Science.gov

Sample records for adjacent ocean basins

  1. Gulf of California analogue for origin of Late Paleozoic ocean basins adjacent to western North America

    SciTech Connect

    Murchey, B.L. )

    1993-04-01

    Ocean crust accreted to the western margin of North America following the Late Devonian to earliest Missippian Antler orogeny is not older than Devonian. Therefore, ocean crust all along the margin of western North America may have been very young following the Antler event. This situation can be compared to the present-day margin of North America which lies adjacent to young ocean crust as a result of the subduction of the Farallon plate and arrival of the East Pacific spreading ridge. Syn- and post-Antler rifting that occurred along the North American margin may well be analogous to the formation of the Gulf of California by the propagation of the East Pacific spreading ridge. Black-arc rifting associated with the subduction of very old ocean crust seems a less likely mechanism for the early stages of ocean basin formation along the late Paleozoic margin of western North America because of the apparent absence of old ocean crust to the west of the arc terranes. The eastern Pacific basins were as long-lived as any truly oceanic basins and may have constituted, by the earliest Permian, a single wedge-shaped basin separated from the western Pacific by rifted fragments of North American arc-terranes. In the Permian, the rifted arcs were once again sites of active magmatism and the eastern Pacific basins began to close, from south (Golconda terrane) to north. Final closure of the northernmost eastern Pacific basin (Angayucham in Alaska) did not occur until the Jurassic.

  2. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  3. A modern analog for carbonate source-to-sink sedimentary systems: the Glorieuses archipelago and adjacent basin (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Jorry, S.; Jouet, G.; Prat, S.; Courgeon, S.; Le Roy, P.; Camoin, G.; Caline, B.

    2014-12-01

    This study presents the geomorphological and sedimentological analysis of a modern carbonate source-to-sink system located north of Madagascar (SW Indian Ocean). The sedimentary system is composed of an isolated carbonate platform sited on top of a seamount rising steeply from the seabed located at 3000 m water depth. The slope of the seamount is incised by canyons, and meandering channels occur above lobbed sedimentary bodies at the foot of the slope. The dataset consists of dredges, sediment piston cores, swath bathymetry and seismic (sparker and 2D high-resolution) lines collected from inner platform (less than 5 m deep) to the adjacent deep sedimentary basin. Particle size analysis and composition of carbonate grains are used to characterize the distribution and heterogeneity of sands accumulated on the archipelago. Main results show that composition of carbonate sediments is dominated by segments of Halimeda, large benthic foraminifera, coral debris, molluscs, echinoderms, bryozoans and sponges. According to the shape and the position of sandwaves and intertidal sandbars developed in the back-barrier reef, the present organization of these well-sorted fine-sand accumulations appears to be strongly influenced by flood tidal currents. Seismic lines acquired from semi-enclosed to open lagoon demonstrate that most of the sediment is exported and accumulated along the leeward margin of the platform, which is connected to a canyon network incising the outer slope. Following the concept of highstand shedding of carbonate platforms (Schlager et al., 1994), excess sediment is exported by plumes and gravity flows to the adjacent deep sea where it feeds a carbonate deep-sea fan. Combined observations from platform to basin allow to explain how the Glorieuses carbonate source to sink system has evolved under the influence of climate and of relative sea-level changes since the last interglacial.

  4. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins.

    PubMed

    Ahrens, Joseph B; Borda, Elizabeth; Barroso, Rômulo; Paiva, Paulo C; Campbell, Alexandra M; Wolf, Alexander; Nugues, Maggy M; Rouse, Greg W; Schulze, Anja

    2013-04-01

    Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long-lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of 'cosmopolitan' species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re-instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re-evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between H. carunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re-affirm the

  5. Correlations between the Lomonosov Ridge, Marvin Spur and adjacent basins of the Arctic Ocean based on seismic data

    NASA Astrophysics Data System (ADS)

    Langinen, A. E.; Lebedeva-Ivanova, N. N.; Gee, D. G.; Zamansky, Yu. Ya.

    2009-07-01

    Seismic profiles across the Lomonosov Ridge, Marvin Spur and adjacent basins, acquired near the North Pole by the drifting ice-station NP-28, provide a reflection image of the upper parts of the Ridge that is readily correlatable with those acquired by the Alfred Wegner Institute closer to the Siberian margin. A prominent flat-lying composite reflection package is seen in most parts of the Ridge at a few hundred meters below the sea bottom. Underlying reflections are variable in intensity and also in dip. The base of this reflection package is often accompanied by a sharp increase in P-velocity and defines a major angular discontinuity, referred to here as the Lomonosov Unconformity. The Arctic Coring Expedition (ACEX) cored the first c. 430 m section on the Lomonosov Ridge near the North Pole, in 2004 defining the deeper water character of the Neogene and the shallower water Paleogene sediments. These boreholes penetrated the composite reflection package towards the base of the hole and identified sediments (our Unit III) of late Paleocene and early Eocene age. Campanian beds at the very base of the hole were thought to be representative of the units below the Lomonosov Unconformity, but the P-velocity data suggest that this is unlikely. Correlation of the lithologies along the top of the Lomonosov Ridge and to the Marvin Spur indicates that the Marvin Spur is a sliver of continental crust closely related to, and rifted off the Ridge. This narrow (50 km wide) linear basement high can be followed into, beneath and across the Makarov Basin, supporting the interpretation that this Basin is partly resting on thinned continental crust. In the Makarov Basin, the Paleogene succession is much thicker than on the Ridge. Thus, the condensed, shallow water succession (with hiati) was deposited on the Ridge during rapid Eocene to Miocene subsidence of the Basin. In the Amundsen Basin, adjacent to the Lomonosov Ridge, the sedimentary successions thicken towards the Canadian

  6. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  7. Reconstructing vanished ocean basins

    NASA Astrophysics Data System (ADS)

    Müller, D.; Sdrolias, M.; Gaina, C.

    2006-05-01

    The large-scale patterns of mantle convection are mainly dependent on the history of subduction. Therefore some of the primary constraints for subduction models are given by of the location of subduction zones through time, and of the convergence vectors and age of subducted lithosphere. This requires the complete reconstruction of ocean floor through time, including the main ocean basins, back-arc basins, and now subducted ocean crust, and tying these kinematic models to geodynamic simulations. We reconstruct paleo- oceans by creating "synthetic plates", the locations and geometry of which is established on the basis of preserved ocean crust (magnetic lineations and fracture zones), geological data, paleogeography, and the rules of plate tectonics. We use a merged moving hotspot (Late Cretaceous-present) and palaeomagnetic/fixed hotspot (Early Cretaceous) reference frame, coupled with reconstructed spreading histories of the Pacific, Phoenix and Farallon plates and the plates involved in the Tethys oceanic domain. Based on this approach we have created a set of global oceanic paleo-isochrons and paleo-oceanic age grids. The grids also provide the first complete global set of paleo-basement depth maps, including now subducted ocean floor, for the last 130 million years based on a depth-age relationship. We show that the mid-Cretaceous sealevel highstand was primarily caused by two main factors: (1) the "supercontinent breakup effect", which resulted in the creation of the mid-Atlantic and Indian Ocean ridges at the expense of subducting old ocean floor in the Tethys and (2) by a changing age-area distribution of Pacific ocean floor through time, resulting from the subduction of the Pacific-Izanagi, Pacific-Phoenix and Pacific-Farallon ridges. These grids provide model constraints for subduction dynamics through time and represent a framework for backtracking biogeographic and sediment data from ocean drilling and for constraining the opening/closing of oceanic

  8. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  9. Mesozoic tectonics and paleogeography of the western U. S. and the adjacent Pacific basin

    SciTech Connect

    Dilek, Y. )

    1990-06-01

    Recent geological, geochemical, and geochronological information from Jurassic and older ophiolite complexes and arc rocks in northern California provides new interpretations for Mesozoic tectonics of the western US and the adjacent Pacific basin. This information is discussed in conjunction with the Mesozoic tectonics and paleogeography of the western United States and the Pacific Ocean.

  10. MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA FACES SOUTHEAST TOWARD NORTH SIDE OF PUMP HOUSE. INL NEGATIVE NO. 2690. Unknown Photographer, 6/1951. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1977-01-01

    The earth's original ocean basins are proposed to be mare-type basins produced 4 billion y.a. by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upward from the observed number of lunar basins for the greater capture cross-section and impact velocity of the earth indicates that at least 50% of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60% oceanic, 40% continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  12. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  13. Distribution of crustal types in Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Chian, D.; Jackson, H. R.; Hutchinson, D. R.; Shimeld, J. W.; Oakey, G. N.; Lebedeva-Ivanova, N.; Li, Q.; Saltus, R. W.; Mosher, D. C.

    2016-11-01

    Seismic velocities determined from 70 sonobuoys widely distributed in Canada Basin were used to discriminate crustal types. Velocities of oceanic layer 3 (6.7-7.1 km/s), transitional (7.2-7.6 km/s) and continental crust (5.5-6.6 km/s) were used to distinguish crustal types. Potential field data supports the distribution of oceanic crust as a polygon with maximum dimensions of 340 km (east-west) by 590 km (north-south) and identification of the ocean-continent boundary (OCB). Paired magnetic anomalies are associated only with crust that has oceanic velocities. Furthermore, the interpreted top of oceanic crust on seismic reflection profiles is more irregular and sometimes shallower than adjacent transitional crust. The northern segment of the narrow Canada Basin Gravity Low (CBGL), often interpreted as a spreading center, bisects this zone of oceanic crust and coincides with the location of a prominent valley in seismic reflection profiles. Data coverage near the southern segment of CBGL is sparse. Velocities typical of transitional crust are determined east of it. Extension in this region, close to the inferred pole of rotation, may have been amagmatic. Offshore Alaska is a wide zone of thinned continental crust up to 300 km across. Published longer offset refraction experiments in the Basin confirm the depth to Moho and the lack of oceanic layer 3 velocities. Further north, toward Alpha Ridge and along Northwind Ridge, transitional crust is interpreted to be underplated or intruded by magmatism related to the emplacement of the High Arctic Large Igneous Province (HALIP). Although a rotational plate tectonic model is consistent with the extent of the conjugate magnetic anomalies that occupy only a portion of Canada Basin, it does not explain the asymmetrical configuration of the oceanic crust in the deep water portion of Canada Basin, and the unequal distribution of transitional and continental crust around the basin.

  14. Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits

    NASA Astrophysics Data System (ADS)

    Wilson, Moyra E. J.; Chambers, John L. C.; Manning, Christina; Nas, Dharma S.

    2012-10-01

    The variability in low to moderate energy carbonate platform margins is poorly known from the geological record. Here, the spatial and temporal evolution of platform margin and adjacent basinal deposits is evaluated from the little known Tertiary Kedango Limestone that developed in a semi-enclosed marine embayment in SE Asia. The hypothesis here is that platform margin development will reflect regional and perhaps global influences, such as tectonics, eustasy or biotic change, rather than windward-leeward effects and storms that typically impact strongly upon open oceanic platforms. The development of the carbonate platform was determined through logging, petrography, facies evaluation, provenance and high-resolution dating studies. Eleven carbonate facies were identified from the 30 km long western margin of the > 600 m thick platform and its adjacent slope and basinal deposits. Larger benthic foraminifera and coralline algal packstones and wackestones dominated in shallow waters. During the Oligo-Miocene, coral patch reef-related floatstones, rudstones and less commonly boundstones were also present on the platform top. Perhaps surprisingly for a low energy platform there was considerable variation along the platform margin and much reworking of material into slope and basinal deposits during the Oligo-Miocene. Reworked material includes shallow water bioclasts, clasts from older siliciclastics, fresh feldspars, lithified slope and platform top carbonate clasts, some of the latter showing evidence for karstification. The western platform margin varied laterally over a few kilometres from a gently sloping unrimmed platform, to a probable bank top, with in places coral-fringed, bypass and erosional faulted escarpment margins. Eustasy may have influenced shallowing and deepening trends on the platform top, but apparently had little impact on mass wasting. Instead platform margin development was strongly impacted by tectonics (including active faulting), terrestrial

  15. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  16. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  17. Basin-Scale Ocean Prediction System

    DTIC Science & Technology

    2016-06-07

    global model with progressively increasing resolution, 1/16° in 2001 and ultimately 1/32° resolution. These systems will include data assimilation of...satellite altimetry, sea surface temperature and in-situ data . OBJECTIVES The development and validation of global and basin-scale ocean prediction...Altimetry Data Fusion Center (ADFC) is distributing processed data from these sensors to operational users in near real time. APPROACH The modeling effort

  18. Oceanic Crust in the Canada Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah; Chian, Deping; Jackson, Ruth; Lebedeva-Ivanova, Nina; Shimeld, John; Li, Qingmou; Mosher, David; Saltus, Richard; Oakey, Gordon

    2015-04-01

    Crustal velocities from 85 expendable sonobuoys in the Canada Basin of the Arctic Ocean acquired between 2007 and 2011 distinguish oceanic, transitional, and extended continental crust. Crustal type was based on objective assignments of diagnostic velocities - oceanic from the presence of layer 3 velocities (6.7-7.2 km/s); transitional from the presence of a lower-most, high velocity layer (7.2-7.7 km/s), and continental for velocities typical of continental crust (≤6.6 km/s). Combined interpretations of sonobuoys, coincident multichannel seismic reflection profiles and existing maps of potential field (gravity and magnetic) are used to refine the distribution of oceanic crust. Oceanic crust forms a polygon approximately 320-350 km wide (east-west) by ~500 km (north-south). The northern segment of the Canada Basin Gravity Low (CBGL) bisects this zone of oceanic crust, as would be expected from the axis of the spreading center. The multichannel profiles also image a prominent bathymetric valley along this segment of the CBGL, similar to axial valleys found on slow and ultra-slow spreading ridges. Paired magnetic anomalies are associated only with crust that has typical oceanic velocities and are interpreted to represent possibly Mesozoic marine magnetic anomalies M0r - M4 (?), for a duration of opening of 8 million years, and a half spreading rate of ~10 mm/a. The southern segment of the CBGL, where it trends toward the Mackenzie Delta/fan, is associated with transitional velocities that are interpreted to represent serpentinized peridotite (mantle). As a result of being close to the inferred pole of rotation, this southern area may have had a spreading rate too low to support magmatism, producing amagmatic transitional crust. Further north, near Alpha Ridge and along Northwind Ridge, transitional crust is interpreted to be underplated or intruded material related to the emplacement of the High Arctic Large Igneous Province. Seismic reflection profiles across the

  19. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  20. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets

  1. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge

    NASA Astrophysics Data System (ADS)

    Evangelatos, John; Funck, Thomas; Mosher, David C.

    2017-01-01

    This study examines the velocity structure of Makarov Basin and the adjacent Alpha Ridge to determine the tectonic origins of these features and link them to the larger Amerasia Basin. Seismic data from sonobuoys distributed along a 650 km-long line extending from Alpha Ridge and across Makarov Basin to the Lomonosov Ridge were analyzed for this purpose. Forward modelling of traveltimes, supported by coincident multi-channel seismic reflection and shipborne gravity data, were used to determine the P-wave velocity structure along the line. The sedimentary cover averages 0.5 km-thick on Alpha Ridge and 1.9 km-thick in Makarov Basin, but reaches up to 5 km-thick at the base of Lomonosov Ridge. Velocities in the sedimentary section range from 1.6 to 4.3 km s- 1. As suggested by relatively high velocities, interbedded volcaniclastic or volcanic rock may occur in the deep sedimentary section. The shallow basement of Alpha Ridge (3.3 to 3.6 km s- 1) is characterized by semi-continuous high amplitude reflections and is interpreted as volcanic rock possibly intercalated with sedimentary rock. Velocities do not vary significantly in the upper and mid-crustal layers between Alpha Ridge and Makarov Basin. Total crustal thickness decreases from 27 km beneath Alpha Ridge to 5 km-thick in Makarov Basin then thickens to > 20 km over a short distance as part of Lomonosov Ridge. The crustal structure of Alpha Ridge is consistent with previous studies suggesting that the Alpha-Mendeleev ridge complex is part of a large igneous province (LIP) with thick igneous crust. The lack of change in crustal velocities between Alpha Ridge and Makarov Basin suggests that the basin, at least partly, either formed during or was influenced by LIP-related magmatism. The rapid transition of crustal thicknesses from Makarov Basin to Lomonosov Ridge supports the interpretation that this section of the ridge is a transform margin.

  2. Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Urlaub, Morelia; Schmidt-Aursch, Mechita C.; Jokat, Wilfried; Kaul, Norbert

    2009-12-01

    The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.

  3. Possible Factors affecting the Thermal Contrast between Middle-Latitude Asian Continent and Adjacent Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Huaqiong; Wu, Tongwen; Dong, Wenjie

    2015-04-01

    A middle-latitude Land-Sea thermal contrast Index was used in this study which has close connection to the East Asian summer precipitation. The index has two parts which are land thermal index defined as JJA 500-hPa geopotential height anomalies at a land area (75°-90° E, 40° -55°N ) and ocean thermal index defined as that at an oceanic area (140° -150°E, 35° -42.5°N). The impact of the surface heat flux and atmospheric diabatic heating over the land and the ocean on the index was studied. The results show that the surface heat flux over Eurasian inner land has little influence to the land thermal index, while the variation of the surface latent heat flux and long-wave radiation over the Pacific adjacent to Japan has highly correlation with the ocean thermal index. The changes with height of the atmospheric diabatic heating rates over the Eurasian inner land and the Pacific adjacent to Japan have different features. The variations of the middle troposphere atmospheric long-wave and short-wave radiation heating have significantly influences on land thermal index, and that of the low troposphere atmospheric long-wave radiation, short-wave radiation and deep convective heating also have impact on the yearly variation of the land thermal index. For the ocean thermal index, the variations of the surface layer atmospheric vertical diffuse heating, large-scale latent heating and long-wave radiation heating are more important, low and middle troposphere atmospheric large-scale latent heating and shallow convective heating also have impact on the yearly variation of the ocean thermal index. And then the ocean thermal index has closely connection with the low troposphere atmospheric temperature, while the land thermal index has closely connection with the middle troposphere atmospheric temperature. The Effect of the preceding global SST anomalies on the index also was analyzed. The relations of land thermal index and ocean thermal index and the global SST anomalies

  4. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and

  5. Selected ground-water information for the Pasco basin and adjacent areas, Washington, 1986-1989

    USGS Publications Warehouse

    Drost, B.W.; Schurr, K.M.; Lum, W. E.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the United States Department of Energy, conducted a study of the Pasco basin and adjacent areas, Washington, in support of the Basalt Waste Isolation Project at the Hanford site, Washington. The purpose of the study was to develop a data set that would help define the groundwater-flow system of the Pasco Basin. This report contains the basic data, without interpretation, that were collected from the start of the project in February 1986 through January 1989. Information presented is from the U.S. Bureau of Reclamation, State of Washington Department of Ecology , US Army Corps of Engineers, Kennewick Irrigation District, and the Survey, and consists of well location and construction data, records of water levels in the wells, and aquifer designations for each well. The aquifer designation represents the geohydrologic unit to which the well is reported to be open. (USGS)

  6. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    SciTech Connect

    Lincoln, J.M. )

    1990-05-01

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea level fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.

  7. A review of sediment quantity issues: examples from the River Ebro and adjacent basins (Northeastern Spain).

    PubMed

    Batalla, Ramon J; Vericat, Damià

    2011-04-01

    Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers.

  8. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    USGS Publications Warehouse

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  9. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  10. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean.

    PubMed

    Glasser, Neil F; Jansson, Krister N; Duller, Geoffrey A T; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-12

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface "hosing" to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  11. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  12. A comparison of the South China Sea and Canada Basin: two small marginal ocean basins with hyper-extended margins and central zones of sea-floor spreading.

    NASA Astrophysics Data System (ADS)

    Li, L.

    2015-12-01

    Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  13. Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng; Kimura, Nobuaki; Hsu, Ming-Hsi

    2010-09-01

    A three-dimensional hydrodynamic model was created to study the Danshuei River estuarine system and adjacent coastal ocean in Taiwan. The model was verified using measurements of the time-series water surface elevation, tidal current, and salinity from 1999. We conclude that our model is consistent with these observations. Our particle-tracking model was also used to explore the transport of particles released from the Hsin-Hai Bridge, an area that is heavily polluted. The results suggest that it takes a much longer time for the estuary to be flushed out under low freshwater discharge conditions than with high freshwater discharge. We conclude that the northeast and southwest winds minimally impact particle dispersion in the estuary. The particles fail to settle to the bottom in the absence of density-induced circulation. Our model was also used to simulate the ocean outfall at the Bali. Our experimental results suggest that the tidal current dominates the particle trajectories and influences the transport properties in the absence of a wind stress condition. The particles tend to move northeast or southwest along the coast when northeast or southwest winds prevail. Our data suggest that wind-driven currents and tidal currents play important roles in water movement as linked with ocean outfall in the context of the Danshuei River.

  14. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  15. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    -chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.

  16. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank. Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank. Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine. Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  17. Melting barriers to faunal exchange across ocean basins.

    PubMed

    McKeon, C Seabird; Weber, Michele X; Alter, S Elizabeth; Seavy, Nathaniel E; Crandall, Eric D; Barshis, Daniel J; Fechter-Leggett, Ethan D; Oleson, Kirsten L L

    2016-02-01

    Accelerated loss of sea ice in the Arctic is opening routes connecting the Atlantic and Pacific Oceans for longer periods each year. These changes may increase the ease and frequency with which marine birds and mammals move between the Pacific and Atlantic Ocean basins. Indeed, recent observations of birds and mammals suggest these movements have intensified in recent decades. Reconnection of the Pacific and Atlantic Ocean basins will present both challenges to marine ecosystem conservation and an unprecedented opportunity to examine the ecological and evolutionary consequences of interoceanic faunal exchange in real time. To understand these changes and implement effective conservation of marine ecosystems, we need to further develop modeling efforts to predict the rate of dispersal and consequences of faunal exchange. These predictions can be tested by closely monitoring wildlife dispersal through the Arctic Ocean and using modern methods to explore the ecological and evolutionary consequences of these movements.

  18. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect

    L. D. Habel

    2008-03-18

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  19. Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Lehman, Scott J.; Fifield, L. Keith; De Deckker, Patrick

    2007-10-01

    As the climate warmed at the end of the last glacial period, a rapid reversal in temperature, the Younger Dryas (YD) event, briefly returned much of the North Atlantic region to near full-glacial conditions. The event was associated with climate reversals in many other areas of the Northern Hemisphere and also with warming over and near Antarctica. However, the expression of the YD in the mid- to low latitudes of the Southern Hemisphere (and the southwest Pacific region in particular) is much more controversial. Here we show that the Waiho Loop advance of the Franz Josef Glacier in New Zealand was not a YD event, as previously thought, and that the adjacent ocean warmed throughout the YD.

  20. Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf

    NASA Astrophysics Data System (ADS)

    Weigelt, Estella; Jokat, Wilfried; Franke, Dieter

    2014-07-01

    A new seismostratigraphic model has been established within the Arctic Ocean adjacent to the East Siberian Shelf on the basis of multichannel seismic reflection data acquired along a transect at 81°N. Ages for the sedimentary units were estimated via links to seismic lines and drill site data of the US Chukchi Shelf, the Lomonosov Ridge, and the adjacent Laptev Shelf. Two distinct seismic units were mapped throughout the area and are the constraints for dating the remaining strata. The lower marker unit, a pronounced high-amplitude reflector sequence (HARS), is the most striking stratigraphic feature over large parts of the Arctic Ocean. It indicates a strong and widespread change in deposition conditions. Probably, it developed during Oligocene times when a reorientation of Arctic Plates took place, accompanied by the gradual opening of the Fram Strait, and a widespread regression of sea level. The top of the HARS likely marks the end of Oligocene/early Miocene (23 Ma). An age estimate for the base of the sequence is less clear but likely corresponds to base of Eocene (˜56 Ma). The second marked unit detected on the seismic lines parallels the seafloor with a thickness of about 200 ms two-way travel time (160 m). Its base is marked by a change from a partly transparent sequence with weak amplitude reflections below to a set of continuous high-amplitude reflectors above. This interface likely marks the transition to large-scale glaciation of the northern hemisphere and therefore is ascribed to the top Miocene (5.3 Ma).

  1. Initial opening of the Eurasian Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Berglar, Kai; Franke, Dieter; Lutz, Rüdiger; Schreckenberger, Bernd; Damm, Volkmar

    2016-10-01

    Analysis of the transition from the NE Yermak Plateau into the oceanic Eurasian Basin sheds light on the Paleocene formation of this Arctic basin. Newly acquired multichannel seismic data with a 3600 m long streamer shot during ice-free conditions enables the interpretation of crustal structures. Evidence is provided that no major compressional deformation affected the NE Yermak Plateau. The seismic data reveal that the margin is around 80 km wide and consists of rotated fault blocks, major listric normal faults, and half-grabens filled with syn-rift sediments. Taking into account published magnetic and gravimetric data, this setting is interpreted as a rifted continental margin, implying that the NE Yermak Plateau is of continental origin. The transition from the Yermak Plateau to the oceanic Eurasian Basin might be located at a prominent basement high, probably formed by exhumed mantle. In contrast to the Yermak Plateau margin, the North Barents Sea continental margin shows a steep continental slope with a relatively abrupt transition to the oceanic domain. Based on one composite seismic line, it is speculated that the initial opening direction of the Eurasian Basin in the Arctic Ocean was highly oblique to the present day seafloor spreading direction.

  2. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matthew J.; Le Friant, Anne; Ishizuka, Osamu; Stroncik, Nicole; Adachi, Tatsuya; Aljahdali, Mohammed; Boudon, Georges; Breitkreuz, Christoph; Fraass, Andrew; Fujinawa, Akihiko; Hatfield, Robert; Jutzeler, Martin; Kataoka, Kyoko; Lafuerza, Sara; Maeno, Fukashi; Martinez-Colon, Michael; McCanta, Molly; Morgan, Sally; Palmer, Martin R.; Saito, Takeshi; Slagle, Angela; Stinton, Adam J.; Subramanyam, K. S. V.; Tamura, Yoshihiko; Talling, Peter J.; Villemant, Benoit; Wall-Palmer, Deborah; Wang, Fei

    2012-08-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to <0.07 W/m2 at distances >15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.

  3. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, M.; Hornbach, M. J.; Le Friant, A.; Ishizuka, O.; Stroncik, N.

    2012-12-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  4. Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin

    NASA Astrophysics Data System (ADS)

    Manga, Michael; Hornbach, Matt; Le Friant, Anne; Ishizuka, Osamu

    2014-05-01

    Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m2 on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to < 0.07 W/m2 at distances > 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m2, a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present day volcanism is confined to the region with the highest heat flow.

  5. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the

  6. Morphologic Variability of two Adjacent Mass-Transport Deposits: Twin Slides, Gela Basin (Sicily Channel).

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F.

    2006-12-01

    Integrating geophysical, sedimentological, structural and paleontological data, we reconstruct the age, size and internal geometry of two adjacent and recent mass-transport deposits (Twin Slides) exposed on the seafloor of Gela Basin (Sicily Channel). Twin Slides are coeval (late-Holocene), and were likely triggered by an earthquake. Twin Slides originated from the mobilization of Pleistocene slope units, are only 6 km apart from each other, have their headscarps in similar water depth (230 m), and have a comparable run out distance (ca. 10 km). Both slides suggest a multistage evolution, but differ in internal organization and morphological expression. The northern slide shows a deposit characterised by pressure ridges in the toe region suggesting a component of plastic deformation, while the southern slide is characterised by large blocks and a reduced thickness of displaced masses. We ascribe the difference in deformation style and resulting morphology to the stratigraphic architecture of the Pleistocene progradational units involved in failure. In the case of the blocky southern slide the units affected by failure are slightly older (Eemian or pre-Emian) and more consolidated; furthermore, in the area where the headscarp is located these units appear affected by shallow faulting likely resulting in the definition of large blocks. The northern slide, instead, affects progradational units of the Last Glacial Maximum in an area where these units are more than 100 m thick and, possibly, underconsolidated.

  7. Basin Acoustics in the Arctic Ocean.

    DTIC Science & Technology

    1988-01-01

    covered in a companion paper [ Hielscher , 1985). within the axis of the SOFAR channel which leads to dispersive propagation [Kutschale, 1966]. The ice...executing the experiment are described itoring enable scientists in the field to track the in a companion paper [ Hielscher , 1985]. interesting feature...multichannel data aquisition system for . 1964 seismic and acoustic applications, Proc. of Oceans’ 81, pp. 43-47, IEEE Press, 1981 *- Hielscher , A. and

  8. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Calegari, Salomão Silva; Neves, Mirna Aparecida; Guadagnin, Felipe; França, George Sand; Vincentelli, Maria Gabriela Castillo

    2016-08-01

    The structural framework and tectonic evolution of the sedimentary basins along the eastern margin of the South American continent are closely associated with the tectonic framework and crustal heterogeneities inherited from the Precambrian basement. However, the role of NW-SE and NNW-SSE structures observed at the outcropping basement in Southeastern Brazil and its impact over the development of those basins have not been closely investigated. In the continental region adjacent to the Campos Basin, we described a geological feature with NNW-SSE orientation, named in this paper as the Alegre Fracture Zone (AFZ), which is observed in the onshore basement and can be projected to the offshore basin. The main goal of this work was to study this structural lineament and its influence on the tectonic evolution of the central portion of the Campos Basin and adjacent mainland. The onshore area was investigated through remote sensing data joint with field observations, and the offshore area was studied through the interpretation of 2-D seismic data calibrated by geophysical well logs. We concluded that the AFZ occurs in both onshore and offshore as a brittle deformation zone formed by multiple sets of fractures that originated in the Cambrian and were reactivated mainly as normal faults during the rift phase and in the Cenozoic. In the Campos Basin, the AFZ delimitates the western side of the Corvina-Parati Low, composing a complex fault system with the NE-SW faults and the NW-SE transfer faults.

  9. Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean

    USGS Publications Warehouse

    Ishman, S.E.; Foley, K.M.

    1996-01-01

    A total of 38 box cores were collected from the Amerasian Basin, Arctic Ocean during the U.S. Geological Survey 1992 (PI92-AR) and 1993 (PI93-AR) Arctic Cruises aboard the U.S. Coast Guard Icebreaker Polar Star. In addition, the cruises collected geophysical data, piston cores and hydrographic data to address the geologic and oceanographic history of the western Arctic Ocean. This paper reports the results of the quantitative analyses of benthic foraminifer distribution data of the total (live + dead) assemblages derived from 22 box core-top samples. The results show that a distinct depth distribution of three dominant benthic foraminifer assemblages, the Textularia spp. - Spiroplectammina biformis, Cassidulina teretis and Oridorsalis tener - Eponides tumidulus Biofacies are strongly controlled by the dominant water masses within the Canada Basin: the Arctic Surface Water, Arctic Intermediate Water and Canada Basin Deep Water. The faunal distributions and their oceanographic associations in the Canada Basin are consistent with observations of benthic foraminifer distributions from other regions within the Arctic Ocean.

  10. Probable rift origin of Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Tailleur, Irvin L.

    1973-01-01

    Formation of the Canada basin by post-Triassic rifting seems the most workable and logical hypothesis on the basis of available information. Speculated counterclockwise rotation of the Alaska-Chukchi continental edge best rationalizes the complex geology of northern Alaska, whereas the assumption that a single continental block was present before the Jurassic makes the best palinspastic fit for Arctic America. The Arctic Ocean is the focus of present-day spreading and probably was the focus of earlier stages of spreading in which spread of the Canada basin would have been an initial stage. Spread of the Canada basin is probable if the Atlantic formed by sea-floor spreading, because analogies between the Arctic and Atlantic edges indicate a common origin for the ocean basins. Late Cretaceous and younger deflections of the Cordillera in the Arctic and diabasic emplacements in the northern Arctic Islands may reflect later stages of spreading. Pre-Mesozoic plate tectonism may be represented by the widespread Proterozoic diabasic emplacements in the Canadian Arctic and by the Franklinian-lnnuitian tract, where the volcanogenic rocks and deformation resulted not from a classical eugeosyncline-miogeosyncline couple, but from the junction of a mid-Paleozoic continental edge and another plate on closure of a pre-Arctic Ocean.

  11. Probable rift origin of the Canada basin, Arctic Ocean

    USGS Publications Warehouse

    Tailleur, Irvin L.

    1973-01-01

    Formation of the Canada basin by post-Triassic rifting seems the most workable and logical hypothesis with information available. Speculated counterclockwise rotation of the Alaska-Chukchi continental edge best rationalizes the complex geology of northern Alaska, whereas a single continental block before the Jurassic makes the best palinspastic fit for Arctic America. The Arctic Ocean is the focus of present-day spreading and probably was the focus of earlier stages of spreading in which spread of the Canada basin would be an initial stage. If the Atlantic formed by seafloor spreading, spread of the Canada basin is probable because analogies between the Arctic and Atlantic edges indicate a common origin for the ocean basins. Late Cretaceous and younger deflections of the Cordillera in the Arctic and diabasic emplacements in the northern Arctic Islands may reflect later stages of spreading. Pre-Mesozoic plate tectonism may be represented by the widespread Proterozoic diabasic emplacements in the Canadian Arctic and by the Franklinian-Innuitian tract where the volcanogenic rocks and deformation resulted not from a classical eugeosyncline-miogeosyncline couple but from the junction of a mid-Paleozoic continental edge and another plate on closure of a pre-Arctic Ocean.

  12. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  13. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  14. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Holtz, T. R.; Stein, R.; Spielhagen, R.; Fütterer, D.; Wollenburg, J.

    1995-04-01

    We reconstructed late Quaternary deep (3000-4100 m) and intermediate depth (1000-2500 m) paleoceanographic history of the Eurasian Basin, Arctic Ocean from ostracode assemblages in cores from the Lomonosov Ridge, Gakkel Ridge, Yermak Plateau, Morris Jesup Rise, and Amundsen and Makarov Basins obtained during the 1991 Polarstern cruise. Modern assemblages on ridges and plateaus between 1000 and 1500 m are characterized by abundant, relatively species-rich benthic ostracode assemblages, in part, reflecting the influence of high organic productivity and inflowing Atlantic water. In contrast, deep Arctic Eurasian basin assemblages have low abundance and low diversity and are dominated by Krithe and Cytheropteron reflecting faunal exchange with the Greenland Sea via the Fram Strait. Major faunal changes occurred in the Arctic during the last glacial/interglacial transition and the Holocene. Low-abundance, low-diversity assemblages from the Lomonosov and Gakkel Ridges in the Eurasian Basin from the last glacial period have modern analogs in cold, low-salinity, low-nutrient Greenland Sea deep water; glacial assemblages from the deep Nansen and Amundsen Basins have modern analogs in the deep Canada Basin. During Termination 1 at intermediate depths, diversity and abundance increased coincident with increased biogenic sediment, reflecting increased organic productivity, reduced sea-ice, and enhanced inflowing North Atlantic water. During deglaciation deep Nansen Basin assemblages were similar to those living today in the deep Greenland Sea, perhaps reflecting deepwater exchange via the Fram Strait. In the central Arctic, early Holocene faunas indicate weaker North Atlantic water inflow at middepths immediately following Termination 1, about 8500-7000 year B.P., followed by a period of strong Canada Basin water overflow across the Lomonosov Ridge into the Morris Jesup Rise area and central Arctic Ocean. Modern perennial sea-ice cover evolved over the last 4000-5000 years

  15. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans

    NASA Astrophysics Data System (ADS)

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder

    2015-05-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  16. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans.

    PubMed

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  17. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans

    PubMed Central

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Sobrino, José A.; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download. PMID:26029379

  18. Methods for delineating flood-prone areas in the Great Basin of Nevada and adjacent states

    USGS Publications Warehouse

    Burkham, D.E.

    1988-01-01

    The Great Basin is a region of about 210,000 square miles having no surface drainage to the ocean; it includes most of Nevada and parts of Utah, California, Oregon, Idaho, and Wyoming. The area is characterized by many parallel mountain ranges and valleys trending north-south. Stream channels usually are well defined and steep within the mountains, but on reaching the alluvial fan at the canyon mouth, they may diverge into numerous distributary channels, be discontinuous near the apex of the fan, or be deeply entrenched in the alluvial deposits. Larger rivers normally have well-defined channels to or across the valley floors, but all terminate at lakes or playas. Major floods occur in most parts of the Great Basin and result from snowmelt, frontal-storm rainfall, and localized convective rainfall. Snowmelt floods typically occur during April-June. Floods resulting from frontal rain and frontal rain on snow generally occur during November-March. Floods resulting from convective-type rainfall during localized thunderstorms occur most commonly during the summer months. Methods for delineating flood-prone areas are grouped into five general categories: Detailed, historical, analytical, physiographic, and reconnaissance. The detailed and historical methods are comprehensive methods; the analytical and physiographic are intermediate; and the reconnaissance method is only approximate. Other than the reconnaissance method, each method requires determination of a T-year discharge (the peak rate of flow during a flood with long-term average recurrence interval of T years) and T-year profile and the development of a flood-boundary map. The procedure is different, however, for each method. Appraisal of the applicability of each method included consideration of its technical soundness, limitations and uncertainties, ease of use, and costs in time and money. Of the five methods, the detailed method is probably the most accurate, though most expensive. It is applicable to

  19. Evidence for oceanic crust in the Herodotus Basin

    NASA Astrophysics Data System (ADS)

    Granot, Roi

    2016-04-01

    Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (10 to 15 km) and the lack of accurate magnetic anomaly data. I have collected 7,000 km of marine magnetic profiles (2012-2014) across the Herodotus and Levant Basins, Eastern Mediterranean, to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic anomaly field in a longitudinal gradiometer mode, and a fully oriented vector magnetometer. The total field data from the Herodotus Basin reveal a newly detected short sequence of long-wavelength NE-SW lineated anomalies that straddle the entire basin suggesting a deep two-dimensional magnetic source layer. The three components of the magnetic vector data indicate that an abrupt transition from a 2D to 3D magnetic structure occurs east of the Herodotus Basin, along where a prominent NE-SW gravity feature is found. Altogether, these new findings confirm that the Herodotus Basin preserves remnants of oceanic crust that formed along the Neotethyan mid-ocean ridge system. The continuous northward and counterclockwise motion of the African Plate during the Paleozoic and Mesozoic allow predicting the evolution of remanent magnetization directions, which in-turn dictate that shape of the anomalies. The shape of the Herodotus anomalies best fit Late Carboniferous to Early Permian (300±20 Myr old) magnetization directions. Finally, I will discuss the implications of these results on the tectonic architecture of the region as well as on various geodynamic processes.

  20. Late Jurassic-Early Cretaceous evolution of the eastern Indian Ocean adjacent to northwest Australia

    NASA Astrophysics Data System (ADS)

    Fullerton, Lawrence G.; Sager, William W.; Handschumacher, David W.

    1989-03-01

    Over 9700 km of new aeromagnetic data were acquired off the northwest coast of Australia and combined with existing magnetic data to map magnetic isochrons in the eastern Indian Ocean. The isochrons were used to constrain a tectonic model of the evolution of the seafloor in the Argo, Cuvier, and Gascoyne abyssal plains. A complete set of anomalies, from M26 through M16, was found in the Argo Abyssal Plain, trending generally N70°E. Spreading commenced in the center of the basin at or prior to M26 and propagated outward until at least M24 time. Anomalies M10-MO, recording the separation of Australia and India, were found in the Cuvier and Gascoyne abyssal plains, with a trend of about N30°E. A significant crustal age discontinuity occurs in the vicinity of the Joey Rise where the two lineation sets converge. Because there appears to be no overlap of isochron ages in the two groups, it is not necessary to postulate that a triple junction existed off northwest Australia as has been previously suggested. At M4-M5 time a 10° clockwise change in spreading direction occurred on the Cuvier-Gascoyne spreading system. This event triggered ridge jumps that transferred two pieces of the Indian plate to the Australian plate. Overlapping spreading on the forming and dying ridges, curved fracture zones and lineations, as well as fanned lineation trends, suggest that the ridge jumps occurred by ridge propagation and that the transferred lithospheric blocks behaved as microplates for a brief interval of approximately 1-2 m.y.

  1. Radiolarian paleo-oceanographic studies of Humboldt basin and adjacent areas

    SciTech Connect

    Nelson, C.O.

    1986-04-01

    Miocene-Pliocene samples from land-based sections along an east-west transect of the Humboldt basin were analyzed for microfossil content. The microfossil populations reflect the gradual infilling and shoaling of the basin. Radiolarian fauna indicate that initial deposition occurred in a basin open to deep marine waters. The shelfal characteristics of the radiolarian populations increase through time in a west-east direction. Fauna appear to be sourced from cooler waters of the North Pacific and deep Central Pacific.

  2. Controls on bacterial gas accumulations in thick Tertiary coal beds and adjacent channel sandstones, Powder River basin, Wyoming and Montana

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1991-03-01

    Coal beds, as much as 250 ft thick, and adjacent sandstones in the Paleocene Tongue River Member of the Fort Union Formation are reservoirs for coal-derived natural gas in the Powder River basin. The discontinuous coal beds were deposited in raised, ombrotrophic peat bogs about 3 mi{sup 2} in size, adjoining networks of fluvial channels infilled by sand. Coal-bed thickness was controlled by basin subsidence and depositional environments. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub o} values of 0.4 to 0.5%). Although the coals are relatively low rank, they display fracture systems. Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amount of Co{sub 2} ({lt}10%). The methane is isotopically light and enriched in deuterium. The gases are interpreted to be generated by bacterial processes and the fermentation pathway, prior to the main phase of thermogenic methane generation by devolatilization. Large amounts of bicarbonate water generated during early stages of coalification will have to be removed from the fracture porosity in the coal beds before desorption and commercial gas production can take place. Desorbed amounts of methane-rich, bacterial gas in the Powder River basin are relatively low ({lt}60 Scf/ton) compared to amounts of thermogenic coal-bed gases (hundreds of Scf/ton) from other Rocky Mountain basins. However, the total coal-bed gas resource in both the coal beds and the adjacent sandstones is considered to be large (as much as 40 Tcf) because of the vast coal resources (as much as 1.3 trillion tons).

  3. Arctic Ocean basin liquid freshwater storage trend 1992-2012

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Karcher, M.; Kauker, F.; Schauer, U.; Toole, J. M.; Krishfield, R. A.; Pisarev, S.; Kikuchi, T.; Su, J.

    2014-02-01

    Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km3 yr-1. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.

  4. Wrench faulting in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Jackson, H. R.; Shimeld, J.; Houseknecht, D. W.; Chian, D.; Li, Q.; Saltus, R. W.; Oakey, G. N.

    2015-12-01

    Synthesis of seismic velocity, potential field, and geologic data from within the Canada Basin of the Arctic Ocean and its surrounding margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This fabric is defined by a diverse set of observations, including (1) a magnetic lineament extending from offshore Prince Patrick Island to the bend in the Canada Basin Gravity Low that separates higher magnetic amplitudes to the northwest from a region of more subdued anomalies to the southeast; (2) the orientation of the 600-km long Northwind Escarpment along the edge of the Canada Basin; (3) a large, linear, positive magnetic anomaly that parallels Northwind Escarpment; (4) negative flower structures along the base of the Northwind Escarpment identified in seismic reflection profiles; (5) the edges of a linear, 150-km-long by 20-km-wide by 2000-m deep, basin in the Chukchi Plateau; (6) the sub-parallel ridges of Sever Spur along the Canadian margin north of Prince Patrick Island; (7) an oblong gravity low interpreted to indicate thick sediments beneath an inferred rift basin at 78oN in ~3600 m water depth; (8) the offshore extensions of the Canning sinistral and Richardson dextral fault zones; (9) the offshore extension of the D3 magnetic terrain of Saltus et al. (2011); and (10) the association of dredged rocks of the Chukchi Borderland with the Pearya terrane ~2000 km northeast of its present location (Brumley et al., 2015). Ongoing deformation of the Beaufort margin by impingement of the Brooks Range tectonic front is recorded by modern seismicity along the Canning and Richardson fault zones, which imply that deformation is accommodated by slip along the northeast-trending fabric. Together, these features are interpreted to indicate long-lived northeast-southwest oriented tectonic fabric in the development of the Canada Basin from initial rifting to modern deformation of the Beaufort margin

  5. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  6. Magnetic Anomalies in the Enderby Basin, the Southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Sato, T.; Hanyu, T.

    2013-12-01

    Magnetic anomalies in the Southern indian Ocean are vital to understanding initial breakup process of Gondwana. However, seafloor age estimated from magnetic anomalies still remain less well-defined because of the sparse observations in this area. To understand the seafloor spreading history related to the initial breakup process of Gondwana, vector magnetic anomaly data as well as total intensity magnetic anomaly data obtained by the R/V Hakuho-maru and the icebreaker Shirase in the Enderby Basin, Southern Indian Ocean, are used. The strikes of magnetic structures are deduced from the vector magnetic anomalies. Magnetic anomaly signals, most likely indicating Mesozoic magnetic anomaly sequence, are obtained almost parallel to the west of WNW-ESE trending lineaments just to the south of Conrad Rise inferred from satellite gravity anomalies. Most of the strikes of magnetic structures indicate NNE-SSW trends, and are almost perpendicular to the WNW-ESE trending lineaments. Mesozoic sequence magnetic anomalies with mostly WNW-ESE strikes are also observed along the NNE-SSW trending lineaments between the south of the Conrad Rise and Gunnerus Ridge. Magnetic anomalies originated from Cretaceous normal polarity superchron are found in these profiles, although magnetic anomaly C34 has been identified just to the north of the Conrad Rise. However Mesozoic sequence magnetic anomalies are only observed in the west side of the WNW-ESE trending lineaments just to the south of Conrad Rise and not detected to the east of Cretaceous normal superchron signals. These results show that counter part of Mesozoic sequence magnetic anomalies in the south of Conrad Rise would be found in the East Enderby Basin, off East Antarctica. NNE-SSW trending magnetic structures, which are similar to those obtained just to the south of Conrad Rise, are found off East Antarctica in the East Enderby Basin. However, some of the strikes show almost E-W orientations. These suggest complicated ridge

  7. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  8. Trace oxyanions and their behaviour in the rivers Porong and Solo, the Java Sea and the adjacent Indian Ocean

    NASA Astrophysics Data System (ADS)

    Van der Sloot, H. A.; Hoede, D.; Wijkstra, J.

    During the Snellius-II Expedition (theme 5) dissolved and particulate concentrations of As(III), As(V), Sb(III), Sb(V), Se(IV), Mo, U, V, Au and W were measured in the Kali Porong and Bengawan Solo, Strait Madura, the Java Sea and the adjacent Indian Ocean. The estuarine mixing behaviour of Mo, U and V was found to be conservative. Arsenic behaved in a conservative manner during the wet period, while removal was observed in the high salinity region of the Solo and Porong during the dry season. The exceptionally high vanadium concentration in the rivers Porong and Solo, which is more than 10 times higher than that in the world rivers, is connected with leaching of volcanic rock; dissolved concentrations of Au, W and Mo are also higher. Apart from V and Au, the dissolved concentrations in the Java Sea and in the Indian Ocean compare well with average ocean values.

  9. Weekly cycle of lightning and associated patterns of rainfall, cloud, and aerosols over Korea and adjacent oceans during boreal summer

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, K.

    2011-12-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over land area. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in coastal area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  10. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  11. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  12. New view on tectonic structure of Siberian Sector of the Amerasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Vinokurov, Yu. I.

    2014-05-01

    In 2012, JSC Sevmorgeo with assistance of several research institutions of Federal Agency of Mineral Resources (Rosnedra) and Ministry of Defense carried out a unique set of offshore seismic and geological studies in the Mendeleev Rise area and adjacent areas of the Amerasia Basin. Two specially re-equipped icebreakers ("Kapitan Dranitsin" and "Dixon") were used in this campaign. The main results of the expedition were 5315 km of multichannel seismic profiles both with long and short streamers (4500 m and 600 m, respectively), 480 km long refraction profile crossing Mendeleev Rise. Seismic acquisition with short streamers was accompanied by deployment of sonobuoys. Geological studies included deep-water drilling and sea-bottom sampling by dredge, gravity corer, grab and by specially equipped research submarine. The newly acquired geological and geophysical data allowed for the following conclusions: 1. The Mendeleev Rise, the adjacent Lomonosov Ridge and Chukchi Plateau are the direct continuations of the East Siberian Sea tectonic structures. It is confirmed by direct tracking of some morphostructures, faults, gravity and magnetic anomalies from the shelf to deep-water highs. 2. The East Arctic Shelf and the adjacent Arctic Ocean represent offshore extent of the Verkhoyansk-Kolyma crustal domain constituted by a mosaic of separate blocks of the Pre-Cambrian basement (Okhotsk, Omulevka, Omolon, Wrangel-Gerald and Central Arctic) and Late Mesozoic orogens. This area differs significantly from the Ellesmerian crustal domain located to the east (including the Northwind Ridge, which coincides with inferred eastern boundary of the Mesozoides). The Central Arctic domain includes structures of the Mendeleev Ridge and the Chukchi Plateau. Western boundary of this block is inferred along the Spur of Geophysicists, which separates the Podvodnikov Basin into two unequal parts with different basement structure. From the south, southwest and west, the Central Arctic domain is

  13. Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California

    USGS Publications Warehouse

    Robertson, Frederick N.

