundary of the Basin Range Province/Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.

    2006-12-01

    With topographic relief of ~2.7 km, the Inyo Mountains, California is one of the largest mountains within the western part of the Basin Range Province (BRP) and Eastern California Shear Zone (ECSZ). This rugged range is underlain by Paleozoic sedimentary and metasedimentary rocks, Mesozoic plutons, and Quaternary alluvial deposits. An active, east-dipping normal fault, the eastern Inyo fault zone (EIFZ), defines the eastern flank of the range; the Saline Valley pull-apart basin is exposed in its hanging wall. To the south, the dextral Hunter Mountain fault (HMF) connects the EIFZ to the Panamint Valley fault. We completed the first (U-Th)/He apatite thermochronometric study on 24 samples collected from the Pat Keyes pluton across the range that bear on the timing of normal slip along the EIFZ and provide insight into the distribution of dextral shear across the ECSZ. Samples from the west-side of the range yield an elevation invariant (U-Th)/He age of 50.9±0.9 Ma. In contrast, samples from the east side of the range define two exhumed Partial Retention Zones (PRZ) and inflection points. From the top of the range ages systematically decrease from ~50 Ma at the top of the range to ~15 Ma. Below this upper inflection point, samples yield invariant (U-Th)/He ages of 15.0±0.3 Ma over a vertical distance of 0.8 km. (U-Th)/He ages then decrease again from ~15 Ma to ~3 Ma defining a Miocene-Pliocene PRZ. At the range front, below this lower inflection point, samples yield an invariant age of 2.8±0.1 Ma. We interpret these age patterns as indicating: (a) slow cooling (0.03- 0.06 mm/yr) through an older PRZ at high structural levels between >50 and 15.0 Ma; (b) rapid cooling, exhumation, and normal slip along the EIFZ at 15.0 Ma accommodated by westward tilting; (c) slow cooling (0.03-0.06 mm/yr) between 15.0 and 2.8 Ma through a younger PRZ; and (d) rapid cooling, exhumation, and renewed normal slip along the EIFZ at 2.8 Ma. The two episodes of exhumation along the EIFZ

  14. Fissured Rocks and Water Reservoirs in Eastern Thessaly Mountain Range, Greece (Olympus, Ossa, Maurovouni and Pelion): The Role of Tectonic Deformation

    NASA Astrophysics Data System (ADS)

    Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.

    2009-04-01

    The storage capacity of fractured hard rocks is lower than porous media and karst formations, though they can yield groundwater of sufficiently good quality for drinking purposes and may host important water resources, even if they are often of low permeability. In particular, for countries like Greece, where water needs for the local population and the tourist industry are excessive and waterfall limited, these reservoirs are of strategic importance. The mountain Range in Eastern Thessaly comprises an extensive nappe of metamorphic rocks, consisting of schists, gneisses, involving partly some ophiolithic rocks and marble intercalations. The thickness of the nappe exceeds 600 m in Ossa, whereas in the area of Pelion is estimated up to 3.000 m. This nappe rests on top of the Autochthonous Olympus- Ossa unit, which forms a massive Mesozoic carbonate sequence. Extensive fieldwork data supported by the analysis of the physical and chemical properties of a large number of springs and combined by the study of the geological structure both local and regional, resulted in important outcomes regarding the fissured rocks permeability, water flow and springs distribution. Schists are characterized by heterogeneity regarding their permeability features. They are divided into hard-rocks where quartz, epidote and amphiboles prevail, displaying higher permeability and soft-rocks where clay minerals prevail, exhibiting low permeability features, because the presence of clay blocks the fissures and prevent any infiltration process. The marbles are of high permeability, but are of limited extent. A few springs are located in marbles, but the vast majority of the springs are associated to the hard-rock schists, are scattered and characterized by high seasonal discharges. In the area of Ossa in particular, the most important reservoirs exist at the bordering zones of the metamorphic and the post-alpine formations due to the enrichment of the sedimentary post-alpine formations. In the

  15. Oil and gas prospecting beneath the Precambrian of foreland thrust plates in the Rocky Mountains

    SciTech Connect

    Gries, R.

    1981-01-01

    Only 15 wells in the Rocky Mountain region have drilled through Precambrian to test the 3 to 6 million acres of sedimentary rocks that are concealed and virtually unexplored beneath mountain front thrusts. More than half of these wells had oil and gas shows and one was a producing oil well. These wells have not only set up an exciting play for the future, they have also helped define the structural geometry of the mountain front thrusts, including the angle of the thrust and the presence or absence of fault slivers of overturned Mesozoic or Paleozoic rocks. Most important for further geophysical exploration, these wells have provided vital data on seismic velocities in Precambrian rocks. Analysis of these data will stimulate further exploration along the fronts already drilled: the Emigrant Trail Thrust, the Washakie Thrust, the Wind River Thrust, the Uinta Mountain Thrust, and the thrust at the north end of the Laramie Range. The geologic success of these wells has encouraged leasing and seismic acquisition on every other mountain front thrust in the Rockies. Wells are presently drilling on the Casper Arch and the west flank of the Big Horn Basin adjacent Oregon Basin Field. An unsuccessful attempt to drill through the Arlington Thrust of the Medicine Bow Range will probably only momentarily daunt that play, and the attempted penetration of the Axial Arch in Colorado has not condemned that area. Untested areas that will be explored in the near future are: the south flank of the Owl Creek Range, the northeast flank of the Beartooth Mountains in Montana, the east and west flanks of the Big Horn Mountains, the north flank of the Hanna Basin, the south flank of the Uinta Mountains, the White River Uplift, the north flank of North Park Basin, and the Front Range.

  16. Atmospheric inputs and nitrogen saturation status in and adjacent to Class I wilderness areas of the northeastern US.

    PubMed

    Templer, Pamela H; Weathers, Kathleen C; Lindsey, Amanda; Lenoir, Katherine; Scott, Lindsay

    2015-01-01

    Atmospheric inputs of N and S in bulk deposition (open collectors) and throughfall (beneath canopy collectors) were measured in and adjacent to two Class 1 wilderness areas of the northeastern US. In general, atmospheric S inputs followed our expectations with throughfall S fluxes increasing with elevation in the White Mountains, New Hampshire and throughfall S fluxes being greater in coniferous than deciduous stands in both sites. In contrast, throughfall N fluxes decreased significantly with elevation. Throughfall NO3 (-) fluxes were greater in coniferous than deciduous stands of Lye Brook, Vermont, but were greater in deciduous than coniferous stands of the White Mountains. We found overlap in the range of values for atmospheric N inputs between our measurements and monitoring data [National Atmospheric Deposition Program (NADP) and Clean Air Status and Trends Network (CASTNET)] for wet and total (wet + dry) deposition at Lye Brook. However, our measurements of total S deposition in the White Mountains and bulk (wet) deposition at both Lye Brook and the White Mountains were significantly lower than NADP plus CASTNET, and NADP data, respectively. Natural abundance (18)O in throughfall and bulk deposition were not significantly different, suggesting that there was no significant biological production of [Formula: see text] via nitrification in the canopy. NO3 (-) concentrations in streams were low and had natural abundance (18)O values consistent with microbial production, demonstrating that atmospheric N is being biologically transformed while moving through these watersheds and that these forested watersheds are unlikely to be N saturated. PMID:25407620

  17. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    USGS Publications Warehouse

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  18. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  19. Geochemical and Isotopic Data for Oligocene Ignimbrites, Calderas, and Granitic Plutons, Southern Stillwater Range and Clan Alpine Mountains: Insights into the Volcanic-Plutonic Connection and Crustal Evolution in Western Nevada

    NASA Astrophysics Data System (ADS)

    John, D. A.; Colgan, J. P.; Watts, K. E.; Henry, C.; Cousens, B.

    2015-12-01

    Oligocene calderas and underlying plutons in the southern Stillwater Range (SSR) and Clan Alpine Mountains (CAM) in western Nevada were tilted (40->90°) by large-magnitude Miocene extension and unconformably overlain by 15-13 Ma intermediate and mafic lava flows. New geologic mapping, geochemistry, and Ar-Ar and U-Pb dating document 2 brief periods of magmatism resulting in 5 nested calderas and related plutons in sections locally ≥9 km thick. Early magmatism at ~29 Ma included the Deep Canyon caldera in CAM, and in the SSR, pre-caldera rhyolites, ~5 km of pre- and post-collapse intermediate lavas and rhyolite tuff that filled Job Canyon caldera (JC, ~29.4 to 28.8 Ma), and the >4-5 km thick IXL pluton (~28.5 Ma) that intruded JC and is compositionally similar to the tuff and lava flows. The second period included 3 ignimbrite units in 3 calderas: small-volume tuff of Louderback Mountains (LM, low-silica rhyolite; ≥600 m thick; ~25.3 Ma); multiple cooling units of tuff of Poco Canyon (PC, high-silica rhyolite; ≤4.5 km thick; ~25.3 Ma); and ≥2500 km3 of tuff of Elevenmile Canyon (EC, trachydacite to rhyolite; ≤4.5 km thick; 25.1 Ma) that covers ~1600 km2 and extends east from SSR to the northern Desatoya Mountains. The composite Freeman Creek pluton (granodiorite, ~25.0 Ma; granite, ~24.8 Ma) and Chalk Mountain rhyolite porphyry (~25.2 Ma) and granite (~24.8 Ma) plutons intruded LM, PC and EC calderas. Radiogenic isotopes in all caldera units are similar (Sri~0.7050, ΕNd~0.0), while oxygen isotope compositions are variable (δ18Oquartz=5.7-8.4‰, δ18Ozircon=4.1-6.3‰), corresponding to a magmatic range of 5.6-7.6‰, including <6‰ values for JC and lower PC rhyolites. U-Pb zircon dating shows homogeneous age populations and few/no xenocrysts or antecrysts. These data show that (1) thick plutons (>2-5 km) underlie compositionally and temporally related caldera-filling ignimbrites, (2) caldera-forming cycles are isotopically variable, requiring

  20. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  1. Microbial ecology of á-Proteobacteria ammonia-oxidizers along a concentration gradient of dry atmospheric nitrogen deposition in the San Bernadino Mountain Range.

    NASA Astrophysics Data System (ADS)

    Jordan, F. L.; Fenn, M. E.; Stein, L. Y.

    2002-12-01

    The fate of atmospherically-deposited nitrogen from industrial pollution is of major concern in the montane ecosystems bordering the South Coast California Air Basin. Nitrogen deposition rates in the more exposed regions of the San Bernardino Mountains (SBM) are among the highest in North America often exceeding 40 kg ha-1 year-1 in throughfall deposition of nitrate and ammonium (Fenn and Poth, 1999). Forest ecosystems with elevated N deposition generally exhibit elevated accumulation of soil nitrate, leaching and runoff, elevated emissions of nitrogenous gases, increased nitrification, and decreased litter decomposition rates. The role of nitrifying microbial populations, especially those taxonomically associated with the beta-Proteobacteria ammonia-oxidizers (AOB), will provide insight into nitrogen-cycling in these extremely N-saturated environments. Using 16S ribosomal DNA-based molecular techniques (16S rDNA clone library construction and Restriction Fragment Length Polymorphism), we are comparing AOB community diversity at 3 different locations along a natural atmospheric N-deposition concentration gradient in the SBM: from high at Camp Paviaka (CP), medium at Strawberry Peak (SP) to low at Dogwood (DW). As observed for wet N-deposition systems on the east coast, we hypothesized a negative correlation between AOB community diversity, abundance and function with nitrogen loading in the dry N deposition system of SBM. Nitrification potentials determined for the 3 sites along the N-deposition gradient were in the order of CP less than SP less than DW. Preliminary results indicate no correlation between diversity of AOB and increased nitrogen loading. Shannon-Weiner diversity indices calculated for ammonia-oxidizer RFLP group units were 2.22, 2.66 and 1.80 for CP, SP and DW, respectively.

  2. Stone Mountain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This color image taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the part of the rock outcrop dubbed Stone Mountain at Meridiani Planum, Mars. Scientists are examining Stone Mountain with the instruments on the rover's instrument deployment device, or 'arm,' in search of clues about the composition of the rock outcrop. [figure removed for brevity, see original site] A Patch of Stone (Figure credit: NASA/JPL/Cornell/USGS)

    The colorless square in this color image of the martian rock formation called Stone Mountain is one portion of the rock being analyzed with tools on the Mars Exploration Rover Opportunity's instrument deployment device, or 'arm.' The square area is approximately 3 centimeters (1.2 inches) across. Stone Mountain is located within the rock outcrop on Meridiani Planum, Mars. The image was taken by the rover's panoramic camera.

  3. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  4. Transverse ranges and neotectonics of southern California

    SciTech Connect

    Hill, M.L.

    1990-01-01

    The Transverse Ranges and the east-trending folds and reverse faults that elevate them began forming in mid-Pleistocene time by regional north-south crustal shortening. The adjacent Mojave Desert and Basin and Range provinces continue to respond to this regional strain by east-west crustal extension. Before {approximately}5 Ma the regional structure was characterized by conjugate northwest-trending right-slip faults (San Andreas set) and northeast-trending left-slip faults (Garlock set). Thereafter, the San Andreas set of faults became simple shears separating the North American and Pacific plates. With the mid-Pleistocene inception of the Transverse Ranges, the San Andreas fault deviated from its N40{degree} - 45{degree}W trend in short N75{degree}W-trending segments on the north and south sides of these mountains in response to the new, and local, strain system of upward crustal extension.

  5. An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2005-01-01

    [1] The subsurface transfer of water from a mountain block to an adjacent basin (mountain block recharge (MBR)) is a commonly invoked mechanism of recharge to intermountain basins. However, MBR estimates are highly uncertain. We present an approach to characterize bulk fluid circulation in a mountain block and thus MBR that utilizes environmental tracers from the basin aquifer. Noble gas recharge temperatures, groundwater ages, and temperature data combined with heat and fluid flow modeling are used to identify clearly improbable flow regimes in the southeastern Salt Lake Valley, Utah, and adjacent Wasatch Mountains. The range of possible MBR rates is reduced by 70%. Derived MBR rates (5.5-12.6 ?? 104 m3 d-1) are on the same order of magnitude as previous large estimates, indicating that significant MBR to intermountain basins is plausible. However, derived rates are 50-100% of the lowest previous estimate, meaning total recharge is probably less than previously thought. Copyright 2005 by the American Geophysical Union.

  6. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  7. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  8. The Current Tectonics of the Yukon and Adjacent Area

    NASA Astrophysics Data System (ADS)

    Hyndman, R. D.; Leonard, L. J.

    2014-12-01

    The current tectonics across the Yukon and adjacent areas of western Northwest Territories (NWT) and northern British Columbia appear to be driven primarily by the Yakutat Terrane collision, an "indenter" in the corner of the Gulf of Alaska. GPS data show 1-10 mm/yr northward and eastward, decreasing inland. The rates from earthquake statistics are similar although there are important discrepancies. The eastern Cordillera earthquake mechanisms are mainly thrust in the Mackenzie Mountains of southwestern NWT where the Cordillera upper crust is overthrusting the craton. To the north, the mechanisms are mainly strike-slip in the Richardson Mountains that appear to lie along the edge of the craton. The deformation appears to be limited to the hot and weak Cordillera with the strong craton providing an irregular eastern boundary. For example, there is an eastward bow in the craton edge and the deformation in the Mackenzie Mountains. On the Beaufort Sea margin in the region of the Mackenzie Delta there appears to be a type of "subduction zone" with the continent very slowly overthrusting the oceanic plate, a process that has continued since at least the Cretaceous. A northward moving continental margin block is bounded by left lateral faulting in the west (Canning Displacement Zone of eastern Alaska) and right lateral faulting in the east (Richardson Mountains in eastern Yukon). There is almost no seismicity on this thrust belt but as for some other subduction zones such as Cascadia there is the potential for very infrequent great earthquakes.

  9. Invisible CO2 gas killing trees at Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, Michael L.; Farrar, Christopher D.; Evans, William C.; Hill, David P.; Bailey, Roy A.; Hendley, James W., II; Stauffer, Peter H.

    1996-01-01

    Since 1980, scientists have monitored geologic unrest in Long Valley Caldera and at adjacent Mammoth Mountain, California. After a persistent swarm of earthquakes beneath Mammoth Mountain in 1989, earth scientists discovered that large volumes of carbon dioxide (CO2) gas were seeping from beneath this volcano. This gas is killing trees on the mountain and also can be a danger to people. The USGS continues to study the CO2 emissions to help protect the public from this invisible potential hazard.

  10. Precipitation Across India's Ghats Mountains (IMERG)

    NASA Video Gallery

    Animation of precipitation rates across India and surrounding countries. Notice the heavy rains throughout the Ghats Mountain range which resulted in devastating landslides along India's west coast...

  11. A late Frasnian (Late Devonian) radiolarian, sponge spicule, and conodont fauna from the Slaven Chert, northern Shoshone Range, Roberts Mountains allochthon, Nevada

    USGS Publications Warehouse

    Boundy-Sanders, S. Q.; Sandberg, C.A.; Murchey, B.L.; Harris, A.G.

    1999-01-01

    Co-occuring conodonts, radiolarians, and sponge spicules from the type locality of the Slaven Chert, northern Shoshone Range, Nevada, indicate that the radiolarian and sponge spicule assemblage described herein correlates with the Late rhenana conodont Zone (late Frasnian). The moderately well preserved radiolarians are the first Frasnian-age fauna described from the Western Hemisphere. They include spumellarians, Ceratoikiscum, and Paleoscenidium, and a radiolarian which we have assigned to a new genus, Durahelenifore Boundy-Sanders and Murchey, with its type species, Durahelenifore robustum Boundy-Sanders and Murchey. Sponge spicules include umbellate microscleres of the Subclass Amphidiscophora, Order Hemidiscosa, previously documented only in Pennsylvanian and younger rocks.

  12. The effect of four landscape features on atmospheric deposition to Hunter Mountain, New York

    SciTech Connect

    Weathers, K.C.

    1993-01-01

    Atmospheric deposition to montane ecosystems is higher than to adjacent lowlands. Because of the heterogeneous nature of mountainous landscapes, rates of deposition are likely to vary considerably with major landscape features. Estimates of total atmospheric deposition for mountains in the northeastern United States are wide-ranging and based on models that do not take into account landscape heterogeneity. Little had been known about the spatial variability of atmospheric deposition to these high elevation ecosystems. On Hunter Mountain in the Catskill Mountains, New York, four landscape features-(1) edges/gaps, (2) elevation, (3) aspect and (4) vegetation type-were identified as likely to control atmospheric deposition in mountainous terrain. Relative rates of atmospheric deposition, or enhancement factors, were measured across these landscape features by using lead in the forest floor as an indicator of total deposition, and, in the case of forest edges, also by making direct measurements of cloudwater deposition. These enhancement factors were used to model deposition to the Hunter Mountain landscape. Average deposition to the area above 1000 m was estimated to be 13% greater than to a nearby low elevation site. [open quotes]Hotspots[close quotes] were identified at high elevation, conifer forest edges where atmospheric deposition of pollutants and nutrients is up to 300% greater than a low-elevation forest. More detailed measurements of cloudwater deposition to an edge of a high elevation spruce forest revealed enhancement from 0- to 15-fold over the interior, with an average 3-fold increase. Sulfate flux in throughfall during cloud events was found to mirror cloudwater deposition and may be a useful tool to quantify patterns of atmospheric deposition in mountains. The data suggest current estimates of atmospheric deposition to mountainous terrain that do not include landscape heterogeneity may seriously underestimate loading of pollutants and nutrients.

  13. 78 FR 60309 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service, Interior. ACTION: Notification of Boundary Revision. SUMMARY: The boundary of Rocky Mountain National Park... Larimer County, Colorado, immediately adjacent to the current eastern boundary of Rocky Mountain...

  14. Impact of natural climate change and historical land use on vegetation cover and geomorphological process dynamics in the Serra dos Órgãos mountain range in Rio de Janeiro State, Brazil

    NASA Astrophysics Data System (ADS)

    Nehren, U.; Sattler, D.; Heinrich, J.

    2010-03-01

    The Serra dos Órgãos mountain range in the hinterland of Rio de Janeiro contains extensive remnants of the Atlantic Forest (Mata Atlântica) biome, which once covered about 1.5 million km² from Northeast to South Brazil and further inland to Paraguay and Argentina. As a result of historical deforestation and recent land use intensification processes today only 5 to 8% of the original Atlantic Forest remains. Despite the dramatic habitat loss and a high degree of forest fragmentation, the remnants are among the Earth’s most diverse habitats in terms of species richness. Furthermore, they are characterized by a high level of endemism. Therefore, the biome is considered a "hotspot of biodiversity". In the last years many efforts have been taken to investigate the Mata Atlântica biome in different spatial and time scales and from different scientific perspectives. We are working in the Atlantic Forest of Rio de Janeiro since 2004 and focus in our research particularly on Quaternary landscape evolution and landscape history. By means of landscape and soil archives we reconstruct changes in the landscape system, which are mainly the result of Quaternary climate variability, young tectonic uplift and human impact. The findings throw light on paleoecological conditions in the Late Quaternary and the impact of pre-colonial and colonial land use practices on these landscapes. In this context, a main focus is set on climate and human-driven changes of the vegetation cover and its consequences for the geomorphological process dynamics, in particular erosion and sedimentation processes. Research methods include geomorphological field studies, interpretation of satellite images, physical and chemical sediment and soil analyses as well as relative and absolute dating (Feo/Fed ratio and 14C dating). For the Late Quaternary landscape evolution, the findings are compared with results from paleoclimatic and paloecological investigations in Southeast and South Brazil using other

  15. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  16. Geologic map of the Mohave Mountains area, Mohave County, western Arizona

    USGS Publications Warehouse

    Howard, K.A.; Nielson, J.E.; Wilshire, W.G.; Nakata, J.K.; Goodge, J.W.; Reneau, S.L.; John, Barbara E.; Hansen, V.L.

    1999-01-01

    Introduction The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and Range physiographic province. The Mohave Mountains and the Aubrey Hills form two northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado River. The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted in the northwestern part of the map area from its position portrayed on the base map; it now also passes through the southern edge of the map area. Geologic mapping was begun in 1980 as part of a program to assess the mineral resource potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. Wilshire. Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). The present series of investigations has resulted in reports on the crystalline rocks and structure (Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 1990; Foster and others, 1990).

  17. Association of Mycoplasma ovipneumoniae infection with population-limiting respiratory disease in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis).

    PubMed

    Besser, Thomas E; Cassirer, E Frances; Potter, Kathleen A; VanderSchalie, John; Fischer, Allison; Knowles, Donald P; Herndon, David R; Rurangirwa, Fred R; Weiser, Glen C; Srikumaran, Subramaniam

    2008-02-01

    Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quality diagnostic specimens from nine pneumonic bighorn sheep in three populations and analyzed the bacterial populations present in bronchoalveolar lavage specimens of seven by using a culture-independent method (16S rRNA gene amplification and clone library analyses). Mycoplasma ovipneumoniae was detected as a predominant member of the pneumonic lung flora in lambs with early lesions of bronchopneumonia. Specific PCR tests then revealed the consistent presence of M. ovipneumoniae in the lungs of pneumonic bighorn sheep in this study, and M. ovipneumoniae was isolated from lung specimens of five of the animals. Retrospective application of M. ovipneumoniae PCR to DNA extracted from archived formalin-fixed, paraffin-embedded lung tissues of historical adult bighorn sheep necropsy specimens supported the association of this agent with bronchopneumonia (16/34 pneumonic versus 0/17 nonpneumonic sheep were PCR positive [P < 0.001]). Similarly, a very strong association was observed between the presence of one or more M. ovipneumoniae antibody-positive animals and the occurrence of current or recent historical bronchopneumonia problems (seropositive animals detected in 9/9 versus 0/9 pneumonic and nonpneumonic populations, respectively [P < 0.001]). M. ovipneumoniae is strongly associated with bronchopneumonia in free-ranging bighorn sheep and is a candidate primary etiologic agent for this disease. PMID:18057131

  18. Spatial modelling of organic carbon in burned mountain soils using hyperspectral images, field datasets and NiR spectroscopy (Cantabrian Range; NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández, Susana; Peón, Juanjose; Recondo, Carmen; Calleja, Javier

    2014-05-01

    In the North-West of the Cantabrian Range (north of Spain) the climate is oceanic and vegetation cover is continuous. Nevertheless, in the western part of the territory fires are very common, although small in size; their recurrence affects severely to soil properties. Soil organic matter is seriously affected by fires and suffers changes in stock, composition and distribution. In former researches stocks of oxidizable organic carbon increases in these burnt soils (32 Mg/ha in non-burned in front of 90 Mg/ha of oxidizable carbon measured in burned forest soils); however, biochart compounds, which are typically produced by fires, have not been found in all the fire-affected soils. In order to perfect a cartographic technique to identify areas with increases in soil carbon stocks caused by historical fire management we try to test a technique to transfer spectral calibrated model of soil organic carbon to hyperspectral images (AHS sensor). Total (TOC) and oxidizable carbon (OC) were measured in a population of 89 soil samples. OC mean was 19, 48 with STD 10,32. The samples were scanning with VNIR-SWIR spectrometer (350-2500nm) and chemometric model of OC was calibrated with very high level of adjust (R2 0,85) using Unscrambler 10.3. In order to transfer the chemiometric model to the hyperspectral images the model was recalculated using only the wavelengths present in the hyperspectral images (AHS sensor with cannels in 0,43-1,03;1,55-1,75;1,99-2,54 and 3,3-5,4nm of wavelengths). The most highlighting result was the increase in the adjust of model (R2 0,89) when the wavelengths were restricted between 2200 to 2400 nm. The model was regionalized to a large area using Arc Map 10 and crossing validate with RMSE 10. Finally, in order to analyze the influence of the relief in the OC landscape pattern the slope steepness was considered. Digital Terrain Model with 10m of resolution was used. Those areas with long, steep hillsides covered with heaths have lower amounts of OC

  19. Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.; Briggs, Richard W.; Caffee, Marc W.; Ryerson, F. J.; Finkel, Robert C.; Owen, Lewis A.

    2016-09-01

    Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. We compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine of the older advance are younger than ~ 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (~ MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of ~ 80 ka. The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. We speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation.

  20. [Modeling of species distribution using topography and remote sensing data, with vascular plants of the Tukuringra Range low mountain belt (Zeya state Nature Reserve, Amur Region) as a case study].

    PubMed

    Dudov, S V

    2016-01-01

    On the basis of maximum entropy method embedded in MaxEnt software, the cartographic models are designed for spatial distribution of 63 species of vascular plants inhabiting low mountain belt of the Tukuringra Range. Initial data for modeling were actual points of a species occurrence, data on remote sensing (multispectral space snapshots by Landsat), and a digital topographic model. It is found out that the structure of factors contributing to the model is related to species ecological amplitude. The distribution of stenotopic species is determined, mainly, by the topography, which thermal and humidity conditions of habitats are associated with. To the models for eurytopic species, variables formed on the basis of remote sensing contribute significantly, those variables encompassing the parameters of the soil-vegetable cover. In course of the obtained models analyzing, three principal groups of species are revealed that have similar distribution pattern. Species of the first group are restricted in their distribution by the slopes of the. River Zeya and River Giluy gorges. Species of the second group are associated with the southern macroslope of the range and with southern slopes of large rivers' valleys. The third group incorporates those species that are distributed over the whole territory under study. PMID:27266017

  1. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    SciTech Connect

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  2. Chloroplast phylogeny and phylogeography of Stellera chamaejasme on the Qinghai-Tibet Plateau and in adjacent regions.

    PubMed

    Zhang, Yong-Hong; Volis, Sergei; Sun, Hang

    2010-12-01

    Historic events such as the uplift of Qinghai-Tibet Plateau (Q-T Plateau) and climatic oscillations in the Quaternary period greatly affected the evolution and modern distribution of Sino-Tibetan flora. Stellera chamaejasme, a perennial herb with flower color polymorphism that is distributed from the mountainous southeastern Q-T Plateau (Hengduan Mountains, H-D Mountains) to the vast platform of the Q-T Plateau and the adjacent plain of northern China, provides an excellent model to explore the effects of historic events on the origination and variation of species. In this study, we conducted a phylogenetic and phylogeographical study using three chloroplast sequences (trnT-L, trnL-F and rpL16) in 26 populations of S. chamaejasme and 12 outgroups from the Thymeleaceae. Phylogenetic analysis and molecular clock estimation revealed that the monophyletic origin of S. chamaejasme occurred ca. 6.5892 Ma, which is consistent with the radical environment changes caused by the rapid uplift of the Q-T Plateau ca. 7 Ma. Intra-specific differentiation of S. chamaejasme is estimated to have occurred after ca. 2.1 Ma. Twelve haplotypes were revealed from combined trnL-F and rpL16 sequences. High genetic diversity (h(T)=0.834) and population differentiation (N(ST)=0.997 and G(ST)=0.982) imply restricted gene flow among populations and significant geographical or environmental isolation. All populations from the vast plain of northern China were dominated by one haplotype (H1), and the same haplotype was fixed in most populations from the high elevation platform of the western and northern Q-T Plateau. In contrast, the majority of the haplotypes were found in the relatively narrow area of the H-D Mountains, in the southeastern distribution of S. chamaejasme. The contrasting haplotype distribution patterns suggested that the H-D Mountains were either a refugium for S. chamaejasme during the Quaternary climatic oscillations or a diversification center of this species. The present

  3. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  4. 40Ar/39Ar and U-Pb Ages and Isotopic Data for Oligocene Ignimbrites, Calderas, and Granitic Plutons, Southern Stillwater Range and Clan Alpine Mountains: Insights into the Volcanic-Plutonic Connection and Crustal Evolution in Western Nevada

    NASA Astrophysics Data System (ADS)

    John, D. A.; Watts, K. E.; Henry, C.; Colgan, J. P.; Cousens, B.