    1991-01-01

    Chemical and isotope analyses of ground water from 28 basins in the Basin and Range physiographic province of Arizona and parts of adjacent States were used to evaluate ground-water quality, determine processes that control ground-water chemistry, provide independent insight into the hydrologic flow system, and develop information transfer. The area is characterized by north- to northwest-trending mountains separated by alluvial basins that form a regional topography of alternating mountains and valleys. On the basis of ground-water divides or zones of minimal basin interconnection, the area was divided into 72 basins, each representing an individual aquifer system. These systems are joined in a dendritic pattern and collectively constitute the major water resource in the region. Geochemical models were developed to identify reactions and mass transfer responsible for the chemical evolution of the ground water. On the basis of mineralogy and chemistry of the two major rock associations of the area, a felsic model and a mafic model were developed to illustrate geologic, climatic, and physiographic effects on ground-water chemistry. Two distinct hydrochemical processes were identified: (1) reactions of meteoric water with minerals and gases in recharge areas and (2) reactions of ground water as it moves down the hydraulic gradient. Reactions occurring in recharge and downgradient areas can be described by a 13-component system. Major reactions are the dissolution and precipitation of calcite and dolomite, the weathering of feldspars and ferromagnesian minerals, the formation of montmorillonite, iron oxyhydroxides, and probably silica, and, in some basins, ion exchange. The geochemical modeling demonstrated that relatively few phases are required to derive the ground-water chemistry; 14 phases-12 mineral and 2 gas-consistently account for the chemical evolution in each basin. The final phases were selected through analysis of X-ray diffraction and fluorescence data

  14. The concentration of radionuclides and metals in vegetation adjacent to and in the SRL Seepage Basins

    SciTech Connect

    Murphy, C. E. Jr.

    1992-12-14

    In 1991 the trees on the dikes surrounding the SRL Seepage Basins were sampled and analyzed to inventory the contaminants transported from the basins into the vegetation. Tree leaves and wood were collected and analyzed for {sup 90}Sr, {sup 60}Co, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 242,244}Cm, {sup 241}Am, Ba, Cr, Hg, Mg, Mn, Ni, and Pb. The concentrations of contaminants were influenced by sample type (leaves versus wood), species type (pines versus hardwoods), and location relative to distance from the basin. The total inventory of each contaminant in the trees was estimated. The relationships between leaf and wood, pines and hardwood, location, and mass of the material in each of these classes were used to weight the total inventory estimate. The radionuclide with the largest inventory was 0.7 mCi for {sup 90}Sr. The metallic contaminant with the largest inventory was Mn at 200 gm.

  15. The concentration of radionuclides and metals in vegetation adjacent to and in the SRL Seepage Basins

    SciTech Connect

    Murphy, C. E. Jr.

    1992-12-14

    In 1991 the trees on the dikes surrounding the SRL Seepage Basins were sampled and analyzed to inventory the contaminants transported from the basins into the vegetation. Tree leaves and wood were collected and analyzed for [sup 90]Sr, [sup 60]Co, [sup 137]Cs, [sup 238]Pu, [sup 239,240]Pu, [sup 242,244]Cm, [sup 241]Am, Ba, Cr, Hg, Mg, Mn, Ni, and Pb. The concentrations of contaminants were influenced by sample type (leaves versus wood), species type (pines versus hardwoods), and location relative to distance from the basin. The total inventory of each contaminant in the trees was estimated. The relationships between leaf and wood, pines and hardwood, location, and mass of the material in each of these classes were used to weight the total inventory estimate. The radionuclide with the largest inventory was 0.7 mCi for [sup 90]Sr. The metallic contaminant with the largest inventory was Mn at 200 gm.

  16. Tectonic origin of Lower Mesozoic regional unconformities: Southern Colorado Plateau and adjacent Basin and Range

    SciTech Connect

    Marzolf, J.E. )

    1990-05-01

    Palinspastic restoration of Basin and Range structural blocks to early Mesozoic positions relative to the Colorado Plateau permits correlation of lower Mesozoic regional unconformities of the Colorado Plateau across the southern Basin and Range. These unconformities correlate with tectonic reconfiguration of sedimentary basins in which enclosed depositional sequences were deposited. Lesser recognized intraformational unconformities are related to relative sea level change. The Tr-1 unconformity developed on subaerially exposed, karsted, and deeply incised Leonardian carbonates. The overlying Lower Triassic Moenkopi Formation and equivalent strata display a narrow, north-south aligned, passive-margin-type architecture subdivided by Smithian and Spathian intraformational unconformities into three depositional sequences. From basinal to inner shelf facies, Tr-1 truncates folds in Permian rocks. Initial deposition of the lowest sequence began with sea level at the base of the continental slope. Basal conglomerates of the Upper Triassic Chinle Formation were deposited in northward-trending paleovalleys incised within and parallel to the Early Triassic shelf. Distribution of fluvial deposition, orientation of paleovalleys, paleocurrent indicators, and provenance indicate change from the passive-margin-bordered Early Triassic basin to an offshore active-margin basin. Continental and marine facies suggest two depositional sequences separated by an early Norian type 2( ) sequence boundary. The J-O unconformity at the base of the Lower Jurassic Glen Canyon Group marks a major change in tectonic setting of western North America as evidenced by (1) progressive southwestward downcutting of the unconformity to deformed Paleozoic rocks and Precambrian basement, (2) coincidence in time and space with Late Triassic to Early Jurassic thrust faults, and (3) initiation of calcalkaline volcanism.

  17. Near-island biological hotspots in barren ocean basins

    PubMed Central

    Gove, Jamison M.; McManus, Margaret A.; Neuheimer, Anna B.; Polovina, Jeffrey J.; Drazen, Jeffrey C.; Smith, Craig R.; Merrifield, Mark A.; Friedlander, Alan M.; Ehses, Julia S.; Young, Charles W.; Dillon, Amanda K.; Williams, Gareth J.

    2016-01-01

    Phytoplankton production drives marine ecosystem trophic-structure and global fisheries yields. Phytoplankton biomass is particularly influential near coral reef islands and atolls that span the oligotrophic tropical oceans. The paradoxical enhancement in phytoplankton near an island-reef ecosystem—Island Mass Effect (IME)—was first documented 60 years ago, yet much remains unknown about the prevalence and drivers of this ecologically important phenomenon. Here we provide the first basin-scale investigation of IME. We show that IME is a near-ubiquitous feature among a majority (91%) of coral reef ecosystems surveyed, creating near-island ‘hotspots' of phytoplankton biomass throughout the upper water column. Variations in IME strength are governed by geomorphic type (atoll vs island), bathymetric slope, reef area and local human impacts (for example, human-derived nutrient input). These ocean oases increase nearshore phytoplankton biomass by up to 86% over oceanic conditions, providing basal energetic resources to higher trophic levels that support subsistence-based human populations. PMID:26881874

  18. Near-island biological hotspots in barren ocean basins.

    PubMed

    Gove, Jamison M; McManus, Margaret A; Neuheimer, Anna B; Polovina, Jeffrey J; Drazen, Jeffrey C; Smith, Craig R; Merrifield, Mark A; Friedlander, Alan M; Ehses, Julia S; Young, Charles W; Dillon, Amanda K; Williams, Gareth J

    2016-02-16

    Phytoplankton production drives marine ecosystem trophic-structure and global fisheries yields. Phytoplankton biomass is particularly influential near coral reef islands and atolls that span the oligotrophic tropical oceans. The paradoxical enhancement in phytoplankton near an island-reef ecosystem--Island Mass Effect (IME)--was first documented 60 years ago, yet much remains unknown about the prevalence and drivers of this ecologically important phenomenon. Here we provide the first basin-scale investigation of IME. We show that IME is a near-ubiquitous feature among a majority (91%) of coral reef ecosystems surveyed, creating near-island 'hotspots' of phytoplankton biomass throughout the upper water column. Variations in IME strength are governed by geomorphic type (atoll vs island), bathymetric slope, reef area and local human impacts (for example, human-derived nutrient input). These ocean oases increase nearshore phytoplankton biomass by up to 86% over oceanic conditions, providing basal energetic resources to higher trophic levels that support subsistence-based human populations.

  19. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  20. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  1. Ocean basin structure offshore the Southeastern United States: Is it the rift's fault?

    NASA Astrophysics Data System (ADS)

    Heffner, D. M.; Knapp, J. H.

    2012-12-01

    Continental rifts typically exhibit an asymmetrical geometry where major normal faults bound one side of a rotated block, and the rift basins thin toward the opposite hinge side. Differential extension on major faults is accommodated by transverse structures referred to as transfer zones, across which the asymmetric geometry may reverse polarity. It was proposed several decades ago that oceanic transforms between mid-ocean ridge spreading centers are inherited features of these rift-related transfer zones, and that these intra-plate structures are tectonically active. However, preserved evidence of onshore transfer zones is often lacking, particularly along the rifted margin of Eastern North America, and recent studies have suggested that oceanic transforms are not inherited structures. Observations of seismic reflection data integrated with well data show that adjacent basin bounding faults of the South Georgia Rift, a Triassic rift in the southeastern United States, occur on opposite sides of the rift flanks. The Walterboro and Warner Robins Transfer Zones identified in this study project along the small circles of Schettino and Turco (2009) into the Jacksonville and Bahamas Fracture Zones respectively. This projection is particularly interesting as it suggests the correlation of continental to oceanic features is one step south compared to previous studies which projected the Blake Spur Fracture Zone through the Charleston, SC region, and the Jacksonville Fracture Zone through Georgia. Using the same small circle solution, the Blake Spur Fracture Zone projects through the Blake Outer Ridge, a sedimentary drift which shows up prominently as a gravity anomaly the core of which has been identified as a tectonic feature reminiscent of a fracture zone on the basis of gravity modeling (Dove et al., 2007). Although no transfer zone has been identified where this small circle project onshore, it is approximately coincident with axis of the Cape Fear Arch which has been

  2. Timing the structural events in the Palaeoproterozoic Bolé-Nangodi belt terrane and adjacent Maluwe basin, West African craton, in central-west Ghana

    NASA Astrophysics Data System (ADS)

    de Kock, G. S.; Théveniaut, H.; Botha, P. M. W.; Gyapong, W.

    2012-04-01

    The Maluwe basin, north-adjacent to the Sunyani basin, is the northernmost of the northeast-trending Eburnean volcaniclastic depositories in Ghana. These basins are separated from one another by remnants of Eoeburnean crust, all formed during the evolution of an arc-backarc basins complex in a Palaeoproterozoic intraoceanic environment. The Bolé-Nangodi belt terrane to the northwest, of mostly Eoeburnean crust is fault bounded with the Maluwe basin along the northeast-trending Bolé-Navrongo fault zone. The stratigraphic sequence, which was the key to unravelling the structural evolution of the study area, was established by means of field observations aided by precision SHRIMP geochronology. The quartzitic, pelitic, quartzofeldspathic and granitic gneisses of the Eoeburnean crust (>2150 Ma) experienced complex metamorphic mineral growth and migmatitization, mostly under static crustal conditions and were subjected to several deformation episodes. The foliated mafic and metasedimentary enclaves within the Ifanteyire granite establish deformation to have taken place prior to ˜2195 Ma, while the tectonically emplaced Kuri amphibolites within the 2187-Ma gneissic Gondo granite indicate a stage of rifting followed by collision. Deformation of granite dykes in the Gondo granites at ˜2150 Ma concluded the development of the Eoeburnean orogenic cycle (DEE). The Sawla Suite, contemporaneous with the deposition of the Maluwe Group, intruded the tectonic exhumed Bolé-Nangodi terrane during extension between ˜2137 and 2125 Ma. The rifting separated the Abulembire fragment from the Bolé-Nangodi terrane. During subsequent northwestward subduction of young back-arc basin oceanic crust the volcaniclastic strata of the Maluwe Group and Sawla granitoids were deformed (DE1) under chlorite/sericite greenschist-grade conditions. The NE-trending folds had subhorizontal axes and subvertical axial planes. Simultaneous to the DE1 orogenesis the molasses of the Banda Group was

  3. An ecological study of the KSC Turning Basin and adjacent waters

    NASA Technical Reports Server (NTRS)

    Nevin, T. A.; Lasater, J. A.; Clark, K. B.; Kalajian, E. H.

    1974-01-01

    The conditions existing in the waters and bottoms of the Turning Basin, the borrow pit near Pad 39A, and the Barge Canal connecting them were investigated to determine the ecological significance of the chemical, biological, and microbiological parameters. The water quality, biological, microbiological findings are discussed. It is recommended that future dredging activities be limited in depth, and that fill materials should not be removed down to the clay strata.

  4. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states; a study plan

    USGS Publications Warehouse

    Harrill, James R.; Welch, A.H.; Prudic, D.E.; Thomas, J.M.; Carman, R.L.; Plume, R.W.; Gates, J.S.; Mason, J.L.

    1983-01-01

    The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon , and Arizona within which 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin-fill deposits; however, significant carbonate-rock aquifers underlie much of eastern Nevada and western Utah. In October 1980, the U.S. Geological Survey started a 4-year study to: (1) describe the ground-water systems, (2) analyze the changes that have led to the systems ' present conditions, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated. A plan of work is presented that describes the general approach to be taken. It defines the major tasks necessary to meet objectives and defines constraints on the scope of work. The approach has been influenced by the diverse nature of ground water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected ' typical ' areas and key hydrologic processes. Effort during the first three years will be directed toward describing the regional hydrology, conducting detailed studies of ' type ' areas and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analysis of results. Special studies will include evaluation of regional geochemistry , regional hydrogeology, recharge, ground-water discharge, and use of remote sensing. Areas to be studied using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys--Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach--Nevada, plus Jordan Valley, the Millford area, and Tule Valley in Utah. The results will be presented in a

  5. A tectogenetic mechanism controlling the evolution of the Texel-IJsselmeer High (northern Netherlands) and adjacent basins

    SciTech Connect

    Rijkers, R.; Geluk, M. )

    1993-09-01

    Geological studies around the Texel-IJsselmeer High have been carried out for the regional subsurface mapping project of the Geological Survey of The Netherlands. The Texel-IJsselmeer High, in the northern part of the Netherlands, is a northwest-southeast-trending structural unit, slightly tilted to the northeast. The geological evolution of the Texel-IJsselmeer High and the adjacent areas can be linked to an extensional tectonic regime during which several Jurassic basins in the Netherlands originated. During the Late Jurassic, the southern border of the Texel-IJsselmeer High was characterized by normal faulting. Main faults are dipping southwest and are generally part of a half-graben structure. Faulting is accompanied by subsidence of the hanging wall (Jurassic basin area), while the footwall (the Texel-IJsselmeer High) is isostatically uplifted and eroded. The proposed model is based on thinning of the lower crust beneath the basins during Jurassic extension by pure shear. This mechanism is coupled locally with shear zones (simple shear) as a result of lower crustal failure. The model is supported by observations on deep regional seismics at the southern margin of the basin area. During the Late Cretaceous/early Tertiary, transpressional intraplate stresses reactivated the structural weakness zones in the lower and upper crust in a reversed way (inversion). During this tectonic inversion the northwest-southeast-trending Texel-IJsselmeer High acted as a buffer zone perpendicular to the direction of maximum principal stress. Paleogeographical studies and geohistory analysis support the proposed tectogenetic model of the Texel-IJsselmeer High.

  6. A 4D Framework for Ocean Basin Paleodepths and Eustatic Sea Level Change

    NASA Astrophysics Data System (ADS)

    Muller, R.; Sdrolias, M.; Gaina, C.

    2006-12-01

    A digital framework for paleobathymetry of the ocean basins requires the complete reconstruction of ocean floor through time, including the main ocean basins, back-arc basins, and now subducted ocean crust. We reconstruct paleo-oceans by creating "synthetic plates", the locations and geometry of which is established on the basis of preserved ocean crust (magnetic lineations and fracture zones), geological data, and the rules of plate tectonics. We reconstruct the spreading histories of the Pacific, Phoenix, Izanagi, Farallon and Kula plates, the plates involved in the Indian, Atlantic, Caribbean, Arctic, Tethys and Arctic oceanic domains and all plates involved in preserved backarc basins. Based mainly on the GML-standards compliant GPlates software and the Generic Mapping Tools, we have created a set of global oceanic paleo-isochrons and paleoceanic age and depth grids. We show that the late-Cretaceous sea level highstand and the subsequent long-term drop in sea level was primarily caused by the changing age-area distribution of Pacific ocean floor through time. The emplacement of oceanic plateaus has resulted in a 40 m sealevel rise between 125 and 110 Ma, and a further 60 m rise after 110 Ma, whereas the oceanic age and latitude dependence of marine sediments has resulted in a 40m sealevel rise since about 120Ma, offsetting the gradual post-80Ma drop in sealevel due to the ageing and deepening mainly of the Pacific ocean basin, with the net effect being an about 200m drop after 80 Ma. Between 140 Ma and the present, oceanic crustal production dropped by over 40% in the Pacific, but stayed roughly constant in the remaining ocean basins. Our results suggest that the overall magnitude of 1st order sealevel change implied by Haq's sea level curve is correct.

  7. Magnetotelluric studies in and adjacent to the Northumberland Basin, Northern England

    NASA Astrophysics Data System (ADS)

    Parr, R. S.; Hutton, V. R. S.

    1993-12-01

    During the past decade broadband magnetotelluric (MT) soundings, with d.c. resistivity soundings at some sites, have been undertaken in three separate field studies in and around the Northumberland Basin, a region of great interest to earth scientists on account of the proposed location there of the Iapetus Suture. As a result of an increase in cultural noise during this period, the data from the last two studies have been processed using a new robust constrained impedance tensor estimation program. The resulting apparent resistivity and phase data from these studies, together with those from the first broadband study and some earlier MT responses from the region, have now all been modelled using an interpretative modelling procedure. New information has been provided by the MT models on basement depths and, by integrating these new estimates with those from gravity modelling and seismic studies both on land and offshore, a detailed basement topography map has been compiled for the region. The deep eletrical resistivity structure has been modelled along a NW-SE traverse from the Weardale Granite of the Alston Block across the Northumberland Basin to the Southern Uplands of Scotland. Underlying the more conductive sedimentary rocks, the basement rock is found to have resistivities which range from about 100 μ m in the Northumberland Basin to more than 1000 μ m in the Alston Block and probably of the same order in the Southern Uplands. A mid-crustal conductor exists along the whole traverse, which is well resolved and has a southward dip beneath the Weardale Granite. Under the Northumberland Basin, the conductor is less well resolved and thus an apparent northward dip can only be regarded as tentative. Comparison of the pseudo-2D and full 2D models resulting from this study and from earlier MT and magnetovariational (MV) studies in Southern Scotland with new MT and joint MT and MV inversions of Livelybrooks et al. (Phys. Earth Planet. Inter., 81: 67-84 (1993)) for

  8. A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bluhm, B. A.; Kosobokova, K. N.; Carmack, E. C.

    2015-12-01

    domains have vertical stratification that constrains the transfer of nutrients to the surface layer (euphotic zone), thus leading to their oligotrophic state, particularly in the more strongly stratified Pacific Arctic where, despite high nutrient values in the inflow, convective reset of surface layer nutrients by haline convection in winter is virtually absent. First and multi-year sea ice drastically alters albedo and insulates the underlying water column from extreme winter heat loss while its mechanical properties (thickness, concentration, roughness, etc.) greatly affect the efficiency of momentum transfer from the wind to the underlying water. Biologically, sea ice algal growth in the basins is proportionally almost equal to or exceeding phytoplankton production, and is a habitat and transport platform for sympagic (ice-associated) fauna. Owing to nutrient limitation due to strong stratification and light limitation due to snow and ice cover and extreme sun angle, primary production in the two basin domains is very low compared to the adjacent shelves. Severe nutrient limitation and complete euphotic zone drawdown in the AB favors small phytoplankton, a ubiquitous deep chlorophyll maximum layer, a low f-ratio of new to recycled carbon fixation, and a low energy food web. In contrast, nutrients persist -albeit in low levels- in the western EB, even in summer, suggesting light limitation, heavy grazing or both. The higher stocks of nutrients in the EB are more conducive to marginal ice blooms than in the AB. The large-scale ocean currents (NHTC and ACBC) import substantial expatriate, not locally reproducing zooplankton biomass especially from the adjoining subarctic Atlantic (primarily Calanus finmarchicus), but also from the Pacific (e.g., Pseudocalanus spp., Neocalanus spp. and Metridia pacifica). These advective inputs serve both as source of food to resident pelagic and benthic biota within the basins, and as potential grazers exerting top down control on

  9. Sediment stratigraphy of the Nansen Basin, Arctic Ocean and characterization of the ultraslow-spreading oceanic crust

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Franke, D.; Berglar, K.; Schnabel, M.

    2015-12-01

    The Nansen Basin is the southern part of the Eurasia Basin in the Arctic Ocean. Opening of the Eurasia Basin started here with the tear-off of the continental Lomonossov ridge. Here we present a couple of multichannel reflection seismic lines, covering an area from the Barents Shelf to 83.2 deg N. The profiles extend for about 275 km and 170 km, respectively from the Barents Sea margin (Hinlopen margin) into northern direction and cover together ~300 km of oceanic crust on two parallel lines. One connecting profile was acquired on oceanic crust crossing anomaly C23 (~50-52 Ma). The data were acquired during ice-free conditions and reveal for the first time the architecture of the oldest sediments deposited on the oceanic crust. We discuss the seismic facies of the oldest sediments on the oceanic crust and determine their age by correlation of onlap contacts onto oceanic crust with well defined magnetic anomalies. The lowermost sedimentary unit can be subdivided by at least one more prominent seismic reflector in the distal part of the Nansen Basin and two more seismic reflectors in the proximal part. Furthermore we present images and interpretations of oceanic crust formed at the ultraslow-spreading Gakkel ridge (< 20 mm yr-1 full rate). We discuss the basement morphology, volcanic cones and major faults, bounding horsts and grabens in the light of our present understanding of melt-poor ultraslow-spreading ridges.

  10. Dredged bedrock samples from the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brumley, K. J.; Mukasa, S. B.; O'Brien, T. M.; Mayer, L. A.; Chayes, D. N.

    2013-12-01

    Between 2008-2012, as part of the U.S. Extended Continental Shelf project in the Amerasia Basin, Arctic Ocean, 17 dredges were successfully collected sampling the first rock outcrops in the Chukchi Borderland and surrounding regions for the purpose of describing the geologic nature of the bathymetric features in this area. Multiple lines of evidence indicate that the specimens were collected from submarine rock exposures and were not samples of ice rafted debris, common in the ice covered waters of the Arctic Ocean. Using the USCGC Healy, each dredge was collected along very steep slopes (>35 degrees) measured with high resolution multibeam swath bathymety data. Each haul yielded samples of similar lithologies and identical metamorphic grade with manganese crusts on the surfaces exposed to seawater and fresh surfaces where the rocks were broken from outcrop. High tension pulls on the dredge line also indicated sampling of bedrock exposures. Dredged samples from a normal fault scarp in the central Chukchi Borderland consisted of Silurian (c. 430 Ma) orthogneisses that intruded older (c. 487-500 Ma) gabbros and luecogranties that were all metamorphosed to amphibolite grade (Brumley et al., 2011). Samples from the northern Northwind Ridge consisted of metasediments (greenschist facies) interpreted to have been deposited in a proximal arc setting with detrital zircon U-Pb age peaks at 434, 980 Ma with lesser peaks between 500-600, 1100-2000 Ma, and rare 2800 Ma grains (Brumley et al, 2010). Other dredges in the region of the Northwind Ridge yielded deformed and metamorphosed calcareous sandstones and low-grade phyllites (O'Brien et al., 2013). Taken together these rocks indicate a relationship to the Pearya Terrane of northern Ellesmere Island and S.W. Svalbard that were thought to represent a Cambro-Ordovician volcanic arc terrane that was involved in Caledonian orogenesis (Brumley et al., 2011). These findings constrain plate tectonic reconstruction models and bring

  11. Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin.

    PubMed

    de Lafontaine, Yves; Beauvais, Conrad; Cessna, Allan J; Gagnon, Pierre; Hudon, Christiane; Poissant, Laurier

    2014-05-01

    The use of sulfonylurea herbicides (SU) has increased greater than 100 times over the past 30 years in both Europe and North America. Applied at low rates, their presence, persistence and potential impacts on aquatic ecosystems remain poorly studied. During late-spring to early fall in 2009-2011, concentrations of 9 SU were assessed in two agricultural streams and their receiving wetland, an enlargement of the St. Lawrence River (Canada). Six SU in concentrations >LOQ (10 ng L(-1)) were detected in 10% or less of surface water samples. Rimsulfuron was detected each year, sulfosulfuron and nicosulfuron in two years and the others in one year only, suggesting that application of specific herbicides varied locally between years. Detection frequency and concentrations of SU were not significantly associated with total precipitation which occurred 1 to 5d before sampling. Concentrations and fate of SU differed among sites due to differences in stream dynamics and water quality characteristics. The persistence of SU in catchment basin streams reflected the dissipation effects associated with stream discharge. Maximum concentrations of some SU (223 and 148 ng L(-1)) were occasionally above the baseline level (100 ng L(-1)) for aquatic plant toxicity, implying potential toxic stress to flora in the streams. Substantially lower concentrations (max 55 ng L(-1)) of SU were noted at the downstream wetland site, likely as a result from dilution and mixing with St. Lawrence River water, and represent less toxicological risk to the wetland flora. Sporadic occurrence of SU at low concentrations in air and rain samples indicated that atmospheric deposition was not an important source of herbicides to the study area.

  12. Geohydrology of the Aucilla-Suwannee-Ochlockonee River Basin, south-central Georgia and adjacent parts of Florida

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.

    2010-01-01

    Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in

  13. Climatic and hydrologic oscillations in the Owens Lake basin and adjacent Sierra Nevada, California

    SciTech Connect

    Benson, L.V.; Burdett, J.W.; Phillips, F.M.

    1996-11-01

    Oxygen isotope and total organic carbon values of cored sediments from the Owens Lake basin, California, indicate that Owens Lake overflowed most of the time between 52,500 and 12,500 carbon-14 ({sup 14}C) years before present (B.P.). Owens Lake desiccated during or after Heinrich event H1 and was hydrologically closed during Heinrich event H2. The magnetic susceptibility and organic carbon content of cored sediments indicate that about 19 Sierra Nevada glaciations occurred between 52,500 and 23,500 {sup 14}C years B.P. Most of glacial advances were accompanied by decreases in the amount of discharge reaching Owens Lake. Comparison of the timing of glaciation with the lithic record of North Atlantic core V23-81 indicates that the number of mountain glacial cycles and the number of North Atlantic lithic events were about equal between 39,000 and 23,500 {sup 14}C years B.P. 27 refs., 3 figs.

  14. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Mudholkar, A. V.; Jai Sankar, S.; Ilangovan, D.

    2008-03-01

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which allow one to define two different origins linked to two separate eruptions. One group of pumice is a dacitic type characterized by high Fe, Ti, Mg, Al and Ca with comparatively low contents of Si, rare-earth elements (∑REE, 69 ppm), Rb, Sr, U, Th, Ba, V, Nb, Sc, Mo and Co, which strongly suggest an origin from the 1883 Krakatau eruption. The other group is rhyolitic and is characterized by low contents of Fe, Ti, Mg and Ca and high Si, ∑REE content (121 ppm), Rb, Sr, U, Th, Ba, V, Nb, Mo, Co, and Sc and correlates well with the composition of the Youngest Toba Tuff (YTT) eruption of ˜74 ka from Northern Sumatra and is being reported for the first time. Therefore, correlation of the pumice to the 1883 Krakatau and YTT eruptions indicates that the pumice drifted to the CIOB and eventually sank when it became waterlogged. However, physical properties such as density, specific gravity, porosity and degree of saturation required for sinking of pumice for both 1883 Krakatau and YTT are almost similar.

  15. Oceanic distribution and life cycle of Calanus species in the Norwegian Sea and adjacent waters

    NASA Astrophysics Data System (ADS)

    Broms, Cecilie; Melle, Webjørn; Kaartvedt, Stein

    2009-10-01

    The distribution and demography of Calanus finmarchicus, C. glacialis and C. hyperboreus were studied throughout their growth season on a basin scale in the Norwegian Sea using ordination techniques and generalized additive models. The distribution and demographic data were related to the seasonal development of the phytoplankton bloom and physical characteristics of water masses. The resulting quantified relationships were related to knowledge on life cycle and adaptations of Calanus species. C. finmarchicus was the numerically dominant Calanus species in Coastal, Atlantic and Arctic waters, showing strong association with both Atlantic and Arctic waters. C. hyperboreus and C. glacialis were associated with Arctic water; however, C. glacialis was occasionally observed in the Norwegian Sea and is probably an expatriate advected into the area from various origins. Demography indicated one generation per year of C. finmarchicus, a two-year life cycle of C. hyperboreus, and both one- and two-year life cycles for C. glacialis in the water masses where they were most abundant. For the examined Calanus species, young copepodites of the new generation seemed to be tuned to the phytoplankton bloom in their main water mass. The development of C. finmarchicus was delayed in Arctic water, and mis-match between feeding stages and the phytoplankton bloom may reduce survival and reproductive success of C. finmarchicus in Arctic water. Based on low abundances of C. hyperboreus CI-III in Atlantic water and main recruitment to CI prior to the phytoplankton bloom, we suggest that reproduction of C. hyperboreus in Atlantic water is not successful.

  16. Tectonic structure of Dokdo and adjacent area in the northeastern part of the Ulleung Basin of the East Sea using geophysical data

    NASA Astrophysics Data System (ADS)

    Kim, C.; Jeong, E.; Park, C.; Kwon, B.; Park, G.; Park, J.

    2008-12-01

    The northeastern part of the Ulleung Basin in the East Sea is composed of volcanic islands (Ulleungdo and Dokdo), seamounts (the Anyongbok Seamount, the Simheungtaek and the Isabu Tablemounts), and a deep pathway (Korea Gap). To understand tectonic structure and geophysical characteristics of Dokdo and adjacent area, We analysed geophysical potential data of KORDI(Korea Ocean Research and Development Institute), KIGAM(Korea Institute of Geoscience and Mineral Resources), and NORI(National Oceanographic Research Institute of Korea) around the Dokdo volcanic body except Ulleung Do because of empty data of its large island. Also, we eliminate the effect of water and sediments from the free-air gravity data to process 3D Moho depth inversion. 3D tectonic structure modelling of the study area was developed using Moho depth inversion result and sediment thickness data of NGDC(National Geophysical Data Center). The free-air gravity anomalies of the study area generally reflect bathymetric effects. Although the Dokdo seamounts have a similar topographic size, the decrease of free-air anomaly toward Isabu suggest that Isabu is oldest among the seaounts and have high degree of isostatic compensation. High Bouguer anomalies in the central part of the Ulleung Basin gradually decreases toward the Oki Bank. This feature suggests that the crust/mantle boundary is shallow in the central part of the Ulleung Basin. The complex magnetic pattern of Dokdo suggests that it might have erupted several times during its formation. The magnetic anomaly amplitude of Isabu is much smaller than that of Dokdo. Such low magnetic anomalies are attributed to a secondary change caused by the metamorphism or weathering of ferromagnetic minerals of the seamount during a long period of time after its formation. Analytic signals show high anomalous zones over volcanoes. Also, there are high analytic signal values in Korea Gap indicating magmatic intrusion in thick sediments. The power spectrum analysis

  17. The Davis Strait crust—a transform margin between two oceanic basins

    NASA Astrophysics Data System (ADS)

    Suckro, Sonja K.; Gohl, Karsten; Funck, Thomas; Heyde, Ingo; Schreckenberger, Bernd; Gerlings, Joanna; Damm, Volkmar

    2013-04-01

    The Davis Strait is located between Canada and Greenland and connects the Labrador Sea and the Baffin Bay basins. Both basins formed in Cretaceous to Eocene time and were connected by a transform fault system in the Davis Strait. Whether the crust in the central Davis Strait is oceanic or continental has been disputed. This information is needed to understand the evolution of this transform margin during the separation of the North American plate and Greenland. We here present a 315-km-long east-west-oriented profile that crosses the Davis Strait and two major transform fault systems-the Ungava Fault Complex and the Hudson Fracture Zone. By forward modelling of data from 12 ocean bottom seismographs, we develop a P-wave velocity model. We compare this model with a density model from ship-borne gravity data. Seismic reflection and magnetic anomaly data support and complement the interpretation. Most of the crust is covered by basalt flows that indicate extensive volcanism in the Davis Strait. While the upper crust is uniform, the middle and lower crust are characterized by higher P-wave velocities and densities at the location of the Ungava Fault Complex. Here, P-wave velocities of the middle crust are 6.6 km s-1 and of the lower crust are 7.1 km s-1 compared to 6.3 and 6.8 km s-1 outside this area; densities are 2850 and 3050 kg m-3 compared to 2800 and 2900 kg m-3. We here interpret a 45-km-long section as stretched and intruded crust or as new igneous crust that correlates with oceanic crust in the southern Davis Strait. A high-velocity lower crust (6.9-7.3 km s-1) indicates a high content of mafic material. This mantle-derived material gradually intruded the lower crust of the adjacent continental crust and can be related to the Iceland mantle plume. With plate kinematic modelling, we can demonstrate the importance of two transform fault systems in the Davis Strait: the Ungava Fault Complex with transpression and the Hudson Fracture Zone with pure strike

  18. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  19. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  20. New Perspectives from Satellite and Profile Observations on Tropospheric Ozone over Africa and the Adjacent Oceans: An Indian-Atlantic Ocean Link to tbe "Ozone Paradox"

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Diab, Roseanne D.; Thouret, Valerie; Sauvage, Bastien; Chatfield, B.; Guan, Hong

    2004-01-01

    In the past few years, tropospheric ozone observations of Africa and its adjacent ocenas have been greatly enhanced by high resolution (spatial and temporal) satellite measurements and profile data from aircraft (MOZAIC) and balloon-borne (SHADOZ) soundings. These views have demonstrated for the first time the complexity of chemical-dynamical interactions over the African continent and the Indian and Atlantic Oceans. The tropical Atlantic "ozone paradax" refers to the observation that during the season of maximum biomass burning in west Africa north of the Intertropical Convergence Zone (ITCZ), the highest tropospheric ozone total column occurs south of the ITCZ over the tropical Atlantic. The longitudinal view of tropospheric ozone in the southern tropics from SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings shown the persistence of a "zonal-wave one" pattern that reinforces the "ozone paradox". These ozone features interact with dynamics over southern and northern Africa where anthropogenic sources include the industrial regions of the South African Highveld and Mideastern-Mediterranean influences, respectively. Our newest studies with satellites and soundings show that up to half the ozone pollution over the Atlantic in the January-March "paradox" period may originate from south Asian pollution. Individual patches of pollurion over the Indian Ocean are transported upward by convective mixing and are enriched by pyrogenic, biogenic sources and lightning as they cross Africa and descend over the Atlantic. In summary, local sources, intercontinental import and export and unique regional transport patterns put Africa at a crossroads of troposheric ozone influences.

  1. Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset

    NASA Astrophysics Data System (ADS)

    Kucieńska, B.; Raga, G. B.; Rodríguez, O.

    2010-11-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from the World Wide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation ("spherics") associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Sub-tropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated with mid

  2. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  3. Causes of long-term landscape evolution of "passive" margins and adjacent continental segments at the South Atlantic Ocean.

    NASA Astrophysics Data System (ADS)

    Glasmacher, Ulrich Anton; Hackspacher, Peter C.

    2013-04-01

    During the last 10 years research efforts have been devoted to understand the coupling between tectonic and surface processes in the formation of recent topography. Quantification of the rate at which landforms adapt to a changing tectonic, heat flow, and climate environment in the long term has become an important research object and uses intensively data revealed by low-temperature thermochronology, terrigenous cosmogenic nuclides, and geomorphological analyses. The influence of endogenic forces such as mantle processes as one of the causes for "Dynamic Topography Evolution" have been explored in a few studies, recently. In addition, the increased understanding how change in surface topography, and change in the amount of downward moving cold surface water caused by climate change affects warping isotherms in the uppermost crust allows further interpretation of low-temperature thermochronological data. "Passive" continental margins and adjacent continental segments especially at the South Atlantic ocean are perfect locations to quantify exhumation and uplift rates, model the long-term landscape evolution, and provide information on the influence of mantle processes on a longer time scale. This climate-continental margin-mantle process-response system is caused by the interaction between endogenic and exogenic forces that are related to the mantle-process driven rift - drift - "passive" continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Furthermore, the influence of major transform faults (also called: transfer zones, Fracture Zones (FZ)) on the long-term evolution of "passive" continental margins is still very much in debate. The presentation will provide insight in possible causes for the differentiated long-term landscape evolution along the South Atlantic Ocean.

  4. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean.

    PubMed

    Giovannelli, Donato; Molari, Massimiliano; d'Errico, Giuseppe; Baldrighi, Elisa; Pala, Claudia; Manini, Elena

    2013-01-01

    The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a

  5. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  6. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales

    NASA Astrophysics Data System (ADS)

    Suryan, Robert M.; Saba, Vincent S.; Wallace, Bryan P.; Hatch, Scott A.; Frederiksen, Morten; Wanless, Sarah

    2009-04-01

    Variation in life history traits of organisms is thought to reflect adaptations to environmental forcing occurring from bottom-up and top-down processes. Such variation occurs not only among, but also within species, indicating demographic plasticity in response to environmental conditions. From a broad literature review, we present evidence for ocean basin- and large marine ecosystem-scale variation in intra-specific life history traits, with similar responses occurring among trophic levels from relatively short-lived secondary producers to very long-lived apex predators. Between North Atlantic and North Pacific Ocean basins, for example, species in the Eastern Pacific exhibited either later maturation, lower fecundity, and/or greater annual survival than conspecifics in the Western Atlantic. Parallel variations in life histories among trophic levels also occur in adjacent seas and between eastern vs. western ocean boundaries. For example, zooplankton and seabird species in cooler Barents Sea waters exhibit lower fecundity or greater annual survival than conspecifics in the Northeast Atlantic. Sea turtles exhibit a larger size and a greater reproductive output in the Western Pacific vs. Eastern Pacific. These examples provide evidence for food-web-wide modifications in life history strategies in response to environmental forcing. We hypothesize that such dichotomies result from frequency and amplitude shifts in resource availability over varying temporal and spatial scales. We review data that supports three primary mechanisms by which environmental forcing affects life history strategies: (1) food-web structure; (2) climate variability affecting the quantity and seasonality of primary productivity; (3) bottom-up vs. top-down forcing. These proposed mechanisms provide a framework for comparisons of ecosystem function among oceanic regions (or regimes) and are essential in modeling ecosystem response to climate change, as well as for creating dynamic ecosystem

  7. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales

    USGS Publications Warehouse

    Suryan, Robert M.; Saba, Vincent S.; Wallace, Bryan P.; Hatch, Scott A.; Frederiksen, Morten; Wanless, Sarah

    2009-01-01

    Variation in life history traits of organisms is thought to reflect adaptations to environmental forcing occurring from bottom-up and top-down processes. Such variation occurs not only among, but also within species, indicating demographic plasticity in response to environmental conditions. From a broad literature review, we present evidence for ocean basin- and large marine ecosystem-scale variation in intra-specific life history traits, with similar responses occurring among trophic levels from relatively short-lived secondary producers to very long-lived apex predators. Between North Atlantic and North Pacific Ocean basins, for example, species in the Eastern Pacific exhibited either later maturation, lower fecundity, and/or greater annual survival than conspecifics in the Western Atlantic. Parallel variations in life histories among trophic levels also occur in adjacent seas and between eastern vs. western ocean boundaries. For example, zooplankton and seabird species in cooler Barents Sea waters exhibit lower fecundity or greater annual survival than conspecifics in the Northeast Atlantic. Sea turtles exhibit a larger size and a greater reproductive output in the Western Pacific vs. Eastern Pacific. These examples provide evidence for food-web-wide modifications in life history strategies in response to environmental forcing. We hypothesize that such dichotomies result from frequency and amplitude shifts in resource availability over varying temporal and spatial scales. We review data that supports three primary mechanisms by which environmental forcing affects life history strategies: (1) food-web structure; (2) climate variability affecting the quantity and seasonality of primary productivity; (3) bottom-up vs. top-down forcing. These proposed mechanisms provide a framework for comparisons of ecosystem function among oceanic regions (or regimes) and are essential in modeling ecosystem response to climate change, as well as for creating dynamic ecosystem

  8. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  9. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  10. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  11. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California

    USGS Publications Warehouse

    Kellogg, K.S.; Minor, S.A.

    2005-01-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  12. Leveraging Somali Basin Magnetic Anomalies to Constrain Gondwana Breakup and Early Indian Ocean Formation

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2015-12-01

    The Somali Basin, found between the Horn of Africa and Madagascar was formed during the rifting of East and West Gondwana. Understanding the evolution of the basin has historically been hindered by enigmatic seafloor fabric and an apparent paucity of magnetic anomaly data. Recent iterations of satellite gravity data have revealed nearly complete fracture zones as well as a distinct extinct spreading ridge within the basin. Through a thorough compilation of available Somali Basin shiptrack profiles, we have been able to successfully model and interpret magnetic anomalies with exceptional detail. This complication is unrivaled in completeness and provides unprecedented insight into basin formation. Using this high quality data, we have interpreted magnetic anomalies M0r (120.8 Ma) to M24Bn (152.43 Ma) about the extinct ridge. The interpreted Somali Basin spreading rate and spreading direction, through anomaly M15n (135.76 Ma), are similar to those observed in the neighboring coeval Mozambique Basin. This similarity suggests that East Gondwana separated from West Gondwana as a cohesive unit, and that the internal rifting of East Gondwana began later around 135 Ma. Our magnetic anomaly interpretations have been combined with additional magnetic interpretations from around the Indian Ocean to build a regionally consistent plate model of Gondwana breakup and early Indian Ocean formation. This plate model will be crucial for future efforts unraveling a precise history of East Gondwana fragmentation and constraining the formation of the Enderby Basin offshore East Antarctica and Bay of Bengal offshore East India.

  13. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin.

    PubMed

    Cai, Wei-Jun; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Lee, Sang H; Chen, Jianfang; Pierrot, Denis; Sullivan, Kevin; Wang, Yongchen; Hu, Xinping; Huang, Wei-Jen; Zhang, Yuanhui; Xu, Suqing; Murata, Akihiko; Grebmeier, Jacqueline M; Jones, E Peter; Zhang, Haisheng

    2010-07-30

    It has been predicted that the Arctic Ocean will sequester much greater amounts of carbon dioxide (CO2) from the atmosphere as a result of sea ice melt and increasing primary productivity. However, this prediction was made on the basis of observations from either highly productive ocean margins or ice-covered basins before the recent major ice retreat. We report here a high-resolution survey of sea-surface CO2 concentration across the Canada Basin, showing a great increase relative to earlier observations. Rapid CO2 invasion from the atmosphere and low biological CO2 drawdown are the main causes for the higher CO2, which also acts as a barrier to further CO2 invasion. Contrary to the current view, we predict that the Arctic Ocean basin will not become a large atmospheric CO2 sink under ice-free conditions.

  14. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  15. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model

  16. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores.

    PubMed

    Bartholomew, J W; Paik, G

    1966-09-01

    Bartholomew, J. W. (University of Southern California, Los Angeles), and George Paik. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J. Bacteriol. 92:635-638. 1966.-Obligate thermophilic sporeforming aerobic bacilli were isolated from 11 ocean basin cores taken from locations in a 150 mile long area off of the coast from Ensenada, Mexico, to Santa Catalina Island, and ranging as far out from shore as 160 miles. Isolated strains of bacilli were all identified as being identical, or closely related, to Bacillus stearothermophilus.

  17. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-04-01

    Since marine derived nutrients (MDN) are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen (TN) input across a river basin using stable isotope analysis (SIA) of nitrogen (δ15N). The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp.) was greater than that by bears (Ursus arctos), which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  18. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-07-06

    Technical Report 4. TITLE AND SUBTITLE Ocean Basin Impact of Ambient Noise on Marine Mammal Distribution, and Acoustic Communication 3. DATES...ultimate goal of this research is to enhance the understanding of global ocean noise and how variability in sound level impacts marine mammal acoustic...it relates to marine mammal active acoustic space and acoustic communication. This work increases the spatial range and time scale of prior

  19. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  20. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  1. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  2. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  3. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  4. Vorticity Transport in a Two Layer, Double Gyre Ocean Basin

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan; Clayson, Carol Anne; Jayne, Steve

    2016-11-01

    The double gyre ocean circulations predicted by strongly frictional, barotropic, linearized ocean models qualitatively agree with the patterns of large scale gyres in the world ocean. However, nonlinear ocean models featuring less intense eddy diffusion parameterization can converge to an infinite number of statistically stationary circulations, depending on the parameterization of dissipation of energy and vorticity. Patterns of vorticity flux and dissipation in a barotropic ocean have been examined previous studies; in this work the inclusion of the first baroclinic mode is examined. The first vertical mode permits the model to be split into two layers, the top approximating the thermocline and the bottom approximating the abyssal circulation. The separation into two layers not only adds realism and but also removes the nonphysical direct restraint of the upper ocean by bottom friction. Steady state circulations for various boundary conditions, sources and sinks of vorticity, and Reynolds numbers are simulated using a parallel pseudo-spectral quasi-geostrophic flow solver and mechanisms of vorticity flux and dissipation are discussed.

  5. Estimating annual precipitation for the Colorado River Basin using oceanic-atmospheric oscillations

    NASA Astrophysics Data System (ADS)

    Kalra, Ajay; Ahmad, Sajjad

    2012-06-01

    Estimating long-lead time precipitation under the stress of increased climatic variability is a challenging task in the field of hydrology. A modified Support Vector Machine (SVM) based framework is proposed to estimate annual precipitation using oceanic-atmospheric oscillations. Oceanic-atmospheric oscillations, consisting of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Niño-Southern Oscillation (ENSO) for a period of 1900-2008, are used to generate annual precipitation estimates with a 1 year lead time. The SVM model is applied to 17 climate divisions encompassing the Colorado River Basin in the western United States. The overall results revealed that the annual precipitation in the Colorado River Basin is significantly influenced by oceanic-atmospheric oscillations. The long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of PDO, NAO, and AMO indices, whereas coupling AMO and ENSO results in improved precipitation predictions for the Lower Colorado River Basin. The results also show that the SVM model provides better precipitation estimates compared to the Artificial Neural Network and Multivariate Linear Regression models. The annual precipitation estimates obtained using the modified SVM modeling framework may assist water managers in statistically understanding the hydrologic response in relation to large scale climate patterns within the Colorado River Basin.

  6. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Newton, B. Talon

    2016-06-01

    The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

  7. Systematic removal of neutral sugars within dissolved organic matter across ocean basins

    NASA Astrophysics Data System (ADS)

    Goldberg, Stuart J.; Carlson, Craig A.; Brzezinski, Mark; Nelson, Norm B.; Siegel, David A.

    2011-09-01

    Dissolved combined neutral sugars (DCNS) support heterotrophic bacterioplankton metabolism throughout the ocean, which affects ocean carbon cycling and biogeochemistry. Variability in DCNS composition also provides information about the diagenetic state of oceanic dissolved organic matter (DOM). Here, we present results of the DCNS composition in ˜600 discrete samples from ocean basin-scale sections within the North Atlantic and South Pacific Oceans; and at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. As DCNS concentrations decline with water mass age the mole percentages of glucose, mannose + xylose, and galactose change in a ratio of +2.10:-1.10:-1.00 enriching the DOM pool in glucose relative to mannose + xylose, and galactose. A new proxy is presented based on the relative change in these major sugars, diagenetic distance, which allows for comparison of the diagenetic state of DOM over broad regions of the global ocean while simultaneously quantifying progress along this pathway. In all, this inter-basin comparison suggests that there is a common diagenetic pathway for oceanic DOM.