    2014-12-01

    Calderas in the southern Stillwater Range (SSR) and Clan Alpine Mountains (CAM) were formed during the mid-Tertiary ignimbrite flareup and subsequently tilted (40->90°) by large-magnitude extension. New geologic mapping, geochemistry, and 40Ar/39Ar and SHRIMP U-Pb zircon dating document 2 periods of magmatism resulting in 4 nested calderas and related granitoid plutons in sections up to 10 km thick. The first period included pre-caldera rhyolite lava domes (30(?) Ma), ~5 km of pre- and post-collapse intermediate lavas and rhyolite tuff that filled the Job Canyon caldera (~29.4 to 28.8 Ma), and the >4-5 km thick, geochemically similar IXL pluton (28.9±0.4 Ma) that intruded the Job Canyon caldera. The second period included pre-caldera rhyolite lava domes and dikes (~25.5 Ma) and 3 ignimbrite units in 3 calderas: tuff of the Louderback Mountains (low-silica rhyolite; ≥600 m thick; ~25.2 Ma); tuff of Poco Canyon (high-silica rhyolite; up to 4.3 km thick; 25.27±0.05 Ma); and ≥2000 km3 tuff of Elevenmile Canyon (trachydacite to rhyolite; up to 4.5 km thick; 25.12±0.01 Ma). The composite Freeman Creek pluton (granite, 24.8±0.4 Ma; granodiorite, 25.0±0.2 Ma) and Chalk Mountain rhyolite porphyry (25.2±0.2 Ma) and granite (24.8±0.3 Ma) plutons intruded the Poco Canyon and Elevenmile Canyon calderas. Early (30 Ma) rhyolites have the least radiogenic compositions (Sri~0.7040), whereas other units are relatively homogeneous (Sri~0.7050, ENd~0.0). Oxygen isotope compositions for SSR and CAM calderas are highly variable (d18Oquartz=5.6-8.2‰, d18Osanidine=5.5-7.0‰, d18Ozircon= 4.1-6.3‰), corresponding to a magmatic range of 5.7-7.9‰. U-Pb dating of zircons indicates homogeneous age populations and few/no xenocrysts and antecrysts. These data show that (1) thick plutons (>2-5 km) underlie compositionally and temporally related caldera-filling ignimbrites, (2) caldera-forming cycles are isotopically variable, requiring divergent magmatic sources in relatively

  5. Timing of Pleistocene glacial oscillations recorded in the Cantabrian Mountains (North Iberia): correlation of glacial and periglacial sequences from both sides of the range using a multiple-dating method approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María; Rinterknecht, Vincent; Pallàs, Raimón; Bourlès, Didier

    2015-04-01

    The Cantabrian Mountains is a coastal mountain range up to 2648 m altitude located at 43oN latitude and directly influenced by the North Atlantic climate oscillations. Although nowadays it is fully deglaciatied, glacial sediments and landforms are clearly preserved elsewhere above 1600 m. Particularly, glacial evidence in the central Cantabrian Mountains suggests the formation of an icefield in the headwaters of the Porma and Esla catchments drained by glaciers up to 1-6 km in length in the northern slope and 19 km-long in the southern slope, with their fronts at minimum altitudes of 900 and 1150 m asl respectively (Rodríguez-Rodríguez et al., 2014). Numerical ages obtained from the base of the Brañagallones ice-dammed deposit and one of the lateral moraines that are damming this deposit suggest that the local glacial maximum was prior to ca 33.5 cal ka BP in the Monasterio Valley (see data compiled in Rodriguez-Rodríguez et al., in press). Currently, our research is focused on developing a full chronology of glacial oscillations in both sides of the range and investigating their paleoclimate significance and relationship with glacial asymmetry through the combined use of surface exposure, OSL and radiocarbon dating methods. In this work, we present 47 10Be surface exposure ages obtained from boulders in moraines, glacial erratic boulders and rock glaciers in the Monasterio and Porma valleys. The glacial record of these valleys was chosen because of: (i) its good preservation state; (ii) the occurrence of a quartz-rich sandstone formation; and (iii) the availability of previous 14C and OSL numerical ages. Sampling sites were selected considering the relative age of glacial stages to cover as complete as possible the history of Pleistocene glaciations in the studied area, from the glacial maximum stage to the prevalence of periglacial conditions. Preliminary results suggest the occurrence of several glacial advances of similar extent at ca 150 - 50 ka followed

  6. [Mountain sickness].

    PubMed

    Bultas, Jan

    2015-01-01

    Mountaineering brings many health risks, one of which is mountain sickness. Its mildest form - acute mountain sickness - is mainly characterized by subjective symptoms (headache, loss of appetite, insomnia, weakness, nausea and rarely also vomiting). Advanced and life-threatening forms are characterized by tissue edema - cerebral or pulmonary high altitude edema. The common denominator of these acute forms is the low oxygen tension leading to hypoxemia and tissue ischemia. Sum of maladaptive or adaptive processes can modify the clinical picture. Underlying mechanisms of the chronic forms of pulmonary disease are the adaptation processes - pulmonary hypertension and polycythemia leading to heart failure.The only causal therapeutic intervention is to restore adequate oxygen tension, descend to lower altitudes or oxygen therapy. Pharmacotherapy has only a supportive effect. The prophylaxis includes stimulation of the respiratory center by carbonic anhydrase inhibitors (acetazolamide) antiedematous treatment with glucocorticoids (dexamethasone), increase lymphatic drainage of the lungs and brain by β2-agonists (salmeterol) or mitigation of pulmonary hypertension by calcium channel blockers or phosphodiesterase-5 inhibitors (sildenafil or tadalafil). PMID:26750624

  7. Uplift of the Transantarctic Mountains

    SciTech Connect

    Stump, E.

    1987-09-01

    The Transantarctic Mountains, a major continental range, extend approximately 3,000 kilometers, vary from less than 50 to more than 400 kilometers wide, and have elevations of up to 4,500 meters. Earth scientists have generally defined the stratigraphy of the range and recognize that uplift of the region occurred after the Jurassic period but still know very little about the processes that effected uplift. Unlike other major mountain chains, the Transantarctic Mountains show no evidence of thrusting, folding, regional metamorphism, and andesitic volcanism associated with their uplift. The objectives during austral summer 1987-1988 are to map the uplift geometry of the Transantarctic Mountains using erosion surfaces (pre-Devonian Kukir peneplain) and widespread terrace levels as datum planes and to determine the uplift rates for the mountain range using fission-track dating of apatites. Presently, fission-track dating provides only quantitative data on the initiation time, amount, and rate of uplift. Through research, the authors hopes to extend data from Victoria Land through 1,600 kilometers of the Transantarctic Mountains. This study also has implications for the glacial history of Antarctica, because the uplift occurred during the inception, growth, and subsequent fluctuations of the east and west antarctic ice sheets. It will also add to our understanding of the nature of the East-West Antarctic boundary and to the knowledge of the sedimentation history in the Ross embayment and the basins beneath polar plateau.

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  11. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  12. [Socio-environmental vulnerability, disaster risk-reduction and resilience-building: lessons from the earthquake in Haiti and torrential rains in the mountain range close to Rio de Janeiro in Brazil].

    PubMed

    de Freitas, Carlos Machado; de Carvalho, Mauren Lopes; Ximenes, Elisa Francioli; Arraes, Eduardo Fonseca; Gomes, José Orlando

    2012-06-01

    Data on disasters around the world reveal greater seriousness in countries with lower social and economic development levels. In this context, disaster risk-reduction and resilience-building policies are priorities in the sustainable development agenda, featuring among the topics selected for the Rio+20 Summit. By means of a contribution of a conceptual nature and from examples of disasters in countries with different development levels, namely the Haiti earthquake and the torrential rains in the mountain range close to Rio de Janeiro in Brazil, the scope of this article is to demonstrate how socio-environmental vulnerability creates conditions for disasters, while at the same time limiting strategies for their prevention and mitigation. Lastly, some of the measures that disaster risk reduction and resilience-building demand in a socio-environmental vulnerability context are highlighted. These involve changes in the current patterns of social, economic and environmental development geared toward ecological sustainability and social justice as pillars of sustainable development. PMID:22699648

  13. The Natural Thermoluminescence Survey of Antarctic Meteorites: Ordinary Chondrites at the Grosvenor Mountains, MacAlpine Hills, Pecora Escarpment and Queen Alexandra Range, and New Data New Data for the Elephant Moraine, Ice Fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.

    2000-01-01

    chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized in Table 1. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.

  14. The Natural Thermoluminescence Survey of Antarctic Meteorites: Ordinary Chondrites at the Grosvenor Mountains, Macalpine Hills, Pecora Escarpment and Queen Alexandra Range, and New Data for the Elephant Moraine, Ice Fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.

    1999-01-01

    number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.

  15. Spatiotemporal Evolution of Calophaca (Fabaceae) Reveals Multiple Dispersals in Central Asian Mountains

    PubMed Central

    Zhang, Ming-Li; Wen, Zhi-Bin; Fritsch, Peter W.; Sanderson, Stewart C.

    2015-01-01

    Background The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried out in order to confirm its taxonomic status and reconstruct its evolutionary history. Methodology/Principal Finding We employed BEAST Bayesian inference for dating, and S-DIVA and BBM for ancestral area reconstruction, to study its spatiotemporal evolution. Our results show that Calophacais monophyletic and nested within Caragana. The divergence time of Calophaca is estimated at ca. 8.0 Ma, most likely driven by global cooling and aridification, influenced by rapid uplift of the Qinghai Tibet Plateau margins. Conclusions/Significance According to ancestral area reconstructions, the genus most likely originated in the Pamir Mountains, a global biodiversity hotspot and hypothesized Tertiary refugium of many Central Asian plant lineages. Dispersals from this location are inferred to the western Tianshan Mountains, then northward to the Tarbagatai Range, eastward to East Asia, and westward to the Caucasus, Russia, and Europe. The spatiotemporal evolution of Calophaca provides a case contributing to an understanding of the flora and biodiversity of the Central Asian mountains and adjacent regions. PMID:25849146

  16. Biodiversity of Jinggangshan Mountain: The Importance of Topography and Geographical Location in Supporting Higher Biodiversity

    PubMed Central

    Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM. PMID:25763820

  17. Adjacent Segment Disease Perspective and Review of the Literature

    PubMed Central

    Saavedra-Pozo, Fanor M.; Deusdara, Renato A. M.; Benzel, Edward C.

    2014-01-01

    Background Adjacent segment disease has become a common topic in spine surgery circles because of the significant increase in fusion surgery in recent years and the development of motion preservation technologies that theoretically should lead to a decrease in this pathology. The purpose of this review is to organize the evidence available in the current literature on this subject. Methods For this literature review, a search was conducted in PubMed with the following keywords: adjacent segment degeneration and disease. Selection, review, and analysis of the literature were completed according to level of evidence. Results The PubMed search identified 850 articles, from which 41 articles were selected and reviewed. The incidence of adjacent segment disease in the cervical spine is close to 3% without a significant statistical difference between surgical techniques (fusion vs arthroplasty). Authors report the incidence of adjacent segment disease in the lumbar spine to range from 2% to 14%. Damage to the posterior ligamentous complex and sagittal imbalances are important risk factors for both degeneration and disease. Conclusion Insufficient evidence exists at this point to support the idea that total disc arthroplasty is superior to fusion procedures in minimizing the incidence of adjacent segment disease. The etiology is most likely multifactorial but it is becoming abundantly clear that adjacent segment disease is not caused by motion segment fusion alone. Fusion plus the presence of abnormal end-fusion alignment appears to be a major factor in creating end-fusion stresses that result in adjacent segment degeneration and subsequent disease. The data presented cast further doubt on previously established rationales for total disc arthroplasty, at least with regard to the effect of total disc arthroplasty on adjacent segment degeneration pathology. PMID:24688337

  18. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  19. 2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE SEEN THROUGH SWITCHYARD IN BACKGROUND. 165MM LENS. - Eagle Mountain Pump Plant, Ten miles north of Route 10, southeast of Eagle Mountain, Eagle Mountain, Riverside County, CA

  20. Mountain Goats (Oreamnos americanum) at the livestock/wildlife interface: A susceptible species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mountain goats (Oreamnos americanum) were first introduced into the East Humboldt and Ruby Mountains of Elko County, Nevada in the 1960’s. These contiguous mountain ranges are also home to introduced Rocky Mountain bighorn sheep and native mule deer and are surrounded by both public and private rang...

  1. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    SciTech Connect

    Waggoner, W.K.; Mora, C.I. . Dept. of Geological Sciences)

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS with mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.

  2. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  3. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  4. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...

  5. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  6. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  7. SP mountain data analysis

    NASA Technical Reports Server (NTRS)

    Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.

    1981-01-01

    An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.

  8. Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    2000-01-01

    Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a

  9. The response of the East Antarctic ice-sheet to the evolving tectonic configuration of the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew; Huybrechts, Philippe

    1999-12-01

    The landscape of the Transantarctic Mountains is the result of the coupled evolution of the West Antarctic rift system and the East Antarctic ice-sheet. Studies of this glacial-tectonic system generally assume that the evolving surface elevation of the Transantarctic Mountains is a key determinant of the changing East Antarctic ice-sheet dynamics between the Miocene and today. Here, we extend previous work [Huybrechts, Ph., 1993. Glaciological modelling of the Late Cenozoic East Antarctic ice-sheet: stability or dynamism? Geografiska Annaler Stockholm, 75A (4) 221-238.] by using numerical models of the ice-sheet and lithosphere to examine the impact of different bedrock surface elevations of the Transantarctic Mountains on ice-sheet dynamics. There are widely different interpretations of the evolution of the Transantarctic Mountains from the available data, so we explore bedrock surface elevations suggested by empirical evidence in recent papers about the sensitivity of the Late Cenozoic ice-sheet. The results show that the surface elevation of individual mountain blocks has only a very local effect on ice-sheet dynamics. The existing mountain blocks of the Transantarctic Mountains, which force inland ice to drain through troughs adjacent to the mountain blocks, were overriden by inland ice when bedrock elevations were 1 km lower. When the troughs through the mountains were less well developed, in the Pliocene or Miocene, inland ice was thicker and ice-surface gradients and ice-velocities across the mountains were higher. This led to more active and erosive outlet glaciers through the mountains and the further development of these troughs. From these results, the key determinant of East Antarctic ice dynamics appears to be the interplay between the development of major troughs through the Transantarctic Mountains and rising mountain elevations. The glacial history of the central Transantarctic Mountain ranges was very different to that of more peripheral mountain

  10. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  11. Petroleum basins of Sakhalin and adjacent shelf

    SciTech Connect

    Mavrinski, Y.; Koblov, E. )

    1993-09-01

    Sixty-seven oil and gas fields have been discovered on Sakhalin and the adjacent shelf but the distribution of fields is uneven in north Sakhalin, south Sakhalin, and the Tatar basins. The sedimentary cover is composed of sandy, clayey, and siliceous rocks, with volcanogenic and coal-bearing deposits of Upper Cretaceous, Paleogene, and Neogene 8-12 km thick. Marine clayey and siliceous oil source rocks are regionally developed in the section at different stratigraphic levels; the organic matter is of mixed type and the content varies from 0.5 to 1.5%. The upper Oligocene and middle-upper Miocene source rocks in the north Sakhalin basin are typical, and the organic carbon content ranges from 1 to 5%. The level of organic matter catagenesis and conversion into hydrocarbons is high because of the high differential geothermal gradient in the basins, 30-50[degrees]C per km. Porous sandstones in the Miocene form the reservoirs in all fields with the exception of Okruzhnoye, where the pay zone is a siliceous claystone. Growth-fault rollovers and anticlines form the main traps ranging in area from 5 to 300 km[sup 2], with amplitudes between 100 and 600 m. both stratigraphic and structural traps have been identified. Considerable volumes of reserves are associated with the Miocene deposits of north Sakhalin, which are characterized by an optimum combination of oil source rocks, focused migration paths, and thick sequences of reservoirs and cap rocks. Six large fields have been discovered in the past 15 yr. Oil and condensate reserves stand at over 300 million MT, and gas reserves are about 900 billion m[sup 3].

  12. Invisible CO2 gas killing trees at Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, Michael L.; Farrar, Christopher D.; Gerlach, Terrance M.; McGee, Kenneth A.; Evans, William C.; Colvard, Elizabeth M.; Hill, David P.; Bailey, Roy A.; Rogie, John D.; Hendley, James W., II; Stauffer, Peter H.

    2000-01-01

    Since 1980, scientists have monitored geologic unrest in Long Valley Caldera and at adjacent Mammoth Mountain, California. After a persistent swarm of earthquakes beneath Mammoth Mountain in 1989, geologists discovered that large volumes of carbon dioxide (CO2 ) gas were seeping from beneath this volcano. This gas is killing trees on the mountain and also can be a danger to people. The U.S. Geological Survey (USGS) continues to study the CO2 emissions to help protect the public from this invisible potential hazard.

  13. 76 FR 29264 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service....S.C. 4601-9(c)(1), the boundary of Rocky Mountain National Park is modified to include an additional... in Grand County, Colorado, immediately adjacent to the current western boundary of Rocky...

  14. Plight of the Cabinet Mountains grizzlies

    SciTech Connect

    Fischer, H.

    1982-01-01

    The effects of mineral and petroleum exploration and development and logging on grizzly bears in the Cabinet Mountains region of Montana is discussed. The author points out that such activities might cut the bears off from other bear populations in the Glacier National park and the Bob Marshall Wilderness. It is maintained, that in order for the bears to survive, they must range beyond the Cabinet Mountains and that extensive human activities in the area would damage their range. (JMT)

  15. Molecular disorganization of axons adjacent to human lacunar infarcts

    PubMed Central

    Lee, Monica D.; Tung, Spencer; Vinters, Harry V.; Carmichael, S. Thomas

    2015-01-01

    Cerebral microvascular disease predominantly affects brain white matter and deep grey matter, resulting in ischaemic damage that ranges from lacunar infarcts to white matter hyperintensities seen on magnetic resonance imaging. These lesions are common and result in both clinical stroke syndromes and accumulate over time, resulting in cognitive deficits and dementia. Magnetic resonance imaging studies suggest that these lesions progress over time, accumulate adjacent to prior lesions and have a penumbral region susceptible to further injury. The pathological correlates of this adjacent injury in surviving myelinated axons have not been previously defined. In this study, we sought to determine the molecular organization of axons in tissue adjacent to lacunar infarcts and in the regions surrounding microinfarcts, by determining critical elements in axonal function: the morphology and length of node of Ranvier segments and adjacent paranodal segments. We examined post-mortem brain tissue from six patients with lacunar infarcts and tissue from two patients with autosomal dominant retinal vasculopathy and cerebral leukoencephalopathy (previously known as hereditary endotheliopathy with retinopathy, nephropathy and stroke) who accumulate progressive white matter ischaemic lesions in the form of lacunar and microinfarcts. In axons adjacent to lacunar infarcts yet extending up to 150% of the infarct diameter away, both nodal and paranodal length increase by ∼20% and 80%, respectively, reflecting a loss of normal cell-cell adhesion and signalling between axons and oligodendrocytes. Using premorbid magnetic resonance images, brain regions from patients with retinal vasculopathy and cerebral leukoencephalopathy that harboured periventricular white matter hyperintensities were selected and the molecular organization of axons was determined within these regions. As in regions adjacent to lacunar infarcts, nodal and paranodal length in white matter of these patients is

  16. A sightability model for mountain goats

    USGS Publications Warehouse

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  17. Recent population trends of mountain goats in the Olympic Mountains, Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  18. Rocky Mountain spotted fever

    MedlinePlus

    Rocky Mountain spotted fever is a disease caused by a type of bacteria carried by ticks. ... Rocky Mountain spotted fever is caused by the bacteria Rickettsia rickettsii (R. Rickettsii) , which is carried by ticks. The ...

  19. Acute mountain sickness

    MedlinePlus

    High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... Acute mountain sickness is caused by reduced air pressure and lower oxygen levels at high altitudes. The faster you ...

  20. Rocky Mountain spotted fever

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000654.htm Rocky Mountain spotted fever To use the sharing features on this page, please enable JavaScript. Rocky Mountain spotted fever is a disease caused by a ...

  1. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  2. Correlation of lava flows on Cascade volcanoes: Tool development and example from Burney Spring Mountain, California

    NASA Astrophysics Data System (ADS)

    O'Brien, Timothy Michael

    Bedrock mapping in volcanic terrains is a challenge, and generally requires extensive field work and petrographic and geochemical analysis. Paleomagnetism, when used in conjunction with field, geochemical and petrographic data offers a complimentary geophysical tool to field mapping, assisting in the correlation of lava flows across faults and aiding in determination of fault kinematics. Secular variation of the Earth's magnetic field imprints individually distinguishable magnetic orientations in igneous rocks emplaced >100 years apart, resulting in magnetic fingerprints that can be used to correlate lava flows across eroded areas, or that have been displaced by faulting or modified by weathering. A successful paleomagnetic study requires establishment of a well constrained magnetic orientation for individual lava flows, against which structural corrections can be made for sample sites in rotated blocks. The resulting structural corrections provide insight into the mode and degree of movement along the fault since emplacement of the lava flows. This methodology was applied to mapping a tectonically modified Pliocene-Pleistocene volcanic edifice, Burney Spring Mountain, within the Hat Creek Graben of northeastern California. The establishment of a general range of paleomagnetic orientations for Burney Spring Mountain serves to distinguish between lava flows sourced from Burney Spring Mountain and those that overlap the edifice from surrounding volcanic vents. Paleomagnetic results have thus assisted in delineating the areal extent of Burney Spring Mountain and have furthermore revealed the presence of local block rotations adjacent to the fault, clarifying the kinematics of the faults themselves. Supporting geochemical analyses were conducted to assist in the correlation of Burney Spring Mountain lava flows involving the use of an electron-dispersive x-ray spectrometer (EDS) outfitted scanning electron microscope (SEM) and a portable x-ray fluorescence (pXRF) device

  3. Stream Profiles as a Proxy for Uplift in the San Bernardino Mountains

    NASA Astrophysics Data System (ADS)

    Cornell, K. M.; Whipple, K. X.

    2006-12-01

    Stream profile analysis provides new insight into the tectonic history of the San Bernardino Mountains of southern California. The San Bernardino Mountains, along with the nearby San Gabriel Mountains, have been tectonically uplifted since the late Miocene due to transpression-related thrust faulting. Although regional uplift patterns are not as clear from this data as those of a stream profile analysis in the San Gabriel Mountains, the results observed indicate that this technique can extract useful tectonic data and provide a fast, inexpensive, and easy way to focus fieldwork in a region. For example, in the San Bernardino Mountains, stream profile interpretation from digital elevation models (DEMs) indicates the current/most recent uplift rates on the Yucaipa Ridge at the southern range front are only ~0.5-0.6 mm/yr, much lower than indicated by a published (U-Th)/He age-elevation transect. Also a change in steepness index (ksn) north and south of the Santa Ana Thrust Fault suggests differential uplift across it as recently as the mid to late Quaternary. However, there are important limitations to the method that render interpretations non-unique. For example, the channel downstream of the dam at Big Bear Lake is much steeper than adjacent streams; a tectonic explanation is unlikely. One possibility is that large landslide- and debris-flow-derived boulders have armored the channel and caused the river to oversteepen. Analysis is preliminary but results are encouraging despite complications. In the future we hope to compare channel steepness index values to detrital cosmogenic radionuclide (CRN) erosion rates.

  4. Thermal effects of overthrusting, Little Mountains thrust belt, eastern New York

    SciTech Connect

    Zadins, Z.; Mitra, G.

    1986-05-01

    Thermal models constrained by clay mineral assemblages, vitrinite reflectance, and palinspatic restoration are used to interpret the thermal history of the Appalachian thrust belt of eastern New York. The deformed Appalachian foreland of eastern New York is comprised of two adjacent north-south-trending thrust belts: (1) the Taconic Mountains, allochthons emplaced during the Late Ordovician Taconic orogeny; and (2) Little Mountains thrust belt, faulted and folded Lower Devonian carbonates exhibiting well-developed solution cleavage, deformed during the Devonian Acadian or Pennsylvanian Alleghenian orogeny. Conodont alteration index from the Little Mountains range from 4.0 to 4.5, suggesting temperatures of 190/sup 0/-240/sup 0/C. This thermal imprint may be attributed to burial heating from 8 km of post-Lower Devonian molasse in the Catskill Mountains, whose present thickness is 2.3 km. Elevated temperature-pressure conditions resulting from an overriding thrust sheet would facilitate formation of solution cleavage in the Little Mountains, in a manner similar to that demonstrated in the Idaho-Wyoming thrust belt. X-ray analysis of clay minerals from Catskill shales in the undeformed foreland show: (1) there is little or no discrete smectite; (2) illite predominates, with illite peaks being asymmetric toward lower 28 suggesting a minor component of random interstratified illite-smectite; and (3) illite has decreasing crystallinity with increasing burial depth. These results indicate sedimentary overburden has had little effect on illite crystallinity, as crystallinity should systematically increase with increasing temperatures (i.e., increasing depth). Catskill illites exhibiting decreasing crystallinites may reflect that they are detrital and are derived from progressive erosion of a Taconic thrust sheet, resulting in an inverted illite stratigraphy.

  5. Debris Flows and Record Floods from Extreme Mesoscale Convective Thunderstorms over the Santa Catalina Mountains, Arizona

    USGS Publications Warehouse

    Magirl, Christopher S.; Shoemaker, Craig; Webb, Robert H.; Schaffner, Mike; Griffiths, Peter G.; Pytlak, Erik

    2007-01-01

    Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong complex of thunderstorms developed over central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (2.00' of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. National Weather Service radar indicated that a swath of 3-6' of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains. This intense rain falling on saturated soil triggered over 250 hillslope failures and debris flows throughout the mountain range. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting, where at least 18 debris flows removed structures, destroyed the roadway in multiple locations, and closed public access for months. The debris flows were followed by streamflow floods which eclipsed the record discharge in the 75-year gaging record of Sabino Creek. In five canyons adjacent to Sabino Canyon, debris flows approached or excited the mountain front, compromising floow conveyance structures and flooding some homes.

  6. Timber Mountain Precipitation Monitoring Station

    SciTech Connect

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  7. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  8. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  9. Mesozoic and early Tertiary paleostructure and sedimentology of central Wasatch Mountains, Uinta Mountains, and Uinta basin

    SciTech Connect

    Picard, M.D.; Bruhn, R.L.; Beck, S.L.

    1983-08-01

    During latest Cretaceous-Eocene time, 5,000 m (16,000 ft) of beds were deposited in central and northeast Utah. In the Late Cretaceous, sediment derived from the Sevier-Laramide thrust belt was transported to the east and southeast. Southerly paleocurrent directions in the base of the Currant Creek Formation (Maestrichtian) raise the possibility that uplift of the Uintas may have begun by then. The thrust belt continued as a major highland during the early Paleocene, and major uplift of the Uintas occurred. By the middle Paleocene there was an extensive lake which regressed during the late Paleocene as uplift of the Uintas continued. Lake Uinta reached its maximum size during the middle Eocene. Lower (early Duchesnean) and upper (Late Duchesnean) conglomeratic intervals record major episodes of uplift in the Uintas during latest Eocene. Structurally, the Wasatch Mountains are part of a marginal foreland fold and thrust belt. In the northern Wasatch Mountains, pre-Late Cretaceous thrust fault plates were folded in part of a large, ramp-anticline that is cored by allochthonous, crystalline basement . Foreland thrust belt structures in the central Wasatch Mountains were folded about the east-trending Uinta axis as the Uinta Mountains formed. Eastward movement on the Hogsback thrust during the Paleocene was transferred onto the adjacent Uinta axis and Uinta Mountains structure, causing about 20 km (12 mi) of sinistral slip in the western Uinta Mountains. A south-dipping fault ramp was located beneath the Uinta Mountains and extended to depths of 15 to 20 km (9 to 12 mi). Oblique-slip on this ramp probably resulted in about 20 km (12 mi) of crustal shortening perpendicular to the trend of the mountains.

  10. Stratigraphy and structural setting of Upper Cretaceous Frontier Formation, western Centennial Mountains, southwestern Montana and southeastern Idaho

    USGS Publications Warehouse

    Dyman, T.S.; Tysdal, R.G.; Perry, W.J., Jr.; Nichols, D.J.; Obradovich, J.D.

    2008-01-01

    Stratigraphic, sedimentologic, and palynologic data were used to correlate the Frontier Formation of the western Centennial Mountains with time-equivalent rocks in the Lima Peaks area and other nearby areas in southwestern Montana. The stratigraphic interval studied is in the middle and upper parts (but not uppermost) of the formation based on a comparison of sandstone petrography, palynologic age data, and our interpretation of the structure using a seismic line along the frontal zone of the Centennial Mountains and the adjacent Centennial Valley. The Frontier Formation is comprised of sandstone, siltstone, mudstone, limestone, and silty shale in fluvial and coastal depositional settings. A distinctive characteristic of these strata in the western Centennial Mountains is the absence of conglomerate and conglomeratic sandstone beds. Absence of conglomerate beds may be due to lateral facies changes associated with fluvial systems, a distal fining of grain size, and the absence of both uppermost and lower Frontier rocks in the study area. Palynostratigraphic data indicate a Coniacian age for the Frontier Formation in the western Centennial Mountains. These data are supported by a geochronologic age from the middle part of the Frontier at Lima Peaks indicating a possible late Coniacian-early Santonian age (86.25 ?? 0.38 Ma) for the middle Frontier there. The Frontier Formation in the western Centennial Mountains is comparable in age and thickness to part of the Frontier at Lima Peaks. These rocks represent one of the thickest known sequences of Frontier strata in the Rocky Mountain region. Deposition was from about 95 to 86 Ma (middle Cenomanian to at least early Santonian), during which time, shoreface sandstone of the Telegraph Creek Formation and marine shale of the Cody Shale were deposited to the east in the area now occupied by the Madison Range in southwestern Montana. Frontier strata in the western Centennial Mountains are structurally isolated from other

  11. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  12. Border separation for adjacent orthogonal fields

    SciTech Connect

    Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )

    1991-06-01

    Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.

  13. Mount Hood Wilderness and adjacent areas, Oregon

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted in 1980. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area on the north side of Zigzag Mountain, where vein-type lead-zinc-silver deposits occur and an area on the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F) hot-water systems in the wilderness is probable in three areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  14. The importance of fires and floods on tree ages along mountainous gravel-bed streams.

    PubMed

    Charron, I; Johnson, E A

    2006-10-01

    This paper examines the commonly accepted assumption in the riparian literature that areas adjacent to streams do not burn. Using time-since-fire distributions, derived from stand-origin maps for a watershed in the front ranges of the Canadian Rocky Mountains, we found that the areas adjacent to streams and the whole study watershed have similar fire frequencies. In addition, the relative importance of fires and floods is regulated by a change in channel morphology associated with the creation of bars. The results demonstrate that fires solely control tree establishment along straight streams without bars, while the influence of floods is observed at the onset of lateral- and point-bar formation. This occurs because bars are formed in-channel and require smaller discharges in order to be flooded, compared to higher terraces. Consequently, bars are the only surfaces being flooded more frequently than they are being burned. Thus, overall the results indicate that, on this watershed, areas adjacent to streams are not less likely to burn than the uplands, except for lateral and point bars. The generality of these results to other systems should be tested as they have important implications for current forest ecological definition of "riparian zones," which typically include all fluvially derived landforms, from the channel banks to the terraces. Indeed, this study suggests that along smaller, headwater, gravel-bed mountain watersheds, the forests found on terraces are only influenced by fire and not fluvial processes and should therefore not be included in the riparian zone, while the forests on bars are the only surfaces currently being influenced by fluvial processes. Such a change in definition has implications for both ecologists and forest managers aiming to protect areas along streams as they now must take into account the effects of two disturbances on these small gravel-bed streams. PMID:17069369

  15. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  16. WILD CATTLE MOUNTAIN AND HEART LAKE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Muffler, L.J. Patrick; Denton, David K., Jr.

    1984-01-01

    The results of geologic, geochemical, and geophysical surveys in Wild Cattle Mountain and Heart Lake Roadless Areas in California indicate little promise for the occurrence of metallic, nonmetallic, or fossil fuel resources. However, Wild Cattle Mountain Roadless Area and part of Heart Lake Roadless Area lie in Lassen Known Geothermal Resources Area, and noncompetitive geothermal lease applications have been filed on much of the rest of Heart Lake Roadless Area. Both areas are adjacent to Lassen Volcanic National Park. Geochemical and geologic data indicate that the thermal manifestations in the Park and at Growler and Morgan Hot Springs just southwest of Wild Cattle Mountain Roadless Area are part of the same large geothermal system. Consequently, the entire Wild Cattle Mountain Roadless Area and part of the Heart Lake Roadless Area have a substantiated geothermal resource potential; the rest of the Heart Lake Roadless Area has a probable geothermal resource potential.