  8. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean

    NASA Astrophysics Data System (ADS)

    Johnson, Brandon C.; Bowling, Timothy J.; Trowbridge, Alexander J.; Freed, Andrew M.

    2016-10-01

    We simulate the formation of the large elliptical impact basin associated with Pluto's Sputnik Planum (SP; informal name). The location of SP suggests that it represents a large positive mass anomaly. To find the conditions necessary for SP to have a positive mass anomaly, we consider impacts into targets with a range of thermal states and ocean thicknesses. Assuming the basin evolves to its current-day configuration, we calculate the mass and gravity anomalies associated with SP. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean. This conclusion may help us better understand the composition and thermal evolution of Pluto. Furthermore, our work supports the hypothesis that SP basin has an impact origin.

  9. Integrating surface and mantle constraints for palaeo-ocean evolution: a tour of the Arctic and adjacent regions (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.

    2016-04-01

    Plate tectonic reconstructions heavily rely on absolute motions derived from hotspot trails or palaeomagnetic data and ocean-floor magnetic anomaies and fracture-zone geometries to constrain the detailed history of ocean basins. However, as oceanic lithosphere is progressively recycled into the mantle, kinematic data regarding the history of these now extinct-oceans is lost. In order to better understand their evolution, novel workflows, which integrate a wide range of complementary yet independent geological and geophysical datasets from both the surface and deep mantle, must be utilised. In particular, the emergence of time-dependent, semi or self-consistent geodynamic models of ever-increasing temporal and spatial resolution are revealing some critical constraints on the evolution and fate of oceanic slabs. The tectonic evolution of the circum-Arctic is no exception; since the breakup of Pangea, this enigmatic region has seen major plate reorganizations and the opening and closure of several ocean basins. At the surface, a myriad of potential kinematic scenarios including polarity, timing, geometry and location of subduction have emerged, including for systems along continental margins and intra-oceanic settings. Furthermore, recent work has reignited a debate about the origins of 'anchor' slabs, such as the Farallon and Mongol-Okhotsk slabs, which have been used to refine absolute plate motions. Moving to the mantle, seismic tomography models reveal a region peppered with inferred slabs, however assumptions about their affinities and subduction location, timing, geometry and polarity are often made in isolation. Here, by integrating regional plate reconstructions with insights from seismic tomography, satellite derived gravity gradients, slab sinking rates and geochemistry, I explore some Mesozoic examples from the palaeo-Arctic, northern Panthalassa and western margin of North America, including evidence for a discrete and previously undescribed slab under

  10. Low frequency baleen whale calls detected on ocean-bottom seismometers in the Lau basin, southwest Pacific Ocean.

    PubMed

    Brodie, Dana C; Dunn, Robert A

    2015-01-01

    Ten months of broadband seismic data, recorded on six ocean-bottom seismographs located in the Lau Basin, were examined to identify baleen whale species. As the first systematic survey of baleen whales in this part of the southwest Pacific Ocean, this study reveals the variety of species present and their temporal occurrence in and near the basin. Baleen whales produce species-specific low frequency calls that can be identified by distinct patterns in data spectrograms. By matching spectrograms with published accounts, fin, Bryde's, Antarctic blue, and New Zealand blue whale calls were identified. Probable whale sounds that could not be matched to published spectrograms, as well as non-biologic sounds that are likely of volcanogenic origin, were also recorded. Detections of fin whale calls (mid-June to mid-October) and blue whale calls (June through September) suggest that these species migrate through the region seasonally. Detections of Bryde's whale calls (primarily February to June, but also other times of the year) suggest this species resides around the basin nearly year round. The discovery of previously unpublished call types emphasizes the limited knowledge of the full call repertoires of baleen whales and the utility of using seismic survey data to enhance understanding in understudied regions.

  11. A 4D-variational ocean data assimilation application for Santos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    da Rocha Fragoso, Mauricio; de Carvalho, Gabriel Vieira; Soares, Felipe Lobo Mendes; Faller, Daiane Gracieli; de Freitas Assad, Luiz Paulo; Toste, Raquel; Sancho, Lívia Maria Barbosa; Passos, Elisa Nóbrega; Böck, Carina Stefoni; Reis, Bruna; Landau, Luiz; Arango, Hernan G.; Moore, Andrew M.

    2016-03-01

    Aiming to achieve systematic ocean forecasting for the southeastern Brazilian coast, an incremental 4D-Var data assimilation system is applied to a regional ocean model focused mainly in the Santos Basin region. This implementation is performed within the scope of The Santos Basin Ocean Observing System (or Project Azul), a pilot project designed to collect oceanographic data with enough frequency and spatial coverage so to improve regional forecasts through data assimilation. The ocean modeling and data assimilation system of Project Azul is performed with the Regional Ocean Modeling System (ROMS). The observations used in the assimilation cycles include the following: 1-day gridded, 0.1° resolution SST from POES AVHRR; 1-day gridded, 0.3° composite of the MDT SSH from AVISO; and surface and subsurface hydrographic measurements of temperature and salinity collected with gliders and ARGO floats from Project Azul and from UK Met-Office EN3 project dataset. The assimilative model results are compared to forward model results and independent observations, both from remote sensing and in situ sources. The results clearly show that 4D-Var data assimilation leads to an improvement in the skill of ocean hindcast in the studied region.

  12. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  13. Fish effects on ocean current observations in the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Virmani, Jyotika I.; Weisberg, Robert H.

    2009-03-01

    Multiple years of moored current meter observations from the Cariaco Basin show low-frequency variations along with near-inertial waves and further imply the persistent diurnal movement of fish species known to populate the basin. In agreement with short-term observations from 1979, the more recent observations with acoustic Doppler current profilers provide evidence of the multidecadal presence and behavior of these species. An unwanted corollary, however, is a bias in both the vertical and horizontal components of velocity due to the fish movements. Removal of this fish bias results in large data loss (approximately 72%); however, an interpolated, non-biased data set is developed with depth-averaged horizontal velocities comparable to the observations, demonstrating successful elimination of the bias. Further comparisons show that the interpolated data result in minimal variance density loss at low frequencies and a reduction of variance density at high frequencies such that the interpolated data in the internal wave range more closely fit the Garrett-Munk spectrum. The net result is a data set appropriate for further analysis. A mean downward velocity of 0.18 cm s-1 is a reflection of a biogenic particle flux and some residual fish contamination. The mean settling speed of particles in the Cariaco Basin is calculated, via Stokes law, to be smaller than 0.04 cm s-1. Velocity observations from acoustic current meters at depths greater than 400 m are impacted by the water clarity; therefore alternate methods should be used to make velocity measurements at depth.

  14. Decadal Variability of Tropical Cyclone Annual Frequency in Different Ocean Basins

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    Yating Zhao1, Jing Jiang1 1 School of Atmospheric Sciences, Nanjing University Nanjing 210093 China Abstract: Tropical cyclone, one of the most severe global natural disasters, causes massive casualties and economic losses every year, greatly influences the rapid development of the modern society. Using hurricane best track data from JTWC and TPC we investigate the decadal variations of TC activities. Our research indicates that the variability of TC frequency of different ocean basins (North Indian Ocean (NIO), Northwest Pacific Ocean (WP), Northeast Pacific Ocean (NEP), North Atlantic Ocean (NA) and South Hemisphere (SH)) all have significant decadal periods, and these decadal signals have something connect with the Pacific Decadal Oscillation (PDO), which acting as the background, modulating and influencing the synoptic scale weather systems. Through diagnosing the oceanic and atmospheric circulation in different stages of PDO, we find that, as the PDO signal transmits through the Pacific Ocean, the atmospheric circulation changes accordingly all over the tropical ocean. And they influence the dynamic conditions in the troposphere and promote or restrain the tropical cyclone activities in these areas. In another word, in the positive phase of PDO, there are much more (less) TC activities observed over the NEP (NA, WP, NIO, SH), which very likely due to the favorable (unfavorable) environmental factors, such as higher (lower) SST, weaker (stronger) vertical wind shear, higher (lower) relative humidity in the middle level of troposphere, and low level positive (negative) vorticity in the local area. Meanwhile, what should be noted is that the primary environmental factor could be very different in different ocean basin. Keywords: tropical cyclone, decadal variability, PDO

  15. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  16. Glacial to postglacial transformation of organic input pathways in Arctic Ocean basins

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; MacDonald, Robie W.; Snowdon, Lloyd R.

    2009-12-01

    The Arctic Ocean is undergoing rapid loss in ice cover with yet unknown consequences for the cycling of organic material. Here we examine persistent terrigenous (land-based) alkane and polycyclic aromatic hydrocarbons with vascular plant, combustion, and petrogenic sources in seven cores collected from all major basins of the Arctic Ocean for insight as to how organic cycling at the Last Glacial Maximum compares to the present day. We find only modest changes between the glacial and postglacial sediments for atmospherically transported hydrocarbon biomarkers, demonstrating that glacial sea ice was not a barrier to atmospheric inputs. In stark contrast, particle-associated biomarkers were captured strongly at basin edges during the glacial period and much more evenly transported across basins during the postglacial period. Evidently the capture of organic matter shifted from the slopes to the shelves as the latter flooded during the Holocene, and the Transpolar Drift and Beaufort Gyre evolved from minor carriers of plant detritus from the glacial ocean margins to major modern transporters of shelf sediment to the basins. This suggests that changes in organic transport currently accompanying the loss of sea ice are likely to be very different from those that occurred at the end of the last glacial period.

  17. Tephrostratigraphic investigations of the Late Pleistocene-Holocene deposits in the northwestern Pacific Ocean and adjacent seas (Okhotsk and Bering)

    NASA Astrophysics Data System (ADS)

    Derkachev, A.; Nikolaeva, N.; Portnyagin, M.; Ponomareva, V.; Gorbarenko, S.; Malakhov, M.; Nuernberg, D.; van den Bogaard, C.; Sakamoto, T.; Lv, H.

    2012-12-01

    Ash layers (tephra) in both continental and marine deposits bear information about history and nature of volcanic eruptions which could influence climate, processes of sedimentation, and even cause ecological disasters. Tephra layers of Quaternary age have been identified in various marine and continental deposits within the northwestern part of transition zone from the Asian continent to the Pacific Ocean. Tephras from the areas adjacent to the Japanese Islands are better studied while those from the areas farther north including Okhotsk and Bering Seas have received less attention until recently. More than 40 sediment cores were obtained during numerous expeditions performed by Russian, German, Japanese and Chinese scientists during the last fifteen years. We have identified and sampled a total of 74 tephra layers and lenses from these cores including 22 layers in the Okhotsk Sea, 14 layers in the Bering Sea, and 38 layers - in the northwestern Pacific (Kronotsky Bay and Meiji Seamount). Ages of tephra layers have been estimated based on age-depth models for the cores developed in the result of litho- and biostratigraphic studies, paleomagnetic and oxygen-isotope research, and 14C dating. Tephra from all these layers have been characterized based on morphology of glass shards, optical properties (refractive indices), and chemical composition of glass (major and trace elements) and minerals (major elements). About 3500 precise and consistent electron probe and ~200 LA-ICP-MS analyses of volcanic glasses and 1200 electron probe analyses of minerals comprise the core of our new data base. Processing of these data has allowed us to correlate a number of tephra layers between the cores in each of the studied regions. Several tephra layers have been correlated between the Bering Sea and Pacific cores. These results permit direct comparisons of the paleoceanological records over the vast area in the northwestern Pacific domain. Studied tephra layers form the basis of

  18. A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies

    NASA Technical Reports Server (NTRS)

    Thomas, Herman H.

    1987-01-01

    A model of ocean basin crustal magnetization measured at satellite altitudes is developed which will serve both as background to which anomalous magnetizations can be contrasted and as a beginning point for studies of tectonic modification of normal ocean crust. The model is based on published data concerned with the petrology and magnetization of the ocean crust and consists of viscous magnetization and induced magnetization estimated for individual crustal layers. Thermal remanent magnetization and chemical remanent magnetization are excluded from the model because seafloor spreading anomalies are too short in wavelength to be resolved at satellite altitudes. The exception to this generalization is found at the oceanic magnetic quiet zones where thermal remanent magnetization and chemical remanent magnetization must be considered along with viscous magnetization and induced magnetization.

  19. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  20. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Liheng; Dong, Yanhui; Xie, Yueqing; Song, Fan; Wei, Yaqiang; Zhang, Jiangyi

    2016-12-01

    Based on analysis of groundwater hydrogeochemical and isotopic data, this study aims to identify the recharge sources and understand geochemical evolution of groundwater along the downstream section of the Shule River, northwest China, including two sub-basins. Groundwater samples from the Tashi sub-basin show markedly depleted stable isotopes compared to those in the Guazhou sub-basin. This difference suggests that groundwater in the Tashi sub-basin mainly originates from meltwater in the Qilian Mountains, while the groundwater in the Guazhou sub-basin may be recharged by seepage of the Shule River water. During the groundwater flow process in the Tashi sub-basin, minerals within the aquifer material (e.g., halite, calcite, dolomite, gypsum) dissolve in groundwater. Mineral dissolution leads to strongly linear relationships between Na+ and Cl- and between Mg2++ Ca2+ and SO4 2- + HCO3 -, with stoichiometry ratios of approximately 1:1 in both cases. The ion-exchange reaction plays a dominant role in hydrogeochemical evolution of groundwater in the Guazhou sub-basin and causes a good linear relationship between (Mg2++ Ca2+)-(SO4 2- + HCO3 -) and (Na++ K+)-Cl- with a slope of -0.89 and also results in positive chloroalkaline indices CAI 1 and CAI 2. The scientific results have implications for groundwater management in the downstream section of Shule River. As an important irrigation district in Hexi Corridor, groundwater in the Guazhou sub-basin should be used sustainably and rationally because its recharge source is not as abundant as expected. It is recommended that the surface water should be used efficiently and routinely, while groundwater exploitation should be limited as much as possible.

  1. Distribution of dissolved inorganic and organic carbon in the Eurasian Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Anderson, Leif G.; Olsson, Kristina; Skoog, Annelie

    Measurements of total carbonate (total inorganic carbon) and total organic carbon were carried out during the International Arctic Ocean Expedition 91 on three sections across the Nansen and Amundsen basins, and into the Makarov Basin. In the surface mixed layer a distinct front was observed to the north, identified by elevated total carbonate concentrations, reflecting the signature of Siberian river runoff. This front forms the southern border of the Siberian Branch of the Transpolar Drift, which is located over the northern part of the Nansen Basin, at the eastern part of the investigated area (about 30° E). To the west, the front is located over the tip of the Yermak Plateau, showing the very wide extent of the Transpolar Drift just north of the Fram Strait. Within the Siberian Branch, about 200 km north of the front, a maximum in the total organic carbon concentration may indicate a shorter residence time since the water left the river mouth, possibly related to a higher flow rate. At the tip of the Morris Jesup Plateau, clear signs of outflowing Canadian Basin waters are seen. In the surface layer, high total carbonate concentrations were present in the water of salinity 33.1, indicating upper halocline water. At intermediate depths (1500 - 2000 m), elevated total carbonate concentrations demonstrate the existence of the outflowing Canadian Basin intermediate water. Part of this outflowing water follows the continental slope to the south while part is injected into the Makarov Basin.

  2. Long-term sea-level fluctuations driven by ocean basin dynamics.

    PubMed

    Müller, R Dietmar; Sdrolias, Maria; Gaina, Carmen; Steinberger, Bernhard; Heine, Christian

    2008-03-07

    Earth's long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (approximately 145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from approximately 40 to approximately 250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin-based sea-level estimates with ocean basin reconstructions.

  3. Oceanic crust of the Grenada Basin in the Southern Lesser Antilles Arc Platform

    NASA Astrophysics Data System (ADS)

    Speed, R. C.; Walker, J. A.

    1991-03-01

    Seismic refraction data permit the southern Lesser Antilles arc and surrounding regions to be divided by the velocity of their basement. We propose that high-velocity basement of the arc platform beneath the Grenadine islands and below a part of the Tobago Trough forearc basin is oceanic and continuous and was originally connected with oceanic crust of the Grenada Basin. Low-velocity basements of the Tobago terrane and the arc platform from St. Vincent north lie south and north, respectively, of the high-velocity basement of the arc platform. An oceanic origin of this high-velocity crust in the Grenadines is argued to be more plausible than an origin as unroofed lower arc crust. The segment of probable oceanic crust in the arc platform was greatly uplifted during development of the present island arc, mainly in late Neogene time, relative to the Grenada Basin and Tobago Trough. Accepting the proposition of shallow oceanic crust in the Grenadines, early middle Eocene and possibly older pillow basalts of Mayreau, the oldest rock unit of the southern Lesser Antilles arc platform, may be an exposure of such basement. Major and minor element compositions of Mayreau Basalt are indicative of a spreading rather than arc origin. The stratigraphy of the pillow basalts indicates extrusion in an open marine environment, distant or shielded from sources of arc or continental sediment, followed by a period of pelagic sedimentation above the carbonate compensation depth. The Eocene basalt and pelagic cover formed a relatively deep floor of a marine basin in which arc-derived turbidites and pelagic sediments accumulated over the succeeding 25-30 ma. Such basalts thus indicate a probable spreading origin of the Grenada Basin and an age of cessation of spreading in the region of Mayreau in Eocene time. The configuration of the Eocene basin and the direction of spreading, however, are unknowns. Regional structural relationships imply the spreading was probably backarc, an origin also

  4. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Rousse, Sonia; Labails, Cinthia; Smethurst, Mark A.

    2009-06-01

    We present a revised model for the opening of the South Atlantic Ocean founded on a remapping of the continent-ocean boundaries and Aptian salt basins, the chronology of magmatic activity in and around the ocean basin and on the timing and character of associated intraplate deformation in Africa and South America. The new plate tectonic model is internally consistent and consistent with globally balanced plate motion solutions. The model includes realistic scenarios for intraplate deformation, pre-drift extension and seafloor spreading. Within the model, Aptian salt basins preserved in the South American (Brazilian) and African (Angola, Congo, Gabon) continental shelves are reunited in their original positions as parts of a single syn-rift basin in near subtropical latitudes (10°S-27°S). The basin was dissected at around 112 Ma (Aptian-Albian boundary) when the model suggests that seafloor spreading commenced north of the Walvis Ridge-Rio Grande Rise.

  5. Cheirimedon foscae sp. nov. (Amphipoda: Lysianassidae: Tryphosinae) from the deep sea Campos Basin, Southwestern Atlantic Ocean.

    PubMed

    Siqueira, Silvana Gomes L; Serejo, Cristiana S

    2014-10-15

    A new species of lysianassid amphipod belonging to the genus Cheirimedon was collected on the continental slope of the Campos Basin, the largest oil reserve in Brazilian waters. This is the first record of the genus Cheirimedon from the Atlantic Ocean, which was previously restricted to the Antarctic and Tasmanian sea. The new species is fully illustrated and compared with related species. Additionally, a world key to the Cheirimedon species is provided. 

  6. On the origin of late Holocene sea-level highstands within equatorial ocean basins

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Milne, G. A.

    2002-11-01

    Late Holocene sea-level highstands of amplitude ˜3 m are endemic to equatorial ocean basins. These highstands imply an ongoing and moderate, sub-mm/yr, sea-level fall in the far field of the Late Pleistocene ice cover that has long been linked to the process of glacial isostatic adjustment (GIA; Clark et al., 1978). Mitrovica and Peltier (1991) coined the term 'equatorial ocean syphoning' to describe the GIA-induced sea-level fall and they provided the first physical explanation for the process. They argued that water migrated away from far-field equatorial ocean basins in order to fill space vacated by collapsing forebulges at the periphery of previously glaciated regions. We provide a complete physical explanation for the origin of equatorial ocean syphoning, and the associated development of sea-level highstands, using numerical solutions of the equation that governs meltwater redistribution on spherical, viscoelastic Earth models. In particular, we separate the total predicted sea-level change into contributions associated with ice and meltwater loading effects, and, by doing so, isolate a second mechanism that contributes significantly to the ocean syphoning process. Ocean loading at continental margins induces a 'levering' of continents and a subsidence of offshore regions that has also long been recognized within the GIA literature (Walcott, 1972). We show that the influx of water into the volume created by this subsidence produces a sea-level fall at locations distant from these margins—indeed over the major ocean basins—that is comparable in amplitude to the syphoning mechanism isolated by Mitrovica and Peltier (1991).

  7. We are in need of sampling the sedimentary cover and bedrock in the Amerasia Basin. (Suggested site locations in the Makarov Basin, the Mendeleev and Lomonosov ridges and adjacent areas.)

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, N. N.

    2010-12-01

    The Amerasia Basin has a complex origin; alone, the geophysical data can support very different hypotheses. For understanding the tectonic evolution of the Basin and origin of the ridges and troughs it is important to collect geological samples. Based on analyzed seismic data (NP-28 and 26, HOTRAX, Arctic-2000 and TransArctic) over the Makarov Basin, the Mendeleev and Lomonosov ridges and adjacent areas, numbers of key drill sites are proposed. All proposed sites in combinations with other geophysical research of the area are fit well with most of the Site Survey Data Requirements (IODP) for a drilling site. Bedrock samples from key locations are especially needed, with full video or photo documentation of the sampling for avoiding later debates about whether bedrock or ice-drift was collected. Due to close locations to a sea bottom, bedrock can be sampled by gravity piston-cores or shallow drilling. Full stratigraphic sections though the Cenozoic and older sedimentary successions are needed at other proposed key locations for understanding the tectonic evolution of the Amerasia Basin. The depositional environment of the key reflections related to Cenozoic shallow water environments, as recorded in the ACEX drillholes, needs to be investigated in other locations. We will then be able to define better the nature of particular morphological features and construct more reliable tectonic models of the Amerasia Basin, in general.

  8. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Lobkovsky, L. I.; Kononov, M. V.; Dobretsov, N. L.; Vernikovsky, V. A.; Sokolov, S. D.; Shipilov, E. V.

    2013-01-01

    The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.

  9. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  10. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  11. Assessment of Plio-Pleistocene Sea Surface Temperature Evolution Across Ocean Basins, Hemispheres, and Latitudes

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Lawrence, K. T.; Mauriello, H.; Wilson, J.; Holte, L.

    2015-12-01

    New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this

  12. Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Dettinger, M.D.

    1996-01-01

    This report briefly describes the general quality and chemical character of the ground water, discusses in detail the geochemical and hydrologic processes that produce the chemical and isotopic compositions of water in the two principal types of aquifers (basin fill and carbonate rock), delineates flow systems in carbonate-rock aquifers of southern Nevada, and discusses ground-water ages and flow velocities within the carbonate-rock systems.

  13. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Thomas, S. A.; Deeks, N.; Sivhed, U.

    1997-04-01

    Southernmost Sweden, Bornholm and the surrounding Baltic Sea region are located on a large-scale releasing bend in the dextral strike-slip system of the Tornquist Zone, with its resulting pull-apart basins. The well constrained geology of Scania and Bornholm has been combined with detailed on- and offshore borehole data and three proprietary marine seismic surveys. This in conjunction with supplementary BABEL deep seismic reflection findings allows a combined 3D interpretation of sediment/structure interactions. As a result, a regional interpretation has emerged which gives a new understanding of the interplay between structural movement on a complex strike-slip fault system (Tornquist Zone) and its intrazonal depressions (Vomb Trough and Colonus Shale Trough) as well as the sedimentation history of associated areas of sediment accumulation (Rønne and Arnager Grabens, Höllviken Halfgraben, Hanö Bay Basin and Skurup Platform). Detailed sequential litho- and seismo-stratigraphic descriptions have been possible by combination of the various data sets. This resulted in the clarification or recognition of previously unknown structural limits to sub-basins and highs in the study area. A 3D chronological (4D) model for the development of the region is proposed. This model takes into account the long-lived structural history combining elements of strike-slip, extension and inversion tectonics. The deep-seated faulting controlling these structures is integrated with the deep structure as revealed by the BABEL line in this area.

  14. Amirante Basin, western Indian Ocean: Possible impact site of the Cretaceous/Tertiary extinction bolide?

    NASA Astrophysics Data System (ADS)

    Hartnady, C. J. H.

    1986-05-01

    If an impact event caused the mass extinctions and geochemical anomalies at the Cretaceous/Tertiary boundary, it probably occurred in an oceanic area. However, no convincing impact site has yet been discovered. Whereas Late Cretaceous magnetic lineations in other oceans show no obvious signs of disturbance at the Tertiary boundary, the end-Cretaceous African plate boundary in the Indian Ocean provides evidence of major tectonic reorganization at or shortly after magnetostratigraphic chron C29r. Immediately south of the microcontinental Seychelles Bank, the Amirante Basin has a roughly circular shape of about 300 km diameter, is partially ringed by enigmatic “arc” and “trench” structures, and is located within oceanic crust of Late Cretaceous age. It is therefore a possible impact site. Extensive chaotic slump structures apparently exist at the appropriate level on the East African continental margin, and they may indicate its proximity to the mega-earthquake focus and/or giant tsunamis in the Somali Basin. By triggering readjustments along the Indian-African and Antarctic-African plate boundaries and thus altering the regional balance of driving forces, the impact may have affected plate motions.

  15. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  16. Detection of baleen whales on an ocean-bottom seismometer array in the Lau Basin

    NASA Astrophysics Data System (ADS)

    Brodie, D.; Dunn, R.

    2011-12-01

    Long-term deployment of ocean-bottom seismometer arrays provides a unique opportunity for identifying and tracking whales in a manner not usually possible in biological studies. Large baleen whales emit low frequency (>5Hz) sounds called 'calls' or 'songs' that can be detected on either the hydrophone or vertical channel of the instrument at distances in excess of 50 km. The calls are distinct to individual species and even geographical groups among species, and are thought to serve a variety of purposes. Distinct repeating calls can be automatically identified using matched-filter processing, and whales can be located in a manner similar to that of earthquakes. Many baleen whale species are endangered, and little is known about their geographic distribution, population dynamics, and basic behaviors. The Lau back-arc basin, a tectonically active, elongated basin bounded by volcanic shallows, lies in the southwestern Pacific Ocean between Fiji and Tonga. Although whales are known to exist around Fiji and Tonga, little is understood about the population dynamics and migration patterns throughout the basin. Twenty-nine broadband ocean-bottom seismometers deployed in the basin recorded data for approximately ten months during the years 2009-2010. To date, four species of whales have been identified in the data: Blue (one call type), Humpback (two call types, including long-lasting 'songs'), Bryde's (one call type), and Fin whales (three call types). Three as-yet-unknown call types have also been identified. After the calls were identified, idealized spectrograms of the known calls were matched against the entire data set using an auto-detection algorithm. The auto-detection output provides the number of calls and times of year when each call type was recorded. Based on the results, whales migrate seasonally through the basin with some overlapping of species. Initial results also indicate that different species of whales are more common in some parts of the basin than

  17. The Eurasian and Makarov Basins target changes in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Polyakov, I.; Padman, L.; Pnyushkov, A.; Rember, R.; Ivanov, V.; Lenn, Y. D.

    2015-12-01

    The Arctic Ocean interior is warming, and there is no indication that the rate of warming will decrease in the near future. The relative role of the interior ocean's warmth in setting net energy flux to, and the mass balance of, Arctic sea ice, however, is still under debate. Thus, quantifying this flux and understanding mechanisms for redistributing heat in the ocean interior are of particular importance. Warm (>0°C) intermediate-depth (150-900m) water of Atlantic origin (the so-called Atlantic Water, AW) is the major source of heat for the ocean interior. Ice thickness along the continental slope east of Svalbard is much less than that expected of first-year ice, suggesting that AW has a direct impact on sea ice just after entering the Arctic. However, in the Canadian Basin, far away from Fram Strait, overlying fresher and colder stable layers effectively insulate the upper mixed layer and ice from impacts of the AW heat. Even though the eastern Eurasian Basin (EEB) is separated from Fram Strait by hundreds of kilometers, the AW heat finds its ways for reaching the ice base in this part of the Arctic Ocean. A distinct process, double diffusion convection, plays an important role in vertical redistribution of AW heat in this region. Double diffusion convection is typically identified as a vertical sequence of almost-homogeneous convective layers separated by high-gradient interfaces, forming a double diffusive "staircase". The staircase structure is a consequence of the differing molecular diffusivities of heat and salt; surprisingly, even though molecular properties drive the instability, resulting net fluxes can be very large, up to several W/m2. The interaction of shear and diffusive layering can significantly alter the heat (and momentum) flux through a staircase. The existing data set are limited and further detailed process studies in the EEB targeting the unique mechanisms of oceanic heat exchange in the interior of the EEB are required.

  18. Structure of the deep oceanic lithosphere in the Northwestern Pacific ocean basin derived from active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S.

    2015-12-01

    Many seismological studies have detected the sharp seismic discontinuities in the upper mantle, some of which are interpreted the lithosphere-asthenosphere boundary (LAB). However there are few data at the old Pacific plate, in particular at ocean basin, which is critical information for understanding nature of the oceanic LAB. In 2014 we conducted an active-source refraction/reflection survey along a 1130-km-long line in southeast of the Shatsky Rise. Five ocean bottom seismometers (OBSs) were deployed and recovered by R/V Kairei of JAMSTEC. We used an airgun array with a total volume of 7,800 cubic inches with firing at intervals of 200 m. Multi-channel seismic reflection (MCS) data were also collected with a 444-channel, 6,000-m-long streamer cable. In OBS records the apparent velocity of the refraction waves from the uppermost mantle was high (< 8.6 km/sec), and considered to be caused by preferred orientation of olivine (e.g., Kodaira et al., 2014). Another remarkable feature is wide-angle reflection waves from the deep lithosphere at large (150-500 km) offsets. We applied the traveltime mapping method (Fujie et al., 2006), forward analysis (Zelt and Smith, 1992) and the amplitude modeling (Larsen and Grieger, 1998) to the OBS data. The results show that deep mantle reflectors exist at the depths from 35 to 60 km, and one possible explanation is that these reflectors correspond to patched low velocity zones around the base of the lithosphere. On MCS sections the clear and sharp Moho was imaged only at the southwestern end of the profile, but Moho was ambiguous or even not imaged in the most part of the profile. Since our seismic line covers the oceanic lithosphere with different ages that correspond to different stages of the Shatsky activity, the Moho appearance may reflect the variation of the Shatsky activity.

  19. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    USGS Publications Warehouse

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.

  20. Magnetic anomaly pattern of the Marsili Basin (southern Tyrrhenian Sea, Italy): Ultrafast oceanic spreading or not?

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Nicolosi, I.; Chiappini, M.

    2011-12-01

    The Marsili Basin is a ~100x70 km flat and deep (3000-3500 m) basin located in the southern Tyrrhenian Sea, encircling the huge 16x50 km (and ~3000 m high) Marsili seamount. Though results from ODP Site 650 had proven more than twenty years ago the oceanic nature of the Marsili Basin, oceanic-type linear magnetic anomalies above the basin floor were clearly documented only in the last few years. Nicolosi et al. (2006) reported on spectral analysis of both airborne and shipborne magnetic maps from the Marsili Basin, and showed the occurrence of six magnetic anomaly stripes covering the flat basin floor, symmetrically arranged with respect to a central positive anomaly located above the Marsili seamount. By assuming that the two 17 km wide lateral normal polarity stripes formed during the Olduvai chron (1.77-1.95 Ma), Nicolosi et al. (2006) suggested that the Marsili Basin opened at the ultrafast full-spreading rate of ~19 cm/yr between 2.1 and 1.6 Ma. They also proposed that the normally magnetized Marsili seamount formed during the Brunhes chron (after 0.78 Ma), when slower spreading (coupled with huge magmatic inflation) resumed, after ~1 Myr of spreading cessation. The spreading model by Nicolosi et al. (2006) has been recently questioned by Cocchi et al. (2009), who argued that filtering had created fictitious anomaly stripes. Cocchi et al. (2009) also gathered new high-resolution shipborne magnetic anomaly data from the Marsili seamount and surrounding basin area. They found two tiny positive magnetic anomaly stripes flanking the Marsili seamount in the north, which they interpreted as due to spreading occurring during the Jaramillo subchron (0.99-1.07 Ma). Consequently, they calculated a post-1.95 Ma initial spreading rate of 3.4 cm/yr (instead of 19 cm/yr), and supported a decreasing yet continuous spreading until Present. Here we discuss the whole magnetic residual evidence from the Marsili Basin. First, we show that magnetic anomaly stripes are also

  1. Seasonal evolution of the upper-ocean adjacent to the South Orkney Islands, Southern Ocean: Results from a “lazy biological mooring”

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Nicholls, Keith W.; Renfrew, Ian A.; Boehme, Lars; Biuw, Martin; Fedak, Mike

    2011-07-01

    A serendipitous >8-month time series of hydrographic properties was obtained from the vicinity of the South Orkney Islands, Southern Ocean, by tagging a southern elephant seal ( Mirounga leonina) on Signy Island with a Conductivity-Temperature-Depth/Satellite-Relay Data Logger (CTD-SRDL) in March 2007. Such a time series (including data from the austral autumn and winter) would have been extremely difficult to obtain via other means, and it illustrates with unprecedented temporal resolution the seasonal progression of upper-ocean water mass properties and stratification at this location. Sea ice production values of around 0.15-0.4 m month -1 for April to July were inferred from the progression of salinity, with significant levels still in September (around 0.2 m month -1). However, these values presume that advective processes have negligible effect on the salinity changes observed locally; this presumption is seen to be inappropriate in this case, and it is argued that the ice production rates inferred are better considered as "smeared averages" for the region of the northwestern Weddell Sea upstream from the South Orkneys. The impact of such advective effects is illustrated by contrasting the observed hydrographic series with the output of a one-dimensional model of the upper-ocean forced with local fluxes. It is found that the difference in magnitude between local (modelled) and regional (inferred) ice production is significant, with estimates differing by around a factor of two. A halo of markedly low sea ice concentration around the South Orkneys during the austral winter offers at least a partial explanation for this, since it enabled stronger atmosphere/ocean fluxes to persist and hence stronger ice production to prevail locally compared with the upstream region. The year of data collection was an El Niño year, and it is well-established that this phenomenon can impact strongly on the surface ocean and ice field in this sector of the Southern Ocean, thus

  2. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

    NASA Astrophysics Data System (ADS)

    Mengel, M.; Feldmann, J.; Levermann, A.

    2016-01-01

    Antarctica's contribution to global sea-level rise has recently been increasing. Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity below West Antarctica's Filchner-Ronne ice shelf within the next two centuries. The ice basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. It is unclear whether future ice loss will be dominated by ice instability or anthropogenic forcing. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding-line retreat, that the sea-level response of the Filchner-Ronne ice basin is not dominated by ice instability and follows the strength of the forcing quasi-linearly. We find that the ice loss reduces after each pulse of projected warm water intrusion. The long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice-sheet instability.

  3. Methods for Calibrating Basin-Wide Hydroacoustic Propagation in the Indian Ocean

    SciTech Connect

    Blackman, D; de Groot-Hedlin, C; Orcutt, J A; Harben, P H; Clarke, D B; Ramirez, A L

    2004-10-11

    This collaborative project was designed to test and compare methods for achieving full ocean basin propagation of hydroacoustic signals in the 5-100 Hz frequency band. Plans for a systematic calibration of the International Monitoring System (IMS) for nuclear testing were under consideration in 2000/2001. The results from this project provide information to guide such planning for future ocean basin calibration work. Several acoustic source types were tested during two sea-going experiments and most were successful at generating signals that propagated hundreds to thousands of km to be recorded at the Indian Ocean IMS hydrophone stations. Development and numerical modeling of imploding glass sphere sources was one component of this testing. The intent was to design a relatively simple-to-use source that is not subject to restrictions that can limit use of explosive charges, but whose signal is large enough to propagate 100-1000's km range. Analysis of IMS hydrophone data recording during the experiments was used to illustrate the extent of energy loss during signal propagation and to assess the accuracy with which the small acoustic sources could be located using methods typically employed for nuclear monitoring.

  4. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  5. Climate relevant trace gases (N2O and CH4) in the Eurasian Basin (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Verdugo, Josefa; Damm, Ellen; Snoeijs, Pauline; Díez, Beatriz; Farías, Laura

    2016-11-01

    The concentration of greenhouse gases, including nitrous oxide (N2O), methane (CH4), and compounds such as total dimethylsulfoniopropionate (DMSPt), along with other oceanographic variables were measured in the ice-covered Arctic Ocean within the Eurasian Basin (EAB). The EAB is affected by the perennial ice-pack and has seasonal microalgal blooms, which in turn may stimulate microbes involved in trace gas cycling. Data collection was carried out on board the LOMROG III cruise during the boreal summer of 2012. Water samples were collected from the surface to the bottom layer (reaching 4300 m depth) along a South-North transect (SNT), from 82.19°N, 8.75°E to 89.26°N, 58.84°W, crossing the EAB through the Nansen and Amundsen Basins. The Polar Mixed Layer and halocline waters along the SNT showed a heterogeneous distribution of N2O, CH4 and DMSPt, fluctuating between 42-111 and 27-649% saturation for N2O and CH4, respectively; and from 3.5 to 58.9 nmol L-1 for DMSPt. Spatial patterns revealed that while CH4 and DMSPt peaked in the Nansen Basin, N2O was higher in the Amundsen Basin. In the Atlantic Intermediate Water and Arctic Deep Water N2O and CH4 distributions were also heterogeneous with saturations between 52% and 106% and 28% and 340%, respectively. Remarkably, the Amundsen Basin contained less CH4 than the Nansen Basin and while both basins were mostly under-saturated in N2O. We propose that part of the CH4 and N2O may be microbiologically consumed via methanotrophy, denitrification, or even diazotrophy, as intermediate and deep waters move throughout EAB associated with the overturning water mass circulation. This study contributes to baseline information on gas distribution in a region that is increasingly subject to rapid environmental changes, and that has an important role on global ocean circulation and climate regulation.

  6. More than one way to stretch: A tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Smith, R.P.

    1998-01-01

    The eastern Snake River Plain of southern Idaho poses a paradoxical problem because it is nearly aseismic and unfaulted although it appears to be actively extending in a SW-NE direction continuously with the adjacent block-faulted Basin and Range Province. The plain represents the 100-km-wide track of the Yellowstone hotspot during the last ???16-17 m.y., and its crust has been heavily intruded by mafic magma, some of which has erupted to the surface as extensive basalt flows. Outside the plain's distinct topographic boundaries is a transition zone 30-100 km wide that has variable expression of normal faulting and magmatic activity as compared with the surrounding Basin and Range Province. Many models for the evolution of the Snake River Plain have as an integral component the suggestion that the crust of the plain became strong enough through basaltic intrusion to resist extensional deformation. However, both the boundaries of the plain and its transition zone lack any evidence of zones of strike slip or other accommodation that would allow the plain to remain intact while the Basin and Range Province extended around it; instead, the plain is coupled to its surroundings and extending with them. We estimate strain rates for the northern Basin and Range Province from various lines of evidence and show that these strains would far exceed the elastic limit of any rocks coupled to the Basin and Range; thus, if the plain is extending along with its surroundings, as the geologic evidence indicates, it must be doing so by a nearly aseismic process. Evidence of the process is provided by volcanic rift zones, indicators of subsurface dikes, which trend across the plain perpendicular to its axis. We suggest that variable magmatic strain accommodation, by emplacement and inflation of dikes perpendicular to the least principal stress in the elastic crust, allows the crust of the plain to extend nearly aseismically. Dike injection releases accumulated elastic strain but

  7. From source to sink in central Gondwana: Exhumation of the Precambrian basement rocks of Tanzania and sediment accumulation in the adjacent Congo basin

    NASA Astrophysics Data System (ADS)

    Kasanzu, Charles Happe; Linol, Bastien; Wit, Maarten J.; Brown, Roderick; Persano, Cristina; Stuart, Finlay M.

    2016-09-01

    Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronometry data are reported and used to unravel the exhumation history of crystalline basement rocks from the elevated (>1000 m above sea level) but low-relief Tanzanian Craton. Coeval episodes of sedimentation documented within adjacent Paleozoic to Mesozoic basins of southern Tanzania and the Congo basin of the Democratic Republic of Congo indicate that most of the cooling in the basement rocks in Tanzania was linked to erosion. Basement samples were from an exploration borehole located within the craton and up to 2200 m below surface. Surface samples were also analyzed. AFT dates range between 317 ± 33 Ma and 188 ± 44 Ma. Alpha (Ft)-corrected AHe dates are between 433 ± 24 Ma and 154 ± 20 Ma. Modeling of the data reveals two important periods of cooling within the craton: one during the Carboniferous-Triassic (340-220 Ma) and a later, less well constrained episode, during the late Cretaceous. The later exhumation is well detected proximal to the East African Rift (70 Ma). Thermal histories combined with the estimated geothermal gradient of 9°C/km constrained by the AFT and AHe data from the craton and a mean surface temperature of 20°C indicate removal of up to 9 ± 2 km of overburden since the end of Paleozoic. The correlation of erosion of the craton and sedimentation and subsidence within the Congo basin in the Paleozoic may indicate regional flexural geodynamics of the lithosphere due to lithosphere buckling induced by far-field compressional tectonic processes and thereafter through deep mantle upwelling and epeirogeny tectonic processes.

  8. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  9. Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005-2015

    NASA Astrophysics Data System (ADS)

    Zhao, Mengnan; Timmermans, Mary-Louise; Cole, Sylvia; Krishfield, Richard; Toole, John

    2016-08-01

    The eddy field across the Arctic Ocean's Canada Basin is analyzed using Ice-Tethered Profiler (ITP) and moored measurements of temperature, salinity, and velocity spanning 2005 to 2015. ITPs encountered 243 eddies, 98% of which were anticyclones, with approximately 70% of these having anomalously cold cores. The spatially and temporally varying eddy field is analyzed accounting for sampling biases in the unevenly distributed ITP data and caveats in detection methods. The highest concentration of eddies was found in the western and southern portions of the basin, close to topographic margins and boundaries of the Beaufort Gyre. The number of lower halocline eddies approximately doubled from 2005-2012 to 2013-2014. The increased eddy density suggests more active baroclinic instability of the Beaufort Gyre that releases available potential energy to balance the wind energy input; this may stabilize the Gyre spin-up and associated freshwater increase.

  10. Oceanic transform earthquakes with unusual mechanisms or locations - Relation to fault geometry and state of stress in the adjacent lithosphere

    NASA Technical Reports Server (NTRS)

    Wolfe, Cecily J.; Bergman, Eric A.; Solomon, Sean C.

    1993-01-01

    Results are presented of a search for transform earthquakes departing from the pattern whereby they occur on the principal transform displacement zone (PTDZ) and have strike-slip mechanisms consistent with transform-parallel motion. The search was conducted on the basis of source mechanisms and locations taken from the Harvard centroid moment tensor catalog and the bulletin of the International Seismological Center. The source mechanisms and centroid depths of 10 such earthquakes on the St. Paul's, Marathon, Owen, Heezen, Tharp, Menard, and Rivera transforms are determined from inversions of long-period body waveforms. Much of the anomalous earthquake activity on oceanic transforms is associated with complexities in the geometry of the PTDZ or the presence of large structural features that may influence slip on the fault.

  11. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean.

    PubMed

    Zwirglmaier, Katrin; Heywood, Jane L; Chamberlain, Katie; Woodward, E Malcolm S; Zubkov, Mikhail V; Scanlan, Dave J

    2007-05-01

    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are major contributors to oceanic primary production. The genera are genetically diverse, comprising several known ecotypes or lineages. However, little is known of the distribution of these lineages over large geographic areas. Here, we analysed the relative abundance of Prochlorococcus ecotypes and Synechococcus lineages at the ocean basin scale along an Atlantic Meridional Transect (AMT) using dot blot hybridization and fluorescence in situ hybridization (FISH) techniques. The transect covered several contrasting oceanic provinces (gyres, upwelling, temperate regions) as well as environmentally 'equivalent' regions in the northern and southern hemisphere (northern and southern gyres and temperate regions). Flow cytometric data revealed a discrete separation in abundance of major picocyanobacterial genera. Prochlorococcus reached highest abundance in oligotrophic regions, while more mesotrophic waters were dominated by Synechococcus. Individual genetic lineages of both Prochlorococcus and Synechococcus showed highly similar distributions in corresponding regions in the northern and southern hemisphere. In addition, Prochlorococcus showed a distinctive depth distribution, with HLI and HLII ecotypes near the surface and co-occurring LL ecotypes further down in the water column. Conversely, Synechococcus generally revealed no obvious depth preference, but did show highly specific distribution at the horizontal scale, with clades I and IV particularly dominating temperate, mesotrophic waters in both the northern and southern hemispheres. The data clearly reveal that specific picocyanobacterial lineages proliferate in similar oceanic provinces separated by large spatial scales. Furthermore, comparison with an earlier AMT dataset suggests that basin scale distribution patterns for Prochlorococcus ecotypes are remarkably reproducible from year to year.

  12. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    NASA Astrophysics Data System (ADS)

    Patara, L.; Pinardi, N.; Corselli, C.; Malinverno, E.; Tonani, M.; Santoleri, R.; Masina, S.

    2008-08-01

    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999 May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are higher than 200 m day-1. The current vertical velocity field is computed from a high resolution Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day-1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However, we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels thus stimulating primary production and grazing a few weeks before an enhanced vertical flux is found in the sediment traps. By analyzing the delayed effects of ocean vertical velocities on deep particle fluxes we envisage a spectrum of particle sinking speeds ranging from about 100 m day-1 to more than 200 m day-1. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  13. Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, B.; Sage, F.; Abtout, A.; Klingelhoefer, F.; Yelles-Chaouche, K.; Schnürle, P.; Marok, A.; Déverchère, J.; Arab, M.; Galve, A.; Collot, J. Y.

    2015-06-01

    We determine the deep structure of the eastern Algerian basin and its southern margin in the Annaba region (easternmost Algeria), to better constrain the plate kinematic reconstruction in this region. This study is based on new geophysical data collected during the SPIRAL cruise in 2009, which included a wide-angle, 240-km-long, onshore-offshore seismic profile, multichannel seismic reflection lines and gravity and magnetic data, complemented by the available geophysical data for the study area. The analysis and modelling of the wide-angle seismic data including refracted and reflected arrival travel times, and integrated with the multichannel seismic reflection lines, reveal the detailed structure of an ocean-to-continent transition. In the deep basin, there is an ˜5.5-km-thick oceanic crust that is composed of two layers. The upper layer of the crust is defined by a high velocity gradient and P-wave velocities between 4.8 and 6.0 km s-1, from the top to the bottom. The lower crust is defined by a lower velocity gradient and P-wave velocity between 6.0 and 7.1 km s-1. The Poisson ratio in the lower crust deduced from S-wave modelling is 0.28, which indicates that the lower crust is composed mainly of gabbros. Below the continental edge, a typical continental crust with P-wave velocities between 5.2 and 7.0 km s-1, from the top to the bottom, shows a gradual seaward thinning of ˜15 km over an ˜35-km distance. This thinning is regularly distributed between the upper and lower crusts, and it characterizes a rifted margin, which has resulted from backarc extension at the rear of the Kabylian block, here represented by the Edough Massif at the shoreline. Above the continental basement, an ˜2-km-thick, pre-Messinian sediment layer with a complex internal structure is interpreted as allochthonous nappes of flysch backthrusted on the margin during the collision of Kabylia with the African margin. The crustal structure, moreover, provides evidence for Miocene

  14. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  15. Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis

    SciTech Connect

    Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

    2010-10-01

    Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3°N, 73°E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

  16. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean.

    PubMed

    Polyakov, Igor V; Pnyushkov, Andrey V; Alkire, Matthew B; Ashik, Igor M; Baumann, Till M; Carmack, Eddy C; Goszczko, Ilona; Guthrie, John; Ivanov, Vladimir V; Kanzow, Torsten; Krishfield, Richard; Kwok, Ronald; Sundfjord, Arild; Morison, James; Rember, Robert; Yulin, Alexander

    2017-04-06

    Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.