  17. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    NASA Astrophysics Data System (ADS)

    Morton, Douglas M.; Alvarez, Rachel M.; Ruppert, Kelly R.; Goforth, Brett

    2008-04-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel

  18. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the

  19. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  20. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  1. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  2. Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China: Regional source vs. long-range transport and air-soil exchange

    NASA Astrophysics Data System (ADS)

    Qu, Chengkai; Xing, Xinli; Albanese, Stefano; Doherty, Angela; Huang, Huanfang; Lima, Annamaria; Qi, Shihua; De Vivo, Benedetto

    2015-12-01

    Polyurethane foam (PUF) disk passive air samplers (PAS) were deployed to measure spatiality and seasonality of atmospheric OCPs in Jianghan Plain (JHP) and Western Hubei Mountain (WHM), to make a preliminary explorative study of the source-sink relationship of organochlorine pesticides (OCPs) and their association with the monsoon. The concentrations of individual OCPs in the JHP were generally higher than those in the WHM. Significantly high levels of DDTs and Endosulfan were found in the spring and summer, HCB was found in autumn and winter, and HCHs displayed uniform distributions. Compared with the levels of 2005, a significant decrease of atmospheric HCHs, DDTs and HCB was observed, whereas an increase in Endosulfan was observed. The air-soil equilibrium status of OCPs suggested that Dajiuhu (DJH) soils are likely to be a sink for OCPs, and JHP soils are acting as the emitter, contaminating the atmosphere at certain monitoring stations. Backward air trajectory analysis demonstrated that the seasonal fluctuation of atmospheric DDTs, HCB and Endosulfan at the DJH site were closely associated with the variations of the East Asian monsoon.

  3. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol

    2016-09-01

    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly

  4. MARBLE MOUNTAIN WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Donato, Mary M.; Hale, William N.

    1984-01-01

    The Marble Mountain Wilderness is located in the north-central Klamath Mountains of northern California. Geologic, geochemical, geophysical, and mineral investigations indicate that the wilderness has areas of probable and substantiated resource potential for placer gold, for chromite, and for marble. The geologic terrane precludes the occurrence of fossil fuel resources.

  5. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  6. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  7. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  8. The current evolution of complex high mountain debris-covered glacier systems and its relation with ground ice nature and distribution: the case of Rognes and Pierre Ronde area (Mont-Blanc range, France).

    NASA Astrophysics Data System (ADS)

    Bosson, Jean-Baptiste; Lambiel, Christophe

    2014-05-01

    The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers

  9. Remote mineral mapping using AVIRIS data at Summitville, Colorado and the adjacent San Juan Mountains

    NASA Technical Reports Server (NTRS)

    King, Trude V. V.; Clark, Roger N.; Ager, Cathy; Swayze, Gregg A.

    1995-01-01

    We have demonstrated the unique utility of imaging spectroscopy in mapping mineral distribution. In the Summitville mining region we have shown that the mine site does not contribute clay minerals to the Alamosa River, but does contribute Fe-bearing minerals. Such minerals have the potential to carry heavy metals. This application illustrates only one specific environmental application of imaging spectroscopy data. For instance, the types of minerals we can map with confidence are those frequently associated with environmental problems related to active and abandoned mine lands. Thus, the potential utility of this technology to the field of environmental science has yet to be fully explored.

  10. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  11. MIDDLE MOUNTAIN-TOBACCO ROOT ROADLESS AREA, MONTANA.

    USGS Publications Warehouse

    O'Neill, J. Michael; Cather, Eric E.

    1984-01-01

    A mineral-resource survey of the northern part of the Tobacco Root Mountains, Montana determined that the area included in or enclosed by the Middle Mountain-Tobacco Root Roadless Area contains serveral areas of probable or substantiated mineral-resource potential. Most of the mineralized areas are located in or adjacent to intrusive rocks of Late Cretaceous age. Mineral resources are probably of three types: disseminated and stockwork copper and molybdenum in porphyry-type deposits; gold-silver-quartz veins; and gold-bearing silicified zones. No energy resources were identified in this study.

  12. Reconstructing genome mixtures from partial adjacencies.

    PubMed

    Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J

    2012-01-01

    Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028

  13. Individual and Population Level Resource Selection Patterns of Mountain Lions Preying on Mule Deer along an Urban-Wildland Gradient.

    PubMed

    Benson, John F; Sikich, Jeff A; Riley, Seth P D

    2016-01-01

    Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance. PMID:27411098

  14. Individual and Population Level Resource Selection Patterns of Mountain Lions Preying on Mule Deer along an Urban-Wildland Gradient

    PubMed Central

    Benson, John F.; Sikich, Jeff A.; Riley, Seth P. D.

    2016-01-01

    Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance. PMID:27411098

  15. Habitat selection by mountain plovers in shortgrass steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the breeding range of the mountain plover occurs in shortgrass steppe and mixed-grass prairie in the western Great Plains of North America. Studies of mountain plovers in shortgrass steppe during the 1970s and 1990s focused on public lands in Weld County, Colorado, which were considered to ...

  16. Mountaineering fatalities on Denali.

    PubMed

    McIntosh, Scott E; Campbell, Aaron D; Dow, Jennifer; Grissom, Colin K

    2008-01-01

    Mount McKinley, or Denali, is the tallest mountain in North America and attracts over 1,000 climbers annually from around the world. Since Denali is located within a national park, the National Park Service (NPS) manages mountaineering activities and attempts to maintain a balance of an adventurous experience while promoting safety. We retrospectively reviewed the fatalities on Denali from 1903 to 2006 to assist the NPS, medical personnel, and mountaineers improve safety and reduce fatalities on the mountain. Historical records and the NPS climber database were reviewed. Demographics, mechanisms, and circumstances surrounding each fatality were examined. Fatality rates and odds ratios for country of origin were calculated. From 1903 through the end of the 2006 climbing season, 96 individuals died on Denali. The fatality rate is declining and is 3.08/1,000 summit attempts. Of the 96 deaths, 92% were male, 51% occurred on the West Buttress route, and 45% were due to injuries sustained from falls. Sixty-one percent occurred on the descent and the largest number of deaths in 1 year occurred in 1992. Climbers from Asia had the highest odds of dying on the mountain. Fatalities were decreased by 53% after a NPS registration system was established in 1995. Although mountaineering remains a high-risk activity, safety on Denali is improving. Certain groups have a significantly higher chance of dying. Registration systems and screening methods provide ways to target at-risk groups and improve safety on high altitude mountains such as Denali. PMID:18331224

  17. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  18. Rayleigh wave tomography of China and adjacent regions

    NASA Astrophysics Data System (ADS)

    Huang, Zhongxian; Su, Wei; Peng, Yanju; Zheng, Yuejun; Li, Hongyi

    2003-02-01

    This paper presents a tomographic study on the S wave velocity structure of China and adjacent regions. Group velocity dispersions of fundamental Rayleigh waves along more than 4000 paths were determined with frequency-time analysis. The study region was divided into a 1° × 1° grid, and velocities in between grid nodes were calculated by bilinear interpolation. The Occam's inversion scheme was adopted to invert for group velocity distributions. This method is robust and allows us to use a fine grid in model parameterization and thus helps to restore a more realistic velocity pattern. Checkerboard tests were carried out, and the lateral resolution was estimated to be 4°-6° in China and its eastern continental shelves. The resulting group velocity maps from 10 to 184 s showed good correlation with known geological and tectonic features. The pure path dispersion curves at each node were inverted for shear wave velocity structures. The three-dimensional velocity model indicates thick lithospheres in the Yangtze and Tarim platforms and hot upper mantles in Baikal and western Mongolia, coastal area and continental shelves of eastern China, and Indochina and South China Sea regions. The Tibetan Plateau has a very thick crust with a low-velocity zone in its middle. Beneath the crust a north dipping high-velocity zone, mimicking a subducting plate, reaches to 200 km in depth and reaches to the Kunlun Mountains northward. In northern Tibet a low-velocity zone immediately below the Moho extends eastward then turns southward along the eastern edge of the plateau until it connects to the vast low-velocity area in Indochina and the South China Sea.

  19. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    USGS Publications Warehouse

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  20. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  1. Work plan and sampling and analysis plan for interim remedial actions for Indian Mountain Long Range Radar Station, Elmendorf AFB, Alaska. Addendum to RI/FS work plan (July 1994) and sampling and analysis plan (July 1994). Final report, 1 May-13 July 1995

    SciTech Connect

    1995-07-13

    The purpose of the report is to describe and detail the activities to be conducted as part of the Interim Remedial Action at Indian Mountain Long Range Radar Station, Alaska. Section 1.0 provides introduction and background information, and states the objectives for the work. Section 2.0 describes the interim remedial action, including construction specifications. Section 3.0 details the description and construction of the containment cell. Additional characterization of Source Areas SS02, SS10, OT08, SS11 and SS09 is described in Section 4.0. Section 5.0 provides information regarding decontamination and waste management procedures. Sections 6.0, 7.0, and 8.0 provide information on project organization and schedule, reporting, and references, respectively.

  2. SANDIA MOUNTAIN WILDERNESS, NEW MEXICO.

    USGS Publications Warehouse

    Hedlund, D.C.; Kness, R.F.

    1984-01-01

    Geologic and mineral-resource investigations in the Sandia Mountains in New Mexico indicate that a small part of the area has a probable mineral-resource potential. Most of the mineral occurrences are small barite-fluorite veins that occur along faults on the eastern slope of the range. The barite veins in the Landsend area and in the Tunnel Spring area are classed as having a probable mineral-resource potential. Fluorite veins which occur at the La Luz mine contain silver-bearing galeana and the area near this mine is regarded as having a probable resource potential for silver. No energy resources were identified in this study.

  3. Exchange coupling between laterally adjacent nanomagnets.

    PubMed

    Dey, H; Csaba, G; Bernstein, G H; Porod, W

    2016-09-30

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing. PMID:27535227

  4. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  5. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  6. Mountain-Top Science

    ERIC Educational Resources Information Center

    Cussen, John P.

    1976-01-01

    Described is the Talcott Mountain Science Center for Student Involvement, Inc., near Hartford, Connecticut, and the programs in natural science offered at the facility and by center personnel in local schools. (SL)

  7. Acute mountain sickness

    MedlinePlus

    High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... If you have fluid in your lungs (pulmonary edema), treatment may include: Oxygen A high blood pressure ...

  8. Cordilleran front range structural features in northwest Montana interpreted from vintage seismic reflection data

    NASA Astrophysics Data System (ADS)

    Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.

    2016-04-01

    Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.

  9. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    O`Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy`s Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals.

  10. Possible reactivation of the Vincent-Chocolate Mountains thrust in the Gavilan Hills area, southeasternmost California

    SciTech Connect

    Oyarzabal, F.R.; Jacobson, C.E. ); Haxel, G.B. )

    1993-04-01

    The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OS in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.

  11. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  12. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  13. 30 CFR 56.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  14. 30 CFR 57.9103 - Clearance on adjacent tracks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....

  15. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  16. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  17. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  18. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  19. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  20. The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) - an overview

    NASA Astrophysics Data System (ADS)

    Flocke, F. M.; Science Teams, F A D A

    2015-12-01

    The Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) was designed to quantify the factors controlling surface ozone in the Northern Front Range Metropolitan Area (NFRMA) and determine whether current and planned emission controls are sufficient to reduce ozone levels below standards. The experiment was conducted simultaneously with the 2014 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) intensive, and employed a coordinated set of ground-based, aircraft-based and satellite measurements. The NFRMA is subject to emissions from a wide variety of very diverse sources such as transportation, power generation, agriculture and livestock operations, oil and gas extraction activities, and natural emissions from vegetation. Inflow into the state can contain elevated ozone brought about from emissions originating from other Western states, Canada or Asia. Terrain-induced, complex mountain-valley circulation patterns, can, to some extent, recirculate polluted air and exacerbate high ozone events. This transport also contributes to high ozone, visibility degradation, and deposition of pollution into Rocky Mountain National Park and other pristine areas. Fifteen flights were performed between July 26 and August 17, 2014, on board the NCAR/NSF C-130 research aircraft, which was equipped with a comprehensive gas phase photochemistry and aerosol payload. The C-130 flights covered much of the State of Colorado. Numerous ground sites and mobile labs were taking measurements simultaneously, and the NASA P3, B-200, and Falcon aircraft flight operations were concentrated on the NFRMA itself. This presentation will summarize the FRAPPÉ activities and present first results with respect to emission characterization of the area and comparison with inventories, contributions of emission source types to ozone production and particle composition, transport and chemical evolution of air masses

  1. GOAT ROCKS WILDERNESS AND ADJACENT ROADLESS AREAS, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Close, T.J.

    1984-01-01

    The Goat Rocks Wilderness and adjacent roadless areas are a rugged, highly forested, scenic area located on the crest of the Cascade Range in south-central Washington. Several mineral claims have been staked in the area. Mineral surveys were conducted. Geochemical, geophysical, and geologic investigations indicate that three areas have probable mineral-resource potential for base metals in porphyry-type deposits. Available data are not adequate to permit definition of the potential for oil and gas. There is little likelihood for the occurrence of other kinds of energy resources in the area. Evaluation of resource potential in the three areas identified as having probable mineral-resource potential could be improved by more detailed geochemical studies and geologic mapping.

  2. Can native clonal moso bamboo encroach on adjacent natural forest without human intervention?

    PubMed

    Bai, Shangbin; Wang, Yixiang; Conant, Richard T; Zhou, Guomo; Xu, Yong; Wang, Nan; Fang, Feiyan; Chen, Juan

    2016-01-01

    Native species are generally thought not to encroach on adjacent natural forest without human intervention. However, the phenomenon that native moso bamboo may encroach on surrounding natural forests by itself occurred in China. To certificate this encroaching process, we employed the transition front approach to monitor the native moso bamboo population dynamics in native Chinese fir and evergreen broadleaved forest bordering moso bamboo forest in Tianmu Mountain Nature Reserve during the period between 2005 and 2014. The results showed that the bamboo front moved toward the Chinese fir/evergreen broadleaved stand with the new bamboo produced yearly. Moso bamboo encroached at a rate of 1.28 m yr(-1) in Chinese fir forest and 1.04 m yr(-1) in evergreen broadleaved forest, and produced 533/437 new culms hm(-2) yr(-1) in the encroaching natural Chinese fir/evergreen broadleaved forest. Moso bamboo coverage was increasing while adjacent natural forest area decreasing continuously. These results indicate that native moso bamboo was encroaching adjacent natural forest gradually without human intervention. It should be considered to try to create a management regime that humans could selectively remove culms to decrease encroachment. PMID:27600881

  3. Can native clonal moso bamboo encroach on adjacent natural forest without human intervention?

    PubMed Central

    Bai, Shangbin; Wang, Yixiang; Conant, Richard T.; Zhou, Guomo; Xu, Yong; Wang, Nan; Fang, Feiyan; Chen, Juan

    2016-01-01

    Native species are generally thought not to encroach on adjacent natural forest without human intervention. However, the phenomenon that native moso bamboo may encroach on surrounding natural forests by itself occurred in China. To certificate this encroaching process, we employed the transition front approach to monitor the native moso bamboo population dynamics in native Chinese fir and evergreen broadleaved forest bordering moso bamboo forest in Tianmu Mountain Nature Reserve during the period between 2005 and 2014. The results showed that the bamboo front moved toward the Chinese fir/evergreen broadleaved stand with the new bamboo produced yearly. Moso bamboo encroached at a rate of 1.28 m yr−1 in Chinese fir forest and 1.04 m yr−1 in evergreen broadleaved forest, and produced 533/437 new culms hm−2 yr−1 in the encroaching natural Chinese fir/evergreen broadleaved forest. Moso bamboo coverage was increasing while adjacent natural forest area decreasing continuously. These results indicate that native moso bamboo was encroaching adjacent natural forest gradually without human intervention. It should be considered to try to create a management regime that humans could selectively remove culms to decrease encroachment. PMID:27600881

  4. Relict colluvial boulder deposits as paleoclimatic indicators in the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Whitney, J.W.; Harrington, C.D.