  17. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  18. Reconstructing the lost eastern Tethys Ocean Basin: Convergence history of the SE Asian margin and marine gateways

    NASA Astrophysics Data System (ADS)

    Heine, Christian; Müller, R. Dietmar; Gaina, Carmen

    Plate tectonic reconstructions for the late Mesozoic-Cenozoic evolution of the eastern Tethyan Ocean Basin, separating eastern Gondwanaland from Proto-Southeast Asia, are usually based on geological data gathered from the different tectonic blocks accreted to Southeast Asia. However, this approach only provides few constraints on the reconstruction of the eastern Tethys Ocean and the drift path of various terranes. We have used marine magnetic anomalies in the Argo and Gascoyne Abyssal Plains off the Australian Northwest Shelf, jointly with published geological data, to reconstruct the seafloor spreading history and plate tectonic evolution of the eastern Tethys and Proto-Indian Ocean basins for the time between 160 Ma and the present. Based on the assumption of symmetrical seafloor spreading and a hotspot-track-based plate reference frame, we have created a relative and absolute plate motion model and a series of oceanic paleo-age grids that show the evolution of Tethyan mid-ocean ridges and the convergence history along the southeast Asian margin through time. A thermal boundary layer model for oceanic lithosphere is used to compute approximate paleo-depths to oceanic basement to predict the opening and closing of oceanic gateways. The proposed model not only provides improved boundary conditions for paleoclimate reconstructions and modelling of oceanic currents through time, but also for understanding stress changes in the overriding plate and the formation of new accretionary crust along the Southeast Asian margin, driven by changing subduction parameters like hinge rollback and slab dip.

  19. Changes in nematode communities in different physiographic sites of the condor seamount (north-East atlantic ocean) and adjacent sediments.

    PubMed

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as 'oases' of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  20. Investigation of negative cloud radiative forcing over the Indian subcontinent and adjacent oceans during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Thampi, B. V.; Roca, R.

    2014-07-01

    Radiative properties of clouds over the Indian subcontinent and nearby oceanic regions (0-25° N, 60-100° E) during the Asian summer monsoon season (June-September) are investigated using the Clouds and Earth's Radiant Energy System (CERES) top-of-the-atmosphere (TOA) flux data. Using multiyear satellite data, the net cloud radiative forcing (NETCRF) at the TOA over the Indian region during the Asian monsoon season is examined. The seasonal mean NETCRF is found to be negative (with its magnitude exceeding ~30 Wm-2) over (1) the northern Bay of Bengal (close to the Myanmar-Thailand coast), (2) the Western Ghats and (3) the coastal regions of Myanmar. Such strong negative NETCRF values observed over the Indian monsoon region contradict the assumption that near cancellation between LWCRF and SWCRF is a generic property of all tropical convective regions. The seasonal mean cloud amount (high and upper middle) and corresponding cloud optical depth observed over the three regions show relatively large values compared to the rest of the Indian monsoon region. Using satellite-derived cloud data, a statistical cloud vertical model delineating the cloud cover and single-scattering albedo was developed for the three negative NETCRF regions. The shortwave (SW), longwave (LW) and net cloud radiative forcing over the three negative NETCRF regions are calculated using the rapid radiative transfer model (RRTM) with the cloud vertical model as input. The NETCRF estimated from CERES observations show good comparison with that computed using RRTM (within the uncertainty limit of CERES observations). Sensitivity tests are conducted using RRTM to identify the parameters that control the negative NETCRF observed over these regions during the summer monsoon season. Increase in atmospheric water vapor content during the summer monsoon season is found to influence the negative NETCRF values observed over the region.

  1. Changes in Nematode Communities in Different Physiographic Sites of the Condor Seamount (North-East Atlantic Ocean) and Adjacent Sediments

    PubMed Central

    Zeppilli, Daniela; Bongiorni, Lucia; Serrão Santos, Ricardo; Vanreusel, Ann

    2014-01-01

    Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in

  2. Mode of opening of an oceanic pull-apart: The 20°N Basin along the Owen Fracture Zone (NW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Rodriguez, Mathieu; Chamot-Rooke, Nicolas; Fournier, Marc; Huchon, Philippe; Delescluse, Matthias

    2013-09-01

    basins are common features observed at releasing bends along major strike-slip faults. The formation and structural evolution of such basins have mostly been investigated in the continental domain and by sandbox laboratory experiments or numerical models. Here we present recently acquired multibeam bathymetry, 3.5 kHz echo sounder, and seismic profiles across the 20°N pull-apart Basin along the India-Arabia transform boundary, known as the Owen Fracture Zone (OFZ). Using nearby oceanic drilling (Deep Sea Drilling Project 222), we constrain the structural evolution of the basin since opening some 3 Myr ago. The 20°N Basin is large (90 km long and 35 km wide) despite limited transcurrent motion (~10 km). The first stage involved the formation of a step over along the OFZ and the subsequent isolation of a subsiding half graben. Extension and subsidence were further partitioned over three distinct subbasins separated by complex sets of transverse faults. The size of the basin was enhanced by gravity-driven collapse. The 20°N Basin has been a catchment for Indus turbidites since its opening, which provide a good record of syn-sedimentary deformation. The deformation related to the subsidence of the half graben mimics rollover structures commonly encountered in salt tectonics, suggesting that subsidence was accommodated by one or several décollement layers at depth. Despite a different rheological context, the subsurface structure of the nascent oceanic 20°N Basin is very similar to the more mature continental Dead Sea Basin along the Levant Fault, which also displays subbasins separated by transverse faults.

  3. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra Basins

    USGS Publications Warehouse

    Pervez, Shahriar; Henebry, Geoffrey M.

    2016-01-01

    This dataset provides an assessment of the differential heating in the Indian Ocean (IO) and the subsequent modulation of the Ganges and Brahmaputra precipitation. Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the IO influences the Ganges precipitation and (ii) the north-south differential heating in the IO influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the IO and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature (SST) anomalies in the IO are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. The dataset consists of the spatial structure of the SST anomalies in the IO, the Ganges and the Brahmaputra precipitation dynamics, and the variability in wind, outgoing longwave radiation, and geopotential height anomalies, as well as the new geographic zones to compute west-east and north-south zonal differences in SST anomalies. The purpose of the analyses was to understand the forcing of the precipitation in these river basins associated with changes in acquired energy during different climate modes in the Indo-Pacific.This dataset corresponds to the article referred below. The data were uploaded by the figure numbers from this article. Pervez, M.S., and Henebry, G.M., 2016. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins. Remote Sens. 2016, 8(11), 901; doi: 10.3390/rs8110901

  4. A zonally averaged, three-basin ocean circulation model for climate studies

    SciTech Connect

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70{degree}N at a rate of about 17 Sv (1 Sv=10{sup 6} m{sup 3}S{sup {minus}1}) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions i.e., a restoring condition no sea-surface temperature and flux condition on sea-surface salinity are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  5. Tectonic pattern of the Mendeleev Ridge and adjacent basins: results of joint analysis of potential fields and recent Russian seismic data

    NASA Astrophysics Data System (ADS)

    Chernykh, Andrey; Astafurova, Ekaterina; Korneva, Maria; Egorova, Alena; Redko, Anton; Glebovsky, Vladimir

    2014-05-01

    The work was performed under Russian Federation State Geological mapping at a scale of 1:1 000 000 and UNCLOS programs. The study area is located between 76N-84N and 156E-168W and covers the Mendeleev Ridge, adjacent Podvodnikov, Mendeleev, Chukchi Basins and northern part of the East-Siberian Sea shelf. It is characterized by very poor magnetic and gravity data coverage. Majority of airborne magnetic and on-ice gravity surveys were carried out in the region about 40 years ago and have low spatial resolution and poor navigation. Seismic data collected earlier in the study area are presented by sparse lines of historical seismic reflection soundings and by results of deep seismic refraction and reflection observations along several geotransects. Hence, conclusions concerning tectonic structure and spatial relation of the Mendeleev Ridge with adjacent geological structures up to present day remain speculative. Joint analysis of recent seismic reflection and refraction data collected during Russian expeditions «Arctic-2011» and «Arctic-2012» with mentioned above geophysical information allowed to clarify the contours of geological structures in the study area and reveal some new peculiarities of their tectonic pattern. Particularly complex tectonic structure of the Mendeleev Ridge, changing from it's southern to the northern part and represented by two main systems of tectonic displacements is discovered. The first fault system comprises horsts/graben-bounding faults oriented preferably in N-S direction. The second system is presented by faults of NW-SE direction disturbing the first one. In the southern part of the Mendeleev Ridge such faults are the strike-slip faults with small horizontal displacements. Starting from the central part of the ridge and further to the north, displacements along strike-slip faults become progressively more pronounced and have sinistral character. In the northern part of the ridge a pull-apart structures are recognized which

  6. Stratigraphic and structural framework of the western edge of Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Mosher, D. C.; Shimeld, J.; Chian, D.; Lebedeva-Ivanova, N. N.; Evangelatos, J.; Jackson, R.

    2012-12-01

    Seismic reflection and refraction data collected in joint two-icebreaker expeditions by the U.S. and Canada between 2008 and 2011 reveal how the western edge of the Canada Basin has evolved through rifting and post rifting history. Our observations suggest that the western margin of Canada Basin (along Northwind Ridge [NR} and the northern Chukchi Borderland [CB]) is a mix of highly stretched continental and transitional crust with unique attributes that reflect local influences of NR, CB, and Alpha Ridge with the extension that formed Canada Basin. The reflection character of basement and refraction velocities indicate that the regions adjacent to NR and north-northwest of CB are probably underlain by a high-velocity (7.2-7.5 km/s) layer that may be serpentinized mantle or a transitional, intruded lower continental crust. Between these two regions, north of CB, is an area underlain by highly stretched continental crust (lower crust with velocities less than 6.7 km/s). Dredge samples collected from near NR recovered basaltic rocks. The area north and northeast of CB also contains discontinuous, segmented, bright reflections at the base of the postrift Canada Basin sediments consistent with the kind of reflections seen in magmatically intruded regions. These bright reflections may indicate a postrift magmatic pulse associated with Alpha Ridge. On top of Northwind Ridge, the stratigraphic units above basement are truncated and eroded and tilt towards Canada basin. The relationship between these units and the deepest units in Canada Basin is speculative, but they are interpreted to represent prerift or synrift deposits that were faulted during the formation of NR. Similar truncated, eroded, and tilted deposits occur along the northern part of the CB and southern Alpha Ridge and can be traced both continuously and discontinuously into Canada Basin where they unconformably underlie the younger deposits that lap onto them. The postrift depositional patterns inferred from

  7. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    NASA Astrophysics Data System (ADS)

    Patara, L.; Pinardi, N.; Corselli, C.; Malinverno, E.; Tonani, M.; Santoleri, R.; Masina, S.

    2009-03-01

    This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999-May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day-1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day-1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels - thus stimulating primary production and grazing - a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  8. Benthic macrofaunal production for a typical shelf-slope-basin region in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, Heshan; Wang, Jianjun; Liu, Kun; He, Xuebao; Lin, Junhui; Huang, Yaqin; Zhang, Shuyi; Mou, Jianfeng; Zheng, Chengxing; Wang, Yu

    2016-02-01

    Secondary production by macrofaunal communities in the western Arctic Ocean were quantified during the 4th and 5th Chinese Arctic Scientific Expeditions. The total production and P/B ratio for each sector ranged from 3.8 (±7.9) to 615.6 (±635.5) kJ m-2 yr-1 and 0.5 (± 0.2) to 0.7 (± 0.2) yr-1, respectively. The shallow shelves in the western Arctic Ocean exhibited particularly high production (178.7-615.6 kJ m-2 yr-1), particularly in the two "hotspots" - the southern and northeastern (around Barrow Canyon) Chukchi Sea. Benthic macrofaunal production decreased sharply with depth and latitude along a shelf-slope-basin transect, with values of 17.0-269.8 kJ m-2 yr-1 in slope regions and 3.8-10.1 kJ m-2 yr-1 in basins. Redundancy analysis indicated that hydrological characteristics (depth, bottom temperature and salinity) and granulometric parameters (mean particle size, % sand and % clay) show significant positive/negative correlations with total production. These correlations revealed that the dominant factors influencing benthic production are the habitat type and food supply from the overlying water column. In the Arctic, the extreme environmental conditions and low temperature constrain macrofaunal metabolic processes, such that food and energy are primarily used to increase body mass rather than for reproduction. Hence, energy turnover is relatively low at high latitudes. These data further our understanding of benthic production processes and ecosystem dynamics in the context of rapid climate change in the western Arctic Ocean.

  9. Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?

    NASA Astrophysics Data System (ADS)

    Bortolotti, Valerio; Chiari, Marco; Marroni, Michele; Pandolfi, Luca; Principi, Gianfranco; Saccani, Emilio

    2013-04-01

    All the geological constraints for an exhaustive reconstruction of the Triassic to Tertiary tectonic history of the southern Dinaric-Hellenic belt can be found in Albania and Greece. This article aims to schematically reconstruct this long tectonic evolution primarily based on a detailed analysis of the tectonic setting, the stratigraphy, the geochemistry, and the age of the ophiolites. In contrast to what was previously reported in the literature, we propose a new subdivision on a regional scale of the ophiolite complexes cropping out in Albania and Greece. This new subdivision includes six types of ophiolite occurrences, each corresponding to different tectonic units derived from a single obducted sheet. These units are represented by: (1) sub-ophiolite mélange, (2) Triassic ocean-floor ophiolites, (3) metamorphic soles, (4) Jurassic fore-arc ophiolites, (5) Jurassic intra-oceanic-arc ophiolites, and (6) Jurassic back-arc basin ophiolites. The overall features of these ophiolites are coherent with the existence of a single, though composite, oceanic basin located east of the Adria/Pelagonian continental margin. This oceanic basin was originated during the Middle Triassic and was subsequently (Early Jurassic) affected by an east-dipping intra-oceanic subduction. This subduction was responsible for the birth of intra-oceanic-arc and back-arc oceanic basins separated by a continental volcanic arc during the Early to Middle Jurassic. From the uppermost Middle Jurassic to the Early Cretaceous, an obduction developed, during which the ophiolites were thrust westwards firstly onto the neighboring oceanic lithosphere and then onto the Adria margin.

  10. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model

    NASA Astrophysics Data System (ADS)

    Volkov, Denis L.; Kubryakov, Arseny A.; Lumpkin, Rick

    2015-11-01

    The Lofoten Basin of the Norwegian Sea is characterized by a local maximum of eddy kinetic energy and it is an important transit region for the warm and saline Atlantic waters on their way towards the Arctic Ocean. Eddies are generated by the Norwegian Atlantic Current and propagate anticlockwise around the center of the basin. In situ and satellite observations have discovered a rather small (with a radius of a few tens of km), but strong quasi-permanent anticyclonic vortex that resides in the center of the Lofoten Basin near 3°E, 69.8°N. The objective of this paper is to understand how and why the vortex is formed and to investigate what processes support its stability and drive its variability. To achieve this objective, we have conducted three high-resolution numerical experiments with the mean horizontal grid spacing of 18 km, 9 km, and 4 km. The Lofoten Vortex did not form in the 18-km experiment. The most realistic (compared to available observations) simulation of the vortex is provided by the 4-km experiment, which better reproduces eddy variability in the region. The experiments thus provide experimental evidence of the importance of eddies in the formation and stability of the vortex. We demonstrate how anticyclonic eddies, that are usually stronger and more numerous in the basin than cyclonic eddies, contribute to the intensification of the Lofoten Vortex. The Lofoten Vortex itself is not stationary and drifts cyclonically within the area bounded by approximately the 3250 m isobath. The analysis of the barotropic vorticity budget in the 4-km experiment shows that the advection of the relative vorticity gradient by eddies is the main mechanism that drives the variability of the Lofoten Vortex. The direct impact of wind/buoyancy forcing is found to be small to negligible.

  11. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  12. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  13. North Atlantic Ocean deep-water processes and depositional environments: A study of the Cenozoic Norway Basin

    NASA Astrophysics Data System (ADS)

    Oline Hjelstuen, Berit; Andreassen, Elin V.

    2015-04-01

    Despite the enormous areas deep-water basins occupy in modern oceans, our knowledge about them remains poor. At depths of greater than 2000 m, the Cenozoic Norway Basin in the northernmost part of the Atlantic Ocean, is one such basin. Interpretation of 2D multichannel seismic data suggests a three-stage evolution for the Norway Basin. (1) Eocene-Pliocene. This time period is characterised by deposition of ooze-rich sediments in a widening and deepening basin. (2) Early-Middle Pleistocene. A significant shift in sedimentary processes and depositional environments took place in the Early Pleistocene. Mass failures initiated on the Norwegian continental slope, and three Early and Middle Pleistocene slide debrites, with maximum thicknesses of 600 m and sediment volumes of up to 25000 km3, were deposited. With ages estimated at c. 2.7-1.7 Ma, 1.7-1.1 Ma and 0.5 Ma, these slide deposits are among the largest identified worldwide, and among the oldest mapped along the entire NE Atlantic continental margin. (3) Late Pleistocene-Present. Since c. 0.5 Ma the Norway Basin has been effected by glacigenic debris flows, the Storegga Slide and hemipelagic-glacimarine sedimentation. These sedimentary processes were active during a time of repeated shelf-edge ice advances along the NE Atlantic continental margin. This study shows that deep-water basins represent dynamic depositional environments reflecting regional tectonic and climatic changes trough time.

  14. Do manganese nodules grow or dissolve after burial? Results from the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2007-07-01

    Fifty buried manganese nodules at different depth intervals were recovered in 12 sediment cores from the Central Indian Ocean Basin (CIOB). A maximum of 15 buried nodules were encountered in one sediment core (AAS-22/GC-07) and the deepest nodule was recovered at 5.50 m below seafloor in core AAS-04/GC-5A. Approximately 80% of the buried nodules are small in size (˜2 cm diameter) in contrast to the Atlantic Ocean and Peru Basin (Pacific Ocean) where the majority of the buried nodules are large, ˜8 cm and >6 cm, respectively. Buried nodule size decreases with core depth and this distribution appears to be similar to the phenomenon of "Brazil Nut Effect". Buried nodules exhibit both smooth and rough surface textures and are ellipsoidal, elongated, rounded, sub rounded, irregular and polynucleated. Buried nodules from siliceous ooze are enriched in Mn, Cu, Ni, Zn, Mo, Ga, V and Rb whereas those from red clay are enriched in Fe, Co, Ti, U, Th, Y, Cr, Nb and Rare Earth Elements (REE). Buried nodules from siliceous ooze suggest their formation under hydrogenetic, early digenetic and diagenetic processes whereas those from red clay are of hydrogenetic origin. REE are enriched more than 1.5 times in buried nodules from red clay compared to siliceous ooze. However, the mode of incorporation of REE into buried nodules from both sedimentary environments is by a single authigenic phase consisting of Fe-Ti-P. Shale-normalized REE patterns and Ce anomalies suggest that nodules from siliceous ooze formed under more oxidizing conditions than those from red clay. Nodules buried at depths between 1.5 and 2.5 m are diagenetic (Mn/Fe ratio 10-15), formed in highly oxic environments (large positive Ce anomalies) and record aeolian dust (high Eu anomalies). Chemical composition, surface texture and morphology of buried nodules are similar to those of surface nodules from the same basin. Furthermore, buried nodule compositions do not exhibit any distinct patterns within the core depth

  15. Transformation of Atlantic Water in the Nansen Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir; Aksenov, Yevgeny

    2015-04-01

    The joint analysis of recent hydrographic observations and high resolution numerical modelling is presented for the segment of the boundary current between Fram Strait and the Lomonosov Ridge in the Nansen Basin of the Arctic Ocean. The process of the Fram Strait branch of Atlantic Water (FAW) transformation on this route is in the focus of this study. Two specific regions are distinguished, where fast transformation of FAW occurs. The first region is located between northern Svalbard and Franz Joseph Land. This is the place where eastward flow of warm and salty FAW encounters pack ice, which moves towards Fram Strait. Intensive ocean-ice-air interaction leads to rapid heat and salt loss from the upper part of FAW, resulting in formation of surface mixed layer and isolation of the warm FAW core from further direct contact with atmosphere. The second crucial region of FAW transformation is located around Severnaya Zemlya Archipelago. In this region deep warm core of FAW rapidly loses heat and salt as a result of intensive vertical and lateral mixing with the Barents Sea AW branch (BAW), which enters the Nansen Basin through St.Anna Trough, submerges the warm core of FAW and pushes it seaward. Dense water, originating on the north-western shelf of the Laptev Sea, cascades down continental slope and also contributes to cooling and freshening of FAW on its way along the Laptev Sea continental margin. The end product of the transformation process in the Laptev Sea is a new water mass, which includes FAW, BAW and shelf water fractions. This water occupies the depth range 200-1000 m. It is characterised by the positive temperature and by the absence of local maxima on salinity vertical profile. Sitting on the continental slope makes this water mass quite mobile and therefore - the major candidate to reach Canadian Basin. This perspective is less likely for the original FAW. In the Laptev Sea this water is detached off the continental margin and is likely to recirculate

  16. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Zhu, Xiangkun; Yan, Bin; Kendall, Brian; Peng, Xi; Li, Jin; Algeo, Thomas J.; Romaniello, Stephen

    2015-11-01

    The nature of ocean redox chemistry between the Cryogenian Sturtian and Marinoan glaciations (ca. 663-654 Ma) is important for understanding the relationship between environmental conditions and the subsequent emergence and expansion of early animals. The Cryogenian-to-Ediacaran stratigraphic succession of the Nanhua Basin in South China provides a nearly complete sedimentary record of the Cryogenian, including a continuous record of interglacial sedimentation. Here, we present a high-resolution pyrite Fe isotope record for a ∼120-m-long drill-core (ZK105) through Sturtian glacial diamictites and the overlying interglacial sediments in the Nanhua Basin to explore changes in marine chemistry during the late Cryogenian. Our pyrite Fe isotope profile exhibits significant stratigraphic variation: Interval I, comprising middle to upper Tiesi'ao diamictites (correlative with the Sturtian glaciation), is characterized by light, modern seawater-like Fe isotope compositions; Interval II, comprising uppermost Tiesi'ao diamictites and the basal organic-rich Datangpo Formation, is characterized by an abrupt shift to heavier Fe isotope compositions; and Interval III, comprising organic-poor grey shales in the middle Datangpo Formation, is characterized by the return of lighter, seawater-like Fe isotope compositions. We infer that Interval I pyrite was deposited in a predominantly anoxic glacial Nanhua Basin through reaction of dissolved Fe2+ and H2S mediated by microbial sulfate reduction (MSR). The shift to heavier pyrite Fe isotope values in Interval II is interpreted as partial oxidation of ferrous iron to ferric iron and subsequent near-quantitative reduction and transformation of Fe-oxyhydroxides to pyrite through coupling with oxidation of organic matter in the local diagenetic environment. In Interval III, near-quantitative oxidation of ferrous iron to Fe-oxyhydroxides followed by near-quantitative reduction and conversion to pyrite in the local diagenetic environment

  17. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures

  18. Hydrothermally derived petroleum: Examples from Guaymas basin, Gulf of California, and Escanaba Trough, northeast Pacific Ocean

    SciTech Connect

    Kvenvolden, K.A. ); Simoneit, B.R.T. )

    1990-03-01

    In the Guaymas Basin, a spreading axis in the Gulf of California, petroleum having a wide range of compositions forms by hydrothermal alteration of organic matter in Quaternary sediment composed mainly of marine diatomaceous ooze and muddy turbidites. In Escanaba Trough, at the southern end of the Gorda Ridge spreading axis offshore northern California, petroleum is formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary turbiditic river-derived sediment. Comparisons of the distributions of hydrocarbons - n-alkanes, isoprenoids, terpanes, steranes, and aromatics - show that chemical differences among four petroleum samples are such that two samples from Guaymas Basin can be distinguished from two samples from Escanaba Trough. Distinguishing characteristics resulting from differences in sources include n-alkane distributions and certain sterane ratios; distinguishing characteristics resulting from differences in thermal histories of the organic matter include hopane and sterane epimer ratios and various distributions of polycyclic aromatic hydrocarbons. These oils differ from conventionally derived petroleum in that they are admixtures of products generated over a wide range of thermal regimes, and their generation, expulsion, and migration occurred simultaneously over an instantaneous geological time period. The potential economic significance of hydrothermal derived petroleum is uncertain, but the fact that petroleum can form at active oceanic spreading axes adds a new facet to understanding the processes of petroleum generation, expulsion, and migration. 7 figs., 5 tabs.

  19. The newfoundland basin - Ocean-continent boundary and Mesozoic seafloor spreading history

    NASA Technical Reports Server (NTRS)

    Sullivan, K. D.

    1983-01-01

    It is pointed out that over the past 15 years there has been considerable progress in the refinement of predrift fits and seafloor spreading models of the North Atlantic. With the widespread acceptance of these basic models has come increasing interest in resolution of specific paleogeographic and kinematic problems. Two such problems are the initial position of Iberia with respect to North America and the geometry and chronology of early (pre-80 m.y.) relative motions between these two plates. The present investigation is concerned with geophysical data from numerous Bedford Institute/Dalhousie University cruises to the Newfoundland Basin which were undrtaken to determine the location of the ocean-continent boundary (OCB) and the Mesozoic spreading history on the western side. From the examination of magnetic data in the Newfoundland Basin, the OCB east of the Grand Banks is defined as the seaward limit of the 'smooth' magnetic domain which characterizes the surrounding continental shelves. A substantial improvement in Iberia-North America paleographic reconstructions is achieved.

  20. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.

  1. Biogenic signature and ultra microfossils in ferromanganese nodules of the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Nayak, Bibhuranjan; Das, Swapan Kumar; Munda, Parikshit

    2013-09-01

    Theories related to the precipitation mechanism of the metallic elements in marine manganese nodules have remained controversial between two schools of thoughts (1) chemical oxidation (abiotic origin) and (2) deposition of the metals through microbial enzymatic processes (biogenic origin). One of the most important evidence in support of the biogenic origin is the occurrence of fossilized microbes. However, well-documented literature in this regard is either lacking or very scanty in case of Indian Ocean nodules. Using high resolution FEG-SEM we have recorded various biogenic signatures and ultra microfossils in the ferromanganese nodule samples from Central Indian Ocean Basin (CIOB) that are presented in this paper. The microfossils are mostly protozoans belonging to varieties of bacteria, diatoms and foraminifera. Some of the features recorded in this study have perhaps never been reported before from any manganese nodules. The chemical compositions of these ultra microfossils indicate a high-level of manganese precipitation in and around them in comparison to the distant surrounding areas. While clumpy microbes are enriched with nickel, the rod shaped bacteria are rich in copper. Up to 4.70 wt.% nickel and 5.31 wt.% Cu have been recorded in the fossilized microbe bodies. The high abundance of biogenic features as well as microfossils in the ferromanganese nodules and their chemical compositions support arguments in favor of a dominant role of the microorganisms in the construction of the nodules of the CIOB.

  2. Direct observations of basin-wide acidification of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Mecking, Sabine; Feely, Richard A.; Liu, Xuewu

    2010-01-01

    Global ocean acidification is a prominent, inexorable change associated with rising levels of atmospheric CO2. Here we present the first basin-wide direct observations of recently declining pH, along with estimates of anthropogenic and non-anthropogenic contributions to that signal. Along 152°W in the North Pacific Ocean (22-56°N), pH changes between 1991 and 2006 were essentially zero below about 800 m depth. However, in the upper 500 m, significant pH changes, as large as -0.06, were observed. Anthropogenic and non-anthropogenic contributions over the upper 800 m are estimated to be of similar magnitude. In the surface mixed layer (depths to ˜100 m), the extent of pH change is consistent with that expected under conditions of seawater/atmosphere equilibration, with an average rate of change of -0.0017/yr. Future mixed layer changes can be expected to closely mirror changes in atmospheric CO2, with surface seawater pH continuing to fall as atmospheric CO2 rises.

  3. Gulf of Aden: Structure and evolution of a young ocean basin and continental margin

    SciTech Connect

    Cochran, J.R.

    1981-01-10

    New marine geophysical data are used to describe the structure and history of the Gulf of Aden. Magnetic anomaly data shows seafloor spreading magnetic anomalies of Sheba Ridge from the axial anomaly to anomaly 5 (10 m.y. B.P.) between the Owen fracture zone and 45 /sup 0/E and to anomaly 2' (3 m.y. B.P.) or anomaly 3 (4 m.y. B.P.) west of 45 /sup 0/E. The data does not support the two episodes of seafloor spreading recently proposed. Landward of the seafloor spreading magnetic anomalies is a magnetic quiet zone of uncorrelatable anomalies. The magnetic quiet zone boundary is also a structural boundary effectively marking the edge of Sheba Ridge, with deeper basement lacking a significant topographic gradient found on the landward side. A magnetic quiet zone is found not only where Sheba Ridge splits continental lithosphere but also on East Sheba Ridge where the ridge splits the old oceanic lithosphre of the Owen and Somali basins. There the position occupied by the continental margin within the gulf is marked by nonmagnetic ridge complexes that stretch from the continents to the Owen fracture zone. The magnetic quiet zone boundary is not an isochron in either the Gulf of Aden or the Red Sea, suggesting that significant horizontal motions can occur prior to the initiation of seafloor spreading. The offset on the Dead Sea Rift is used to estimate that from 80 to 160 km of opening, amounting to between 65% and 200% extension of the initial rift valley, occurred in the Gulf of Aden and Red Sea prior to the establishment of a mid-ocean ridge. It is suggested that the development of a new ocean basin occurs in two stages. The first involves diffuse extension over an area perhaps 10 km wide in a rift valley environment without an organized spreading center. This is followed by concentration of the extension at a single axis and the beginning of true seafloor spreading.

  4. Arctic Ocean stability: The effects of local cooling, oceanic heat transport, freshwater input, and sea ice melt with special emphasis on the Nansen Basin

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2016-07-01

    The Arctic loses energy to space and heat is transported northward in the atmosphere and ocean. The largest transport occurs in the atmosphere. The oceanic heat flux is significantly smaller, and the warm water that enters the Arctic Ocean becomes covered by a low-salinity surface layer, which reduces the heat transfer to the sea surface. This upper layer has two distinct regimes. In most of the deep basins it is due to the input of low-salinity shelf water, ultimately conditioned by net precipitation and river runoff. The Nansen Basin is different. Here warm Atlantic water is initially in direct contact with and melts sea ice, its upper part being transformed into less dense surface water. The characteristics and depth of this layer are determined as functions of the temperature of the Atlantic water and for different energy losses using a one-dimensional energy balance model. The amount of transformed Atlantic water is estimated for two different sea ice melt rates and the assumption of a buoyant boundary outflow. To create the upper layer sea ice formed elsewhere has to drift to the Nansen Basin. With reduced ice cover, this ice drift might weaken and the ice could disappear by the end of winter. The surface buoyancy input would disappear, and the upper layer might eventually convect back into the Atlantic water, reducing the formation of less dense Polar water. The created ice-free areas would release more heat to the atmosphere and affect the atmospheric circulation.

  5. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  6. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  7. Breaking into the Plate: Seismic and Hydroacoustic Analysis of a 7.6 Mw Oceanic Fracture Zone Earthquake Adjacent to the Central Indian Ridge Plate Boundary

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Chapp, E.

    2003-12-01

    Where oceanic spreading segments are offset laterally from one another, the differential motion of the plates is accommodated by strike-slip motion along ridge-perpendicular transform faults. Off-axis from the ridge-transform intersection, no differential motion is require, and the fracture zone trace is thought to be inactive except where reactivated by intra-plate stresses. On 15 July 2003, an earthquake with a magnitude of 7.6 Mw occurred near the northern Central Indian Ridge (CIR), the divergent boundary separating the Somalian plate from the Indian and Australian plates. The size of this event places it within the 99th quantile of magnitude for shallow (< 40 km depth) strike-slip events (null axis plunge >45 deg) within the global Harvard CMT catalog. The earthquake's epicenter is near 2.5 deg S, 68.33 deg E, where the CIR is marked by a series of short (<100 km long) right-stepping transforms that offset the northwest trending spreading segments (20 mm/yr). Seismic signals associated with the mainshock and its largest aftershocks were recorded well by land-based seismic networks. Regional seismic phases (Pn, Sn), as well oceanic T-waves, where also recorded at an IMS hydroacoustic station to the north of the Diego Garcia atoll. T-wave signals recorded at Diego Garcia were cross correlated to determine accurate travel time differences. These traveltime differences were used in a plane wave fitting inversion to determine the horizontal slowness components and estimate the back azimuth to the epicenter. Aftershock locations are derived using the azimuthal information and Pn-T traveltime differences. Together, the seismically- and hydroacoustically-derived epicenters show a linear band of aftershocks extending more than 200 km along the off-axis trace of a right stepping transform. We interpret these aftershock events as delineating the length of the mainshock rupture. As the well-constrain hypocenter of the mainshock lies near the western edge of this

  8. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)

    NASA Astrophysics Data System (ADS)

    Dickson, Alexander J.; Jenkyns, Hugh C.; Porcelli, Donald; van den Boorn, Sander; Idiz, Erdem

    2016-04-01

    It is well established that the burial of organic carbon in marine sediments increased dramatically at a global scale at the Cenomanian-Turonian boundary (Oceanic Anoxic Event 2: OAE-2, ∼94 Myr ago, Late Cretaceous). Many localities containing chemostratigraphic expressions of this event are not, however, enriched in organic carbon, and point to a heterogeneous set of oceanographic and environmental processes operating in different ocean basins. These processes are difficult to reconstruct because of the uneven geographical distribution of sites recording OAE-2, thus limiting our understanding of the causes and palaeoceanographic consequences of the environmental changes that occurred at this time. A new, highly resolved molybdenum-isotope dataset is presented from the Cape Verde Basin (southern proto-North Atlantic Ocean) and a lower resolution record from the Tarfaya Basin, Morocco. The new data reveal periodic oscillations in the Mo-isotope composition of proto-North Atlantic Ocean sediments, from which coupled changes in the dissolved sulphide concentration and Mo inventories of the basin seawater can be inferred. The cyclic variations in sedimentary Mo-isotope compositions can be hypothetically linked to regional changes in the depth of the chemocline, and in the rate of seawater exchange between basinal waters and global seawater. The new data suggest that a global seawater Mo-isotope composition of ∼1.2‰ was reached very soon after the onset of OAE-2, implying a rapid expansion of marine deoxygenation coeval with, or slightly preceding, enhanced global rates of organic-carbon burial. During OAE-2, the modelled flux of Mo into anoxic sediments is likely to have been ∼60-125 times greater than at the present day, although the spatial extent of anoxia is unlikely to have been greater than 10% of the total seafloor.

  9. Pervasive Deformation of Sediments and Basement Within the Wharton Basin, Indian Ocean, and Relationship to Large > Mw 8 Intraplate Earthquakes

    NASA Astrophysics Data System (ADS)

    Bull, J. M.; Geersen, J.; McNeill, L. C.; Henstock, T.; Gaedicke, C.; Chamot-Rooke, N. R. A.; Delescluse, M.

    2015-12-01

    Large-magnitude intraplate earthquakes within the ocean basins are not well understood. The Mw 8.6 and Mw 8.2 strike-slip intraplate earthquakes on 11 April 2012, while clearly occurring in the equatorial Indian Ocean diffuse plate boundary zone, are a case in point, with disagreement on the nature of the focal mechanisms and the faults that ruptured. We use bathymetric and seismic reflection data from the rupture area of the earthquakes in the northern Wharton Basin to demonstrate pervasive brittle deformation between the Ninetyeast Ridge and the Sunda subduction zone. In addition to evidence of recent strike-slip deformation along approximately north-south-trending fossil fracture zones, we identify a new type of deformation structure in the Indian Ocean: conjugate Riedel shears limited to the sediment section and oriented oblique to the north-south fracture zones. The Riedel shears developed in the Miocene, at a similar time to the onset of diffuse deformation in the central Indian Ocean. However, left-lateral strike-slip reactivation of existing fracture zones started earlier, in the Paleocene to early Eocene, and compartmentalizes the Wharton Basin. Modeled rupture during the 11 April 2012 intraplate earthquakes is consistent with the location of two reactivated, closely spaced, approximately north-south-trending fracture zones. However, we find no evidence for WNW-ESE-trending faults in the shallow crust, which is at variance with most of the earthquake fault models.

  10. Role of the oceanic channel in the relationships between the basin/dipole mode of SST anomalies in the tropical Indian Ocean and ENSO transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Yuan, Dongliang; Yang, Guang; Zhou, Hui; Wang, Jing

    2016-12-01

    The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the IOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the El Niño (La Niña) decay and phase transition to La Niña (El Niño) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.

  11. Estuarine fish communities respond to climate variability over both river and ocean basins.

    PubMed

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.

  12. Seismic Stratigraphy around Continent-Ocean Boundary in the NW Sub-basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Chang, S. P.; Liu, C. S.; Hsu, H. H.; Chang, J. H.

    2015-12-01

    The northern continental margin of the South China Sea (SCS) is a passive margin, and have experienced rifting and seafloor spreading. From continental shelf to deep sea basin, the nature of the crust gradually changes from continental crust to oceanic crust. Many studies use a term "continent-ocean boundary (COB)", to describe the boundary between these two kinds of crust. This boundary is roughly located along the boundary between slope and deep sea basin, and roughly parallels to the 3000 m isobath in the northern SCS. This study analyzes many multiple channel seismic reflection profiles in the northern continental margin of the SCS, and has identified an angular unconformity between the slope and deep sea basin deposits at the COB in the NW sub-basin area. This unconformity extends from continental slope to NW sub-basin near the COB. Strata beneath the unconformity downlap to the basement. Furthermore, there is a strong reflector beneath the unconformity, and this strong reflector, called "Tom", represents a hiatus which was recognized by biostratigraphic analyses from Site 1148 of ODP Leg 184. The strata between the unconformity surface and reflector Tom pinch toward deep sea basin, and then the unconformity and reflector Tom merge into one reflector. Therefore, the unconformity might be an erosional surface. The strata covered the unconformity onlap the unconformity. Some portions of the COB have intrusions forming basement high, and the unconformity and strata are coherent with basement relief. The unconformity has been interpreted as a normal fault in some previous studies, but our study distinguishes it as an erosional surface. Besides, some previous studies consider the bottom of the sedimentary layers in the NW sub-basin as the onset of depositing deep sea environment, and suggested that it is related to the onset of seafloor spreading. However, we interpret the angular unconformity as the onset of deep sea environment, and it differs from the onset of

  13. The Cretaceous Sverdrup Basin, Nunavut, Canada: A Boreal Ocean under Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Schröder-Adams, Claudia J.; Herrle, Jens O.; Pugh, Adam T.; Andrews, Julie; Galloway, Jennifer

    2013-04-01

    The Arctic Boreal Sea and its paleoceanographic and paleoecological response to the Cretaceous Greenhouse climate remain enigmatic. This study takes a multi-fossil approach coupled with carbon isotope stratigraphy and geochemistry to address large-scale stratigraphic correlations, water column structure and paleoproductivity changes by comparing distal and proximal sedimentary records exposed on Ellef Ringnes and Axel Heiberg islands respectively, part of the Sverdrup Basin, Nunavut, Canada. A newly established carbon isotope record documents several δ13Corg excursions that tie well to precisely dated European carbon isotope records bringing an unprecedented stratigraphic accuracy to the Boreal Sea strata. This framework also allows for refinement of new and existing biostratigraphic data. Several OAEs are recognized including a prominent OAE 2 straddling the Cenomanian/Turonian boundary. This documents high latitude increased carbon burial during the Cenomanian/Turonian temperature maximum independent of different lithologies that mark this interval in our studied localities. As temperature cooled again primary productivity and carbon flux decreased and slight bottom oxygenation returned in the upper Santonian, where rare benthic foraminifera are observed. The Boreal Ocean is almost devoid of carbonate as it is predicted for a future Arctic Ocean under increasing levels of atmospheric greenhouse gases. Contrasting to distal basin settings benthic agglutinated foraminifera thrived in shelf areas where watermass stratification was disrupted. Changes in dinocyst assemblages responded to regressive/transgressive cycles that have not been previously recognized within the thick lithologically indistinct shale interval of the Upper Cenomanian to Campanian Kanguk Formation. Regressions triggered radiations in radiolarian assemblages due to reduced oxygen minimum zones (OMZ) and fertile shelf settings. In contrast, transgressive phases provided increased rates of organic

  14. Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pnyushkov, Andrey V.; Polyakov, Igor V.; Ivanov, Vladimir V.; Aksenov, Yevgeny; Coward, Andrew C.; Janout, Markus; Rabe, Benjamin

    2015-07-01

    The Arctic Circumpolar Boundary Current (ACBC) transports a vast amount of mass and heat around cyclonic gyres of the deep basins, acting as a narrow, topographically-controlled flow, confined to the continental margins. Current observations during 2002-2011 at seven moorings along the major Atlantic Water (AW) pathway, complemented by an extensive collection of measured temperatures and salinities as well as results of state-of-the-art numerical modeling, have been used to examine the spatial structure and temporal variability of the ACBC within the Eurasian Basin (EB). These observations and modeling results suggest a gradual, six-fold decrease of boundary current speed (from 24 to 4 cm/s) on the route between Fram Strait and the Lomonosov Ridge, accompanied by a transformation of the vertical flow structure from mainly barotropic in Fram Strait to baroclinic between the area north of Spitsbergen and the central Laptev Sea continental slope. The relative role of density-driven currents in maintaining AW circulation increases with the progression of the ACBC eastward from Fram Strait, so that baroclinic ACBC forcing dominates over the barotropic in the eastern EB. Mooring records have revealed that waters within the AW and the cold halocline layers circulate in roughly the same direction in the eastern EB. The seasonal signal, meanwhile, is the most powerful mode of variability in the EB, contributing up to ~70% of the total variability in currents (resolved by moorings records) within the eastern EB. Seasonal signal amplitudes for current speed and AW temperature both decrease with the eastward progression of AW flow from source regions, and demonstrate strong interannual modulation. In the 2000s, the state of the EB (e.g., circulation pattern, thermohaline conditions, and freshwater balance) experienced remarkable changes. Results showing anomalous circulation patterns for an extended period of 30 months in 2008-2010 for the eastern EB, and a two-core AW

  15. Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Guthrie, John D.; Fer, Ilker; Morison, James

    2015-12-01

    The low levels of mechanically driven mixing in many regions of the Arctic Ocean make double diffusive convection virtually the only mechanism for moving heat up from the core of Atlantic Water towards the surface. In an attempt to quantify double diffusive heat fluxes in the Arctic Ocean, a temperature microstructure experiment was performed as a part of the North Pole Environmental Observatory (NPEO) 2013 field season from the drifting ice station Barneo located in the Amundsen Basin near the Lomonosov Ridge (89.5°N, 75°W). A diffusive convective thermohaline staircase was present between 150 and 250 m in nearly all of the profiles. Typical vertical heat fluxes across the high-gradient interfaces were consistently small, O(10-1) W m-2. Our experiment was designed to resolve the staircase and differed from earlier Arctic studies that utilized inadequate instrumentation or sampling. Our measured fluxes from temperature microstructure agree well with the laboratory derived flux laws compared to previous studies, which could find agreement only to within a factor of two to four. Correlations between measured and parameterized heat fluxes are slightly higher when using the more recent Flanagan et al. [2013] laboratory derivation than the more commonly used derivation presented in Kelley [1990]. Nusselt versus Rayleigh number scaling reveals the convective exponent, η, to be closer to 0.29 as predicted by recent numerical simulations of single-component convection rather than the canonical 1/3 assumed for double diffusion. However, the exponent appears to be sensitive to how convective layer height is defined.

  16. Geology of the Eel River basin and adjacent region: implications for late Cenozoic tectonics of the southern Cascadia subduction zone and Mendocino triple junction

    USGS Publications Warehouse

    Clarke, S.H.

    1992-01-01

    Two upper Cenozoic depositional sequences of principally marine strata about 4000m thick overlie accreted basement terranes of the Central and Coastal belts of the Franciscan Complex in the onshore-offshore Eel River basin of northwestern California. The older depositional sequence is early to middle Miocene in age and represents slope basin and slope-blanket deposition, whereas the younger sequence, late Miocene to middle Pleistocene in age, consists largely of forearc basin deposits. -from Author

  17. Energetic dynamics of a rotating horizontal convection model of an ocean basin with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2016-11-01

    We analyze the energetic dynamics in a rotating horizontal convection model, where flow is driven by a differential buoyancy forcing along a horizontal surface. This model is used to quantify the influence of surface heating and cooling and surface wind stress on the Meridional Overturning Circulation. We study a model of the Southern Ocean in a rectangular basin with surface cooling on one end (the South pole) and surface warming on the other end (mid-latitudes). Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the reentrant channel. Wind stress and differential buoyancy forcing are applied at the top boundary. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The overall dynamics, including large-scale overturning, baroclinic eddying, turbulent mixing, and resulting energy cascades are investigated using the local Available Potential Energy framework introduced in. We study the relative contributions of surface buoyancy and wind forcing along with the effects of bottom topography to the energetic balance of this dynamic model. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  18. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    NASA Technical Reports Server (NTRS)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  19. A Study of the Link Between Seismic Anisotropy and the G Discontinuity Based on LPO Modeling in Oceanic Basins

    NASA Astrophysics Data System (ADS)

    Hedjazian, N.; Garel, F.; Davies, R.; Kaminski, E. C.

    2015-12-01

    Seismic anisotropy in oceanic basin inferred from surface waves shows a controversial discontinuity near the lithosphere-asthenosphere boundary (LAB). Radial anisotropy displays an age independent positive gradient, that may correspond to a shallow discontinuity at ~70km depth. This is at odds with the view of a mechanical and age dependent LAB, expected to roughly follow the isotherms. To model the development of seismic anisotropy in oceanic basins, and its potential implications for the interpretation of the G discontinuity, we use the model of lattice preferred orientation (LPO) evolution D-Rex, coupled with a two dimensional model of a plate-driven flow in a fluid with a viscosity depending mainly on stress and temperature. We perform a systematic investigation of the influence on seismic anisotropy of the parameters controlling olivine LPO development. We find that the fraction of deformation accommodated by dislocation creep relative to diffusion creep, the strength of the slip systems involved in plastic deformation, and the efficiency of dynamic recrystallization are key parameters for the production of seismic anisotropy. For a wide range of parameters, the predicted radial anisotropy displays an age independent positive gradient near the depth of the G discontinuity. We thus conclude that this is an ubiquitus characteristic of the seismic anisotropy produced by the 2-D plate driven flow in oceanic basins. If not excluded, no additional ingredients such as partial melting, or change in water content are thus required to explain the radial anisotropy pattern near the LAB.

  20. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species.

    PubMed

    Kritsky, Delane C; Bakenhaster, Micah D; Adams, Douglas H

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  1. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species

    PubMed Central

    Kritsky, Delane C.; Bakenhaster, Micah D.; Adams, Douglas H.

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  2. Possible Origin of High-Amplitude Reflection Packages (HARPs) in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, Nina; Hutchinson, Deborah; Shimeld, John; Chian, Deping; Hart, Patrick; Jackson, Ruth; Saltus, Richard; Mosher, David

    2013-04-01

    The Canada Basin (CB) of the Arctic Ocean is a semi-enclosed ocean basin surrounded by the Alaskan and Canadian margins to the south and east, the Alpha-Mendeleev Large Igneous Province (AMLIP) to the north and the subsided continental Chukchi Borderland (ChB) to the west. During 2007-2011, US-Canada expeditions collected ~15,000 km multichannel seismic data and sonobuoy reflection and refraction seismic data with average spacing of ~80 km mostly over the CB and AMLIP. High-amplitude reflective packages (HARPs) underlie the mostly flat-lying sediments of CB. Although HARPs are discontinuous in the central CB, they become more continuous toward ChB and AMLIP. HARPs are often the most reflective events in the seismic section, exceeding even the seafloor reflection. Only rarely are reflections seen beneath HARPs. Where best developed, HARPs are ~100-300 ms TWTT, consisting of several high-amplitude wavelets with a pronounced narrow frequency band within the limits of ~10-30 Hz. This character of HARPs is consistent with patterns produced by constructive interference of thin beds (Widess, 1973). Forward modeling of sonobuoy data, synthetic tests, and frequency analysis of the tuning effect suggest that HARPs are composed of a series of alternating high- and low-velocity layers. The high-velocity layers are ~100-200 m thick with P-velocities of ~3.5-4.5 km/s. The low-velocity layers are about half as thick with velocities of ~2-3 km/s. A broad range of possible interpretations of rock composition exists from these velocities, e.g. sandstone and interbedded shale (Prince Patrick Island, Harrison and Brent, 2005); or tholeiitic basalts flows and sediments (Voring volcanic margin, Olanke and Eldholm, 1994); or sills and sediments (Newfoundland margin, Peron-Pinvidic et all, 2010). HARP can be associated with several origins. In the central and southern CB, where oceanic spreading is interpreted, HARPs are discontinuous among high-relief, but otherwise low

  3. Local climate differences between the adjacent Linxia and Xunhua basins, NE Tibet reveal 11 Ma history of relief in the intervening Jishi Shan

    NASA Astrophysics Data System (ADS)

    Hough, B.; Garzione, C.; Wang, Z.; Zheng, W.; Yuan, D.; Zhang, P.; Molnar, P.

    2008-12-01

    The 3500-4000 m high Jishi Shan located on the boarder between Gansu and Qinghai Provinces along the northeast margin of the Tibetan Plateau stands as an orographic barrier to easterly derived summer rainfall. Comparison of stable isotope compositions of modern rainfall (δ18O and δ2H) and paleo-soil carbonate (δ18O and δ13C) from the leeward Xunhua basin and the windward Linxia basin provides a method for the interpretation of changes in local climate related to the formation of relief in the intervening Jishi Shan. Rayleigh distillation models suggest that a vapor mass experiencing orographic rainout should be relatively depleted in 18O on the lee side of the range. However, increased aridity in the rain shadow of the Jishi Shan results in a net 2‰ enrichment in the δ18O values of modern rainfall in the Xunhua basin due to evaporative enrichment of 18O. Using the stable isotope compositions of pedogenic and lacustrine carbonates in the Xunhua and Linxia basins as a proxy for paleoclimate, we find that the aridity difference between these basins has existed throughout at least the past 11 Ma, implying the presence of the Jishi Shan. These data indicate that intra- basin comparisons of the stable isotope composition of sedimentary carbonates can be used to assess the timing of emergence of basin-segmenting mountain ranges between the sub-basins of northeastern Tibet.

  4. Evaluating upper versus lower crustal extension through structural reconstructions and subsidence analysis of basins adjacent to the D'Entrecasteaux Islands, eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fitz, Guy; Mann, Paul

    2013-06-01

    The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded domes with ~2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites exhumed in an Oligocene-Miocene arc-continent collision and subduction zone subject to late Miocene to recent continental extension. Multichannel seismic reflection data and well data show the Trobriand basin formed as a fore-arc basin caused by southward Miocene subduction at the Trobriand trench. Subduction slowed at ~8 Ma as the margin transitioned to an extensional tectonic environment. Since then, the Trobriand basin has subsided 1-2.5 km as a broad sag basin with few normal faults deforming the basin fill. South of the DEI, the Goodenough rift basin developed after extension began (~8 Ma) as the hanging wall of the north-dipping Owen-Stanley normal fault that bounds the basin's southern margin. The lack of upper crustal extension accompanying subsidence in the Trobriand and Goodenough basins suggests depth-dependent lithospheric extension since 8 Ma has accompanied uplift of the DEI gneiss domes. Structural reconstructions of seismic profiles show 2.3-13.4 km of basin extension in the upper crust, while syn-rift basin subsidence values indicate at least 20.7-23.6 km of extension occurred in the entire crust since ~8 Ma. Results indicating thinning is preferentially accommodated in the lower crust surrounding the DEI are used to constrain a schematic model of uplift of the DEI domes involving vertical exhumation of buoyant, postorogenic lower crust, far-field extension from slab rollback, and an inverted two-layer crustal density structure.

  5. Reevaluation of the Bedford--Berea sequence on Ohio and adjacent states: New perspectives on sedimentation and tectonics in foreland basins

    SciTech Connect

    Pashin, J.C. ); Ettensohn, F.R. )

    1992-01-01

    The Late Devonian Bedford-Berea (BB) sequence provided an early basis for models of epeiric sedimentation, but controversy regarding its origin has arisen in recent years. This study was designed to resolve this controversy and to identify factors that control depositional architecture in foreland basins on the basis of outcrop and subsurface data. The BB is a siliciclastic succession that was deposited in the Appalachian foreland basin during a relaxational phase of the Acadian orogeny. Among the salient features of the BB are an eastern platform and a western basin. The platform was characterized largely by erosion of Catskill sediment and subsequent deposition of aggradational valley-fill sequences, whereas the basin was characterized mainly by progradational delta and shelf deposits that overlie conformably the distalmost part of the Catskill clastic wedge. BB depositional history and paleogeography is divided into two episodes: (1) basin filling and (2) delta destruction. Basin filling was characterized by regressive fluvial-deltaic systems that eroded the Catskill wedge and supplied prograding deltaic and shelf sediment to the western basin. Delta destruction began after the basin was full with sediment and was dominated by flexural relaxation, which gave rise to unusual facies patterns. Delta-front deposits in the western basin were uplifted and reworked, and a shelf silt blanket prograded back toward the incised valleys on the rapidly subsiding eastern platform where estuaries were forming. Reevaluation of the BB sequence demonstrates that the depositional architecture and paleogeographic history of foreland basins is much more elaborate than is commonly recognized. Tectonism, relict topography, differential compaction, and relative sea-level variation functioned collectively to determine the complex depositional history and paleogeography of the BB sequence.

  6. Estuarine fish communities respond to climate variability over both river and ocean basins

    USGS Publications Warehouse

    Feyrer, Frederick V.; Cloern, James E.; Brown, Larry R.; Fish, Maxfield; Hieb, Kathryn; Baxter, Randall

    2015-01-01

    Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.

  7. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    NASA Astrophysics Data System (ADS)

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-03-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ˜1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9-7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  8. Foraminifera fauna of the Tethys Ocean Basin from the Aalenian - Bajocian boundary from Bakony Mountain (Hungary)

    NASA Astrophysics Data System (ADS)

    Zsiborás, Gábor; Görög, Ágnes

    2014-05-01

    The Middle Jurassic foraminiferal fauna of the Tethys Ocean Basin is hardly known. It is especially true for the Aalenian- early Bajocian, from when only BARBIERI (1964) published some forms from Sicily. Thus the aim of our study was to give a detailed systematic description of the foraminiferal fauna and microfacies analyses of Tű zköves Gorge of Bakonycsernye, Bakony Mountains, Western Hungary. The studied succession is near to the classic Jurassic locality - which become famous by the pioneering ammonite work of GéCZY. According to the recent study of GALáCZ & EVANICS, ammonites indicate Concavum (Aalenian), Discites and Ovale (Bajocian) zones. Seventeen samples were collected from the 3.5 m thick sequence of Ammonitico Rosso type reddish and greenish grey marl with limestone nodules. For the microfacies studies thin sections were made. To extract the microfossils, each sample was dissolved in concentrated acetic acid. The layers were rich in macrofossils: the most abundant were Bositra shells and ammonites. The microfauna consist of foraminifers, ostracods, radiolarians, Echinodermata parts and rhyncholits. The preservation of the foraminiferal fauna is relatively poor. 36 taxa, 29 genera and 27 species were identified, for the paleoecological evaluation quantitative analysis and classifying into morphogroups were made. Throughout the studied succession, the foraminiferal fauna is relative monotonous, poor and low diversity in species. All these taxa have wide stratigraphical distribution, significant Aalenian or Bajocian species have not been found. At the Aalenian-Bajocian transition the foraminiferal fauna showed an impoverishment. The most abundant genus was Spirillina, its amount is more than 90% in some samples. In suborder Lagenina the most frequent genera were Lenticulina, Dentalina and Nodosaria, moreover, Vaginulina, Eoguttulina, Ramulina and Bullopora could have been found. Agglutinated forms and Paalzowella were subordinated. Porcelaneous

  9. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    USGS Publications Warehouse

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-01-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  10. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the

  11. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Kalangutkar, Niyati G.; Iyer, Sridhar D.; Mascarenhas-Pereira, Maria B. L.; Nath, B. Nagender

    2015-06-01

    Mineralogical and elemental analyses of 20 ferromanganese (FeMn)-coated pumice samples from the Central Indian Ocean Basin (CIOB) indicate that todorokite is the major mineral phase, whereas vernadite occurs only rarely. Based on major, trace and rare earth elements (REEs) as well as Ce anomalies, the sources of the FeMn oxides were identified to be either hydrogenous, hydrothermal-plume fallout, diagenetic or a combination of these. Plots of Fe/Mn vs. Ce or Co reveal a distinct demarcation of the diagenetic, hydrogenous and plume fallout samples. Five samples are interpreted to be of hydrothermal origin because these show negative Ce anomalies and low Co/Zn ratios (0.5 to 1.1), and are masked by diagenesis. The relative contributions of hydrogenous, hydrothermal and diagenetic inputs were assessed in terms of ternary mixing patterns using REE mass balance equations. Furthermore, the hypothetical Ce anomaly (Ce/Ce*) was calculated using ternary mixing calculations for hydrogenous, hydrothermal and diagenetic end-members to ascertain the input to FeMn oxides on the pumice samples. This revealed a distinction between hydrogenous and hydrothermal components but diagenetic and plume fallout components could not be distinguished because this scheme comprises a three end-member calculation. A conservative estimate indicates the hydrothermal component to vary between 24% and 72%. The growth rates of the oxides, as estimated from published empirical methods, range between 3 and 47 mm/106 years. Fe/Mn ratios yielded a maximum age of 5-7 Ma and a minimum of 0.04-0.1 Ma. This suggests that the commencement of accretion of the FeMn oxides generally precedes the age of the Krakatau 1883 eruption, which is commonly considered as being the prime source of pumice to the CIOB. This is the first evidence of hydrothermal influence in the formation of FeMn oxides on CIOB pumice.

  12. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2012

    USGS Publications Warehouse

    Beman, Joseph E.

    2013-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22 percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2012), the network consists of 126 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (ABCWUA), currently (2012) measures and reports water levels from the 126 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 126 sites through water year 2012.

  13. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2010

    USGS Publications Warehouse

    Beman, Joseph E.

    2011-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and about a 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2010), the network consists of 124 wells and piezometers (a piezometer is a small-diameter subwell usually nested within a larger well). To better help the Albuquerque Bernalillo County Water Utility Authority manage water use, this report presents water-level data collected by U.S. Geological Survey personnel at those 124 sites through water year 2010.

  14. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2011

    USGS Publications Warehouse

    Beman, Joseph E.

    2012-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and of about 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2011), the network consists of 126 wells and piezometers (a piezometer is a specialized well open to a specific depth in the aquifer and is often of small diameter and nested with other piezometers open to different depths). This report presents water-level data collected by U.S. Geological Survey personnel at those 126 sites through water year 2011 to better help the Albuquerque Bernalillo County Water Utility Authority manage water use.

  15. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2013

    USGS Publications Warehouse

    Beman, Joseph E.

    2014-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when treatment and distribution of surface water from the Rio Grande began. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22-percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2013), the network consists of 123 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2013) measures and reports water levels from the 123 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 123 sites through water year 2013.

  16. Reefs of the Deep: Moving Toward Integrated Ocean Basin-scale Study of Cold-water Coral Ecosystems

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.

    2007-12-01

    Scleractinian hard corals in deep, cold waters have been known since the eighteenth century but advances in deep-ocean exploration are now revealing the true scale and distribution of cold-water coral reefs. Hundreds of tropical coral species build shallow reefs, but less than ten cold-water species form deep reef frameworks. Of these the best characterised is Lophelia pertusa which dominates in the north east Atlantic. Assemblages of octocorals and hydrocorals are found in other parts of the world's oceans, such as the north Pacific. Cold-water coral skeletons provide well-preserved, high resolution palaeoclimatic archives and recent advances have been made in interpreting geochemical proxies for seawater temperature and ocean ventilation history. The reefs form long-lived, structurally complex habitats supporting many other species. This complexity makes them vulnerable to mechanical damage from deep-water bottom trawling and modelled scenarios suggest that cold-water coral reefs may be threatened by ocean acidification. Despite these threats, our understanding of many aspects of cold-water coral ecosystems remains in its infancy and studies have been geographically limited in their scope. Here I summarise recent advances and emerging research themes and discuss the importance of moving toward integrated interdisciplinary study at the scale of an ocean basin if we are to appreciate the broad scale importance and connections between these reefs of the deep.

  17. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean

    PubMed Central

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-01-01

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·1010 kg·y−1 of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms. PMID:25368148

  18. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean.

    PubMed

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-11-18

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms.

  19. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    PubMed

    Robbins, Lisa L; Wynn, Jonathan G; Lisle, John T; Yates, Kimberly K; Knorr, Paul O; Byrne, Robert H; Liu, Xuewu; Patsavas, Mark C; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  20. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2009

    USGS Publications Warehouse

    Beman, Joseph E.; Torres, Leeanna T.

    2010-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2009), the network consists of 131 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 123 sites through water year 2009. In addition, data from four wells (Sites 140, 147, 148, and 149) owned, maintained, and measured by Sandia National Laboratories and three from Kirtland Air Force Base (Sites 119, 125, and 126) are presented in this report.

  1. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2008

    USGS Publications Warehouse

    Beman, Joseph E.

    2009-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2008) obtained soley from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in ground-water levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2008), the network consists of 144 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 125 sites through water-year 2008. In addition, data from 19 wells (Sites 127-30, 132-134, 136, 138-142 and 144-149) owned, maintained, and measured by Sandia National Laboratories are presented in this report.

  2. The record of India-Asia collision preserved in Tethyan ocean basin sediments.

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Jenks, Dan; Godin, Laurent; Boudagher-Fadel, Marcelle; Bown, Paul; Horstwood, Matt; Garzanti, Eduardo; Bracialli, Laura; Millar, Ian

    2015-04-01

    The timing of India-Asia collision is critical to the understanding of crustal deformation processes, since, for example, it impacts on calculations regarding the amount of convergence that needs to be accommodated by various mechanisms. In this research we use sediments originally deposited in the Tethyan ocean basin and now preserved in the Himalayan orogeny to constrain the timing of collision. In the NW Himalaya, a number of workers have proposed a ca 55-50 Ma age for collision along the Indus suture zone which separates India from the Kohistan-Ladakh Intraoceanic Island arc (KLA) to the north. This is based on a number of factors including the age of youngest marine sediments in the Indus suture (e.g. Green et al. 2008), age of eclogites indicative of onset of Indian continental subduction (e.g. de Sigoyer et al. 2000), and first evidence of detritus from north of the suture zone deposited on the Indian plate (e.g. Clift et al. 2002). Such evidence can be interpreted as documenting the age of India-Asia collision if one takes the KLA to have collided with the Asian plate prior to its collision with India (e.g. Petterson 2010 and refs therein). However, an increasing number of workers propose that the KLA collided with Asia subsequent to its earlier collision with India, dated variously at 85 Ma (Chatterjee et al. 2013), 61 Ma (Khan et al. 2009) and 50 Ma (Bouilhol et al. 2013). This, plus the questioning of earlier provenance work (Clift et al. 2002) regarding the validity of their data for constraining timing of earliest arrival of material north of the suture deposited on the Indian plate (Henderson et al. 2011) suggests that the time is right for a reappraisal of this topic. We use a provenance-based approach here, using combined U-Pb and Hf on detrital zircons from Tethyan ocean basin sediments, along with petrography and biostratigraphy, to identify first arrival of material from north of the Indian plate to arrive on the Indian continent, to constrain

  3. A paleomagnetic and relative paleointensity record from the Argentine Basin (western South Atlantic Ocean) for the last ~125 kyrs

    NASA Astrophysics Data System (ADS)

    Heil, C. W., Jr.; Stoner, J. S.; St-Onge, G.; King, J. W.

    2015-12-01

    The paucity of paleomagnetic records from the western South Atlantic Ocean presents a significant gap in our understanding of the spatial variations in geomagnetic field dynamics as they relate to the occurrence of geomagnetic excursions and changes in field strength. As such, high quality records from this region can help build upon Holocene observations and extend the geographic and temporal data coverage for spherical harmonic models. To that end, we present paleomagnetic directional (inclination) and strength (relative paleointensity) records from two cores from the Argentine Basin (RC11-49 and RC16-88). Although the cores were collected more than 40 years ago, the sediments appear to hold a stable remanence and reliable magnetic directions, as evidenced by their reproducibility between the two cores that are separated by ~25 km. The records show evidence of 4 excursional features in the uppermost 16-m of the sediments from the basin. A comparison of the relative paleointensity records from these cores to the South Atlantic Paleointensity Stack (SAPIS) (Stoner et al., 2002) and the relative paleointensity record from ODP Site 1089 (Stoner et al., 2003) indicate that the sediments reliably record relative changes in geomagnetic field intensity and suggests that the longest record (RC11-49) spans the last ~125 kyrs. Our results indicate that the sediments of the Argentine Basin are an important sedimentary archive of geomagnetic field behavior and strength at least through the Holocene and Late Pleistocene and highlight the need for further studies of cores within the basin.

  4. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    USGS Publications Warehouse

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  5. Role of colloidal material in the removal of 234Th in the Canada basin of the Arctic Ocean

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.; Porcelli, D.

    2003-01-01

    The phase partitioning of 234Th between dissolved ( 200m, general equilibrium existed between total 234Th and 238U. The inventory of SPM and the specific activity of particulate 234Th in the Canada Basin was about an order of magnitude higher than the profile reported for the Alpha Ridge ice camp station. This higher concentration of SPM in the southwestern Canada Basin is likely derived from ice-rafted sedimentary particles. Inventories of nutrients, and dissolved organic carbon and nitrogen in the upper 100 m of the Canada Basin are comparable to the other estimates for the central Arctic Ocean. Comparison of the mass concentrations of colloidal and filter-retained particulate matter as well as the activity of 234Th in these phases indicates that only a very small component of the colloidal material is actively involved in Th scavenging. Lower values of the conditional partition coefficient between the colloidal and dissolved phase indicate that the Arctic colloids are less reactive than colloidal material from other regions. The conditional partition coefficient between the filter-retained and dissolved phases (Kf) is generally higher than that for other regions, which is attributed to the higher complexation capacity of glacio-marine sedimentary particles in these waters. The 234Th-derived export of POC for the shelf and deep Canada Basin ranges between 5.6 and 6.5 mmol m-2 d-1, and is in agreement with other estimates reported for the central Arctic Ocean and Beaufort Sea. ?? 2003 Elsevier Ltd. All rights reserved.

  6. Aalenian foraminiferal fauna and microfacies analyses of the Tethys Ocean Basin from the Transdanubian Range (Hungary)

    NASA Astrophysics Data System (ADS)

    Zsiborás, Gábor; Görög, Ágnes

    2016-04-01

    The early Middle Jurassic foraminiferal fauna of the Tethys Ocean Basin is hardly known. It is especially true for the Aalenian from when only Monaco et al. (1994) published some forms from Valdorbia Section, Central Italy and Wernli (1988) from Domuz Dag, Turkey. Thus the aim of our study was to give a detailed systematic description of the foraminiferal fauna and microfacies analyses of Nagy-Pisznice Section of Lábatlan and T?zköves Gorge of Bakonycsernye from the Transdanubian Range. According to several studies of Géczy} and others, the ammonite fauna indicate all Aalenian (Opalinum, Murchisonae, Concavum) biozones in both successions. 6 samples from T?zköves Gorge, 13 samples from Nagy-Pisznice were collected. Both sequences are about 3 metres thick Ammonitico Rosso type reddish grey limestone with flaser beds and nodules (Tölgyhát Limestone Formation). For the microfacies studies thin sections were made. The dominant microfacies is bioclastic wackestone predominated {Bositra} shells. To extract the microfossils, each sample was dissolved in glacial acetic acid. The microfauna consist of foraminifers, calcispheres, juvenile ammonites, ostracods, radiolarians, microgastropods and fragments of echinoderms. Throughout the Nagy-Pisznice succession, the composition of the foraminiferal fauna is relatively uniform and moderately divers. Most specimens belong to Suborder Lagenina with 60-80{%} abundance. The Suborder Spirillinina are also frequent with 20-35{%} abundance. Agglutinants are subordinated and Suborder Miliolina is absent. The most abundant genus is {Lenticulina}, its amount is more than 50{%} in some samples. {Astacolus}, {Marginulina}, {Dentalina}, {Nodosaria}, {Paralingulina} and Epistominidae are also frequent. {Eoguttulina} and {Paalzowella} are scarce. Spirillinids are represented by {Spirillina}, {Turrispirillina}, and {Coronipora} genera. The taxonomic composition of the foraminiferal fauna of T?zköves Gorge is similar to the aforesaid

  7. Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys

    NASA Astrophysics Data System (ADS)

    Neumeister, S.; Gratzer, R.; Algeo, T. J.; Bechtel, A.; Gawlick, H.-J.; Newton, R. J.; Sachsenhofer, R. F.

    2015-03-01

    The Bächental bituminous marls (Bächentaler Bitumenmergel) belonging to the Sachrang Member of the Lower Jurassic Middle Allgäu Formation were investigated using a multidisciplinary approach to determine environmental controls on the formation of organic-rich deposits in a semi-restricted basin of the NW Tethys during the Early Jurassic. The marls are subdivided into three units on the basis of mineralogical composition, source-rock parameters, redox conditions, salinity variations, and diagenetic processes. Redox proxies (e.g., pristane/phytane ratio; aryl isoprenoids; bioturbation; ternary plot of iron, total organic carbon, and sulphur) indicate varying suboxic to euxinic conditions during deposition of the Bächental section. Redox variations were mainly controlled by sea-level fluctuations with the tectonically complex bathymetry of the Bächental basin determining watermass exchange with the Tethys Ocean. Accordingly, strongest anoxia and highest total organic carbon content (up to 13%) occur in the middle part of the profile (upper tenuicostatum and lower falciferum zones), coincident with an increase in surface-water productivity during a period of relative sea-level lowstand that induced salinity stratification in a stagnant basin setting. This level corresponds to the time interval of the lower Toarcian oceanic anoxic event (T-OAE). However, the absence of the widely observed lower Toarcian negative carbon isotope excursion in the study section questions its unrestricted use as a global chemostratigraphic marker. Stratigraphic correlation of the thermally immature Bächental bituminous marls with the Posidonia Shale of SW Germany on the basis of C27/C29 sterane ratio profiles and ammonite data suggests that deposition of organic matter-rich sediments in isolated basins in the Alpine realm commenced earlier (late Pliensbachian margaritatus Zone) than in regionally proximal epicontinental seas (early Toarcian tenuicostatum Zone). The late Pliensbachian

  8. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Mariethoz, Gregoire; Schrank, Christoph; Cox, Malcolm; Timms, Wendy

    2016-12-01

    Coal-seam gas production requires groundwater extraction from coal-bearing formations to reduce the hydraulic pressure and improve gas recovery. In layered sedimentary basins, the coalbeds are often separated from freshwater aquifers by low-permeability aquitards. However, hydraulic connection between the coalbed and aquifers is possible due to the heterogeneity in the aquitard such as the existence of conductive faults or sandy channel deposits. For coal-seam gas extraction operations, it is desirable to identify areas in a basin where the probability of hydraulic connection between the coalbed and aquifers is low in order to avoid unnecessary loss of groundwater from aquifers and gas production problems. A connection indicator, the groundwater age indictor (GAI), is proposed, to quantify the degree of hydraulic connection. The spatial distribution of GAI can indicate the optimum positions for gas/water extraction in the coalbed. Depressurizing the coalbed at locations with a low GAI would result in little or no interaction with the aquifer when compared to the other positions. The concept of GAI is validated on synthetic cases and is then applied to the north Galilee Basin, Australia, to assess the degree of hydraulic connection between the Aramac Coal Measure and the water-bearing formations in the Great Artesian Basin, which are separated by an aquitard, the Betts Creek Beds. It is found that the GAI is higher in the western part of the basin, indicating a higher risk to depressurization of the coalbed in this region due to the strong hydraulic connection between the coalbed and the overlying aquifer.

  9. Baseline Monitoring of the Western Arctic Ocean Estimates 20% of Canadian Basin Surface Waters Are Undersaturated with Respect to Aragonite

    PubMed Central

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074

  10. Oceanic source strength of carbon monoxide on the basis of basin-wide observations in the Atlantic.

    PubMed

    Park, Keyhong; Rhee, Tae Siek

    2016-01-01

    We measured the carbon monoxide (CO) concentrations in the marine boundary layer and the surface waters of the Atlantic Ocean from 50°N to 50°S during the UK Atlantic Meridional Transect expedition (AMT-7) in October 1998, covering the open ocean and coastal regions. Throughout the cruise track, atmospheric CO concentrations continually decreased southwards in the northern hemisphere with sporadic low and high concentrations encountered. South of the intertropical convergence zone (ITCZ) atmospheric CO was enhanced by ∼10 ppb compared to north of the ITCZ due likely to biomass burning emissions prevailing in the tropical continents. The remainder of the southern hemisphere remains nearly invariable except for the vicinity of Rio de la Plata. The surface seawater was supersaturated everywhere along the track and its saturation anomaly oscillated up to 90, exhibiting a typical diurnal cycle. The maximal dissolved CO concentration in the diurnal cycle appeared 2-5 hours behind the local maximum of solar insolation in the open ocean and the time lag further increased in the coastal region. The global ocean flux of CO to the atmosphere was estimated to be 14 Tg(CO) a(-1) within the range of 4-24 Tg(CO) a(-1). This is within uncertainty almost identical to what was estimated on the basis of the basin-wide observations in the Pacific and the Atlantic, but more than ∼4 times lower than the values appeared in the Intergovernmental Panel on Climate Change (IPCC) reports.

  11. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  12. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  13. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  14. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  15. New data on mammoth fauna mammals in the central Lena River basin (Yakutia, Lenskie Stolby National Nature Park and adjacent areas)

    NASA Astrophysics Data System (ADS)

    Boeskorov, G. G.; Nogovitsyn, P. R.; Mashchenko, E. N.; Belolyubsky, I. N.; Stepanov, A. D.; Plotnikov, V. V.; Protopopov, A. V.; Shchelchkova, M. V.; van der Plicht, J.; Solomonov, N. G.

    2016-07-01

    This paper considers the data on new findings of mammoth fauna remains in the Middle Lena basin used to specify the species composition of large Late Neopleistocene mammals represented by eleven species. The obtained range of radiocarbon dates made it possible to state that mass burials of Pleistocene mammal remains were formed in the region during the Karginsk Interstadial (24 000-55 000 years ago).

  16. Sea Level and Ocean Bottom Pressure Variations From Altimetry, Mercator Model and GRACE Mission in the Argentine Basin

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, D.; Boy, J.; Chao, B. F.

    2008-12-01

    Sea Level Variations (SLV) in the Argentine basin, as already observed from space altimetry missions, show one of the most prominent variances in the oceans. Here we study two major signals in the Argentine basin, the annual and submonthly SLV signals, based on altimetry, various hydrographic data, and the time-variable gravity data from the GRACE mission. We demonstrate that the annual variation is mainly driven by density variations of the water column, that is the steric-SLV. In contrast, the submonthly SLV in the form of the so- called Argentine gyre, a barotropic counterclockwise gyre with a period around 25 days, is mainly mass- induced, that is, mostly produced by mass variations in the region [Fu et al. 2000]. The Argentine gyre signal is well reproduced by the MERCATOR ocean circulation (and bottom pressure) model, unlike the annual signal. We show that now the aliased form (into monthly sampling) is also captured in the GRACE time- variable gravity data after applying appropriated filters; further study awaits higher temporal-resolution GRACE data.

  17. Seismic reflection and refraction data acquired in Canada Basin, Northwind Ridge and Northwind Basin, Arctic Ocean in 1988, 1992 and 1993

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; May, Steven D.

    2004-01-01

    Seismic reflection and refraction data were collected in generally ice-covered waters of the Canada Basin and the eastern part of the Chukchi Continental Borderland of the Amerasia Basin, Arctic Ocean, during the late summers of 1988, 1992, and 1993. The data were acquired from a Polar class icebreaker, the U.S. Coast Guard Cutter Polar Star, using a seismic reflection system designed by the U.S. Geological Survey (USGS). The northernmost data extend to 78? 48' N latitude. In 1988, 155 km of reflection data were acquired with a prototype system consisting of a single 195 cubic inch air gun seismic source and a two-channel hydrophone streamer with a 150-m active section. In 1992 and 1993, 500 and 1,900 km, respectively, of seismic reflection profile data were acquired with an improved six air gun, 674 to 1303 cubic inch tuned seismic source array and the same two-channel streamer. In 1993, a 12-channel streamer with a 150-m active section was used to record five of the reflection lines and one line was acquired using a three air gun, 3,000 cubic inch source. All data were recorded with a DFS-V digital seismic recorder. Processed sections feature high quality vertical incidence images to more than 6 km of sub-bottom penetration in the Canada Basin. Refraction data were acquired with U.S. Navy sonobuoys recorded simultaneously with the seismic reflection profiles. In 1988 eight refraction profiles were recorded with the single air gun, and in 1992 and 1993 a total of 47 refraction profiles were recorded with the six air gun array. The sonobuoy refraction records, with offsets up to 35 km, provide acoustic velocity information to complement the short-offset reflection data. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles.

  18. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.

    PubMed

    Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro

    2015-07-09

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

  19. Simulation of ocean variability in the last 40 years with a high-resolution Mediterranean basin model

    NASA Astrophysics Data System (ADS)

    An, B. W.; Vichi, M.; Oddo, P.; Mattia, G.; Zavatarelli, M.

    2009-04-01

    The Mediterranean Sea high-resolution model developed at INGV was run for the period 1958 - 2001 forced by the ECMWF ERA40 atmospheric forcing functions. The model is the NEMO primitive equation model with the Mediterranean Forecasting System (MFS) grid at 1/16 degree horizontal resolution and 72 vertical levels, optimized for long-term simulations in the framework of the EU FP6 project SESAME. The open boundary data in the Atlantic box are derived from global ocean analyses produced in the framework of the EU FP5 ENACT project and forced with the same ERA40 atmospheric data. The presentation focuses on the analysis of the simulated ocean variability in the last 40 years with emphasis on the reproduction of climatological features and biases with respect to the observations. In this work, we focused on dense water formation processes in the Eastern Mediterranean Sea in related to the larger scale climatic conditions. Eastern Mediterranean Transient (hereafter EMT) was captured and evaluated by the deep and intermediate water mass pathway and the amount of their formation rate. Analysis of the main driving mechanism of this EMT was also studied. During the pre-EMT period, about 0.2 Sv of intermediate water formed in the Levantine basin at depth around 300 m and about 0.1 Sv of the deep water formed in the Ionian basin. However, during EMT, the intermediate water and the deep water paths were modified in the Eastern Mediterranean Sea because of the deep water and the intermediate water formed only in the Aegean Sea. From our results, we conclude that the general driving mechanism of EMT is mainly affected by the atmospheric forcing and the locations of dense water formation are affected by the freshwater budget. Our results demonstrate the model skills in capturing the major climatic state and variability in the basin, which will allow us to use this model for studying the impacts on marine biogeochemistry as planned in the SESAME project.

  20. Observation of oceanic heat flux to the sea ice using ice-tethered moorings: Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ha, Ho Kyung; Yae Son, Eun; Park, Jae Hun; Cole, Sylvia; Park, Keyhong; Sul La, Hyoung

    2016-04-01

    It is important to figure out the physical mechanisms (e.g. shear, turbulence) below the sea ice, because of its direct influence on oceanic heat flux that is closely related to sea ice melt. A short-term (3.5 days) mooring was conducted in August 2014 to measure the vertical profiles of velocity, salinity and temperature within the sea-ice boundary layer. The mooring package consisted of an acoustic Doppler current profiler (ADCP) and 3 MicroCats. A long-term mooring of an ice-tethered profiler with modular acoustic velocity sensor (MAVS) was conducted to acquire vertical profiles of salinity, temperature, pressure and velocity in the marginal ice zone. The mooring data was analyzed to examine the role of the Pacific Summer Water (PSW) as a heat source, which can provide oceanic heat to the overlying layer. The ADCP data showed distinctive upper-velocity fields induced by entrainment of the sea ice. It appeared up to about 15 m depth during the entire observation period. Periodical components of MAVS data were extracted through wavelet transform. Since sea ice extent is relatively low in summer, the wind forcing could be effectively delivered in the form of a near 12 hours period oscillation to the 60 m depth where the PSW was occupying. Even in winter, while the sea surface was fully covered with the sea ice, near 12 hours period oscillation was appeared at 60 m depth. In September and January, strong 12 hours period oscillation appeared up to a deeper layer, which is deeper than 150 m depth where the wind forcing is hard to reach. The relationship between the heat flux and the oscillation strength will be discussed during the presentation.

  1. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  2. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication - YIP

    DTIC Science & Technology

    2011-09-30

    oceanic environment over the same time and space scales of interest. It is anticipated that propagation modeling will employ the use of the Parabolic...handled efficiently using a number of methods; however the transition from the surface/near surface region must be done with a range dependent model ...chorolophyll concentration, photosynthetically available radiation, and sea surface temperature will be modeled for the Indian Ocean and Equatorial

  3. Current-controlled, abyssal microtopography and sedimentation in Mozambique Basin, southwest Indian Ocean

    USGS Publications Warehouse

    Kolla, V.; Eittreim, S.; Sullivan, L.; Kostecki, J.A.; Burckle, L.H.

    1980-01-01

    The Antarctic Bottom Water (AABW) activity and the variations in the abundance and grain size of the terrigenous sediments, derived from Africa and Madagascar land masses, are reflected in different types of microtopography in the Mozambique Basin. In southerly areas, where the sediment supply is much less, the bottom-current activity has resulted in the presence of manganese nodules, a thin veneer of sediments, and the absence of sediment waves. Farther north, along the marginal areas of the basin where the fine-grained sediments from the Africa-Madagascar source have been supplied in abundance, wavy bedforms have been generated by AABW. Wavy bedforms do not exist even in the northerly areas if coarse-grained, turbidite sediments are present on the sea floor. The continuation of acoustic reflectors from the zone of turbidites in the central areas of the basin into the zone of sediment waves along the margins, and the lithology and structures in sediment cores from these zones suggest that the turbidity-current-fed, fine-grained sediments were deposited as wavy bedforms by AABW flow. Thus, sediment waves formed readily during Pleistocene times. The enrichment of quartz and displaced Antarctic diatoms, and the relatively low kaolinite/chlorite ratios in the sediments, the north-pointing current lineations on the sea floor, the lack of any perceptible sedimentary fill in the troughs of waves, and the dense nepheloid layer in the westerly areas of the Mozambique Basin, attest to the current-controlled sedimentation and generation of wavy bedforms during Holocene time also. The formation of sediment waves in the Mozambique Basin can be modeled after a fluvial antidune mechanism. This model envisages that internal waves, focussed on a benthic boundary layer cap, have been locked in phase with sediment waves in the presence of an 8-10 cm/sec current in the Mozambique Basin. A density contrast of 2??10-6 g/cm3 appears to exist at the tops of benthic boundary layers in the

  4. Population synchronies within and between ocean basins: Apparent teleconnections and implications as to physical-biological linkage mechanisms

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen; Bakun, Andrew

    2010-02-01

    Major fish populations in large marine ecosystems separated by thousands of kilometres often seem to fluctuate in decadal-scale synchrony indicating strong forcing of ecosystem processes and population dynamics by regional and global climatic variability. The climate signals propagating through the atmosphere appear to act as synchronizing agents leading to teleconnection patterns between distant marine ecosystems and populations. This review is an attempt (i) to summarize these apparent within and between ocean basin teleconnection patterns in a comparative framework using particularly suggestive examples and (ii) to unravel physical-biological linkage mechanisms between a climate signal and fish populations. Synchronies in the timing of physical and biological processes between the Kuroshio and the Humboldt Current ecosystems are particularly striking. The collapse of the Peruvian anchovy in 1971 and the rapid decrease of the Japanese anchovy seem not to be directly associated with climate indices such as the Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation (PDO). The "climate regime shift" in the mid-1970s in the North Pacific indicated by the PDO is not reflected in the dynamics of anchovies and sardines and other main components in both ecosystems, whereas the Asian Winter Monsoon Index (MOI) and the Arctic Oscillation (AO) seem to correlate with these events, at least in the Northwest Pacific. We speculate that the synchrony between processes in the Kuroshio and Humboldt systems is brought about by changes in the basin-scale coupled ocean-atmosphere circulation in North and South Pacific basins. The example of European aquatic systems describes physical-biological synchronies for which the NAO appears to be the synchronizing agent. When the NAO index changed in the late 1980s from a negative to a positive phase, a coherent increase in water temperature was observed in the Central Baltic, the North Sea, the NW Mediterranean and north and

  5. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2014

    USGS Publications Warehouse

    Beman, Joseph E.

    2015-10-21

    An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. The network currently (2014) consists of 125 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2014) measures and reports water levels from the 125 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 125 sites through water year 2014 (October 1, 2013, to September 30, 2014).

  6. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  7. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047

  8. Patterns of deep-water coral diversity in the Caribbean Basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions.

    PubMed

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200-2000 m depth) than on the upper continental shelf (60-200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges.

  9. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  10. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welborn, Toby L.; Moreo, Michael T.

    2007-01-01

    Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.

  11. Phylogeographic Structure in Penguin Ticks across an Ocean Basin Indicates Allopatric Divergence and Rare Trans-Oceanic Dispersal

    PubMed Central

    Moon, Katherine L.; Banks, Sam C.; Fraser, Ceridwen I.

    2015-01-01

    The association of ticks (Acarina) and seabirds provides an intriguing system for assessing the influence of long-distance dispersal on the evolution of parasitic species. Recent research has focused on host-parasite evolutionary relationships and dispersal capacity of ticks parasitising flighted seabirds. Evolutionary research on the ticks of non-flighted seabirds is, in contrast, scarce. We conducted the first phylogeographic investigation of a hard tick species (Ixodes eudyptidis) that parasitises the Little Blue Penguin (Eudyptula minor). Using one nuclear (28S) and two mitochondrial (COI and 16S) markers, we assessed genetic diversity among several populations in Australia and a single population on the South Island of New Zealand. Our results reveal two deeply divergent lineages, possibly representing different species: one comprising all New Zealand samples and some from Australia, and the other representing all other samples from Australian sites. No significant population differentiation was observed among any Australian sites from within each major clade, even those separated by hundreds of kilometres of coastline. In contrast, the New Zealand population was significantly different to all samples from Australia. Our phylogenetic results suggest that the New Zealand and Australian populations are effectively isolated from each other; although rare long-distance dispersal events must occur, these are insufficient to maintain trans-Tasman gene flow. Despite the evidence for limited dispersal of penguin ticks between Australia and New Zealand, we found no evidence to suggest that ticks are unable to disperse shorter distances at sea with their hosts, with no pattern of population differentiation found among Australian sites. Our results suggest that terrestrial seabird parasites may be quite capable of short-distance movements, but only sporadic longer-distance (trans-oceanic) dispersal. PMID:26083353

  12. Phylogeographic Structure in Penguin Ticks across an Ocean Basin Indicates Allopatric Divergence and Rare Trans-Oceanic Dispersal.

    PubMed

    Moon, Katherine L; Banks, Sam C; Fraser, Ceridwen I

    2015-01-01

    The association of ticks (Acarina) and seabirds provides an intriguing system for assessing the influence of long-distance dispersal on the evolution of parasitic species. Recent research has focused on host-parasite evolutionary relationships and dispersal capacity of ticks parasitising flighted seabirds. Evolutionary research on the ticks of non-flighted seabirds is, in contrast, scarce. We conducted the first phylogeographic investigation of a hard tick species (Ixodes eudyptidis) that parasitises the Little Blue Penguin (Eudyptula minor). Using one nuclear (28S) and two mitochondrial (COI and 16S) markers, we assessed genetic diversity among several populations in Australia and a single population on the South Island of New Zealand. Our results reveal two deeply divergent lineages, possibly representing different species: one comprising all New Zealand samples and some from Australia, and the other representing all other samples from Australian sites. No significant population differentiation was observed among any Australian sites from within each major clade, even those separated by hundreds of kilometres of coastline. In contrast, the New Zealand population was significantly different to all samples from Australia. Our phylogenetic results suggest that the New Zealand and Australian populations are effectively isolated from each other; although rare long-distance dispersal events must occur, these are insufficient to maintain trans-Tasman gene flow. Despite the evidence for limited dispersal of penguin ticks between Australia and New Zealand, we found no evidence to suggest that ticks are unable to disperse shorter distances at sea with their hosts, with no pattern of population differentiation found among Australian sites. Our results suggest that terrestrial seabird parasites may be quite capable of short-distance movements, but only sporadic longer-distance (trans-oceanic) dispersal.

  13. Synchronous oceanic spreading and continental rifting in West Antarctica

    NASA Astrophysics Data System (ADS)

    Davey, F. J.; Granot, R.; Cande, S. C.; Stock, J. M.; Selvans, M.; Ferraccioli, F.

    2016-06-01

    Magnetic anomalies associated with new ocean crust formation in the Adare Basin off north-western Ross Sea (43-26 Ma) can be traced directly into the Northern Basin that underlies the adjacent morphological continental shelf, implying a continuity in the emplacement of oceanic crust. Steep gravity gradients along the margins of the Northern Basin, particularly in the east, suggest that little extension and thinning of continental crust occurred before it ruptured and the new oceanic crust formed, unlike most other continental rifts and the Victoria Land Basin further south. A preexisting weak crust and localization of strain by strike-slip faulting are proposed as the factors allowing the rapid rupture of continental crust.

  14. Petrology of basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea

    NASA Technical Reports Server (NTRS)

    Thy, P.

    1992-01-01

    The basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea are characterized petrographically on the basis of a detailed study of the composition of relict phenocryst and groundmass phases. The systematic variation in the rock compositions is discussed. Results of 1-atm melting experiments on a relatively primitive basalt from site 797 are reported. The sills are found to constitute two distinct groups of suites: primitive, olivine-bearing suites with low potassium and primitive olivine-bearing to evolved, olivine-free suites with relatively high potassium. A pseudoinvariant reaction relationship between olivine and augite and magnetite is inferred. Complex magmatic and tectonic evolutions in the region, perhaps reflecting a transitional stage between subduction zone activity and back arc spreading, are suggested.

  15. The influence of oceanic basins on drought and ecosystem dynamics in Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Santos Pereira, Marcos Paulo; Justino, Flavio; Mendes Malhado, Ana Claudia; Barbosa, Humberto; Marengo, José

    2014-12-01

    The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate-vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO2 released to the atmosphere.

  16. Hydrothermal circulation and subsidence of ocean basins : a case study from the South-East Indian Ocean

    NASA Astrophysics Data System (ADS)

    Louis, G. B.; Jean, F.; James, C. R.; Cinthia, L.; Delphine, A.

    2003-12-01

    The South-East Indian Ridge (SEIR) flanks between 105° E and 130° E are characterized by anomalously low subsidence rates, less than about 280 m/ sqrt(Ma) [Hayes and Kane, JGR, 1994]. While individual estimates of the upper mantle temperature variations below the SEIR axis may vary significantly from one study to the other, all geophysical (axial morphology, seismology and geoid) and geochemical (major and trace elements systematics) evidence is compatible with variations of less than about 100° C. Such a temperature anomaly is not sufficient to fully explain the observed anomalously low subsidence rates, using the present available models for the thermal evolution of the lithosphere. Ad hoc explanations, such as, for instance, variations in mantle thermal parameters cannot be readily rejected, but are not completely satisfactory because they cannot be supported by direct estimates. In contrast, of direct evidence is the lack of sedimentation that characterizes the flanks of the SEIR and the fact, recognized from heat flow data, that in absence of sediment cover, seawater penetrates into the ocean crust and plays a key role in the mechanisms of heat transfer through the seafloor. Although it is now widely accepted that seawater may penetrate massively into poorly sedimented off-axis crust, the contribution of water circulation to the seafloor subsidence rate has only been considered so far near crestal areas, but not at the scale of tens of millions years. We thus propose a simple model which assumes, at first approximation, that seawater penetrates into highly permeable off-axis crust to a depth H below the seafloor and maintains the temperature equal to Tc at that depth (Note : H may depend on age crust). Assuming that hydrothermal circulation is active over large periods (of tens of Ma, for instance), the subsidence rate is controlled by Tm-Tc. The model thus predicts that variations in the hydrothermal regime, by affecting Tc, may affect the subsidence rate

  17. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement

  18. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  19. Megafaunal community structure of Andaman seamounts including the Back-arc Basin--a quantitative exploration from the Indian Ocean.

    PubMed

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K A Kamesh; Mudholkar, Abhay

    2011-01-31

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount--CSM) and a non-volcano (SM2) in the Andaman Back-arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only.

  20. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas.

    PubMed

    Yamada, Masatoshi; Zheng, Jian; Wang, Zhong-Liang

    2006-07-31

    Surface seawater samples were collected along the track of the R/V Hakuho-Maru cruise (KH-96-5) from Tokyo to the Southern Ocean. The (137)Cs activities were determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas, the eastern Indian Ocean, the Bay of Bengal, the Andaman Sea, and the South China Sea. The (137)Cs activities showed a wide variation with values ranging from 1.1 Bq m(-3) in the Antarctic Circumpolar Region of the Southern Ocean to 3 Bq m(-3) in the western North Pacific Ocean and the South China Sea. The latitudinal distributions of (137)Cs activity were not reflective of that of the integrated deposition density of atmospheric global fallout. The removal rates of (137)Cs from the surface waters were roughly estimated from the two data sets of Miyake et al. [Miyake Y, Saruhashi K, Sugimura Y, Kanazawa T, Hirose K. Contents of (137)Cs, plutonium and americium isotopes in the Southern Ocean waters. Pap Meteorol Geophys 1988;39:95-113] and this study to be 0.016 yr(-1) in the Sulu and Indonesian Seas, 0.033 yr(-1) in the Bay of Bengal and Andaman Sea, and 0.029 yr(-1) in the South China Sea. These values were much lower than that in the coastal surface water of the western Northwest Pacific Ocean. This was likely due to less horizontal and vertical mixing of water masses and less scavenging. (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were also determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas and the South China Sea. The (240)Pu/(239)Pu atom ratios ranged from 0.199+/-0.026 to 0.248+/-0.027 on average, and were significantly higher than the global stratospheric fallout ratio of 0.18. The contributions of the North Pacific Proving Grounds close-in fallout Pu were estimated to be 20% for the western North Pacific Ocean, 39% for the Sulu and Indonesian Seas and 42% for the South China Sea by using the two end-member mixing model. The higher (240)Pu/(239)Pu

  1. On estimating the basin-scale ocean circulation from satellite altimetry. Part 1: Straightforward spherical harmonic expansion

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    Direct estimation of the absolute dynamic topography from satellite altimetry has been confined to the largest scales (basically the basin-scale) owing to the fact that the signal-to-noise ratio is more unfavorable everywhere else. But even for the largest scales, the results are contaminated by the orbit error and geoid uncertainties. Recently a more accurate Earth gravity model (GEM-T1) became available, providing the opportunity to examine the whole question of direct estimation under a more critical limelight. It is found that our knowledge of the Earth's gravity field has indeed improved a great deal. However, it is not yet possible to claim definitively that our knowledge of the ocean circulation has improved through direct estimation. Yet, the improvement in the gravity model has come to the point that it is no longer possible to attribute the discrepancy at the basin scales between altimetric and hydrographic results as mostly due to geoid uncertainties. A substantial part of the difference must be due to other factors; i.e., the orbit error, or the uncertainty of the hydrographically derived dynamic topography.

  2. Changes in the Canada Basin: Results From Beaufort Gyre Observing Program/Joint Ocean Ice Studies Expeditions, 2003-2014.

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Proshutinsky, A. Y.; Krishfield, R. A.; Timmermans, M. L. E.; Yamamoto-Kawai, M.; Li, W.; Zimmermann, S.; Hutchings, J.; McLaughlin, F.; Carmack, E.

    2014-12-01

    Annual expeditions, that make use of ships, moorings and ice tethered platforms, have monitored oceanographic conditions in the Beaufort Gyre Region of the Canada Basin since 2003. These basin-wide surveys, together with available earlier data, show linkages between the physical, geo-chemical and ecosystem components during a period of rapid change, largely forced by increased multi-year ice melt and a prolonged anticyclonic phase of the Arctic Ocean circulation. The resulting Ekman convergence has led to a progressive accumulation of river and ice-melt-derived freshwater within the gyre, an increase in surface stratification and depression of the halocline. These changes in physical state have led to a decrease in aragonite saturation state, a deepening of the top of the nutricline and subsurface chlorophyll maximum and a shift in phytoplankton size spectra. Recent years have shown a slight relaxation of the Beaufort Gyre, in addition to large variation in ice cover, leading to informed speculation that the gyre may now be poised to release some of its accumulated freshwater as a salinity anomaly into the global system.

  3. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  4. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  5. Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Smith, J. LaRue; Laczniak, Randell J.; Moreo, Michael T.; Welborn, Toby L.