    1993-01-01

    Early to middle Pleistocene boulder deposits are common features on southern Nevada hillslopes. These darkly varnished, ancient colluvial deposits stand out in stark contrast to the underlying light-colored bedrock of volcanic tuffs, and they serve as minor divides between drainage channels on modern hillslopes. To demonstrate the antiquity of these stable hillslope features, six colluvial boulder deposits from Yucca Mountain, Nye County, Nevada, were dated by cation-ratio dating of rock varnish accreted on boulder surfaces. Estimated minimum ages of these boulder deposits range from 760 to 170 ka. Five additional older deposits on nearby Skull and Little Skull Mountains and Buckboard Mesa yielded cation-ratio minimum-age estimates of 1.38 Ma to 800 ka. An independent cosmogenic chlorine-36 surface exposure date was obtained on one deposit, which confirms an estimated early to middle Quaternary age. These deposits have provided the oldest age estimates for unconsolidated hillslope deposits in the southwestern United States. We suggest that the colluvial boulder deposits were produced during early and middle Pleistocene glacial/pluvial episodes and were stabilized during the transition to drier interglacial climates. The preservation of old, thin hillslope deposits and the less-than-2-m incision by hillslope runoff adjacent to these deposits, indicate that extremely low denudation rates have occurred on resistant volcanic hillslopes in the southern Great Basin during Quaternary time. -from Authors

  5. Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Foster, D.A.; Mogk, D.W.; Wooden, J.L.; Kamenov, George D.; Vogl, J.J.

    2007-01-01

    Numerous studies have shown that large quantities of Grenville-age detritus dominate Neo-proterozoic to Cambrian arenites in southwest Laurentia (southwestern United States). U-Pb ages and Hf isotopic compositions of zircons and 40Ar/39Ar ages of white mica from clastic sedimentary rocks of the Neoproterozoic Uinta Mountain Group also indicate significant Mesoproterozoic detritus mixed with a variably abundant Archean component. Zircons with ages representative of the Paleoproterozoic basement in the eastern Uinta Mountains or the younger Paleoproterozoic rocks of the adjacent Yavapai-Mazatzal terranes were not observed. A limited range of initial ??Hf (???90% between -3 and +3) for Mesoproterozoic zircons suggests derivation from a source region (or regions) characterized by mixing between juvenile and reworked older crust during Grenville orogenesis. The enriched Grenville-age basement proposed to underlie much of southeastern North America may be this source based on similarities of Hf isotopic data from Mesoproterozoic zircons in Mississippi River sand and available paleocurrent data. If so, then disruption of this supply in the Cambrian may be related to Iapetan rifting and, perhaps, the separation of the Precordillera terrane from Laurentia. ?? 2007 The Geological Society of America.

  6. Geological map of Bare Mountain, Nye County, Nevada

    SciTech Connect

    Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

    1992-12-31

    Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

  7. Interaction between adjacent lightning discharges in clouds

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Zhang, Guangshu; Zhang, Tong; Li, Yajun; Wu, Bin; Zhang, Tinglong

    2013-07-01

    Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.

  8. Characterization of microsatellite loci isolated in Mountain Plover (Charadrius montanus)

    USGS Publications Warehouse

    John, J. St; Kysela, R.F.; Oyler-McCance, S.J.

    2007-01-01

    Primers for 15 microsatellite loci were developed for Mountain Plover, a species whose distribution and abundance have been reduced drastically in the past 30 years. In a screen of 126 individuals collected from four breeding locales across the species' range, levels of polymorphism ranged from two to 13 alleles per locus. No two loci were found to be linked, although one locus revealed significant departures from Hardy-Weinberg equilibrium. These microsatellite loci can be used in population genetic studies, ultimately aiding in management efforts for Mountain Plover. Additionally, these markers can potentially be used in studies investigating the mating system of Mountain Plover. ?? 2007 Blackwell Publishing Ltd.

  9. High altitude pulmonary edema in mountain climbers.

    PubMed

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment. PMID:25291181

  10. Possible uranium mineralization, Mineral Mountains, Utah

    USGS Publications Warehouse

    Miller, W. Roger; McHugh, John B.; Ficklin, Walter H.

    1979-01-01

    The Mineral Mountains block in west-central Utah is a horst whose core stands structurally high relative to all nearby basin-and-range fault blocks. Rocks of the Mineral Mountains range from Precambrian to Quaternary in age, but mostly consist of Tertiary granitic rocks. The range lies with the Wah Wah-Tusher mineral belt. Lead, silver, gold, and tungsten have been mined commercially. During a geochemical survey conducted in the summer of 1978, 30 water samples and 29 stream-sediment samples were collected from the Mineral Mountains area. The interpretation of simple plots of uranium concentrations and the results of a Q-mode factor analysis indicate that potential exists for uranium mineral deposits within the Mineral Mountains. The most favorable areas are in the granitic pluton near its contacts with sedimentary and metamorphic rocks. The most likely source of the uranium anomalies is uraninite-bearing epigenic veins along faults and fractures within the pluton. Three hypothetical models are proposed to account for the uranium mineralization.

  11. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of

  12. Objective climate classification as a framework for assessing projected climate change in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Pritchard, David; Blenkinsop, Stephen

    2016-04-01

    This study builds upon foundational work by Forsythe et al (2015, doi: 10.5194/esd-6-311-2015) which used principal component analysis (PCA) and k-means clustering to derive objective present climate classifications over High Mountain Asia and adjacent regions (60E to 100E, 20N to 40N) based on global meteorological reanalyses' estimates of the drivers of water resources availability and variability (precipitation, surface shortwave radiation, daily mean near surface air temperature and its diurnal range). This study refines Forsythe et al (2015) by testing the potential for spatially disaggregating coarse global reanalyses (and climate model outputs) using iterative classification and regression processing to achieve a 5km (0.05 decimal degree) horizontal resolution in order better capture the severe topographic range and gradients of the HMA domain. This spatial refinement should allow for better intercomparability of resultant classifications derived from datasets with different native resolutions. This intercomparability is critical because the second stage of this assesses climate change projections from a range regional climate model experiments - UK Hadley Centre RQUMP 25km South Asia perturbed physics ensemble, CORDEX South Asia domain and (pending dataset availability) NextData EC-Earth 15km high resolution HMA domain - using derived objective classifications as a framework for aggregation. By establishing sub-regional units of relative homogeneity, the objective classification approach allows twofold assessment of project future climate scenarios, i.e. change can be quantified not only as perturbation of key variables (e.g. precipitation, temperature, etc) but also in terms of the spatial descriptors (areal extent, surface elevation range and mean, latitudinal and longitudinal bounds) of the identified climate zones. It is expected that this novel approach, and in particular the very high target spatial resolution, will yield important insights into the

  13. Mountain Home Well - Photos

    DOE Data Explorer

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  14. The oldest know Rocky Mountain bristlecone pines (Pinus aristata Engelm. )

    SciTech Connect

    Brunstein, F.C. ); Yamaguchi, D.K. )

    1992-08-01

    We have found 12 living Rocky Mountain bristlecone pines (Pinus aristata) more than 1600 yr old, including four that are more than 2 1 00 yr old, on Black Mountain, near South Park, and on Almagre Mountain, in the southern Front Range, Colorado. A core from the oldest of these trees has an inner-ring date of 442 B.C. This tree is therefore at least 2435 yr old and exceeds the age of the oldest previously reported Rocky Mountain bristlecone pine by 846 yr, The ages of these trees show that Rocky Mountain bristlecone pines, under arid environmental conditions, achieve much older ages than have been previously reported. The ages also show that previously inferred trends in bristlecone pine ages, where maximum ages in the eastern range of Rocky Mountain bristlecone pines are much less than maximum ages in the western range of Great Basin bristlecone pines (Pinus longaea), are less strong than previously supposed. Ancient Rocky Mountain bristlecone pines, such as those found in this study, have the potential to expand our knowledge of late Holocene climatic conditions in western North America.

  15. Using Resistivity and Seismic Refraction to Image Surface-Ground Water Interaction in the Snowy Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Provart, M.; Holbrook, W.; Carr, B.; Miller, S. N.; Traver, E.; Hall, R.

    2013-12-01

    Closing the water balance in mountain watersheds is often difficult due to uncertainties about the role of surface/groundwater interactions. We have initiated a combined hydrological/geophysical study of a mountain watershed in the Snowy Range of Wyoming in order to test the efficacy of near-surface geophysical techniques in assessing the pathways that connect surface water to groundwater. Here we present initial results of subsurface structure inferred from electrical resistivity and seismic refraction data. The Snowy Range represents the northern extent of the Medicine Bow Mountains, a subset of the Rockies, that originated from the Laramide Orogeny. Bedrock varies from quartzite, to metasedimentary gneisses and schists, to igneous rock. Our data set consists of DC-resistivity and seismic refraction surveys in a valley containing a spring, as well as a saline tracer experiment in the No Name watershed consisting of time-lapse resistivity profiles along both banks of the stream. Our resistivity transects show highly conductive regions immediately below the spring with resistivities <100 Ω-m at depths ranging from 0 to 25 meters. We conclude these sections are saturated with highly ionized water that has filtered downwards through the ridgelines to the north and south of the valley. Seismic refraction surveys along the same profiles show P-velocities <1500 m/s (the seismic velocity of water) in the upper 10 meters. One possible explanation is that water occupies discrete fracture systems in an otherwise partially saturated subsurface. A saline tracer experiment also shows clear evidence for surface/groundwater interactions. We injected a salt water mixture into the stream and conducted time-lapse resistivity profiling on stream-parallel profiles downstream over five hours to test for hyporheic flow from the stream into the adjacent banks. We imaged increasing conductivity in sections of our profiles which we attribute to saline water infiltrating the subsurface

  16. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  17. A new network on mountain geomorphosites

    NASA Astrophysics Data System (ADS)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  18. Conodont color alteration (CAI) as an aid to structural interpretation in the Black Pine Mountains, Idaho

    USGS Publications Warehouse

    Smith, Fred J., Jr.; Wardlaw, Bruce R.

    2012-01-01

    The Black Pine Mountains, southeastern Cassia County, Idaho, consist of southern and northern blocks separated by a northeast-trending, high-angle fault. Differences in conodont color alteration values distinguish the two blocks. The southern block has significantly higher organic maturation levels than the northern block and is interpreted to have been thrust northeastward adjacent to the northern block.

  19. Biogeographical and evolutionary importance of the European high mountain systems

    PubMed Central

    Schmitt, Thomas

    2009-01-01

    Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe. PMID:19480666

  20. Yucca Mountain tuffs

    SciTech Connect

    1996-08-01

    This is a compilation of petrographic slides detailing the microstructure and petrographic character of the tuff deposits associated with the Yucca Mountain radioactive waste repository. It describes crystal structures, clay alterations, and mineral associations. The paper contains a description of the petrographic thin-sections but contains no narrative or conclusions of what the slides suggest with regards to the facility.

  1. DOE's Yucca Mountain Studies.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet is about the disposal of high-level nuclear waste in the United States with a particular focus on Yucca Mountain, Nevada as a repository site. Intended for readers who do not have a technical background, the booklet discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. An…

  2. The Strongest Mountain

    ERIC Educational Resources Information Center

    Monnes, Colleen

    2004-01-01

    The article describes an activity for the author's fifth-grade students called "build the strongest mountain." To them, it was not a lesson--it was a challenge. To the author, it was an activity that turned a run-of-the-mill Earth science unit into a terrific opportunity for students to demonstrate their knowledge of erosion and develop…

  3. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  4. Collision and mountain building

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.

    2016-01-01

    The spatial, chronological, and genetic relationships of recent (Late Alpine) collisions to mountain building are considered at three levels of scale: (i) in separate zones of the Arabian-Caucasus segment of the Alpine-Himalayan Orogenic Belt, (ii) throughout the central segment of this belt from the Alps to the Himalalayas, and (iii) in Central Asia and other mountain belts of continents. Three stages of mountain building are distinguished at all three levels. The first stage starts with widespread collision and similar plate interactions from the end of the Eocene to the middle Miocene and is expressed in the formation of uplifts, commonly no higher than the moderately elevated level in regions that concentrate deformations of transverse shortening induced by compression. The second short stage, which embraces the Pliocene-Quaternary and occasionally the end of the Miocene, differs in general, though differentiated in the value and intensification of vertical movements, when the height of mountains increases by 2-3 times. Elevations are spread over certain platform territories and even frameworks of rift zones. This is related not so much to the intensity of compression and shortening as to the compositional transformation of the upper mantle and the lower crust, leading to their decompaction. Comparison with the Hercynian and Caledonian orogenic stages shows that the second phase, predetermined by widespread collision, reflects a more important geodynamic event expressed in a change of the global plate interaction system and its deep-seated sources.

  5. Rocky Mountain Perspectives.

    ERIC Educational Resources Information Center

    Dutkiewicz, Jody Steiner, Ed.

    This publication features articles detailing the state of educational programs in the Rocky Mountain area. The articles address: 1) the impact of physical geography on culture, education, and lifestyle; 2) the education of migrant and/or agricultural workers and their children; 3) educational needs of children in rural areas; 4) outdoor education;…

  6. The Mountaineer Minority

    ERIC Educational Resources Information Center

    Egerton, John; Gaillard, Frye

    1974-01-01

    Discusses the new Appalachian movement, based on the assumption that mountain people are a distinct and maligned cultural minority; the people of Appalachia, white, black and red, have begun to strike back against the dam-builders, strip-miners, and others they say are gouging out the region's mineral resources by the cheapest means possible no…

  7. Neocomian source and reservoir rocks in the western Brooks Range and Arctic Slope, Alaska

    SciTech Connect

    Mull, C.G.; Reifenstuhl, R.R.; Harris, E.E.; Crowder, R.K.

    1995-04-01

    Detailed (1:63,360) mapping of the Tingmerkpuk sandstone and associated rocks in the Misheguk Mountain and DeLong Mountains guadrangles of the western Brooks Range thrust belt documents potential hydrocarbon source and reservoir rocks in the northern foothills of the western Delong Mountains and adjacent Colville basin of northwest Alaska. Neocomian (?) to Albian micaceous shale, litharenite, and graywacke that overlies the Tingmerkpuk represents the onset of deposition of orogenic sediments derived from the Brooks Range to the south, and the merging of northern and southern sediment sources in the Colville basin. Both the proximal and distal Tingmerkpuk facies contain clay shale interbeds and overlie the Upper Jurassic to Neocomian Kingak Shale. Preliminary geochemical data show that in the thrust belt, these shales are thermally overmature (Ro 1.4-1.6), but are good source rocks with total organic content (TOC) that ranges from 1.2 to 1.8 percent. Shale in the overlying Brookian rocks is also thermally overmature (Ro 1.2-1.5 percent), but contains up to 1.8 percent TOC from a dominantly terrigenous source, and has generated gas. In outcrops at Surprise Creek, in the foothills north of the thrust belt, the Kingak (1.9 percent TOC) and underlying Triassic Shublik Formation (4.6 percent TOC) are excellent oil source rocks with thermal maturity close to peak oil generation stage (Ro0.75-0.9 percent). These rocks have lower thermal maturity values than expected for their stratigraphic position within the deeper parts of the Colville basin and indicate anomalous burial and uplift history in parts of the basin. Preliminary apatite fission-track (AFTA) data from the thrust belt indicate a stage of rapid uplift and cooling at about 53.61 Ma.

  8. [Mountaineering and altitude sickness].