    2007-01-01

    Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range carbonate-rock aquifer system study area. One common method used throughout the southwestern United States is to estimate ground-water discharge from evapotranspiration (ET). ET is a process by which water from the Earth's surface is transferred to the atmosphere. The volume of water lost to the atmosphere by ET can be computed as the product of the ET rate and the acreage of vegetation, open water, and moist soil through which ET occurs. The procedure used in the study groups areas of similar vegetation, water, and soil conditions into different ET units, assigns an average annual ET rate to each unit, and computes annual ET from each ET unit within the outer extent of potential areas of ground-water discharge. Data sets and the procedures used to delineate the ET-unit map used to estimate ground-water discharge from the study area and a qualitative assessment of the accuracy of the map are described in this report.

  6. Investigation of Negative Cloud Radiative Forcing over the Indian Subcontinent and Adjacent Oceans During the Summer Monsoon Season Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Thampi, B. V.; Roca, R.

    2011-12-01

    The present study investigates radiative properties of clouds over the Indian subcontinent and nearby oceanic regions (0-25°N, 60-110°E) during the summer monsoon months (June-September) using satellite data. TOA flux data from CERES instrument onboard the NASA Terra platform was used to study the cloud radiative characteristics over this region. Study shows that there exists a unique imbalance between shortwave cloud radiative forcing (SWCRF) and longwave cloud radiative forcing (LWCRF) over this region. Net cloud radiative forcing (NCRF) was found to be negative (of the order of 25-50 W/m2) especially over the northern Bay of Bengal (close to the Myanmar-Thailand coast), northeast Arabian Sea, Western Ghats over Indian land mass as well as over the coastal region of Myanmar and Thailand while it was found to be zero over the equatorial Indian Ocean. Analysis has been carried out to understand the observed spatial inhomogeneity in the NCRF over this region. Analysis of fractional cloud cover shows occurrence of distinctly different cloud types over the negative NCRF regions. Over the Bay of Bengal, high altitude clouds associated with convective regions were found to contribute toward the negative NCRF while middle level clouds found to be more prominent over the Western Ghats and coastal regions of Myanmar and Thailand. A close association between monsoon rainfall activity and SWCRF was observed over the Bay of Bengal during this season. Impact of atmospheric water vapor in modulating the LWCRF over Bay of Bengal is also analyzed.

  7. Compression of oceanic lithosphere - An analysis of intraplate deformation in the Central Indian Basin

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1987-01-01

    The development of intraplate structure in the Central Indian Basin is examined using models in which deformation is due to flexural buckling and the hydrodynamic growth of instabilities. Comparison of the models reveal that in a strong viscous lithosphere, deformation of the layer occurs by flexural folding at a wavelength which corresponds to the flexural buckling theory; in a lithosphere of intermediate strength, the layer deforms by folding characterized by thickening which localizes beneath topographic heights; and in a relatively weak lithosphere, the layer incurs an even greater amount of localized thickening and deforms in the symmetric or pinch-and-swell mode by inverse boudinage. It is noted that the models in which the layer folds either flexurally or with periodic thickening correspond with observed depth distribution of seismicity in the Central Indian Basin and with experimental rock rheological data.

  8. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin.

    PubMed

    Wang, Huaxin; Jiao, Ruyuan; Wang, Fang; Zhang, Lu; Yan, Weijin

    2016-12-01

    Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO2 using high-performance size-exclusion chromatography (HPSEC) with UV254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO2. The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1-2.5 kDa); intermediate MW (IMW, 2.5-3.5 kDa); high MW (HMW, 3.5-6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMWp) was particularly high in wetlands. We found that pCO2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMWp. These data improve our understanding of the MW of bioavailable DOC and its conversion to CO2. The present results demonstrate that both the content and characteristics of DOC significantly affect pCO2. pCO2 and DOC must be studied further to help understanding the role of the wetland on the regional CO2 budget.

  9. Advances of Fine Resolution SSTs for Small Ocean Basins: Evaluation in the Black Sea

    DTIC Science & Technology

    2008-08-07

    contamination over the ocean can be as much as 1 oil I100% just near the boundaries. The contamination from -r1 land decreases systematically as one proceeds...parts by the EU SESAME and TUBITAK projects. The paper is contribution different NWP products? Fine resolution satellite-based NRL/JA/7320107/8016

  10. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication - YIP

    DTIC Science & Technology

    2012-09-30

    acoustic time series from Comprehensive Test Ban Treaty Organization (CTBTO) locations in the Indian (H08) and Pacific (H11) Oceans over the past...Mammal Commission, National Fish and Wildlife Foundation Grant No. 2010-0073-003 and the NOAA Vents Program. Antarctic data was also collected by H

  11. High-Resolution Global and Basin-Scale Ocean Analyses and Forecasts

    DTIC Science & Technology

    2009-09-01

    six weeks, here circling near the center of an anti- cyclonic eddy seen in both analyses. A third drifter is moving southward past Coffs Harbour...circulation in the Asian -Australian region inferred from an ocean reanalysis effort. Progress in Oceanography 76:334–365. Shriver, J.F., H.E. Hurlburt

  12. A plankton population model with biomechanical descriptions of biological processes in an idealised 2D ocean basin

    NASA Astrophysics Data System (ADS)

    Baird, Mark E.; Oke, Peter R.; Suthers, Iain M.; Middleton, Jason H.

    2004-10-01

    A five component pelagic ecosystem model is coupled to a two dimensional configuration of the Princeton Ocean Model (POM), representing an idealised ocean basin with upwelling and downwelling regions. The formulation of the biological equations is based on biomechanical descriptions of the processes of nutrient uptake, light capture, sinking and predator-prey encounter rates. The biological equations have mathematical similarities to existing process-based models which use empirical descriptions of biological processes. These similarities are exploited to determine the planktonic sizes which best correspond to the microzooplankton parameter set in the Edwards et al. (J. Plankton Res. 22 (2000) 1619) modelling study that uses the Franks et al. NPZ model (Mar. Biol. 91 (1986) 121). Simulations show the biomechanical model produces a deep chlorophyll maximum (DCM) when a stable surface mixed layer is present, and a surface bloom during wind-driven coastal upwelling. The Franks biological model is coupled to the physical configuration used for the biomechanical model, and the output from the two models compared in the coastal upwelling region. The behaviour of the biomechanical model is further investigated by undertaking supplementary simulations with the biological parameter values determined (1) using size-based relationships only, (2) using size-based relationships without sinking of phytoplankton and zooplankton, (3) by doubling the cell radii. These simulations provide a preliminary assessment of the biomechanical, size-based approach, and shed light on physical processes at the scale of individual planktonic cells that are determining the rates of biological processes.

  13. Promiscuous speciation with gene flow in silverside fish genus Odontesthes (Atheriniformes, Atherinopsidae) from south western Atlantic Ocean basins.

    PubMed

    García, Graciela; Ríos, Néstor; Gutiérrez, Verónica; Varela, Jorge Guerra; Bouza Fernández, Carmen; Pardo, Belén Gómez; Portela, Paulino Martínez

    2014-01-01

    The present paper integrates phylogenetic and population genetics analyses based on mitochondrial and nuclear molecular markers in silversides, genus Odontesthes, from a non-sampled area in the SW Atlantic Ocean to address species discrimination and to define Managements Units for sustainable conservation. All phylogenetic analyses based on the COI mitochondrial gene were consistent to support the monophyly of the genus Odontesthes and to include O. argentinensis, O. perugiae-humensis and some O. bonariensis haplotypes in a basal polytomy conforming a major derivative clade. Microsatellites data revealed somewhat higher genetic variability values in the O. argentinensis-perugia populations than in O. bonariensis and O. perugia-humensis taxa. Contrasting population genetics structuring emerged from mitochondrial and microsatellites analyses in these taxa. Whereas mitochondrial data supported two major groups (O. argentinensis-perugia-humensis vs. O. bonariensis-perugiae-humensis populations), microsatellite data detected three major genetic entities represented by O. bonariensis, O. perugiae-humensis and an admixture of populations belonging to O. argentinensis-perugiae respectively. Therefore, the star COI polytomy in the tree topology involving these taxa could be interpreted by several hypothetic scenarios such as the existence of shared ancestral polymorphisms, incomplete lineage sorting in a radiating speciation process and/or reticulation events. Present findings support that promiscuous and recent contact between incipient species sharing asymmetric gene flow exchanges, blurs taxa boundaries yielding complicated taxonomy and Management Units delimitation in silverside genus Odontesthes from SW Atlantic Ocean basins.

  14. Promiscuous Speciation with Gene Flow in Silverside Fish Genus Odontesthes (Atheriniformes, Atherinopsidae) from South Western Atlantic Ocean Basins

    PubMed Central

    García, Graciela; Ríos, Néstor; Gutiérrez, Verónica; Varela, Jorge Guerra; Bouza Fernández, Carmen; Pardo, Belén Gómez; Portela, Paulino Martínez

    2014-01-01

    The present paper integrates phylogenetic and population genetics analyses based on mitochondrial and nuclear molecular markers in silversides, genus Odontesthes, from a non-sampled area in the SW Atlantic Ocean to address species discrimination and to define Managements Units for sustainable conservation. All phylogenetic analyses based on the COI mitochondrial gene were consistent to support the monophyly of the genus Odontesthes and to include O. argentinensis, O. perugiae-humensis and some O. bonariensis haplotypes in a basal polytomy conforming a major derivative clade. Microsatellites data revealed somewhat higher genetic variability values in the O. argentinensis-perugia populations than in O. bonariensis and O. perugia-humensis taxa. Contrasting population genetics structuring emerged from mitochondrial and microsatellites analyses in these taxa. Whereas mitochondrial data supported two major groups (O. argentinensis-perugia-humensis vs. O. bonariensis-perugiae-humensis populations), microsatellite data detected three major genetic entities represented by O. bonariensis, O. perugiae-humensis and an admixture of populations belonging to O. argentinensis-perugiae respectively. Therefore, the star COI polytomy in the tree topology involving these taxa could be interpreted by several hypothetic scenarios such as the existence of shared ancestral polymorphisms, incomplete lineage sorting in a radiating speciation process and/or reticulation events. Present findings support that promiscuous and recent contact between incipient species sharing asymmetric gene flow exchanges, blurs taxa boundaries yielding complicated taxonomy and Management Units delimitation in silverside genus Odontesthes from SW Atlantic Ocean basins. PMID:25126842

  15. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  16. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  17. Sonobuoy-based velocity functions for sediment thickness calculation in the deep Canada Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, N. N.; Hart, P. E.; Chian, D.; Shimeld, J.; Lizarralde, D.; Hutchinson, D. R.; Mosher, D. C.

    2012-12-01

    The deep Canada Basin, which occupies much of the western (Amerasian) Arctic Ocean, is one of the most unexplored and difficult areas on Earth for marine seismic acquisition due to permanent sea ice cover. It extends northward from the Alaskan and Canadian margins for ~500 km and is characterized by a remarkably flat sea floor at 3.6-3.8 km below sea level (bsl) and covers ~500,000 km^2. A set of 143 sonobuoy records were collected during 2007-2010 over the Canada Basin by US-Canada collaborative expeditions. The sonobuoys were deployed along short streamer multi-channel seismic (MCS) lines for estimating seismic velocities in the sediments. A spatial coverage of sonobuoys at every ~80 km on MCS lines provides data for robust average empirical time-depth conversion functions.Sediments are nearly sub-horizontal and sub-parallel, mostly undisturbed with maximum two-way travel time (TWTT)thicknesses of ~5 s, but not greater than ~2.5-3.0 s TWTT closer to the Alpha Ridge and the Chukchi Borderland. Semblance velocity analysis has been applied to the sonobuoy records to determine sediment thickness and depth using the Dix equation. Assuming flat-lying sediments, the normal-moveout (NMO) velocity is approximately equal to the root-mean-square (RMS) average velocity from the sea surface to the reflection horizon. A dip of 5 degrees effects velocity less than 0.5%. Semblance velocity analyses were completed for 128 of 143 sonobuoy records in the deep Canada Basin; 25 records were excluded from later analysis due to bad quality or location on the slope. Results were also converted to interval velocities and depths.The RMS velocities were consistently picked from clear high-coherency events to yield only increasing interval velocities.Picking stopped at or above the bright reflection interpreted as basement on the MCS. Velocities were not picked on dipping reflections surfaces, along the margins where the seafloor was dipping, nor for sedimentary horizons characterized by

  18. Influence of SST from Pacific and Atlantic Ocean and atmospheric circulation in the precipitation regime of basin from Brazilian SIN

    NASA Astrophysics Data System (ADS)

    Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.

    2013-12-01

    The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these

  19. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication - YIP

    DTIC Science & Technology

    2013-09-30

    an additional southern hemisphere site for comparing noise trends to the Wake Island site in the northern hemisphere (Figure 1, Table 1). CTBTO...third- octave band sound levels over 42 months recorded at four deep-ocean observatories . Journal of Marine Systems (in press). Available online 29... European Conference on Underwater Acoustics 34: 1583- 1587. ISBN 978-1-906913-13-7. Hawkins RS, Miksis-Olds JL, Bradley DL and Smith CM (2012

  20. Solutions to the Shallow Water Equations in an Ocean Basin Forced by Unsteady Winds

    DTIC Science & Technology

    1988-10-13

    Robert L. Haney (5) NPS Code 63Hy Monterey, CA 93943 7. Dr. Julian P. McCreary , Jr. (1) Nova University 8000 North Ocean Drive Dania, FL 33004 8. Dr...using both hypothetical and observed forc- ing functions to represent enhanced surface wind stress due to anomalous westerly wind events. McCreary ...1976), Cane and Sarachik (1976), Cane and Sarachik (1981), Cane (1979), McCreary and Lukas (1986), and others obtained analytic solutions to sim- ilar

  1. Microbial community transcriptional networks are conserved in three domains at ocean basin scales.

    PubMed

    Aylward, Frank O; Eppley, John M; Smith, Jason M; Chavez, Francisco P; Scholin, Christopher A; DeLong, Edward F

    2015-04-28

    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.

  2. Microbial community transcriptional networks are conserved in three domains at ocean basin scales

    NASA Astrophysics Data System (ADS)

    Aylward, Frank O.; Eppley, John M.; Smith, Jason M.; Chavez, Francisco P.; Scholin, Christopher A.; DeLong, Edward F.

    2015-04-01

    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.

  3. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    DTIC Science & Technology

    2015-09-30

    Nansen Basins John M. Toole MS 21/354a Clark Laboratory, WHOI Woods Hole, MA 02543 phone: (508) 289-2531 fax: (508) 457-2181 email...jtoole@whoi.edu Richard A. Krishfield MS 21/128 Clark Laboratory, WHOI Woods Hole, MA 02543 phone: (508) 289-2849 fax: (508) 457-2181...email: rkrishfield@whoi.edu Sylvia T. Cole MS 21/354c Clark Laboratory, WHOI Woods Hole, MA 02543 phone: (508) 289-3805 fax: (508) 457

  4. R/V Sonne Cruise SO199 CHRISP: New Insights Into the Geodynamic History of northern Wharton Basin (South-East Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Werner, R.; Hoernle, K.; Hauff, F.; Heydolph, K.; Barckhausen, U.; Scientific Party, S.

    2008-12-01

    The morphology of the northern Wharton Basin (South-East Indian Ocean) is dominated by the Investigator Ridge, a ~1800 km long, N-S striking fracture zone and a huge (~1800 x 600 km) submarine volcanic province of unknown origin which includes Cocos/Keeling Islands, Muirfield Seamount, Vening Meinesz Seamounts, Christmas Island, and many unnamed seamounts further south and east. From August 3 through September 22, 2008, RV Sonne cruise SO199 CHRISP (short for Christmas Island Seamount Province) conducted extensive multi-beam mapping and the first systematic hard rock sampling of these features. Age and geochemical data from samples obtained on cruise SO199 aim to contribute to the ongoing debates (1) on the origin of the enriched composition of the Indian Mantle Domain and (2) on the origin of intraplate volcanism in the northern Wharton Basin. Mapping of ~1300 km of the Investigator Ridge revealed a steep west-facing scarp along most of the fracture zone, suggesting recent reactivation related to the presently diffuse but developing new plate boundary between the eastern (Australian) and the western (Indian) parts of the Indo-Australian Plate. Faulted sediments and north-south oriented ravines and asymmetric tops of seamounts adjacent to the ridge imply left-lateral reactivation of older seafloor fractures, consistent with the regional tectonic picture in which Australia is continuing to move northwards whereas India has been stuck since colliding with Asia. The multi- beam data also suggest that the largest intraplate earthquake ever recorded (on June 18, 2000 near the Cocos/Keeling Islands; mag. 7.8) may be related to a reactivated fracture zone just west of the Investigator Ridge. Sampling along the ridge at ~100km intervals yielded a spectacular array of rock types (e.g., lavas, sheeted dikes, mafic and felsic intrusives, layered cumulates, serpentinites), representing a full cross section through the ocean crust into the upper mantle. Particularly surprising

  5. Crustal structure and magnetic lineation along two geo-traverses from western continental margin of India to Eastern Somali Basin, NW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Chaubey, A. K.; Anshu, A.; Sreejith, K.; Pandey, A.

    2012-12-01

    Shipborne gravity and magnetic data along two parallel geo-traverses spanning from western continental margin of India to off Seychelles are used to delineate crustal structure and magnetic pattern of major structural features - western continental margin of India, Laxmi Basin, Laxmi Ridge, Arabian Basin, slow spreading Carlsberg Ridge and Eastern Somali Basin. The seismically constrained gravity models along the geo-traverses suggest considerable variation in crustal thickness - about 38 km on continental shelf of western India to about 4 km of the Eastern Somali Basin. The Eastern Somali Basin is characterized by thin oceanic crustal thickness (~3 to 4 km) as compared to its conjugate Arabian Basin where thickness varies from 5 to 6 km. The magnetic anomalies along the geo-traverse reveal three distinct zones: (i) a zone of relative high frequency short wavelength younger anomalies over the axial parts of the Carlsberg Ridge, (ii) a zone of well developed Early Tertiary magnetic anomalies in both the Arabian and Eastern Somali basins, and (iii) relative magnetic quiet zone, between the above two zones, representing a hiatus in spreading. Based on the results, we present a comparative analysis of crustal configuration and magnetic pattern of major structural features of the study area and discuss its tectonic evolution.

  6. Basin-scale population genetic structure of the planktonic copepod Calanus finmarchicus in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Unal, Ebru; Bucklin, Ann

    2010-10-01

    differentiation among area populations within gyres was reduced. Analysis of additional genes, higher resolution sampling, and comparisons across different years are needed to resolve the spatial limits and number of distinct C. finmarchicus populations across the N. Atlantic Ocean basin.

  7. The break-up of continents and the formation of new ocean basins.

    PubMed

    Minshull, T A

    2002-12-15

    Rifted continental margins are the product of stretching, thinning and ultimate break-up of a continental plate into smaller fragments, and the rocks lying beneath them store a record of this rifting process. Earth scientists can read this record by careful sampling and with remote geophysical techniques. These experimental studies have been complemented by theoretical analyses of continental extension and associated magmatism. Some rifted margins show evidence for extensive volcanic activity and uplift during rifting; at these margins, the record of the final stages of rifting is removed by erosion and obscured by the thick volcanic cover. Other margins were underwater throughout their formation and showed rather little volcanic activity; here the ongoing deposition of sediment provides a clearer record. During the last decade, vast areas of exhumed mantle rocks have been discovered at such margins between continental and oceanic crust. This observation conflicts with the well-established idea that the mantle melts to produce new crust when it is brought close to the Earth's surface. In contrast to the steeply dipping faults commonly seen in zones of extension within continental interiors, faults with very shallow dips play a key role in the deformation immediately preceding continental break-up. Future progress in the study of continental break-up will depend on studies of pairs of margins which were once joined and on the development of computer models which can handle rigorously the complex transition from distributed continental deformation to sea-floor spreading focused at a mid-ocean ridge.

  8. Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean.

    PubMed

    Moreno-Letelier, Alejandra; Olmedo-Alvarez, Gabriela; Eguiarte, Luis E; Souza, Valeria

    2012-07-01

    The Cuatro Ciénegas Basin (CCB) has been identified as a center of endemism for many life-forms. Nearly half the bacterial species found in the spring systems have their closest relatives in the ocean. This raises the question of whether the high diversity observed today is the product of an adaptive radiation similar to that of the Galapagos Islands or whether the bacterial groups are "survivors" of an ancient sea, which would be of interest for astrobiology. To help answer this question, we focused on Firmicutes from Cuatro Ciénegas (mainly Bacillus and Exiguobacterium). We reconstructed the phylogenetic relationships of Firmicutes with 28 housekeeping genes and dated the resulting tree using geological events as calibration points. Our results show that marine Bacillus diverged from other Bacillus strains 838 Ma, while Bacillus from Cuatro Ciénegas have divergence dates that range from 770 to 202 Ma. The members of Exiguobacterium from the CCB conform to a much younger group that diverged from the Andes strain 60 Ma and from the one in Yellowstone 183 Ma. Therefore, the diversity of Firmicutes in Cuatro Ciénegas is not the product of a recent radiation but the product of the isolation of lineages from an ancient ocean. Hence, Cuatro Ciénegas is not a Galapagos Archipelago for bacteria but is more like an astrobiological "time machine" in which bacterial lineages survived in an oligotrophic environment that may be very similar to that of the Precambrian. Key Words: Firmicutes-Cuatro Ciénegas-Precambrian-Molecular dating-Western Interior Seaway.

  9. Divergence and Phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: A Window to an Ancient Ocean

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo-Alvarez, Gabriela; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) has been identified as a center of endemism for many life-forms. Nearly half the bacterial species found in the spring systems have their closest relatives in the ocean. This raises the question of whether the high diversity observed today is the product of an adaptive radiation similar to that of the Galapagos Islands or whether the bacterial groups are “survivors” of an ancient sea, which would be of interest for astrobiology. To help answer this question, we focused on Firmicutes from Cuatro Ciénegas (mainly Bacillus and Exiguobacterium). We reconstructed the phylogenetic relationships of Firmicutes with 28 housekeeping genes and dated the resulting tree using geological events as calibration points. Our results show that marine Bacillus diverged from other Bacillus strains 838 Ma, while Bacillus from Cuatro Ciénegas have divergence dates that range from 770 to 202 Ma. The members of Exiguobacterium from the CCB conform to a much younger group that diverged from the Andes strain 60 Ma and from the one in Yellowstone 183 Ma. Therefore, the diversity of Firmicutes in Cuatro Ciénegas is not the product of a recent radiation but the product of the isolation of lineages from an ancient ocean. Hence, Cuatro Ciénegas is not a Galapagos Archipelago for bacteria but is more like an astrobiological “time machine” in which bacterial lineages survived in an oligotrophic environment that may be very similar to that of the Precambrian. Key Words: Firmicutes—Cuatro Ciénegas—Precambrian—Molecular dating—Western Interior Seaway. Astrobiology 12, 674–684. PMID:22920517

  10. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  11. Oceanic Anoxic Event 1b: insights and new data from the Poggio le Guaine section (Umbria-Marche Basin)

    NASA Astrophysics Data System (ADS)

    Sabatino, Nadia; Sprovieri, Mario; Coccioni, Rodolfo; Salvagio Manta, Daniela; Gardin, Silvia; Baudin, François

    2015-04-01

    The upper Aptian to lower Albian interval (~114-109 Ma) represents a crucial period during Earth's history, with a major evolution in the nature of mid-Cretaceous tectonics, sea level, climate, and marine plankton communities. Interestingly, it also includes multiple prominent black shale horizons that are the sedimentary expression of oceanic anoxic event (OAE) 1b. An high-resolution planktonic foraminiferal and calcareous nannofossil biostratigraphy in combination with an integrated study of multiple geochemical proxies (δ13Ccarb, δ13Corg, TOC, HI, CaCO3, trace elements/Al ratios) of the late Aptian-early Albian OAE 1b has been performed on the pelagic sedimentary sequence of Poggio le Guaine (Umbria-Marche Basin, central Italy). A comparison of the newly collected stable isotope carbon curve with the records from the Vocontian Basin (SE France), DSDP Site 545 and Hole 1049C provided a reliable and precise identification of the four main prominent black shale levels (113/Jacob, Kilian, Urbino/Paquier and Leenhardt) that definitively punctuate the OAE 1b. The studied record shows an increase in the marine organic carbon accumulation rate, in particular in the 113/Jacob and Urbino/Paquier levels. In the other black shales, TOC values are < 1%, with evidence of degraded marine organic matter. Completely anoxic conditions were never established during the sediment deposition, although evidence of oxygen depletion at the bottom of the basin is clearly documented by the distribution pattern of redox-sensitive trace metals. The results suggest an increase in organic carbon burial rates during the OAE 1b due to the effect of enhanced surface productivity, as supported by a major increase in Ba/Al, and reduced bottom water ventilation. Noteworthy, the Kilian and Urbino/Paquier levels from the PLG section are characterized by the absence of correlative shifts in δ13Ccarb and δ13Corg. The increase in the δ13Corg, values in these levels is explained by an increase in

  12. U-Pb ages on single detrital zircon grains from the Witwatersrand Basin, South Africa: Constraints on the age of sedimentation and on the evolution of granites adjacent to the basin

    SciTech Connect

    Robb, L.J. ); Davis, D.W.; Kamo, S.L. )

    1990-05-01

    U-Pb ages of single detrital zircon grains from various stratigraphic horizons in the Dominion and Witwatersrand sequences provide constraints on the maximum age of sedimentation as well as indicating the pattern of age distribution in the (granitoid) source area providing detritus into the basin. Zircon ages in the Dominion sediments range from 3,191-3,105 Ma with a geometric mean ({bar X}) t 3,153 Ma. Those from the lower Witwatersrand sediments (West Rand Group) range from 3,305-3,044 Ma with {bar X} = 3,097 Ma, and zircons in the upper Witwatersrand sediments (Central Rand Group) are between 3,207-2,894 Ma old with {bar X} = 3,053 Ma. Ages of detrital zircons generally decrease upward in the stratigraphic record, and <3,000 Ma old zircons are only found in the Central Rand Group. This trend implies that younger granites may have formed at some time subsequent to lower Witwatersrand deposition, or that continued erosion of the hinterland resulted in the unroofing of successively younger granites. The wide spread of zircon ages (411 Ma) evident in the data set indicates that granites formed virtually continuously between circa 3,300-2.900 Ma in the Witwatersrand source area. Of the zircon ages 45% fall within 30 m.y. of the geometric mean of the total data set, suggesting that a major crust-forming event occurred at 3,073 {plus minus} 30 Ma. Granitoids in the source area can be divided into (i) pre-Dominion basement; (ii) Dominion granites, whose emplacement coincided with the extrusion of Dominion volcanics, and (iii) Randian granites, which were emplaced synchronously with Witwatersrand deposition. This sequence of events supports recent tectonic models that view the Witwatersrand sequence as having been deposited in a foreland basin.

  13. Optimum interpolation analysis of basin-scale ¹³⁷Cs transport in surface seawater in the North Pacific Ocean.

    PubMed

    Inomata, Y; Aoyama, M; Tsumune, D; Motoi, T; Nakano, H

    2012-12-01

    ¹³⁷Cs is one of the conservative tracers applied to the study of oceanic circulation processes on decadal time scales. To investigate the spatial distribution and the temporal variation of ¹³⁷Cs concentrations in surface seawater in the North Pacific Ocean after 1957, a technique for optimum interpolation (OI) was applied to understand the behaviour of ¹³⁷Cs that revealed the basin-scale circulation of Cs ¹³⁷Cs in surface seawater in the North Pacific Ocean: ¹³⁷Cs deposited in the western North Pacific Ocean from global fallout (late 1950s and early 1960s) and from local fallout (transported from the Bikini and Enewetak Atolls during the late 1950s) was further transported eastward with the Kuroshio and North Pacific Currents within several years of deposition and was accumulated in the eastern North Pacific Ocean until 1967. Subsequently, ¹³⁷Cs concentrations in the eastern North Pacific Ocean decreased due to southward transport. Less radioactively contaminated seawater was also transported northward, upstream of the North Equatorial Current in the western North Pacific Ocean in the 1970s, indicating seawater re-circulation in the North Pacific Gyre.

  14. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  15. Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; Hinsbergen, Douwe J. J.; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio

    2016-10-01

    Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted to (former) overriding plates, combined with the kinematic analysis of overriding plate extension and shortening. In Cretaceous-Paleogene times, most of Anatolia formed a separate tectonic plate—here termed "Anadolu Plate"—that floored part of the Neotethyan oceanic realm, separated from Eurasia and Africa by subduction zones. We study the sedimentary and structural history of the Ulukışla basin (Turkey); overlying relics of this plate to reconstruct the tectonic history of the oceanic plate and its surrounding trenches, relative to Africa and Eurasia. Our results show that Upper Cretaceous-Oligocene sediments were deposited on the newly dated suprasubduction zone ophiolites ( 92 Ma), which are underlain by mélanges, metamorphosed and nonmetamorphosed oceanic and continental rocks derived from the African Plate. The Ulukışla basin underwent latest Cretaceous-Paleocene N-S and E-W extension until 56 Ma. Following a short period of tectonic quiescence, Eo-Oligocene N-S contraction formed the folded structure of the Bolkar Mountains, as well as subordinate contractional structures within the basin. We conceptually explain the transition from extension, to quiescence, to shortening as slowdown of the Anadolu Plate relative to the northward advancing Africa-Anadolu trench resulting from collision of continental rocks accreted to Anadolu with Eurasia, until the gradual demise of the Anadolu-Eurasia subduction zone.

  16. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale.

    PubMed

    Garland, Ellen C; Noad, Michael J; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Daeschler Hauser, Nan; Poole, M Michael; Robbins, Jooke

    2013-01-01

    Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers.

  17. Routing of terrigenous clastics to oceanic basins in the southern Gulf of California, inherited from features of the pre-spreading protogulf

    NASA Astrophysics Data System (ADS)

    Lonsdale, P.; Kluesner, J. W.

    2010-12-01

    The southern protogulf was a Miocene belt of continental rupture bounded on the northeast by the Sierra Madre Occidental (SMO) volcanic plateau, and on the southeast by the Main Gulf Escarpment of the Baja California (BC) rift shoulder. Since no later than 8-9Ma, before the depression became a deep inlet of the Pacific, the southern protogulf has hosted the principal shear zone between the Pacific and North American plates. As BC gradually acquired Pacific-plate motion, its vector wrt North America rotated and made the shear zone transtensional, leading to the development of several types of pull-apart basins. Some of them, at right steps between en echelon faults, evolved into the oceanic basins that are now the principal Gulf depocenters. Recent geophysical mapping and geologic sampling in the southern Gulf has clarified the location, structures, and composition of the oceanic/continental crustal boundary, and the mechanisms and routes by which terrigenous clastics reach the intracontinental and oceanic basins.Longitudinal (northwest-southeast) thermohaline and tidal currents transport significant volumes of hemipelagic sediment across the floors of gulf basins, but most of the coarser terrigenous clastics arrive there in density flows, primarily turbidity currents that have built channeled deep-sea fans at the mouths of canyons in the continental slopes. Mapped patterns of submarine canyons, channels and fans confirm that turbidity-current transport has primarily been from the northeast margin, which has permanent mainland rivers with large catchments in the SMO. Most of the arid BC peninsula, with ephemeral-stream drainage directed toward the Pacific, contributes little terrigenous input to the deep-water gulf basins, except in the far south: more than a third of the elevated Cabo Block drains into the gulf, building a large fan on the northwest side of Alarcon Basin. The canyons feeding this fan, cut through crystalline rock and probably subaerial in origin

  18. Plagioclase-peridotites recording the incipient stage of oceanic basin formation: new constraints from the Nain ophiolites (central Iran)

    NASA Astrophysics Data System (ADS)

    Pirnia Naeini, Tahmineh; Arai, Shoji; Saccani, Emilio

    2016-04-01

    spinel; (2) Al, Ca decrease and Cr, Ti increase in pyroxenes and pargasite; (3) slight overall increase in the concentration of rare earth elements and most trace elements in pyroxenes and pargasite, except for Eu and Sr for which a slight decrease is observed. The pointed variations all support the subsolidus origin of the plagioclases, since they took place at constant Mg#s of pyroxenes and coexisting olivines. The magmatic and metamorphic events that affected the Nain peridotites correspond well to the expected geodynamics of a short-lived oceanic basin. Melting was a result of peridotites upwelling (up to the plagioclase-facies) in the early stages of the ocean spreading. Cooling and the subsequent recrystallization in the spinel-facies correspond to the early ceasing of spreading and magmatism in the ocean. Reconditioning of the peridotites in the plagioclase-facies is likely related to the ocean closure and Nain ophiolite emplacement. Based on the short-lived and subduction-related character deduced from the ubiquitous occurrence of amphiboles in the peridotites, we strongly suggest a back-arc setting for the Nain Mesozoic Ocean.

  19. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Henebry, G. M.

    2014-02-01

    We evaluated the spatial and temporal responses of precipitation in the basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean (IO) dipole modes using observed precipitation records at 43 stations across the Ganges and Brahmaputra basins from 1982 to 2010. Daily observed precipitation records were extracted from Global Surface Summary of the Day dataset and spatial and monthly anomalies were computed. The anomalies were averaged for the years influenced by climate modes combinations. Occurrences of El Niño alone significantly reduced (60% and 88% of baseline in the Ganges and Brahmaputra basins, respectively) precipitation during the monsoon months in the northwestern and central Ganges basin and across the Brahmaputra basin. In contrast, co-occurrence of La Niña and a positive IO dipole mode significantly enhanced (135% and 160% of baseline, respectively) precipitation across both basins. During the co-occurrence of neutral phases in both climate modes (occurring 13 out of 28 yr), precipitation remained below average to average in the agriculturally extensive areas of Haryana, Uttar Pradesh, Bihar, eastern Nepal, and the Rajshahi district in Bangladesh in the Ganges basin and northern Bangladesh, Meghalaya, Assam, and Arunachal Pradesh in the Brahmaputra basin. This pattern implies that a regular water deficit is likely in these areas with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Major flooding and drought occurred as a consequence of the interactive effects of the ENSO and IO dipole modes, with the sole exception of extreme precipitation and flooding during El Niño events. This observational analysis will facilitate well informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under changing climate.

  20. Paleoceanographic Changes in the Lagonegro Basin (Southern Italy) during the Late Triassic Linked to Oceanic Rifting in the Western Tethyan Region

    NASA Astrophysics Data System (ADS)

    Casacci, M.; Algeo, T. J.; Bertinelli, A.; Rigo, M.

    2015-12-01

    The Lagonegro Basin was part of the southwestern branch of the western Tethys, an actively spreading young ocean during the Late Triassic (Ciarapica and Passeri, 2002, 2005). The sedimentary environment was a deepening-upward basin, bordered to the north by the Apenninic and Apulian carbonate platforms. Paleoseismic activity is evidenced by frequent debris flows on the basin margins (Passeri et al., 2005). The Lagonegro succession is characterized by Permian to Miocene formations deposited in shallow to deep basinal environments. The Upper Triassic is comprised of deep-marine sediments belonging to the Calcari con Selce ("Cherty Limestone") Formation of late Ladinian to late Norian-early Rhaetian age and the Scisti Silicei ("Siliceous Shale") Formation of late Norian-early Rhaetian to Late Jurassic age. The "Transitional Interval" between these two formations is gradational over a 20- to 40-m interval (Miconnet, 1983). The Transitional Interval was investigated in three sections (Pignola-Abriola, Monte Volturino, and Madonna del Sirino) in the Southern Apennines (southern Italy), representing a proximal-to-distal transect across the Lagonegro Basin. The transition from mainly calcareous to mainly siliceous sedimentation may have been influenced by rapid, post-rift subsidence of the Lagonegro Basin. It also coincided with a shift to warmer or more humid conditions around the Norian/Rhaetian boundary, as reflected in a pronounced increase in the chemical index of alteration (CIA), a weathering proxy (Young and Nesbitt, 1998). Redox proxies indicate mainly oxic conditions in the deep basin, although organic-rich shale beds are present at multiple levels in the otherwise organic-poor succession. The abruptness of the transitions between organic-poor and -rich sediment layers suggests major changes in paleoceanographic conditions, possibly related to switches from lagoonal circulation (linked to a net negative water balance) to estuarine circulation (linked to a net

  1. Long Lead-Time Forecasting of Snowpack and Precipitation in the Upper Snake River Basin using Pacific Oceanic-Atmospheric Variability

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Tootle, G.; Parkinson, S.; Holbrook, P.; Blestrud, D.

    2012-12-01

    Water managers and planners in the western United States are challenged with managing resources for various uses, including hydropower. Hydropower is especially important throughout the Upper Snake River Basin, where a series of hydropower projects provide a low cost renewable energy source to the region. These hydropower projects include several dams that are managed by Idaho Power Company (IPC). Planners and managers rely heavily on forecasts of snowpack and precipitation to plan for hydropower availability and the need for other generation sources. There is a pressing need for improved snowpack and precipitation forecast models in the Upper Snake River Basin. This research investigates the ability of Pacific oceanic-atmospheric data and climatic variables to provide skillful long lead-time (three to nine months) forecasts of snowpack and precipitation, and examines the benefits of segregating the warm and cold phases of the Pacific Decadal Oscillation (PDO) to reduce the temperature variability within the target dataset. Singular value decomposition (SVD) was used to identify regions of Pacific Ocean sea surface temperatures (SST) and 500mbar geopotential heights (Z500) for various lead times (three, six, and nine months) that were teleconnected with snowpack and precipitation stations in Upper Snake River Basin headwaters. The identified Pacific Ocean SST and Z500 regions were used to create indices that became predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology forecast (no-skill forecast). The results from the forecasts models indicated that derived indices from the SVD analysis resulted in improved forecast skill when compared to forecasts using established climate indices. Segregation of the cold phase PDO years resulted in the identification of different regions in the Pacific Ocean and vastly improved skill for the nine month

  2. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins

    NASA Astrophysics Data System (ADS)

    Chiacchio, Marc; Pausata, Francesco S. R.; Messori, Gabriele; Hannachi, Abdel; Chin, Mian; Önskog, Thomas; Ekman, Annica M. L.; Barrie, Leonard

    2017-01-01

    A generalized linear model based on Poisson regression has been used to assess the impact of environmental variables modulating tropical cyclone frequency in six main cyclone development areas: the East Pacific, West Pacific, North Atlantic, North Indian, South Indian, and South Pacific. The analysis covers the period 1980-2009 and focuses on widely used meteorological parameters including wind shear, sea surface temperature, and relative humidity from different reanalyses as well as aerosol optical depth for different compounds simulated by the Goddard Chemistry Aerosol Radiation and Transport model. Circulation indices are also included. Cyclone frequency is obtained from the International Best Track Archive for Climate Stewardship. A strong link is found between cyclone frequency and the relative sea surface temperature, Atlantic Meridional Mode, and wind shear with significant explained log likelihoods in the North Atlantic of 37%, 27%, and 28%, respectively. A significant impact of black carbon and organic aerosols on cyclone frequency is found over the North Indian Ocean, with explained log likelihoods of 27%. A weaker but still significant impact is found for observed dust aerosols in the North Atlantic with an explained log likelihood of 11%. Changes in lower stratospheric temperatures explain 28% of the log likelihood in the North Atlantic. Lower stratospheric temperatures from a subset of Coupled Model Intercomparison Project Phase 5 models properly simulate the warming and subsequent cooling of the lower stratosphere that follows a volcanic eruption but underestimates the cooling by about 0.5°C.

  3. Vertical scales and dynamics of eddies in the Arctic Ocean's Canada Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Mengnan; Timmermans, Mary-Louise

    2015-12-01

    A decade of moored measurements from the Arctic Ocean's northwestern Beaufort Gyre (collected as a component of the Beaufort Gyre Exploration Project) are analyzed to examine the range of mesoscale eddies over the water column and the dynamical processes that set eddy vertical scales. A total of 58 eddies were identified in the moored record, all anticyclones with azimuthal velocities ranging from 10 to 43 cm/s. These are divided into three classes based on core depths. Shallow eddies (core depths around 120 m) are shown to be vertically confined by the strong stratification of the halocline; typical thicknesses are around 100 m. Deep eddies (core depths around 1200 m) are much taller (thicknesses around 1300 m) owing to the weaker stratification at depth, consistent with a previous study. Eddies centered around mid-depths all have two cores (vertically aligned and separated in depth) characterized by velocity maxima and anomalous temperature and salinity properties. One core is located at the base of the halocline (around 200 m depth) and the other at the depth of the Atlantic Water layer (around 400 m depth). These double-core eddies have vertical scales between those of the shallow and deep eddies. The strongly decreasing stratification in their depth range motivates a derivation for the quasi-geostrophic adjustment of a nonuniformly stratified water column to a potential vorticity anomaly. The result aids in interpreting the dynamics and origins of the double-core eddies, providing insight into transport across a major water mass front separating Canadian and Eurasian Water.

  4. Identification of a genetic marker that discriminates ocean-type and stream-type chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Rasmussen, C.; Ostberg, C.O.; Clifton, D.R.; Holloway, J.L.; Rodriguez, R.J.

    2003-01-01

    A marker based on randomly amplified polymorphic DNA (RAPD), OT-38, was discovered that nonlethally discriminates between stream-type and ocean-type populations of chinook salmon Oncorhynchus tshawytscha in the Columbia River basin, including the threatened fall-run (ocean-type) and spring-run (stream-type) Snake River populations. This marker was developed by amplifying chinook salmon genomic DNA with a single RAPD primer, sequencing the termini of the polymorphic products, and designing primer pairs for allele-specific amplification. It was used to assay 18-80 individuals from several wild and hatchery populations differing in year-class, freshwater life history, and location along the Columbia River OT-38 unambiguously distinguished ocean-type from stream-type populations in 93.1% of the chinook salmon sampled.

  5. The southwestern Nansen Basin: Crustal stretching and sea floor spreading

    NASA Astrophysics Data System (ADS)

    Berglar, Kai; Ehrhardt, Axel; Damm, Volkmar; Heyde, Ingo; Schreckenberger, Bernd; Barckhausen, Udo

    2014-05-01

    New geophysical data were collected in August/September 2013 north of Svalbard in the zone from the North Barents shelf towards the oceanic Nansen Basin. We acquired 1056 km of multi-channel seismic data, 2658 km of magnetic data and more than 5000 km of gravity, bathymetric and sediment echosounder data. In the east of the working area, the transition from the Yermak Plateau to the Nansen Basin is characterized by block faulting and well developed syn-rift basins. A large crustal block located about 80 km east of the Yermak Plateau and 120 km north of the slope of the Barents shelf indicates extensive rifting and east-west directed crustal stretching and the absence of oceanic crust in that area. A different picture is found north of Kvitoya Island, in the western part of the working area. There, the slope of the Barents shelf is very steep and a distinct continent-ocean-boundary seems to be located directly at the foot of the slope where we interpret oceanic crust characterized by irregular topography based on the multi-channel seismic data. This will be tested by an analysis of the gravity and magnetic data which is currently work in progress. The combination of east-west-directed continental stretching east of the Yermak Plateau and adjacent oceanic crust to the west points to an opening of the southwesternmost part of the Nansen Basin prior to the spreading of the Gakkel Ridge, possibly related to the opening of the Amerasian Basin.

  6. Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone

    NASA Astrophysics Data System (ADS)

    Gallaher, Shawn G.; Stanton, Timothy P.; Shaw, William J.; Cole, Sylvia T.; Toole, John M.; Wilkinson, Jeremy P.; Maksym, Ted; Hwang, Byongjun

    2016-08-01

    A comprehensive set of autonomous, ice-ocean measurements were collected across the Canada Basin to study the summer evolution of the ice-ocean boundary layer (IOBL) and ocean mixed layer (OML). Evaluation of local heat and freshwater balances and associated turbulent forcing reveals that melt ponds (MPs) strongly influence the summer IOBL-OML evolution. Areal expansion of MPs in mid-June start the upper ocean evolution resulting in significant increases to ocean absorbed radiative flux (19 W m-2 in this study). Buoyancy provided by MP drainage shoals and freshens the IOBL resulting in a 39 MJ m-2 increase in heat storage in just 19 days (52% of the summer total). Following MP drainage, a near-surface fresh layer deepens through shear-forced mixing to form the summer mixed layer (sML). In late summer, basal melt increases due to stronger turbulent mixing in the thin sML and the expansion of open water areas due in part to wind-forced divergence of the sea ice. Thermal heterogeneities in the marginal ice zone (MIZ) upper ocean led to large ocean-to-ice heat fluxes (100-200 W m-2) and enhanced basal ice melt (3-6 cm d-1), well away from the ice edge. Calculation of the upper ocean heat budget shows that local radiative heat input accounted for at least 89% of the observed latent heat losses and heat storage (partitioned 0.77/0.23). These results suggest that the extensive area of deteriorating sea ice observed away from the ice edge during the 2014 season, termed the "thermodynamically forced MIZ," was driven primarily by local shortwave radiative forcing.

  7. Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Verzhbitsky, V. E.

    2009-09-01

    and magnetic data for the offshore Siberian Shelf reveals a widespread, seismically mappable basement-sedimentary cover contact that deepens northward towards the edge of the shelf with few other significant basins. Various ages have been assigned to the oldest strata above the unconformity, ranging from Cretaceous (Albian - 112-100 Ma) to Tertiary (Paleocene-Eocene - ~60-50 Ma). The period of uplift and erosion documented along the Arctic coast of Russia at this longitude could represent the landward equivalent of the (yet undrilled) offshore basement-sedimentary cover contact, thus overlying sedimentary sequences could be as old as early Late Cretaceous. Although quite speculative, these conclusions suggest that land-based geologic, structural, petrologic and geochronologic studies could provide useful constraints to help resolve the plate tectonic history of the Arctic Ocean.

  8. Geochemistry and geochronology of the Late Permian mafic intrusions along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, northeastern China: Petrogenesis and implications for the tectonic evolution of the Mudanjiang Ocean

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Ge, Wen-chun; Yang, Hao; Xu, Wen-liang; Bi, Jun-hui; Wang, Zhi-hui

    2017-01-01

    This paper presents zircon U-Pb ages, whole-rock major and trace element data, and Hf isotope data for the metagabbros from the Zhushan pluton and gabbros from the Taiping pluton along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, which will not only place important constraints on the rock-forming ages, source characteristics and tectonic setting of these gabbros, but will also provide insights into understanding the Permian tectonic evolution between the Jiamusi Massif and the Songnen-Zhangguangcai Range Massif. Zircon U-Pb dating, determined using laser ablation-inductively coupled plasma-mass spectrometry and secondary-ion mass spectrometry, indicates that the magmatic zircons from the Zhushan and Taiping plutons yield 206Pb/238U ages of 256 ± 2 Ma and 259 ± 3 Ma, respectively, interpreted as the emplacement ages of the intrusions. The metagabbros from the Zhushan pluton display the geochemical characteristics of calc-alkaline series rocks, and are enriched in light rare earth and large ion lithophile elements, and depleted in Nb, Ta, P, Zr and Hf. The εHf(t) values of magmatic zircons in these metagabbros vary from - 5.47 to + 0.74. All these geochemical features indicate that the primary magma of the Zhushan pluton was derived from an enriched lithospheric mantle source that was metasomatized by subducted slab-derived fluids. The gabbros from the Taiping pluton are also enriched in large ion lithophile elements (e.g., Rb, Ba and U) relative to high field strength elements, and have negative Nb-Ta-P anomalies, with εHf(t) values of - 4.02 to - 1.70. It is inferred that they also formed from a primary magma generated by the partial melting of enriched lithospheric mantle that was metasomatized by subducted slab-derived fluids. The rocks from the Zhushan and Taiping plutons have similar petrogenetic processes, but their primary magmas are likely to be derived from two distinct magma sources based on geochemical and

  9. Boundary Current and Mixing Processes in The High Latitude Oceans

    DTIC Science & Technology

    2016-06-07

    regions of the global ocean. It focuses on high latitudes because: (1) they are primary sites for surface conditioning of deep waters that drive the...measure the associated mixing processes, and assess the impacts of these processes on water mass modification; ● Document and quantify the generation at...their dynamics and impact on adjacent basin waters ; ● Acquire quantitative, field-based information on seawater equation-of-state processes, such as

  10. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    PubMed

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  11. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffry M.

    2015-01-01

    We evaluated the spatial and seasonal responses of precipitation in the Ganges and Brahmaputra basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) modes using Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation data from 1901 to 2010 with a spatial resolution of 0.5° × 0.5°. The GPCC monthly total precipitation climatology targeting the period 1951–2000 was used to compute gridded monthly anomalies for the entire time period. The gridded monthly anomalies were averaged for the years influenced by combinations of climate modes. Occurrences of El Niño alone significantly reduce (88% of the long-term average (LTA)) precipitation during the monsoon months in the western and southeastern Ganges Basin. In contrast, occurrences of La Niña and co-occurrences of La Niña and negative IOD events significantly enhance (110 and 109% of LTA in the Ganges and Brahmaputra Basin, respectively) precipitation across both basins. When El Niño co-occurs with positive IOD events, the impacts of El Niño on the basins' precipitation diminishes. When there is no active ENSO or IOD events (occurring in 41 out of 110 years), precipitation remains below average (95% of LTA) in the agriculturally intensive areas of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Western Nepal in the Ganges Basin, whereas precipitation remains average to above average (104% of LTA) across the Brahmaputra Basin. This pattern implies that a regular water deficit is likely, especially in the Ganges Basin, with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Historically, major droughts occurred during El Niño and co-occurrences of El Niño and positive IOD events, while major flooding occurred during La Niña and co-occurrences of La Niña and negative IOD events in the basins. This observational analysis will facilitate well

  12. Assessment of the hindcast, nowcast and forecast capabilities of the Mercator-Ocean high resolution ocean forecasting system in the Atlantic and Mediterranean basins.

    NASA Astrophysics Data System (ADS)

    Lellouche, J.-M.; Benkiran, M.; Dombrowsky, E.; L'Hévéder, B.; Mortier, L.; Testor, P.

    2009-04-01

    In the framework of the European project GMES/MyOcean, Mercator-Ocean has been designing a hierarchy of ocean analysis and forecasting systems based on numerical models of the ocean and data assimilation methods. Since April 2008, Mercator-Ocean runs an Atlantic and Mediterranean system between 20°S and 80°N. It is eddy resolving as its horizontal resolution is 1/12° and it has 50 levels on the vertical with a surface refinement. The ocean and sea ice models are based on the NEMO code. The data assimilation algorithm is a reduced order Kalman filter using 3D multivariate modal decomposition of the forecast error covariance. The system assimilates conjointly altimeter data, SST and in situ observations (temperature and salinity profiles, including ARGO data). The real time operation of this system produces each week realistic 3-dimensional oceanic conditions (temperature, salinity, currents,…) two weeks back in time (hindcast and nowcast) and a two weeks forecast, driven at the surface by atmospheric conditions from the European Center for Medium Range Weather Forecast (ECMWF). Moreover, the system is operated daily to produce 7 days ocean forecasts with daily updates of the ECMWF atmospheric forcing. After a brief description of the system, we will present recent validation results. The first one will consist of a comparison between a glider and Mercator-Ocean fields along a particular section in Mediterranean Sea. The second one will consist of a study of forecast validity showing the impact of daily updates of the atmospheric forcing.

  13. Assessment of the hindcast, nowcast and forecast capabilities of the Mercator-Ocean high resolution ocean forecasting system in the Atlantic and Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Lellouche, J.; Benkiran, M.; L'Hévéder, B.; Mortier, L.; Testor, P.; Dombrowsky, E.

    2009-12-01

    In the framework of the European project GMES/MyOcean, Mercator-Ocean has been designing a hierarchy of ocean analysis and forecasting systems based on numerical models of the ocean and data assimilation methods. Since April 2008, Mercator-Ocean runs an Atlantic and Mediterranean system between 20°S and 80°N. It is eddy resolving as its horizontal resolution is 1/12° and it has 50 levels on the vertical with a surface refinement. The ocean and sea ice models are based on the NEMO code. The data assimilation algorithm is a reduced order Kalman filter using 3D multivariate modal decomposition of the forecast error covariance. The system assimilates conjointly altimeter data, SST and in situ observations (temperature and salinity profiles, including ARGO data). The real time operation of this system produces each week realistic 3-dimensional oceanic conditions (temperature, salinity, currents,…) two weeks back in time (hindcast and nowcast) and a two weeks forecast, driven at the surface by atmospheric conditions from the European Center for Medium Range Weather Forecast (ECMWF). Moreover, the system is operated daily to produce 7 days ocean forecasts with daily updates of the ECMWF atmospheric forcing. After a brief description of the system, we will present recent validation results. The first one will consist of a comparison between a glider and Mercator-Ocean fields along a particular section in Mediterranean Sea. The second one will consist of a study of forecast validity showing the impact of daily updates of the atmospheric forcing.

  14. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss

    NASA Astrophysics Data System (ADS)

    Else, Brent G. T.; Galley, R. J.; Lansard, B.; Barber, D. G.; Brown, K.; Miller, L. A.; Mucci, A.; Papakyriakou, T. N.; Tremblay, J.-É.; Rysgaard, S.

    2013-03-01

    data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290-320 µatm), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: -2.4 mmol m-2 d-1), due largely to warming of the shallow mixed layer. Our results confirm a previous finding that the Canada Basin is not a significant sink of atmospheric CO2 under summertime ice-free conditions and that increased ventilation of the surface mixed layer due to sea ice loss is weakening the sink even further.

  15. Mid-1980s distribution of tritium, 3He, 14C and 39Ar in the Greenland/Norwegian seas and the Nansen basin of the Arctic ocean

    SciTech Connect

    Schlosser, P.; Bonisch, G.; Kromer, B.; Loosli, H.H.; Buehler, R.

    1995-12-31

    The distributions of tritium/3He, 14C and 39Ar observed in the period between 1985 and 1987 in the Greenland/Norwegian Seas and the Nansen Basin of the Arctic Ocean are presented. The data are used to outline aspects of the large-scale circulation and the exchange of deep water between the Greenland/Norwegian Seas and the Nansen Basin. Additionally, semi-quantitative estimates of mean ages of the main water masses found in these regions are obtained. Apparent tritium/3He ages of the upper waters (depth <500m) vary from close to zero in the Norwegian Current to about 15 years at the lower boundary of the Arctic halocline. The deep waters (>1,500m depth) of the Greenland/ Norwegian Seas show apparent tritium/3He ages between about 17 years in the Greenland Sea and 30 years in the Norwegian Sea.

  16. Paleo-ΔCO32- history of the Panama Basin: New insights into glacial deep ocean carbon storage from benthic foraminiferal B/Ca ratios

    NASA Astrophysics Data System (ADS)

    Doss, W. C.; Marchitto, T. M.

    2011-12-01

    The Panama Basin has been described as a "mini-ocean basin" and is frequently targeted for paleo-oceanographic research due to its uniquely isolated location within the vast Eastern Equatorial Pacific (EEP). A common theme amongst several decades of Panama Basin research is the quest to characterize glacial primary productivity, since the EEP is currently a region of significant carbon export to the deep sea. Enhanced deep sea carbon storage was likely responsible for much of the observed ~90 ppm of glacial atmospheric pCO2 drawdown, but whether this was dominantly caused by a change in biological productivity or interior ocean stratification (i.e. deep circulation) remains unclear. With a sill-depth of ~2.3 km, the Panama basin is an ideal location to separate the vertical influence (productivity) upon glacial deep ocean carbon storage from the horizontal influence (circulation). We employ deep water [CO32-] reconstructions to investigate the nature of Panama Basin region primary productivity over the past ~30 kyr. Benthic foraminiferal B/Ca ratios are strongly influenced by seawater saturation state with respect to calcium carbonate (ΔCO32-) Bottom water ΔCO32- in turn is affected by water mass composition, biological production in overlying surface waters, and the "rain ratio" of organic carbon to CaCO3 particulates reaching the seafloor. Coeval measured concentrations of benthic foraminiferal magnesium (Mg), cadmium (Cd), and zinc (Zn) allow us to also investigate changes in bottom water temperature, labile nutrient status, and refractory nutrient status, respectively. We also utilize the recently developed G. menardii fragmentation index to monitor the degree of calcite dissolution. Cibicidoides wuellerstori (and some Uvigerina spp.) trace metals were measured at a 5 cm (~1-4 kyr) resolution from cores RC23-15 (1o13'N, 83o48'W, 3612 m), RC23-22 (1oN, 83o37'W, 3215 m), and RC13-140 (2o52'N, 87o45'W, 2246 m). Data from RC13-140, situated at sill depth

  17. Assessment of the hindcast, nowcast and forecast capabilities of the Mercator-Ocean high resolution ocean forecasting system in the Global and Atlantic and Mediterranean basins.

    NASA Astrophysics Data System (ADS)

    Lellouche, Jean-Michel; Tranchant, Benoît.; Bourdallé-Badie, Romain; Le Galloudec, Olivier; Greiner, Eric; Benkiran, Mounir; Derval, Corine; Testut, Charles-Emmanuel

    2010-05-01

    In the framework of the European project GMES/MyOcean, Mercator-Ocean has been designing a hierarchy of ocean analysis and forecasting systems based on numerical models of the ocean and data assimilation methods. Since April 2008, Mercator-Ocean runs an Atlantic and Mediterranean system at 1/12° between 20°S and 80°N. Since a few months, a global system, with the same horizontal and vertical resolution (50 levels on the vertical with a surface refinement), runs also in an operational mode. These two systems are eddy resolving. The ocean and sea ice models are based on the NEMO code. The data assimilation algorithm is a reduced order Kalman filter using 3D multivariate modal decomposition of the forecast error covariance. The system assimilates conjointly altimeter data, SST and in situ observations (temperature and salinity profiles, including ARGO data) in order to provide the initial conditions required for numerical ocean prediction. The main characteristics of the assimilation system are (i) the background error covariances calculated from a free oceanic simulation, (ii) the adaptive error variance, (iii) the use of the localization technique and (iv) the use of the IAU (Incremental Analysis Update) procedure where analysis increments are inserted at every time step over the same period as the data assimilation window. The real time operation of these systems produce each week realistic 3-dimensional oceanic conditions (temperature, salinity, currents,…) two weeks back in time (hindcast and nowcast) and a one or two weeks forecast, driven at the surface by atmospheric conditions from the European Center for Medium Range Weather Forecast (ECMWF). Moreover, the Atlantic and Mediterranean system is operated daily to produce 7 days ocean forecasts with daily updates of the ECMWF atmospheric forcing. A new version of the regional system is planned to replace soon the actual one with many improvements concerning the ocean model and the assimilation scheme

  18. Geochemical characteristics of the Permian basins and their provenances across the Solonker Suture Zone: Assessment of net crustal growth during the closure of the Palaeo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Eizenhöfer, Paul R.; Zhao, Guochun; Zhang, Jian; Han, Yigui; Hou, Wenzhu; Liu, Dongxing; Wang, Bo

    2015-05-01

    The Solonker Suture Zone is commonly recognised as the location of the Late Permian to Early Triassic closure of the Palaeo-Asian Ocean in the southeastern segment of the Central Asian Orogenic Belt. However, the absence of typical suture-related features, as a consequence of uncommon collisional geometries, gave it a cryptic nature. Thus, the tectonic setting, which led to suturing, still remains enigmatic. A geochemical characterisation of Permian sedimentary and volcanic rocks across the suture was carried out. Supplemented with Hf and Nd isotopic analyses, this approach enables not only a better definition of such regional suture, but also estimates on the long-controversial issue of net crustal growth in accretionary tectonic environments. The results indicate short sedimentary transport distances between the arc basins and their provenances, of which the studied volcanic rocks were a major contributor. Similar enrichment and depletion patterns with respect to N-MORB and average continental crust further corroborate a close source-sediment relationship. Immobile element provenance analyses indicate that the active continental northern margin of the North China Craton was a major source for arc basins to the south of the Solonker Suture Zone. To its north, arc basins are interpreted to be sourced by a more complex mixture of provenances, e.g., the Baolidao volcanic arc suite and the heterogenous Precambrian basement of southern Mongolia. An overall collisional tectonic setting across the suture is recognised. The geochemical signature of sedimentary rocks to the south of the suture points at an active continental arc setting, whereas the bimodal geochemical distribution of the samples to the north shows a contemporaneous active oceanic island arc as well as a passive margin environment. These features favour a double-sided subduction of the Palaeo-Asian Ocean beneath the North China Craton and the Mongolian Arcs throughout the Palaeozoic, including back

  19. Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Ickrath, Michele; O'Connor, John

    2013-10-01

    We report on seismic and petrological data that provide new constraints on the geological evolution of the Amerasia Basin. A seismic reflection transect across the Makarov Basin, located between the Mendeleev and Lomonosov Ridges, shows a complete undisturbed sedimentary section of Mesozoic/Cenozoic age. In contrast to the Mendeleev Ridge, the margin of the Lomonosov Ridge is wide and shows horst and graben structures. We suggest that the Mendeleev Ridge is most likely volcanic in origin and support this finding with a 40Ar/39Ar isotopic age for a tholeiitic basalt sampled from the central Alpha/Mendeleev Ridge. Seismic reflection data for the Makarov Basin show no evidence of compressional features, consistent with the Lomonosov Ridge moving as a microplate in the Cenozoic. We propose that the Amerasia Basin moved as a single tectonic plate during the opening of the Eurasia Basin.

  20. Protactinium-231 and thorium-230 abundances and high scavenging rates in the western arctic ocean

    PubMed

    Edmonds; Moran; Hoff; Smith; Edwards

    1998-04-17

    The Canadian Basin of the Arctic Ocean, largely ice covered and isolated from deep contact with the more dynamic Eurasian Basin by the Lomonosov Ridge, has historically been considered an area of low productivity and particle flux and sluggish circulation. High-sensitivity mass-spectrometric measurements of the naturally occurring radionuclides protactinium-231 and thorium-230 in the deep Canada Basin and on the adjacent shelf indicate high particle fluxes and scavenging rates in this region. The thorium-232 data suggest that offshore advection of particulate material from the shelves contributes to scavenging of reactive materials in areas of permanent ice cover.

  1. Baseline monitoring of the western Arctic Ocean estimates 20% of the Canadian Basin surface waters are undersaturated with respect to aragonite

    USGS Publications Warehouse

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  2. The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults

    NASA Astrophysics Data System (ADS)

    Hill, Emma M.; Yue, Han; Barbot, Sylvain; Lay, Thorne; Tapponnier, Paul; Hermawan, Iwan; Hubbard, Judith; Banerjee, Paramesh; Feng, Lujia; Natawidjaja, Danny; Sieh, Kerry

    2015-05-01

    We improve constraints on the slip distribution and geometry of faults involved in the complex, multisegment, Mw 8.6 April 2012 Wharton Basin earthquake sequence by joint inversion of high-rate GPS data from the Sumatran GPS Array (SuGAr), teleseismic observations, source time functions from broadband surface waves, and far-field static GPS displacements. This sequence occurred under the Indian Ocean, ˜400 km offshore Sumatra. The events are extraordinary for their unprecedented rupture of multiple cross faults, deep slip, large strike-slip magnitude, and potential role in the formation of a discrete plate boundary between the Indian and Australian plates. The SuGAr recorded static displacements of up to ˜22 cm, along with time-varying arrivals from the complex faulting, which indicate that the majority of moment release was on young, WNW trending, right-lateral faults, counter to initial expectations that an old, lithospheric, NNE trending fracture zone played the primary role. The new faults are optimally oriented to accommodate the present-day stress field. Not only was the greatest moment released on the younger faults, but it was these that sustained very deep slip and high stress drop (>20 MPa). The rupture may have extended to depths of up to 60 km, suggesting that the oceanic lithosphere in the northern Wharton Basin may be cold and strong enough to sustain brittle failure at such depths. Alternatively, the rupture may have occurred with an alternative weakening mechanism, such as thermal runaway.

  3. Discussion of the Ionian and Levantine Seas, NATO workshop on atmospheric and oceanic circulation in the Mediterranean Basin

    SciTech Connect

    Hopkins, T.S.

    1984-01-01

    The gross features and distinctiveness of its thermohaline circulation are described for the Ionian and Levantine Seas of the eastern Mediterranean. The paper also discusses the significance of the thermohaline coupling with neighboring Mediterranean basins. 22 refs. (ACR)

  4. Anomalous Heat Flow and Basement Depth in the Newfoundland Basin Ocean-Continent Transiton Compared With the Iberia Abyssal Plain Conjugate

    NASA Astrophysics Data System (ADS)

    Louden, K.; Lau, H.

    2004-05-01

    A total of 30 new heat flow stations were taken in the Newfoundland Basin, in conjunction with seismic reflection and refraction profiles of the SCREECH and MARIPROBE programs, in order to constrain its lithospheric thermal structure. This was the first use of a new heat flow probe that allows high resolution sampling from up to 48 thermistors over a 4-6-m long sensor string, although only 24 sensors were used for these measurements. Data were taken at three multi-penetration sites: HF1 (12 stations) on oceanic crust seaward of magnetic anomaly M0 along Line 1 (SE of Flemish Cap); and HF2 (12 stations) and HF3 (8 stations) on Line 3 (NW of the Newfoundland Seamounts) on thin oceanic crust landward of the J-anomaly (HF2) and on thin continental crust within the ocean-continent transition (HF3). Temperature gradients are linear at all sites except within the uppermost 1 m at site HF2, where there is evidence for recent variations in bottom water temperature. Average thermal conductivity is very uniform at 0.88±0.8 W/m-K (HF1 and HF2) and 0.85±0.4 W/m-K (HF3). Mean heat flow values are similar at HF1 (57.5±2.1 mW/m2) and HF3 (58.4±2.7 mW/m2) and lower at HF2 (49.5±1.0 mW/m2). Values of heat flow versus sediment-corrected basement depth are consistent with the lithospheric thermal model GDH1 of Stein and Stein (1992) and the expected age at HF2 (130 Ma), but they are 20-50 my younger than expected for HF1 and HF3. In comparison to plots of heat flow and basement depth for the Iberia Abyssal Plain, the Newfoundland Basin shows a significant anomaly in both basement depth (~500-800 m shallower) and heat flow (5-18 mW/m2 higher). The heat flow results indicate that differences in basement depth between these conjugate basins are compensated by significant differences in lithospheric thermal structure and not by differences in shallow crustal structure. The recent discovery of lower Albian diabase sills beneath the Newfoundland Basin at ODP Site 1276, might indicate

  5. A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models

    NASA Astrophysics Data System (ADS)

    Tao, Weichen; Huang, Gang; Hu, Kaiming; Gong, Hainan; Wen, Guanhuan; Liu, Lin

    2016-01-01

    Based on 15 Coupled Model Intercomparison Project (CMIP) phase 3 (CMIP3) and 32 CMIP phase 5 (CMIP5) models, a detailed diagnosis was carried out to understand what compose the biases in simulation of the Indian Ocean basin mode (IOBM) and its capacitor effect. Cloud-radiation-SST (CRS) feedback and wind-evaporation-SST (WES) feedback are the two major atmospheric processes for SST changes. Most CMIP models simulate a stronger CRS feedback and a weaker WES feedback. During boreal fall of the El Niño/Southern Oscillation developing year and the following spring, there are weak biases of suppressed rainfall anomalies over the Maritime Continent and anomalous anticyclone over South Indian Ocean. Most CMIP models simulate reasonable short wave radiation (SWR) and weaker latent heat flux (LHF) anomalies. This leads to a weak bias of atmospheric processes. During winter, however, the rainfall anomalies are stronger due to west bias, and the anomalous anticyclone is comparable to observations. As such, most models simulate stronger SWR and reasonable LHF anomalies, leading to a strong bias of atmospheric processes. The thermocline feedback is stronger in most models. Though there is a deep bias of climatology thermocline, most models capture reasonable sea surface height-induced SST anomalies. Therefore, the effect of oceanic processes offset the weak bias of atmospheric processes in spring, and the tropical Indian Ocean warming persists into summer. However, anomalous northwest Pacific (NWP) anticyclone is weaker due to weak and west bias of the capacitor effect. The unrealistic western Pacific SST anomalies in models favor the westward extension of Rossby wave from the Pacific, weakening the effect of Kelvin wave from the Indian Ocean. Moreover, the western Pacific warming forces the NWP anticyclone move farther north than observations, suggesting a major forcing from the Pacific. Compared to CMIP3, CMIP5 models simulate the feedbacks more realistically and display

  6. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  7. A History of Warming Sea Surface Temperature and Ocean Acidification Recorded by Planktonic Foraminifera Geochemistry from the Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Osborne, E.; Thunell, R.; Bizimis, M.; Buckley, W. P., Jr.; benitez-Nelson, C. R.; Chartier, C. J.

    2015-12-01

    The geochemistry of foraminiferal shells has been widely used to reconstruct past conditions of the ocean and climate. Since the onset of the Industrial Revolution, anthropogenically produced CO2 has resulted in an increase in global temperatures and a decline in the mean pH of the world's oceans. The California Current System is a particularly susceptible region to ocean acidification due to natural upwelling processes that also cause a reduction in seawater pH. The trace element concentration of magnesium and boron in planktonic foraminiferal shells are used here as proxies for temperature and carbonate ion concentration ([CO32-]), respectively. Newly developed calibrations relating Mg/Ca ratios to temperature (R2 0.91) and B/Ca ratios to [CO32-] (R2 0.84) for the surface-mixed layer species Globogerina bulloides were generated using material collected in the Santa Barbara Basin sediment trap time-series. Using these empirical relationships, temperature and [CO32-] are reconstructed using a 0.5 meter long multi-core collected within the basin. 210Pb activities were used to determine a sedimentation rate for the core to estimate ages for core samples (sedimentation rate: 0.341 cm/yr). A spike in 137Cs activity is used as a tie-point to the year 1965 coinciding with the peak of nuclear bomb testing. Our down-core record extends through the mid-19th century to create a history of rising sea surface temperatures and declining [CO32-] as a result of anthropogenic CO2 emissions.

  8. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications

    NASA Astrophysics Data System (ADS)

    Li, Chun-Feng; Zhou, Zuyi; Li, Jiabiao; Hao, Hujun; Geng, Jianhua

    2007-03-01

    The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.

  9. Bio- and chemostratigraphy of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin)

    NASA Astrophysics Data System (ADS)

    Heldt, Matthias; Mutterlose, Joerg; Berner, Uli; Erbacher, Jochen

    2013-04-01

    The Mid-Cretaceous period was characterised by a series of prominent anoxic events, one of these was the late Early Aptian Oceanic Anoxic Event 1a (OAE 1a). The Fischschiefer horizon is the regional sedimentary expression of this event in a small epicontinental sea in northwest Europe (Germany, Lower Saxony Basin). In the present study, two sediment cores of Lower to Upper Aptian age (Hoheneggelsen KB 9 and 40) from the Brunswick area, north Germany, have been investigated in detail with respect to their lithostratigraphy, geochemistry (CaCO3, TOC), biostratigraphy (coccoliths, nannoliths) and high-resolution chemostratigraphy (^13Ccarb and ^13Corg). Together with separately published new planktonic foraminifer data of the cores it was possible to establish a detailed time frame and to recognise the OAE 1a. The ^13C data enabled us to subdivide the deposits into isotope segments (C2-C7), which are commonly used as stratigraphic markers in coeval sediments around the world. The carbon isotope curves are compared to recently published Aptian curves from other parts of the Lower Saxony Basin, all of which record the prominent carbon isotope anomaly of the OAE 1a. A high-resolution correlation of the typical isotope trends of OAE 1a (segments C3-6) across the Lower Saxony Basin appears difficult due to an early diagenetic overprint of the primary isotope signal. These alterations can be explained by the temporary establishment of euxinic conditions the Lower Saxony Basin during OAE 1a as consequence of an interplay of different factors, such as global warming, restricted palaeogeography, increased fluvial input and intensified stable water stratification, which is supported by several lines of regional evidence.

  10. Two stage melt-rock interaction in the lower oceanic crust of the Parece Vela basin (Philippine sea), evidence from the primitive troctolites from the Godzilla Megamullion

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; Dick, H. J.; Ohara, Y.

    2011-12-01

    Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/Pl<1), which show evident textural differences. Ol-troctolites have rounded to polygonal olivine, subhedral plagioclase, and poikilitic clinopyroxene. This texture suggests chemical disequilibrium between the olivine and a melt crystallizing plagioclase and clinopyroxene. We interpret these rocks as reaction products of a dunite matrix with transient basaltic melts [e.g. 3; 4]. Pl-troctolites have euhedral plagioclase and poikilitic olivine and clinopyroxene. Irregular shapes and inverse zoning of the plagioclase chadacrysts within the olivine indicate disequilibrium between existing plagioclase and an olivine-clinopyroxene saturated melt. The occurrence of plagioclase chadacrysts within clinopyroxene ranging from irregular to euhedral in shape suggests crystallization of new lower-Na plagioclase with the clinopyroxene. Olivine oikocrysts in the Pl-troctolites have low-NiO olivine in equilibrium with a high-MgO melt. The Pl-troctolites, then, may be the product of reaction between a plagioclase cumulate and a basaltic melt produced by mixing the high-MgO melt residual to the formation of the Ol-troctolites with new magma. The effect of melt-rock reaction in the Pl- and Ol- troctolites explains the sharp decrease in plagioclase An with respect to Mg# in clinopyroxene and olivine. Furthermore, the melt is shifted towards lower Na, which is

  11. Quaternary history of sea ice and paleoclimate in the Amerasia Basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge

    USGS Publications Warehouse

    Phillips, R.L.; Grantz, A.

    1997-01-01

    The 19 middle-early Pleistocene to Holocene bipartite lithostratigraphic cycles observed in high-resolution piston cores from Northwind Ridge in the Amerasia Basin of the Arctic Ocean, provide a detailed record of alternating glacial and interglacial climatic and oceanographic conditions and of correlative changes in the character and thickness of the sea-ice cover in the Amerasia Basin. Glacial conditions in each cycle are represented by gray pelagic muds that are suboxic, laminated, and essentially lacking in microfossils, macrofossils, trace fossils, and generally in glacial erratics. Interglacial conditions are represented by ochre pelagic muds that are oxic and bioturbated and contain rare to abundant microfossils and abundant glacial erratics. The synglacial laminated gray muds were deposited when the central Amerasia Basin was covered by a floating sheet of sea ice of sufficient thickness and continuity to reduce downwelling solar irradiance and oxygen to levels that precluded photosynthesis, maintenance of a biota, and strong oxidation of the pelagic sediment. Except during the early part of 3 of the 19 synglacial episodes, when it was periodically breached by erratic-bearing glacial icebergs, the floating Arctic Ocean sea-ice sheet was sufficiently thick to block the circulation of icebergs over Northwind Ridge and presumably other areas of the central Arctic Ocean. Interglacial conditions were initiated by abrupt thinning and breakup of the floating sea-ice sheet at the close of glacial time, which permitted surges of glacial erratic-laden ice-bergs to reach Northwind Ridge and the central Arctic Ocean, where they circulated freely and deposited numerous, and relatively thick, erratic clast-rich beds. Breakup of the successive synglacial sea-ice sheets initiated deposition of the interglacial ochre mud units under conditions that allowed sunlight and increased amounts of oxygen to enter the water column, resulting in photosynthesis and biologic

  12. Late Cretaceous to Late Eocene Hekimhan Basin (Central Eastern Turkey) as a supra-ophiolite sedimentary/magmatic basin related to the later stages of closure of Neotethys

    NASA Astrophysics Data System (ADS)

    Booth, Matthew G.; Robertson, Alastair H. F.; Tasli, Kemal; İnan, Nurdan

    2014-11-01

    The Hekimhan Basin is here put forward as a type example of a globally important class of basin, known as a supra-ophiolite basin. Such basins form after the emplacement of ophiolitic (i.e. oceanic) rocks onto a passive continental margin, but long prior to continental collision. The Hekimhan Basin developed as part of the northern margin of the Tauride microcontinent during the collision and suturing of two Neotethyan oceans to the north, namely the Inner Tauride Ocean and the İzmir-Ankara-Erzincan ocean. The basin records two main stages of tectonic development, during latest Cretaceous to Late Eocene time. The first phase of basin development during the Late Cretaceous (Maastrichtian) began with the erosion of emplaced ophiolitic rocks, resulting in non-marine clastic sedimentation. Subsequently, the basin rapidly subsided, in response to inferred regional crustal extension, resulting in the deposition of hemipelagic marls and local sapropelic mudstones. The axial parts of the basin experienced alkaline, within-plate-type, basaltic volcanism. The Late Maastrichtian culminated in deposition of shallow-marine carbonates. Overlying Paleocene sediments are restricted to thin, localised, marine evaporates, associated with a low-angle unconformity. The second stage of basin development began during the Early Eocene with deposition of shallow-marine carbonates, coupled with localised basaltic volcanism, again of extensional type. The basin emerged during the Mid-Late Eocene in a late-stage collisional to post-collisional setting. Compressional deformation largely reflects post-suture tightening. A short-lived marine transgression occurred during the Mid-Miocene. The basin was later deformed by both left-lateral and right-lateral strike-slip. Several different tectonic models are considered, notably extension related to the northward pull of a still-subducting oceanic slab, and back-arc extension related to northward subduction of Neotethys (to the south). The first

  13. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Vialard, Jérôme; Behrenfeld, Michael J.

    Characterizing how the Indian Ocean dipole (IOD) modifies typical basin-wide dynamical variability has been vigorously pursued over the past decade. Along with this dynamic response, a clear biological impact has been revealed in the ocean color data acquired by remote sensing platforms such as Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The signature feature illustrating IOD alteration of typical spatiotemporal chlorophyll variability is the phytoplankton bloom that first appears in September along the eastern boundary of the IO in tropical waters that are normally highly oligotrophic. Positive chlorophyll anomalies (CLa) are also apparent in the southeastern Bay of Bengal, while negative anomalies are observed over much of the Arabian Sea. Moreover, in situ measurements obtained by the R/V Suroit as part of the Cirene cruise during the 2006/2007 IOD reveal anomalous subsurface biochemical distributions in the southern tropical IO that are not reflected in SeaWiFS data. Despite the clear basin-wide influence of IOD events on biological variability, the accompanying influence on biogeochemical cycling that must occur has received little attention. Here, the dynamical signatures apparent in remote sensing fields for the two positive-phase IODs of the SeaWiFS era are used to illuminate how these events are similar or distinct. A corresponding comparison of IOD-engendered surface CLa is performed, with the dynamical fields providing the framework for interpreting the mechanisms underlying the biological response. Then, results from a newly developed net primary production algorithm are presented that provide the first characterization of how biogeochemical fluxes throughout the IO are altered by IOD occurrence

  14. Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin

    USGS Publications Warehouse

    Perkins, R.B.; Piper, D.Z.; Mason, C.E.

    2008-01-01

    The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.

  15. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    SciTech Connect

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; Jacobsen, Douglas W.; Petersen, Mark R.

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s–1 in the region of western boundary current separation to O(103) m2 s–1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.

  16. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; ...

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s–1 in the region of western boundary current separation to O(103) m2 s–1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  17. New insights on the relationship between ocean mesoscale structures and spatio-temporal distribution of precipitation in the western Mediterranean basin during the HyMeX SOPs in 2012-2013

    NASA Astrophysics Data System (ADS)

    Béranger, Karine; Anquetin, Sandrine; Arsouze, Thomas; Boudevillain, Brice; Beuvier, Jonathan; Claud, Chantal; Lebeaupin Brossier, Cindy; Delrieu, Guy; Drobinski, Philippe; Flaounas, Emmanouil; Polcher, Jan; Stéfanon, Marc

    2015-04-01

    The Mediterranean area is prone to intense precipitation events. In this study, we investigate the role of the ocean heat content and mesoscale features on the spatio-temporal distribution of the precipitation in the Mediterranean basin. For the HyMeX Special observation periods in 2012-2013 (SOP1 and SOP2), one-year sensitivity experiments were run with the non hydrostatic atmospheric WRF model of the MORCE-MED plateform, using different datasets of sea surface temperature. The sea surface temperature fields are derived from four ocean NEMO-MED companion simulations, made at different resolutions. The horizontal resolution is ~7km and ~2.5km while the vertical resolution is stretched from 1m at the surface to 400m at the bottom sea with 50 z-levels or from 1m at the surface to 130m at the bottom sea with 75 z-levels. The simulations started in 1998 with an ocean at rest and all have the same initial state and boundary conditions. The ocean was forced by the daily ARPERA atmospheric flux and winds. The analysis focuses on the precipitation at sub-basin scales in the western part of the Mediterranean basin. To highlight the ocean impact on the water content and transport in the low atmosphere, the diurnal cycle of precipitation and the contribution of extreme events to the annual precipitation budgets are compared over sea to HOAPS observations and over land to the OHMCV in situ observations.

  18. Tectonic Gateways, Circumglobal Currents, and the Stepwise Development of the Great Ocean Conveyor: Inferences From Basinal Benthic Foraminiferal Isotope Syntheses

    NASA Astrophysics Data System (ADS)

    Cramer, B. S.; Katz, M. E.; Wright, J. D.; Miller, K. G.

    2007-12-01

    We have compiled a database of published benthic foraminiferal stable isotope (δ13C, δ18O) records from ODP and DSDP cores. Comparison of separate trends for the Pacific, North Atlantic, South Atlantic/Subantarctic, and high-latitude Southern Oceans provides insight into the development of the strong nutrient (δ13C) and density (δ18O) gradients that characterize the late Neogene conveyor circulation. The transition occurred in a series of four steps: 1) middle Eocene development of a Southern Ocean- to-Pacific/Atlantic density gradient; 2) early Oligocene development of a density gradient between sub-Antarctic and high-latitude Southern Ocean deep water; 3) early Miocene increase in the Southern Ocean-to-Pacific nutrient gradient; 4) middle--late Miocene development of a strong North Atlantic-to-Pacific nutrient gradient. The middle-- late Miocene development of North Atlantic-to-Pacific nutrient gradients has previously been linked to the near- modern influence of North Atlantic deep water and the development of modern conveyor circulation. We link the middle Eocene--Oligocene development of density gradients to the formation of the Antarctic circumpolar current (ACC), initially as a shallow current allowing substantial outflow of Antarctic bottom water (AABW) and subsequently as a deep current and barrier to lateral flow of AABW. The timing of the changes in density gradients is consistent with recent evidence indicating a middle Eocene opening of the Drake passage to shallow flow and deepening of the passage in the early Oligocene. We interpret weak nutrient and density gradients in the pre- middle Eocene Cenozoic as reflecting deep ocean circulation dominated by diffusive transport with insignificant advective currents, and speculate that strong gradients in the Late Cretaceous reflect a Tethyan circumglobal current that, analogous to the ACC, stabilized bipolar deepwater source regions with distinct density characteristics.

  19. Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin

    PubMed Central

    Flecha, Susana; Pérez, Fiz F.; García-Lafuente, Jesús; Sammartino, Simone; Ríos, Aida. F.; Huertas, I. Emma

    2015-01-01

    A significant fraction of anthropogenic carbon dioxide (CO2) released to the atmosphere is absorbed by the oceans, leading to a range of chemical changes and causing ocean acidification (OA). Assessing the impact of OA on marine ecosystems requires the accurate detection of the rate of seawater pH change. This work reports the results of nearly 3 years of continuous pH measurements in the Mediterranean Sea at the Strait of Gibraltar GIFT time series station. We document a remarkable decreasing annual trend of −0.0044 ± 0.00006 in the Mediterranean pH, which can be interpreted as an indicator of acidification in the basin based on high frequency records. Modeling pH data of the Mediterranean outflow allowed to discriminate between the pH values of its two main constituent water masses, the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW). Both water masses also exhibited a decline in pH with time, particularly the WMDW, which can be related to their different biogeochemical nature and processes occurring during transit time from formation sites to the Strait of Gibraltar. PMID:26608196

  20. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  1. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiko; Obata, Hajime.; Hioki, Nanako; Ooki, Atsushi; Nishino, Shigeto; Kikuchi, Takashi; Kuma, Kenshi

    2016-10-01

    Distributions of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in September 2012 were investigated to elucidate the mechanisms behind the transport of these metals from the Chukchi Shelf to the Canada Basin. Filtered (<0.22 μm) and unfiltered seawater samples were analyzed to determine dissolved (D) and total dissolvable (TD) trace metal concentrations, respectively. We identified maxima in vertical profiles for the concentrations of D-Fe and TD-Fe, as well as for the other four analyzed trace metals, which occurred in the halocline and/or near-bottom waters. Concentration profiles of all trace metals except for Cd also tended to show peaks near the surface, which suggest that the inflow of low-salinity Pacific-origin water from the Bering Strait, as well as local fresh water inputs such as river water and melting sea-ice, influenced trace metal concentrations. The distribution patterns and concentration ranges were generally similar between the D and TD fractions for Ni, Zn and Cd, which indicate that Ni, Zn and Cd were present mainly in their dissolved forms, whereas the concentrations of TD-Fe and TD-Mn were generally higher than those of D-Fe and D-Mn, respectively. These results are consistent with the results of previous studies of this region. For both Fe and Mn, labile particulate (LP) concentrations (the difference between the TD and D fractions, which is acid-leachable fraction in the particles during storage at pH 1.5-1.6) were highest in the near-bottom waters of the Chukchi Shelf region. The relationships between the distance from the shelf break and the concentrations of trace metals revealed that Fe and Mn concentrations in halocline waters tended to decrease logarithmically with distance, whereas changes in the concentrations of Ni, Zn, Cd and phosphate with distance were small. These results suggest that the distributions of Fe and Mn were controlled mainly by input from shelf sediment and removal

  2. The Southern Ocean: Source and sink?

    NASA Astrophysics Data System (ADS)

    Strugnell, J. M.; Cherel, Y.; Cooke, I. R.; Gleadall, I. G.; Hochberg, F. G.; Ibáñez, C. M.; Jorgensen, E.; Laptikhovsky, V. V.; Linse, K.; Norman, M.; Vecchione, M.; Voight, J. R.; Allcock, A. L.

    2011-03-01

    Many members of the benthic fauna of the Antarctic continental shelf share close phylogenetic relationships to the deep-sea fauna adjacent to Antarctica and in other ocean basins. It has been suggested that connections between the Southern Ocean and the deep sea have been facilitated by the presence of a deep Antarctic continental shelf coupled with submerging Antarctic bottom water and emerging circumpolar deep water. These conditions may have allowed 'polar submergence', whereby shallow Southern Ocean fauna have colonised the deep sea and 'polar emergence', whereby deep-sea fauna colonised the shallow Southern Ocean. A recent molecular study showed that a lineage of deep-sea and Southern Ocean octopuses with a uniserial sucker arrangement on their arms appear to have arisen via polar submergence. A distantly related clade of octopuses with a biserial sucker arrangement on their arms (historically placed in the genus Benthoctopus) is also present in the deep-sea basins of the world and the Southern Ocean. To date their evolutionary history has not been examined. The present study investigated the origins of this group using 3133 base pairs (bp) of nucleotide data from five mitochondrial genes (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, cytochrome c oxidase subunit III, cytochrome b) and the nuclear gene rhodopsin from at least 18 species (and 7 outgroup taxa). Bayesian relaxed clock analyses showed that Benthoctopus species with a high-latitude distribution in the Southern Hemisphere represent a paraphyletic group comprised of three independent clades. The results suggest that the Benthoctopus clade originated in relatively shallow Northern Hemisphere waters. Benthoctopus species distributed in the Southern Ocean are representative of polar emergence and occur at shallower depths than non-polar Benthoctopus species.

  3. Evidence for an important tectonostratigraphic seismic marker across Canada Basin and southern Alpha Ridge of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Shimeld, J.; Chian, D.; Jackson, R.; Hutchinson, D. R.; Mosher, D. C.; Wade, J.; Chapman, B.

    2010-12-01

    Using a modern ice-strengthened seismic acquisition system, more than 12,000 km of high quality 16-channel, vertical incidence seismic reflection and wide-angle sonobuoy data, along with single- and multibeam bathymetric soundings and gravimetric profiles have been acquired across Canada Basin and the southern flank of Alpha Ridge. These datasets are being used to determine the crustal types, rifting processes, subsidence history, and sedimentary sequences of this poorly known region. More than a dozen regional seismostratigraphic units are identified, exceeding ~6.5 km in total sediment thickness in the south, thinning northward toward Alpha Ridge. The oldest regionally mappable unit is informally named “bisque” and is characterized by high-amplitude, continuous, parallel and subparallel internal reflections. The bisque unit averages ~600 m thick, with significant local variability. Along southern Alpha Ridge, the base of the bisque unit is marked by a prominent angular unconformity which can be traced southwards into Canada Basin before becoming obscured by thick overlying units. Though affected by faulting and compaction drape, the bisque unit appears to be concordant with the topography of the underlying acoustic basement. It is also spatially and temporally associated with large structures that are interpreted to be volcanic edifices. Most of the 129 available sonobuoy records show clear wide-angle refractions/reflections from sedimentary and upper and lower crustal layers, which can be ray-traced and velocity modeled using constraints from coincident reflection profiles. Slight ray angle dependent anisotropy is found to best describe these observed data, and is used for conversion between two-way travel time and vertical depth domains. Two distinct features are identified for the bisque layer: 1) a wide-angle reflection observed on nearly all sonobuoy data; and 2) S waves (named PsP), doubly converted at the bisque layer. P-wave refractors from bisque

  4. Climate and ocean variability during the past 1000 years in Pescadero basin, southern Gulf of California, Mexico.

    NASA Astrophysics Data System (ADS)

    Tenorio, Alejandra; Pérez-Cruz, Ligia; Roy, Debajyoti; Rodriguez, Alejandro; Vilaclara-Fatjó, Gloria

    2013-04-01

    We analyzed a laminated sedimentary sequence, box core C-2 (30.5 cm length); it was recovered in the eastern part of Pescadero Basin at 670 m depth collected aboard of the R/V "El Puma". Pescadero Basin is one of a series of deep tectonically active basins developed in the Gulf of California from south to north, which are characterized by their distinct climatic, oceanographic and geologic conditions. The purpose for this study is to contribute to the understanding of the paleoceanographic variability during 1000 years in the southern Gulf of California, using geochemical data, X- ray fluorescence and Corg analyses. The Core C-2 is characterized by silty clay sediments with visible laminated structure throughout the core. The preliminary chronology for core C-2 was obtained with the isotopic 210Pb dating method, based on this we estimated a sedimentation rate of 27 mm/yr for the first 5 cm. The data were extrapolated to the base of the core (30.5 cm); according to this the C-2 core covers the period from 900 to 2003 years EC. The geochemical proxies suggest three main changes in sedimentary sequence, considering Al, K, Fe, Si as terrigenous proxies, Ti as precipitation proxy , Zr/Al ratio as aeolian supply proxy and Corg as productivity proxy. At the bottom of the core, low values of Al, K, Si and Fe suggest a decrease in terrigenous input, low values of Ti concentration are associated with reduction in precipitation and high values of the Zr/Al ratio are shown increase aeolian supply. In this context, the proportion of aeolian sediments in the terrigenous record indicates dry conditions.In the middle of the core, high values Al, K, Si and Fe are interpreted to reflect increased terrigenous input, Ti high values suggest an increase in precipitation, low values of Corg reflect diminish in productivity. Also, within the period it is possible to recognize an episode with an abrupt decrease of terrigenous input, but aeolian supply is greater, it suggested a multi

  5. Can the South China Sea tell us anything about Canada Basin?

    NASA Astrophysics Data System (ADS)

    Stephenson, Randell; Li, Lu

    2016-04-01

    The Canada Basin (a sub-basin within the Amerasia Basin) and the South China Sea both preserve oceanic spreading centres and adjacent passive continental margins characterised by broad continent-ocean transition zones with hyper-extended continental crust. There are indications that hyper-extension in the South China Sea occurred mainly as a result of flow within a weak lower crustal layer and that it occurred both before and after plate break-up and the onset of ocean lithosphere formation at the sea-floor spreading axis. Available geophysical data from Canada Basin permit similar inferences. Both basins are about the same size and the oceanic segment in both is about the same size. Seafloor spreading in the South China Sea took place in the Cenozoic whereas in Canada Basin it is widely believed to have occurred during the Cretaceous. Widespread magmatism expressed as the High Arctic Large Igneous Province (HALIP) may or may not have played an intrinsic, linked, role in Canada Basin formation. No similar LIP is associated with the South China Sea although one mechanism proposed to have driven its formation is ascribed to mantle plume activity in its northernmost part. More conventionally the mechanism of opening of the South China Sea is considered to be "passive" rather than "active", related to plate reconfigurations in the southeast Asia region linked or not linked to the nearby collision of India and Eurasia and/or subduction of a "proto-South China Sea". The driving mechanism for opening of Canada Basin is poorly discussed in the literature but is generally ascribed to paleo-tectonic plate reconfigurations and subduction in the northern Pacific (Eurasia-North America plates) region in the Mesozoic. Can the South China Sea tell us anything about Canada Basin in terms of the pre-existing lithosphere of each and the geodynamic processes leading to its hyper-extension and eventual break-up?

  6. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  7. Regional comparison of syn- and post-rift sequences in salt and salt-free basins offshore Brazil and Angola/Namibia, South Atlantic

    NASA Astrophysics Data System (ADS)

    Strozyk, Frank; Back, Stefan; Kukla, Peter

    2015-04-01

    The large South Atlantic basins offshore South America and Africa record a highly variable syn- to post-breakup tectono-stratigraphic development. The present-day diversity in the structural and sedimentary architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are i) the structural configuration of each margin segment at the time of break-up, ii) the post break-up geodynamic history including tectonics and magmatism, and iii) variations in the type, quantity and distribution of sediment input to the respective margin segment. Particularly the basins around the Rio Grande Rise - Walvis Ridge volcanic complex show a pronounced tectono-stratigraphic asymmetry both along the respective continental margin and across the Atlantic. Only a few attempts exist to establish a regional tectono-stratigraphic correlation framework across the South Atlantic Ocean, mainly because of the lack of data across entire margin segments and limited resolution of basin wide geophysics. Still unresolved issues particularly concern the explanation of the basin-specific geological evolution of respective margin segments along the same continental margin, as well as the correlation of conjugate basins and margin segments across the Atlantic Ocean. In our study we present interpretations and first-pass restorations of regional 2D seismic-reflectivity data from the large basins offshore Brazil (Pelotas Basin, Santos Basin, Campos Basin, Espirito Santo Basin), and offshore Namibia and Angola (Walvis Basin, Namibe Basin, Benguela Basin, Kwanza Basin), which represent four adjacent pairs of conjugate basins on both sides of the South Atlantic. Results are used to document and compare on a basin-scale the contrasting styles of rift and post-rift settings during and after the continental breakup.

  8. Soledad Basin, Baja California: a Twin to Cariaco Basin for Monitoring the Eastern Tropical Pacific Today and the Past?

    NASA Astrophysics Data System (ADS)

    Carriquiry, J.; van Geen, A.; Levi, C.; Ortiz, J. D.; Zheng, Y.; Marchitto, T. M.; Dean, W. E.

    2004-12-01

    Soledad Basin, a semi-enclosed basin on the Pacific margin of southern Baja California at 25oN, is ideally located to document past variations of ocean/atmosphere interactions responding to the Pacific Decadal Oscillation (PDO) and the El Nino-Southern Oscillation (ENSO). This presentation focuses on the hydrography and geochemistry of the basin in the context of a potential monitoring program that could reach the scale of current activities in Cariaco Basin. Soledad Basin (sometimes referred to as Magdalena Basin or San Lazaro Basin) has been studied intermittently since the 1970's although detailed studies to exploit its paleoceanographic potential have started only recently. A very flat bottom with a maximum depth of 540 m was mapped with SeaBeam. A comparison of hydrographic profiles collected inside and outside the basin indicates a sill depth of 290 m. Bioturbation is currently inhibited within the basin primarily because of low oxygen concentration in adjacent source waters, rather than oxygen consumption within the basin as is the case for Cariaco and Santa Barbara Basins. Radiocarbon dating of planktonic foraminifera indicates a very high sedimentation rates of ~108 cm/kyr up through the end of the Bolling/Allerod 13 kyr ago (van Geen et al., Paleoceanography, v. 8, no. 4, 2003). A non-bioturbated section, characterized by sub-cm dark brown to black, coarse, mm- to cm-scale laminations rather than by mm-scale fine laminations, extends almost continuously from the top of a piston core to ~9 m depth, an interval dated at 10.0 ka. In addition, thin white mm-scale laminae composed almost entirely of coccoliths packed in faecal pellets extend to a depth of ~11 m (11.3 ka). A selection of promising results based on diffuse spectral reflectance records obtained at 1-cm resolution, planktonic Mg/Ca data, and the acccumulation of authigenic Mo will be presented.

  9. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  10. A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño

    NASA Astrophysics Data System (ADS)

    Izumo, T.; Vialard, J.; Dayan, H.; Lengaigne, M.; Suresh, I.

    2016-04-01

    Sea Surface Temperature (SST) anomalies that develop in spring in the central Pacific are crucial to the El Niño Southern Oscillation (ENSO) development. Here we use a linear, continuously stratified, ocean model, and its impulse response to a typical ENSO wind pattern, to derive a simple equation that relates those SST anomalies to the low frequency evolution of zonal wind stress anomalies τ x over the preceding months. We show that SST anomalies can be approximated as a "causal" filter of τ x , τ x (t - t 1) - c τ x (t - t 2), where t1 is ~1-2 months, t2 - t1 is ~6 months and c ranges between 0 and 1 depending on τ x location (i.e. SST anomalies are approximately proportional to the wind stress anomalies 1-2 months earlier minus a fraction of the wind stress anomalies 7-8 months earlier). The first term represents the fast oceanic response, while the second one represents the delayed negative feedback associated with wave reflection at both boundaries. This simple approach is then applied to assess the relative influence of the Indian Ocean Dipole (IOD) and of the Indian Ocean Basin-wide warming/cooling (IOB) in favouring the phase transition of ENSO. In agreement with previous studies, Atmospheric General Circulation Model experiments indicate that the equatorial Pacific wind responses to the IOD eastern and (IOB-related) western poles tend to cancel out during autumn. The abrupt demise of the IOD eastern pole thus favours an abrupt development of the IOB-cooling-forced westerly wind anomalies in the western Pacific in winter-spring (vice versa for an IOB warming). As expected from the simple SST equation above, the faster wind change fostered by the IOD enhances the central Pacific SST response as compared to the sole IOB influence. The IOD thereby enhances the IOB tendency to favour ENSO phase transition. As the IOD is more independent of ENSO than the IOB, this external influence could contribute to enhanced ENSO predictability.

  11. Paleoproterozoic basin development and sedimentation in the Lake Superior region, North America

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Southwick, D.L.

    2001-01-01

    The peneplaned Archean craton in the Lake Superior region was the platform upon which a continental margin assemblage was deposited. Extension resulted in localized rifts that received thicker accumulations of sediments and volcanic rocks than did adjacent parts of the platform. Seas transgressed onto the continent several times and an ocean basin opened south of the present-day Lake Superior. Island arcs that formed during subduction collided with the craton margin as the ocean basin closed; oceanic crust is poorly preserved as a dismembered ophiolite sequence. The arc volcanics are preserved as the Wisconsin magmatic terranes. The collision resulted in a fold-and-thrust belt known as the Penokean orogen. To the north of the fold-and-thrust belt, a northward-migrating foreland basin - the Animikie basin - developed. Thick turbidite successions were deposited along the basin axis, and terrigenous clastics and Lake Superior-type iron-formation were deposited on the shelf along the northern margin of the basin. The primary paleoclimatic indicators are: (1) glaciogenic rocks at the base of the Paleoproterozoic succession in Michigan indicating ice-house conditions; 2) remnants of a paleosol on the glaciogenic rocks indicative of deep weathering, probably under subtropical conditions and therefore of greenhouse conditions; and (3) carbonate minerals after gypsum, halite, and anhydrite in stromatolitic dolomite, indicative of aridity. Three second-order depositional sequences are bounded by major unconformities, and can be correlated throughout the Lake Superior region. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    NASA Astrophysics Data System (ADS)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity-depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity-depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity-depth profiles for each seismic trace. A thickness of 12-13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity-depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with

  13. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    USGS Publications Warehouse

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares

  14. Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kleinherenbrink, Marcel; Riva, Riccardo; Sun, Yu

    2016-11-01

    In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance-covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr-1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance-covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr-1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10-20 % is applied; however, the performance of the DDK5-filtered solution strongly depends

  15. Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama basin

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Degens, Egon T.; Honjo, Susumu

    1984-09-01

    Time-series sediment traps were deployed for an entire year at depths of 890, 2590, and 3560 m at a station in the Panama Basin during 1980. Fluxes of sugars, amino acids, and amino sugars varied seasonally at each depth. Two peak fluxes were observed: one in February-March, the other in June-July. The peaks were associated with a high productivity period by regional upwelling and an unusual coccolithophorid bloom. There were significant differences in the distributions of sugars and amino acids associated with the fluxes. The peak flux of June/July was characterized by high amounts of arabinose and ribose within the sugar, and high amounts of aspartic acid in the amino acid fractions. The differences were observed at all three depths simultaneously, indicating rapid vertical transport without significant dissolution or decomposition. The observed pattern indicates the utility of specific compounds such as sugars and amino acids as tracers of source materials in the marine environment.

  16. Dubinectes infirmus, a new species of deep-water Munnopsidae (Crustacea, Isopoda, Asellota) from the Argentine Basin, South Atlantic Ocean

    PubMed Central

    Malyutina, Marina; Brandt, Angelika

    2011-01-01

    Abstract Dubinectes infirmus sp. n., Munnopsidae, is described from the Argentine Basin, southwest Atlantic, at depths between 4586–4607 m. The new species is distinguished by a narrow rim of the pleotelson posterior margin which is not raising over its dorsal surface; article 3 of the antennula is subequal in length to article 2; distomedial lobes of male pleopod 1 are of same size as distolateral lobes; stylet of male pleopod 2 is subequal in length to protopod; uropod exopod is more than a half of endopod length. Some generic characters which are weakly pronounced in the new species or have different state are defined more precisely in the revised diagnosis of Dubinectes. The modified diagnosis of the genus, a key to the species of Dubinectes as well as the distribution of the genus are presented. PMID:22207784

  17. Late Mesozoic and Cenozoic thermotectonic evolution of the central Brooks Range and adjacent North Slope foreland basin, Alaska: Including fission track results from the Trans-Alaska Crustal Transect (TACT)

    USGS Publications Warehouse

    O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.

    1997-01-01

    Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.

  18. Coincidence or not? Interconnected gas/fluid migration and ocean-atmosphere oscillations in the Levant Basin

    NASA Astrophysics Data System (ADS)

    Lazar, Michael; Lang, Guy; Schattner, Uri

    2016-08-01

    A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.

  19. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles F.

    2014-05-01

    Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason

  20. Biomarker evidence for shallow water marine euxinia through the PTB in the Panthalassic Ocean (Peace River Basin Embayment, Canada)

    NASA Astrophysics Data System (ADS)

    Hays, L. E.; Beatty, T.; Henderson, C. M.; Summons, R. E.; Love, G. D.

    2007-12-01

    Protracted euxinic conditions in the late Paleozoic and early Mesozoic oceans may have been an important paleoenvironmental factor in the Permian-Triassic Boundary (PTB) extinction. Release of hydrogen sulfide during upwelling or transgressive events from such an ocean (Kump et al. 2005; Riccardi et al. 2006) may have been a driver of the extinction in both marine and terrestrial environments. Worldwide marine PTB sections show evidence for a stratified water column and the presence of sulfidic deep water, at least episodically (Isozaki 1997; Grice et al. 2005). Taxa that are particularly characteristic of such an environment are the green sulfur bacteria, or Chlorobiaceae. These anoxygenic phototrophic bacteria utilize sulfide as an electron donor for photosynthesis and live in modern stratified water columns where euxinia extends into the photic zone. Indeed, biomarkers derived from these organisms have been identified at a number of the PTB sections. The Peace River embayment in western Canada has been identified as a section that spans the PTB based on conodont biostratigraphy (Henderson 1997). Samples from five drill cores in this section provide new insight into the state of the Panthalassic Ocean during this time of unprecedented turnover in Earth's biota. Using standard biomarker protocols, we identified aromatic hydrocarbons that are diagentic products of the carotenoids isorenieratene and chlorobactene, which are diagnostic for the brown and green strains, respectively, of the Chlorobiaceae. The occurrence of chlorobactane is especially notable since the green-pigmented varieties of the Chlorobiaceae require higher light intensities than the brown-pigmented forms and, in modern environments where they have been found, occur between 13 and 30 m of the surface. This is the first time that chlorobactane has been reported from a PTB section and it suggests a particularly shallow chemocline periodically at this location. The δ13C values for the aryl

  1. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  2. Heat flow distribution and thermal structure of the Philippine Sea Plate and its adjacent areas

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Chen, C.; Liang, Q.; Sun, S.

    2013-12-01

    Research on the present geothermal state is an important way to understand the lithospheric geodynamics. We studied the heat flow (HF) distribution and the geothermal structure of the Philippine Sea Plate (PSP) and its adjacent area (100°E~155°E, 5°S~45°N) surrounded by the East China Sea, South China Sea and the West Pacific Ocean, which is aimed to provide thermal constraints for the dynamic mechanism and tectonic evolution of the PSP. Based on the observed seafloor HF data of the study area with the latest release of CRUST1.0 crustal layered model, the lithospheric geotherm was calculated using 1D steady-state heat conduction equation. However, the obtained numerous geotherms derived from the extrapolation through heat conduction equation strongly depended on the accuracy of the measured HF data, which is limited, unevenly distributed and easily affected by local factors. Therefore, as a meaningful comparison, the temperature distributions at 25 km and 50 km depth inferred from the upper mantle shear wave velocities structure (S2.9EA) are inverted. The HF distribution shows relatively high values in Ryuku Trench and nearby Izu-Boning Trench, where the crust thicken and the mantle uplift obviously as typical transition zones. The Mariana Trench located in the east (southeast) part and the Philippine Trench in the southwest both are with low HF, which is also illustrated in the upper mantle gravity map after temperature correction. The Central Basin Ridge is with unquestionable high HF, being perpendicular to which the value decreasing. The calculated temperature maps (at depth of 25 km and 50 km) by the two methods both present that the temperature in PSP is higher than that in the Western Pacific Ocean and the west Philippine Basin is lower than the east one, which consists well with the crust age. The west half parts both of the Philippine Basin and Parece Vela Basin show low temperature, but high value in Ryuku Trench, Nankai Through, Shikoku Basin, Amami

  3. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline.

    PubMed

    Vignaud, Thomas M; Maynard, Jeffrey A; Leblois, Raphael; Meekan, Mark G; Vázquez-Juárez, Ricardo; Ramírez-Macías, Dení; Pierce, Simon J; Rowat, David; Berumen, Michael L; Beeravolu, Champak; Baksay, Sandra; Planes, Serge

    2014-05-01

    This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo-Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea-level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial-scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo-Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.

  4. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    PubMed Central

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 109 cells cm−3 sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD–FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible. PMID:22207865

  5. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    PubMed

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  6. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México)

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio

    2016-05-01

    The 28,300 year BP (cal 32,300 BP) El Caracol tuff cone complex is one of the few phreatomagmatic volcanoes in the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF). It displays a shallow circular crater of ~ 1 km in diameter that is filled with several meter-thick lava flows and is located between two NE-SW trending normal faults dipping NW. It lies directly on top of Pliocene lavas of the San Lorenzo shield volcano that forms part of a tectonic horst (topographic high) separating the Zacapu lake basin (1980 m) in the south from the Río Angulo river valley (1760 m) to the north. Detailed study of the tephra sequence indicates that the eruption occurred in two stages: 1) Weak phreatomagmatic, in which about 0.1-0.5 km3 dense rock equivalent (DRE) of magma was issued within ~ 1 to 3 months at the rate of 4-40 m3/s, and 2) purely magmatic (Strombolian-effusive) during which the vent shifted slightly its position toward the NW, forming a small scoria cone (~ 100 m high) on the crater rim of the tuff cone. From this scoria cone lava flows were issued, first into the tuff cone crater occupying its bottom, and subsequently toward the NW, down the outer flank of the tuff cone and into the plain, where they reached a distance of ~ 3.5 km. During this stage ~ 0.6 km3 DRE of magma was produced at the rate of ~ 4 m3/s in a period of ~ 5 months. Although El Caracol displays many features that are characteristic for a phreatomagmatic vent, its morphology, types of deposits, and its complex process of formation makes it strikingly different from the more typical case of the ~ 21,000 year BP (cal 25,300 BP) Alberca de Guadalupe maar volcano, situated not far at the SE margin of the Zacapu basin. The latter was solely phreatomagmatic during the course of its eruption and is formed in its entirety by surge and fallout breccias consisting largely of xenolithic material. In contrast, at El Caracol the hydrogeological environment (namely the low

  7. Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean section

    NASA Astrophysics Data System (ADS)

    Carmack, Eddy C.; Aagaard, Knut; Swift, James H.; MacDonald, Robie W.; McLaughlin, Fiona A.; Peter Jones, E.; Perkin, Ronald G.; Smith, John N.; Ellis, Katherine M.; Killius, Linus R.

    Major changes in temperature and tracer properties within the Arctic Ocean are evident in a comparison of data obtained during the 1994 Arctic Ocean Section to earlier measurements. (1) Anomalously warm and well-ventilated waters are now found in the Nansen, Amundsen and Makarov basins, with the largest temperature differences, as much as 1 °C, in the core of the Atlantic layer (200-400 m). Thus thermohaline transition appears to follow from two distinct mechanisms: narrow (order 100 km), topographically-steered cyclonic flows that rapidly carry new water around the perimeters of the basins; and multiple intrusions, 40-60 m thick, which extend laterally into the basin interiors. (2) Altered nutrient distributions that within the halocline distinguish water masses of Pacific and Atlantic origins likewise point to a basin-wide redistribution of properties. (3) Distributions of CFCs associated with inflows from adjacent shelf regions and from the Atlantic demonstrate recent ventilation to depths exceeding 1800 m. (4) Concentrations of the pesticide HCH in the surface and halocline layers are supersaturated with respect to present atmospheric concentrations and show that the ice-capped Arctic Ocean is now a source to the global atmosphere of this contaminant. (5) The radionuclide 129I is now widespread throughout the Arctic Ocean. Although the current level of 129I level poses no significant radiological threat, its rapid arrival and wide distribution illustrate the speed and extent to which waterborne contaminants are dispersed within the Arctic Ocean on pathways along which other contaminants can travel from western European or Russian sources.

  8. Seafloor seismicity, Antarctic ice-sounds, cetacean vocalizations and long-term ambient sound in the Indian Ocean basin

    NASA Astrophysics Data System (ADS)

    Royer, J.-Y.; Chateau, R.; Dziak, R. P.; Bohnenstiehl, D. R.

    2015-08-01

    This paper presents the results from the Deflo-hydroacoustic experiment in the Southern Indian Ocean using three autonomous underwater hydrophones, complemented by two permanent hydroacoustic stations. The array monitored for 14 months, from November 2006 to December 2007, a 3000 × 3000 km wide area, encompassing large segments of the three Indian spreading ridges that meet at the Indian Triple Junction. A catalogue of 11 105 acoustic events is derived from the recorded data, of which 55 per cent are located from three hydrophones, 38 per cent from 4, 6 per cent from five and less than 1 per cent by six hydrophones. From a comparison with land-based seismic catalogues, the smallest detected earthquakes are mb 2.6 in size, the range of recorded magnitudes is about twice that of land-based networks and the number of detected events is 5-16 times larger. Seismicity patterns vary between the three spreading ridges, with activity mainly focused on transform faults along the fast spreading Southeast Indian Ridge and more evenly distributed along spreading segments and transforms on the slow spreading Central and ultra-slow spreading Southwest Indian ridges; the Central Indian Ridge is the most active of the three with an average of 1.9 events/100 km/month. Along the Sunda Trench, acoustic events mostly radiate from the inner wall of the trench and show a 200-km-long seismic gap between 2 °S and the Equator. The array also detected more than 3600 cryogenic events, with different seasonal trends observed for events from the Antarctic margin, compared to those from drifting icebergs at lower (up to 50°S) latitudes. Vocalizations of five species and subspecies of large baleen whales were also observed and exhibit clear seasonal variability. On the three autonomous hydrophones, whale vocalizations dominate sound levels in the 20-30 and 100 Hz frequency bands, whereas earthquakes and ice tremor are a dominant source of ambient sound at frequencies <20 Hz.

  9. Record of Late Quaternary Glacial/Interglacial Variability in the Amerasian Basin (Arctic Ocean) with Improved Stratigraphy

    NASA Astrophysics Data System (ADS)

    Bazhenova, E.; Frederichs, T.; Wollenburg, J.; Stein, R. H.; Vogt, C. M.; Krylov, A.; Kostygov, S.

    2011-12-01

    Piston core TN062 0550, located 13 km offshore of Eureka, California (40.866 deg. N, 124.572 deg. W, 550 m water depth), contains a continuous high-resolution climate record of the past 7,300 yr. Deposition occurred at nearly constant sedimentation rates averaging 94 cm/kyr based on 14C AMS dating of planktonic foraminifers. Pollen and marine ecosystem proxies (diatoms, silicoflagellates, wt. percent biogenic silica) studied at 50-70 yr sample resolution show a stepwise development of the climate/ oceanographic system off northernmost California. The relative contributions of Sequoia sempervirens (coastal redwood) pollen, a proxy for coastal fog associated with offshore upwelling, and biogenic silica concentrations (a proxy for siliceous export productivity) increase (two fold and three fold, respectively) in successive steps at ~5,000 yr BP and from ~2,400 to 2,000 yr BP. These increases are interpreted to reflect a progressive intensification of spring upwelling based on modern observations of the California Current system. At 5,000 yr BP diatom assemblages change from an assorted mixture of warm, temperate, and cool-water taxa to a low diversity temperate-oceanic assemblage dominated by Thalassionema spp. At ~2,400 yr BP the diatom assemblage transitions to a mixture of nearshore upwelling taxa and taxa associated with the central North Pacific Gyre. Silicoflagellate assemblages undergo a similar increase in the representation of modern seasonal proxies at ~3,000 yr BP that may reflect intensified ENSO variability. A two-fold increase in the relative contributions of Quercus (oak) and riparian Alnus (alder) pollen between ~3,800 and 2,000 yr BP likely signals a period of enhanced fluvial runoff associated with increased winter precipitation. Given the present day association of the Eel River system with the northwestern half of the western US winter precipitation dipole, these pollen data suggest that the ~3,800 and 2,000 yr interval was dominated by protracted

  10. Deglacial 14C plateau suites recalibrated by Suigetsu atmospheric 14C record - Revised 14C reservoir ages from three ocean basins corroborate extreme surface water variations

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Balmer, S.; Grootes, P. M.

    2013-12-01

    widely assumed constant planktic Δ14C age of 400 yr. (3) Suites of deglacial planktic Δ14C ages are closely reproducible in 14C records measured on neighbor core sites. (4) Apparent deep-water 14C ventilation ages (benthic Δ14C), obtained from the sum of planktic Δ14C and coeval benthic-planktic Δ14C age differences, vary from an equivalent of <1000 to 5000 yr in LGM and deglacial ocean basins.

  11. Tectonic history of the Illinois basin

    SciTech Connect

    Kolata, D.R.; Nelson, J.W. )

    1990-05-01

    The Illinois basin began as a failed rift that developed during breakup of a supercontinent approximately 550 Ma. A rift basin in the southernmost part of the present Illinois basin subsided rapidly and filled with about 3,000 m of probable Early and Middle Cambrian sediments. By the Late Cambrian, the rift-bounding faults became inactive and a broad relatively slowly subsiding embayment, extending well beyond the rift and open to the Iapetus Ocean, persisted through most of the Paleozoic Era. Widespread deformation swept through the proto-Illinois basin beginning in the latest Mississippian, continuing to the end of the Paleozoic Era. Uplift of basement fault blocks resulted in the formation of many major folds and faults. The timing of deformation and location of these structures in the forelands of the Ouachita and Alleghanian orogenic belts suggest that much of the deformation resulted from continental collision between North America and Gondwana. The associated compressional stress reactivated the ancient rift-bounding faults, upthrusting the northern edge of a crustal block approximately 1,000 m within the rift. Concurrently, dikes (radiometrically dated as Early Permian), sills, and explosion breccias formed in or adjacent to the reactivated rift. Subsequent extensional stress, probably associated with breakup of Pangea, caused the crustal block within the rift to sink back to near its original position. High-angle, northeast- to east-west-trending normal faults, with as much as 1,000 m of displacement, formed in the southern part of the basin. These faults displace some of the northwest trending Early Permian dikes. Structural closure of the southern end of the Illinois basin was caused by uplift of the Pascola arch sometime between the Late Pennsylvanian and Late Cretaceous.

  12. Crustal structures across Canada Basin and southern Alpha Ridge of the Arctic Ocean from P- and S-wave sonobuoy wide-angle studies

    NASA Astrophysics Data System (ADS)

    Chian, D.; Shimeld, J.; Jackson, R.; Hutchinson, D. R.; Mosher, D. C.

    2010-12-01

    During 2007-2009, a total of 127 expendable sonobuoys (SB) were deployed across Canada Basin and southern Alpha Ridge to record wide-angle reflections and refractions from more than 10,000 km of inline, short-offset seismic reflection surveying. Most of the SB data show clear wide-angle refractions/reflections from various sedimentary and crustal layers at offsets up to 35 km. Source-receiver offsets are calculated using direct water waves. Subsequent processing includes compensation for spherical divergence and attenuation, despiking, filtering, deconvolution, and NMO correction. During wide-angle modeling, inline reflection data are converted to depth using velocity models/interpretations, iteratively updated based on wide-angle raytracing. Slight ray angle dependent anisotropy is found to best describe observed data, and is used for time-depth conversions. Clear deep refractions from upper, middle and lower crusts are recorded by most SB. Across southern Canada Basin, a regionally consistent velocity structure exists: velocities of ~4.5 km/s overlie a sub-basement layer of 5.5-5.8 km/s at depths of 12-13 km which, in turn, overlie a lower crust of 6.7-7.2 km/s. This structure is intersected by a central gravity low (previously interpreted to be an extinct spreading center), west of which the basement and sub-basement layers are consistently shallower by >1 km than the eastern side. Further northward, significant velocity variations exist. For example, the southern Alpha Ridge has a lower crust of 6.0-6.6 km/s or 6.8-7.0 km/s. Volcanic intrusions, inferred from high basement velocities of ~5.7 km/s at unusually shallow depths (~5 km), exist at discrete locations along southern Alpha Ridge. Between Northwind Ridge and Alpha Ridge, a typical continent-type crustal structure is observed. PmP is occasionally observed, modeling of which results in a Moho depth of 12-15 km. Velocities of 4.2-4.5 km/s in the northern study area are associated with a regional

  13. Ordovician and Triassic mafic dykes in the Wudang terrane: Evidence for opening and closure of the South Qinling ocean basin, central China

    NASA Astrophysics Data System (ADS)

    Nie, Hu; Wan, Xin; Zhang, He; He, Jian-Feng; Hou, Zhen-Hui; Siebel, Wolfgang; Chen, Fukun

    2016-12-01

    We report zircon ages and geochemical composition for mafic dykes that intruded Neoproterozoic volcanic-sedimentary sequences in the southern part of Wudang area, South Qinling. The results indicate that the dykes were emplaced during the Early Paleozoic (c. 460 Ma) and Early Mesozoic (c. 220 Ma). The dykes share similar major element composition, but have distinctive trace element pattern and Sr-Nd-Pb isotope distribution. Early Paleozoic mafic dykes are characterized by enrichment in LREEs, LILEs and HFSEs and EM II-type isotopic features. These geochemical features suggest derivation from an OIB-type mantle source that had undergone metasomatism during earlier subduction events. The Early Mesozoic mafic dykes can be subdivided into two distinct geochemical groups. Dykes of Group 1 are depleted in LREEs, LILEs and HFSEs and show depleted isotope compositions, indicating an origin by partial melting of asthenospheric mantle material. Dykes of Group 2 have high Rb-, Ba-, and K-contents and EM I-type isotopic features, suggesting input of lower crustal material to the magma source during Mesozoic subduction. We propose that the Early Paleozoic dykes are related to the opening of an oceanic basin separating South Qinling from the Yangtze Block, while the Early Mesozoic dykes were derived from partial melting of up-welling asthenosphere during the final amalgamation of these two blocks in the Early Mesozoic. A slab break-off model could explain not only the petrogenesis of the Mesozoic mafic dykes, but also the distinct geological features between the Dabie-Sulu and South Qinling orogens. We propose that slab break-off occurred at great depth in the Dabie-Sulu orogen and hence rare magmatism occurred. Whereas in South Qinling the break-off occurred at a shallow depth, the asthenospheric mantle material could rise further up into the overlying mantle where it experienced decompression and melting. As a consequence, crustal sections were heated up to produce extensive

  14. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series

    NASA Astrophysics Data System (ADS)

    Marshall, Brittney J.; Thunell, Robert C.; Henehan, Michael J.; Astor, Yrene; Wejnert, Katherine E.

    2013-06-01

    Biweekly sediment trap samples and concurrent hydrographic measurements collected between March 2005 and October 2008 from the Cariaco Basin, Venezuela, are used to assess the relationship between [CO32-] and the area densities (ρA) of two species of planktonic foraminifera (Globigerinoides ruber (pink) and Globigerinoides sacculifer). Calcification temperatures were calculated for each sample using species-appropriate oxygen isotope (δ18O) temperature equations that were then compared to monthly temperature profiles taken at the study site in order to determine calcification depth. Ambient [CO32-] was determined for these calcification depths using alkalinity, pH, temperature, salinity, and nutrient concentration measurements taken during monthly hydrographic cruises. The ρA, which is representative of calcification efficiency, is determined by dividing individual foraminiferal shell weights (±0.43 µg) by their associated silhouette areas and taking the sample average. The results of this study show a strong correlation between ρA and ambient [CO32-] for both G. ruber and G. sacculifer (R2 = 0.89 and 0.86, respectively), confirming that [CO32-] has a pronounced effect on the calcification of these species. Though the ρA for both species reveal a highly significant (p < 0.001) relationship with ambient [CO32-], linear regression reveals that the extent to which [CO32-] influences foraminiferal calcification is species specific. Hierarchical regression analyses indicate that other environmental parameters (temperature and [PO43-]) do not confound the use of G. ruber and G. sacculifer ρA as a predictor for [CO32-]. This study suggests that G. ruber and G. sacculifer ρA can be used as reliable proxies for past surface ocean [CO32-].

  15. Evidence For Decadal and Century Scale Climate and Oceanic Variability in the Guaymas Basin, Gulf of California, Over the Last Millenium

    NASA Astrophysics Data System (ADS)

    Pineda, L.; Ravelo, A. C.; Aiello, I. W.; Stewart, Z.; Sauthoff, W.

    2015-12-01

    Linda Pineda1Ana Christina Ravelo2Ivano Aiello3Zach Stewart2Wilson Sauthoff2 Earth and Planetary Sciences Department, UCSC Ocean Sciences Department, UCSC Moss Landing Marine Lab Natural climate change affects coastal water resources, human land use, and marine biological productivity. In particular, the seasonal migration of the Intertropical Convergence Zone (ITCZ) is influenced by changes in global-scale temperature and pressure gradients and is responsible for spatial changes in summertime rainfall in Mesoamerica impacting regional water resources and the strength of upwelling. In October 2014, aboard the Research Vessel El Puma, a 3.9 meter long core (G14-P12) was recovered from the Northeast flank of the Guaymas Basin in the Gulf of California within the oxygen minimum zone (27˚52.11'N, 111˚41.51'W, water depth of 677m) to investigate changes in seasonal upwelling and Central Mexico rainfall over the last ~1000 years. The age model was developed using Pb210, C14 and lamination counting. The time interval includes the Little Ice Age and the Medieval Warm Period. Biological productivity and precipitation proxy records were produced using an X-Ray Fluorescence (XRF) core-scanner and a color line scanner to generate a record of bulk chemistry and color reflectance. The records indicate marked decadal and centennial scale variability in the lithologic composition of the sediment superimposed on millimeter-scale variability that reflects the presence of seasonally laminated sediments. Nitrogen isotopic and nitrogen weight % measurements were used, in combination with the scanned data, to interpret changes in nitrate utilization and biological productivity. These new records will have broad implications on the link between regional coastal environmental conditions in the Gulf of California and global climate change.

  16. Hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and parts of the Aucilla-Suwannee-Ochlockonee River basins in Georgia and adjacent parts of Florida and Alabama during drought conditions, July 2011

    USGS Publications Warehouse

    Gordon, Debbie W.; Peck, Michael F.; Painter, Jaime A.

    2012-01-01

    As part of the U.S. Department of the Interior sustainable water strategy, WaterSMART, the U.S. Geological Survey documented hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and western and central Aucilla-Suwannee-Ochlockonee River basins in Alabama, Florida, and Georgia during low-flow conditions in July 2011. Moderate-drought conditions prevailed in this area during early 2011 and worsened to exceptional by June, with cumulative rainfall departures from the 1981-2010 climate normals registering deficits ranging from 17 to 27 inches. As a result, groundwater levels and stream discharges measured below median daily levels throughout most of 2011. Water-quality field properties including temperature, dissolved oxygen, specific conductance, and pH were measured at selected surface-water sites. Record-low groundwater levels measured in 12 of 43 surficial aquifer wells and 128 of 312 Upper Floridan aquifer wells during July 2011 underscored the severity of drought conditions in the study area. Most wells recorded groundwater levels below the median daily statistic, and 7 surficial aquifer wells were dry. Groundwater-level measurements taken in July 2011 were used to determine the potentiometric surface of the Upper Floridan aquifer. Groundwater generally flows to the south and toward streams except in reaches where streams discharge to the aquifer. The degree of connection between the Upper Floridan aquifer and streams decreases east of the Flint River where thick overburden hydraulically separates the aquifer from stream interaction. Hydraulic separation of the Upper Floridan aquifer from streams located east of the Flint River is shown by stream-stage altitudes that differ from groundwater levels measured in close proximity to streams. Most streams located in the study area during 2011 exhibited below normal flows (streamflows less than the 25th percentile), substantiating the severity of drought conditions that year. Streamflow

  17. The Cretaceous-Paleogene boundary unit in the Gulf of Mexico: Large-scale oceanic basin response to the Chicxulub impact

    NASA Astrophysics Data System (ADS)

    Sanford, J. C.; Gulick, S. P.; Snedden, J.

    2013-12-01

    the lower slope of the Florida Platform, providing further evidence of massive sediment redistribution. Log character of the boundary deposit varies significantly, suggesting changes in both depositional style (e.g, mass flow deposit, collapsed platform block, etc.) and sediment source (e.g., Yucatán Platform, Florida Platform, Texas coast, etc.). Reinvestigation of the classic K-Pg boundary deposits in DSDP Leg 77 cores reveals evidence of several sequences of debris flows and/or turbidites with possibly unique sediment sources, furthering our understanding of small-scale sedimentary processes of impact-related deposition. Generally, evidence supports the theory that the Chicxulub impact was a source of extreme allogenic energy that drastically altered the Gulf Mexico at the start of the Cenozoic. Seismogenic ground roll and multiple episodes of tsunami, erosion, platform collapse, and remobilized sediment effectively overwhelmed and resurfaced the basin's existing depositional systems within a matter of weeks to months. Such processes resulted in the nearly ubiquitous and often extremely thick K-Pg boundary unit in the Gulf. These results yield insight into the near-field effects of a massive bolide impact in a passive marine setting and the ability of such an impact to instantaneously restructure an oceanic basin and its depositional systems.

  18. Geologic framework of the offshore region adjacent to Delaware

    USGS Publications Warehouse

    Benson, R.N.; Roberts, J.H.

    1989-01-01

    postrift sediments that cover the more deeply buried rift basins are estimated to be of Middle Jurassic age (Bajocian-Bathonian), the probable time of opening of the Atlantic Ocean basin and onset of continental drift about 175-180 m.y. ago. By late Oxfordian-early Kimmeridgian time, the less deeply buried basins nearshore Delaware had been covered. A time-temperature index of maturity plot of one of the basins indicates that only dry gas would be present in reservoirs in synrift rocks buried by more than 6000 m of postrift sediments and in the oldest (Bathonian?-Callovian?) postrift rocks. Less deeply buried synrift rocks landward of the basin modeled might still be within the oil generation window. ?? 1989.

  19. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an...

  20. Coastal marine basins as records of continental palaeoenvironments (Gulf of Guinea and Iullemmeden cretaceous and tertiary basins)

    NASA Astrophysics Data System (ADS)

    Rat, P.; Lang, J.; Alzouma, K.; Dikouma, M.; Johnson, A.; Laurin, B.; Mathey, B.; Pascal, A.

    Deposits in nearshore marine basins provide data about the adjacent emerged lands. Examples are taken from the Togo coastal basin, on an ocean margin, and the Iullemmeden intracratonic basin (Niger). A continental landscape is fossilized by the onlapping layers of the transgressions: an eroded crystalline basement (Togo) or a broad and complex alluvial plain (Iullemmeden). Clastics, trapped in the marine deposits, provide information on the source area. Two types of information can be obtained from the sands: the nature of the parent rocks, and the environment at the time of genesis, storage and transportation (tectonic and climatic stability or change). The significance of clays is more complex; they can be formed or modified in the marine environment. However their elastic or chemical components originate from biochemical weathering and provide information on climate, morphology, vegetation cover and drainage of the emerged lands. In the Iullemmeden basin, the important change between Maastrichtian and Paleocene probably reflects a change to a drier climate in accordance with a slight shift of the equator to the south. The properties of marine waters are dependent on climate and morphology of the emergent lands which determines runoff. These properties may be inferred from the analysis of the clastic/carbonate conflict and indicators of salinity (mangrove). In conclusion, the Togo and Iullemmeden basins were located downstream of tectonically quiecent, large continental areas of gentle relief. Transgressions were migrations of a broad littoral system upon very flat continental surfaces caused by erosion or river-dominated deposition.

  1. Deep crustal structure of the Adare and Northern Basins, Ross Sea, Antarctica, from sonobuoy data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Stock, J. M.; Clayton, R. W.; Cande, S.; Granot, R.

    2014-11-01

    Extension associated with ultraslow seafloor spreading within the Adare Basin, in oceanic crust just north of the continental shelf in the Ross Sea, Antarctica, extended south into the Northern Basin. Magnetic and gravity anomaly data suggest continuity of crustal structure across the continental shelf break that separates the Adare and Northern Basins. We use sonobuoy refraction data and multi-channel seismic (MCS) reflection data collected during research cruise NBP0701, including 71 new sonobuoy records, to provide constraints on crustal structure in the Adare and Northern Basins. Adjacent 1D sonobuoy profiles along several MCS lines reveal deep crustal structure in the vicinity of the continental shelf break, and agree with additional sonobuoy data that document fast crustal velocities (6000-8000 m/s) at shallow depths (1-6 km below sea level) from the Adare Basin to the continental shelf, a structure consistent with that of other ultraslow-spread crust. Our determination of crustal structure in the Northern Basin only extends through sedimentary rock to the basement rock, and so cannot help to distinguish between different hypotheses for formation of the basin.

  2. Ocean-to-Ocean Dissimilarities of Salty Subtropical Surface Water

    NASA Astrophysics Data System (ADS)

    Gordon, A. L.

    2014-12-01

    Each ocean basin displays its own 'personality', reflecting its degree of isolation or connectivity to the global ocean, its place in the interocean exchange network and associated ocean overturning circulation systems, as well as regional circulation and air-sea exchange patterns. While dissimilarities are most notable in the northern hemisphere (the salty North Atlantic vs the fresher North Pacific; as well as the salty Arabian and the fresher Bay of Bengal, a miniature Atlantic/Pacific analog?) far removed from the grand equalizing interocean link of the circum-Antarctic belt, and where large continental blocks impose contrasting forcing, the southern hemisphere ocean basins also display differences. Ocean to ocean dissimilarities are evident in the dry subtropical climate belt, marked by deserts on land and salty surface ocean water. The subtropical sea surface salinity maximum (SSS-max) patterns of 5 the subtropical regimes (the North and South Atlantic, North and South Pacific, and the southern Indian Ocean) display significant dissimilarities in their relative position within their ocean basin, in the structure and seasonality of the SSS-max pattern. The near synoptic coverage of Aquarius and Argo profilers are further defining interannual variability. The South Atlantic SSS-max is pressed against the western boundary, whereas in the other regimes the SSS-max falls within the eastern half of the ocean basin, though the western South Pacific displays a secondary SSS-max. For further details see: A. Gordon, C. Giulivi, J. Busecke, F. Bingham, submitted to the SPURS Oceanography special issue.

  3. A Precambrian microcontinent in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Amundsen, Hans; Hartz, Ebbe H.; Corfu, Fernando; Kusznir, Nick; Gaina, Carmen; Doubrovine, Pavel V.; Steinberger, Bernhard; Ashwal, Lewis D.; Jamtveit, Bjørn

    2013-03-01

    The Laccadive-Chagos Ridge and Southern Mascarene Plateau in the north-central and western Indian Ocean, respectively, are thought to be volcanic chains formed above the Réunion mantle plume over the past 65.5 million years. Here we use U-Pb dating to analyse the ages of zircon xenocrysts found within young lavas on the island of Mauritius, part of the Southern Mascarene Plateau. We find that the zircons are either Palaeoproterozoic (more than 1,971 million years old) or Neoproterozoic (between 660 and 840 million years old). We propose that the zircons were assimilated from ancient fragments of continental lithosphere beneath Mauritius, and were brought to the surface by plume-related lavas. We use gravity data inversion to map crustal thickness and find that Mauritius forms part of a contiguous block of anomalously thick crust that extends in an arc northwards to the Seychelles. Using plate tectonic reconstructions, we show that Mauritius and the adjacent Mascarene Plateau may overlie a Precambrian microcontinent that we call Mauritia. On the basis of reinterpretation of marine geophysical data, we propose that Mauritia was separated from Madagascar and fragmented into a ribbon-like configuration by a series of mid-ocean ridge jumps during the opening of the Mascarene ocean basin between 83.5 and 61 million years ago. We suggest that the plume-related magmatic deposits have since covered Mauritia and potentially other continental fragments.

  4. Cache Creek ocean: Closure or enclosure?

    NASA Astrophysics Data System (ADS)

    Nelson, Joanne; Mihalynuk, Mitch

    1993-02-01

    Exotic Tethyan faunas within the Cache Creek terrane contrast markedly with faunas and lithologic associations in the adjacent Quesnel and Stikine terranes. In northern British Columbia and southeast Yukon, all three terranes are enveloped in the north by pericontinental rocks of the Yukon-Tanana terrane, a geometry that imposes severe constraints on terrane assembly models for the northern Canadian Cordillera. Our solution to the problem invokes a northern join between the Stikinia and Quesnellia arcs through the Yukon-Tanana terrane, forming an orocline that encloses the Cache Creek terrane. This model involves (1) collision of a linear oceanic plateau at the cusp between Quesnellia and Stikinia, (2) anticlockwise rotation of Stikinia about an axis in the Yukon-Tanana terrane, (3) simultaneous enclosure of the Cache Creek ocean, and (4) emplacement of Quesnellia onto the margin of ancestral North America and the Cache Creek terrane onto Stikinia during final closure of the orocline. Early Mesozoic Paleomagnetic declinations in Stikinia are permissive of the large anticlockwise rotations predicted by the model. Similar large-scale rotations and ocean-basin enclosure are common features in the southwest Pacific. This model accounts for Paleozoic and younger linkages between Yukon-Tanana and both northern Stikinia and Quesnellia, the striking similarity between Triassic-Jurassic arcs east and west of the Cache Creek terrane, and the profound early Mesozoic deformational event in the Yukon-Tanana terrane.

  5. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin; Volume XII; A Multinomial Model for Estimating Ocean Survival from Salmonid Coded Wire-Tag Data.

    SciTech Connect

    Ryding, Kristen E.; Skalski, John R.

    1999-06-01

    The purpose of this report is to illustrate the development of a stochastic model using coded wire-tag (CWT) release and age-at-return data, in order to regress first year ocean survival probabilities against coastal ocean conditions and climate covariates.

  6. Geological Structure and History of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  7. Estuary-ocean connectivity: fast physics, slow biology.

    PubMed

    Raimonet, Mélanie; Cloern, James E

    2016-11-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  8. Estuary–ocean connectivity: fast physics, slow biology

    USGS Publications Warehouse

    Raimonet, Mélanie; Cloern, James E.

    2016-01-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to

  9. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    SciTech Connect

    Missallati, A.A. Ltd., Tripoli )

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  10. Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans.

    PubMed

    Bray, Rodney A; Diaz, Pablo E; Cribb, Thomas H

    2016-03-01

    A brief summary of the early history of the study of Atlantic Ocean marine fish digeneans is followed by a discussion of the occurrence and distribution of these worms in the Atlantic Ocean and adjacent Eastern Pacific Ocean, using the Provinces of the 'Marine Ecoregions' delimited by Spalding et al. (Bioscience 57:573-583, 2007). The discussion is based on a database of 9,880 records of 1,274 species in 430 genera and 45 families. 8,633 of these records are from the Atlantic Ocean, including 1,125 species in 384 genera and 45 families. About 1,000 species are endemic to the Atlantic Ocean Basin. The most species-rich families in the Atlantic Ocean are the Opecoelidae Ozaki, 1925, Hemiuridae Looss, 1899 and Bucephalidae Poche, 1907, and the most wide-spread the Opecoelidae, Hemiuridae, Acanthocolpidae Lühe, 1906, Lepocreadiidae Odhner, 1905 and Lecithasteridae Odhner, 1905. A total of 109 species are shared by the Atlantic Ocean and the Eastern Pacific, made up of cosmopolitan, circum-boreal, trans-Panama Isthmus and Magellanic species. The lack of genetic evaluation of identifications is emphasised and the scope for much more work is stressed.

  11. Increasing presence of Arctic Ocean deep waters in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon

    2013-04-01

    Deep convection has been known to provide the coldest and freshest waters to the deep Greenland Sea, whose properties are balanced with the advection of warmer and saltier waters from the deep Arctic Ocean. However, during the last three decades, deep convection has come to a halt in the Greenland Sea. As previously reported and updated in this work through the analysis of the free available hydrographic data in the central Greenland Sea and in the Arctic Ocean from 1950 to 2010 (Pangaea and ICES data bases), as a consequence of this, two major hydrographic changes are observed: (1) the appearance and deepening of an intermediate temperature maximum and (2) a continuous warming and saltening of the deep Greenland Sea. The origin of both findings is found in the advection of Arctic Ocean deep waters from the Amerasian and Eurasian basins, respectively, into the central Greenland Sea. Associated to the first, a temperature increase of 0.35° C from 1993 to 2009 is observed at 1700 m. Below 2000 m, the temperature and salinity have increased at a mean rate of 0.136° C/decade and 0.01decade-1 in the last three decades. Overall, the stop of deep convection and the advection of Arctic Ocean deep waters result among the highest deep warming and saltening trends of the World Ocean in the Greenland Sea. In addition to the described update of the state of these changes, two new accomplishments are fulfilled in this study. First, in absence of deep convection, the continuous changing of the thermohaline properties of the deep Greenland Sea requires exchanges with adjacent ocean basins. This scenario enables us the estimation of the necessary transports from the deep Arctic to explain the observed changes. A transport of Eurasian Basin Deep Water of 0.31±0.04 Sv is obtained. Secondly, the warming and saltening of the deep Greenland Sea contributes, as any other ocean basin, to the World Ocean heat content and sea level rise. The estimation of these contributions shows larger

  12. The deep Ionian Basin revisited

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Chamot-Rooke, Nicolas; Arsenikos, Stavros; Frizon de Lamotte, Dominique; Blanpied, Christian

    2016-04-01

    The deep Eastern Mediterranean Basins (Ionian and Herodotus) are characterized by thick sedimentary sequences overlying an extremely thinned basement evidenced from different geophysical methods. Yet, the nature of the crust (continental or oceanic) and the timing of the extreme crustal and lithosphere thinning in the different sub-basins remain highly controversial, casting doubts on the tectonic setting related to the formation of this segment of the North Gondwana paleo-margin. We focus on the Ionian Basin located at the western termination of the Eastern Mediterranean with the aim of identifying, characterizing and mapping the deepest sedimentary sequences. We present tentative age correlations relying on calibrations and observations from the surrounding margins and basins (Malta shelf and Escarpment, Cyrenaica margin, Sirte Basin, Apulian Platform). Two-ship deep refraction seismic data (Expanding Spread Profiles from the PASIPHAE cruise) combined with reprocessed reflection data (from the ARCHIMEDE survey) enabled us to present a homogeneous seismic stratigraphy across the basin and to investigate the velocity structure of its basement. Based on our results, and on a review of geological and geophysical observations, we suggest an Upper Triassic-Early Dogger age for the formation of the deep Ionian Basin. The nature of the underlying basement remains uncertain, both highly-thinned continental and slow-spreading type oceanic crust being compatible with the available constraints. The narrow size and relatively short-lived evolution of the Ionian Basin lead us to suggest that it is more likely the remnant of an immature oceanic basin than of a stable oceanic domain. Eventually, upscaling these results at the scale of the Eastern Mediterranean Basins highlights the complex interaction observed between two propagating oceans: The Central Atlantic and Neo-Tethys.

  13. Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins

    USGS Publications Warehouse

    Shen, Yuan; Benner, Ronald; Robbins, Lisa L.; Wynn, Jonathan

    2016-01-01

    A comprehensive survey of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) was conducted in the Canada and Makarov Basins and adjacent seas during 2010–2012 to investigate the dynamics of dissolved organic matter (DOM) in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69 ± 6 μmol L−1), CDOM absorption (a325: 0.32 ± 0.07 m−1) and CDOM-derived lignin phenols (3 ± 0.4 nmol L−1), and high spectral slope values (S275–295: 31.7 ± 2.3 μm−1), indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108 ± 9 μmol L−1) and lignin phenol concentrations (15 ± 3 nmol L−1), high a325 values (1.36 ± 0.18 m−1), and low S275–295 values (22.8 ± 0.8 μm−1), indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea), a decrease (Bering-Chukchi Seas), and negligible change (deep basins) in surface DOC concentrations and a325 values. Halocline structures differed between basins, but the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65–70 μmol L−1) and lignin phenol concentrations (3–4 nmol L−1) and S275–295 values (22.9–23.7 μm−1). Deep-water DOC concentrations decreased by 6–8 μmol L−1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036–0.039 μmol L−1

  14. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  15. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  16. The Middle Jurassic radiolarites and pelagic limestones of the Nieves unit (Rondaide Complex, Betic Cordillera): basin starvation in a rifted marginal slope of the western Tethys

    NASA Astrophysics Data System (ADS)

    O'Dogherty, Luis; Martín-Algarra, Agustín; Gursky, Hans-Jürgen; Aguado, Roque

    2001-11-01

    Middle Jurassic radiolarites and associated pelagic limestones occur in the Rondaide Nieves unit of the Betic Cordillera, southern Spain. The Rondaide Mesozoic includes: (a) a thick succession of Triassic platform carbonates, comparable to the Alpine Hauptdolomit and Kössen facies; (b) Lower Jurassic pelagic limestones comparable to the Alpine Hierlatz and Adnet facies; (c) the Middle Jurassic Parauta Radiolarite Formation, described herein; and (d) a thin Upper Jurassic-Cretaceous condensed limestone succession. The Parauta Radiolarite Formation and associated limestones were studied with respect to stratigraphy, petrography, micropalaeontology (radiolarians, calcareous nanno- and microfossils) and facies. Radiolarite sedimentation occurred in the Middle Bathonian in a restricted and dysoxic deep Nieves basin, perched in the distal zone of a continental margin fringing the Tethyan ocean. This margin was adjacent to a young narrow oceanic basin between the South-Iberian margin and a continental block called Mesomediterranean Terrane. The Nieves basin was part of a marine corridor between the Proto-Atlantic and Piedmont-Ligurian basins of the Alpine Tethys. The regional tectonic position, the stratigraphical evolution since the Triassic, the age and the nature of the Mesozoic facies and the palaeogeographic relations to adjacent domains show striking analogies between the Betic Rondaide margin and coeval units of the Alps.

  17. Albuquerque Basin seismic network

    USGS Publications Warehouse

    Jaksha, Lawrence H.; Locke, Jerry; Thompson, J.B.; Garcia, Alvin

    1977-01-01

    The U.S. Geological Survey has recently completed the installation of a seismic network around the Albuquerque Basin in New Mexico. The network consists of two seismometer arrays, a thirteen-station array monitoring an area of approximately 28,000 km 2 and an eight-element array monitoring the area immediately adjacent to the Albuquerque Seismological Laboratory. This report describes the instrumentation deployed in the network.

  18. CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Patten, Lowell L.

    1984-01-01

    The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.

  19. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  20. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  1. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  2. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  3. Asynchronous responses of fish assemblages to climate-driven ocean regime shifts between the upper and deep layer in the Ulleung basin of the East Sea from 1986 to 2010

    NASA Astrophysics Data System (ADS)

    Jung, Sukgeun

    2014-03-01

    Past studies suggested that a basin-wide regime shift occurred in 1988-1989, impacting marine ecosystem and fish assemblages in the western North Pacific. However, the detailed mechanisms involved in this phenomenon are still yet unclear. In the Ulleung basin of the East Sea, filefish, anchovy and sardine dominated the commercial fish catches in 1986-1992, b