    PubMed

    Maggiorini, M

    2001-06-01

    Almost every second trekker or climber develops two to three symptoms of the high altitude illness after a rapid ascent (> 300 m/day) to an altitude above 4000 m. We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high altitude pulmonary edema. Essentially, acute mountain sickness is self-limiting and benign. Its symptoms are mild to moderate headache, loss of appetite, nausea, dizziness and insomnia. Nausea rarely progresses to vomiting, but if it does, this may anticipate a progression of the disease into the severe form of acute mountain sickness, called high altitude cerebral edema. Symptoms and signs of high altitude cerebral edema are severe headache, which is not relieved by acetaminophen, loss of movement coordination, ataxia and mental deterioration ending in coma. The mechanisms leading to acute mountain sickness are not very well understood; the loss of cerebral autoregulation and a vasogenic type of cerebral edema are being discussed. High altitude pulmonary edema presents in roughly twenty percent of the cases with mild symptoms of acute mountain sickness or even without any symptoms at all. Symptoms associated with high altitude pulmonary edema are incapacitating fatigue, chest tightness, dyspnoe at the minimal effort that advances to dyspnoe at rest and orthopnoe, and a dry non-productive cough that progresses to cough with pink frothy sputum due to hemoptysis. The hallmark of high altitude pulmonary edema is an exaggerated hypoxic pulmonary vasoconstriction. Successful prophylaxis and treatment of high altitude pulmonary edema using nifedipine, a pulmonary vasodilator, indicates that pulmonary hypertension is crucial for the development of high altitude pulmonary edema. The primary treatment of high altitude illness consists in improving hypoxemia and acclimatization. For prophylaxis a slow ascent at a rate of 300 m/day is recommended, if symptoms persist, acetazolamide at a

  9. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    SciTech Connect

    Missallati, A.A. Ltd., Tripoli )

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  10. Digital mountains: toward development and environment protection in mountain regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo

    2007-06-01

    Former studies on mountain system are focused on the department or subject characters, i.e. different department and branches of learning carry out researches only for their individual purposes and with individual characters of the subject of interests. As a whole, their investigation is lacking of comprehensive study in combination with global environment. Ecological environment in mountain regions is vulnerable to the disturbance of human activities. Therefore, it is a key issue to coordinate economic development and environment protection in mountain regions. On the other hand, a lot of work is ongoing on mountain sciences, especially depending on the application of RS and GIS. Moreover, the development of the Digital Earth (DE) provides a clue to re-understand mountains. These are the background of the emergence of the Digital Mountains (DM). One of the purposes of the DM is integrating spatial related data and information about mountains. Moreover, the DM is a viewpoint and methodology of understanding and quantifying mountains holistically. The concept of the DM is that, the spatial and temporal data related to mountain regions are stored and managed in computers; moreover, manipulating, analyzing, modeling, simulating and sharing of the mountain information are implemented by utilizing technologies of RS, GIS, GPS, Geo-informatic Tupu, computer, virtual reality (VR), 3D simulation, massive storage, mutual operation and network communication. The DM aims at advancing mountain sciences and sustainable mountain development. The DM is used to providing information and method for coordinating the mountain regions development and environment protection. The fundamental work of the DM is the design of the scientific architecture. Furthermore, construct and develop massive databases of mountains are the important steps these days.

  11. Lithofacies and stratigraphy of the Lisburne and Etivluk groups in the Lisburne 1 well and adjacent outcrops

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bird, Kenneth J.

    2002-01-01

    The Lisburne 1 well in the thrust belt of the central Brooks Range penetrated 17,000 ft of imbricated, chiefly Ellesmerian sequence strata in the Endicott Mountains allochthon. Five thrust repeats of the Lisburne Group (Carboniferous) and overlying Etivluk Group (Permian-Jurassic) were drilled. Lithofacies analyses of >350 thin sections of cores and cuttings, and biostratigraphy based on foraminifers and conodonts, allow detailed correlation with coeval units in adjacent outcrops and provide data on the depositional setting and reservoir and source rock potential of these strata. The late Early- Late Mississippian (Osagean-Chesterian) Lisburne Group consists mainly of skeletal wackestone to grainstone, locally completely dolomitized. An interval of abundant glauconite and detrital quartz in the lower Lisburne may mark a sequence-bounding unconformity. Dolostone in the upper part of the unit has maximum porosities of 10-13% and common residual hydrocarbons. The uppermost Lisburne is thinly interbedded mudstone, chert, and shale that are locally dolomitic, phosphatic, spiculitic, and organic-rich; conodonts from this interval in outcrop represent an outer shelf to slope biofacies. The Etivluk Group here encompasses the Siksikpuk and Otuk Formations. The Siksikpuk is mainly varicolored shale and radiolarian chert, with a basal interval of glauconitic, pyritic sandstone. Phosphatic and organic-rich shale, radiolarian chert, and pelecypod coquinas make up the Otuk. Outcrop and subsurface data indicate that the Lisburne Group in this area accumulated near the seaward margin of a shallow-water carbonate platform that drowned during the Late Mississippian; outer shelf or deeper conditions predominated throughout deposition of the upper Lisburne and the Etivluk Group.

  12. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  13. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature. PMID:26548036

  14. Tabletop Tectonics: Diverse Mountain Ranges Using Flour and Graphite

    NASA Astrophysics Data System (ADS)

    Davis, D. M.

    2006-12-01

    It has been recognized for some time that the frontal deformation zones where plates converge (foreland fold- and-thrust belts on continents and accretionary wedges at subduction zones) involve shortening over a decoupling layer, or decollement. A simple but successful way of explaining many aspects of their behavior is called the critical Coulomb wedge model, which regards these contractional wedges as analogous to the wedge-shaped mass of soil accreted in front of a bulldozer, or the wedge of snow that piles up in front of a snow plow. The shape and deformation history of the accreted wedge of soil or snow will depend upon the frictional strength of the material being plowed up and the surface over which it is being plowed. The same is true of `bulldozer' wedges consisting of many km thick piles of sediment at convergent plate margins. Using flour (or powdered milk), sandpaper, graphite, transparency sheets, and athletic field marker chalk, manipulated with sieves, brushes, pastry bags and blocks and sheets of wood, it is possible to demonstrate a wide variety of processes and tectonic styles observed at convergent plate boundaries. Model fold-and-thrust belts that behave like natural examples with a decollement that is strong (e.g., in rock without high pore fluid pressure) or weak (e.g., in a salt horizon or with elevated pore fluid pressure) can be generated simply by placing wither sandpaper or graphite beneath the flour that is pushed across the tabletop using a block of wood (the strong basement and hiterland rocks behind the fold-thrust belt). Depending upon the strength of the decollement, the cross-sectional taper of the deforming wedge will be thin or broad, the internal deformation mild or intense, and the structures either close to symmetric or strongly forward-vergent, just as at the analogous natural fold-thrust belts. Including a horizontal sheet of wood or Plexiglas in front of the pushing block allows generation of an accretionary wedge, outer-are high, and forearc basin, just as over a subduction zone. Any dark material emplaced (a pastry bag works well) atop the experiment before deformation in the form of football-field `hash marks' every 10 cm allows for easy calculation of strain distribution at any time during or after the experiment. Finally, the entire orogen can be excavated using a plastic photocopier transparency sheet. If the original set-up included occasional thin layers of red and blue field marker chalk within sedimentary column (the rest of which consists of white flour or powdered milk), excavation reveals (quite colorfully) many internal details of the fold-thrust belts that have been generated.

  15. Processing and Correcting Master Images to Analyze and map Metamorphic Core Complexes in the Southern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Sanchez, S. O.

    2004-12-01

    Metamorphic core complexes (MCCs) have been of great interest to geologists and geophysicists and our goal is to facilitate integrated studies of these intriguing features. Our specific targets are the exposed Whipple Mountains in Southeastern California and the spectrally similar Mohave Mountains in Western Arizona. These two ranges were selected for study using the MODIS/ASTER airborne sensor also known as MASTER, and NASA/JPL acquired the data for us. These two ranges were chosen because of their close proximity to each other in the imagery. This sensor was chosen because it has a good resolution (15m) and 50 different bands ranging from the visible to thermal infrared. However, because it is flown on a light aircraft its flight line patterns and photogrammetric distortions make it hard to georeference and mosaic with other images from adjacent flight lines. The distortions become misalignments of images during mosaicing. This project involved two efforts: 1) developing a method for correcting and processing MASTER multispectral images; and 2) using those images to analyze and map MCCs in the southern Basin and Range Province. Standard image processing techniques available within the ENVI software package were applied to this imagery to geometrically correct, mosaic, and spectrally process it in order to locate defining characteristics of MCCs that are mappable with the imagery. These techniques include the use of warping, histogram matching, mosaicing, classification, Principal Component Analysis, decorrelation stretching, Minimum Noise Fraction Transformation, Pixel Purity Index, and end member analysis.

  16. Western Mountain Initiative: predicting ecosystem responses to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Peterson, David L.; Wilson, J.T.

    2008-01-01

    Mountain ecosystems of the western United States provide irreplaceable goods and services such as water, timber, biodiversity, and recreational opportunities, but their responses to climatic changes are complex and not well understood. The Western Mountain Initiative (WMI), a collaboration between USGS and U.S. Forest Service scientists, catalyzes assessment and synthesis of the effects of disturbance and climate change across western mountain areas, focusing on national parks and surrounding national forests. The WMI takes an ecosystem approach to science, integrating research across science disciplines at scales ranging from field studies to global trends.

  17. View of north side from exterior stairs of adjacent building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north side from exterior stairs of adjacent building, bottom cut off by fringed buildings, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  18. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  19. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  20. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; and others

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  1. Mountain wave-induced turbulence: Elevated turbulence zones over a double mountain ridge

    NASA Astrophysics Data System (ADS)

    Strauss, Lukas; Grubišić, Vanda; Serafin, Stefano

    2015-04-01

    In their seminal 1974 paper on "Lower Turbulent Zones Associated with Mountain Lee Waves", P. F. Lester and W. A. Fingerhut attempted to characterize regions of low-level turbulence in the lee of mountain ranges, using in situ measurements by research aircraft. Their "Lower Turbulent Zones" (LTZs), associated with large-amplitude mountain waves and ensuing atmospheric rotors, encompass the turbulent flow on the lee side of an obstacle that reaches all the way to the ground. This work is based on aircraft measurements collected during the Terrain-Induced Rotor Experiment (T-REX, Sierra Nevada, California, 2006) that was focused on the investigation of the coupled mountain-wave, rotor, and boundary-layer system. The analysis of airflow during several T-REX Intensive Observation Periods (IOPs) reveals a variety of mountain-flow scenarios, underlining the influence of the secondary orographic obstacle (the White and Inyo Mountains east of the Sierra Nevada) on the formation of wave-induced turbulence zones. In the present contribution, we focus on a scenario characterized by an inversion-capped valley atmosphere documented during T-REX IOPs 1 and 2. The valley inversion imposes an additional positive buoyancy force on the downslope flow in the lee of the primary ridge and prevents it from penetrating deep into the valley. Consequently, the flow separates higher up along the lee slope, forming an elevated turbulence zone that resides above the "virtual valley floor", represented by the inversion. The elevated turbulence zone shares some characteristics of the well-known low-level turbulence zone such as turbulence intensity being highest below the ascending part of the lee wave. However, clear indication of flow reversal at the bottom of the turbulent region, suggestive of a rotor circulation, is missing. For sufficiently short wavelength of the lee wave, multiple wave crests can fit between the primary and secondary mountain ridge and can give rise to several elevated

  2. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  3. The Occurrence of Erionite at Yucca Mountain

    SciTech Connect

    NA

    2004-07-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite

  4. Flood elevation limits in the rocky mountains

    USGS Publications Warehouse

    Jarrett, Robert D.

    1993-01-01

    An analysis of 77,987 station-years of streamflow-gaging station data from 3,748 stations in the Rocky Mountains indicates that there is a latitude-dependent elevation limit to substantial rainfall-produced flooding. The elevation limit ranges from about 1,650 m in Montana to about 2,350 m in New Mexico. Above this elevation limit, large rainfall-produced floods occur very infrequently and maximum unit discharge is 1.7 m3/s/km2 or less. Below this elevation limit, large-magnitude flooding is more common and maximum unit discharge ranges from to 30 m3/s/km2 in Idaho and Montana to 59 m3/s/km2 in New Mexico. These results emphasize the critical need for additional research to increase our knowledge of floods, and have important implications in water-resources investigations in the Rocky Mountains.

  5. Using Digital Topography to Differentiate Erosionally Exhumed and Tectonically Active Mountains Fronts

    NASA Astrophysics Data System (ADS)

    Frankel, K. L.; Pazzaglia, F. J.

    2003-12-01

    Mountain ranges in the southern Rocky Mountains have departed on unique landscape evolutionary pathways in the late Cenozoic that are directly dependent upon the degree of post-orogenic tectonic activity they have experienced. The topography of Sierra Nacimiento, a Laramide uplift in west-central New Mexico lacking an active range-front fault, is shaped primarily by erosional exhumation that is continuous, but not steady, being driven by distal base level fall from Rio Grande incision and resultant south to north knickpoint migration. In contrast, the topography of the Taos Range, a rift flank uplift in north-central New Mexico is shaped by contrasting active stream incision and aggradation astride an active range front normal fault. The distinction between exhumation-dominated and tectonically-dominated mountain fronts is best quantified by analyses of a new metric we call the drainage basin volume to drainage basin area ratio (V-A ratio) as well as the gradients of first-order streams. Drainage basin volume and area are calculated by constructing topographic envelope maps from 10 m resolution digital elevation models (DEM). The envelope maps are pinned by the watershed divide and cover the maximum elevations in each drainage basin. Subtracting the original DEM from the maximum elevation envelope map produces a topographic residual map from which area and volume data can be obtained. The erosionally exhumed Sierra Nacimiento has a mean V-A ratio of 88 m while the tectonically active Taos Range has a mean V-A ratio of 140 m. Similarly, there are systematic differences in the gradients of first order streams measured both in the range block and approximately 5 km of adjacent piedmont. Streams were defined and subsequently Strahler ordered by a flow accumulation threshold of 250 water-equivalent grid cell units. First order stream channel long profiles were extracted from the DEM at 30 meter increments and gradients were calculated by a FORTRAN program. Gradients of

  6. Yucca Mountain Milestone

    SciTech Connect

    Hunt, Rod

    1997-06-09

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ``holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state.

  7. Tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Jordan, Tom; Watts, Tony; Bell, Robin; Jamieson, Stewart; Finn, Carol; Damaske, Detlef

    2014-05-01

    Understanding the mechanisms leading to intraplate mountain building remains a significant challenge in Earth Sciences compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is the Gamburtsev Subglacial Mountains (GSM) located in the middle of the Precambrian East Antarctic Craton. During the International Polar Year, the AGAP project acquired 120,000 line km of new airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica. Models derived from these datasets provide new geophysical perspectives on crustal architecture and possible uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic to Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is partially preserved beneath the range and has been interpreted as formed during the Proterozoic assembly of East Antarctica. Rifting could have triggered phase/density changes at deep crustal levels, perhaps restoring some of the latent root buoyancy, as well as causing rift-flank uplift. Permian rifting is well-established in the adjacent Lambert Rift, and was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up; this phase may have provided a more recent tectonic trigger for the initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to large-scale geodynamic processes that led to the separation of Greater India from East Antarctica. It is also consistent with several geological and geophysical interpretations within the Lambert Rift. However, recent detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3) argue against the requirement for major Cretaceous rift

  8. Torsion-Mediated Interaction between Adjacent Genes

    PubMed Central

    Meyer, Sam; Beslon, Guillaume

    2014-01-01

    DNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model. In contrast to previously proposed mechanisms of transcriptional interference, the suggested coupling is not mediated by the transcription machineries, but results from the universal mechanical features of the double-helix. The model shows that the effect likely affects prokaryotes as well as eukaryotes, but with different consequences owing to their different basal levels of torsion. It also depends crucially on the relative orientation of the genes, enhancing the expression of eukaryotic divergent pairs while reducing that of prokaryotic convergent ones. To test the in vivo influence of the torsional coupling, we analyze the expression of isolated gene pairs in the Drosophila melanogaster genome. Their orientation and distance dependence is fully consistent with the model, suggesting that torsional gene coupling may constitute a widespread mechanism of (co)regulation in eukaryotes. PMID:25188032

  9. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  10. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  11. Patient-centred mountain medicine.

    PubMed

    Szawarski, Piotr; Hillebrandt, David

    2016-08-01

    Venturing into the mountains, doctors have accompanied expeditions to provide routine care to the teams, undertake research and occasionally take on a rescue role. The role of doctors practicing mountain medicine is evolving. Public health issues involving concepts of health and safety have become necessary with the coming of commercial and youth expeditions. Increasingly individuals with a disability or a medical diagnosis choose to ascend to high altitudes. Doctors become involved in assessment of risk and providing advice for such individuals. The field of mountain medicine is perhaps unique in that acceptance of risk is part of the ethos of climbing and adventure. The pursuit of mountaineering goals may represent the ultimate conquest of a disability. Knowledge of mountain environment is essential in facilitating mountain ascents for those who choose to undertake them, in spite of a disability or medical condition. PMID:27234206

  12. Transit time estimation using tritium and stable isotopes in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Roig-Planasdemunt, Maria; Stewart, Mike; Latron, Jérôme; Llorens, Pilar; Morgenstern, Uwe

    2015-04-01

    Water resources of Mediterranean regions mainly depend on runoff generated in mountain areas. Therefore, study of the time water spends travelling through Mediterranean mountains is important for water resources management as it reflects the ability of catchments to retain and release water. Natural isotopes (tritium and stable isotopes) have been used in different environments to quantify the ages of water within catchments. However, there are relatively few studies of water transit times in Mediterranean mountain regions. Additionally, tritium dating is more common in Southern Hemisphere streams because they were less affected by tritium produced mainly in the North Hemisphere by nuclear weapons testing in the 1950s and 60s. With the aim of improving knowledge of the hydrological catchment functioning of Mediterranean mountain areas, this work estimates water transit times in spring water, groundwater and stream water using tritium and stable isotope (δ18O and δ2H) measurements in the Vallcebre Research Catchments (NE Spain, 42° 12'N, 1° 49'E). Tritium measurements from a previous study carried out in 1996-1998 (Herrmann et al., 1999) were supplemented by new samples collected on 3 November 2013. Difficulties with the age interpretation of the tritium measurements arise from the determination of the tritium input function, the different accuracies of the tritium measurements and the ambiguous ages resulting from past input of tritium from nuclear testing to the atmosphere. Water stable isotope samples were collected in rainfall, spring water, groundwater and streamwater at baseflow conditions every 15 days over a 27 month period. Detailed distributed hydrometric measurements (precipitation, potential evapotranspiration, discharge and water table level) were obtained during the same period. Preliminary results using δ18O, δ2H and tritium show that mean transit times in the Cal Rodó catchment (4.2 km2) ranged between 1.3 and 11.6 years. The lowest mean

  13. Pollen Record of The Last 700 Years From A High Mountain Site In Inner Asia

    NASA Astrophysics Data System (ADS)

    Dirksen, V. G.

    A paleoenvironmental reconstruction from the Tuva region (S. Siberia) provides information about vegetation dynamics and climate changes in these arid highlands during the last millennium. The study area is situated in the center of Eurasia where the Altai, Sayan and Mongolian Altai mo untain chains meet to form the main Asian watershed. The area is still poorly investigated, especially in terms of well-dated evidence of the Little Ice Age (LIA) period. The high mountain topography and the arid climate define a unique environmental diversity, from glaciated highlands to desert-steppe. Mountain larch forests are restricted to north-facing slopes. Pollen data from a sediment core in the Mogen-Buren river valley (50 11 51 N, 89 45 03 E, 2050 m a.s.l.) allow the reconstruction of the vegetation history in this region during the last millennium. Arboreal pollen, dominated by Pinus sibirica, is considered to be long-distance transported. The fluctuations of arboreal pollen reflect forest evolution in adjacent areas. An abrupt decrease of arboreal pollen around 650 14C yrs BP probably indicates a large-scale climate change towards cold conditions. The decrease of tree pollen continues, to reach a minimum around 500 14C yrs BP, after which the arboreal pollen values slightly increase and become approximately constant up to the present, which reflects a relatively stable, cool and dry period. In contrast, fluctuations of pollen of shrubs and herbaceous taxa indicate more complicated local vegetation dynamics. From about 650 14C yrs BP on, the local vegetation shows a succession from scarce plant cover to dense meadows and shrubs with a high floristic diversity, while the forests show a decline. It may be related to a short period of an optimal balance between temperature and moisture level for the arid mountain environments, which could occur during the early part of LIA. Then, up to 500 14C yrs BP, sedge communities characterized by a low pollen diversity, become

  14. Evidence of prehistoric flooding and the potential for future extreme flooding at Coyote Wash, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Glancy, P.A.

    1994-09-01

    Coyote Wash, an approximately 0.3-square-mile drainage on the eastern flank of Yucca Mountain, is the potential location for an exploratory shaft to evaluate the suitability of Yucca Mountain for construction of an underground repository for the storage of high-level radioactive wastes. An ongoing investigation is addressing the potential for hazards to the site and surrounding areas from flooding and related fluvial-debris movement. Unconsolidated sediments in and adjacent to the channel of North Fork Coyote Wash were examined for evidence of past floods. Trenches excavated across and along the valley bottom exposed multiple flood deposits, including debris-flow deposits containing boulders as large as 2 to 3 feet in diameter. Most of the alluvial deposition probably occurred during the late Quaternary. Deposits at the base of the deepest trench overlie bedrock and underlie stream terraces adjacent to the channel; these sediments are moderately indurated and probably were deposited during the late Pleistocene. Overlying nonindurated deposits clearly are younger and may be of Holocene age. This evidence of intense flooding during the past indicates that severe flooding and debris movement are possible in the future. Empirical estimates of large floods of the past range from 900 to 2,600 cubic feet per second from the 0.094-square-mile drainage area of North Fork Coyote Wash drainage at two proposed shaft sites. Current knowledge indicates that mixtures of water and debris are likely to flow from North Fork Coyote Wash at rates up to 2,500 cubic feet per second. South Fork Coyote Wash, which has similar basin area and hydraulic characteristics, probably will have concurrent floods of similar magnitudes. The peak flow of the two tributaries probably would combine near the potential sites for the exploratory shaft to produce future flow of water and accompanying debris potentially as large as 5,000 cubic feet per second.

  15. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  16. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have

  17. Hydrogeologic Framework of the Southeastern Funeral Mountains, California-Nevada, and Implications for the Major Water-Supply Springs in Death Valley National Park

    NASA Astrophysics Data System (ADS)

    Fridrich, C.; Workman, J.; Blakely, R.; Bredehoeft, J.; Jansen, J.; Thompson, R.; King, M.

    2003-12-01

    We are using a combination of geologic mapping, geophysical surveys, hydrologic computer modeling, and a drilling-and-testing program to evaluate the hydrologic framework of the southeastern Funeral Mountains. Our work addresses: (1) the hydrologic connection of the Furnace Creek springs on the south side of the Funeral Mountains to the regional aquifer system on the north side, and (2) potential impacts on these springs from human activities, including possible leakage from the proposed radioactive waste repository under Yucca Mountain, ~50 km to the northeast, and ongoing agricultural overdrafting of groundwater in the southern Amargosa Desert, ~25 km to the northeast. Discharge from the springs at Furnace Creek provides the major water supply for Death Valley National Park and, at 5000 acre-ft/yr, is at least 10 times larger than that attributable to recharge in the adjacent, arid Funeral Mountains. Moreover, hydrochemical data indicate that the spring water is derived mainly from interbasin groundwater flow through the regional carbonate aquifer. This aquifer extends northeastward across much of southeastern Nevada. Our geologic map data indicate that the carbonate aquifer is continuous under the southeastern Funeral Mountains. The base of this aquifer is, however, structurally uplifted under the axis of the range, to an elevation that is much higher than most of the springs at Furnace Creek, but that is locally lower than the water table on the opposite (northeast) side of the range. Rather than forming a barrier that blocks groundwater flow under the Funeral Mountains, as previously interpreted, this uplift evidently forms a spillway. The ~700 m drop in the water-table elevation across this range, into Death Valley, thus does not indicate the presence of any feature that would divert or slow groundwater flow. Because of the spillway mechanism, flow from the springs at Furnace Creek may be sensitive to the water-mining activities that have been progressively

  18. Aeromagnetic and gravity data over the Central Transantarctic Mountains (CTAM), Antarctica: a website for the distribution of data and maps

    USGS Publications Warehouse

    Anderson, E.D.; Finn, C.A.; Damaske, D.; Abraham, J.D.; Goldmann, F.; Goodge, J.W.; Braddock, P.

    2006-01-01

    Near complete coverage of the East Antarctic Shield by ice hampers geological study of crustal architecture important for understanding global tectonic and climate history. Limited exposures in the central Transantarctic Mountains (CTAM), however, show that Archean and Proterozoic rocks of the shield as well as Neoproterozoic-lower Paleozoic sedimentary successions were involved in oblique convergence associated with Gondwana amalgamation. Subsequently, the area was overprinted by Jurassic magmatism and Cenozoic uplift. To extend the known geology of the region to ice-covered areas, we conducted an aeromagnetic survey flown in draped mode by helicopters over the Central Transantarctic Mountains and by fixed-wing aircraft over the adjacent polar plateau. We flew more than 32,000 line km covering an area of nearly 60,000 km2 at an average altitude of 600 m, with average line spacing 2.5 km over most areas and 1.25 km over basement rocks exposed in the Miller and Geologists ranges. Additional lines flown to the north, south, and west extended preliminary coverage and tied with existing surveys. Gravity data was collected on the ground along a central transect of the helicopter survey area.

  19. Cryogenesis study of a pingo-like mound in the Akkol valley of the Russian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Fukui, K.; Fujii, Y.; Ostanin, O.; Mikhailov, N.

    2008-12-01

    Vertical outcrop of a pingo-like mound found in the Akkol valley of the Russian Altai Mountains is described. Several pingo-like mounds were found on the valley floor at about 2300 m ASL. They are 5 - 10 m high and up to 50 m in diameter. Part of a 5 m mound had collapsed into adjacent pond with continuous water supply from streams on the mountain ridge nearby and top 4 m section had been revealed. Highly complex combinations of segregated ice lenses were observed in the outcrop. Ice veins, which are consisted by a number of thick ice lenses, develop radially from the core of the mound. The areas in-between the ice veins had fine parallel lenticular cryostructure. Surface soil layer (about one meter) and patchy soil parts between ice lenses were made of fine till of lacustrine sediments. delta O18 values of water from these ice lenses range from -15 to -18. Spatial distribution of the isotope values was well correlated with the spatial pattern of the ice lenses"f distribution. In addition to segregation of ice lenses perpendicular to the temperature gradient, contribution of relatively rapid formation of ice in radial direction from the core of the mound can be large in this three dimensional frost heave phenomenon.

  20. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  1. 73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, LOOKING WEST BY NORTHWEST, SHOWING EASTERNMOST ARCH OF FORMER GREAT HALL NORTH ARCADE - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. View of viaduct, looking SE from roof of adjacent parking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of viaduct, looking SE from roof of adjacent parking garage. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA

  3. Cement Leakage into Adjacent Vertebral Body Following Percutaneous Vertebroplasty

    PubMed Central

    Park, Jae Hoo; Kim, Hyeun Sung

    2016-01-01

    Percutaneous vertebroplasty (PV) is a minimally invasive procedure for osteoporotic vertebral compression fractures that fail to respond to conventional conservative treatment. It significantly improves intolerable back pain within hours, and has a low complication rate. Although rare, PV is not free of complications, most of which are directly related to cement leakage. Because of its association with new adjacent fracture, the importance of cement leakage into the adjacent disc space is paramount. Here, we report an interesting case of cement leakage into the adjacent upper vertebral body as well as disc space following PV. To the best of our knowledge, there has been no report of cement leakage into the adjacent vertebral body following PV. This rare case is presented along with a review of the literature. PMID:27437018

  4. 1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL CO., MA. Sec. 4116, MP 193.75. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  5. 3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL CO., MA. Sec. 4116, MP 195.55. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  6. 33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY WITH CONCRETE CULVERT LEADING NORTH OUT OF RAVINE TOWARD JOHNSTON MEMORIAL SITE. VIEW NW. - Shiloh National Military Park Tour Roads, Shiloh, Hardin County, TN

  7. Lock 4 View east of lock wall and adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 4 - View east of lock wall and adjacent roadway built atop tow path. The gate pocket can be seen at center. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  8. 1. Ninth Street (west) facade. Adjacent on the north is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC

  9. 2. THREEQUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. THREE-QUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS AND NORTHWEST APPROACH SPANS, LOOKING SOUTHEAST - Red River Bridge, Spanning Red River at U.S. Highway 82, Garland, Miller County, AR

  10. 1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD HOMES, LOOKING SOUTH. GARAGE TO EXTREME LEFT, BUILDING 1 TO EXTREME RIGHT. - Techwood Homes (Public Housing), Bounded by North Avenue, Parker Street, William Street & Lovejoy Street, Atlanta, Fulton County, GA

  11. 3. View of north side of house facing from adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north side of house facing from adjacent vacant property. Original wood lap siding and trim is covered by aluminum siding. Recessed side porch is in middle. - 645 South Eighteenth Street (House), Louisville, Jefferson County, KY

  12. 1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE OF THE ADIT OPENINGS (VIEW TO THE NORTH). - Foster Gulch Mine, Fan Housing, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  13. 7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH (NOT IN STUDY AREA) - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  14. OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY 391 IN THE FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI

  15. Complications in exodontia--accidental dislodgment to adjacent anatomical areas.

    PubMed

    Grandini, S A; Barros, V M; Salata, L A; Rosa, A L; Soares, U N

    1993-01-01

    The authors report 4 cases of accidental dislodgement of teeth to adjacent anatomical areas during extraction. The causes and their prevention are discussed and solutions for the problem are suggested. PMID:8241759

  16. 6. Detail, vertical guides adjacent to east portal of Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail, vertical guides adjacent to east portal of Tunnel 28, view to southwest, 135mm lens with electronic flash fill. - Central Pacific Transcontinental Railroad, Tunnel No. 28, Milepost 134.75, Applegate, Placer County, CA

  17. VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO THE COLUMBIA SOUTHERN CANAL. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  18. Pump house adjacent to the superintendent's house at the west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump house adjacent to the superintendent's house at the west end of the complex near Highway 101. Detail of Holloshaft pump. View to the south. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  19. VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT TO BUILDING 199 (POLICE STATION) - U.S. Naval Base, Pearl Harbor, Post Office, Avenue A near Eleventh Avenue, Pearl City, Honolulu County, HI

  20. 24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO BRADLEY HAMMER; NOTE THIS IS THE SAME TOOL AS BEING FORGED ABOVE - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  1. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  2. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  3. 14. Charles Acey Cobb standing adjacent to the fish screen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Charles Acey Cobb standing adjacent to the fish screen he designed and installed in the Congdon Canal, facing southeast. Photo dates ca. late 1920's. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  4. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  5. Interior building details of Building A, dungeon cell adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building A, dungeon cell adjacent to northwest cell: granite and brick threshold, poured concrete floors, plastered finished walls, vaulted veiling; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  6. VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE STRUCTURE (DOWNSTREAM SIDE). LOOKING EAST/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  7. Probable maximum floods at the Yucca Mountain exploration shafts

    SciTech Connect

    Cardle, J.A.; Lim, S.T.

    1990-10-01

    This paper presents an analysis of flood flows in the Coyote Wash at the proposed high level nuclear waste repository site at Yucca Mountain, Nevada. Estimates of the hydrographs at various points in this wash resulting from the 100 year storm and from the probable maximum storms are developed and compared with other results. Flows in this particular wash are particularly critical due to the adjacent location of the proposed exploratory shafts. The resulting hydrographs at the site of the exploratory shaft pad are delineated.

  8. Approximating the largest eigenvalue of network adjacency matrices

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.

    2007-11-01

    The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.

  9. Minerals in the Foods Eaten by Mountain Gorillas (Gorilla beringei)

    PubMed Central

    Cancelliere, Emma C.; DeAngelis, Nicole; Nkurunungi, John Bosco; Raubenheimer, David; Rothman, Jessica M.

    2014-01-01

    Minerals are critical to an individual’s health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei) in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods. PMID:25372712

  10. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface