Science.gov

Sample records for adjacent open slope

  1. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa

    NASA Astrophysics Data System (ADS)

    Bianchelli, S.; Gambi, C.; Zeppilli, D.; Danovaro, R.

    2010-03-01

    Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.

  2. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koenig, Samuel; Fernández, Pilar; Company, Joan B.; Huertas, David; Solé, Montserrat

    2013-11-01

    Due to their geomorphological structure and proximity to the coastline, submarine canyons may act as natural conduit routes for anthropogenic contaminants that are transported from surface waters to the deep-sea. Organisms dwelling in these canyon environments might thus be at risk of experiencing adverse health effects due to higher pollution exposure. To address this question, chemical and biochemical analyses were conducted on two of the most abundant deep-sea fish species in the study area, namely Alepocephalus rostratus and Lepidion lepidion, and the most abundant deep-sea commercial decapod crustacean Aristeus antennatus sampled inside Blanes canyon (BC) and on the adjacent open slope (OS). Persistent organic pollutants (POPs) levels, including polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and derivatives, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were determined in muscle tissue of selected samples from 900 m and 1500 m depth. Potential effects resulting from contaminant exposure were determined using hepatic biomarkers such as ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-deethylase (PROD), catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX), glutathione reductase (GR) and superoxide-dismutase (SOD) enzyme activities and lipid peroxidation levels (LP). L. lepidion and A. antennatus tissues exhibited higher POP levels inside BC compared to the OS at 900 m depth. These findings were consistent with biomarker data (i.e. enzymatic response to presence of contaminant agents). Elevated xenobiotic-metabolizing (EROD and PROD) and antioxidant enzymes (CAT and GPX) indicated higher contaminant exposure in both species caught within BC. No difference in POP accumulation between sites was observed in L. lepidion at 1500 m depth, nor in biomarker data, suggesting that the pollution gradient was less pronounced at greater depths. This trend was further corroborated

  3. Digital depth horizon compilations of the Alaskan North Slope and adjacent Arctic regions

    USGS Publications Warehouse

    Saltus, Richard W.; Bird, Kenneth J.

    2003-01-01

    Data have been digitized and combined to create four detailed depth horizon grids spanning the Alaskan North Slope and adjacent offshore areas. These map horizon compilations were created to aid in petroleum system modeling and related studies. Topography/bathymetry is extracted from a recent Arctic compilation of global onshore DEM and satellite altimetry and ship soundings offshore. The Lower Cretaceous Unconformity (LCU), the top of the Triassic Shublik Formation, and the pre-Carboniferous acoustic basement horizon grids are created from numerous seismic studies, drill hole information, and interpolation. These horizons were selected because they mark critical times in the geologic evolution of the region as it relates to petroleum. The various horizons clearly show the major tectonic elements of this region including the Brooks Range, Colville Trough, Barrow Arch, Hanna Trough, Chukchi Platform, Nuwuk Basin, Kaktovik Basin, and Canada Basin. The gridded data are available in a variety of data formats for use in regional studies.

  4. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  5. Simulating pesticide transport from a sloped tropical soil to an adjacent stream.

    PubMed

    Kahl, G; Ingwersen, J; Totrakool, S; Pansombat, K; Thavornyutikarn, P; Streck, T

    2010-01-01

    Preferential flow from stream banks is an important component of pesticide transport in the mountainous areas of northern Thailand. Models can help evaluate and interpret field data and help identify the most important transport processes. We developed a simple model to simulate the loss of pesticides from a sloped litchi (Litchi chinensis Sonn.) orchard to an adjacent stream. The water regime was modeled with a two-domain reservoir model, which accounts for rapid preferential flow simultaneously with slow flow processes in the soil matrix. Preferential flow is triggered when the topsoil matrix is saturated or the infiltration capacity exceeded. In addition, close to matrix saturation, rainfall events induce water release to the fractures and lead to desorption of pesticides from fracture walls and outflow to the stream. Pesticides undergo first order degradation and equilibrium sorption to soil matrix and fracture walls. The model was able to reproduce the dynamics of the discharge reasonably well (model efficiency [EF] = 0.56). The cumulative pesticide mass (EF = 0.91) and the pesticide concentration in the stream were slightly underestimated, but the deviation from measurement data is acceptable. Shape and timing of the simulated concentration peaks occurred in the same pattern as observed data. While the effect of surface runoff and preferential interflow on pesticide mass transport could not be absolutely clarified, according to our simulations, most concentration peaks in the stream are caused by preferential interflow pointing to the important role of this flow path in the hilly areas of northern Thailand. PMID:20048323

  6. Benthic polychaete diversity patterns and community structure in the Whittard Canyon system and adjacent slope (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Gunton, Laetitia M.; Neal, Lenka; Gooday, Andrew J.; Bett, Brian J.; Glover, Adrian G.

    2015-12-01

    We examined deep-sea macrofaunal polychaete species assemblage composition, diversity and turnover in the Whittard Canyon system (NE Atlantic) using replicate megacore samples from three of the canyon branches and one site on the continental slope to the west of the canyon, all at ~3500 m water depth. A total of 110 polychaete species were recorded. Paramphinome jeffreysii was the most abundant species (2326 ind. m-2) followed by Aurospio sp. B (646 ind. m-2), Opheliidae sp. A (393 ind. m-2), Prionospio sp. I (380 ind. m-2), and Ophelina abranchiata (227 ind. m-2). Species composition varied significantly across all sites. From west to east, the dominance of Paramphinome jeffreysii increased from 12.9% on the slope to 39.6% in the Eastern branch. Ordination of species composition revealed that the Central and Eastern branches were most similar, whereas the Western branch and slope sites were more distinct. High abundances of P. jeffreysii and Opheliidae sp. A characterised the Eastern branch of the canyon and may indicate an opportunistic response to a possible recent input of organic matter inside the canyon. Species richness and diversity indices were higher on the slope compared with inside the canyon, and the slope site had higher species evenness. Within the canyon, species diversity between branches was broadly similar. Despite depressed diversity within the canyon compared with the adjacent slope, the fact that 46 of the 99 polychaete species found in the Whittard Canyon were not present on the adjacent slope suggests that this feature may enhance the regional species pool. However, our sampling effort on the adjacent slope was insufficient to confirm this conclusion.

  7. Open pit slope deformation monitoring by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xu, Guoquan; Xiong, Daiyu; Duan, Yun; Cao, Xiaoshuang

    2015-01-01

    With microstrain resolution and the capability to sample at rates of 2000 Hz or higher, fiber Bragg grating (FBG) strain sensor offers exciting new possibilities for in situ deformation monitoring induced by blasting load in an open pit slope. Here, we are developing a new technology for measuring deformation in real time on the microstrain in an open pit slope during the blasting. A fiber optically instrumented rock mass strain sensor measured strain at 100-cm intervals along a two anchor rock bolt grouted in the slope intact rock mass. In field testing, a number of transient signals have been observed, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new insight into the slope stability and blasting cumulative effects. Therefore, FBG sensors are a useful tool for measuring in situ strain in intact rock masses.

  8. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect

    L. D. Habel

    2008-03-18

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  9. Cetacean biomass densities near submarine canyons compared to adjacent shelf/slope areas

    NASA Astrophysics Data System (ADS)

    Kenney, Robert D.; Winn, Howard E.

    1987-02-01

    Estimated cetacean biomass densities in areas of the northeastern U.S. continental shelf edge encompassing major submarine canyons were compared to those in neighboring shelf/slope areas. It was hypothesized that biomass-densities would prove to be higher in the canyon areas: however, the analysis demonstrated significantly lower total cetacean biomass in the canyon areas. When species were analyzed individually, only spotted dolphins ( Stenella spp.) showed a significant difference, with higher densities near the canyons. The canyons are apparently not more important as a cetacean habitat than the shelf break region generally.

  10. 30 CFR 75.1711-2 - Sealing of slope or drift openings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Sealing of slope or drift openings. 75.1711-2 Section 75.1711-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... slope or drift openings. Slope or drift openings required to be sealed under § 75.1711 shall be...

  11. 30 CFR 75.1711-2 - Sealing of slope or drift openings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sealing of slope or drift openings. 75.1711-2 Section 75.1711-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... slope or drift openings. Slope or drift openings required to be sealed under § 75.1711 shall be...

  12. Recent seasonal hypoxia on the Western Black Sea shelf recorded in adjacent slope sediments

    NASA Astrophysics Data System (ADS)

    Roepert, Anne; Jilbert, Tom S.; Slomp, Caroline P.

    2015-04-01

    Bottom water hypoxia is a major environmental problem afflicting estuarine and marine environments across the globe (Diaz and Rosenberg, 2008). Hypoxia is often attributed to human-induced increased nutrient discharge from rivers and related eutrophication. The Western Black Sea shelf is a typical example of a system where such anthropogenic impacts are thought to have contributed to the development of seasonal hypoxia in the late 20th century. However, due to the lack of spatially and temporally consistent monitoring in the region, questions remain about the evolution, causes and consequences of the seasonal hypoxia on the Western Black Sea shelf and whether or not the ecological state has recently improved (Capet et al., 2013). In this study a resin-embedded sediment core from a location below the chemocline on the Western Black Sea slope (water depth 377 m) was analyzed for its elemental composition by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), recovering a continuous geochemical record at a sub-annual resolution for the last 100 years. Relative enrichments in organic carbon, Pb, Fe, S, and Mo were observed in the depth interval corresponding to the 1970s until the 1990s, suggesting an increased carbon flux to the sediments as well as an anthropogenic pollution signal. We propose that the expansion of eutrophication on the Western Black Sea shelf was responsible for the enhanced carbon flux to our study site, while the associated hypoxia enhanced the shuttling of redox-sensitive elements to locations below the chemocline. The subsequent decrease in organic carbon and metal enrichments at the core top suggests a recent rise in oxygen concentrations and improvement of the ecological state of the Western Black Sea shelf. References: Capet, A., Beckers, J.-M., Grégoire, M. (2013). "Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf-is there any recovery after eutrophication

  13. Particle fluxes and their drivers in the Avilés submarine canyon and adjacent slope, central Cantabrian margin, Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; González-Pola, C.; Lastras, G.; Calafat, A.; Canals, M.

    2016-05-01

    contents of lithogenics in settling particles at the three mooring stations confirm that riverine inputs are the principal source of particles to the Avilés Canyon, including the lowermost canyon, and the adjacent open slope. Primary production also has a strong influence on the amount and the composition of particulate matter, with more than 30% of the total mass flux being of biogenic origin (organic matter, opal and calcium carbonate).

  14. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  15. Degrading permafrost and gas hydrate under the Beaufort Shelf and marine gas hydrate on the adjacent continental slope

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Melling, H.; Lundsten, E.; Vagle, S.; Collett, T. S.

    2011-12-01

    The sub-seafloor under the Arctic Shelf is arguably the part of the Earth that is undergoing the most dramatic warming. In the southern Beaufort Sea, the shelf area was terrestrially exposed during much of the Quaternary period when sea level was ~120m lower than present. As a consequence, many areas are underlain by >600m of ice-bonded permafrost that conditions the geothermal regime such that the base of the methane hydrate stability can be >1000m deep. Marine transgression has imposed a change in mean annual surface temperature from -15°C or lower during periods of terrestrial exposure, to mean annual sea bottom temperatures near 0°C. The thermal disturbance caused by transgression is still influencing the upper km of subsurface sediments. Decomposition of gas hydrate is inferred to be occurring at the base and the top of the gas hydrate stability zone. As gas hydrate and permafrost intervals degrade, a range of processes occur that are somewhat unique to this setting. Decomposition of gas hydrate at depth can cause sediment weakening, generate excess pore water pressure, and form free gas. Similarly, thawing permafrost can cause thaw consolidation, liberate trapped gas bubbles in ice bonded permafrost. Understanding the connection between deep subsurface processes generated by transgression, surficial sediment processes near the seafloor, and gas flux into the ocean and atmosphere is important to assessing geohazard and environmental conditions in this setting. In contrast, conditions for marine gas hydrate formation occur on the adjacent continental slope below ~270m water depths. In this paper, we present field observations of gas venting from three geologically distinct environments in the Canadian Beaufort Sea, two on the shelf and one on the slope. A complimentary paper by Dallimore et al reviews the geothermal changes conditioning this environment. Vigorous methane venting is occurring over Pingo-Like-Features (PLF) on the mid-shelf. Diffuse venting of

  16. Sediment transport to the deep canyons and open-slope of the western Gulf of Lions during the 2006 intense cascading and open-sea convection period

    NASA Astrophysics Data System (ADS)

    Palanques, A.; Puig, P.; Durrieu de Madron, X.; Sanchez-Vidal, A.; Pasqual, C.; Martín, J.; Calafat, A.; Heussner, S.; Canals, M.

    2012-11-01

    An array of mooring lines deployed between 300 and 1900 m depth along the Lacaze-Duthiers and Cap de Creus canyons and in the adjacent southern open slope was used to study the water and sediment transport on the western Gulf of Lions margin during the 2006 intense cascading period. Deep-reaching cascading pulses occurred in early January, in late January and from early March to mid-April. Dense water and sediment transport to the deep environments occurred not only through submarine canyons, but also along the southern open slope. During the deep cascading pulses, temporary upper and mid-canyon and open slope deposits were an important source of sediment to the deep margin. Significant sediment transport events at the canyon head only occurred in early January because of higher sediment availability on the shelf after the stratified and calm season, and in late February because of the interaction of dense shelf water cascading with a strong E-SE storm. During the January deep cascading pulses, increases in suspended sediment concentration within the canyon were greater and earlier at 1000 m depth than at 300 m depth, whereas during the March-April deep cascading pulses sediment concentration only increased below 300 m depth, indicating resuspension and redistribution of sediments previously deposited at upper and mid-canyon depths. Deeper than 1000 m depth, net fluxes show that most of the suspended sediment left the canyon and flowed along the southern open slope towards the Catalan margin, whereas a small part flowed down-canyon and was exported basinward. Additionally, on the mid- and lower-continental slope there was an increase in the near-bottom currents induced by deep open-sea convection processes and the propagation of eddies. This, combined with the arrival of deep cascading pulses, also generated moderate suspended sediment transport events in the deeper slope regions.

  17. Habitat use and preferences of cetaceans along the continental slope and the adjacent pelagic waters in the western Ligurian Sea

    NASA Astrophysics Data System (ADS)

    Azzellino, A.; Gaspari, S.; Airoldi, S.; Nani, B.

    2008-03-01

    The physical habitat of cetaceans occurring along the continental slope in the western Ligurian Sea was investigated. Data were collected from two different sighting platforms, one of the two being a whale-watching boat. Surveys, conducted from May to October and from 1996 to 2000, covered an area of approximately 3000 km 2 with a mean effort of about 10,000 km year -1. A total of 814 sightings was reported, including all the species occurring in the area: Stenella coeruleoalba, Balaenoptera physalus, Physeter macrocephalus, Globicephala melas, Grampus griseus, Ziphius cavirostris, Tursiops truncatus, Delphinus delphis. A Geographic Information System was used to integrate sighting data to a set of environmental characteristics, which included bottom gradient, area between different isobaths, and length and linearity of the isobaths within a cell unit. Habitat use was analysed by means of a multi-dimensional scaling, MDS, analysis. Significant differences were found in the habitat preference of most of the species regularly occurring in the area. Bottlenose dolphin, Risso's dolphin, sperm whale and Cuvier's beaked whale were found strongly associated to well-defined depth and slope gradient characteristics of the shelf-edge and the upper and lower slope. The hypothesis of habitat segregation was considered for Risso's dolphin, sperm whale and Cuvier's beaked whale. Canonical discriminant functions using depth and slope as predictors outlined clear and not overlapping habitat preferences for Risso's dolphin and Cuvier's beaked whale, whereas a partial overlapping of the habitat of the other two species was observed for sperm whale. Such a partitioning of the upper and lower slope area may be the result of the common feeding habits and suggests a possible competition of these three species. A temporal segregation in the use of the slope area was also observed for sperm whales and Risso's dolphins. Fin whales, and the occasionally encountered common dolphin and long

  18. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at "Evolution Canyon".

    PubMed

    Korol, A; Rashkovetsky, E; Iliadi, K; Michalak, P; Ronin, Y; Nevo, E

    2000-11-01

    Ecological differentiation of natural populations of Drosophila melanogaster, Drosophila simulans, and another drosophilid, Zaprionus tuberculatus, in "Evolution Canyon," Mount Carmel, Israel, is well established. The fitness complex of D. melanogaster includes oviposition temperature preferences, tolerance to high temperature, drought stress and starvation, and different longevity patterns. This remarkable differentiation has evolved despite small interslope distances (only 100-400 m), within easy dispersal distance. The differences between populations are those expected from genetic adaptation to local microclimates. How such differentiation could evolve and be maintained despite the likelihood of genetic exchange between populations is a challenging question. We hypothesized that interslope microclimatic differences caused strong differential selection for stress tolerance, accompanied by behavioral differentiation (habitat choice and reduced migration rate), reinforced by sexual isolation. Here we report highly significant mate choice by flies from different slopes of the canyon, with preference for sexual partners originating from the same slope. No preferences were found when the sexual partners belonged to different isofemale lines from the same slope.

  19. Pesticide transport pathways from a sloped Litchi orchard to an adjacent tropical stream as identified by hydrograph separation.

    PubMed

    Duffner, Andreas; Ingwersen, Joachim; Hugenschmidt, Cindy; Streck, Thilo

    2012-01-01

    This study was performed to identify the transport pathways of pesticides from a sloped litchi ( Sonn.) orchard to a nearby stream based on a three-component hydrograph separation (baseflow, interflow, surface runoff). Dissolved silica and electrical conductivity were chosen as representative tracers. During the study period (30 d), 0.4 and 0.01% of the applied mass of atrazine and chlorpyrifos, respectively, were detected in the stream after 151 mm of rainfall. Baseflow (80-96%) was the dominant hydrological flow component, followed by interflow (3-18%) and surface runoff (1-7%). Despite its small contribution to total discharge, surface runoff was the dominant atrazine transport pathway during the first days after application because pesticide concentrations in the surface runoff flow component declined quickly within several days. Preferential transport with interflow became the dominant pathway of atrazine. Because chlorpyrifos was detected in the stream water only twice, it was not included in the hydrograph separation. A feature of the surface runoff pathway was the coincidence of pesticide and discharge peaks. In contrast, peak concentrations of pesticides transported by interflow occurred during the hydrograph recession phases. Stormflow generation and pesticide transport depended on antecedent rainfall. The combination of high-resolution pesticide concentration measurements with a three-component hydrograph separation has been shown to be a suitable method to identify pesticide transport pathways under tropical conditions. PMID:22751076

  20. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  1. Thermally driven up-slope flows: state of the art and open questions

    NASA Astrophysics Data System (ADS)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L

  2. Multiple drivers of particle fluxes in the Blanes submarine canyon and southern open slope: Results of a year round experiment

    NASA Astrophysics Data System (ADS)

    Lopez-Fernandez, Pilar; Calafat, Antoni; Sanchez-Vidal, Anna; Canals, Miquel; Mar Flexas, M.; Cateura, Jordi; Company, Joan B.

    2013-11-01

    To characterize the temporal and spatial variability of total mass fluxes in the Blanes submarine canyon and the nearby southern open slope, eight near-bottom sediment traps were deployed at 300, 900, 1200 and 1500 m along the canyon axis, and at 900, 1200, 1500 and 1800 m of water depth on the southern open slope from November 2008 to November 2009. The results obtained show that mass fluxes were higher into the canyon, ranging from 0.05 to 82.67 g m-2 d-1, compared with those from the open slope that ranged from 0.01 to 9.91 g m2 d-1. Both environments were highly influenced by atmospheric forcing and showed increased total mass fluxes during autumn and winter months. The spatial distribution of total mass fluxes and major constituents (organic matter, carbonate, opal and lithogenics) highlights the contrasts amongst the two physiographic domains in the study area (canyons vs. open slope). The temporal evolution of particle fluxes shows three distinct situations succeeding each other along the year. These are determined by: (1) storms in autumn and winter, driving 60% of the annual total mass flux in Blanes Canyon and 44% in the open slope stations, and also 60% and 40% of the annual OC flux in Blanes Canyon and the southern open slope, respectively; (2) open sea convection in late winter and spring, which is accompanied by a phytoplankton bloom and drives 13% of the settling OC in the canyon and 34% in the open slope; and (3) dust inputs and resuspension by bottom trawling in late spring and -summer months, driving 17% of the annual OC flux in the canyon and 18% in the slope.

  3. ASSESSMENT OF TIBIAL SLOPE ANGLE AND PATELLAR HEIGHT AFTER MEDIAL-OPENING TIBIAL OSTEOTOMY

    PubMed Central

    de Paula Mozella, Alan; Vieira Costa, Marcos Areias; de Araujo Barros Cobra, Hugo Alexandre

    2015-01-01

    Objective: To measure the variation in posterior tibial slope angle and patellar height in patients who underwent proximal tibial valgus-producing osteotomy using the medial-opening wedge technique. Methods: Anteroposterior panoramic radiographs of the lower limbs and lateral radiographs of the knee obtained before and after tibial valgus-producing osteotomy on 46 patients with unicompartmental arthrosis of the knee were analyzed. Results: In 23 patients, an external fixator was used to gradually apply a medial-opening wedge; and in the other 23, a blocked plate with a stop bar was applied as a fixation method. Patients with tricompartmental knee disease and those who underwent osteotomy to treat fracture sequelae were excluded from this study. After surgery, the mean increase in the tibial slope was 1.7 degrees (p < 0.01) in the group in which the blocked plate with a stop bar was used; and 2.7 degrees (p < 0.05) in the group in which the external fixator was used. There was no statistical difference between the groups regarding the increase in the posterior tibial slope. Conclusion: The patellar height did not present any change in the cases in which the plate was used, when measured using the Insall-Salvati method, but it presented a decrease in 11 cases (47.8%) when the Caton-Deschamps method was applied. The same tendency was observed regarding change in the patellar height in the cases in which the external fixator was used, such that a decrease was observed in eight cases (34.7%) only when measured using the Caton-Deschamps method. PMID:27047847

  4. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar surgery for adjacent segment degeneration and recurrent disc herniation.

    PubMed

    Chen, Huan-Chieh; Lee, Chih-Hsun; Wei, Li; Lui, Tai-Ngar; Lin, Tien-Jen

    2015-01-01

    Objective. The goal of the present study was to examine the clinical results of percutaneous endoscopic lumbar discectomy (PELD) and open lumbar surgery for patients with adjacent segment degeneration (ASD) and recurrence of disc herniation. Methods. From December 2011 to November 2013, we collected forty-three patients who underwent repeated lumbar surgery. These patients, either received PELD (18 patients) or repeated open lumbar surgery (25 patients), due to ASD or recurrence of disc herniation at L3-4, L4-5, or L5-S1 level, were assigned to different groups according to the surgical approaches. Clinical data were assessed and compared. Results. Mean blood loss was significantly less in the PELD group as compared to the open lumbar surgery group (P < 0.0001). Hospital stay and mean operating time were shorter significantly in the PELD group as compared to the open lumbar surgery group (P < 0.0001). Immediate postoperative pain improvement in VAS was 3.5 in the PELD group and -0.56 in the open lumbar surgery group (P < 0.0001). Conclusion. For ASD and recurrent lumbar disc herniation, PELD had more advantages over open lumbar surgery in terms of reduced blood loss, shorter hospital stay, operating time, fewer complications, and less postoperative discomfort.

  5. Benthic meiofaunal composition and community structure in the Sethukuda mangrove area and adjacent open sea, East coast of India

    NASA Astrophysics Data System (ADS)

    Thilagavathi, Balasubramanaian; Das, Bandana; Saravanakumar, Ayyappan; Raja, Kuzhanthaivel

    2011-06-01

    The ecological aspects of meiofaunal communities in the Muthupettai mangrove forest, East coast of India, has not been investigated in the last two decades. Surface water temperature ranged from 23.5 °C to 31.8 °C. Salinity varied from 24 to 34 ppt, while water pH fluctuated from 7.4 to 8.3. Dissolved oxygen concentration ranged from 3.86 to 5.33 mg/l. Meiofauna analysis in this study identified a total of 106 species from the mangrove and adjacent open sea area of Sethukuda. Among these, 56 species of foraminiferans, 20 species of nematodes, 7 species of harpacticoid copepods, 4 species of ostrocodes, and 2 species of rotifers were identified. Furthermore, a single species was identified from the following groups: ciliophora, cnidaria, gnathostomulida, insecta, propulida, bryozoa and polychaete larvae. Meiofaunal density varied between 12029 to 23493 individuals 10 cm/m2. The diversity index ranged from 3.515 to 3.680, species richness index varied from 6.384 to 8.497, and evenness index varied from 0.839 to 0876 in the mangrove area and adjacent open sea.

  6. Automatic monitoring system for high-steep slope in open-pit mine based on GPS and data analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chunmei; Li, Xianfu; Qin, Sunwei; Qiu, Dandan; Wu, Yanlin; Xiao, Yun; Zhou, Jian

    2008-12-01

    Recently, GPS has been more and more applicative in open pit mine slope safety monitoring. Daye Iron Mine open pit high-steep slope automatic monitoring system mainly consists of three modules, namely, GPS data processing module, monitoring and warning module, emergency plans module. According to the rock mass structural feature and the side slope stability evaluation, it is arranged altogether to seven GPS distortion monitoring points on the sharp of Fault F9 at Daye iron Mine, adopted the combination of monofrequent static GPS receiver and data-transmission radio to carry on the observation, the data processing mainly uses three transect interpolation method to solve the questions of discontinuity and Effectiveness in the data succession. According to the displacement monitoring data from 1990 to 1996 of Daye Iron Mine East Open Pit Shizi mountain Landslide A2, researching the displacement criterion, rate criterion, acceleration criterion, creep curve tangent angle criterion etc of landslide failure, the result shows that the landslide A2 is the lapse type crag nature landslide whose movement in three phases, namely creep stage, accelerated phase, destruction stage. It is different of the failure criterion in different stages and different position that is at the rear, central, front margin of the landslide. It has important guiding significance to put forward the comprehensive failure criterion of seven new-settled monitoring points combining the slope deformation destruction and macroscopic evidence.

  7. The Arctic Ocean Boundary Current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments

    NASA Astrophysics Data System (ADS)

    Woodgate, Rebecca A.; Aagaard, Knut; Muench, Robin D.; Gunn, John; Björk, Göran; Rudels, Bert; Roach, A. T.; Schauer, Ursula

    2001-08-01

    Year-long (summer 1995 to 1996) time series of temperature, salinity and current velocity from three slope sites spanning the junction of the Lomonosov Ridge with the Eurasian continent are used to quantify the water properties, transformations and transport of the boundary current of the Arctic Ocean. The mean flow is cyclonic, weak (1 to 5 cm s -1), predominantly aligned along isobaths and has an equivalent barotropic structure in the vertical. We estimate the transport of the boundary current in the Eurasian Basin to be 5±1 Sv. About half of this flow is diverted north along the Eurasian Basin side of the Lomonosov Ridge. The warm waters (>1.4°C) of the Atlantic layer are also found on the Canadian Basin side of the ridge south of 86.5°N, but not north of this latitude. This suggests that the Atlantic layer crosses the ridge at various latitudes south of 86.5°N and flows southward along the Canadian Basin side of the ridge. Temperature and salinity records indicate a small (0.02 Sv), episodic flow of Canadian Basin deep water into the Eurasian Basin at ˜1700 m, providing a possible source for an anomalous eddy observed in the Amundsen Basin in 1996. There is also a similar flow of Eurasian Basin deep water into the Canadian Basin. Both flows probably pass through a gap in the Lomonosov Ridge at 80.4°N. A cooling and freshening of the Atlantic layer, observed at all three moorings, is attributed to changes (in temperature and salinity and/or volume) in the outflow from the Barents Sea the previous winter, possibly caused by an observed increased flow of ice from the Arctic Ocean into the Barents Sea. The change in water properties, which advects at ˜5 cm s -1 along the southern edge of the Eurasian Basin, also strengthens the cold halocline layer and increases the stability of the upper ocean. This suggests a feedback in which ice exported from the Arctic Ocean into the Barents Sea promotes ice growth elsewhere in the Arctic Ocean. The strongest currents

  8. The Surf Zone Ichthyoplankton Adjacent to an Intermittently Open Estuary, with Evidence of Recruitment during Marine Overwash Events

    NASA Astrophysics Data System (ADS)

    Cowley, P. D.; Whitfield, A. K.; Bell, K. N. I.

    2001-03-01

    The composition, structure and seasonality of ichthyoplankton in the surf zone adjacent to the mouth of the intermittently open East Kleinemonde Estuary (33°32'S, 27°03'E) were investigated over a period of 2 years. Altogether 451 fishes, representing at least 21 taxa from 14 families, were collected. The assemblage was dominated by postflexion larvae of euryhaline marine species that are dependent on estuaries as nursery areas. The sparid Rhabdosargus holubi was the most abundant taxon and constituted more than 77% of the total catch. A distinct modal size class was identified for R. holubi , while the mean individual size of this and other abundant taxa was comparable to the observed recruitment size range reported from a wide variety of estuarine nursery habitats in southern Africa. Periodic regression analyses revealed significant peaks in abundance of larval R. holubi during late winter (August), at down and dusk, at new and full moon (spring tides), and on the flood stage of the tidal cycle. Evidence for estuarine immigration during marine overwash events (surging rough seas that enter the estuary) is provided by (1) the stranding of postflexion larvae in the region of the closed estuary mouth following these events, and (2) back extrapolation from length modes within the estuary to coincide with such an event. The advantages and disadvantages of such a recruitment strategy are discussed.

  9. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  10. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter--Exploratory study.

    PubMed

    Viippola, Viljami; Rantalainen, Anna-Lea; Yli-Pelkonen, Vesa; Tervo, Peatta; Setälä, Heikki

    2016-01-01

    While the potential of plants to uptake polycyclic aromatic hydrocarbons (PAHs) is widely acknowledged, empirical evidence of the effects of this process on local atmospheric PAH concentrations and human health is tenuous. We measured gaseous PAH concentrations using passive samplers in urban tree-covered areas and adjacent open, treeless areas in a near-road environment in Finland to gain information on the ability of urban vegetation to improve air quality. The ability of urban, mostly deciduous, vegetation to affect PAHs was season dependent: during summer, concentrations were significantly higher in tree-covered areas, while in the fall, concentrations in open areas exceeded those in tree-covered areas. During winter, concentrations in tree-covered areas were either lower or did not differ from those in open areas. Results of this study imply that the commonly believed notion that trees unequivocally improve air quality does not apply to PAHs studied here.

  11. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter--Exploratory study.

    PubMed

    Viippola, Viljami; Rantalainen, Anna-Lea; Yli-Pelkonen, Vesa; Tervo, Peatta; Setälä, Heikki

    2016-01-01

    While the potential of plants to uptake polycyclic aromatic hydrocarbons (PAHs) is widely acknowledged, empirical evidence of the effects of this process on local atmospheric PAH concentrations and human health is tenuous. We measured gaseous PAH concentrations using passive samplers in urban tree-covered areas and adjacent open, treeless areas in a near-road environment in Finland to gain information on the ability of urban vegetation to improve air quality. The ability of urban, mostly deciduous, vegetation to affect PAHs was season dependent: during summer, concentrations were significantly higher in tree-covered areas, while in the fall, concentrations in open areas exceeded those in tree-covered areas. During winter, concentrations in tree-covered areas were either lower or did not differ from those in open areas. Results of this study imply that the commonly believed notion that trees unequivocally improve air quality does not apply to PAHs studied here. PMID:26412199

  12. Minimizing Alteration of Posterior Tibial Slope During Opening Wedge High Tibial Osteotomy: a Protocol with Experimental Validation in Paired Cadaveric Knees

    PubMed Central

    Westermann, Robert W; DeBerardino, Thomas; Amendola, Annunziato

    2014-01-01

    Introduction The High Tibial Osteotomy (HTO) is a reliable procedure in addressing uni- compartmental arthritis with associated coronal deformities. With osteotomy of the proximal tibia, there is a risk of altering the tibial slope in the sagittal plane. Surgical techniques continue to evolve with trends towards procedure reproducibility and simplification. We evaluated a modification of the Arthrex iBalance technique in 18 paired cadaveric knees with the goals of maintaining sagittal slope, increasing procedure efficiency, and decreasing use of intraoperative fluoroscopy. Methods Nine paired cadaveric knees (18 legs) underwent iBalance medial opening wedge high tibial osteotomies. In each pair, the right knee underwent an HTO using the modified technique, while all left knees underwent the traditional technique. Independent observers evaluated postoperative factors including tibial slope, placement of hinge pin, and implant placement. Specimens were then dissected to evaluate for any gross muscle, nerve or vessel injury. Results Changes to posterior tibial slope were similar using each technique. The change in slope in traditional iBalance technique was -0.3° ±2.3° and change in tibial slope using the modified iBalance technique was -0.4° ±2.3° (p=0.29). Furthermore, we detected no differences in posterior tibial slope between preoperative and postoperative specimens (p=0.74 traditional, p=0.75 modified). No differences in implant placement were detected between traditional and modified techniques. (p=0.85). No intraoperative iatrogenic complications (i.e. lateral cortex fracture, blood vessel or nerve injury) were observed in either group after gross dissection. Discussion & Conclusions Alterations in posterior tibial slope are associated with HTOs. Both traditional and modified iBalance techniques appear reliable in coronal plane corrections without changing posterior tibial slope. The present modification of the Arthrex iBalance technique may increase the

  13. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  14. Late Mesozoic and Cenozoic thermotectonic evolution of the central Brooks Range and adjacent North Slope foreland basin, Alaska: Including fission track results from the Trans-Alaska Crustal Transect (TACT)

    USGS Publications Warehouse

    O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.

    1997-01-01

    Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.

  15. Downward Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).

  16. Gullied Slope

    NASA Technical Reports Server (NTRS)

    2005-01-01

    20 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies formed on an equator-facing slope among mounds in Acidalia Planitia. Similar gullies occur in a variety of settings at middle and polar latitudes in both martian hemispheres.

    Location near: 49.8oN, 22.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  17. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.

  18. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  19. Interaction of dipole eddies with the western continental slope of the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Roberts, Michael J.; Ternon, Jean-François; Morris, Tamaryn

    2014-02-01

    Sea Level Anomaly (SLA) data were used to track a southward propagating eddy dipole along the western slope of the Mozambique Channel over some 6 months. In April 2005, this dipole (with the cyclone to the south) was close to the continental slope off southern Mozambique. The contact zone between the contra-rotating vortices and the slope was surveyed by ship using onboard (S-)ADCP and CTD lines. The data showed strong (>1.4 m s-1) southward (geostrophic) currents over the slope adjacent to the anticyclone with horizontal divergence over the shelf edge. Significant slope upwelling between the dipole and the shelf was evident, concomitant with enhanced nutrient and chlorophyll levels enriching shelf near-surface waters. Satellite observations depicted a 300 km long surface chlorophyll filament extending offshore in the frontal zone between the contra-rotating vortices. A satellite-tracked drifter deployed at the coastal base of this filament confirmed the offshore advection of chlorophyll-enriched shelf water, which ultimately wrapped around the cyclone and filling its centre. The slope upwelling was also clearly evident in hourly temperature data collected by a recorder deployed on a nearby reef (Zambia Reef) in a depth of 18 m. According to the SLA data, the dipole took several weeks to pass Zambia Reef causing prolonged bouts of upwelling that finally ceased when it left the continental slope and moved southwards into the open ocean. Further analysis showed that lone anticyclones and cyclones against the Mozambique continental shelf also induce slope upwelling as a result of horizontal divergence created by the radial circulation of the vortex. In the case of cyclones, the divergence occurs north of the contact zone. Overall, this case study confirms that eddies moving southwards along the western side of the Mozambique Channel are the main mechanism for pumping nutrients into the otherwise oligotrophic surface waters, and moreover, provide a vigorous mechanism

  20. Comparison of observed and predicted slope winds

    SciTech Connect

    Horst, T.W.; Doran, J.C.

    1980-07-01

    Nocturnal drainage winds begin when air adjacent to an inclined surface flows down the slop because it is cooled more than the free air at some distance horizontally from the surface. These slope winds merge and are channeled by the topography to form the larger-scale drainage or mountain winds. This paper discusses the slope flow phase of the drainage wind. The predictions of a simple model for flow down a two-dimensional slope are compared to observations of the drainage wind obtained during the July 1979 ASCOT field study near Middletown, CA.

  1. The Influence of Shales on Slope Instability

    NASA Astrophysics Data System (ADS)

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  2. Recurring Slope Lineae Formation on Changing Slopes.

    NASA Astrophysics Data System (ADS)

    Heydenreich, J.; Mickol, R. L.; Dixon, J. C.; Chevrier, V.

    2015-12-01

    Recurring Slope Lineae (RSLs) and other associated dark streaks appear in the southern mid-latitudes on the martian surface during the spring to summer months. Gullies commonly emerge from bedrock and form from volatile thawing and associated sediment transportation and deposition. All of these forms involve the movement of fluids and associated sediments on variable slopes. The objective of this research is to generate subsurface flows, resembling those of liquid brines, under regolith at slope angle ranges that represent those on which RSLs and gullies occur on Mars. RSLs are generally found on steeper slopes. The higher slopes ranged from 25°-30° and lower slopes 12°-18°. As the slope increased, the total channel and apron length increased. There was a significant increase from the lower to higher slopes. The maximum width of the channel decreased as the slopes increased. Lower slopes produced a more dendritic channel pattern; an alcove, the main channel and an apron with two diverging branches. However, the higher slopes produced channels with more variability in the fluvial features. Lobes diverged from the main channel at varying distances from the water source. Channel walls were more distinct, along with formation of natural levees. Increases in fluid viscosity, produces a more singular channel. From these observations we conclude that lower slopes are more conducive to RSL formations from their basic geomorphology. Higher slopes produce more distinct morphologies associated with fluvial erosion that are more similar to gullies. The effect of viscosity also appears to alter the morphologies of the flow features. Understanding the origin of these fluvial features can lead to greater understanding of fluids on Mars.

  3. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  4. 1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE OF THE ADIT OPENINGS (VIEW TO THE NORTH). - Foster Gulch Mine, Fan Housing, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  5. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  6. Slope evolution at the Calvert Cliffs, Maryland -- measuring the change from eroding bluffs to stable slopes

    USGS Publications Warehouse

    Herzog, Martha; Larsen, Curtis E.; McRae, Michele

    2002-01-01

    Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that

  7. Pelagic-benthic coupling and diagenesis of nucleic acids in a deep-sea continental margin and an open-slope system of the Eastern Mediterranean.

    PubMed

    Dell'anno, Antonio; Corinaldesi, Cinzia; Stavrakakis, Spyros; Lykousis, Vasilis; Danovaro, Roberto

    2005-10-01

    Downward fluxes of nucleic acids adsorbed onto settling particles play a key role in the supply of organic phosphorus and genetic material to the ocean interior. However, information on pelagic-benthic coupling, diagenesis, and processes controlling nucleic acid preservation in deep-sea sediments is practically nonexistent. In this study, we compared nucleic acid fluxes, sedimentary DNA and RNA concentrations, and the enzymatically hydrolyzable fraction of DNA in a bathyal continental margin (North Aegean Sea) and an open-sea system (South Aegean Sea) of the Eastern Mediterranean. The two systems displayed contrasting patterns of nucleic acid fluxes, which increased significantly with depth in the North Aegean Sea and decreased with depth in the South Aegean Sea. These results suggest that in continental margin and open-ocean systems different processes control the nucleic acid supply to the sea floor. Differences in nucleic acid fluxes were reflected by nucleic acid concentrations in the sediments, which reached extremely high values in the North Aegean Sea. In this system, a large fraction of DNA may be buried, as suggested by the large fraction of DNA resistant to nuclease degradation and by estimates of burial efficiency (ca. eight times higher in the North than in the South Aegean Sea). Overall, the results reported here suggest that the preservation of DNA in deeper sediment layers may be favored in benthic systems characterized by high sedimentation rates.

  8. Energy contents of northwest Atlantic continental slope organisms

    NASA Astrophysics Data System (ADS)

    Steimle, F. W.; Terranova, R. J.

    1988-03-01

    Bomb calorimetric energy contents (kJ g -1 wet weight, dry weight and ash-free dry weight) are described for 88 species of common benthic and pelagic organisms collected on the upper continental slope (200-750 m) of the northwest Atlantic, between Georges Bank and Cape Hatteras. The data shows that the energy contents of these upper slope organisms generally are not substantially different from similar taxa on the adjacent continental shelf. Included are preliminary evidence of some seasonal fluctuations.

  9. NASA Now: SLOPE

    NASA Video Gallery

    Welcome to the SLOPE facility at NASA’s Glenn Research Center in Cleveland, Ohio. In this building, NASA engineers experiment with different wheel designs for lunar rovers. They use a simulated c...

  10. New Insights into the Sedimentary Dynamics along Carbonate Slopes

    NASA Astrophysics Data System (ADS)

    Wunsch, Marco; Betzler, Christian; Lindhorst, Sebastian; Lüdmann, Thomas; Eberli, Gregor

    2016-04-01

    Hydroacoustic, sedimentological and seismic data of the leeward slope of Great Bahama Bank and the windward slope of the adjacent Cay Sal Bank provide new insights into carbonate platform slope sedimentation. Our study focuses on the diversity and complexity of the slope morphologies and sedimentary patterns which characterize the youngest high-frequency sequence, forming since the Last Glacial Maximum. It is shown that both carbonate platform slopes are dissected by furrows, gullies and channels which are genetically not related. Along the windward slope of Cay Sal Bank, toe of slope erosion, in conjunction with the local tectonic regime is responsible for channel incisions. Our data show that these channels were active during the regression after the last interglacial highstand of sea level. During this regression, downwelling transported platform sediment downslope, which was redistributed along the slope by contour currents. It is also shown that large mass transport complexes at the leeward slope of Great Bahama Bank formed during the last sea level lowstand, probably triggered by the release of pore-water pressure. These MTC created a complex slope morphology of gullies and scarps. These gullies act as a point source by confining the exported platform sediments during the present day sea level highstand.

  11. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  12. Active diapirism and slope steepening, northern Gulf of Mexico continental slope.

    USGS Publications Warehouse

    Martin, R.G.; Bouma, A.H.

    1982-01-01

    Large diapiric and nondiapiric masses of Jurassic salt and Tertiary shale underlie the northern Gulf of Mexico continental slope and adjacent outer continental shelf. Local steepening of the sea floor in response to the vertical growth of these structures is a serious concern to those involved in the site selection and the construction of future oil and gas production and transportation facilities in this frontier petroleum province. The evidence given in this paper supports the conclusion that the present continental slope region of the northern Gulf of Mexico is undergoing active diapirism and consequent slope steepening. Because most of the sediment on the flanks of diapiric structures consists of underconsolidated muds, slumping will take place regularly in response to further diapiric movement.-from Authors

  13. Estimating Slope and Level Change in N = 1 Designs

    ERIC Educational Resources Information Center

    Solanas, Antonio; Manolov, Rumen; Onghena, Patrick

    2010-01-01

    The current study proposes a new procedure for separately estimating slope change and level change between two adjacent phases in single-case designs. The procedure eliminates baseline trend from the whole data series before assessing treatment effectiveness. The steps necessary to obtain the estimates are presented in detail, explained, and…

  14. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Ventilation fans shall be: (1) Installed on the surface; (2) Installed in fireproof housing and connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of...

  15. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Ventilation fans shall be: (1) Installed on the surface; (2) Installed in fireproof housing and connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of...

  16. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Ventilation fans shall be: (1) Installed on the surface; (2) Installed in fireproof housing and connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of...

  17. SLOPE--a real-time ECG data compressor.

    PubMed

    Tai, S C

    1991-03-01

    An ECG sampled at a rate of 250 samples s-1 or more produces a large amount of redundant data that are difficult to store and transmit. In the paper, a real-time ECG data compressor, SLOPE, is presented. SLOPE considers some adjacent samples as a vector, and this vector is extended if the coming sample falls in a fan spanned by this vector and a threshold angle; otherwise, it is delimited as a linear segment. By this means SLOPE repeatedly delimits linear segments of different lengths and different slopes. The Huffman codes for the parameters to describe this linear segment are transmitted for that linear segment. SLOPEa, which is a slightly modified version of SLOPE, is used to compress ambulatory ECG data. All the operations used by SLOPE and SLOPEa are simple integer operations, both SLOPE and SLOPEa being real-time compressors. Experimental results show that an average of 192 bits per channel per second (bpcs) for each ECG signal is obtained by SLOPE and an average of 148 bpcs for each ECG signal is obtained by SLOPEa.

  18. A modern analog for carbonate source-to-sink sedimentary systems: the Glorieuses archipelago and adjacent basin (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Jorry, S.; Jouet, G.; Prat, S.; Courgeon, S.; Le Roy, P.; Camoin, G.; Caline, B.

    2014-12-01

    This study presents the geomorphological and sedimentological analysis of a modern carbonate source-to-sink system located north of Madagascar (SW Indian Ocean). The sedimentary system is composed of an isolated carbonate platform sited on top of a seamount rising steeply from the seabed located at 3000 m water depth. The slope of the seamount is incised by canyons, and meandering channels occur above lobbed sedimentary bodies at the foot of the slope. The dataset consists of dredges, sediment piston cores, swath bathymetry and seismic (sparker and 2D high-resolution) lines collected from inner platform (less than 5 m deep) to the adjacent deep sedimentary basin. Particle size analysis and composition of carbonate grains are used to characterize the distribution and heterogeneity of sands accumulated on the archipelago. Main results show that composition of carbonate sediments is dominated by segments of Halimeda, large benthic foraminifera, coral debris, molluscs, echinoderms, bryozoans and sponges. According to the shape and the position of sandwaves and intertidal sandbars developed in the back-barrier reef, the present organization of these well-sorted fine-sand accumulations appears to be strongly influenced by flood tidal currents. Seismic lines acquired from semi-enclosed to open lagoon demonstrate that most of the sediment is exported and accumulated along the leeward margin of the platform, which is connected to a canyon network incising the outer slope. Following the concept of highstand shedding of carbonate platforms (Schlager et al., 1994), excess sediment is exported by plumes and gravity flows to the adjacent deep sea where it feeds a carbonate deep-sea fan. Combined observations from platform to basin allow to explain how the Glorieuses carbonate source to sink system has evolved under the influence of climate and of relative sea-level changes since the last interglacial.

  19. Development of a GIS-based failure investigation system for highway soil slopes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  20. Modern Slope Processes on the Moon

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. V.; Pine, P. K.; Shevrel, S. D.; Dadu, I.; Lu, Y.; Skobeleva, T. P.; Kvaratskhelia, O.; Rosemberg, K.

    2012-01-01

    Slope movements of material in lunar craters are investigated based on remote spectral studies carried out on board the Clementine spacecraft, and data obtained during the large-scale survey on board the LRO (Lunar Reconnaissance Orbit) spacecraft. The morphological analysis of crater forms based on large-scale images and spectral and spectropolarized assessments of the exposition age (or maturity) of the slope material has led to the conclusion that the formation process of observed outcrops probably is a modern feature. The lower age limit of these structures is estimated at 40-80 years. Thus, slope movements of surface materials can continue at the present time, regardless of the age of the crater studied. Slope movements of crushed granular material lead to fresh outcrops of subsurface layers of marine or continental landscapes and, therefore, extend our capabilities to research the deep material of the Moon. To analyze this phenomenon, craters of 16 and 30 km have been selected. The length of fresh outcrops, while depending strongly on the dimensions of the craters, can be up to several kilometers. In connection with this, the prospect appears of remote analysis of rocks that came to the surface from depths of at least several hundred meters. In this case, there are openings for the contact analysis of subsurface material without the use of labor-intensive operations associated with the delivery of equipment for deep drilling to the lunar surface.

  1. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  2. Slope stability and stabilization methods

    SciTech Connect

    Abramson, L.W.; Lee, T.S.; Boyce, G.M.; Sharma, S.S.

    1995-12-01

    Slope stability can be a major problem during the construction of surface facilities. Cutting into existing ground disturbs the mechanics of the surrounding area, which can result in landslides and rock falls. This practical reference gives you the comprehensive information you need for slope stability analysis, suitable methods of analysis with and without the use of computers, and examples of common stability problems and stabilization methods for cuts and fills. It includes detailed discussions of methods used in slope stability analysis, including the Ordinary Method of Slices, Simplified Janbu Method, Simplified Bishop Method, Spencer`s Method, other limit equilibrium methods, numerical methods, total stress analysis, effective stress analysis, and the use of computer programs to solve problems. Chapters include: General Slope Stability Concepts; Engineering Geology Principles; Groundwater Conditions; Geologic Site Exploration; Laboratory Testing Interpretation; Slope Stability Concepts; Slope Stabilization Methods; and Design, Construction and Maintenance.

  3. The geomorphic evolution of slopes and sediment chutes on forereefs

    NASA Astrophysics Data System (ADS)

    Hall, Douglas B.

    1999-03-01

    Frequent slope failures of the forereef dropoff occur in living coral reefs on the island of Bonaire in the southern Caribbean. Topographic profiles of ten sites were taken perpendicular to shore, followed by an estimation of coral ages ( M. annularis) along the topographic profiles. The coral ages were estimated from published rates of growth and sizes of the sampled corals. Comparisons of coral age and adjacent slope angle indicated that the steeper slopes are older and that mass failure of the slope reduces the steepness of the forereef front and destroys the coral community along the disturbed slope. Slopes grow until reaching a critical steepness, after which underwater sliding of the over-steepened forereef front results. In observed slides, the mechanical weakness in the reef structure that facilitates a slide failure was the result of a weak mud and coral rubble layer deposited 2 m below the living coral cover. The remaining slide scarp evolves into a sediment chute that conveys the resulting flow of biogenic sands from the shallow forereef terrace down the forereef edge. Because of the constant flow of sand down these channels, no corals can recolonize the sediment chutes and the chutes become stable topographic features. In addition, these indentations in the forereef front also serve as channels for the vertical density mixing of water of varying salinities and temperatures.

  4. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  5. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  6. Influence of Aspect on Snowmelt Irradiation on Forested Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Ellis, C. R.; Pomeroy, J. W.

    2005-12-01

    It is well known that snowmelt energy from radiation varies due to the effects of topography and vegetation cover. However it is not well understood how the combination of topography and vegetation influences sub-canopy radiation fluxes to snow. To investigate, three natural lodgepole pine (Pinus contorta) stands in the Rocky Mountains of Marmot Creek Research Basin, Alberta, Canada were instrumented with radiometers. Radiation was observed at an open reference and beneath forests on north (20° slope; 351° azimuth) and southeast (19° slope; 126° azimuth) aspects with a level site serving as a control. Due to the presence of canopy gaps on the southeast slope, radiometers were placed in open, medium and dense parts of the stand. The pine forest exhibited variations in cover having mean tree densities of 1.83, 2.05 and 2.52 trees m-2 at southeast, level and north slopes. Both short-wave and long-wave incoming radiation fluxes were measured in sites with complete snow cover and experiencing melt. Ratios of sub-canopy short-wave irradiance to open-level site mean irradiance of 12.81 MJ m-2 d-1 were 0.38, 0.21 and 0.08 for southeast slope, level, and north slope forest sites, respectively. Sub-canopy long-wave irradiance ratios relative to the average open-level site irradiance of 9.61 MJ m-2 d-1 were 2.82, 2.82 and 2.87 respectively for southeast slope, level and north slope forest sites. Sub-canopy net radiation ratios relative to a mean net radiation of 3.2 MJ m-2 d-1 at the open-level site were 0.33, 0.09 and 0.07 for southeast, level and north slope forest sites. Lower north slope receipts of sub-canopy short-wave were found to be offset by an increased sub-canopy long-wave flux.

  7. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  8. Western Ross Sea continental slope gravity currents

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (<-1 °C), salty (>34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This

  9. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  10. Measurement of peak discharge by the slope-area method

    USGS Publications Warehouse

    Dalrymple, Tate; Benson, M.A.

    1968-01-01

    This chapter describes application of the Manning equation to measure peak discharge in open channels. Field and office procedures limited to this method are described. Selection of reaches and cross sections is detailed, discharge equations are given, and a complete facsimile example of computation of a slope-area measurement is also given.

  11. Slope sensitivities for optical surfaces

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2015-09-01

    Setting a tolerance for the slope errors of an optical surface (e.g., surface form errors of the "mid-spatial-frequencies") requires some knowledge of how those surface errors affect the final image of the system. While excellent tools exist for simulating those effects on a surface-by-surface basis, considerable insight may be gained by examining, for each surface, a simple sensitivity parameter that relates the slope error on the surface to the ray displacement at the final image plane. Snell's law gives a relationship between the slope errors of a surface and the angular deviations of the rays emerging from the surface. For a singlet or thin doublet acting by itself, these angular deviations are related to ray deviations at the image plane by the focal length of the lens. However, for optical surfaces inside an optical system having a substantial axial extent, the focal length of the system is not the correct multiplier, as the sensitivity is influenced by the optical surfaces that follow. In this paper, a simple expression is derived that relates the slope errors at an arbitrary optical surface to the ray deviation at the image plane. This expression is experimentally verified by comparison to a real-ray perturbation analysis. The sensitivity parameter relates the RMS slope errors to the RMS spot radius, and also relates the peak slope error to the 100% spot radius, and may be used to create an RSS error budget for slope error. Application to various types of system are shown and discussed.

  12. A new vision of carbonate slopes: the Little Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean; Fauquembergue, Kelly; Ducassou, Emmanuelle

    2016-04-01

    Recent high-quality multibeam and seismic data allow to image a large part of the uppermost slope of Northeastern Little Bahama Bank between 30 and 400 m water depth and to characterize the uppermost slope (Rankey and Doolitle, 1992) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflexion lines (1120 km), 21 gravity cores and 11 Van Veen grabs. This dataset completes the recent surveys of the slope adjacent to LBB (Carambar cruise, Mulder et al, 2012). The data provide insight into sediment transfer from the shallow carbonate bank to the adjacent slope. Four major terraces and escarpments dominate the morphology of the slope. The terraces are located at 22 m, 27-33 m, 40-46 and 55-64 m below present water depth (mpwd). They could either be related to periods of stagnating sea-level and therefore increased erosion by waves, or periods of accelerated sea-level rise since the Last Glacial Maximum. Escarpments bound the terraces. The deepest one (64-56 mpwd) is also the steepest 35-50°). It corresponds to the marginal scarp of Rankey and Doolitle (1992). The lower part of the uppermost slope shows a discontinuous Holocene sediment wedge with varying thickness between 0 and 35 m. It forms a blind or very crudely stratified echo facies. This Holocene unit can be thicker than 20 m and consists of mud that forms most of the present sediment export. This unit fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. It forms by off-bank export initiated when a cold front passes by, resulting in density cascading currents. The associated sediment fall-out and convective sedimentation can generate density currents that flow through linear structures on the upper slope. The survey reveals the presence of recently active channels that extend laterally over the entire uppermost slope and interrupt the density cascading fall

  13. Western Slope of Andes, Peru

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Along the western flank of the Andes, 400 km SE of Lima Peru, erosion has carved the mountain slopes into long, narrow serpentine ridges. The gently-sloping sediments have been turned into a plate of worms wiggling their way downhill to the ocean.

    The image was acquired September 28, 2004, covers an area of 38 x 31.6 km, and is located near 14.7 degrees south latitude, 74.5 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  14. North Atlantic slope and canyon study. Volume 1. Executive summary

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. The long-term current observations made in Lydonia and Oceanographer Canyons show that the current regime in these topographic features differs from the adjacent slope, and between canyons. Sediments near the head (depths shallower than about 600 m) in both Lydonia and Oceanographer are frequently resuspended. This frequent resuspension may allow the sediments to strip pollutants from the water column. Currents in Oceanographer Canyon are stronger and the sediments coarser than in Lydonia at comparable depths.

  15. 30 CFR 75.1403-11 - Criteria-Entrances to shafts and slopes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Entrances to shafts and slopes. 75.1403-11 Section 75.1403-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 75.1403-11 Criteria—Entrances to shafts and slopes. All open entrances to shafts should be...

  16. 30 CFR 75.1403-11 - Criteria-Entrances to shafts and slopes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Criteria-Entrances to shafts and slopes. 75.1403-11 Section 75.1403-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 75.1403-11 Criteria—Entrances to shafts and slopes. All open entrances to shafts should be...

  17. Operational slope-limiting circuit

    NASA Technical Reports Server (NTRS)

    Engel, A.

    1973-01-01

    Circuit limits slope of arbitrary waveform to avoid exceeding rate limit of subsequent amplifier, or to form trapezoidal wave with adjustable rise and fall rates from square wave of arbitrary frequency. Integrator provides delay needed to develop output waveform. DC coupling is used to preserve original dc offset.

  18. Exploring Slope with Stairs & Steps

    ERIC Educational Resources Information Center

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.

    2013-01-01

    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  19. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank. Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank. Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine. Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  20. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  1. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  2. Slope Streaks in Terra Sabaea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars.

    The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material.

    Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity.

    Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material.

    In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface.

    Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km

  3. Properties of martian slope streak populations

    NASA Astrophysics Data System (ADS)

    Bergonio, Justin R.; Rottas, Kimberly M.; Schorghofer, Norbert

    2013-07-01

    Slope streaks are down-slope mass movements on the surface of Mars that are among the few known examples of contemporary geologic activity on Mars. Here we study slope streak activity over three decades, based on overlapping images in the Lycus Sulci region taken by the Context Camera (CTX) 2007-2010 and the Viking Orbiter Camera in 1977. The number of disappeared slope streaks is nearly equal the number of newly formed slope streaks, suggesting the streak population is balanced. The turnover time of the population is estimated to be four decades. Slope streaks fade gradually over time, with islands of persistence. We also determine the number of observable slope streaks as a function of image resolution based on images by the High Resolution Imaging Science Experiment (HiRISE) camera, and find that the number of discernible slope streaks can increase rapidly with spatial resolution.

  4. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  5. Paraglacial rock mass damage during repeat glacial cycles in preparing slope instabilities (Aletsch region, Switzerland)

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz; Moore, Jeffrey R.; Gischig, Valentin S.; Loew, Simon

    2016-04-01

    Glacier advance and retreat imposes mechanical stress cycles on underlying bedrock. Stress changes propagate rock mass damage and act as preparatory factors for slope instabilities, however, the mechanics of paraglacial rock slope damage remains poorly understood. In this study, we present results of detailed, conceptual numerical models, based on extensive field mapping and characterization at our Aletsch valley study site, Switzerland. We illustrate how simple stress changes associated with repeat glacial cycles can propagate fractures, enhance slip along discontinuities, and lead to failure of intact rock bridges, conditioning adjacent valley slopes for failure. We describe the timing and location of induced damage, stress redistribution, and displacement associated with Late Pleistocene and Holocene glacial cycles, and compare numerical predictions with the spatial and temporal distribution of landslides around the Great Aletsch Glacier. Our results help clarify mechanical linkages between glacial cycles and damage propagation in alpine valley rock slopes. In our simulations, most damage occurs during first deglaciation. This is in good agreement with the relative initiation timing (post-LGM / post-Egesen) for the majority of identified landslides at Aletsch. Large Holocene glacial cycles with high amplitude ice elevation changes in our models have a significant impact on displacement patterns in adjacent slopes. This correlates with a concentrated area of landslides located around the present-day glacier terminus, where the Great Aletsch Glacier fluctuated most during the Holocene. The kinematics and dimensions of an unstable rock slope produced in our models also generally resembles field observations of toppling-mode landslides on the eastern slope. No substantial displacement was generated on the western slope, although compound rock slides are observed on the western flank in the Aletsch.

  6. MINARETS WILDERNESS AND ADJACENT AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Huber, N. King; Thurber, Horace K.

    1984-01-01

    A mineral survey of the Minarets Wilderness and adjacent areas in the central Sierra Nevada, California was conducted. The results of the survey indicate that the study area has a substantiated resource potential for small deposits of copper, silver, zinc, lead, and iron, and a probable mineral-resource potential for molybdenum. No energy-resource potential was identified in the study.

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS... transporting a material that Table 148.10 of this part associates with a reference to this section, the following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  11. Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation

    USGS Publications Warehouse

    Brooks, G.R.; Holmes, C.W.

    1990-01-01

    Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many

  12. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  13. Mycorrhizal aspects in slope stabilisation

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  14. Inexpensive Device for Demonstrating Rock Slope Failure and Other Collapse Phenomena.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1980-01-01

    Describes an inexpensive modeling technique for demonstrating large-scale displacement phenomena in rock masses, such as slope collapse and failure of underground openings. Excavation of the model material occurs through openings made in the polyurethane foam in the correct excavation sequence. (Author/SA)

  15. Repeated adjacent-segment degeneration after posterior lumbar interbody fusion.

    PubMed

    Okuda, Shinya; Oda, Takenori; Yamasaki, Ryoji; Maeno, Takafumi; Iwasaki, Motoki

    2014-05-01

    One of the most important sequelae affecting long-term results is adjacent-segment degeneration (ASD) after posterior lumbar interbody fusion (PLIF). Although several reports have described the incidence rate, there have been no reports of repeated ASD. The purpose of this report was to describe 1 case of repeated ASD after PLIF. A 62-year-old woman with L-4 degenerative spondylolisthesis underwent PLIF at L4-5. At the second operation, L3-4 PLIF was performed for L-3 degenerative spondylolisthesis 6 years after the primary operation. At the third operation, L2-3 PLIF was performed for L-2 degenerative spondylolisthesis 1.5 years after the primary operation. Vertebral collapse of L-1 was detected 1 year after the third operation, and the collapse had progressed. At the fourth operation, 3 years after the third operation, vertebral column resection of L-1 and replacement of titanium mesh cages with pedicle screw fixation between T-4 and L-5 was performed. Although the patient's symptoms resolved after each operation, the time between surgeries shortened. The sacral slope decreased gradually although each PLIF achieved local lordosis at the fused segment.

  16. Development of deep-seated gravitational slope deformation on a shale dip-slope: observations from high-quality drillcores

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Hariyama, Takehiro; Yamasaki, Shintaro

    2013-04-01

    The internal structures within a gravitationally deformed slope were observed using high-quality drillcores obtained from a dip slope of a series of shale-dominated sediments. This slope has dimple-like depressions and an overall gentle slope angle, but has no well-defined landslide scarp, suggesting that this area underwent gravitationally deformation but with no separation of the deformed portion from the surrounding area. Three drillcores, to a maximum depth of 96 m, were used during this study, with detailed observations of cut paraffin-impregnated core surfaces used to characterize gravitational deformation in the study area. This logging identified shear zones that consist of disintegrated (brecciated) and pulverized zones that were up to 88 and 19 cm thick, respectively. Disintegrated zone breccias have local jigsaw-fit textures, but other areas contain compositional trails formed by cataclastic flow, and rounded outlines formed by attrition. Pulverized zones underwent increased amounts of shearing, leading to the formation of more rounded fragments and increasing amounts of clayey matrix material, but still containing more than 30% of visible rock fragments. As such, these zones are still classified as breccias in terms of fault rock classification. Planar structures, such as R and Y shears, and P foliations, are not developed in the study area. Shear zones are intermittently located across the slope and have not formed a through-going master sliding zone. Incipient shear zones are present within the slope, including a pair of shear surfaces with a pull apart-like opening, and thin disintegrated or pulverized zones in intact rocks at 3-10 m below the base of the main area of gravitational deformation, suggesting that these shear zones propagate downward in a step-wise manner. This propagation may be related to the redistribution of stress induced by river incision.

  17. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  18. Adjacent Segment Pathology after Lumbar Spinal Fusion

    PubMed Central

    Lee, Jae Chul

    2015-01-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  19. How the spatial variation of tree roots affects slope stability

    NASA Astrophysics Data System (ADS)

    Mao, Zhun; Stokes, A.; Jourdan, C.; Rey, H.; Courbaud, B.; Saint-André, L.

    2010-05-01

    It is now widely recognized that plant roots can reinforce soil against shallow mass movement. Although studies on the interactions between vegetation and slope stability have significantly augmented in recent years, a clear understanding of the spatial dynamics of root reinforcement (through additional cohesion by roots) in subalpine forest is still limited, especially with regard to the roles of different forest management strategies or ecological landscapes. The architecture of root systems is important for soil cohesion, but in reality it is not possible to measure the orientation of each root in a system. Therefore, knowledge on the effect of root orientation and anisotropy on root cohesion on the basis of in situ data is scanty. To determine the effect of root orientation in root cohesion models, we investigated root anisotropy in two mixed, mature, naturally regenerated, subalpine forests of Norway spruce (Picea abies), and Silver fir (Abies alba). Trees were clustered into islands, with open spaces between each group, resulting in strong mosaic heterogeneity within the forest stand. Trenches within and between clusters of trees were dug and root distribution was measured in three dimensions. We then simulated the influence of different values for a root anisotropy correction factor in forests with different ecological structures and soil depths. Using these data, we have carried out simulations of slope stability by calculating the slope factor of safety depending on stand structure. Results should enable us to better estimate the risk of shallow slope failure depending on the type of forest and species.

  20. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion.

  1. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  2. HDMR methods to assess reliability in slope stability analyses

    NASA Astrophysics Data System (ADS)

    Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna

    2014-05-01

    Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky

  3. Dip-slope and Dip-slope Failures in Taiwan - a Review

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  4. Unsteady Katabatic Winds on Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Fernando, H. J. S.; Princevac, M.; Hunt, J. C. R.

    2003-04-01

    UNSTEADY KATABATIC WINDS ON MOUNTAIN SLOPES H.J.S. Fernando (1), M. Princevac (1) and J.C.R. Hunt (2) (1) Arizona State University, Tempe, (2) University College, London j.fernando@asu.edu Theoretical and field studies were carried out on velocity and temperature fields of an unsteady nighttime atmospheric boundary layer on sloping surfaces. Field data were collected during the Vertical Transport and Mixing Experiment (VTMX) conducted in the Salt Lake basin, Utah. Nighttime data from two slope sites, with measurements taken using six tethersonde systems and three sonic anemometers placed at a various representative locations along the slope, were used in the analysis. This analysis concerned simple katabatic flows as well as the interaction between (evening) down-slope flows on lower (elevation) gentle slopes and those originating at adjoining higher (elevation) steep mountain slopes. Katabatic winds that form on the steep slope overrun those on the lower slope, thus dominating the micrometeorology at the bottom of the valley. Yet, the flow and temperature on higher slopes are independent of those in the lower valley, given that katabatic flows on steeper slopes are generally supercritical and do not transmit flow information upstream. By employing assumptions on the flow structure and using parameterizations for pertinent processes, an expression was derived for the layer-averaged katabatic flow velocity. Using energy arguments to calculate the growth rate of the katabatic-layer thickness, a new expression for the flow depth was derived. Extensive comparisons between theoretical results and field observations were made, allowing cross-fertilization between theoretical developments, eduction of flow physics and interpretation of field data. Unsteady effects pertinent to katabatic flows were also considered, following Fleagle’s approach, and it is shown theoretically and using observations that the down-slope flow pulsates with a period inversely proportional to

  5. What is the slope of the U.S. continental slope?

    SciTech Connect

    Pratson, L.F.; Haxby, W.F.

    1996-01-01

    Extensive high-resolution, multibeam bathymetry of five U. S. continental margins provides new, detailed information about the angle of continental slopes in different sedimentary and tectonic settings. The steepest continental slope examined is the passive-carbonate west Florida slope (4.4{degree} regional slope and 12.0{degree} mean local slope). The steepest of the four clastic continental slopes is the passive New Jersy-Maryland slope (2.5{degree} and 7.6{degree}). Less steep, at both regional and local scales, are the more rugged, tectonically active and probably unstable salt-tectonized louisiana slope (0.5{degree} and 2.9{degree}), strike-slip California slope (1.8{degree} and 5.2{degree}) and convergent oregon slope (2.0{degree} and 5.2{degree}). Frequency grids of local slope magnitude vs. depth and dip direction for the two passive continental slopes reflect present-day morphology predominantly being shaped by lithology (West Florida), sedimentation (New Jersey-Maryland), and downslope-directed erosion(New Jersey-Maryland, west Florida). The grids for the three tectonically acctive continental slopes reflect morphology partly (California) to predominantly (Louisiana, Oregon) being shaped by tectonics. 15 refs., 2 figs.

  6. Developing Restoration Planting Mixes for Active Ski Slopes: A Multi-Site Reference Community Approach

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer Williamson

    2012-03-01

    Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.

  7. Comparison of Sedimentary Processes on Adjacent Passive and Active Continental Margins Offshore of Southwest Taiwan Based on Echo Character Studies

    NASA Astrophysics Data System (ADS)

    Liu, C.; Chiu, J.

    2008-12-01

    Echo character recorded on Chirp sub-bottom sonar data from offshore area of southwest Taiwan were analyzed to examine and compare the sedimentary processes of adjacent passive and active continental margin settings. Seafloor echoes in the study area are classified into four types: (1) distinct echoes, (2) indistinct echoes, (3) hyperbolic echoes, and (4) irregular echoes. Based on the mapped distribution of the echo types, the sedimentary processes offshore of southwest Taiwan are different in the two tectonic settings. On the passive South China Sea margin, slope failure is the main process on the upper continental slope, whereas turbidite deposits accumulate in the lower continental slope. In contrast, the submarine Taiwan orogenic wedge is characterized by fill-and-spill processes in the intraslope basins of the upper slope, and mass-transport deposits are observed in the canyons and on the lower Kaoping slope. This difference is largely caused by the huge influx of terrigenous sediments into the submarine Taiwan orogenic wedge province compared to the passive South China Sea continental margin. In the passive South China Sea margin, loading and movement of the Taiwan orogenic wedge has had significant effect on the seafloor morphology, and triggered retrogressive failures. Gas hydrate dissociation may have enhanced the slope failure processes at some locations.

  8. Large slope failures in the La Paz basin, Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Roberts, N. J.; Hermanns, R. L.; Rabus, B.; Guzmán, M. A.; Minaya, E.; Clague, J. J.

    2014-12-01

    The La Paz basin in the eastern Bolivian Andes has been a hotspot for large-scale, deep-seated gravitational slope deformation during the Holocene. In less than 2 Ma, a network of steep-sided valleys up to 800 m deep formed in sediments of the Altiplano Plateau and underlying basement rocks. We characterize the distribution, extent, mechanisms, and modern activity of large-scale failures within this landscape using optical image interpretation, existing geologic maps, synthetic RADAR interferometry (InSAR), and field investigation. Deposits of nearly 20 landslides larger than 100 Mm3 occur within the basin. Most failures have occurred in weakly lithified Late Miocene to Pliocene sedimentary rocks and include earth flows, translational and rotational landslides, and plug flows. Failures in underlying tectonized Paleozoic sedimentary rocks include bedding-parallel rockslides. The largest failure is the 3 km3 Achcocalla earth flow (ca. 11 ka BP), which ran out ~20 km. Other dated events span the period from the early Holocene to nearly the Colonial historic period. InSAR results show that many large slope failures, including the Achocalla earth flow, are currently moving at rates of a few centimeters to a few decimeters per year. Rapid deposition, shallow burial, and rapid incision of the basin fills produced steep slopes in weak geologic materials that, coupled with groundwater discharge from the valley walls, are the primary controls on instability. In contrast, the Altiplano surface has changed little in 2 Ma and the adjacent slopes of the Cordilleran Real, although steep, are relatively stable. Of the over 100 landslides that have occurred in the city of La Paz since the early twentieth century, most are at the margins of large, deep-seated prehistoric failures, and two of the most damaging historic landslides (Hanko-Hanko, 1582; Pampahasi, 2011) were large-scale reactivations of previously failed slopes. Improved understanding of large, deep-seated landslides in

  9. Slope Stability. CEGS Programs Publication Number 15.

    ERIC Educational Resources Information Center

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  10. 27 CFR 9.192 - Wahluke Slope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wahluke Slope. 9.192... Wahluke Slope. (a) Name. The name of the viticultural area described in this section is “Wahluke Slope”. For purposes of part 4 of this chapter, “Wahluke Slope” and “Wahluke” are terms of...

  11. 27 CFR 9.192 - Wahluke Slope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Wahluke Slope. 9.192... Wahluke Slope. (a) Name. The name of the viticultural area described in this section is “Wahluke Slope”. For purposes of part 4 of this chapter, “Wahluke Slope” and “Wahluke” are terms of...

  12. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo

    2012-05-01

    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  13. Genetic types and sequence stratigraphy models of Palaeogene slope break belts in Qikou Sag, Huanghua Depression, Bohai Bay Basin, Eastern China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanyan; Wang, Hua; Wu, Yongping; Wang, Jiahao; Chen, Si; Ren, Peigang; Liao, Yuantao; Zhao, Shu'e.; Xia, Cunyin

    2012-06-01

    The division and analysis of the genetic types of slope breaks will be helpful in studying the enrichment regularity of hydrocarbon reservoirs because the enrichment of hydrocarbon reservoirs is closely related to the shelf-slope break types in continental lake basins or sags in China. This paper analyses the types of basin margins in Qikou Sag by assessing the sag boundary fault characteristics and spatial combination patterns using high-resolution three-dimensional seismic data, well logs and other data. Basin margins were divided into four types: steep slope fault belts, multi-level step-fault belts, steep slope step-fault belts and slope break flexure belts. Different types of depositional systems developed near the different basin margins, and correspondingly, four types of sequence stratigraphic patterns were developed. According to the study of trap types that occur adjacent to the different slope-break zones, fault-controlled lithologic traps were the predominant trap type in fault-controlled slope break zones, and lithologic traps occurred in the sag centre distant from the boundary faults. Along the slope break flexure belt, different types of traps developed in different slope break levels; stratigraphic unconformity traps occurred within the first slope break level, and stratigraphic-lithologic traps and up-dip pinchout lithologic traps were found in the second slope break level. So the deployment of future exploration should be conducted at different levels in Qikou Sag.

  14. A new vision of carbonate slopes: the Little Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean

    2015-04-01

    Recent data collected in November 2014 (RV Walton Smith) on the upper slope of the Little Bahama Bank (LBB) between 30 and 400 m water depth allowed to characterize the uppermost slope (Rankey et al., 2012) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflection lines, 21 gravity cores and 11 Van Veen grabs. The upper slope of the LBB does not show a steep submarine cliff as known from western Great Bahama Bank. The carbonate bank progressively deepens towards the basin through a slighty inclined plateau. The slope value is < 6° down to a water depth of about 70 m. The plateau is incised by decameter-wide gullies that covered with indurated sediment. Some of the gullies like Roberts Cuts show a larger size and may play an important role in sediment transfer from the shallow-water carbonate bank down to the canyon heads at 400-500 m water depth (Mulder et al., 2012). In the gully area, the actual reef rests on paleo-reefs that outcrop at a water depth of about 40 m. These paleo-reef structures could represent reefs that established themselves during past periods of sea-level stagnation. Below this water depth, the slope steepens up to 30° to form the marginal escarpment (Rankey et al., 2012), which is succeeded by the open margin realm (Rankey et al., 2012). The slope inclination value decreases at about 180-200 m water depth. Between 20 and 200 m of water depth, the VHR seismic shows no seafloor sub-bottom reflector. Between 180 and 320 m water depth, the seafloor smoothens. The VHR seismic shows an onlapping sediment wedge, which starts in this water depth and shows a blind or very crudely stratified echo facies. The sediment thickness of this Holocene unit may exceed 20 m. It fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. Sediment samples show the abundancy of carbonate mud on the present Bahamian

  15. Exchange coupling between laterally adjacent nanomagnets

    NASA Astrophysics Data System (ADS)

    Dey, H.; Csaba, G.; Bernstein, G. H.; Porod, W.

    2016-09-01

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing.

  16. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  17. Adjacent level disease following lumbar spine surgery: A review

    PubMed Central

    Epstein, Nancy E.

    2015-01-01

    Background: Instrumented lumbar spine surgery is associated with an increased risk of adjacent segment disease (ASD). Multiple studies have explored the various risk factors contributing to ASD that include; fusion length (especially, three or more levels), sagittal malalignment, facet injury, advanced age, and prior cephalad degenerative disease. Methods: In this selective review of ASD, following predominantly instrumented fusions for lumbar degenerative disease, patients typically underwent open versus minimally invasive surgery (MIS), transforaminal lumbar interbody fusions (TLIFs), posterior lumbar interbody fusions (PLIFs), or rarely posterolateral lumbar instrumented or noninstrumented fusions (posterolateral lumbar fusion). Results: The incidence of ASD, following open or MI lumbar instrumented fusions, ranged up to 30%; notably, the addition of instrumentation in different series did not correlate with improved outcomes. Alternatively, in one series, at 164 postoperative months, noninstrumented lumbar fusions reduced the incidence of ASD to 5.6% versus 18.5% for ASD performed with instrumentation. Of interest, dynamic instrumented/stabilization techniques did not protect patients from ASD. Furthermore, in a series of 513 MIS TLIF, there was a 15.6% incidence of perioperative complications that included; a 5.1% frequency of durotomy and a 2.3% instrumentation failure rate. Conclusions: The incidence of postoperative ASD (up to 30%) is greater following either open or MIS instrumented lumbar fusions (e.g., TLIF/PLIF), while decompressions with noninstrumented fusions led to a much smaller 5.6% risk of ASD. Other findings included: MIS instrumented fusions contributed to higher perioperative complication rates, and dynamic stabilization did not protect against ASD. PMID:26693387

  18. Seabed drifter movement in San Diego Bay and adjacent waters

    NASA Astrophysics Data System (ADS)

    Hammond, Robert R.; Wallace, William J.

    1982-06-01

    The seabed drifter has been used successfully to provide valuable information in many estuarine and open sea environments. It was therefore selected for use in the San Diego area. Five hundred drifters were released in San Diego Bay and adjacent ocean waters to delineate bottom flow patterns. Four significant bottom drift regimes are differentiated: off-coastal, main bay channel, open and semi-enclosed docking basins. Mean residual bottom drift ranged between 0·17km day -1 off the coast to essentially zero in the docking basins. Off-coast drifter results (31% recovery) showed a persistent northmoving bottom current with shallow near-coast drift distances between 4 and 25 km. This nearshore north moving bottom current appears to cause a net bottom water inflow into the main San Diego Bay channel (44% recovery). In the open bay a reverse trend was observed from the 16% of the drifters recovered. At the head of the estuary, evaporative densification is believed to occur, with the heavier water sinking and moving outward, towards the estuary mouth, resulting in an area of opposing bottom water currents. In this area San Diego Gas and Electric power plant takes in an average 150 million gallons of cooling water daily which, discharged as warm surface water, is suggested as the surface divergence mode required to reconcile the observed flow. With the three San Diego Bay electric power plants utilizing more than 5% of the maximum tidal prism for cooling purposes, this flow may play a major role in the overall bay circulation and requires quantitative investigation.

  19. Alaskan North Slope petroleum systems

    USGS Publications Warehouse

    Magoon, L.B.; Lillis, P.G.; Bird, K.J.; Lampe, C.; Peters, K.E.

    2003-01-01

    Six North Slope petroleum systems are identified, described, and mapped using oil-to-oil and oil-to-source rock correlations, pods of active source rock, and overburden rock packages. To map these systems, we assumed that: a) petroleum source rocks contain 3.2 wt. % organic carbon (TOC); b) immature oil-prone source rocks have hydrogen indices (HI) >300 (mg HC/gm TOC); c) the top and bottom of the petroleum (oil plus gas) window occur at vitrinite reflectance values of 0.6 and 1.0% Ro, respectively; and d) most hydrocarbons are expelled within the petroleum window. The six petroleum systems we have identified and mapped are: a) a southern system involving the Kuna-Lisburne source rock unit that was active during the Late Jurassic and Early Cretaceous; b) two western systems involving source rock in the Kingak-Blankenship, and GRZ-lower Torok source rock units that were active during the Albian; and c) three eastern systems involving the Shublik-Otuk, Hue Shale and Canning source rock units that were active during the Cenozoic. The GRZ-lower Torok in the west is correlative with the Hue Shale to the east. Four overburden rock packages controlled the time of expulsion and gross geometry of migration paths: a) a southern package of Early Cretaceous and older rocks structurally-thickened by early Brooks Range thrusting; b) a western package of Early Cretaceous rocks that filled the western part of the foreland basin; c) an eastern package of Late Cretaceous and Paleogene rocks that filled the eastern part of the foreland basin; and d) an offshore deltaic package of Neogene rocks deposited by the Colville, Canning, and Mackenzie rivers. This petroleum system poster is part of a series of Northern Alaska posters on modeling. The poster in this session by Saltus and Bird present gridded maps for the greater Northern Alaskan onshore and offshore that are used in the 3D modeling poster by Lampe and others. Posters on source rock units are by Keller and Bird as well as

  20. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  1. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  2. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  3. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  4. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  5. Internal wave-turbulence pressure above sloping sea bottoms

    NASA Astrophysics Data System (ADS)

    Haren, Hans

    2011-12-01

    An accurate bottom pressure sensor has been moored at different sites varying from a shallow sea strait via open ocean guyots to a 1900 m deep Gulf of Mexico. All sites show more or less sloping bottom topography. Focusing on frequencies (σ) higher than tidal, the pressure records are remarkably similar, to within the 95% statistical significance bounds, in the internal gravity wave continuum (IWC) band up to buoyancy frequency N. The IWC has a relatively uniform spectral slope: log(P(σ)) = -αlog(σ), α = 2 ± 1/3. The spectral collapse is confirmed from independent internal hydrostatic pressure estimate, which suggests a saturated IWC. For σ > N, all pressure-spectra transit to a bulge that differs in magnitude. This bulge is commonly attributed to long surface waves. For the present data it is suggested to be due to stratified turbulence-internal wave coupling, which is typically large over sloping topography. The bulge drops off at a more or less common frequency of 2-3 × 10-2 Hz, which is probably related with typical turbulent overturning scales.

  6. Interplay between down-slope and along-slope sedimentary processes during the late Quaternary along the Capo Vaticano margin (southern Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Martorelli, Eleonora; Bosman, Alessandro; Casalbore, Daniele; Falcini, Federico

    2016-04-01

    Late Quaternary along-slope and down-slope sedimentary processes and structures in the upper slope-shelf sector of the Calabro-Tyrrhenian continental margin off Capo Vaticano have been investigated using very high-resolution single-channel seismic profiles and multibeam bathymetric data. The results show that a competition among along-slope bottom currents-vs down-slope mass-wasting mostly contributed in shaping the seafloor and controlling deposition of sedimentary units during the Late Quaternary. Along-slope processes mostly formed elongated drifts located on the upper continental slope and outer shelf, between -90 and -300 m. The contourite deposits and associated erosive elements indicate the presence of a northwestward geostrophic flow that can be related to the modified-LIW issued by the Messina Strait. According to the proposed stratigraphic reconstruction it is likely that the activity of bottom-currents off Capo Vaticano was intensified around the LGM period and during the post-glacial sea-level rise, whereas they were less intense during the Holocene. Gravity-driven down-slope processes formed mass-transport deposits and turbidite systems with erosive channels, locally indenting the present-day shelf. Several slide events affected the upper 10-20 m of the stratigraphic record, dismantling considerable volume of contourite sediment. High-resolution seismic profiles indicate that failure processes appear to be dominated by translational sliding with glide plains mainly developed within contourite deposits. The most striking feature is the Capo Vaticano slide complex, which displays a large spatial coverage (area of about 18 km2) and is composed by several intersecting slide scars and overlapping deposits; these characteristics are peculiar for the Tyrrhenian continental margins, where slide events developed in open-slope areas are usually less complex and smaller in size. The presence of high-amplitude reflectors within contourite deposits (representing

  7. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  8. SLOPE PROFILOMETRY OF GRAZING INCIDENCE OPTICS.

    SciTech Connect

    TAKACS,P.Z.

    2003-01-14

    Profiling instruments are well-suited to the measurement of grazing incidence optics, such as those found in synchrotron radiation beam lines. Slope measuring profilers, based upon the principle of the pencil beam interferometer, have proven to be especially useful in measuring the figure and slope errors on cylindrical aspheres. The Long Trace Profiler, in various configurations, is the most widely used of this class of profiler. Current performance provides slope measurement accuracy at the microradian level and height measurements accurate to 25 nm over 1 meter trace lengths.

  9. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    NASA Astrophysics Data System (ADS)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  10. Application of soil nails to the stability of mine waste slopes

    SciTech Connect

    Tant, C.R.; Drumm, E.C.; Mauldon, M.; Berry, R.M.

    1996-12-31

    The traditional soil nailed structure incorporates grouted or driven nails, and a wire mesh reinforced shotcrete facing to increase the stability of a slope or wall. This paper describes the construction and monitoring of a full-scale demonstration of nailing to stabilize coal mine spoil. The purpose of the investigation is to evaluate the performance of nailed slopes in mine spoil using methods proven for the stabilization of soil walls and slopes. The site in eastern Tennessee is a 12 meter high slope of dumped fill, composed of weathered shale chips, sandstone, and coal. The slope was formed by {open_quotes}pre-regulatory{close_quotes} contour surface mining operations and served as a work bench during mining. The material varies in size from silt to boulders, and has a small amount of cohesion. Portions of the mine spoil slope have experienced slope instability and erosion which have hampered subsequent reclamation activities. Three different nail spacings and three different nail lengths were used in the design. The 12 meter high structure is instrumented to permit measurement of nail strain, and vertical inclinometer readings and survey measurements will be used for the detection of ground movement. The results of this study will aid in the development of design recommendations and construction guidelines for the application of soil nailing to stabilize mine spoil.

  11. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2014-05-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex

  12. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation of slopes and shafts. 77.1911... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... be examined before each shift and the quantity of air in the slope or shaft measured daily by...

  13. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation of slopes and shafts. 77.1911... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... be examined before each shift and the quantity of air in the slope or shaft measured daily by...

  14. Texas lignite mining: Groundwater and slope stability control in the nineties and beyond

    SciTech Connect

    Lawrence J.

    1997-12-31

    As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed with a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.

  15. A method for assessment of slope unloading zone based on unloading strain

    NASA Astrophysics Data System (ADS)

    Bao, Han; Wu, Faquan; Xi, Pengcheng

    2016-04-01

    Slope unloading is a process of energy release. During the evolution of slope, unloading deformation appears and unloading zone is formed in shallow slope with rock mass relaxation and extension. In this paper, a new method is proposed to quantify the extent and damage degree of unloading zone according to unloading strain energy which is released in the process of unloading. By using elastic theory and statistical mechanics of rock masses, we establish a relation between accumulative opening displacement of unloading cracks and unloading strain, which is the principle to assess the extent and damage degree of unloading zone. Based on the unloading strain, the degree of unloading zone can be divided into two sub-zones, i.e., strongly unloading zone and slightly unloading zone, and the extent of the two sub-zones can be determined from the accumulative opening displacement curves of cracks. This method is applied to assess the slope unloading zone at a hydropower station dam site in northwest China. Results show that the accumulative opening displacement curves of cracks along adits vary regularly, and the curves can be divided into three parts. The strongly and slightly unloading zones can be recognized from the slope of each part, and their extent is limited by the two inflexions of each curve.

  16. Slope activity in Gale crater, Mars

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  17. Effect of regional slope on drainage networks

    NASA Astrophysics Data System (ADS)

    Phillips, Loren F.; Schumm, S. A.

    1987-09-01

    Drainage networks that develop under conditions of no structural control and homogeneous lithology are generally dendritic, depending upon the shape and inclination of the surface on which they form. An experimental study was designed to investigate the effect of an increase of slope on the evolution and development of dendritic drainage patterns. As slope steepens, the pattern changes from dendritic at 1% slope, to subdendritic at 2%, to subparallel at 3%, to parallel at 5% and higher. The change from a dendritic-type pattern to a parallel-type pattern occurs at a low slope, between 2% and 3%, and primary channel junction angles decrease abruptly from about 60° to 43°. *Present address: U.S. Army Environmental Hygiene Agency, Attn: HSHB-ME-WM, Aberdeen Proving Ground, Maryland 21010-5422

  18. Topographic measurements of slope streaks on Mars

    NASA Astrophysics Data System (ADS)

    Brusnikin, Eugene S.; Kreslavsky, Mikhail A.; Zubarev, Anatoly E.; Patratiy, Vyacheslav D.; Krasilnikov, Sergey S.; Head, James W.; Karachevtseva, Irina P.

    2016-11-01

    Slope streaks are enigmatic, actively forming albedo features occurring on slopes in high-albedo, low-thermal-inertia, dust-rich equatorial regions on Mars. They are a specifically martian phenomenon with no direct analogs on the Earth. Their morphology suggests that the streaks are initiated at their upslope tips and propagate down to their termini; however, the physical mechanism of their formation is uncertain. We performed a large series of measurements of slopes associated with slope streaks using stereo pairs of high-resolution orbital images obtained by HiRISE camera and generated several digital elevation models for selected streaks. We found that: (1) slopes at the upslope streak tips range widely, however, there is a strong indication that streaks can be initiated only on slopes steeper than ∼20°; (2) slopes of the streak termini show an even wider range, with some streaks terminating at slopes as steep as their tips, while others propagate all the way down to horizontal surfaces; (3) the streaks can propagate stably for long (many hundreds of meters) distances and can turn, following the topographic gradient on ∼10°-15° slopes; (4) no uphill propagation of streaks is detected over baselines of tens of meters; (5) the slope streaks often propagate over 1-2 m high obstacles and can climb 1-2 m uphill over short (meters) distances. We used these findings to assess the viability of two classes of hypotheses about slope streak formation mechanisms proposed earlier: 1) "dry", some kind of run-away avalanche-like dry granular flow, and 2) "wet", some kind of run-away propagation of a front of percolating brines in the shallow subsurface. No specific observation unambiguously proves or rejects either of the two mechanisms. Several of our findings are readily explained by the "dry" mechanism and cannot be easily explained with any kind of "wet" mechanism, while other findings are closely consistent with the "wet" mechanism and are difficult to reconcile

  19. Slope Estimation in Noisy Piecewise Linear Functions✩

    PubMed Central

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2014-01-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020

  20. Seasonal slope surface deformation measured with TLS

    NASA Astrophysics Data System (ADS)

    Fan, L.; Smethurst, J.; Powrie, W.; Sellaiya, A.

    2014-03-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water.

  1. Numerical Computation of Homogeneous Slope Stability

    PubMed Central

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927

  2. Macrobenthos of Yenisei Bay and the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Galkin, S. V.; Vedenin, A. A.

    2015-07-01

    Trawl samples were collected in the northern region of Yenisei Bay and adjacent parts of the Kara Sea shelf. A total of eight stations were taken. We found more than 200 species of benthic organisms. A consecutive replacement of benthic communities is observed when going to the north from the Ob and Yenisei estuaries to the open parts of the sea. We could distinguish four different species complexes in the investigated area: a brackish-water complex where Saduria entomon is dominant; an intermediate complex where S. sibirica, S. sabini and Portlandia aestuariorum are dominant; a transitional complex with P. arctica as a dominant species and with a small amount of Ophiocten sericeum; a marine complex where O. sericeum is dominant. When salinity increased, some brackish-water species were replaced by related euryhaline species. One such example was the replacement of brackish-water Saduria entomon isopods by two euryhaline species: S. sibirica and S. sabini. The consecutive replacement of benthic communities showed a break near Sverdrup Island. In this area the marine complex was replaced by a transitional complex with P. arctica.

  3. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  4. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  5. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  6. Decision Guide for Roof Slope Selection

    SciTech Connect

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  7. The northern slope of South China Sea: an ideal site for studying passive margin extension and breakup

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Sun, Z.; Pang, X.; Wu, X.; Xu, H.; Qiu, N.

    2011-12-01

    With the advance of hydrocarbon exploration into deep waters of the northern SCS, structural details from continental slope to deepsea basin have been revealed. A striking feature is the dramatic change in Cenozoic extension along and across the strike as well as with the time. Along strike the slope is seperated by lithospheric faults into segments with different amount of Cenozoic extension. The breakup occurred in the no-extension eastern segment (the Chaoshan depression), the most strongly extended central segment (the Baiyun sag) but failed in the western segment of intermediate extension (the Qingdongnan basin). This pattern violates the expectation that breakup occurs at first where the extension reached the maximum. In the central segment, the style of extension varies significantly in dip direction. Differing from the belts of half grabens in the shelf, the extension is expressed as a large downwarp (the Baiyun sag) in the slope, and as irregularly shaped sags (the Liwan sag) near the continental-oceanic boundary (COB). The Baiyun sag (BYS) is the largest and deepest sag in the Pearl River Mouth basin (PRMB). Long-cable MCS revealed that at the center of the BYS the crust thinned to <7 km. Grabens and half-grabens are seen only along the SW border of the BYS in Paleogene and did not control the main subsidence of the sag. In Neogene, swarms of NWW-striking small faults developed in the SW and NE flanks of the sag. These features indicate that ductile extension had dominated the formation of the BYS. Suppose the SCS started opening at 30 Ma (although no breakup unconformity found at 30 Ma in the ODP#1148 well adjacent to the COB), the anomalous post-breakup subsidence in the BYS exceeds that predicted by classical model by 1~2 km and occurred most strongly in several periods. Similar anomalous post-breakup subsidence has been observed also in the shelf. The Liwan sag (LWS) SE of the BYS is an aggregate of NS-, NW-, EW-, and NE-elongated narrow and short

  8. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, Alfred S.; Ojha, Lujendra; Dundas, Colin M.; Mattson, Sarah S.; Byrne, Shane; Wray, James J.; Cull, Selby C.; Murchie, Scott L.; Thomas, Nicolas; Gulick, Virginia C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  9. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25?? to 40??) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48??S to 32??S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ???250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  10. Seasonal flows on warm Martian slopes.

    PubMed

    McEwen, Alfred S; Ojha, Lujendra; Dundas, Colin M; Mattson, Sarah S; Byrne, Shane; Wray, James J; Cull, Selby C; Murchie, Scott L; Thomas, Nicolas; Gulick, Virginia C

    2011-08-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  11. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  12. An approach using multi-factor combination to evaluate high rocky slope safety

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Yang, Meng; Wen, Zhiping

    2016-06-01

    A high rocky slope is an open complex giant system for which there is contradiction among different influencing factors and coexistence of qualitative and quantitative information. This study presents a comprehensive intelligent evaluation method of high rocky slope safety through an integrated analytic hierarchy process, extension matter element model and entropy weight to assess the safety behavior of the high rocky slope. The proposed intelligent evaluation integrates subjective judgments derived from the analytic hierarchy process with the extension matter model and entropy weight into a multiple indexes dynamic safety evaluation approach. A combined subjective and objective comprehensive evaluation process, a more objective study, through avoiding subjective effects on the weights, and a qualitative safety assessment and quantitative safety amount are presented in the proposed method. The detailed computational procedures were also provided to illustrate the integration process of the above methods. Safety analysis of one high rocky slope is conducted to illustrate that this approach can adequately handle the inherent imprecision and contradiction of the human decision-making process and provide the flexibility and robustness needed for the decision maker to better monitor the safety status of a high rocky slope. This study was the first application of the proposed integrated evaluation method in the safety assessment of a high rocky slope. The study also indicated that it can also be applied to other similar problems.

  13. Near-bottom currents over the continental slope in the Mid-Atlantic Bight

    USGS Publications Warehouse

    Csanady, G.T.; Churchill, J.H.; Butman, B.

    1988-01-01

    From a set of 28 current meter records we have found that near-bottom currents faster than 0.2 m s-1 occur frequently over the outer continental shelf of the Mid-Atlantic Bight (bottom depth <210 m) but very rarely (<1% of the time) between bottom depths of 500 m and 2 km over the slope. The rarity of strong near-bottom flow over the middle and lower slope allows the accumulation of fine-grained sediment and organic carbon in this region. Fast near-bottom currents which do occur over the slope are invariably associated with topographic waves, although it is often superimposed inertial oscillations which increase current speed above the level of 0.2 m s-1. Episodes of intense inertial oscillations occur randomly and last typically for 10-20 days. Their energy source is unknown. Topographic wave energy exhibits a slight, but statistically significant, minimum over the mid-slope. These waves appear irregularly and vary both along isobaths and in time. The irregularity is presumably a consequence of random topographic wave generation by Gulf Stream instability. The current regime within sea-floor depressions in the slope (canyons and gullies) is distinctly different from that of the open slope; most notable is the near absence of topographic wave motion within depressions. ?? 1988.

  14. Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea

    NASA Astrophysics Data System (ADS)

    Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.

    2015-12-01

    The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass

  15. Recent Observations of Recurring Slope Lineae on Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Ojha, L.; Dundas, C. M.; Mattson, S.; Masse, M.

    2011-12-01

    Recurring slope lineae (RSL) are relatively low-albedo features that extend down steep slopes from bedrock outcrops, often associated with small channels, and hundreds of them may form in rare locations (McEwen et al., 2011, Science 333, issue 6062). RSL appear and lengthen incrementally in the late southern spring/summer from 52°S to 32°S latitudes, favoring equator-facing slopes--times and places with peak surface temperatures from ~250-300 K. Liquid brines near the surface might explain this activity, but the mechanism and source of water are not understood. MRO's High Resolution Imaging Science Experiment (HiRISE) provides the primary dataset for observing these meter-scale features. RSL are recurring-forming and growing in the warm season (late spring to early fall) then fading, sometimes completely vanishing in cold seasons. Intensive monitoring during the current southern summer is continuing to reveal new details, best seen in a set of animated GIFs at http://hirise.lpl.arizona.edu/sim. These recent observations show that individual flows fade at different rates, and may fade even in the summer while others are growing. Fading of individual flows (but not adjacent flows) may occur in only 2 weeks. There are significant interannual variations in the abundances, lengths, and exact locations of the RSL. In contrast, candidate RSL sites in equatorial regions (18°S to 19°N) have not shown continued activity, and are probably not the same type of activity or are much less active. Laboratory experiments by Conway et al. (Icarus 211, 443) provide new insights into how surface water flows behave at Martian atmospheric pressures and typical temperatures. The pure water boils, rapidly evaporating and simultaneously freezing in the shallow subsurface. Although salty water is not so volatile, this may help to explain why no water bands are seen in CRISM observations-water is actually exposed at the surface for very short periods of time over small areas, and rapidly

  16. Phreatic flow on sloping soil layers from a finite source: An analytical solution

    SciTech Connect

    Filley, T.H.

    1991-09-01

    Sloping clay layers beneath percolation ponds can cause infiltrating wastewater to pond and move in directions not predicted by vertical infiltration equations. This report presents a method for estimating the potential of wastewater from percolation sumps located over sloping clay layers to interact with nearby groundwater resources. The analytical solution developed is for steady-state conditions and includes a procedure to estimate the time needed to reach steady state. The fundamental assumption used in the mathematical development requires that elevation-head gradients be much larger than pressure-head gradients. A method for testing the validity of this assumption is also included. An example calculation was performed for percolation sumps on the Naval Petroleum Reserve No. 1 in Elk Hills, California. That analysis showed that, under the assumptions used, the sumps may have enabled oil field wastewater to reach groundwater resources within the adjacent San Joaquin Valley. 9 refs., 10 figs.

  17. Seasonally Variable Cross-Slope Exchange in the Bay of Biscay Slope Current

    NASA Astrophysics Data System (ADS)

    Porter, Marie; Inall, Mark; Green, Mattias; Simpson, John; Dale, Andrew

    2013-04-01

    Evidence is presented of topographically driven, cross-slope exchange in a seasonally reversed shelf slope current in the Bay of Biscay. In mid-June 2012, 20 satellite tracked drifting buoys, drogued at 50 m, were deployed across the shelf break in the southern Celtic Sea. Soon after deployment all of the drifters turned south, traveling parallel to the shelf break, into the Bay of Biscay. This slope-parallel, equator-ward flow continued throughout June and July, interrupted only when the current interacted with canyons in the shelf edge. These interactions lead to cross-slope transport. The apparent dependence on topography has resulted in the identification of key regions of on shelf transport between 45.5°N and 46.5°N. From August until the end of the experiment, in December, the drifters that remained active turned to travel pole-ward. By September a slope-parallel, pole-ward flow had fully formed, with little evidence of cross-slope transport; corroborating previous suggestions of a seasonally reversing slope current. However, it appears that the formation of a pole-ward current occurred earlier in 2012 than suggested by previous studies. High storm activity during the summer of 2012 may have caused an earlier than usual return to winter conditions for the Bay of Biscay region. Key regions of mass transport from above the abyssal plain and onto the European Shelf in the Bay of Biscay appear to be dependent on the topographical irregularities of the shelf. This cross slope exchange seems to be modified by the direction of the slope current. Thus, it is suggested that the topography and the local meteorology are key determinants of cross-slope transport of passive tracers in this region.

  18. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  19. Geomorphic Analysis of Boulder Volumes and Surface Roughness Along Talus Slopes in Yosemite Valley, California

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Stock, G. M.; Finnegan, N. J.

    2015-12-01

    Talus slopes in Yosemite Valley, California, are a rich archive of rock fall processes occurring since deglaciation (~ 15 ka). The valley is an ideal natural laboratory for investigating rock fall processes because the cliffs display a wide range of heights, steepnesses, orientations, and granitic lithologies. We measured the spatial distribution of boulder volumes on rock fall-dominated talus slopes along 10 transects at 8 locations in Yosemite Valley. Boulder volumes span 6 orders of magnitude, from 0.003 to 3000 m3. As expected, boulder volumes increase non-linearly downslope, with the largest boulders located at or beyond the base of talus slopes. Boulder volumes are smaller below cliffs composed of more mafic lithologies, likely reflecting the greater fracture density in those cliffs. Moderately tall cliffs (400-550 m) tend to produce larger boulders than the tallest and shortest cliffs. Using airborne lidar data, we calculated talus surface roughness and found modest increases in roughness as a function of downslope distance, likely related to the downslope increase in boulder volume. By quantifying the spatial distribution of boulder volumes, our results can be used to improve future assessments of rockfall hazard adjacent to talus slopes.

  20. Quantification of rock fall processes on recently deglaciated rock slopes, Gepatsch glacier, Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2014-05-01

    The recently deglaciated area in alpine glacier forefields is characterized by intensified mass movement processes in particular debris flows, shallow landslides and rockfalls. Due to enhanced geomorphic activity, rock slopes adjacent to shrinking glaciers contribute in a substantial way to the sediment budget. In this study, direct measurements of rock fall intensity are conducted by rock fall collector nets and natural sediment traps. The study area is a high mountain (1750-3520m a.s.l) catchment, which is recently about 30% glaciated. The extension of the Gepatsch glacier has been reducing since the little ice age maximum in the mid of the 19th century with an average annual shrinking rate of a few decameters at its tongue. The first results of the direct measurements demonstrate that on the recently deglaciated rock slopes, rock fall intensity is at least one order of magnitude higher (2,38-6,64 g/m2/d - corresponding backweathering rate: 0,3-0,9 mm/a) than on rock slopes which had has ice free since the last Pleistocene deglaciation (0,04-0,38 g/m2/d - backweathering rate: 0,005-0,05 mm/a). The highest rock fall intensity is attributed to the recent deglaciated rock slopes which are located close to larger fault systems (>60 g/m2/d - backweathering rate: >8 mm/a). Rock fall intensity shows also considerable intra-annual variations which are related to cold climate weathering processes and rainstorm activity.

  1. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-01

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)). PMID:22296346

  2. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-01

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)).

  3. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    NASA Technical Reports Server (NTRS)

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  4. Denitrification in sediments from the hyporheic zone adjacent to a small forested stream

    USGS Publications Warehouse

    Duff, J.H.; Triska, F.J.

    1990-01-01

    Denitrifying potentials increased with increasing distance from the stream channel. Dissolved oxygen was 100% of the concentration expected in equilibrium with the atmosphere in water obtained from monitoring wells immediately adjacent to the stream but was as low as 7% of the expected value in water 11.4 m inland. Both nitrate and dissolved organic carbon decreased over summer in wells at the base of the alder-forested slope. A 48-h injection of nitrate-amended stream water into hyporheic water 8.4 m inland stimulated nitrous oxide production in the presence of acetylene. Nitrous oxide was generated as nitrate and acetylene were co-transported to a well 13 m down-gradient. Acetylene-block experiments coupled with the chemistry data suggest that denitrification can modify the chemistry of water during passage through the hyporheic zone. -from Authors

  5. Geologic reconnaissance of natural fore-reef slope and a large submarine rockfall exposure, Enewetak Atoll

    SciTech Connect

    Halley, R.B.; Slater, R.A.

    1987-05-01

    In 1958 a submarine rockfall exposed a cross section through the reef and fore-reef deposits along the northwestern margin of Enewetak Atoll, Marshall Islands. Removal of more than 10/sup 8/ MT of rock left a cirque-shaped submarine scarp 220 m high, extending back 190 m into the modern reef, and 1000 m along the reef trend. The scarp exposed older, steeply dipping beds below 220 m along which the rockfall detached. They sampled this exposure and the natural fore-reef slope surrounding it in 1984 and 1985 using a manned submersible. The natural slope in this area is characterized by three zone: (1) the reef plate, crest, and near fore reef that extends from sea level to -16 m, with a slope of less than 10/sup 0/, (2) the bypass slope that extends from -16 to -275 m, with slopes of 55/sup 0/ decreasing to 35/sup 0/ near the base, and (3) a debris slope of less than 35/sup 0/ below -275 m. Vertical walls, grooves, and chutes, common on other fore-reef slopes, are sparse on the northwestern slope of Enewetak. The scarp exposes three stratigraphic units that are differentiated by surficial appearance: (1) a near-vertical wall from the reef crest to 76 m that appears rubbly, has occasional debris-covered ledges, and is composed mainly of coral; (2) a vertical to overhanging wall from -76 m to -220 m that is massive and fractured, and has smooth, blocky surfaces; and (3) inclined bedding below -220 m along which the slump block has fractured, exposing a dip slope of hard, dense, white limestone and dolomite that extends below -400 m. Caves occur in all three units. Open cement-lined fractures and voids layered with cements are most common in the middle unit, which now lies within the thermocline. Along the sides of the scarp are exposed fore-reef boulder beds dipping at 30/sup 0/ toward the open sea; the steeper (55/sup 0/) dipping natural surface truncates these beds, which gives evidence of the erosional nature of the bypass slope.

  6. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  7. View of north side from exterior stairs of adjacent building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north side from exterior stairs of adjacent building, bottom cut off by fringed buildings, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  8. Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities

    ERIC Educational Resources Information Center

    Gonzalez-Gomez, Nayeli; Nazzi, Thierry

    2016-01-01

    The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…

  9. Modeling of Geomechanical Performance of Sloping Oceanic Hydrate Deposits Subjected Production Activities

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.; Moridis, G. J.

    2012-12-01

    Oceanic Hydrate-Bearing Sediments (HBS) subjected to production activities can induced strongly coupled fluid flow and geomechanical changes that may have adverse consequences on wellbore integrity, the HBS, and the bounding formations. For a sloping hydrate bearing system, the geomechanical changes could potentially be catastrophic if triggering large slides of the seafloor. Marine sediments adjacent to the seafloor as well as hydrate deposits that are suitable target for production often involves unconsolidated sediments of relatively high porosity that are usually characterized by limited shear strength. The dissociation of the solid hydrates (a strong cementing agent) during gas production can degrade the structural strength of the HBS and thereby undermine the stability of the seafloor. In this study we investigate two cases of coupled hydraulic, thermodynamic and geomechanical behavior of sloping oceanic HBS: 1) hydrate heating as warm fluids from deeper conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting an HBS adjacent to the seafloor, 2) system response during gas production from a hydrate deposit located 400 m below the seafloor. In the first case we consider a situation when a hydraulically confined hydrate layer near the ocean floor is dissociated by heating from the well with associated gas release and forced pressure increase, which could undermine the stability of the slope. In the second case, depressurization leads to hydrate dissociation over a large lateral distance that may provide a weakening potential slip surface along the sloping hydrate system. The results of our analysis indicate that although these production activities induces strongly coupled geomechanical responses that may adversely impact the production itself, they are unlikely to trigger large scale slides of the seafloor.

  10. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ

  11. Speaking rate effects on locus equation slope.

    PubMed

    Berry, Jeff; Weismer, Gary

    2013-11-01

    A locus equation describes a 1st order regression fit to a scatter of vowel steady-state frequency values predicting vowel onset frequency values. Locus equation coefficients are often interpreted as indices of coarticulation. Speaking rate variations with a constant consonant-vowel form are thought to induce changes in the degree of coarticulation. In the current work, the hypothesis that locus slope is a transparent index of coarticulation is examined through the analysis of acoustic samples of large-scale, nearly continuous variations in speaking rate. Following the methodological conventions for locus equation derivation, data pooled across ten vowels yield locus equation slopes that are mostly consistent with the hypothesis that locus equations vary systematically with coarticulation. Comparable analyses between different four-vowel pools reveal variations in the locus slope range and changes in locus slope sensitivity to rate change. Analyses across rate but within vowels are substantially less consistent with the locus hypothesis. Taken together, these findings suggest that the practice of vowel pooling exerts a non-negligible influence on locus outcomes. Results are discussed within the context of articulatory accounts of locus equations and the effects of speaking rate change.

  12. A Novel Way To Practice Slope.

    ERIC Educational Resources Information Center

    Kennedy, Jane B.

    1997-01-01

    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  13. MIBSA: Multi Interacting Blocks for Slope Analysis

    NASA Astrophysics Data System (ADS)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio

    2016-04-01

    As it is well known, the slope instabilities have very important consequences in terms of human lives and activities. So predicting the evolution in time and space of slope mass movements becomes fundamental. This is even more relevant when we consider that the triggering mechanisms are a rising ground water level and the occurrence of earthquakes. Therefore, seasonal rainfall has a direct influence on the triggering of large rock and earthslide with a composite failure surface and causing differential behaviors within the sliding mass. In this contribution, a model describing the slope mass by means of an array of blocks that move on a prefixed failure surface, is defined. A shear band located at the base of each block, whose behavior is modelled via a viscous plastic model based on the Perzyna's approach, controls the slip velocity of the block. The motion of the blocks is obtained by solving the second balance equation in which the normal and tangential interaction forces are obtained by a specific interaction model. The model has been implemented in an original code and it is used to perform a parametric analysis that describes the effects of block interactions under a transient ground water oscillation. The numerical results confirm that the normal and tangential interactions between blocks can inhibit or induce the slope movements. The model is tested against some real case studies. This model is under development to add the dynamic effects generated by earthquake shaking.

  14. Wetland classification on the Alaskan North Slope

    NASA Technical Reports Server (NTRS)

    Morrow, J. W.; Carter, V.

    1979-01-01

    An interactive supervised wetland classification was performed on Landsat digital data for three sites on the North Slope of Alaska. Color-coded classification maps identifying 10 wetland subcategories were produced. Field observations, topographic maps, and aerial photographs were employed as collateral data in classifying and verifying the Landsat information.

  15. Bright and Dark Slopes on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Ridges on the edge of Ganymede's north polar cap show bright east-facing slopes and dark west-facing slopes with troughs of darker material below the larger ridges. North is to the top. The bright slopes may be due to grain size differences, differences in composition between the original surface and the underlying material, frost deposition, or illumination effects. The large 2.4 kilometer (1.5 mile) diameter crater in this image shows frost deposits located on the north-facing rim slope, away from the sun. A smaller 675 meter (2200 foot) diameter crater in the center of the image is surrounded by a bright deposit which may be ejecta from the impact. Ejecta deposits such as this are uncommon for small craters on Ganymede. This image measures 18 by 19 kilometers (11 by 12 miles) and has a resolution of 45 meters (148 feet) per pixel. NASA's Galileo spacecraft obtained this image on September 6, 1996 during its second orbit around Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. Ranking Slope Stability in Frozen Terrain

    NASA Astrophysics Data System (ADS)

    Stothoff, S.; Dinwiddie, C. L.; Walter, G. R.; Necsoiu, M.

    2011-12-01

    Motivated by the need to assess the risk of permafrost thaw to infrastructure, such as roads, bridges, and pipelines, a landscape-scale approach was developed to rank the risk of slope failures and thermokarst development in areas of seasonally frozen soils underlain by permafrost. The approach has two parts: (i) identifying locations where permafrost thaw is likely to occur under future climates, and (ii) identifying areas where thaw would have consequences with respect to a disturbance. The developed screening tool uses (i) land classification maps developed from remotely sensed data and (ii) a thermohydrologic hazard risk assessment to identify areas susceptible to slope instability under current and future climate states. The screening tool combines a numerical ground thawing and freezing dynamics model for calculating the thickness of the active layer and depth of permafrost with a simple slope stability model that is based upon the Level I Stability Analysis (LISA) approach of Harrell et al. (1992). Instead of using the numerical models directly within probabilistic sampling, a response function for the factor of safety in slope stability is developed from numerical simulations that systematically vary input parameters across their range of applicability. The response function is used within Monte Carlo sampling for each grid cell in a landscape model, with a probability distribution for each input parameter assigned to each grid cell based on (i) classes defined for each grid cell; (ii) a digital elevation model; (iii) empirical, mathematical, and numerical interpretive models; and (iv) probabilistic descriptions of the parameters in the interpretive models. For example, the root cohesion distribution is defined by vegetation class, with vegetation spread across the landscape using Landsat-derived vegetation classification maps. The probability of slope failure is the fraction of parameter realizations that result in a factor of safety less than 1. Ranking

  18. Rainfall Induced Seepage and Slope Stability Analyses

    NASA Astrophysics Data System (ADS)

    Ko, S. Y.; Juang, S. R.; Chang, K. T.

    2015-12-01

    This study investigates the rainfall induced seepage behaviors and slope stability of an unsaturated natural slope of colluviums along the A-A' profile of Lu-Shan landslide using two-dimensional finite element method. At first, a steady/transient seepage analysis was carried out using 42 days rainfall records from Mat-Sa typhoon in 2005. Through the inspection of the coincidence of the groundwater variation between simulation and measurement, a set of best fit unsaturated hydraulic conductivity function kr(ψ)~(ψ) and horizontal and vertical saturated conductivities kx and ky for colluviums can be determined. Where, the variable ψ denotes the matrix suction of soil stratum. The function, kr(ψ)~(ψ), considers the seepage behaviors of unsaturated colluviums gradual transition from unsaturated to saturated state. For a 48-hrs design rainfall with different return periods 5, 25 and 50 years, the range of the transient saturated zone formed in the slope during rainfall will expand with the increase of rainfall intensity. The self-weight of soil mass increases due to the rainwater absorption and which alternately introduces a higher down sliding force to the slope and leads to a large extent reduction of factor safety FS of the unsaturated natural slope (A-A'profile). When the matrix suction, ψ, in the function kr(ψ)~(ψ) was adjusted to a higher value (ψ→10ψ), physically it represents a soil stratum with finer particle, the infiltration and pore-water pressure variation becomes not observable in the rainfall induced seepage analysis. Conclusively, an unsaturated natural slope with higher matrix suction (ψ→10ψ) always possesses a higher FS value than that with lower matrix suction (ψ→0.10ψ). For the slope with anisotropic hydraulic conductivity ratio (ky/kx =0.01), due to the downward infiltration rate of rainwater is lower than that with isotropic hydraulic conductivity (kx/ky =1), the occurrence time for a FS value starting to downgrade may lag behind

  19. Louisiana slope salt-ridge continuity confirmed

    SciTech Connect

    Lowrie, A.; Hoffman, K.S.; Sullivan, N.

    1989-03-01

    The Louisiana offshore is a world-class hydrocarbon province. Abundant reservoirs develop as the result of interaction between salt tectonics and sedimentation. Thus, it is essential to know both regional and local characteristics of the extent and timing of salt tectonics as an aid in hydrocarbon exploration. Exploration mythology mandates that salt domes and ridges are virtually random across the slope area. In sharp contrast, the authors describe a definite pattern to the salt ridges of slightly concave (to the north) arcs, with the southernmost arc located along the Sigsbee Escarpment and the northernmost along the shelf break. Furthermore, salt domes may not be truly randomly located but rather part of ancestral or existent salt ridges. Confirming data are provided by dip bathymatric and seismic profiles. The bathymetric profiles are at 5-mi (8-km) spacings from 1987 published charts of the Gulf of Mexico. Dip seismic lines reveal that bathymetric highs are associated with underlying salt. Buried salt accumulations are surficially expressed by actual ridges and domes, a leveling of sea floor, or a local decrease in the rate of regional slope descent. Salt is the Neogene-age basement of the Louisiana slope. The existence of an overall salt-ridge pattern implies that there is a single dynamic geologic system controlling the evolution of this slope. As salt tectonic rates and timing are deciphered for specific sites along dip, intervening rates may be interpolated to unmapped zones. Confirming an overall salt tectonic pattern is mandatory prior to quantifying regional and specific rates for the whole slope.

  20. Reef-sourced slope deposits, Holocene, Bahamas

    SciTech Connect

    Ginsburg, R.N.; Eberli, G.P.; Harris, P.M.; Slater, R.; Swart, P.K.

    1987-05-01

    Observations and sampling to 350 m from a two-person submersible off Chub Cay, Berry Island, Bahamas, support the idea that the Holocene deep reef is a principal source of talus, now cemented, that foots the windward margins of Great Bahama Bank. At the Chub Cay dive site, a wall extends from 30 to 170 m subsea; below is a low-relief fore reef slope, ca. 50/sup 0/, of limestone veneered with sediment. The upper wall from 30 to 80 m, the deep reef, has a luxuriant growth of corals and a profusion of the calcareous alga halimeda spp. Below 50 m, living coral decreases, and from 80 to 170 m the wall is highly irregular with discontinuous ledges and blind-end caves. At depths from 150 to 170 m, the wall gives way to the fore reef slope whose relative smooth surface dips at 50/sup 0/ to 60/sup 0/ and extends to 350 m. The fore reef is limestone, but its topography resembles that of alluvial fans; rounded ridges rise a few meters above the intervening valleys that are tens of meters wide. The limestone surface has a discontinuous veneer of fine sediment and algal plates, and locally loose cobble and boulder-sized blocks of limestone. A sample of the limestone slope is of well-cemented coral clasts and skeletal sediment. They infer that the deep reef grows outward so rapidly that it caves periodically. The resulting debris bypasses the wall, but some is perched on the steep fore reef slope below where it is soon incorporated into the slope by submarine cementation.

  1. Sedimentology of the Nanushuk Group, North Slope

    SciTech Connect

    Huffman, A.C. Jr.; Ahlbrandt, T.S.; Bartsch-Winkler, S.

    1989-01-01

    The Nanushuk Group of Albian and Cenomanian age is a regressive sequence of marine, transitional, and nonmarine deposits exposed in an outcrop belt 30 to 50 km wide and approximately 650 km long in the Arctic foothills province, North Slope, Alaska. Sedimentary rocks of the Nanushuk Group constitute a potentially major hydrocarbon source within the National petroleum Reserve in Alaska (NPRA). The most significant known oil field within the NPRA is in the Nanushuk Group at Umiat anticline and has been estimated to contain as much as 122 million barrels of oil. Previous outcrop and subsurface studies established the regional nature and extent of the Nanushuk Group. Most of these studies can be grouped by geographic areas into those dealing primarily with the (1) southwestern North Slope; (2) south-central North Slope; (3) eastern North Slope; (4) subsurface of northwestern and northcentral North Slope. More recent work, undertaken as a part of the NPRA exploration program, concentrated on a regional synthesis of various aspect of the geology of the Nanushuk Group. Recent sedimentologic studies of the Nanushuk Group have been employed a genetic-stratigraphy approach in order to avoid the confusion surrounding the nomenclature and arrive at a better understanding of the systems responsible for the deposition of the Nanushuk. The currently accepted stratigraphic nomenclature for the Nanushuk Group and related rocks is shown in figure 13.2; however, very few stratigraphic names below group rank are used in the following discussion. Terminology employed in any discussion of depositional environments is determined to a large extent by the depositional model being used. Depositional models currently applied to the Nanushuk Group together with their terminology are described below.

  2. Recurring Slope Lineae in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Dundas, C. M.; Byrne, S.; Mattson, S.; Ojha, L.; Schaefer, E.; Wray, J. J.

    2012-12-01

    Recurring slope lineae (RSL) are relatively low-albedo features up to a few m wide that extend down steep slopes from bedrock outcrops. Hundreds may form in rare locations, often associated with small channels. In the southern mid-latitudes, RSL appear and grow incrementally during the late southern spring through summer, and they favor equator-facing slopes--times and places with peak surface temperatures from ~250 to 300 K. RSL are recurring: they form and grow in the warm season, then fade and usually completely disappear in cold seasons. During the next warm season, similar but new features form and grow. For more, see McEwen et al., 2011, Science 333, 740. As of early 2012, 15 RSL sites had been confirmed between 52-32°S latitudes. Confirmation requires that we observe many new lineae forming at a site in more than one Mars year, distinguishing RSL from episodic dry mass wasting triggered by eolian, seismic, or impact activity. We have recently confirmed three sites in the equatorial region of Mars. Two of them are on the floor of Coprates Chasma and one is in central Valles Marineris, all near latitude 12S. They are on north-facing slopes and active in southern winter/northern summer (which may be the warmest season on these steep slopes, although in the southern hemisphere). The surface brightness temperatures from THEMIS remain in the range (>250 K) of the southern mid-latitude RSL sites when active, and the morphologies and geologic settings are also similar. We will continue monitoring these sites throughout the year, along with occasional monitoring of other candidate equatorial RSL sites. If RSL are due to flow of salty water, the equatorial sites may be of special interest for future exploration.

  3. Eros: Shape, topography, and slope processes

    USGS Publications Warehouse

    Thomas, P.C.; Joseph, J.; Carcich, B.; Veverka, J.; Clark, B.E.; Bell, J.F.; Byrd, A.W.; Chomko, R.; Robinson, M.; Murchie, S.; Prockter, L.; Cheng, A.; Izenberg, N.; Malin, M.; Chapman, C.; McFadden, L.A.; Kirk, R.; Gaffey, M.; Lucey, P.G.

    2002-01-01

    Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535 ?? 20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ???300 m are nearly all less than 35??, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25?? have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts. ?? 2002 Elsevier Science (USA).

  4. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  5. Influence of intermittent estuary outflow on coastal sediments of adjacent sandy beaches

    NASA Astrophysics Data System (ADS)

    McKenzie, Jessica L.; Quinn, Gerry P.; Matthews, Ty G.; Barton, Jan; Bellgrove, Alecia

    2011-03-01

    Outflows from estuaries potentially contribute to the productivity of adjacent coastal waters, although most previous work has been on estuaries with considerable river discharge. We investigated the influence of estuary outflow on aspects of coastal sediments adjacent to two seasonally intermittent estuaries, the Curdies and Anglesea Rivers, in southwest Victoria, Australia. For each estuary, we measured sediment organic matter, microphytobenthic chlorophyll a and microbial utilization of carbon sources at three locations associated with each estuary: (1) inside estuary mouth, (2) estuary swash and (3) control swash (an open beach distant from any estuarine influences). Sampling occurred one week before and at one and nine weeks after both an artificial mouth opening and a separate natural flood at both estuaries. Significant temporal changes were detected for all three variables at the estuary mouth and estuary swash but the direction of change was inconsistent across the two estuaries and between the artificial mouth opening and natural flood. Organic matter in both estuaries showed no difference after the artificial mouth openings. Only Anglesea showed an increase in organic matter in the estuary mouth and estuary swash after the floods. Microphytobenthic chlorophyll a concentrations were highest when the estuary mouths were closed. Concentrations decreased at all locations at Curdies after the mouth was artificially opened. The estuary mouth at Anglesea sustained high chlorophyll concentrations and the estuary swash increased one week post artificial opening. The flood event resulted in an increase in chlorophyll a at the estuary mouth and swash at both estuaries, one week post flood. At Curdies, the microbial utilization of different carbon sources changed after both mouth events; estuary mouth and estuary swash showed similar patterns at one and nine weeks post opening. At Anglesea, the bacteria utilized different carbon sources between locations and the

  6. Benthic infaunal communities across the Weddell Sea Basin and South Sandwich Slope, Antarctica

    NASA Astrophysics Data System (ADS)

    Blake, James A.; Narayanaswamy, Bhavani E.

    2004-07-01

    informative because so few species were collected. Two stations in the Weddell Abyssal Basin were the only ones to exhibit a high level of similarity due to two shared polychaetes. Data on reproductive status of some polychaetes suggest that species limited to abyssal depths are reproducing there. Other species with broader depth ranges may be receiving recruits from slope depths. The results suggest that the deep-water infauna in Antarctica is largely endemic, but has some components that occur along other continental margins and adjacent abyssal basins.

  7. Automatic delineation of geomorphological slope units

    NASA Astrophysics Data System (ADS)

    Alvioli, Massimiliano; Marchesini, Ivan; Fiorucci, Federica; Ardizzone, Francesca; Rossi, Mauro; Reichenbach, Paola; Guzzetti, Fausto

    2014-05-01

    Slope units are portions of land surface, defined by the general requirement of maximizing homogeneity within a single unit and heterogeneity between different units, but whose formal characterization and practical delineation has been done in different ways. This is often justified by the statement that the slope unit partitioning of a territory can be used to describe a variety of landforms and processes, and for the assessment of natural hazards. As a result, they need to be tailored according to the specific model in use. This may result in an ambiguous definition of such objects, while an objective definition is highly desirable, which would also allow their reproducibility. We have developed a publicly accessible Web Processing Service (WPS) with the aim of incrementally achieve a satisfactory definition of slope unit. The service allows any user to connect to a CNR-IRPI (Perugia) server, upload his own Digital Elevation Model (DEM) and optional additional data, specify parameters constraining the size and aspect of slope units, and quickly obtain the result in a layer in vector format. The calculation is performed using a parallel algorithm, resulting in a processing time short enough to allow the user to tune the input parameters, repeating the process for a sufficient number of times in order to obtain a satisfactory result. We use quantitative criteria to define and draw the slope units, depending on the input parameters. The algorithm starts from a hydrologically consistent partition of the study area into half-basins with a large number of contributing DEM cells. Each of the half-basins is then checked against a few requirements: maximum area required by the user and maximum standard deviation of the aspect on two orthogonal directions. Those specific half-basin that do not meet the requirements are partitioned further, requiring a lower number of contributing cells. The process is iterated until no half-basin exceeds the user-specified thresholds. Our

  8. Relief unity emulator and slope stability simulator applied to mass movement occurrence analysis in slope evolution

    NASA Astrophysics Data System (ADS)

    Colangelo, Antonio C.

    2010-05-01

    This work refers to a part of my "Fellow" thesis "Geomorphosynthesis and Geomorphocinematic applied to slope stability and evolution" (Colangelo, 2007). Relief unity emulator (rue) is a device that permits to synthesize a slope unity by means of a single generatrix profile that determine the initial conditions for application of a set of a geotechnical, hydrological and morphological models. This initial profile is considered in equilibrium with original environmental conditions, and operates in an integrated manner with these models. The aim is to induce a boundary condition on initial profile and produce a new profile: a threshold profile. For this manner and by iterations we generate a set of new profiles that represents, each one, a meta-stable profile, or a descending profile. The evolution of these profiles is in according with the central geomorphologycal concepts of slope retreat, base level change and head retreat. This set of "descending profiles" will be now sliced at topographic equivalent points, that will linked for describe a "topographic equivalence line". The crossing of this kind of isolines with descending profiles composes a 3D slope unity. This descending slope unity is represented by a mesh built for the crossing of these new slope profiles with the topographic equivalence lines and, the result is a four-dimensional meta-stable object integrated to the slope stability simulator (sss). This composite "rue-sss" device operates with 10 main models and 16 variables. The models describe effective stress, shearing resistance, soil saturation level behavior, potential rupture surface depth, critical depth, potential rupture surface critical gradient, critical soil saturation level, top of percolation flow gradient and unit weight of soil. Of this manner, is possible to evaluate effective friction angles and cohesion, critical soil saturation levels, critical gradients for potential rupture surfaces, neutral stress, shear strength, shear stress

  9. Does terrain slope really dominate goal searching?

    PubMed

    Nardi, Daniele

    2012-08-01

    If you can locate a target by using one reliable source of information, why would you use an unreliable one? A similar question has been faced in a recent study on homing pigeons, in which, despite the presence of better predictors of the goal location, the slope of the floor in an arena dominated the searching process. This piece of evidence seems to contradict straightforward accounts of associative learning, according to which behavior should be controlled by the stimulus that best predicts the reward, and has fueled interest toward one question that, to date, has received scarce attention in the field of spatial cognition: how are vertical spaces represented? The purpose of this communication is to briefly review the studies on this issue, trying to determine whether slope is a special cue--driving behavior irrespective of other cues--or simply a very salient one.

  10. Rocks Exposed on Slope in Aram Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-550, 20 November 2003

    This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.

  11. Morphology, origin and evolution of Pleistocene submarine canyons, New Jersey continental slope

    NASA Astrophysics Data System (ADS)

    Bhatnagar, T.; Mountain, G. S.

    2015-12-01

    Submarine canyons serve as important conduits for transport of detrital sediments from nearshore and shelf environments to adjacent deep marine basins. However, the processes controlling the formation, maintenance, and fill of these sediment pathways are complex. This study presents an investigation of these systems at the New Jersey continental margin using a grid of high-resolution, 48-channel seismic reflection data collected in 1995 on the R/V Oceanus cruise Oc270 as a part of the STRATAFORM initiative. The aim is to shed new light on the origin and role of submarine canyons in Pleistocene sedimentation beneath the outer shelf and upper continental slope. Preliminary investigation of the Pleistocene interval reveals prominent unconformities tied to and dated with published studies at 7 sites drilled by ODP Legs 150 and 174A. The profiles of the continental slope unveil a series of abandoned and now buried submarine canyons that have influenced the development of modern canyons. Mapping these systems has revealed a range of canyon geometries, including U, V-shaped and flat-bottomed cross sections, each suggesting different histories. At least three types of seismic facies constitute the canyon fills: parallel onlap, interpreted as infilling by alternating coarser turbidites and finer hemipelagic sediments, chaotic infill, signifying structureless, massive debris flow deposition, and lateral accretion infill by both turbidity and bottom currents. Canyon formation and development appear to be strongly influenced by variations in sediment supply, grain size, and currents on the continental slope. One goal of our research is to establish if the canyons were initiated by failures at the base of the slope followed by upslope erosion, or by erosion at the shelf slope transition, and then downslope extension by erosive events. No single model accounts for all canyons. The history of these canyons may elucidate the extent to which the shelf was exposed during sea

  12. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  13. Jurassic-Neocomian biostratigraphy, North Slope, Alaska

    SciTech Connect

    Mickey, M.B.; Haga, H.

    1985-04-01

    The foraminiferal and palynological biostratigraphy of subsurface Jurassic and Neocomian (Early Cretaceous) age strata from the North Slope were investigated to better define biostratigraphic zone boundaries and to help clarify the correlation of the stratigraphic units in the National Petroleum Reserve in Alaska (NPRA). Through use of micropaleontologic data, eight principal biostratigraphic units have been identified. The Neocomian and Jurassic strata have each been subdivided into four main units.

  14. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  15. Ocean processes at the Antarctic continental slope

    PubMed Central

    Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker

    2014-01-01

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  16. Lock 4 View east of lock wall and adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 4 - View east of lock wall and adjacent roadway built atop tow path. The gate pocket can be seen at center. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  17. 14. Charles Acey Cobb standing adjacent to the fish screen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Charles Acey Cobb standing adjacent to the fish screen he designed and installed in the Congdon Canal, facing southeast. Photo dates ca. late 1920's. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  18. 3. View of north side of house facing from adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north side of house facing from adjacent vacant property. Original wood lap siding and trim is covered by aluminum siding. Recessed side porch is in middle. - 645 South Eighteenth Street (House), Louisville, Jefferson County, KY

  19. View from water showing south facade and adjacent boat slips ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from water showing south facade and adjacent boat slips (Facility Nos. S375 & S376) - U.S. Naval Base, Pearl Harbor, Boat House, Hornet Avenue at Independence Street, Pearl City, Honolulu County, HI

  20. OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY 391 IN THE FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI

  1. Interior building details of Building A, dungeon cell adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building A, dungeon cell adjacent to northwest cell: granite and brick threshold, poured concrete floors, plastered finished walls, vaulted veiling; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  2. View of viaduct, looking SE from roof of adjacent parking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of viaduct, looking SE from roof of adjacent parking garage. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA

  3. Cement Leakage into Adjacent Vertebral Body Following Percutaneous Vertebroplasty

    PubMed Central

    Park, Jae Hoo; Kim, Hyeun Sung

    2016-01-01

    Percutaneous vertebroplasty (PV) is a minimally invasive procedure for osteoporotic vertebral compression fractures that fail to respond to conventional conservative treatment. It significantly improves intolerable back pain within hours, and has a low complication rate. Although rare, PV is not free of complications, most of which are directly related to cement leakage. Because of its association with new adjacent fracture, the importance of cement leakage into the adjacent disc space is paramount. Here, we report an interesting case of cement leakage into the adjacent upper vertebral body as well as disc space following PV. To the best of our knowledge, there has been no report of cement leakage into the adjacent vertebral body following PV. This rare case is presented along with a review of the literature. PMID:27437018

  4. 2. DETAIL OF CONTROL GATE ADJACENT TO LIFT LOCK NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF CONTROL GATE ADJACENT TO LIFT LOCK NO. 7; THIS CONTROL GATE IS A 1980s RECONSTRUCTION. - Illinois & Michigan Canal, Lift Lock No. 7 & Control Gate, East side of DuPage River, Channahon, Will County, IL

  5. 33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY WITH CONCRETE CULVERT LEADING NORTH OUT OF RAVINE TOWARD JOHNSTON MEMORIAL SITE. VIEW NW. - Shiloh National Military Park Tour Roads, Shiloh, Hardin County, TN

  6. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  7. VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT TO BUILDING 199 (POLICE STATION) - U.S. Naval Base, Pearl Harbor, Post Office, Avenue A near Eleventh Avenue, Pearl City, Honolulu County, HI

  8. 73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, LOOKING WEST BY NORTHWEST, SHOWING EASTERNMOST ARCH OF FORMER GREAT HALL NORTH ARCADE - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  9. 28. TOP VIEW OF CIRCUIT BREAKER ADJACENT TO BRIDGE, CATENARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. TOP VIEW OF CIRCUIT BREAKER ADJACENT TO BRIDGE, CATENARY ANCHOR BRIDGE 310, COS COB POWER PLANT - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  10. GENERAL VIEW OF WAREHOUSE ADJACENT TO BATCH PLANT, LOOKING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF WAREHOUSE ADJACENT TO BATCH PLANT, LOOKING NORTHWEST FROM DREY STREET PLANT, INSIDE WELCOME WALL - Chambers Window Glass Company, Warehouse & Shipping, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA

  11. 10. SLATE PATIO ADJACENT TO SOUTH PORCH OF HOUSE, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SLATE PATIO ADJACENT TO SOUTH PORCH OF HOUSE, FROM SOUTHEAST CORNER OF REAR PORCH. SHED IS VISIBLE IN BACKGROUND. - Butt Valley Dam, Gate Tender's House, Butt Valley Reservoir Road, Caribou, Plumas County, CA

  12. Detail of fire alarm boxes located adjacent to the entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of fire alarm boxes located adjacent to the entrance of the northwest wing - Mare Island Naval Shipyard, Guard House & Barracks, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  13. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  14. 1. Ninth Street (west) facade. Adjacent on the north is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC

  15. 2. THREEQUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. THREE-QUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS AND NORTHWEST APPROACH SPANS, LOOKING SOUTHEAST - Red River Bridge, Spanning Red River at U.S. Highway 82, Garland, Miller County, AR

  16. 31. VAL, DETAIL OF LOADING PLATFORM ADJACENT TO LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VAL, DETAIL OF LOADING PLATFORM ADJACENT TO LAUNCHER BRIDGE LOOKING WEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. Basement, room 23, looking southwest into two adjacent offices with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement, room 23, looking southwest into two adjacent offices with soundproof walls and pedestal flooring - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  18. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  19. 7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH (NOT IN STUDY AREA) - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  20. Brick incinerator structure located adjacent to "motor courts." This example ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Brick incinerator structure located adjacent to "motor courts." This example is located between Buildings 26 and 27. Facing northeast - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  1. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cai, Wei-Jun; Dai, Minhan; Wang, Yongchen; Zhai, Weidong; Huang, Tao; Chen, Shuitu; Zhang, Fan; Chen, Zhaozhang; Wang, Zhaohui

    2004-08-01

    The Zhu-jiang (Pearl River) estuary and its adjacent continental shelf in the Northern South China Sea (SCS) is unique in that its drainage basin is located entirely in a subtropical zone with heavy population development, and therefore represents an important regime for biogeochemical studies on how large rivers influence continental shelves. The near-zero salinity end member has high nutrient concentrations (silicate 130-140 μM, nitrate 75-100 μM and phosphate 0.2-1.2 μM) and relatively high total dissolved inorganic carbon (DIC) (1500 μM) and alkalinity (˜1650 μM) values. Water column DIC, alkalinity, and nutrient in the estuary are largely controlled by mixing of waters from different tributaries with different drainage basin chemistry, anthropogenic influence, and degree of estuarine recycling. Biological uptake of nutrients and inorganic carbon occur in the outer estuary and inner shelf areas supported by riverine nutrients. The N/P and Si/P ratios are generally very high within the estuary. The summertime area-integrated biological production rate of 0.8 gC m -2 d -1 is estimated based on the depletion of DIC and alkalinity relative to the conservative mixing line and a plume travel time. This estimate agrees reasonably well with 14C based primary production rates (PP) and with that from effective river phosphate flux. Biological production decreases about 10-fold in the open continental shelf and slope and is largely supported by mixing with subsurface water. A comparison of DIC, phosphate, and nitrate concentrations in the surface mixing layer and at the bottom of the euphotic zone with the 14C-based PP (0.13 gC m -2 d -1) suggests that the surface water residence time in the Northern SCS is ˜1.3 years. The N/P, Si/P, and Si/C ratios are 15, 25, and 0.15, respectively. The subtropical Pearl River study is also compared to other large rivers with regard to differences in both natural processes (i.e., weathering rates) and anthropogenic influences (i

  2. Stability of sulfur slopes on Io

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  3. Progress in Predicting Rock-Slope Failures

    NASA Astrophysics Data System (ADS)

    Korup, O.

    2015-12-01

    Recent research on predicting landslides has seen a massive increase in statistical and computational methods that are largely adapted from the fields of machine learning and data mining. Judging from a sample of some 150 recent scientific papers, the gross majority of the reported success rates of these statistical methods are overwhelmingly high and promising at between 71% and 98%. Perhaps surprisingly, though, the death toll and damage from landslides has remained elevated in the early 21st century, so that reliably predicting the occurrence of rock-slope failures without overfitting our models remains challenging. Here I review some of the recent advances in this field, and show how novel results from landslide seismology and landslide sedimentology have promoted our ability of detecting large rock-slope failures in mountainous terrain. Several new detailed investigations of the internal nature of large rockslide deposits, for example, help to reduce the confusion potential with macroscopically similar moraine debris, or microscopically similar fault breccia. I further outline some of the limitations of empirical models that use rainfall intensity-duration thresholds for landslide early warning, and of multivariate methods concerned with mapping landslide susceptibility at the regional scale. I conclude by discussing the occurrence of 'black swans' such as long-runout rock-ice avalanches in size distributions of rock-slope failures, and their implications for quantitative hazard appraisals.

  4. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  5. Geosensor Data Representation Using Layered Slope Grids

    PubMed Central

    Lee, Yongmi; Jung, Young Jin; Nam, Kwang Woo; Nittel, Silvia; Beard, Kate; Ryu, Keun Ho

    2012-01-01

    Environmental monitoring applications are designed for supplying derived and often integrated information by tracking and analyzing phenomena. To determine the condition of a target place, they employ a geosensor network to get the heterogeneous sensor data. To effectively handle a large volume of sensor data, applications need a data abstraction model, which supports the summarized data representation by encapsulating raw data. For faster data processing to answer a user’s queries with representative attributes of an abstracted model, we propose such a data abstraction model, the Layered Slopes in Grid for Sensor Data Abstraction (LSGSA), which is based on the SGSA. In a single grid-based layer for each sensor type, collected data is represented by slope directional vectors in two layered slopes, such as height and surface. To answer a user query in a central monitoring server, LSGSA is used to reduce the time needed to extract event features from raw sensor data as a preprocessing step for interpreting the observed data. The extracted features are used to understand the current data trends and the progress of a detected phenomenon without accessing raw sensor data. PMID:23235448

  6. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.

    PubMed

    Spitz, Jonathan; Evstrachin, Alexandrina; Zacksenhouse, Miriam

    2015-10-01

    In recent years there has been a growing interest in the field of dynamic walking and bio-inspired robots. However, while walking and running on a flat surface have been studied extensively, walking dynamically over terrains with varying slope remains a challenge. Previously we developed an open loop controller based on a central pattern generator (CPG). The controller applied predefined torque patterns to a compass-gait biped, and achieved stable gaits over a limited range of slopes. In this work, this range is greatly extended by applying a once per cycle feedback to the CPG controller. The terrain's slope is measured and used to modify both the CPG frequency and the torque amplitude once per step. A multi-objective optimization algorithm was used to tune the controller parameters for a simulated CB model. The resulting controller successfully traverses terrains with slopes ranging from +7° to -8°, comparable to most slopes found in human constructed environments. Gait stability was verified by computing the linearized Poincaré Map both numerically and analytically. PMID:26291076

  7. Adjacent Segment Disease Perspective and Review of the Literature

    PubMed Central

    Saavedra-Pozo, Fanor M.; Deusdara, Renato A. M.; Benzel, Edward C.

    2014-01-01

    Background Adjacent segment disease has become a common topic in spine surgery circles because of the significant increase in fusion surgery in recent years and the development of motion preservation technologies that theoretically should lead to a decrease in this pathology. The purpose of this review is to organize the evidence available in the current literature on this subject. Methods For this literature review, a search was conducted in PubMed with the following keywords: adjacent segment degeneration and disease. Selection, review, and analysis of the literature were completed according to level of evidence. Results The PubMed search identified 850 articles, from which 41 articles were selected and reviewed. The incidence of adjacent segment disease in the cervical spine is close to 3% without a significant statistical difference between surgical techniques (fusion vs arthroplasty). Authors report the incidence of adjacent segment disease in the lumbar spine to range from 2% to 14%. Damage to the posterior ligamentous complex and sagittal imbalances are important risk factors for both degeneration and disease. Conclusion Insufficient evidence exists at this point to support the idea that total disc arthroplasty is superior to fusion procedures in minimizing the incidence of adjacent segment disease. The etiology is most likely multifactorial but it is becoming abundantly clear that adjacent segment disease is not caused by motion segment fusion alone. Fusion plus the presence of abnormal end-fusion alignment appears to be a major factor in creating end-fusion stresses that result in adjacent segment degeneration and subsequent disease. The data presented cast further doubt on previously established rationales for total disc arthroplasty, at least with regard to the effect of total disc arthroplasty on adjacent segment degeneration pathology. PMID:24688337

  8. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    NASA Astrophysics Data System (ADS)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  9. Flow Ejecta and Slope Landslides in Small Crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high resolution picture of a moderately small impact crater on Mars was taken by the Mars Global Surveyor Orbiter Camera (MOC) on October 17, 1997 at 4:11:07 PM PST, during MGS orbit 22. The image covers an area 2.9 by 48.4 kilometers (1.8 by 30 miles) at 9.6 m (31.5 feet) per picture element, and is centered at 21.3 degrees N, 179.8 degrees W, near Orcus Patera. The MOC image is a factor of 15X better than pervious Viking views of this particular crater (left, Viking image 545A49).

    The unnamed crater is one of three closely adjacent impact features that display the ejecta pattern characteristic of one type of 'flow-ejecta' crater. Such patterns are considered evidence of fluidized movement of the materials ejected during the cratering event, and are believed to indicate the presence of subsurface ice or liquid water.

    Long, linear features of different brightness values can be seen on the on the steep slopes inside and outside the crater rim. This type of feature, first identified in Viking Orbiter images acquired over 20 years ago, are more clearly seen in this new view (about 3 times better than the best previous observations). Their most likely explanation is that small land or dirt slides, initiated by seismic or wind action, have flowed down the steep slopes. Initially dark because of the nature of the surface disturbance, these features get lighter with time as the ubiquitous fine, bright dust settles onto them from the martian atmosphere. Based on estimates of the dust fall-out rate, many of these features are probably only a few tens to hundreds of years old. Thus, they are evidence of a process that is active on Mars today.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with

  10. Spatial heterogeneity in biogeochemical transport on Arctic hill slopes

    NASA Astrophysics Data System (ADS)

    Risser, R.; Harms, T.; Jones, J.

    2013-12-01

    Water tracks, saturated regions of the hill slope in permafrosted Arctic catchments, likely deliver the majority of water entering streams in these regions, and may play a central role in delivery of nutrients. Fate of dissolved nutrients and carbon as they are transported in water tracks has a substantial effect on stream ecosystems, as water tracks may cover up to 35% of the catchment land area. Water tracks are distinguished from adjacent areas of the hillslope by higher rates of hydrologic transport, greater woody biomass, and increased pools of nutrients. Substantial spatial heterogeneity within and between water tracks may influence their role in transfer of materials between the terrestrial and aquatic landscape. We examined spatial variability of hydrologic and chemical characteristics within and between water tracks in the Kuparuk Basin of northern Alaska to increase understanding of the factors influencing nutrient export from arctic catchments. We studied a sedge-dominated water track with perennial surface water flow with shrub-dominated water tracks containing intermittent surface flow. Nominal transit times of water in the perennial site was 5 hours, compared to 15.5 h in an ephemeral track over a 50 meter reach, indicating substantial variation in water residence time and opportunity for biogeochemical reaction across sites. We evaluated spatial heterogeneity in biogeochemical characteristics within 25-m reaches at each site with a grain size of 10 m. Dissolved CH4 concentration was elevated above atmospheric equilibrium only at the perennial water track, where CH4 concentration varied by more than 15-fold within the water track, indicating hot spots of anaerobic microbial activity. Dissolved CO2 concentration was 9 times greater on average at the perennial water track, compared to the ephemeral site, suggesting that continuous water flow supports more rapid microbial activity. CO2 concentration was also more variable in the perennial water track

  11. Seismic expression of catastrophic slope failure: Lower Cretaceous Torok Formation, North Slope of Alaska

    SciTech Connect

    Kerr, R.S.

    1985-02-01

    Seismic geometries in the deep marine Torok Formation illustrate that catastrophic slope failure involving both slope and basin-plain sediments occurred during Early Cretaceous time on the North Slope of Alaska. The magnitude of the failure emphasizes the importance of slumping and sliding as processes of mass transport of sediment in the deep marine environment. Torok sandstones and shales were deposited on continental slopes, basin plains, and submarine fans. Fluvial-deltaic sands and shales of the Nanushuk Group are the time-equivalent shelf deposits. The nanushuk-Torok relationship is expressed seismically as offlapping reflectors that record shelf-edge progradation. Slumps and slides are common on Torok slopes where gradients of up to 10/sup 0/ are documented. The largest such feature, located near Harrison Bay, is 1500 mi/sup 2/ in area and 2000 ft thick. The disturbed zone is lobate in plan view, wedge shaped in cross section, and thins basinward from a dramatic scarp deeply incised into Torok foreset beds. Seismically, the slide is expressed as a series of remnants of undisturbed or rotated glide blocks that strike parallel with the slump scarp and are encased in chaotically bedded slump debris. Geometric similarities to the Turnagain Heights slide (Anchorage, 1964) suggest block gliding as the mechanism of slope failure. Because the Torok was initially sand-poor, wells drilled through glide blocks and slump debris encountered predominantly shale. Understanding similar seismic geometries in other slope systems will aid in their evaluation as hydrocarbon traps. Favorable reservoir and trap scenarios include turbidite sands in remnant blocks trapped against slump fill and younger turbidite sands ponded behind remnant topography.

  12. Analysis of adjacent segment reoperation after lumbar total disc replacement

    PubMed Central

    Rainey, Scott; Blumenthal, Scott L.; Zigler, Jack E.; Guyer, Richard D.; Ohnmeiss, Donna D.

    2012-01-01

    Background Fusion has long been used for treating chronic back pain unresponsive to nonoperative care. However, potential development of adjacent segment degeneration resulting in reoperation is a concern. Total disc replacement (TDR) has been proposed as a method for addressing back pain and preventing or reducing adjacent segment degeneration. The purpose of the study was to determine the reoperation rate at the segment adjacent to a level implanted with a lumbar TDR and to analyze the pre-TDR condition of the adjacent segment. Methods This study was based on a retrospective review of charts and radiographs from a consecutive series of 1000 TDR patients to identify those who underwent reoperation because of adjacent segment degeneration. Some of the patients were part of randomized studies comparing TDR with fusion. Adjacent segment reoperation data were also collected from 67 patients who were randomized to fusion in those studies. The condition of the adjacent segment before the index surgery was compared with its condition before reoperation based on radiographs, magnetic resonance imaging (MRI), and computed tomography. Results Of the 1000 TDR patients, 20 (2.0%) underwent reoperation. The mean length of time from arthroplasty to reoperation was 28.3 months (range, 0.5–85 months). Of the adjacent segments evaluated on preoperative MRI, 38.8% were normal, 38.8% were moderately diseased, and 22.2% were classified as having severe degeneration. None of these levels had a different grading at the time of reoperation compared with the pre-TDR MRI study. Reoperation for adjacent segment degeneration was performed in 4.5% of the fusion patients. Conclusions The 2.0% rate of adjacent segment degeneration resulting in reoperation in this study is similar to the 2.0% to 2.8% range in other studies and lower than the published rates of 7% to 18% after lumbar fusion. By carefully assessing the presence of pre-existing degenerative changes before performing arthroplasty

  13. Large Rock Slope Failures Induced by Recent Earthquakes

    NASA Astrophysics Data System (ADS)

    Aydan, Ö.

    2016-06-01

    Recent earthquakes caused many large-scale rock slope failures. The scale and impact of rock slope failures are very large, and the form of failure differs depending upon the geological structures of slopes. First, the author briefly describes some model experiments to investigate the effects of shaking or faulting due to earthquakes on rock slopes. Then, fundamental characteristics of the rock slope failures induced by the earthquakes are described and evaluated according to some empirical and theoretical models. Furthermore, the observations for slope failures in relation to earthquake magnitude and epicenter or hypocenter distance were compared with several empirical relations available in the literature. Some of major rock slope failures induced by earthquakes are selected, and the post-failure motions are simulated and compared with observations. In addition, the effects of tsunamis on rock slopes in view of observations in the reconnaissances of the recent mega-earthquakes are explained and are discussed.

  14. Morphotectonic, Morphometric, and Critical Taper Analysis of the Offshore Peruvian Continental Slope - Implications for Wedge Mechanics and Submarine Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Hampel, A.; Hoth, S.; Norabuena, E. O.; Bialas, J.

    2004-12-01

    We use new swath bathymetry data acquired during the RV Sonne cruise GEOPECO and complement them with swath data from adjacent regions to analyse the morphotectonics of the Peruvian convergent margin. The Nazca plate is not covered with sediments and therefore has a rough surface along the entire Peruvian trench. The styles of roughness differ significantly along the margin with linear morphological features trending in various directions, most of them oblique to the trench and roughness magnitudes of a few to several hundred meters. Oblique convergence and resulting strain partitioning cause a transtensional stress regime in the outer fore-arc. The lower slope is locally very rough and at the verge of failure throughout the entire Peruvian margin, as a result of subduction erosion causing the lower slope to oversteepen. Critical taper analysis is applied to the forearc wedge along several transects. Using curvature attributes to quantitatively examine the morphology in the Yaquina and Mendaña areas revealed that the latter shows a larger local roughness both seaward and landward of the trench however, the amplitude of morphological roughness is larger in the Yaquina area. We identified a 250 km2 large slump on the Lima middle slope. Morphometric dating suggests an age of 74,500 years within 50% error and incision rates on the upper slope are between 0.1 and 0.3 mm per year suggesting that landscape evolution on the Peruvian submarine continental slope is similarly slow than that in the Atacama desert.

  15. Morphotectonic, Morphometric, and Critical Taper Analysis of the Offshore Peruvian Continental Slope - Implications for Wedge Mechanics and Submarine Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Hampel, A.; Hoth, S.; Norabuena, E. O.; Bialas, J.

    2007-12-01

    We use new swath bathymetry data acquired during the RV Sonne cruise GEOPECO and complement them with swath data from adjacent regions to analyse the morphotectonics of the Peruvian convergent margin. The Nazca plate is not covered with sediments and therefore has a rough surface along the entire Peruvian trench. The styles of roughness differ significantly along the margin with linear morphological features trending in various directions, most of them oblique to the trench and roughness magnitudes of a few to several hundred meters. Oblique convergence and resulting strain partitioning cause a transtensional stress regime in the outer fore-arc. The lower slope is locally very rough and at the verge of failure throughout the entire Peruvian margin, as a result of subduction erosion causing the lower slope to oversteepen. Critical taper analysis is applied to the forearc wedge along several transects. Using curvature attributes to quantitatively examine the morphology in the Yaquina and Mendaña areas revealed that the latter shows a larger local roughness both seaward and landward of the trench however, the amplitude of morphological roughness is larger in the Yaquina area. We identified a 250 km2 large slump on the Lima middle slope. Morphometric dating suggests an age of 74,500 years within 50% error and incision rates on the upper slope are between 0.1 and 0.3 mm per year suggesting that landscape evolution on the Peruvian submarine continental slope is similarly slow than that in the Atacama desert.

  16. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos

    NASA Astrophysics Data System (ADS)

    Ribolzi, O.; Patin, J.; Bresson, L. M.; Latsachack, K. O.; Mouche, E.; Sengtaheuanghoung, O.; Silvera, N.; Thiébaux, J. P.; Valentin, C.

    2011-04-01

    It was recently demonstrated that, infiltration into mountain-tilled soils with highly stable microaggregates, increases with increasing slope gradient. In this work we investigate the processes that underpin this phenomenon by means of field experiments and modelling. The study area is located in northern Laos. Rainfall simulations were conducted in two 1-m 2 plots using a portable field simulator. The drop size distribution and kinetic energy were similar to that occurring on the occasion of tropical downpours. Soils exhibited a clay loam texture and very similar organic matter contents across experimental plots, but differed greatly in slope gradient (30% and 75%). Runoff water samples were collected at intervals ranging from 1 to 3 min, depending on the runoff intensity. Plots microtopography was measured before and after rainfall simulations using an automatic surface roughness meter on a 1-cm grid. High-resolution bulk density images were obtained from soil slices using a standard X-ray generator. Final infiltration rates of 6 and 21 mm h -1; soil detachment of 667 and 310 g m -2; surface lowering due to soil loss of 0.82 and 0.38 mm; surface lowering due to compaction of 1.21 and 0.90 mm; percentage area with sieving crust of 36% and 90%; percentage area with erosion crust of 63% and 0%; were obtained for the 30% and 75% slopes, respectively. Three main conclusions can be drawn from this work: (1) high intensity rainfall can rapidly transform soil surface features of steep bare soil; (2) on steeper slopes, the micro-relief tends to form micro-terraces much more pervious and less erodible than the ripple-like roughness that formed on gentler slopes; and (3) there was a more pronounced lowering of the soil surface due to compaction and denser microlayers on gentler slopes. The latter conclusion confirms the hypothesis that higher effective rainfall intensity is responsible for the formation of less permeable erosion crusts under 30% slope gradients while more

  17. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  18. How dangerous are slope failures offshore western Thailand (Andaman Sea, Indian Ocean)?

    NASA Astrophysics Data System (ADS)

    Schwab, J.; Krastel, S.; Grün, M.; Gross, F.; Pananont, P.; Jintasaeranee, P.; Bunsomboonsakul, S.; Weinrebe, W.; Winkelmann, D.

    2012-12-01

    The Thai west coast is well known for being hit by tsunami waves triggered by earthquakes arising from the nearby Sunda Trench. However, so far little has been known about additional factors that may trigger tsunamis in the area, such as submarine landslides at the shelf slope area. In order to assess the stability of the slope and evaluate the tsunamigenic potential of submarine landslides off western Thailand, 2D seismic data from the top and the western slope of a bathymetric high (Mergui Ridge about 200 km off the Thai west coast) have been investigated. These data were the basis for mapping locations and approximate volumes of mass transport deposits (MTDs). In total, 17 mass transport deposits were found. The estimated minimum volumes of individual MTDs range between 0.3 cbkm and 14 cbkm. MTDs have been identified in three different settings: i) stacked MTDs within disturbed and faulted basin sediments at the transition of the Mergui Ridge to the adjacent East Andaman Basin, ii) MTDs within a pile of drift sediments at the basin-ridge transition, and iii) MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths (<1000m). Our data indicate that the Mergui Ridge-slope area seems to have been generally unstable. Slide events occurred repeatedly and slope failures may occur again in the future. We find that the most likely causes for slope instabilities are the presence of unstable drift sediments, excess pore pressure in the sediments, and active tectonics. Most MTDs are located in large water depths (> 1000 m) and/or comprise small volumes; hence it is very unlikely that they triggered significant tsunamis in the past. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge in water depths below 1000 m. Mass-wasting events that may occur in the future at similar locations do have a tsunami potential if they comprise sufficient volumes

  19. Simulation of River Bluffs and Slip-Off Slopes With a Discrete Particle-Based Model

    NASA Astrophysics Data System (ADS)

    Lancaster, S. T.; Zunka, J. P.; Tucker, G. E.

    2013-12-01

    A discrete particle-based model simulates evolution of two-dimensional valley cross sections similar to those produced by bedrock meandering rivers and thereby suggests that characteristic features such as overhanging cliffs and talus slopes are dependent on specific relationships among process rates. Discrete coordinates on a gridded cross-section define locations of particles of intact bedrock, sediment (loose material with half the bulk density of bedrock), water, or air on that grid, and each particle of rock or sediment has a unique (or zero) concentration of terrestrial cosmogenic nuclides (TCNs). Stochastic processes determine both the possible locations of process actions and the results of those actions. Stochastic discharges generate boundary shear stresses, calculated by an approximation to the ray-isovel model, that determine removal probabilities for candidate particles of bedrock or sediment from the boundary of a self-formed channel. An asymmetric probability distribution governs the selection of candidate particles on the wetted perimeter and drives asymmetric fluvial erosion and transport that can undermine adjacent slopes, so that the channel migrates laterally. Sediment is produced from intact bedrock by weathering and rock fall. The latter acts only on candidate bedrock particles that are undermined and exposed at the surface. Weathering produces two sediment particles from one of bedrock, and thereby inflates the surface, when slope-normal random walks from candidate sites on the surface end at bedrock particles, so that the sediment-bedrock interface is irregular and discontinuous. Diffusive transport moves candidate particles on random walks in random directions along the surface, where transition probabilities depend on local topography. TCNs are produced when the randomly situated and oriented random walks of cosmic rays end at bedrock or sediment, and not water, particles. The model produces asymmetric channels and valley cross sections

  20. Assessment of Coalbed Gas Resources in Cretaceous and Tertiary Rocks on the North Slope, Alaska, 2006

    USGS Publications Warehouse

    Roberts, Steve; Barker, Charles E.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2006-01-01

    The North Slope of Alaska is a vast area of land north of the Brooks Range, extending from the Chukchi Sea eastward to the Canadian border. This Arctic region is known to contain extensive coal deposits; hypothetical coal resource estimates indicate that nearly 4 trillion short tons of coal are in Cretaceous and Tertiary rocks. Because of the large volume of coal, other studies have indicated that this region might also have potential for significant coalbed gas resources. The present study represents the first detailed assessment of undiscovered coalbed gas resources beneath the North Slope by the USGS. The assessment is based on the total petroleum system (TPS) concept. Geologic elements within a TPS relate to hydrocarbon source rocks (maturity, hydrocarbon generation, migration), the characteristics of reservoir rocks, and trap and seal formation. In the case of coalbed gas, the coal beds serve as both source rock and reservoir. The Brookian Coalbed Gas Composite TPS includes coal-bearing rocks in Cretaceous and Tertiary strata underlying the North Slope and adjacent Alaska State waters. Assessment units (AUs) within the TPS (from oldest to youngest) include the Nanushuk Formation Coalbed Gas AU, the Prince Creek and Tuluvak Formations Coalbed Gas AU, and the Sagavanirktok Formation Coalbed Gas AU.

  1. Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Roswell, C. (Principal Investigator)

    1980-01-01

    The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.

  2. Suspended sediment dynamics during the inter-monsoon season in the subaqueous Mekong Delta and adjacent shelf, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Unverricht, Daniel; Nguyen, Thanh Cong; Heinrich, Christoph; Szczuciński, Witold; Lahajnar, Niko; Stattegger, Karl

    2014-01-01

    Land-ocean interactions in the coastal zone are severely influenced by tidal processes. In regions of high sediment discharge like the Mekong River Delta in southern Vietnam, these processes are even more significant. Three cruises in 2006, 2007 and 2008 were carried out to investigate the sediment suspension and their spatial distribution. Additionally, we investigated the influence of the tidal currents in relation to the suspended sediment. Therefore, all cruises took place during the inter-monsoon season between March and May where wave and wind influences are not dominant in contrast to the summer monsoon (May to early October) and winter monsoon season (November to early March).Suspended sediment concentrations (SSCs) in the particle-size range between 2.5 and 500 μm were measured with an LISST-instrument (Laser In Situ Scattering and Transmissiometry). Current velocities and directions were recorded with an Acoustic Doppler Current Profiler (ADCP). Additionally, data of different tidal gauge stations in the Mekong River Delta were correlated and compared to the mixed semidiurnal-diurnal tidal cycle.Our results show significant areas of SSCs greater than 25 μl/l in the Mekong River branches and its subaqueous delta during the inter-monsoon season. 20% of all measured SSCs in the subaqueous Mekong Delta exceed 100 μl/l. Highest concentrations occur close to the seabed. SSCs decrease at the transition to the open shelf. The shelf region contains only low suspension loads, especially on the south-eastern shelf (99% of all samples <25 μl/l). However, in the southern shelf region around Ca Mau Cape the suspension load is also higher (>25 μl/l) close to the seabed in water depths of 20-25 m.Two surveys lasting 25 h each were performed on mooring stations in 12 m (Mooring 1) and 26 m (Mooring 2) water depth and located 3.2 km apart on the subaqueous delta slope.Similar patterns of SSC over time show that concentrations of suspension load correlate with the

  3. 30 CFR 816.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Backfilling and grading: Steep slopes. 816.107... ACTIVITIES § 816.107 Backfilling and grading: Steep slopes. (a) Surface mining activities on steep slopes... section except where mining is conducted on flat or gently rolling terrain with an occasional steep...

  4. Conceptualizations of Slope: A Review of State Standards

    ERIC Educational Resources Information Center

    Stanton, Michael; Moore-Russo, Deborah

    2012-01-01

    Since slope is a fundamental topic that is embedded throughout the U.S. secondary school curriculum, this study examined standards documents for all 50 states to determine how they address the concept of slope. The study used eleven conceptualizations of slope as categories to classify the material in the documents. The findings indicate that all…

  5. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15... REQUIREMENTS FOR PERMITS FOR SPECIAL CATEGORIES OF MINING § 785.15 Steep slope mining. (a) This section applies to any persons who conducts or intends to conduct steep slope surface coal mining and...

  6. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  7. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15... REQUIREMENTS FOR PERMITS FOR SPECIAL CATEGORIES OF MINING § 785.15 Steep slope mining. (a) This section applies to any persons who conducts or intends to conduct steep slope surface coal mining and...

  8. 30 CFR 816.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading: Steep slopes. 816.107... ACTIVITIES § 816.107 Backfilling and grading: Steep slopes. (a) Surface mining activities on steep slopes... section except where mining is conducted on flat or gently rolling terrain with an occasional steep...

  9. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  10. Small scale tests on slope failures on different surfaces

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano

    2016-04-01

    This paper reports on laboratory experiments that were designed to investigate the evolution of slopes under rainfall and on different surfaces. Small models are constructed and rainfall is applied to them by wetting the slope crest through a rainfall simulator device that is designed to provide steady and uniform rainfall and is placed directly above the slope. The moisture content and the suction of the soil during the tests are monitored by soil moisture sensors and tensiometers respectively that are buried inside the slope model during the construction phase and the behaviour of the slope is recorded through a high resolution camera. After a short time of rainfall, cracks appear in the slope model with significant vertical deformations developing until failure occurs. Two different surfaces were examined to explore the difference on debris propagation and its effect on the evolution of the slope. The slope model characteristics and the rainfall intensity were kept the same while the surface below the slope was either made of the container material allowing the failed mass to slide away along the bottom of the container or a thin layer of soil particles was glued to the floor of the container to create friction and to inhibit direct sliding of the slope base along the soil - container interface. The experimental results demonstrate different debris propagation and deposition, and how this difference can affect the stability of the remaining slope and thus the evolution of the slope in time.

  11. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  12. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  13. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  14. Mars Exploration Rover Landing Site Hectometer Slopes

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F.; Anderson, F. S.

    2002-12-01

    The Mars Exploration Rover (MER) airbag landing system imposes a maximum slope of 5 degrees over 100 m length-scales. This limit avoids dangerous changes in elevation over the horizontal travel distance of the lander on its parachute between the time of the last radar altimeter detection of the surface and the time the retro-rockets fire and the bridle to the airbags is cut. Stereo imagery from the MGS MOC can provide information at this length scale, but MOC stereo coverage is sparse, even when targeted to MER landing sites. Additionally, MGS spacecraft stability issues affect the DEMs at precisely the hectometric length-scale1. The MOLA instrument provides global coverage pulse-width measurements2 over a single MOLA-pulse footprint, which is about 100 m in diameter. However, the pulse spread only provides an upper bound on the 100 m slope. We chose another approach. We sample the inter-pulse root-mean-square (RMS) height deviations for MOLA track segments restricted to pixels of 0.1 deg latitude by 0.1 deg longitude. Then, under the assumption of self-affine topography, we determine the scale-dependence of the RMS deviations and extrapolate that behavior over the range of 300 m to 1.2 km downward to the 100 m scale. Shepard et al.3 clearly summarize the statistical properties of the RMS deviation (noting that it also goes by the name structure function, variogram or Allan deviation), and we follow their nomenclature. The RMS deviation is a useful measure in that it can be directly converted to RMS-slope for a given length-scale. We map the results of this self-affine extrapolation method for each of the proposed MER landing sites as well as Viking Lander 1 (VL1) and Pathfiner (MPF). In order of decreasing average hectometer RMS-slopes, Melas (about 4.5 degrees) > Elysium EP80 > Gusev > MPF > Elysium EP78 > VL1 > Athabasca > Isidis > Hematite (about 1 degree). We also map the scaling parameter (Hurst exponent); its behavior in the MER landing site regions is

  15. Sedimentary processes along Sagavanirktok River, eastern North Slope, Alaska

    SciTech Connect

    Boothroyd, J.C.; Timson, B.S.

    1984-04-01

    The Sagavanirktok River is the second-largest river on the North Slope of Alaska (drainage basin area = 14,364 km/sup 2/, 5500 mi/sup 2/; length = 267 km, 165 mi). Maximum discharge recorded during the spring breakup was 2320 m/sup 3//sec (82,000 cfs); flow ceases during the winter freeze. The river flows through terrain underlain by continuous permafrost ranging up to 300 m (1000 ft) thick. It is a coarse-gravel, braided river that is degradational through most of its length, becoming aggradational on the last 20 km (12 mi) of delta plain. The active channels contain longitudinal bar complexes and large transverse bars, including T-bars at the ends of chutes incised into the inactive fluvial plain. Chutes form during spring breakup owing to blockage of the river by ice from icings (aufies), or by ice drives that jam and direct the river laterally onto the inactive fluvial plain. Relict fluvial systems also exist as terraces elevated 10-30 m (30-100 ft) above the active river. This terrain contains wind-aligned lakes developed in the permafrost active layer. Next to the terrace scarp is an eolian levee composed of silt and fine sand derived from the active river. Numerous small, high-gradient alluvial fans have formed along hills adjacent to the lower alluvial plain. Coarse gravel is transported down-fan to the Sagavanirktok River primarily by debris flows that have prominent sieve lobes at the ends of U-shaped channels. The flows are fed by spring runoff, melting of ground ice during the thaw season, and by ground-water-fed springs (small icings).

  16. Global High-Accuracy Intercomparison of Slope Measuring Instruments

    NASA Astrophysics Data System (ADS)

    Siewert, Frank; Assoufid, Lahsen; Cocco, Daniele; Hignette, Olivier; Irick, Steve; Lammert, Heiner; McKinney, Wayne; Ohashi, Haruhiko; Polack, Francois; Qian, Shinan; Rah, Seungyu; Rommeveaux, Amparo; Schönherr, Veit; Sostero, Giovani; Takacs, Peter; Thomasset, Muriel; Yamauchi, Kazuto; Yashchuk, Valeriy; Zeschke, Thomas

    2007-01-01

    The upcoming generation of high accuracy synchrotron radiation (SR) optics will be characterized by a slope deviation from ideal shape in the range of some 0.05μrad rms at a sampling interval of about 1mm. To certify and improve the measurement capabilities of metrology tools to inspect these stringent specifications, an essential step is a worldwide intercomparison of these measurements based on a set of transfer standards. It is the aim of these cross measurements to verify the "absolute" correctness and comparability of the measurement results obtained by the cooperating partners when measuring the topography of specific reference optics (ROs) using their latest metrology tools and methods. Organized by members of the SR-optics community, new national and international cross measurement comparisons of typical synchrotron radiation mirrors have been realized during the last few years: A round robin test by the European COST-program (BESSY, Elettra, ESRF, Soleil) during the years 2004-2005 and a similar cooperation realized by the APS, ESRF and Spring-8 have proceeded. The first results of both projects were presented at the "Optics & Photonics" conference in San Diego in August 2005. This work build upon earlier work. The participants of both groups and representatives of other SR-laboratories agreed to start a global cooperation bringing together the two round-robin projects and open these activities to other partners from the SR-community, optical manufacturers and other interested parties. This initiative is intended to start an extensive comparison of various measurement principles and tools and will help to push the frontiers in metrology, and hence production, to a precision well below the current state-of-the-art limit of 0.5μrad rms for slope errors.

  17. Regional Shoreline Change Along the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Gibbs, A. E.; Richmond, B. M.; Erikson, L.

    2008-12-01

    Climate change impacts to the north coast of Alaska threaten sensitive ecosystems, critical energy-related infrastructure, native Alaskan housing and traditional lifestyles, trust species and their habitats, and large tracts of Federally-managed land. Although there are several site-specific and limited regional studies documenting coastal change along the Beaufort and Chukchi Sea coasts, no comprehensive study has documented coastal change or evaluated its causes on a regional scale. As part of a National Assessment of Shoreline Change study along open-ocean sandy shores of the United States, the U.S. Geological Survey is evaluating shoreline changes along the north slope coast of Alaska between Peard Bay and the Canadian border. Rates of change will be calculated for both the mainland and barrier island coasts using shorelines derived from circa 1947 and 1987 NOS T-sheets and from orthorectified photography and/or satellite imagery collected between 2000 and 2007. Here we present results from the first phase of the study, Colville River to Pt. Thomson, for three time periods (1947, 1987, 2004-7). In contrast to previous independent studies, which have documented localized erosion rates of up to 16 m/yr along portions of Alaska's north slope, results from this study show that on a regional scale, shoreline erosion rates along the mainland coast are typically less than 2 m/yr. The offshore barrier islands, however, are highly dynamic and show high rates of localized shoreline retreat along with a regionally consistent decrease in overall land area and associated rotation and migration to the southwest since the 1940s. As part of this study, continued data collection, analysis, and numerical and analytical modeling of the coast and nearshore environments will provide much needed data sets from which to evaluate future changes along this stretch of coast in response to sea-level rise, variability in the Arctic summer sea-ice extent, increased storminess, and other

  18. How much does a very active rock slope contribute to the sediment budget of an alpine glacier?

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Vehling, Lucas; Glira, Philipp; Stocker-Waldhuber, Martin; Morche, David

    2014-05-01

    The ongoing glacier retreat since the mid of the 19th century has significant influence on rock slope stability in alpine high mountain areas. Due to oversteepening by glacial erosion, cold climate weathering processes and debuttressing as a consequence of stress redistribution, rock slopes adjacent to shrinking glaciers generally show an enhanced geotechnical activity. Regarding the glacier sediment budget, the rockfall material deposited on a glacier is particular important, because the debris material can be transported directly and without any intermediate storage. Therefore, gravitational mass movements contribute in a substantial way to the sediment budget of a glacier, especially as rockfall material can easily reach en- or subglacial areas through crevasses and thus affect the subglacial sediment transport and glacial erosion. Here we present the first results regarding the geotechnical rock slope activity of "Schwarze Wand". The "Schwarze Wand" is located at 2400 - 2800 m.a.s.l., right above the tongue of the Gepatschferner, which is one of the largest glaciers in Tyrol (Austria) and contemporarily affected by a high retreat rate. The rock mass consists of strong foliated paragneisses which are dissected by large joint sets. These joint sets provide sliding planes, which favor slope failures. To monitor the rock slope activity at the "Schwarze Wand", multitemporal terrestrial laser scans were carried out in 2012 and 2013 to detect and quantify mass movements. Additional, high resoluted multitemporal airborne laser scan data (10 points/m²) are available to trace larger scale rock slope deformations. The investigations are conducted by the DFG- joint research project PROSA (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps). Our LiDAR data as well as field observations are showing enhanced rock fall activity at the scarp in the last years which is assumed to be the consequence of an activation of a larger deep

  19. Nitrogen deposition along differently exposed slopes in the Bavarian Alps.

    PubMed

    Kirchner, Manfred; Fegg, Wolfgang; Römmelt, Horst; Leuchner, Michael; Ries, Ludwig; Zimmermann, Ralf; Michalke, Bernd; Wallasch, Markus; Maguhn, Jürgen; Faus-Kessler, Theresa; Jakobi, Gert

    2014-02-01

    The Alps are affected by high nitrogen deposition, particularly in the fringe of the Northern and Southern Alps. In the framework of a two-year monitoring study performed in 2010 and 2011, we investigated the ammonia and nitrogen dioxide air concentration and ammonium and nitrate deposition at different altitudes between 700 and 1,600 ma.s.l. in the Garmisch-Partenkirchen district in the Upper Bavaria region (Germany). Four-weekly measurements of deposition collected with bulk open field samplers and under-crown were performed in a profile perpendicular to the axis of the Loisach valley; measurements were conducted at eight sites. Whereas open field deposition ranged from 5 to 11 kg ha(-1)a(-1), nitrogen throughfall has reached up to 21 kg ha(-1)a(-1). Data from the valley and the slopes were compared with measurements performed on the platform of the Environmental Research Station Schneefernerhaus (Zugspitze) at an altitude of 2,650 ma.s.l. For the rough estimation of the total yearly deposition rate of nitrogen, the canopy uptake model was applied. By regarding nitrogen uptake by the trees, total deposition can exceed the throughfall in all sites by up to 50%. Additionally, we estimated the total deposition from the sum of wet and dry deposition. On the one side, the wet deposition could be extrapolated from the open field deposition. On the other side, we used the inferential method to calculate the dry deposition on the basis of NH3 and NO2 air concentrations and their literature based deposition velocities. Since fixed deposition velocities are inappropriate particularly in complex orography, we tried to find correction factors based upon terrain characteristics and meteorological considerations. Temperature monitoring at the eight sites and wind measurements at two sites provided some evidence for the semi-empirical parameterization. Due to numerous imponderabilities, the results of the two methods were not consistent for all sites.

  20. A giant submarine slope failure on the northern insular slope of Puerto Rico

    USGS Publications Warehouse

    Schwab, W.C.; Danforth, W.W.; Scanlon, K.M.; Masson, D.G.

    1991-01-01

    A large amphitheater-shaped scarp, approximately 55 km across, was imaged on the northern insular slope of Puerto Rico using long-range sidescan sonar and bathymetric data. This scarp results from the removal of more than 1500 km3 of Tertiary strata. A review of seismic-reflection profiles, stratigraphic data, and subsidence models of the northern insular margin of Puerto Rico were used to infer that large-scale slope failure was induced by the tectonic oversteepening of the insular slope and was responsible for the formation of the scarp. The oversteepening probably was caused by the most recent episode of convergence of the Caribbean and North American plates, which began between approximately 4 and 2.5 m.y. ago. The Tertiary strata have been tilted approximately 4.5?? to the north in the last 4 m.y. ?? 1991.

  1. Check dams effects on sediment transport in steep slope flume

    NASA Astrophysics Data System (ADS)

    Piton, Guillaume; Recking, Alain

    2014-05-01

    Depending on many influences (geology, relief, hydrology, land use, etc.) some mountainous watershed are prone to cause casualties and facilities damages. Large amounts of sediments episodically released by torrents are often the biggest problem in torrent related hazard mitigation. Series of transversal structures as check dams and ground sills are often used in the panel of risk mitigation technics. A large literature exits on check dams and it mainly concerns engineering design, e.g. toe scouring, stability stress diagram, changes in upper and lower reaches equilibrium slopes. Check dams in steep slope rivers constitute fixed points in the bed profile and prevent general bed incision. However their influence on sediment transport once they are filled is not yet clear. Two flume test campaigns, synthetize in Table 1, were performed to investigate this question: Table 1 : experiment plan Run (duration) Ref1 (50h)CD1a (30h)CD1b (30h)Ref2 (92h)CD2 (18h) Solid feeding discharge (g.s^-1) 44 44 44 60 60 Number of check dams none 1 3 none 2 A nearly 5-m-long, 10-cm-wide and 12%-steep flume was used. The water discharge was set to 0,55 l/s in all runs. A mixture of poorly sorted natural sediments with diameters between 0.8 and 40 mm was used. An open solid-discharge-feeding circuit kept the inlet sediment flux constant during all experiments. As both feeding rates did not present variation, changes in outlet solid discharge were assumed to be due to bed variations in the bed storage. We observed strong fluctuations of solid flux and slope in each reaches of all runs between: (i) steep aggradating armoured bed and (ii) less steep and finer bed releasing bedload sheets during erosion events and inducing bedload pulses. All experiments showed consistent results: transported volume associated with erosion event decreased with the length between two subsequent check dams. Solid transversal structures shorten the upstream erosion-propagation and avoid downstream change in the

  2. Transhumanism, medical technology and slippery slopes

    PubMed Central

    McNamee, M J; Edwards, S D

    2006-01-01

    In this article, transhumanism is considered to be a quasi‐medical ideology that seeks to promote a variety of therapeutic and human‐enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and one particular criticism, moral arbitrariness, that undermines both weak and strong transhumanism is highlighted. PMID:16943331

  3. Transhumanism, medical technology and slippery slopes.

    PubMed

    McNamee, M J; Edwards, S D

    2006-09-01

    In this article, transhumanism is considered to be a quasi-medical ideology that seeks to promote a variety of therapeutic and human-enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and one particular criticism, moral arbitrariness, that undermines both weak and strong transhumanism is highlighted.

  4. Regional method to assess offshore slope stability.

    USGS Publications Warehouse

    Lee, H.J.; Edwards, B.D.

    1986-01-01

    The slope stability of some offshore environments can be evaluated by using only conventional acoustic profiling and short-core sampling, followed by laboratory consolidation and strength testing. The test results are synthesized by using normalized-parameter techniques. The normalized data are then used to calculate the critical earthquake acceleration factors or the wave heights needed to initiate failure. These process-related parameters provide a quantitative measure of the relative stability for locations from which short cores were obtained. The method is most applicable to offshore environments of gentle relief and simple subsurface structure and is not considered a substitute for subsequent site-specific analysis. -from ASCE Publications Information

  5. Visible spectral slope survey of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Erasmus, Nicolas; Rivkin, Andrew S.; Sickafoose, Amanda A.

    2016-10-01

    Jupiter's Trojans are predicted by the Nice Model [1,2] to be Trans-Neptunian Objects (TNOs) that moved from 30+ AU to 5.2 AU during the early evolution period of the Solar System. This model, predicting giant planet migration and widespread transport of material throughout the Solar System, is however still lacking important constraints. Correlations between the composition, size, and orbital geometry of Jupiter's Trojans can provide additional information to test predicted migration and evolution models.Two main colour groups have been observed, roughly equivalent to the C (plus low-albedo X) and D classes with distinguishable spectral slopes, and one interpretation is that the two groups have different compositions [3]. Independent compositions together with hints of differing orbital inclination distributions could imply separate formation locations; therefore, determining the relative fractions of C and D asteroids at different sizes would provide a key test for Solar System dynamical models. However, there is a caveat: the distinct colour groups could also arise by other means. Regolith processes or "space weathering" such as micrometeorite impacts and UV irradiation of ice are also plausible explanations for a range of spectrographic slopes from C-like to D-like [4].Here we report on our latest survey observations at Sutherland, South Africa of approximately 50 Trojan targets using the Sutherland High Speed Optical Camera (SHOC) [5] on the 74" telescope. These observations are part of a larger multi-telescope survey to determine the spectral slopes (C-like or D-like) for multiple Trojans, focusing on those of small size. These slopes can be used to determine the relative fraction of C+X and D asteroids at different sizes to determine whether what is seen is more consistent with regolith processes or different compositions.References:[1] A. Morbidelli, et al. Nature, 435, 462-465, (2005)[2] R. Gomes, et al. Nature 435, 466-469 (2005)[3] J.P. Emery, et al. The

  6. Sedimentary processes on the Atlantic Continental Slope of the United States

    USGS Publications Warehouse

    Knebel, H. J.

    1984-01-01

    Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and

  7. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    SciTech Connect

    Rutqvist, Jonny; Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-05-15

    To better understand the role of groundwater-level changes on rock-slope deformation and damage, a carbonate rock slope (30 m x 30 m x 15 m) was extensively instrumented for mesoscale hydraulic and mechanical measurements during water-level changes. The slope is naturally drained by a spring that can be artificially closed or opened by a water gate. In this study, a 2-hour slope-dewatering experiment was analyzed. Changes in fluid pressure and deformation were simultaneously monitored, both at discontinuities and in the intact rock, using short-base extensometers and pressure gauges as well as tiltmeters fixed at the slope surface. Field data were analyzed with different coupled hydromechanical (HM) codes (ROCMAS, FLAC{sup 3D}, and UDEC). Field data indicate that in the faults, a 40 kPa pressure fall occurs in 2 minutes and induces a 0.5 to 31 x 10{sup -6} m normal closure. Pressure fall is slower in the bedding-planes, lasting 120 minutes with no normal deformation. No pressure change or deformation is observed in the intact rock. The slope surface displays a complex tilt towards the interior of the slope, with magnitudes ranging from 0.6 to 15 x 10{sup -6} rad. Close agreement with model for both slope surface and internal measurements is obtained when a high variability in slope-element properties is introduced into the models, with normal stiffnesses of k{sub n{_}faults} = 10{sup -3} x k{sub n{_}bedding-planes} and permeabilities of k{sub h{_}faults} = 10{sup 3} x k{sub h{_}bedding-planes}. A nonlinear correlation between hydraulic and mechanical discontinuity properties is proposed and related to discontinuity damage. A parametric study shows that 90% of slope deformation depends on HM effects in a few highly permeable and highly deformable discontinuities located in the basal, saturated part of the slope while the remaining 10% are related to elasto-plastic deformations in the low-permeability discontinuities induced by complex stress/strain transfers from

  8. Comparing methods of quantifying tibial acceleration slope.

    PubMed

    Duquette, Adriana M; Andrews, David M

    2010-05-01

    Considerable variability in tibial acceleration slope (AS) values, and different interpretations of injury risk based on these values, have been reported. Acceleration slope variability may be due in part to variations in the quantification methods used. Therefore, the purpose of this study was to quantify differences in tibial AS values determined using end points at various percentage ranges between impact and peak tibial acceleration, as a function of either amplitude or time. Tibial accelerations were recorded from 20 participants (21.8 +/- 2.9 years, 1.7 m +/- 0.1 m, 75.1 kg +/- 17.0 kg) during 24 unshod heel impacts using a human pendulum apparatus. Nine ranges were tested from 5-95% (widest range) to 45-55% (narrowest range) at 5% increments. AS(Amplitude) values increased consistently from the widest to narrowest ranges, whereas the AS(Time) values remained essentially the same. The magnitudes of AS(Amplitude) values were significantly higher and more sensitive to changes in percentage range than AS(Time) values derived from the same impact data. This study shows that tibial AS magnitudes are highly dependent on the method used to calculate them. Researchers are encouraged to carefully consider the method they use to calculate AS so that equivalent comparisons and assessments of injury risk across studies can be made.

  9. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more » SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.« less

  10. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  11. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    SciTech Connect

    Andraka, Charles E.

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals. SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.

  12. Slope failures in Northern Vermont, USA

    USGS Publications Warehouse

    Lee, F.T.; Odum, J.K.; Lee, J.D.

    1997-01-01

    Rockfalls and debris avalanches from steep hillslopes in northern Vermont are a continuing hazard for motorists, mountain climbers, and hikers. Huge blocks of massive schist and gneiss can reach the valley floor intact, whereas others may trigger debris avalanches on their downward travel. Block movement is facilitated by major joints both parallel and perpendicular to the glacially over-steepened valley walls. The slope failures occur most frequently in early spring, accompanying freeze/thaw cycles, and in the summer, following heavy rains. The study reported here began in August 1986 and ended in June 1989. Manual and automated measurements of temperature and displacement were made at two locations on opposing valley walls. Both cyclic-reversible and permanent displacements occurred during the 13-month monitoring period. The measurements indicate that freeze/thaw mechanisms produce small irreversible incremental movements, averaging 0.53 mm/yr, that displace massive blocks and produce rockfalls. The initial freeze/thaw weakening of the rock mass also makes slopes more susceptible to attrition by water, and heavy rains have triggered rockfalls and consequent debris flows and avalanches. Temperature changes on the rock surface produced time-dependent cyclic displacements of the rock blocks that were not instantaneous but lagged behind the temperature changes. Statistical analyses of the data were used to produce models of cyclic time-dependent rock block behavior. Predictions based solely on temperature changes gave poor results. A model using time and temperature and incorporating the lag effect predicts block displacement more accurately.

  13. Water budgets of martian recurring slope lineae

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.; Harrison, Keith P.; Stillman, David E.

    2014-05-01

    Flowing water, possibly brine, has been suggested to cause seasonally reappearing, incrementally growing, dark streaks on steep, warm slopes on Mars. We modeled these Recurring Slope Lineae (RSL) as isothermal water flows in thin surficial layers driven by gravity and capillary suction, with input from sources in the headwall and loss to evaporation. The principal observables are flow duration and length. At 40% porosity, we find that flow thicknesses reaching saturation can be just 50 mm or so and freshwater RSL seasonally require 2-10 m3 of H2O per m of source headwall. Modeled water budgets are larger for brines because they are active for a longer part of each day, but this could be partly offset by lower evaporation rates. Most of the discharged water is lost to evaporation even while RSL are actively lengthening. The derived water volumes, while small, exceed those that can be supplied by annual melting of near-surface ice (0.2-2 m3/m for a 200-mm melt depth over 1-10 m height). RSL either tap a liquid reservoir startlingly close to the surface, or the actual water budget is several times smaller. The latter is possible if water never fully saturates RSL along their length. Instead, they would advance like raindrops on a window, as intermittent slugs of water that overrun prior parts of the flow at residual saturation. Annual recharge by vapor cold trapping might then be supplied from the atmosphere or subsurface.

  14. Explicit limit equilibrium solution for slope stability

    NASA Astrophysics Data System (ADS)

    Zhu, D. Y.; Lee, C. F.

    2002-12-01

    Conventional methods of slices used for slope stability analysis satisfying all equilibrium conditions involves generally solving two highly non-linear equations with respect to two unknowns, i.e. the factor of safety and the associated scaling parameter. To solve these two equations, complicated numerical iterations are required with non-convergence occasionally occurring. This paper presents an alternative procedure to derive the three equilibrium equations (horizontal and vertical forces equations and moment equation) based on an assumption regarding the normal stress distribution along the slip surface. Combination of these equations results in a single cubic equation in terms of the factor of safety, which is explicitly solved. Theoretical testing demonstrates that the proposed method yields a factor of safety in reasonable agreement with a closed-form solution based on the theory of plasticity. Example studies show that the difference in values of factor of safety between the proposed method, the Spencer method and the Morgenstern-Price method is within 5%. Application of the proposed method to practical slope engineering problems is rather straightforward, but its solution is of the same precision as those given by the conventional rigorous methods of slices since it is still within the rigorous context.

  15. Laplacian versus adjacency matrix in quantum walk search

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Tarrataca, Luís; Nahimov, Nikolay

    2016-10-01

    A quantum particle evolving by Schrödinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Laplacian and adjacency matrix. The two walks differ qualitatively and quantitatively in their required jumping rate, runtime, sampling of marked vertices, and in what constitutes a natural initial state. Thus the choice of the Laplacian or adjacency matrix to effect the walk has important algorithmic consequences.

  16. Laplacian versus adjacency matrix in quantum walk search

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Tarrataca, Luís; Nahimov, Nikolay

    2016-06-01

    A quantum particle evolving by Schrödinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Laplacian and adjacency matrix. The two walks differ qualitatively and quantitatively in their required jumping rate, runtime, sampling of marked vertices, and in what constitutes a natural initial state. Thus the choice of the Laplacian or adjacency matrix to effect the walk has important algorithmic consequences.

  17. Factors controlling Pliocene-Quaternary sedimentation on the Gulf of Cadiz Continental Slope, Spain

    SciTech Connect

    Baraza, J.; Maldonado, A. ); Nelson, C.H. )

    1990-05-01

    The Pliocene-Quaternary sedimentation on the Gulf of Cadiz continental slope records an interaction between the tectonics responsible for a complex bathymetry, and the Mediterranean outflow undercurrent developed after the opening of the Gibraltar Strait at the end of the Miocene. During periods of low sea level, sedimentation was controlled mainly by changes in the sediment supply from the various rivers that feed the area. During high sea level, periods like the present, deposition is controlled mainly by the Mediterranean undercurrent. The Mediterranean undercurrent flows out from the Strait of Gibraltar toward the northwest and impinges on the Cadiz continental slope at 300- to 500-m depths. Flows are fastest near the Strait of Gibraltar (as much as 200 m/sec) and slow to 10-20 m/sec westward Portugal. The gradual decrease in undercurrent speed from the Strait of Gibraltar to the center of the Gulf of Cadiz results in a westward change from erosional to depositional characteristics on the upper continental slope. Erosion in the southeastern part of the Gulf is characterized by exposed bed rock on the sea floor and by erosional truncation of reflectors on sea-floor slopes. In contrast, several prograding shelf-break types and slope configurations occur in the west, showing the influence of tectonic subsidence, diapir uplift and sediment supply on the Pliocene-Quaternary sedimentation. At middle slope depths, high-energy depositional features, such as cut-and-fill structures, are observed in seismic profiles. Energy decreasing bed-form fields, from east to west, are shown in profiles and sonographic of the most sufficial units on the deep platforms. In addition, sediment drift bodies deposit against basement diapiric ridges near the canyon-ridge central area.

  18. Seismic displacement of geosynthetic-reinforced slopes subject to cracks

    NASA Astrophysics Data System (ADS)

    Abd, Akram H.

    2015-09-01

    The kinematical approach of limit analysis associated with pseudo static assumption is employed to evaluate the displacement of geosynthetically reinforced soil slopes subject to cracks. According to existing literature, the seismic displacements for soil slopes have been calculated with the effect of possible cracking being neglected, such cracking is likely to emerge due to an earthquake with even moderately large motion. In this paper, a new technique is proposed to estimate the horizontal displacement of the slope toe for geosynthetically reinforced slopes resulting from a given earthquake postulating a rough estimation of real time crack propagation. The effect of crack formation as part of the failure process during the earthquake on the horizontal displacement of the slope toe is specifically tackled. The seismic displacement is estimated by incorporating a stepwise yield acceleration corresponding to postulated crack propagation. Rotational failure mechanisms accounting for either intact reinforced slopes that can show cracks or reinforced slopes with pre-existing cracks are considered. Two types of reinforcement layouts are employed here; uniformly distributed reinforcement along the slope height and linearly increasing distribution (i.e. the spacing between layers decreases linearly with depth). An example illustrating the procedure for a given earthquake is presented. Results show that the horizontal displacement of the slope toe calculated using the stepwise yield acceleration for both uniform distribution of reinforcement and for linearly increasing distribution can provide a reasonable estimation of the slope displacement. Furthermore, in terms of the slope displacement, linearly increasing distribution yields better results than the uniform layout.

  19. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  20. The effect of beach slope on tidal influenced saltwater intrusion

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Shen, C.; Jin, G.; Xin, P.; Hua, G.; Tao, X.; Zhao, J.

    2015-12-01

    Beach slope changes the tidal induced saltwater-freshwater circulations in coastal aquifers. However, the effect of beach slope on tidal influenced saltwater-freshwater mixing process is far from understood. Based on sand flume experiments and numerical simulations, we investigated the intrusion process of saltwater into freshwater under tidal forcing and variable beach slopes. The sand flume experiment results show that milder slope induces larger upper saline plume (USP) and seaward salt wedge interface (SWI) under tidal forcing. While, the steady state SWI keeps stagnant with different beach slopes. Consistent with the previous research, our numerical simulations also show a lager flux exchange across the milder beach induced by the tidal fluctuations. The groundwater table fluctuates more intensify with deeper beach slope. The next step of our study will pay attention to the effect of beach slope on the instability of USP which induces the salt-fingering flow.

  1. On the Adjacent Eccentric Distance Sum Index of Graphs

    PubMed Central

    Qu, Hui; Cao, Shujuan

    2015-01-01

    For a given graph G, ε(v) and deg(v) denote the eccentricity and the degree of the vertex v in G, respectively. The adjacent eccentric distance sum index of a graph G is defined as ξsv(G)=∑v∈V(G)ε(v)D(v)deg(v), where D(v)=∑u∈V(G)d(u,v) is the sum of all distances from the vertex v. In this paper we derive some bounds for the adjacent eccentric distance sum index in terms of some graph parameters, such as independence number, covering number, vertex connectivity, chromatic number, diameter and some other graph topological indices. PMID:26091095

  2. Molecular disorganization of axons adjacent to human lacunar infarcts.

    PubMed

    Hinman, Jason D; Lee, Monica D; Tung, Spencer; Vinters, Harry V; Carmichael, S Thomas

    2015-03-01

    Cerebral microvascular disease predominantly affects brain white matter and deep grey matter, resulting in ischaemic damage that ranges from lacunar infarcts to white matter hyperintensities seen on magnetic resonance imaging. These lesions are common and result in both clinical stroke syndromes and accumulate over time, resulting in cognitive deficits and dementia. Magnetic resonance imaging studies suggest that these lesions progress over time, accumulate adjacent to prior lesions and have a penumbral region susceptible to further injury. The pathological correlates of this adjacent injury in surviving myelinated axons have not been previously defined. In this study, we sought to determine the molecular organization of axons in tissue adjacent to lacunar infarcts and in the regions surrounding microinfarcts, by determining critical elements in axonal function: the morphology and length of node of Ranvier segments and adjacent paranodal segments. We examined post-mortem brain tissue from six patients with lacunar infarcts and tissue from two patients with autosomal dominant retinal vasculopathy and cerebral leukoencephalopathy (previously known as hereditary endotheliopathy with retinopathy, nephropathy and stroke) who accumulate progressive white matter ischaemic lesions in the form of lacunar and microinfarcts. In axons adjacent to lacunar infarcts yet extending up to 150% of the infarct diameter away, both nodal and paranodal length increase by ∼20% and 80%, respectively, reflecting a loss of normal cell-cell adhesion and signalling between axons and oligodendrocytes. Using premorbid magnetic resonance images, brain regions from patients with retinal vasculopathy and cerebral leukoencephalopathy that harboured periventricular white matter hyperintensities were selected and the molecular organization of axons was determined within these regions. As in regions adjacent to lacunar infarcts, nodal and paranodal length in white matter of these patients is

  3. Molecular disorganization of axons adjacent to human lacunar infarcts

    PubMed Central

    Lee, Monica D.; Tung, Spencer; Vinters, Harry V.; Carmichael, S. Thomas

    2015-01-01

    Cerebral microvascular disease predominantly affects brain white matter and deep grey matter, resulting in ischaemic damage that ranges from lacunar infarcts to white matter hyperintensities seen on magnetic resonance imaging. These lesions are common and result in both clinical stroke syndromes and accumulate over time, resulting in cognitive deficits and dementia. Magnetic resonance imaging studies suggest that these lesions progress over time, accumulate adjacent to prior lesions and have a penumbral region susceptible to further injury. The pathological correlates of this adjacent injury in surviving myelinated axons have not been previously defined. In this study, we sought to determine the molecular organization of axons in tissue adjacent to lacunar infarcts and in the regions surrounding microinfarcts, by determining critical elements in axonal function: the morphology and length of node of Ranvier segments and adjacent paranodal segments. We examined post-mortem brain tissue from six patients with lacunar infarcts and tissue from two patients with autosomal dominant retinal vasculopathy and cerebral leukoencephalopathy (previously known as hereditary endotheliopathy with retinopathy, nephropathy and stroke) who accumulate progressive white matter ischaemic lesions in the form of lacunar and microinfarcts. In axons adjacent to lacunar infarcts yet extending up to 150% of the infarct diameter away, both nodal and paranodal length increase by ∼20% and 80%, respectively, reflecting a loss of normal cell-cell adhesion and signalling between axons and oligodendrocytes. Using premorbid magnetic resonance images, brain regions from patients with retinal vasculopathy and cerebral leukoencephalopathy that harboured periventricular white matter hyperintensities were selected and the molecular organization of axons was determined within these regions. As in regions adjacent to lacunar infarcts, nodal and paranodal length in white matter of these patients is

  4. Nonlinear spin wave coupling in adjacent magnonic crystals

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.; Nikitov, S. A.

    2016-07-01

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  5. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the

  6. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  7. 4. Elevation looking southwest from adjacent hills on northeast side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Elevation looking southwest from adjacent hills on northeast side of bridge, taken from river level. Note entire east side and substructure. - Presumpscot Falls Bridge, Spanning Presumptscot River at Allen Avenue extension, 0.75 mile west of U.S. Interstate 95, Falmouth, Cumberland County, ME

  8. 12. VIEW LOOKING WEST FROM THE PARKING LOT ADJACENT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW LOOKING WEST FROM THE PARKING LOT ADJACENT TO THE STEEL PLANT OFFICES. BAR AND BILLET MILLS AND, IN THE DISTANCE, THE BASIC OXYGEN FURNACES MAY BE SEEN. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  9. 8. Exterior view, showing tank and associated piping adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 10. Detail and contextual view of bridge and adjacent farmstead ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail and contextual view of bridge and adjacent farmstead setting. Note laced vertical compression members, latticed portal strut, decorative strut bracing, and lightness of diagonal and lateral tension members. View to southeast through southeast portal from truss mid-span. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  11. 11. Interior detail, Boiler Room, fire door to the adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior detail, Boiler Room, fire door to the adjacent Blacksmith Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to southwest (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  12. 1. VIEW FROM SOUTHWEST SHOWING SOUTH (FRONT) ELEVATION, ADJACENT LOUGHRAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW FROM SOUTHWEST SHOWING SOUTH (FRONT) ELEVATION, ADJACENT LOUGHRAN BUILDING (BASSIN'S RESTAURANT) (HABS No. DC-357), 501-511 14TH STREET (THE LOCKER ROOM) HABS No. DC-356) ON CORNER, AND MUNSEY BUILDING (HABS No. DC-358) - William J. Stone Building, 1345 E Street Northwest, Washington, District of Columbia, DC

  13. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ENTRY TO NEIGHBORHOOD. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  14. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING INTERSECTION OF ACACIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING INTERSECTION OF ACACIA ROAD WITH BIRCH CIRCLE. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  15. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON RIGHT, AND HOUSING AREA ON LEFT. VIEW FACING EAST/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  16. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING WESTERN SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING WESTERN SIDE OF NEIGHBORHOOD. VIEW FACING NORTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  17. 1. OVERVIEW SHOWING FIRING CONTROL BLOCKHOUSE 0502 AND ADJACENT OBSERVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW SHOWING FIRING CONTROL BLOCKHOUSE 0502 AND ADJACENT OBSERVATION TOWER. WATER BRAKE TROUGH SEGMENT AT LOWER RIGHT. Looking north northeast. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  18. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  20. 4. REAR ELEVATION, DETAIL OF CONSTRUCTION, ADJACENT CORNER POSTS BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. REAR ELEVATION, DETAIL OF CONSTRUCTION, ADJACENT CORNER POSTS BETWEEN BUILDING PERIODS 1 AND 3. NOTE REUSED WOOD STRIP NAILED TO BUILDING PERIOD 1 POST INSCRIBED 'ST. LEONARD'. THERE ARE NO NAIL HOLES IN THE PERIOD 3 POST, THE FARRING STRIPS ADJUST FOR CLADDING - Charles' Gift, State Routes 2 & 4, Lusby, Calvert County, MD

  1. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  2. 12. LOG FOUNDATION ELEMENTS OF THE SAWMILL ADJACENT TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. LOG FOUNDATION ELEMENTS OF THE SAWMILL ADJACENT TO THE CANAL, LOOKING EAST. BARREN AREA IN FOREGROUND IS DECOMPOSING SAWDUST. DIRT PILE IN BACKGROUND IS THE EDGE OF THE SUMMIT COUNTY LANDFILL. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  3. LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ROOM; THE PIPES AT THE BOTTOM ARE PART OF THE RADIANT HEATING SYSTEM USED FOR HEATING THE FACTORY DURING COLD WEATHER. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA

  4. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  5. Enhanced current-rectification in bilayer graphene with an electrically tuned sloped bandgap.

    PubMed

    Aparecido-Ferreira, Alex; Miyazaki, Hisao; Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-12-21

    We propose a novel sloped dielectric geometry in graphene as a band engineering method for widening the depletion region and increasing the electrical rectification effect in graphene pn junctions. Enhanced current-rectification was achieved in a bilayer graphene with a sloped dielectric top gate and a normal back gate. A bias was applied to the top gate to induce a spatially modulated and sloped band configuration, while a back-gate bias was applied to open a bandgap. The sloped band can be tuned to separate n- and p-type regions in the bilayer graphene, depending on a suitable choice of gate voltage. The effective depletion region between the n- and p-type regions can be spatially enlarged due to the proposed top-gate structure. As a result, a strong non-linear electric current was observed during drain bias sweeping, demonstrating the expected rectification behavior with an on/off ratio higher than all previously reported values for graphene pn junctions. The observed rectification was modified to a linear current-voltage relationship by adjusting the biases of both gates to form an nn- or pp-type junction configuration. These results demonstrate that an external voltage can control the current flow in atomic film diodes.

  6. Establishment of Ulmus pumila seedlings on steppe slopes of the northern Mongolian mountain taiga

    NASA Astrophysics Data System (ADS)

    Dulamsuren, Choimaa; Hauck, Markus; Nyambayar, Suran; Osokhjargal, Dalaikhuu; Leuschner, Christoph

    2009-09-01

    The potential of Siberian elm ( Ulmus pumila) to regenerate from seeds was experimentally studied on south-facing slopes in the northern Mongolian mountain taiga. These slopes are covered with a vegetation mosaic of different steppe communities and small, savanna-like, U. pumila open woodlands. The hypothesis is tested that the xeric microclimate and high herbivore densities limit the success of seedling establishment in U. pumila and thereby prevent elm from complete encroachment of the grassland-dominated slopes. Seeds were sown and 2-yr-old seedlings were planted prior to the growing season. The water supply was manipulated by irrigation, as was the feeding pressure by caterpillars with an insecticide. Large herbivores were excluded by fencing. Seeds germinated throughout the summer, but the emerged seedlings did not survive for more than 2 or 3 weeks. Germination rates increased with increasing soil water content and decreasing soil temperatures. Many seeds were consumed by granivores. Most planted 2-yr-old seedlings survived the two growing seasons covered by the study. However, the seedlings suffered from feeding damage by insects (gypsy moth, grasshoppers) and small mammals, from nitrogen deficiency and, to a lesser degree, from drought. The results suggest that high susceptibility of newly emerged seedlings to environmental stresses is a serious bottle neck for U. pumila that prevents them from the formation of closed forests on northern Mongolia's steppe slopes, whereas the probability for seedling survival after this early stage is high.

  7. Pomeron intercept and slope: A QCD connection

    SciTech Connect

    Goulianos, Konstantin

    2009-12-01

    The ratio r of intercept to slope of the Pomeron trajectory is derived in a QCD inspired parton model approach to diffraction based on a (re)normalization of the pp/pp single-diffractive cross section designed to enforce unitarity constraints by eliminating overlapping rapidity gaps. As the collision energy increases, the renormalized single-diffractive cross section tends to a constant which depends on the ratio r. Identifying the constant as the {sigma}{sub o} of the total cross section, {sigma}={sigma}{sub o}{center_dot}s{sup {epsilon}}, yields the ratio r in terms of measured parameters that can be phenomenologically expressed in terms of the pion mass and QCD color factors. The result agrees with the measured value of r.

  8. Nocturnal flow on a western Colorado slope

    SciTech Connect

    Leone, J.M. Jr.; Gudiksen, P.H.

    1990-04-01

    The Department of Energy sponsored Atomspheric Studies in Complex Terrain (ASCOT) program has conducted a research program designed to increase our knowledge and understanding of terrain-dominated flows with specific emphasis on nocturnal flows within mountain valleys. ASCOT has sponsored both field studies and numerical modeling efforts to improve our understanding of the wind, temperature and turbulence structure of nocturnal drainage flows. One of the most recent ASCOT sponsored field studies involves a study within the Mesa Creek Basin in western Colorado to investigate the seasonal frequency of occurrence of drainage flows along the sloped surfaces and within the basin, and to evaluate the effect of the ambient meteorology on their development. The Mesa Creek Basin, situated on the north slope of the Grand Mesa, encompasses a roughly 10 {times} 20 km area that is approximately 30 km east of Grand Junction. The observational segment of the study was undertaken jointly by the Lawrence Livermore National Laboratory and the NOAA Wave Propagation Laboratory, and involved the operation of network of eight meteorological towers and a monostatic sodar within the Mesa Creek study area over a period of one year that extended from December 1988 through November 1989. These measurements were augmented by tethersonde observations to define the vertical wind and temperature structure during a few nights. The modeling portion of the study is being undertaken by Lawrence Livermore Laboratory using a three-dimensional prognostic boundary layer model to gain further insight into the dynamics of the seasonal variations and the effect of cloud cover on the development of the drainage flows. It is the purpose of this paper to present preliminary results form a numerical simulation done as part of this study. 4 refs., 7 figs.

  9. Consequentialism, complacency, and slippery slope arguments.

    PubMed

    Oakley, Justin; Cocking, Dean

    2005-01-01

    The standard problem with many slippery slope arguments is that they fail to provide us with the necessary evidence to warrant our believing that the significantly morally worse circumstances they predict will in fact come about. As such these arguments have widely been criticised as 'scare-mongering'. Consequentialists have traditionally been at the forefront of such criticisms, demanding that we get serious about guiding our prescriptions for right action by a comprehensive appreciation of the empirical facts. This is not surprising, since consequentialism has traditionally been committed to the idea that right action be driven by empirical realities, and this hard-headed approach has been an especially notable feature of Australian consequentialism. But this apparent empirical hard-headedness is very selective. While consequentialists have understood their moral outlook and commitments as guided by a partnership with empirical science - most explicitly in their replies to the arguments of their detractors - some consequentialists have been remarkably complacent about providing empirical support for their own prescriptions. Our key example here is the consequentialist claim that our current practises of partiality in fact maximise the good, impartially conceived. This claim has invariably been made without compelling support for the large empirical claims upon which it rests, and so, like the speculative empirical hand-waving of weak slippery slope arguments, it seems similarly to be undermined. While these arguments have presented us with 'wishful thinking' rather than 'scare-mongering', we argue in this paper that their complacency in meeting the relevant empirical justificatory burden remains much the same.

  10. Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky

    NASA Astrophysics Data System (ADS)

    Hupp, Cliff R.; Carey, William P.

    1990-07-01

    A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years.

  11. Slope Stability: Factor of Safety along the Seismically Active Continental Slope Offshore Sumatra

    NASA Astrophysics Data System (ADS)

    Patton, J. R.; Goldfinger, C.; Djadjadihardja, Y.; None, U.

    2013-12-01

    Recent papers have documented the probability that turbidites deposited along and downslope of subduction zone accretionary prisms are likely the result of strong ground shaking from great earthquakes. Given the damaging nature of these earthquakes, along with the casualties from the associated tsunamis, the spatial and temporal patterns of these earthquakes can only be evaluated with paleoseismologic coring and seismic reflection methods. We evaluate slope stability for seafloor topography along the Sunda subduction offshore Sumatra, Indonesia. We use sediment material properties, from local (Sumatra) and analogous sites, to constrain our estimates of static slope stability Factor of Safety (FOS) analyses. We then use ground motion prediction equations (GMPE's) to estimate ground motion intensity (Arias Intensity, AI) and acceleration (Peak Ground Acceleration, PGA), as possibly generated by fault rupture, to constrain seismic loads for pseudostatic slope stability FOS analyses. The ground motions taper rapidly with distance from the fault plane, consistent with ground motion - fault distance relations measured during the 2011 Tohoku-Oki subduction zone earthquake. Our FOS analyses include a Morgenstern method of slices probabilistic analysis for 2-D profiles along with Critical Acceleration (Ac) and Newmark Displacement (Dn) analysis of multibeam bathymetry of the seafloor. In addition, we also use estimates of ground motion modeled with a 2004 Sumatra-Andaman subduction zone (SASZ) earthquake fault slip model, to also compare with our static FOS analyses of seafloor topography. All slope and trench sites are statically stable (FOS < 1) and sensitive to ground motions generated by earthquakes of magnitude greater than 7. We conclude that for earthquakes of magnitude 6 to 9, PGA of 0.4-0.6 to 1.4-2.5 g would be expected, respectively, from existing GMPE's. However, saturation of accelerations in the accretionary wedge may limit actual accelerations to less than 1

  12. Multibeam Mapping of Active Slope Instability Features: Examples from the Fraser River and Squamish River Deltas, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Hill, P. R.

    2004-12-01

    Multibeam mapping of the coastal waters of British Columbia has immensly improved our ability to identify and assess submarine landslide and tsunami hazard. This paper will present analysis of high-resolution images of slope instability features from two delta slopes where recent slope failure can be documented through repetitive multibeam mapping and/or comparison with previous single-beam hydrographic soundings. Numerous mass movement features characterize the slope of the Fraser River delta, all the recent features being located at the mouths of distributary channels. Engineering works have maintained the main channel in a fixed position since the 1930's, contributing to over-steepening of the slope and development of a network of submarine channels. Repetitive multibeam mapping shows that recent slope failures have occurred in numerous locations around the main channel lobe, some at the head of a large submarine channel system and others as isolated small failures that form the headwalls of small submarine channels. The scalloped morphology and association with channels, together with volume estimates derived from repetitive multibeam mapping, indicate that these features result from shallow, small volume liquefaction failures. Smaller scale, shallow slides are present on the very shallow water slope area adjacent to the channels, raising the possibility of groundwater seepage as an influence on slope stability. The slide masses from these failures are rapidly transformed into gravity flows that carve the submarine channels. Slides and channels of a similar scale are found at the mouth of a secondary distributary channel and an abandoned distributary channel. The multibeam imagery allows discrimination between recent slide features and relict features, the latter showing infilling or reworking by bottom currents. An area of undulatory seafloor, located on the flank of the main distributary channel lobe, has been cited as a possible creep displacement feature

  13. Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2008-01-01

    In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.

  14. The susceptibility of rock slopes to earthquake-induced failure

    USGS Publications Warehouse

    Keefer, D.K.

    1993-01-01

    Faulure of rock slopes is a major cause of damage and casualties during moderate and strong earthquakes. This article presents a method for assessing the seismic stability of rock slopes, which can be applied on a regional scale, using data from existing maps, reports, aerial photographs, and reconnaissance-level field observations. The method is based on observed associations between landslide concentrations and slope characteristics in 24 earthquakes that occurred in various parts of the world. -from Author

  15. Determining The Slope Error Of A Parabolic Reflector

    NASA Technical Reports Server (NTRS)

    Christ, G. R.

    1985-01-01

    Approximate slope error determined with minimal test equipment. Test Setup for Determining Slope Error for Point-Focusing Dish includes pinhole camera at center of curvature and color-coded target mounted around pinhole. Floodlights illuminate target to minimize exposure time. New procedure provides good approximation of reflector slope error and is excellent tool for comparative analysis of reflectors used as solar collectors for microwave receivers.

  16. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  17. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping

    2016-04-01

    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30slopes ranging from 2.6% to 50%. The results show that the observed f based on a small-size runoff plot under rainfall conditions tends to be overestimated due to the increase in flow rate, or Re (Reynolds number), with downward cross sections and a good f-Re relation (f = KRe-1). There exists a good f-Re relation for granular surfaces and a good f-Fr relation (Fr, Froude number) for grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f-S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.

  18. Late Quaternary history of the southwestern St. Lawrence Lowlands and adjacent Adirondack Highlands

    SciTech Connect

    Pair, D.L. . Dept. of Geology)

    1993-03-01

    The reconstruction of Late Wisconsinan ice retreat, proglacial lakes, and Champlain Sea history from the northwest Adirondack slope and adjacent St. Lawrence Lowlands is critical to the synthesis of a regional picture of deglacial events in the eastern Great Lakes region. Unfortunately, these same areas are well known for their limited exposures, landforms covered by thick forest, large tracts of land inaccessible to detailed field mapping, and the overall paucity of glacial materials preserved on upland surfaces. Despite these limitations, a model which utilizes multiple and field-truthed evidence has been used to designate areas where ice border deposits indicate a substantial recessional position. It employs the following criteria in this analysis: sedimentology and morphostratigraphy of morainal landform segments and related sediments; orientation and continuity of ice border drainage channels; and the relationship of ice borders and drainage systems to well documented local and regional water bodies which accompanied ice retreat. The results of this approach have provided a unique regional picture of deglaciation. Despite the inherent limitations of working in upland areas to reconstruct glacial events, detailed morphostratigraphic correlations based on multiple lines of evidence can yield important information. The positions of five former ice borders have been reconstructed from the available data. These ice margins correspond closely with those documented previously by others adjoining areas. This type of study, utilizing multiple and field-truthed lines of evidence, constitutes a tangible step towards understanding the nature and history of ice retreat along this portion of the Laurentide Ice Sheet.

  19. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F.

    1996-12-31

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  20. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F. )

    1996-01-01

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  1. [Temporal and spatial variation of land degradation in alluvial oasis at northern slope of Tianshan Mountain].

    PubMed

    Wang, Yu-gang; Xiao, Du-ning; Li, Xiao-yu; Li, Yan

    2007-06-01

    Taking the Fubei Farm, a farming oasis of Sangong River watershed at the northern slope of Tianshan Mountain as study area, and by the methods of geostatistics, GIS and RS, this paper studied the temporal and spatial variation of land degradation in topsoil (0-20 cm) and its relationship with landscape structure. The results showed that in this oasis, human activity was the key factor resulting in the increase of landscape fragmentation and diversity. From 1983 to 2005, the land degradation area decreased by 26.69%, and the degradation degree was higher in the regions adjacent to desert than in those further inside the oasis. Gray desert soil was degraded much more seriously than saline soil and aquic soil. The regions of poor land quality had an alleviated degradation, with 65.38% of land area improved, while those of good land quality had an aggravated degradation, with 33.38% of land area degraded.

  2. [Analysis of related factors of slope plant hyperspectral remote sensing].

    PubMed

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  3. Observations of energetic turbulence on the Weddell Sea continental slope

    NASA Astrophysics Data System (ADS)

    Fer, Ilker; Darelius, Elin; Daae, Kjersti B.

    2016-01-01

    Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10-7 W kg-1 and 10-2 m2 s-1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a m thick layer near the bottom and within km across the slope.

  4. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-08-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  5. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  6. 8. VIEW OF THE ABERDEEN NO. 1 NORTH OPENING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE ABERDEEN NO. 1 NORTH OPENING AND FAN, SHOWING COLLAPSED HOIST HOUSE, CUT-STONE SLOPE ENTRY AND METAL FAN HOUSE, LOOKING SOUTHWEST - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  7. New adjacent Bis-tetrahydrofuran Annonaceous acetogenins from Annona muricata.

    PubMed

    Chang, Fang-Rong; Liaw, Chih-Chuang; Lin, Chih-Yuan; Chou, Chi-Jung; Chiu, Hui-Fen; Wu, Yang-Chang

    2003-03-01

    Bioactivity-guided fractionation led to the isolation of two new Annonaceous acetogenins, annocatacin A ( 1). and annocatacin B ( 2). from the seeds and the leaves, respectively, of Annona muricata. Compounds 1 and 2 are the first examples where the adjacent bis-tetrahydrofuran ring system is located at C-15. The new structures were elucidated and characterized by spectral and chemical methods. Both Annonaceous acetogenins 1 and 2 showed significant in vitro cytotoxicity toward the human hepatoma cell lines, Hep G2 and 2,2,15, and were compared with the known adjacent bis-tetrahydrofuran acetogenins, neoannonin ( 3). desacetyluvaricin ( 4). bullatacin ( 5). asimicin ( 6). annoglaucin ( 7). squamocin ( 8). and rollimusin ( 9).

  8. 38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX GAP ROTARY RECTIFIER. THIS UNIT GENERATED A MAGNETIC PULSE WHICH WAS TRANSMITTED TO THE COLLECTION PLATES IN THE ELECTROSTATIC PRECIPITATOR CHAMBER. THESE PERIODIC PULSES VIBRATE THE PLATES AND CAUSE PRECIPITATED ARTICLES OF SMOKE AND FLY ASH TO FALL TO THE BOTTOM OF THE PRECIPITATOR CHAMBER. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  9. 20. Interior view of fuel storage pit or vault adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Osmium complex binding to mismatched methylcytosine: effect of adjacent bases.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-01-01

    We investigated the efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes depended on the 5'-neighboring base of the 5-methylcytosine. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique side reaction was observed. However, the mismatched base pairs did not influence the selectivity of osmium complexation with methylated DNA.

  11. Jaw position uncertainty and adjacent fields in breast cancer radiotherapy.

    PubMed

    Hedin, Emma; Bäck, Anna; Chakarova, Roumiana

    2015-11-08

    Locoregional treatment of breast cancer involves adjacent, half blocked fields matched at isocenter. The objective of this work is to study the dosimetric effects of the uncertainties in jaw positioning for such a case, and how a treatment planning protocol including adjacent field overlap of 1 mm affects the dose distribution. A representative treatment plan, involving 6 and 15 photon beams, for a patient treated at our hospital is chosen. Monte Carlo method (EGSnrc/BEAMnrc) is used to simulate the treatment. Uncertainties in jaw positioning of ± 1 mm are addressed, which implies extremes in reality of 2 mm field gap/overlap when planning adjacent fields without overlap and 1 mm gap or 3 mm overlap for a planning protocol with 1 mm overlap. Dosimetric parameters for PTV, lung and body are analyzed. Treatment planning protocol with 1 mm overlap of the adjacent fields does not considerably counteract possible underdosage of the target in the case studied. PTV-V95% is for example reduced from 95% for perfectly aligned fields to 90% and 91% for 2 mm and 1 mm gap, respectively. However, the risk of overdosage in PTV and in healthy soft tissue is increased when following the protocol with 1 mm overlap. A 3 mm overlap compared to 2 mm overlap results in an increase in maximum dose to PTV, PTV-D2%, from 113% to 121%. V120% for 'Body-PTV' is also increased from 5 cm(3) to 14 cm(3). A treatment planning protocol with 1 mm overlap does not considerably improve the coverage of PTV in the case of erroneous jaw positions causing gap between fields, but increases the overdosage in PTV and doses to healthy tissue, in the case of overlapping fields, for the case investigated.

  12. Conference room 211, adjacent to commander's quarters, with vault door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Conference room 211, adjacent to commander's quarters, with vault door at right. Projection area at center is equipped with automatic security drapes. Projection room uses a 45 degree mirror to reflect the image onto the frosted glass screen. Door on far left leads to display area senior battle staff viewing bridge, and the commander's quarters - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  13. Mutual Diffusional Interference Between Adjacent Stomata of a Leaf 1

    PubMed Central

    Cook, G. D.; Viskanta, R.

    1968-01-01

    The mutual diffusional interference between adjacent stomata in laminar flow over a leaf is shown to play a decisive role in determining overall transpiration. The magnitude of this interference varies with the interaction of the vapor diffusional shells forming above each stoma and the air flow over the leaf. The interference decreases with increasing incident radiation and wind velocity. The effect of interference on the stomatal resistance to diffusion plays a major role in the overall variations in transpiration. PMID:16656876

  14. Slope-stability analysis and creep susceptibility of Quaternary sediments on the northeastern United States continental slope

    USGS Publications Warehouse

    Booth, James S.; Silva, Armand J.; Jordan, Stephen A.

    1984-01-01

    The continental slope off the northeastern United States is a relatively steep, morphologically complex surface which shows abundant evidence of submarine slides and related processes. Because this area may be developed by the petroleum industry, questions arise concerning the potential for further slope failures or unacceptable deformations and the conditions necessary to cause such instabilities. Accordingly, a generalized analysis of slope stability and the stress—strain—time-dependent behavior of the sediments is being conducted.

  15. Relevance of estuaries adjacent to megalopolis as modifiers of internal shelf areas

    NASA Astrophysics Data System (ADS)

    Wagener, Angela; Lazzzari, Leticia; Carreira, Renato; Farias, Cassia; Mauad, Cristiane

    2014-05-01

    Guanabara Bay located in the humid tropical region is a eutrophic estuarine system bordered by the second largest metropolitan area of Brazil. Human intervention resulted in water conditions ranging from complete anoxia in the polluted inner bay area to the adjacent, relatively pristine, open coastal area. In the present work the goals were to estimate nutrients and carbon fluxes between the bay and the adjacent coastal waters and to characterize by using stable isotopes, hydrocarbons and sterols the provenance of the exported/imported organic matter. Water samples were collected from three different depths over 25 hours cycles in the wet and dry seasons at a single station strategically positioned in the bay. Measurements included CTD, nutrients, chlorophylls, DOC, POC, PN, δ13C and δ15N, hydrocarbons and sterols in SPM. Most substances showed higher concentrations in ebb tide events and through statistical tools a significant difference between the campaigns was proved. The fluxes estimated on annual basis revealed the expressive exportation to the inner continental shelf of 1.27x104 Kmol DIN yr-1, 9.52x102 Kmol DIP yr-1, 2.65x104 tons DOC yr-1, 1.96x104 tons COP yr-1, 2.96x104 tons NP yr-1.

  16. [Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas].

    PubMed

    Lai, Jun-xiang; Yu, Zhi-ming; Song, Xiu-xian; Han, Xiao-tian; Cao, Xi-hua; Yuan, Yong-quan

    2013-09-01

    Three cruises were carried out in the Yangtze Estuary and its adjacent areas in May, November, June during 2009-2010. The spatial variations of phytoplankton community structure were investigated based on RP-HPLC analysis of pigments and CHEMTAX processing of the pigment data. 21 kinds of pigments were detected, among which chlorophyll a, peridinin, fucoxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll b, diadinoxanthin, alloxanthin and zeaxanthin were the major pigments in the Yangtze Estuary and its adjacent areas. Chlorophyll a was the most abundant in all pigments, followed by fuxoxanthin. Other pigments generally contributed a minor proportion to the total pigments. High concentrations of fucoxanthin and peridinin were observed in May 2009 and June 2010, indicating blooms of diatoms and dinoflagellates. The results showed that the composition and distribution of phytoplankton pigments were influenced by environmental factors. The phytoplankton community, as determined by biomarker pigment concentration using HPLC and CHEMTAX, was composed mainly of diatoms, dinoflagellates, cryptophytes, chlorophytes, cyanobacteria, prymnesiophytes, chrysophytes and prasinophytes. The dominant algal groups were diatoms, dinoflagellates and chlorophytes in May 2009. The phytoplankton community was characterized by high contribution of diatoms in November 2009. Diatoms, dinoflagellates and cryptophytes accounted for 62.5% of chlorophyll a in June 2010, and the relative abundance of cyanobacteria was higher in this cruise. The spatial variations of phytoplankton community structure featured distinct regionality. Diatoms, chlorophytes and cryptophytes were the main groups in the inshore waters, and the abundances of prymnesiophytes, chrysophytes and cyanobacteria were increasing from inshore to the open sea. PMID:24288983

  17. Fouling assemblages on offshore wind power plants and adjacent substrata

    NASA Astrophysics Data System (ADS)

    Wilhelmsson, Dan; Malm, Torleif

    2008-09-01

    A significant expansion of offshore wind power is expected in the near future, with thousands of turbines in coastal waters, and various aspects of how this may influence the coastal ecology including disturbance effects from noise, shadows, electromagnetic fields, and changed hydrological conditions are accordingly of concern. Further, wind power plants constitute habitats for a number of organisms, and may locally alter assemblage composition and biomass of invertebrates, algae and fish. In this study, fouling assemblages on offshore wind turbines were compared to adjacent hard substrate. Influences of the structures on the seabed were also investigated. The turbines differed significantly from adjacent boulders in terms of assemblage composition of epibiota and motile invertebrates. Species number and Shannon-Wiener diversity were, also, significantly lower on the wind power plants. It was also indicated that the turbines might have affected assemblages of invertebrates and algae on adjacent boulders. Off shore wind power plant offer atypical substrates for fouling assemblages in terms of orientation, depth range, structure, and surface texture. Some potential ecological implications of the addition of these non-natural habitats for coastal ecology are discussed.

  18. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  19. Small scale tests on the progressive retreat of soil slopes

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  20. Assessment and mapping of slope stability based on slope units: A case study in Yan'an, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Jianqi; Peng, Jianbing; Xu, Yonglong; Xu, Qiang; Zhu, Xinghua; Li, Wei

    2016-09-01

    Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability are proposed. The methods were implemented in a case study conducted in Yan'an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next, DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a new equation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.

  1. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  2. Role of adjacency-matrix degeneracy in maximum-entropy-weighted network models

    NASA Astrophysics Data System (ADS)

    Sagarra, O.; Pérez Vicente, C. J.; Díaz-Guilera, A.

    2015-11-01

    Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null models for the case of networks with integer-valued adjacency matrices constructed from an aggregation of one or multiple layers. We show how different assumptions about the elements from which the networks are built give rise to distinctively different statistics, even when considering the same observables to match those of real data. We illustrate our findings by applying the formalism to three data sets using an open-source software package accompanying the present work and demonstrate how such differences are clearly seen when measuring network observables.

  3. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    SciTech Connect

    Not Available

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

  4. Culture of Sharing: North Slope Leaders Forge Trail into Future

    ERIC Educational Resources Information Center

    Patkotak, Elise Sereni

    2010-01-01

    To create a strong local economy, the community needs a workforce. In Native communities, the workforce should be grounded in the local culture and values. On the North Slope of Alaska, this has long been a goal of leaders. To achieve this goal, North Slope leaders came together February 2010 in Barrow, Alaska, for the "Tumitchiat" Leadership…

  5. Shallow normal fault slopes on Saturnian icy satellites

    NASA Astrophysics Data System (ADS)

    Beddingfield, Chloe B.; Burr, Devon M.; Dunne, William M.

    2015-12-01

    Fault dips are a function of the coefficient of internal friction, μi, of the lithospheric material. Laboratory deformation experiments of H2O ice at conditions applicable to icy bodies yield 0 ≤ μi ≤ 0.55 such that normal faults dip between 45° and 59°. We tested the hypothesis that normal faults on icy bodies reflect these values by using digital elevation models to examine geometries of large extensional systems on three Saturnian satellites. Analyzed faults within Ithaca Chasma on Tethys and Avaiki Chasmata on Rhea all exhibit shallower-than-predicted topographic slopes across the fault scarp, which we term "fault slopes." A scarp of Padua Chasmata within Dione's Wispy Terrain also has a shallow fault slope, although three others that make up Palatine Chasmata exhibit steeper slopes as predicted. We infer that viscous relaxation is the most viable explanation for these shallow fault slopes, and we model the potential role of viscous relaxation in creating shallow slopes. Our modeling results support formation of these normal faults with steep dips consistent with deformation experiments, followed by their relaxation due to lithospheric heating events related to radionuclide decay. The steepest fault slopes in this terrain yield 0 ≤ μi ≤ 0.73 for Dione's lithospheric ice, which overlaps the dip range predicted from experiments. Results of this work suggest that viscous relaxation substantially affected fault slopes on Tethys, Rhea, and Dione. By implication, these processes may have also affected fault geometries on other icy satellites.

  6. Identifying Colluvial Slopes by Airborne LiDAR Analysis

    NASA Astrophysics Data System (ADS)

    Kasai, M.; Marutani, T.; Yoshida, H.

    2015-12-01

    Colluvial slopes are one of major sources of landslides. Identifying the locations of the slopes will help reduce the risk of disasters, by avoiding building infrastructure and properties nearby, or if they are already there, by applying appropriate counter measures before it suddenly moves. In this study, airborne LiDAR data was analyzed to find their geomorphic characteristics to use for extracting their locations. The study site was set in the suburb of Sapporo City, Hokkaido in Japan. The area is underlain by Andesite and Tuff and prone to landslides. Slope angle and surface roughness were calculated from 5 m resolution DEM. These filters were chosen because colluvial materials deposit at around the angle of repose and accumulation of loose materials was considered to form a peculiar surface texture differentiable from other slope types. Field survey conducted together suggested that colluvial slopes could be identified by the filters with a probability of 80 percent. Repeat LiDAR monitoring of the site by an unmanned helicopter indicated that those slopes detected as colluviums appeared to be moving at a slow rate. In comparison with a similar study from the crushed zone in Japan, the range of slope angle indicative of colluviums agreed with the Sapporo site, while the texture was rougher due to larger debris composing the slopes.

  7. Slope spectrum variation in a simulated loess watershed

    NASA Astrophysics Data System (ADS)

    Li, Fayuan; Tang, Guoan; Wang, Chun; Cui, Lingzhou; Zhu, Rui

    2016-06-01

    A simulated loess watershed, where the loess material and relief properly represent the true loess surface, is adopted to investigate the variation in slope spectrum with loess watershed evolution. The evolution of the simulated loess watershed was driven by the exogenetic force of artificial rainfall. For a period of three months, twenty artificial rainfall events with different intensities and durations were carried out. In the process, nine DEM data sets, each with 10 mm grid resolution, were established by the method of close-range photogrammetry. The slope spectra were then extracted from these DEMs. Subsequent series of carefully designed quantitative analyses indicated a strong relationship between the slope spectrum and the evolution of the simulated loess watershed. Quantitative indices of the slope spectrum varied regularly following the evolution of the simulated loess watershed. Mean slope, slope spectrum information entropy ( H), terrain driving force ( T d ), Mean patch area ( AREA_MN), Contagion Index ( CONTAG), and Patch Cohesion Index ( COHESION) kept increasing following the evolution of the simulated watershed, while skewness ( S), Perimeter-Area Fractal Dimension ( PAFRAC), and Interspersion and Juxtaposition Index ( IJI) represented an opposite trend. All the indices changed actively in the early and active development periods, but slowly in the stable development periods. These experimental results indicate that the time series of slope spectra was able to effectively depict the slope distribution of the simulated loess watershed, thus presenting a potential method for modeling loess landforms.

  8. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  9. Wave energy saturation on a natural beach of variable slope.

    USGS Publications Warehouse

    Sallenger, A.H.; Holman, R.A.

    1985-01-01

    Time series of flow were measured across the inner surf zone during a storm. These data were used to quantify the dependence of wave height (transformed from measured flow) and velocity on local slope and depth. Local depth increased with local slope and was independent of deepwater wave steepness.-from Authors

  10. Continental margin of Western europe: slope progradation and erosion.

    PubMed

    Curray, J R; Moore, D G; Belderson, R H; Stride, A H

    1966-10-14

    Reflection profiling of the continental margin off western Europe shows seaward-dipping continental-slope deposits that have been dissected by submarine canyons west of the English Channel. These records refute previous interpretation of structural benches of older, nearly horizontal strata outcropping on the slope face.

  11. Continental margin of Western europe: slope progradation and erosion.

    PubMed

    Curray, J R; Moore, D G; Belderson, R H; Stride, A H

    1966-10-14

    Reflection profiling of the continental margin off western Europe shows seaward-dipping continental-slope deposits that have been dissected by submarine canyons west of the English Channel. These records refute previous interpretation of structural benches of older, nearly horizontal strata outcropping on the slope face. PMID:17810307

  12. Integrating concepts and skills: Slope and kinematics graphs

    NASA Astrophysics Data System (ADS)

    Tonelli, Edward P., Jr.

    The concept of force is a foundational idea in physics. To predict the results of applying forces to objects, a student must be able to interpret data representing changes in distance, time, speed, and acceleration. Comprehension of kinematics concepts requires students to interpret motion graphs, where rates of change are represented as slopes of line segments. Studies have shown that majorities of students who show proficiency with mathematical concepts fail accurately to interpret motion graphs. The primary aim of this study was to examine how students apply their knowledge of slope when interpreting kinematics graphs. To answer the research questions a mixed methods research design, which included a survey and interviews, was adopted. Ninety eight (N=98) high school students completed surveys which were quantitatively analyzed along with qualitative information collected from interviews of students (N=15) and teachers ( N=2). The study showed that students who recalled methods for calculating slopes and speeds calculated slopes accurately, but calculated speeds inaccurately. When comparing the slopes and speeds, most students resorted to calculating instead of visual inspection. Most students recalled and applied memorized rules. Students who calculated slopes and speeds inaccurately failed to recall methods of calculating slopes and speeds, but when comparing speeds, these students connected the concepts of distance and time to the line segments and the rates of change they represented. This study's findings will likely help mathematics and science educators to better assist their students to apply their knowledge of the definition of slope and skills in kinematics concepts.

  13. 30 CFR 817.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Backfilling and grading: Steep slopes. 817.107 Section 817.107 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... ACTIVITIES § 817.107 Backfilling and grading: Steep slopes. (a) Underground mining activities on steep...

  14. The World Is Not Flat: Can People Reorient Using Slope?

    ERIC Educational Resources Information Center

    Nardi, Daniele; Newcombe, Nora S.; Shipley, Thomas F.

    2011-01-01

    Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of…

  15. Handling Correlations between Covariates and Random Slopes in Multilevel Models

    ERIC Educational Resources Information Center

    Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders

    2014-01-01

    This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…

  16. 30 CFR 817.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading: Steep slopes. 817.107 Section 817.107 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... ACTIVITIES § 817.107 Backfilling and grading: Steep slopes. (a) Underground mining activities on steep...

  17. DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE OF THE GUN EMPLACEMENT. NOTE ADDED BLOCK OF CAST CONCRETE AT THE LOW (RIGHT) END OF SLOPED PAD. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  18. Teachers' Personal Agency: Making Sense of Slope through Additive Structures

    ERIC Educational Resources Information Center

    Walter, Janet G.; Gerson, Hope

    2007-01-01

    In the context of a three-year professional development program in mathematics, practicing elementary teachers persistently engaged in collaborative inquiry and reflection to build connected meanings for slope. One teacher invented a compelling representation for slope as a process of repeated addition, using Cuisenaire rods, based on teachers'…

  19. Degradation of terraced slopes in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Tsermegas, I.; DłuŻewski, M.; Biejat, K.; Szynkiewicz, A.

    2012-04-01

    Agricultural terraces with dry-stone walls take the largest area of all man-made landforms in Mediterranean mountain regions. Despite on that their contemporary morphodynamics have not been the subject of many studies. It is a significant problem both from a scientific and a practical point of view. The aim of the study was to estimate the influence of relief, lithology, climatic conditions, methods of wall construction and actual agricultural practice on the degradation of agricultural terraces. A field study was conducted in Greece on 7 plots with the overall area of over 42 000 m2 - on the east Crete and on two Aegean islands - Ikaria and Thera. The analysis was conducted on terraced slopes with gradient of 8-23o, built of granitoids, gneisses, crystalline schists, limestones, crystalline dolomites and volcanic tuffs. There was identified the types of terrace walls. Metrical features of terrace systems were ascertained on the basis of GPS RTK measurement. Terrace material petrography and grain size distribution was identified for regolith an soil samples taken from the selected outcrops which were recognized as being representative for 239 georadar profiles of the joint length of over 2500 m. On that basis the volume of each terrace material was defined. The rills cutting the fields and the walls were measured. The infiltration rate was also taken in 130 points. Reasearch showed that regardless of metrical features of terraces, soil grain size distribution and thickness of the terrace material, the most important reason for the destruction of terrace walls is the abandonment of cultivated areas. Changes in cultivation methods and the introduction of pasturage visibly accelerate the degradation processes. On areas unused for 30 years terrace walls are destroyed on over 25% of their length. It concerns both the areas on which filtration coefficient (k) reaches about 10-5m•s-1 as well as the ones where it is a 100 times lower. The least varied values (10-6-10-5m

  20. Slippery slope arguments imply opposition to change.

    PubMed

    Haigh, Matthew; Wood, Jeffrey S; Stewart, Andrew J

    2016-07-01

    Slippery slope arguments (SSAs) of the form if A, then C describe an initial proposal (A) and a predicted, undesirable consequence of this proposal (C) (e.g., "If cannabis is ever legalized, then eventually cocaine will be legalized, too"). Despite SSAs being a common rhetorical device, there has been surprisingly little empirical research into their subjective evaluation and perception. Here, we present evidence that SSAs are interpreted as a form of consequentialist argument, inviting inferences about the speaker's (or writer's) attitudes. Study 1 confirmed the common intuition that a SSA is perceived to be an argument against the initial proposal (A), whereas Study 2 showed that the subjective strength of this inference relates to the subjective undesirability of the predicted consequences (C). Because arguments are rarely made out of context, in Studies 3 and 4 we examined how one important contextual factor, the speaker's known beliefs, influences the perceived coherence, strength, and persuasiveness of a SSA. Using an unobtrusive dependent variable (eye movements during reading), in Study 3 we showed that readers are sensitive to the internal coherence between a speaker's beliefs and the implied meaning of the argument. Finally, Study 4 revealed that this degree of internal coherence influences the perceived strength and persuasiveness of the argument. Together, these data indicate that SSAs are treated as a form of negative consequentialist argument. People infer that the speaker of a SSA opposes the initial proposal; therefore, SSAs are only perceived to be persuasive and conversationally relevant when the speaker's attitudes match this inference.

  1. Analysis of one gravitational slope cycle

    NASA Astrophysics Data System (ADS)

    Palis, Edouard; Lebourg, Thomas; Vidal, Maurin; Tric, Emmanuel

    2015-04-01

    Since about twenty years of studies on landslides, we realized the role and subtle interactions that existed between the structural complexity, masses dynamics and complex internal circulation of fluids. The La Clapière DSL (Deep-Seated Landslide) is now very well known by the scientific community (volume, impact, challenges, observations...), but this mass of knowledge, has not yet been compiled nor looked through a coupled analysis of its spatial and temporal variability. Since 2007, a will to share and access to uniform data was set up by the Versant Instabilities Multidisciplinary Observatory (OMIV, National Service of French Observation (SNO)). This observatory (with associated laboratories) allowed the installation of permanent and autonomous measuring stations: GPS, meteorology, seismology, water chemistry sources. For two years now, a permanent electrical tomography device is installed at the bottom of the slope to complement the current monitoring system, and allowed a deeper understanding of the physical changes in the massif. The analysis of these data allows to observe different dynamic regimes, as well as different responses to external factors: instantaneous, delayed, long-term variability. The purpose of this synthesis study is to analyze the temporal and spatial evolution of the electrical resistivity, displacement and hydrometeors for one year cycle (November 2012 to November 2013). Thus, a qualitative and statistical approach by clusters, principal component analysis (PCA), and temporal pseudo-3D of these variables was established. This new statistical study also explains the major role of the fault and the base of the landslide, as well as the chronology of the water flow in the massif, allowing a better understanding of the complex and uneven in time dynamic in this area.

  2. Framework for North Slope Seminar II

    SciTech Connect

    Tailleur, I.L.

    1985-04-01

    This meeting focuses on a province with enormous potential for fuels and minerals. Oil reserves approach 10% of the total oil already produced in the rest of the country. Estimated coal resources could store a thousand times the 70-80 quads of energy the US uses every year. Potential yields of silver, lead, and zinc range from 10 to 100% of the amounts produced domestically since the middle of the 19th century. Prospects for copper are also large. The province is dominated by the east-trending Brooks Range, whose structures formed during the late Mesozoic Brookian orogeny and are now being shortened longitudinally. Flanking basins succeeded the uplift; the northern one is bounded by a passive continental margin. Early in the orogeny, a relatively thin early Paleozoic through Jurassic megasequence of clastic-wedge, carbonate, and siliceous sediments was telescoped into a fivefold stacking of allochthons and beneath allochthons of volcanic and mafic-ultramafic rocks. The greater than 500-km breadth of sialic crust that had underlain the allochthons disappeared. At about the same time, the Arctic ocean basin replaced the northern provenance. A mid-Paleozoic sialic source area on the opposite margin of the megasequence disappeared by the end of the Carboniferous and near the beginning of siliceous deposition. Basement beneath the North Slope part of the megasequence was created when the Devonian Ellesmerian orogeny added to the crust the late precambrian to early Paleozoic clastic, carbonate, and volcanic rocks of an older megasequence. The northern successor basin accumulated large amounts of coal. Truncation and sealing of potential reservoir rocks on replacement of the northern landmass led to huge pools of hydrocarbons. Late Paleozoic rocks in the lowest allochthon host stratabound base-metal deposits. A narrow belt of reportedly Devonian shallow-seated felsic rocks contain deposits of copper.

  3. Change in Action: How Infants Learn to Walk Down Slopes

    PubMed Central

    Gill, Simone V.; Adolph, Karen E.; Vereijken, Beatrix

    2009-01-01

    A critical aspect of perception-action coupling is the ability to modify ongoing actions in accordance with variations in the environment. Infants’ ability to modify their gait patterns to walk down shallow and steep slopes was examined at three nested time scales. Across sessions, a microgenetic training design showed rapid improvements after the first session in infants receiving concentrated practice walking down slopes and in infants in a control group who were tested only at the beginning and end of the study. Within sessions, analyses across easy and challenging slope angles showed that infants used a “braking strategy” to curb increases in walking speed across increasingly steeper slopes. Within trials, comparisons of infants’ gait modifications before and after stepping over the brink of the slopes showed that the braking strategy was planned prospectively. Findings illustrate how observing change in action provides important insights into the process of skill acquisition. PMID:19840044

  4. US North Slope gas and Asian LNG markets

    USGS Publications Warehouse

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  5. Factors associated with injuries occurred on slope intersections and in snow parks compared to on-slope injuries.

    PubMed

    Ruedl, Gerhard; Kopp, Martin; Sommersacher, Renate; Woldrich, Tomas; Burtscher, Martin

    2013-01-01

    In alpine winter sports, external risk factors as snow and weather conditions as well as slope characteristics (width, steepness, slope intersections, and snow parks) should be considered when investigating potential risk factors. Therefore, ski patrol injury reports were used to compare factors associated with injuries occurred on slope intersections and in snow parks compared to on-slope injuries. Multivariate regression analysis revealed that in comparison to injuries occurring on ski slopes, collisions with other persons (OR: 2.1, 95% CI: 1.3-3.4) and arm injuries (OR: 2.1, 95% CI: 1.3-3.5) were more likely associated with injuries occurring on slope intersections while male gender (OR: 3.5, 95% CI: 2.1-5.7), younger age (OR: 1.1, 95% CI: 1.0-1.1), slushy/soft snow conditions (OR: 1.9, 95% CI: 1.1-3.3), knee injuries (OR: 0.4, 95% CI: 0.2-0.8) and back injuries (OR: 5.5, 95% CI: 3.0-10.2) were more likely associated with injuries which occurred in snow parks. In conclusion, injuries on slope intersections and in snow parks differ in some factors from injuries sustained on ski slopes.

  6. Effects of basin type on coastal plain-shelf-slope systems during base-level fluctuations: An experimental approach

    SciTech Connect

    Wood, L.J. )

    1991-03-01

    Sequence stratigraphic models emphasize the importance of basin type on the reactions of coastal plain-shelf-slope systems to base-level changes. A series of experiments were performed in a 4.5 m by 7 m flume to examine the effects of a passive margin basin with a shelf/slope break versus a ramp margin basin on coastal plain-shelf-slope deposits that result from base-level fluctuations. Results indicate that basin type has a strong influence on the erosional features and deposits that develop in response to base-level fluctuations. Fluctuations that occur along a shelf/slope break margin result in well-defined, deeply incised valleys, which develop early in lowstand time and have low width:depth ratios. Rivers may incise into and deposit over outer-middle shelf deposits of the previous highstand. Late lowstand deposits are coarser grained than early lowstand deposits and include fine- and coarse-grained slope and basin floor fans. During subsequent base-level rise early transgressive deposits are confined to incised valleys. Fluctuations along a ramp margin result in shallow, wide incised valleys with high width:depth ratios, which develop late in lowstand time. Incision occurs into shelf deltaic deposits and these are overlain by valley fill deposits. Deposits of the lowstand systems tract do not coarsen upward significantly and contain only sand-rich, small, thin delta front fan deposits. During subsequent base-level rise transgressive deposits are not confined to incised valleys. Transgressive deposition within the valleys occurs over a short time interval and is followed closely by flooding of the adjacent shelf.

  7. Paleomagnetism, paleolatitudes, and magnetic overprinting on the North Slope, Alaska

    SciTech Connect

    Stone, D.B.

    1985-04-01

    Several paleomagnetic studies have been made in Arctic Alaska, by industry, by the US Geological Survey, and by the University of Alaska. In general, the results available to the public have been disappointing - most samples of pre-Cretaceous rocks give very steep magnetic inclinations with respect to present horizontal. This has been generally interpreted in terms of a Cretaceous overprinting event. A study of the paleomagnetism of Cretaceous rocks from the North Slope shows that although the Cretaceous field was steeply inclined, it was not as steep as conventional paleogeographic reconstructions would indicate, and not as steep as the bulk of the apparently remagnetized older rocks. This finding leaves open the possibility that the steeper directions recorded by the older rocks are the result of regional tilt, or the results of a paleogeography that allowed an earlier, steeper remagnetizing field. The shallower inclinations seen in the Cretaceous sediments of the Nanushuk Group (Albian-Cenomanian based on the fossil record with one K-Ar age of 100 Ma from an ash parting) give paleolatitudes of about 75/sup 0/N. The predicted paleolatitude based on North American paleogeographic reconstructions is 80-85/sup 0/N. Circumstantial evidence that the paleolatitude was shallower than 80-85/sup 0/N comes from the enormous biogenic productivity needed to form the extensive coal deposits of the Nanushuk Group. Lower paleolatitudes also may be needed to explain the apparent existence of broad-leaved evergreens and the recently reported dinosaur tracks and skin imprints in the Nanushuk Group.

  8. Public transit bus ramp slopes measured in situ.

    PubMed

    Bertocci, Gina; Frost, Karen; Smalley, Craig

    2014-05-01

    Abstract Purpose: The slopes of fixed-route bus ramps deployed for wheeled mobility device (WhMD) users during boarding and alighting were assessed. Measured slopes were compared to the proposed Americans with Disabilities Act (ADA) maximum allowable ramp slope. Methods: A ramp-embedded inclinometer measured ramp slope during WhMD user boarding and alighting on a fixed-route transit bus. The extent of bus kneeling was determined for each ramp deployment. In-vehicle video surveillance cameras captured ramp deployment level (street versus sidewalk) and WhMD type. Results: Ramp slopes ranged from -4° to 15.5° with means of 4.3° during boarding (n = 406) and 4.2° during alighting (n = 405). Ramp slope was significantly greater when deployed to street level. During boarding, the proposed ADA maximum allowable ramp slope (9.5°) was exceeded in 66.7% of instances when the ramp was deployed to street level, and in 1.9% of instances when the ramp was deployed to sidewalk level. During alighting, the proposed ADA maximum allowable slope was exceeded in 56.8% of instances when the ramp was deployed to street level and in 1.4% of instances when the ramp was deployed to sidewalk level. Conclusions: Deployment level, built environment and extent of bus kneeling can affect slope of ramps ascended/descended by WhMD users when accessing transit buses. Implications for Rehabilitation Since public transportation services are critical for integration of wheeled mobility device (WhMD) users into the community and society, it is important that they, as well as their therapists, are aware of conditions that may be encountered when accessing transit buses. Knowledge of real world ramp slope conditions that may be encountered when accessing transit buses will allow therapists to better access capabilities of WhMD users in a controlled clinical setting. Real world ramp slope conditions can be recreated in a clinical setting to allow WhMD users to develop and practice necessary

  9. Is there a distinct continental slope fauna in the Antarctic?

    NASA Astrophysics Data System (ADS)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  10. Adjacent channel interference degradation with minimum shift keyed modulation

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.

    1981-01-01

    Computer simulation results for degradation in signal-to-noise ratio for various values of bit error probability are given for minimum shift-keyed-type signaling in the presence of adjacent channel interference. A serial modulator structure which utilizes spectral shaping is characterized in terms of envelope deviation and bandwidth efficiency. This serial generation technique is convenient for implementation at high data rates and results in signal spectra with lower sidelobe levels than conventional minimum shift-keyed modulation at the expense of moderate envelope deviation. Because of the lower sidelobe levels, the resulting spectra allow denser channel packing than does ideal MSK.

  11. Synthesis of a Molecule with Four Different Adjacent Pnictogens.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2016-08-22

    The synthesis of a molecule containing four adjacent different pnictogens was attempted by conversion of a Group 15 allyl analogue anion [Mes*NAsPMes*](-) (Mes*=2,4,6-tri-tert-butylphenyl) with antimony(III) chloride. A suitable precursor is Mes*N(H)AsPMes* (1) for which several syntheses were investigated. The anions afforded by deprotonation of Mes*N(H)AsPMes* were found to be labile and, therefore, salts could not be isolated. However, the in situ generated anions could be quenched with SbCl3 , yielding Mes*N(SbCl2 )AsPMes* (4). PMID:27377437

  12. CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Patten, Lowell L.

    1984-01-01

    The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.

  13. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  14. Retroperitoneal multilocular bronchogenic cyst adjacent to adrenal gland.

    PubMed

    Yang, S W; Linton, J A; Ryu, S J; Shin, D H; Park, C S

    1999-10-01

    Bronchogenic cysts are generally found in the mediastinum, particularly posterior to the carina, but they rarely occur in such unusual sites as the skin, subcutaneous tissue, pericardium, and even the retroperitoneum. A 30-year-old Korean man underwent surgery to remove a cystic adrenal mass incidentally discovered during routine physical checkup. At surgery, it proved to be a multilocular cyst located in the retroperitoneum adjacent to the left adrenal gland. Microscopically, the cyst was lined by respiratory epithelium over connective tissue with submucous glands, cartilage and smooth muscle, thereby histologically confirming bronchogenic cyst. This is the first reported case of retroperitoneal bronchogenic cyst in an adult without other congenital anomalies in Korea.

  15. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil.

    PubMed

    Nettesheim, Felipe C; Damasceno, Elaine R; Sylvestre, Lana S

    2014-03-01

    A community of Ferns and Lycophytes was investigated by comparing the occurrence of species on different slopes of a paleoisland in Southeastern Brazil. Our goal was to evaluate the hypothesis that slopes with different geographic orientations determine a differentiation of Atlantic Forest ferns and lycophytes community. We recorded these plants at slopes turned towards the continent and at slopes turned towards the open sea. Analysis consisted of a preliminary assessment on fern beta diversity, a Non Metric Multidimensional Scaling (NMDS) and a Student t-test to confirm if sites sampling units ordination was different at each axis. We further used the Pearson coefficient to relate fern species to the differentiation pattern and again Student's t-test to determine if richness, plant cover and abundance varied between the two sites. There was a relatively low number of shared species between the two sites and ferns and lycophytes community variation was confirmed. Some species were detected as indicators of the community variation but we were unable to detect richness, plant cover or abundance differences. Despite the evidence of this variation between the slopes, further works are needed to evaluate which processes are contributing to determine this pattern.

  16. Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate.

    PubMed

    Newport, Elissa L; Hauser, Marc D; Spaepen, Geertrui; Aslin, Richard N

    2004-09-01

    In earlier work we have shown that adults, infants, and cotton-top tamarin monkeys are capable of computing the probability with which syllables occur in particular orders in rapidly presented streams of human speech, and of using these probabilities to group adjacent syllables into word-like units. We have also investigated adults' learning of regularities among elements that are not adjacent, and have found strong selectivities in their ability to learn various kinds of non-adjacent regularities. In the present paper we investigate the learning of these same non-adjacent regularities in tamarin monkeys, using the same materials and familiarization methods. Three types of languages were constructed. In one, words were formed by statistical regularities between non-adjacent syllables. Words contained predictable relations between syllables 1 and 3; syllable 2 varied. In a second type of language, words were formed by statistical regularities between non-adjacent segments. Words contained predictable relations between consonants; the vowels varied. In a third type of language, also formed by regularities between non-adjacent segments, words contained predictable relations between vowels; the consonants varied. Tamarin monkeys were exposed to these languages in the same fashion as adults (21 min of exposure to a continuous speech stream) and were then tested in a playback paradigm measuring spontaneous looking (no reinforcement). Adult subjects learned the second and third types of language easily, but failed to learn the first. However, tamarin monkeys showed a different pattern, learning the first and third type of languages but not the second. These differences held up over multiple replications, using different sounds instantiating each of the patterns. These results suggest differences among learners in the elementary units perceived in speech (syllables, consonants, and vowels) and/or the distance over which such units can be related, and therefore differences

  17. The Martian slope winds and the nocturnal PBL jet

    NASA Astrophysics Data System (ADS)

    Savijarvi, H.; Siili, T.

    1993-01-01

    The summertime Martian PBL diurnal wind variation, slope winds, and the nocturnal low-level jets were studied using Prandtl's theory, a mesoscale numerical model, and Viking lander observations. During moderate prevailing large-scale flow, nocturnal jets were simulated that were rather similar to those on Earth. They were mainly caused by inertial oscillation after sunset with some contribution from the slope wind effects over sloping regions (which are very common in Mars). During weak large-scale flow, shallow nocturnal drainage flows with strong vertical shear developed over the cold Martian slopes. At middle and high latitudes, these katabatic winds tended to turn to flow along the slope by dawn (due to the Coriolis force). For sufficiently steep slopes, near-surface drainage winds could reach considerable speeds. In contrast, the typical afternoon upslope winds were vertically homogeneous up to 2-3 km and weak (only 1-3 m/s in magnitude), even over relatively steep large-scale slopes.

  18. Geotechnical characteristics and slope stability in the Gulf of Cadiz

    USGS Publications Warehouse

    Lee, H.; Baraza, J.

    1999-01-01

    Sedimentological and geotechnical analyses of thirty-seven core samples from the Gulf of Cadiz continental margin were used to define the regional variability of sediment properties and to assess slope stability. Considering the sediment property data set as a whole, there is an association between grain size, plasticity and water content. Any one of these properties can be mapped regionally to provide an indication of the dominant surface sediment lithology. Based on static sediment strength, a simplified slope stability analysis showed that only steep slopes (> 16??for even the most vulnerable sediment) can fail under static loading conditions. Accordingly, transient loads, such as earthquakes or storms, are needed to cause failure on more moderate slopes. A regional seismic slope stability analysis of the Cadiz margin was performed based on detailed geotechnical testing of four gravity core samples. The results showed that the stability of these slopes under seismic loading conditions depends upon sediment density, the cyclic loading shear strength, the slope steepness, and the regional seismicity. Sediment density and cyclic loading shear strength are dependent upon water content, which can act as a proxy for plasticity and texture effects. Specifically, Sediment in the water content range of 50-56% is most vulnerable to failure under cyclic loading within the Cadiz margin. As a result, for a uniform seismicity over the region, susceptibility to failure during seismic loading conditions increases with increasing slope steepness and is higher if the sediment water content is in the 50-56% range than if it is not. The only sampled zone of failure on the continental slope contains sediment with water content in this critical range. Storm-wave-induced instability was evaluated for the continental shelf. The evaluation showed that a storm having hundreds of waves with a height in the range of 16 m might be capable of causing failure on the shelf. However, no

  19. Sediment Pathways Across Trench Slopes: Results From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.

    2015-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  20. Historical volcanoes of Armenia and adjacent areas: What is revisited?

    NASA Astrophysics Data System (ADS)

    Karakhanian, A.; Jrbashyan, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagyan, A.; Baghdassaryan, H.; Davtian, V.

    2006-07-01

    The validity of some data in Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62] that are revisited by R. Haroutiunian is considered. A conclusion is made that the revisions suggested by Haroutiunian concern unessential parts of the content of work by Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62]. This article presents new evidence and re-proves the earlier conclusions that are disputed or revised by R. Haroutiunian.

  1. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  2. Adjacent flaps for lower lip reconstruction after mucocele resection.

    PubMed

    Ying, Binbin

    2012-03-01

    Mucocele forms because of salivary gland mucous extravasation or retention and is usually related to trauma in the area of the lower lip. It is a common benign lesion in the oral region. Although there are many conservative treatments such as the creation of a pouch (marsupialization), freezing (cryosurgery), micromarsupialization, and CO2 laser vaporization, surgical resection is the most commonly used means. Generally speaking, an elliptic incision was made to fully enucleate the lesion along with the overlying mucosa and the affected glands, then direct suturing is adequate. However, in some cases, direct suturing could cause lower lip deformity, and adjacent flaps for lower lip reconstruction after mucocele resection might be quite necessary. Based on our experience, adjacent mucosal flaps could be used when lesions were close to or even break through the vermilion border or their diameters were much more than 1 cm. A-T advancement flaps and transposition flaps were the mostly applied ones. Follow-up showed that all patients realized primary healing after 1 week postoperatively with satisfactory lower lip appearance, and there was no sign of increasing incidence of relapse. PMID:22421867

  3. Bacterial community structure in the Sulu Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Yoshida, Akihiro; Nishimura, Masahiko; Kogure, Kazuhiro

    2007-01-01

    The deep waters of the Sulu Sea are characterized by relatively high and constant water temperatures and low oxygen concentrations. To examine the effect of these characteristics on the bacterial community structure, the culture-independent molecular method was applied to samples from the Sulu Sea and the adjacent areas. DNA was extracted from environmental samples, and the analysis was carried out on PCR-amplified 16S rDNA; fragments were analyzed by denaturing gradient gel electrophoresis (DGGE) and nonmetric multidimensional scaling analysis. Stations in the Sulu Sea and the adjacent areas showed much more prominent vertical stratification of bacterial community structures than horizontal variation. As predominant sequences, cyanobacteria and α-proteobacteria at 10 m depth, δ-proteobacteria at 100 m depth, and green nonsulfur bacteria below 1000 m depth were detected in all sampling areas. High temperatures and low oxygen concentrations are thought to be minor factors in controlling community structure; the quantity and quality of organic materials supplied by the sinking particles, and hydrostatic pressure are believed to be important.

  4. Circulation and exchange processes over the continental shelf and slope

    SciTech Connect

    Csanady, G.T.

    1988-01-01

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  5. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen

    2010-07-09

    We overview the results of a broad US collaboration, including all DOE synchrotron labs (ALS, APS, BNL, NSLS-II, LLNL, LCLS), major industrial vendors of x-ray optics (InSync, Inc., SSG Precision Optronics-Tinsley, Inc., Optimax Systems, Inc.), and with active participation of HBZ-BESSY-II optics group, on development of a new generation slope measuring profiler -- the optical slope measuring system (OSMS). The desired surface slope measurement accuracy of the instrument is<50 nrad (absolute) that is adequate to the current and foreseeable future needs for metrology of x-ray optics for the next generation of light sources.

  6. Heliostat field cost reduction by `slope drive' optimization

    NASA Astrophysics Data System (ADS)

    Arbes, Florian; Weinrebe, Gerhard; Wöhrbach, Markus

    2016-05-01

    An algorithm to optimize power tower heliostat fields employing heliostats with so-called slope drives is presented. It is shown that a field using heliostats with the slope drive axes configuration has the same performance as a field with conventional azimuth-elevation tracking heliostats. Even though heliostats with the slope drive configuration have a limited tracking range, field groups of heliostats with different axes or different drives are not needed for different positions in the heliostat field. The impacts of selected parameters on a benchmark power plant (PS10 near Seville, Spain) are analyzed.

  7. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  8. The shaping of continental slopes by internal tides

    USGS Publications Warehouse

    Cacchione, D.A.; Pratson, Lincoln F.; Ogston, A.S.

    2002-01-01

    The angles of energy propagation of semidiurnal internal tides may determine the average gradient of continental slopes in ocean basins (???2 to 4 degrees). Intensification of near-bottom water velocities and bottom shear stresses caused by reflection of semi-diurnal internal tides affects sedimentation patterns and bottom gradients, as indicated by recent studies of continental slopes off northern California and New Jersey. Estimates of bottom shear velocities caused by semi-diurnal internal tides are high enough to inhibit deposition of fine-grained sediment onto the slopes.

  9. The shaping of continental slopes by internal tides.

    PubMed

    Cacchione, D A; Pratson, L F; Ogston, A S

    2002-04-26

    The angles of energy propagation of semidiurnal internal tides may determine the average gradient of continental slopes in ocean basins (approximately 2 to 4 degrees). Intensification of near-bottom water velocities and bottom shear stresses caused by reflection of semi-diurnal internal tides affects sedimentation patterns and bottom gradients, as indicated by recent studies of continental slopes off northern California and New Jersey. Estimates of bottom shear velocities caused by semi-diurnal internal tides are high enough to inhibit deposition of fine-grained sediment onto the slopes. PMID:11976451

  10. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps

    NASA Astrophysics Data System (ADS)

    Salvini, R.; Francioni, M.; Riccucci, S.; Bonciani, F.; Callegari, I.

    2013-03-01

    In Italy, railways crossing the alpine valleys are a vital means of civil and commercial communications with the rest of Europe. The geomorphologic configuration and the climatic conditions, especially in winter and spring, can cause rock fall events resulting in railway service interruptions and damage to infrastructure and, in the worst case, to people. There were rock fall events at a slope adjacent to the Domodossola-Iselle railway, most recently in 2004. This paper evaluates the stability of a mountain slope and maps rock fall hazards through the modeling of potential runout trajectories. Traditional geological, geomorphological and geo-engineering surveys were combined with data derived from digital terrestrial photogrammetry. Stereo photographic pairs of rocky outcrops in inaccessible areas were acquired from a helicopter. Data from photogrammetry, topographic measurements and laser scanning were then integrated to build a digital model of the slope, to characterize the rock mass and block geometry, and to define possible runout trajectories. The geomatic methods used have yielded oriented stereo-images, orthophotos and precise digital models of rocky wedges. Geometrical and structural characteristics of slopes, such as joint attitude, spacing and persistence, and block volumes, were also derived. The results were used together with a deterministic limit equilibrium method to evaluate slope stability. We assessed the probabilistic distribution of rock fall end points and kinetic energy along the rock falling paths and existing barriers, and created a hazard map based on the spatial distribution of trajectories, rock fall transit density and kinetic energy.

  11. Transport and transfer rates in the waters of the continental shelf and slope: SEEP. Final report, May 1, 1987--December 31, 1993

    SciTech Connect

    Biscaye, P.E.; Anderson, R.F.

    1993-12-31

    The overall Shelf Edge Exchange Processes (SEEP) Program, which began in 1980 or 1981, had as its goal the testing of a hypothesis with respect to the fate of particulate matter formed in and introduced into the waters of the continental shelf adjacent to the northern east coast of the US, i.e., the MAB. The original hypothesis was that a large proportion of the particles in general, and of the particulate organic carbon (POC) in particular, was exported from the shelf, across the shelf/slope break and front, into the waters of, and, to some degree, deposited in the sediments of the continental slope. This hypothesis was based on budgets of organic carbon and lead-210 that did not account for a large proportion of those species in the waters or sediments of the shelf, and on a carbon-rich band of sediments centered on the slope at {approximately}1,000 m water depth. The results of the first SEEP experiment, south of New England and Long Island (SEEP-1) suggested, but did not prove, that there was only a relatively small proportion of the carbon which was exported from the shelf to the slope. The objective of the second experiment -- SEEP-2 -- done under the subject grant, was to tighten the experiment in terms of the kinds of data collected, and to focus it more on the shelf and only the upper slope, where shelf-derived particles were thought to be deposited.

  12. Exo-enzymatic activities and organic matter properties in deep-sea canyon and slope systems off the southern Cretan margin

    NASA Astrophysics Data System (ADS)

    Polymenakou, Paraskevi N.; Lampadariou, Nikolaos; Tselepides, Anastasios

    2008-10-01

    Enzymatic activities of aminopeptidase and β- D-glucosidase were investigated in sediments collected from deep-sea canyon (Samaria) and slope systems of the unexplored southern Cretan margin (Eastern Mediterranean Sea). Stations were grouped in defined regions, inside the canyon, in nearby slopes and in open slope systems. Redox potential values, organic carbon concentrations, C/N ratios, chlorophyll- a, phaeopigments, prokaryotic abundances and carbon (C) mineralization rates were also estimated. The main aim of this investigation was to examine the links among prokaryotic abundance and activities and organic matter parameters along the axis of a submarine canyon (Samaria), and laterally along the slopes of the deep southern Cretan margin (Eastern Mediterranean Sea). The recorded aminopeptidase activities exhibited elevated values near the mouth of the canyon and the nearby slope systems and were found to be comparable to those reported for mesotrophic ecosystems. Statistical comparisons revealed that chloroplastic pigment equivalents, C/N ratios and carbon mineralization rates did not differ significantly between the deep stations in and outside the canyon (of either 2000 or 3500 m water depth). On the other hand, organic carbon and nitrogen content, prokaryotic abundances, and enzymatic activities differ substantially between the canyon and slope stations. It is suggested that the deep basins at the outlet of the submarine canyon of Samaria and the nearby slope systems are promising targets for the identification of microbial hotspots.

  13. Process Domains in Synthetic Landscapes: Slope-Area Relationships in the Mountaintop Mining Region of Central Appalachia.

    NASA Astrophysics Data System (ADS)

    Jaeger, K. L.; Ross, M. R.

    2014-12-01

    Landscapes and the governing geomorphic processes that shape them have been described in a conceptual framework of process domains. At a coarse scale, process domains are segregated between hillslope, colluvial, and alluvial processes, which can be distinguished by governing erosional processes and partitioned by local slope-drainage area relationships. In landscapes that have experienced dramatic topographic alteration such as the mountaintop coal-mining (MTM) region of central Appalachia, the resulting modified environment may be considered a synthetic landscape. Such a landscape has process domains that are decoupled from prior landscape evolution trajectories. In particular, landslide and debris flow processes, which are a predominant geomorphic agent in these steep mountain systems and a primary sediment delivery mechanism to the downstream fluvial network, may be eliminated from this landscape and detectable through changes in slope-area relationships. We evaluate differences in slope-area relationships using 10-m DEMs between two time periods, pre-mined and post-mined. At five study site located within the MTM region in the central Appalachian Mountains, US, we compare slope-area changes to adjacent unmined landscapes over the same time periods. Distinct differences exist in the character of slope-area relationships between unmined and MTM sites and local slopes are systematically and considerably reduced in all process zones of mined sites. In particular, there is an expansion of the unchanneled valley zone through either an individual or simultaneous upslope shift into the hillslope region and downslope shift into the debris flow region. In addition, local slopes are markedly reduced (33% to 44%) in the post-mined period relative to the pre-mined period at all sites and are generally below the threshold required to trigger landslides and debris flows. The consequence of altered erosion processes in this upper portion of the catchment, particularly the

  14. Detailed analysis of the Valdes slide: a landward facing slope failure off Chile

    NASA Astrophysics Data System (ADS)

    Anasetti, Andrea; Krastel, Sebastian; Weinrebe, Willy; Klaucke, Ingo; Bialas, Jorge

    2010-05-01

    The Chilean continental margin is a very active area interested by important tectonic movements and characterized by a fast morphological evolution. Geophysical data acquired during cruise JC 23, aboard RV JAMES COOK in March/April 2008 and previous cruises cover most of the active Chilean continental margin between 33° and 37° S. Integrated interpretation of multi-beam bathymetric, sub-bottom profiles, side-scan sonar and seismic data allowed the identification of a number of slope failures. The main topic of this project is the morphological and sedimentological analysis of the Valdes slide, a medium-sized submarine landslide offshore the city of Talcahuano (300 km south of Santiago). In contrast to most other slides along continental margins, the Valdes slide is located on the landward facing eastern slope of a submarine ridge. This setting has important implications for the associated tsunami wave field (first arrival of positive amplitude). We measured geometrical parameters of the failure and adjacent slope. The slide affected an area of 19 km2 between ~1060 m and >1700 m water depths. Its is ~ 6 km long, up to 3 km wide and involved a total sedimentary volume of about 0,8 km3. The failure process was characterized by a multiple-event and we assume its tsunami potential to be high. Using the high resolution bathymetric data and the seismic profiles along the slide deposit it was possible to reconstruct the original morphology of the area in order to understand the relation between the slide event and the structural evolution of the ridge. Through the analysis of the data and bibliographic information about the Chilean margin, we analyzed potential trigger mechanisms for the landslide. The Valdes slide is situated on a steep ridge flank. The ridge follows an elongated fault zone running app. parallel to the margin. This fault zone has a dextral component which in combination with the faults elongation results in a compressional regime that is superimposed on

  15. The North Slope of Alaska and Tourism: Potential Impacts on the Arctic National Wildlife Refuge (ANWR)

    NASA Astrophysics Data System (ADS)

    Everett, L. R.

    2004-12-01

    The hydrocarbon industry of Alaska is currently the leading producer of revenue for the Alaskan state economy. Second only to hydrocarbons is the tourism industry. Tourism has been a viable industry since the 1890's when cruises touted the beauty of glaciers and icebergs along the Alaskan coastline. This industry has seen a steady growth for the past few decades throughout the state. The North Slope of Alaska, particularly Prudhoe Bay and the National Petroleum Reserve, has long been associated with hydrocarbon development and today displays a landscape dotted with gravel drill pads, gas and oil pipelines and housing for the oil workers. While tourism is not usually considered hand in hand with the hydrocarbon industry, it has mimicked the development of hydrocarbons almost since the beginning. Today one not only sees the effects of the oil industry on the North Slope, but also the tourist industry as planes unload dozens of tourists, or tour buses and private vehicles arrive daily via the Dalton Highway. In Deadhorse, hotels that once only housed the oil workers now welcome the tourist, offering tours of the oil fields and adjacent areas and have become jumping off sites for wilderness trips. Tourism will create jobs as well as revenue. However, at present, there are few restrictions or guidelines in place that will deal with the potential impacts of increased tourism. Because of this there are many concerns about the possible impacts tourism and the infrastructure development will have on the North Slope. To list several concerns: (1) What are the impacts of increased tourism and the infrastructure development? (2) What will the impacts be on the Arctic National Wildlife Refuge (ANWR), which sits a mere 60 miles to the east of Deadhorse? (3) Will hydrocarbon development in ANWR and the associated infrastructure exacerbate potential impact by encouraging greater use of the Refuge by tourists? (4) Will tourism itself have a negative impact on this fragile

  16. A reevaluation of the Munson-Nygren-Retriever submarine landslide complex, Georges bank lower slope, western north Atlantic

    USGS Publications Warehouse

    Chaytor, Jason D.; Twichell, David C.; ten Brink, Uri S.

    2012-01-01

    The Munson-Nygren-Retriever (MNR) landslide complex is a series of distinct submarine landslides located between Nygren and Powell canyons on the Georges Bank lower slope. These landslides were first imaged in 1978 using widely-spaced seismic reflection profiles and were further investigated using continuous coverage GLORIA sidescan imagery collected over the landslide complex in 1987. Recent acquisition of highresolution multibeam bathymetry across these landslides has provided an unprecedented view of their complex morphology and allows for a more detailed investigation of their evacuation and deposit morphologies and sizes, modes of failure, and relationship to the adjacent sections of the margin, including the identification of an additional landslide within the MNR complex, referred to here as the Pickett slide. The evacuation zone of these landslides covers an area of approximately 1,780 km2 . The headwalls of these landslides are at a depth of approximately 1,800 m, with evacuation extending for approximately 60 km downslope to the top of the continental rise. High-relief debris deposits, in the form of blocks and ridges, are present down the length of the majority of the evacuation zones and within the deposition area at the base of the slope. On the continental rise, the deposits from each of the most recent failures of the MNR complex landslides merge with debris from earlier continental slope failures, canyon and alongslope derived deposits, and prominent upper-rise failures.

  17. Radiocesium distribution along the slope in the Iput river basin as a tracer of the contaminant secondary migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey; Beriozkin, Victor; Dogadkin, Nikolay

    2016-04-01

    The main goal of the study performed in 2014-2015 at the test site located in the abandoned zone of the Iput river basin was to study detailed patterns of Cs-137 redistribution along the terrace slope and the adjacent floodplain depression almost 30 years after the Chernobyl accident. Cs-137 surface activity was measured with the help of modified field gamma-spectrometer Violinist III (USA) in a grid 2 m x 2 m within the test plot sized 10 m x 24 m. Gamma-spectrometry was accompanied by topographical survey. Cs-137 depth distribution was studied by soil core sampling in increments of 2 cm and 5 cm down to 40 cm depth. Cs-137 activity in soil samples was measured in laboratory conditions by Nokia gamma-spectrometer. The results showed distinct natural dissimilarity of Cs-137 surface activity within the undisturbed soil of slope. Cs-137 depth migration in successive soil cores marked different patterns correlated with the position in relief. In particular cores Cs-137 depth variation correlated with water regime that shows that the processes of secondary distribution of Cs-137 along the slope obviously depend upon water migration. The finding is important for understanding of regularities in patterns of radiocesium spatial distribution.

  18. Building 930, oblique view to southeast from fill slope covering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 930, oblique view to southeast from fill slope covering building 932, 135 mm lens. - Travis Air Force Base, Snack Bar, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  19. Performance of the APS optical slope measuring system

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-05-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms.

  20. 48. VIEW ACROSS RESERVOIR OF SLOPE PREPARATION FOR VARIABLEANGLE LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. VIEW ACROSS RESERVOIR OF SLOPE PREPARATION FOR VARIABLE-ANGLE LAUNCHER (VAL) SLAB LOOKING NORTHEAST, November 6, 1946. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. 49. DETAIL VIEW OF SLOPE PREPARATION FOR VARIABLEANGLE LAUNCHER SLAB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. DETAIL VIEW OF SLOPE PREPARATION FOR VARIABLE-ANGLE LAUNCHER SLAB LOOKING NORTH, November 6, 1946. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 7. VIEW WEST ALONG THE UPSTREAM SLOPE OF THE EMBANKMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST ALONG THE UPSTREAM SLOPE OF THE EMBANKMENT, SHOWING ROCK PAVING IN PROGRESS.... Volume XIX, No. 7, June 24, 1940. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  3. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  4. Slump dominated upper slope reservoir facies, Intra Qua Iboe (Pliocene), Edop Field, offshore Nigeria

    SciTech Connect

    Shanmugam, G.; Hermance, W.E.; Olaifa, J.O.

    1995-08-01

    An integration of sedimentologic and 3D seismic data provides a basis for unraveling complex depositional processes and sand distribution of the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Nearly 3,000 feet of conventional core was examined in interpreting slump/slide/debris flow, bottom current, turbidity current, pelagic/hemipelagic, wave and tide dominated facies. The IQI was deposited on an upper slope in close proximity to the shelf edge. Through time, as the shelf edge migrated seaward, deposition began with a turbidite channel dominated slope system (IQI 1 and 2) and progressed through a slump/debris flow dominated slope system (IQI 3, the principal reservoir) to a tide and wave dominated, collapsed shelf-edge deltaic system (IQI 4). Using seismic time slices and corresponding depositional facies in the core, a sandy {open_quotes}fairway{open_quotes} has been delineated in the IQI 3. Because of differences in stacking patterns of sandy and muddy slump intervals, seismic facies show: (1) both sheet-like and mounded external forms (geometries), and (2) parallel/continuous as well as chaotic/hummocky internal reflections. In wireline logs, slump facies exhibits blocky, coarsening-up, fining-up, and serrated motifs. In the absence of conventional core, slump facies may be misinterpreted and even miscorrelated because seismic facies and log motifs of slumps and debris flows tend to mimic properties of turbidite fan deposits. The slump dominated reservoir facies is composed of unconsolidated fine-grained sand. Thickness of individual units varies from 1 to 34 feet, but amalgamated intervals reach a thickness of up to 70 feet and apparently form connected sand bodies. Porosity commonly ranges from 20 to 35%. Horizontal permeability commonly ranges from 1,000 to 3,000 md.

  5. Cas9 Functionally Opens Chromatin.

    PubMed

    Barkal, Amira A; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K; Sherwood, Richard I

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  6. Effect of slope and footwear on running economy and kinematics.

    PubMed

    Lussiana, T; Fabre, N; Hébert-Losier, K; Mourot, L

    2013-08-01

    Lower energy cost of running (Cr) has been reported when wearing minimal (MS) vs traditional shoes (TS) on level terrain, but the effect of slope on this difference is unknown. The aim of this study was to compare Cr, physiological, and kinematic variables from running in MS and TS on different slope conditions. Fourteen men (23.4 ± 4.4 years; 177.5 ± 5.2 cm; 69.5 ± 5.3 kg) ran 14 5-min trials in a randomized sequence at 10 km/h on a treadmill. Subjects ran once wearing MS and once wearing TS on seven slopes, from -8% to +8%. We found that Cr increased with slope gradient (P < 0.01) and was on average 1.3% lower in MS than TS (P < 0.01). However, slope did not influence the Cr difference between MS and TS. In MS, contact times were lower (P < 0.01), flight times (P = 0.01) and step frequencies (P = 0.02) were greater at most slope gradients, and plantar-foot angles - and often ankle plantar-flexion (P = 0.01) - were greater (P < 0.01). The 1.3% difference between footwear identified here most likely stemmed from the difference in shoe mass considering that the Cr difference was independent of slope gradient and that the between-footwear kinematic alterations with slope provided limited explanations.

  7. Topographic slope correction for analysis of thermal infrared images

    NASA Technical Reports Server (NTRS)

    Watson, K. (Principal Investigator)

    1982-01-01

    A simple topographic slope correction using a linearized thermal model and assuming slopes less than about 20 degrees is presented. The correction can be used to analyzed individual thermal images or composite products such as temperature difference or thermal inertia. Simple curves are provided for latitudes of 30 and 50 degrees. The form is easily adapted for analysis of HCMM images using the DMA digital terrain data.

  8. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  9. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  10. GOAT ROCKS WILDERNESS AND ADJACENT ROADLESS AREAS, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Close, T.J.

    1984-01-01

    The Goat Rocks Wilderness and adjacent roadless areas are a rugged, highly forested, scenic area located on the crest of the Cascade Range in south-central Washington. Several mineral claims have been staked in the area. Mineral surveys were conducted. Geochemical, geophysical, and geologic investigations indicate that three areas have probable mineral-resource potential for base metals in porphyry-type deposits. Available data are not adequate to permit definition of the potential for oil and gas. There is little likelihood for the occurrence of other kinds of energy resources in the area. Evaluation of resource potential in the three areas identified as having probable mineral-resource potential could be improved by more detailed geochemical studies and geologic mapping.

  11. Scolopendromorpha of New Guinea and adjacent islands (Myriapoda, Chilopoda).

    PubMed

    Schileyko, Arkady A; Stoev, Pavel E

    2016-01-01

    The centipede fauna of the second largest island in the world, New Guinea, and its adjacent islands, is poorly known, with most information deriving from the first half of the 20th century. Here we present new data on the order Scolopendromorpha based on material collected in the area in the last 40 years, mainly by Bulgarian and Latvian zoologists. The collections comprise eleven species of six genera and three families. The diagnosis of Cryptops (Trigonocryptops) is emended in the light of the recent findings. The old and doubtful record of Scolopendra multidens Newport, 1844 from New Guinea is referred to S. subspinipes Leach, 1815 and the species is here excluded from the present day list of New Guinean scolopendromorphs. Cryptops nepalensis Lewis, 1999 is here recorded from New Guinea for the first time. An annotated list and an identification key to the scolopendromorphs of the studied region are presented. PMID:27515618

  12. Geomorphology of portions of western Kentucky and adjacent areas

    SciTech Connect

    Dilamarter, R.C.

    1982-07-01

    The geomorphology of portions of western Kentucky and adjacent areas in Indiana, Illinois and Tennessee is presented as a background for interpreters evaluating the present land surface using remotely sensed imagery. Eight physiographic units were analyzed and are briefly discussed with reference to topography and surface deposits. Great diversity was found to be characteristic of the region, the result of different structural influences and geomorphic processes. The landscape bears the marks of fluvial, glacial, eolian, lacustrine and karstic environments, so a regional geomorphic history was compiled from the literature as an aid to understanding the land surface. Three smaller zones in Kentucky were analyzed in greater detail regarding topography and geomorphic development because of their potential importance in subsurface exploration.

  13. Configuration optimization of dampers for adjacent buildings under seismic excitations

    NASA Astrophysics Data System (ADS)

    Bigdeli, Kasra; Hare, Warren; Tesfamariam, Solomon

    2012-12-01

    Passive coupling of adjacent structures is known to be an effective method to reduce undesirable vibrations and structural pounding effects. Past results have shown that reducing the number of dampers can considerably decrease the cost of implementation and does not significantly decrease the efficiency of the system. The main objective of this study was to find the optimal arrangement of a limited number of dampers to minimize interstorey drift. Five approaches to solving the resulting bi-level optimization problem are introduced and examined (exhaustive search, inserting dampers, inserting floors, locations of maximum relative velocity and a genetic algorithm) and the numerical efficiency of each method is examined. The results reveal that the inserting damper method is the most efficient and reliable method, particularly for tall structures. It was also found that increasing the number of dampers does not necessarily increase the efficiency of the system. In fact, increasing the number of dampers can exacerbate the dynamic response of the system.

  14. Reconnaissance geologic map of Kodiak Island and adjacent islands, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2013-01-01

    Kodiak Island and its adjacent islands, located on the west side of the Gulf of Alaska, contain one of the largest areas of exposure of the flysch and melange of the Chugach terrane of southern Alaska. However, in the past 25 years, only detailed mapping covering small areas in the archipelago has been done. This map and its associated digital files (Wilson and others, 2005) present the best available mapping compiled in an integrated fashion. The map and associated digital files represent part of a systematic effort to release geologic map data for the United States in a uniform manner. The geologic data have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The map data are presented for use at a nominal scale of 1:500,000, although individual datasets (see Wilson and others, 2005) may contain data suitable for use at larger scales.

  15. 38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS NEAR THE CENTER OF THE FACTORY BUILDING. AT THE LEFT FOREGROUND IS A MOVABLE TIRE BENDER FOR SHAPING ELI WINDMILL WHEEL RIMS. AT THE CENTER IS A FLOOR-MOUNTED CIRCA 1900 SNAG GRINDER OF THE TYPE USED FOR SMOOTHING ROUGH CASTINGS. ON THE WHEELED WORK STATION IS A SUNNEN BUSHING GRINDER, BEHIND WHICH IS A TRIPOD CHAIN VICE. IN THE CENTER BACKGROUND IS A WOODEN CHEST OF DRAWERS WHICH CONTAINS A 'RAG DRAWER' STILL FILLED WITH CLOTH RAGS PLACED IN THE FACTORY BUILDING AT THE INSISTENCE OF LOUISE (MRS. ARTHUR) KREGEL FOR THE CONVENIENCE AND CLEANLINESS OF WORKERS. IN THE LEFT BACKGROUND IS A CIRCA 1900 CROSS-CUTOFF CIRCULAR SAW. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  16. Air bubble-shock wave interaction adjacent to gelantine surface

    NASA Astrophysics Data System (ADS)

    Lush, P. A.; Tomita, Y.; Onodera, O.; Takayama, K.; Sanada, N.; Kuwahara, M.; Ioritani, N.; Kitayama, O.

    1990-07-01

    The interaction between a shock wave and an air bubble-adjacent to a gelatine surface is investigated in order to simulate human tissue damage resulting from extracorporeal shock wave lithotripsy. Using high speed cine photography it is found that a shock wave of strength 11 MPa causes 1-3 mm diameter bubbles to produce high velocity microjets with penetration rates of approximately 110 m/s and penetration depths approximately equal to twice the initial bubble diameter. Theoretical considerations for liquid impact on soft solid of similar density indicate that microjet velocities will be twice the penetration rate, i.e. 220 m/s in the present case. Such events are the probable cause of observed renal tissue damage.

  17. An engineered dimeric protein pore that spans adjacent lipid bilayers

    PubMed Central

    Mantri, Shiksha; Sapra, K. Tanuj; Cheley, Stephen; Sharp, Thomas H.; Bayley, Hagan

    2013-01-01

    The bottom-up construction of artificial tissues is an underexplored area of synthetic biology. An important challenge is communication between constituent compartments of the engineered tissue and between the engineered tissue and additional compartments, including extracellular fluids, further engineered tissue and living cells. Here we present a dimeric transmembrane pore that can span two adjacent lipid bilayers and thereby allow aqueous compartments to communicate. Two heptameric staphylococcal α-hemolysin (αHL) pores were covalently linked in an aligned cap-to-cap orientation. The structure of the dimer, (α7)2, was confirmed by biochemical analysis, transmission electron microscopy (TEM) and single-channel electrical recording. We show that one of two β barrels of (α7)2 can insert into the lipid bilayer of a small unilamellar vesicle, while the other spans a planar lipid bilayer. (α7)2 pores spanning two bilayers were also observed by TEM. PMID:23591892

  18. Coupled volume/double slope subjective listening test

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Stuecker, Rebecca

    2003-10-01

    Can experienced listeners of music discern a double-sloped decay from a Sabine decay? Do they prefer the double slope? Concert hall designers use coupled-volumes and their signature double-slope sound decay in an effort to reconcile the inversely related qualities of reverberance and clarity. A simulated space, based on an actual built coupled-volume hall, was conceived in the room acoustics software CATT-Acoustic. Variations in the aperture sizes that sonically expose the main hall to the coupled volume generated both classic Sabine decays and double-sloped decays. The impulse responses generated were convolved with the same anechoic musical recording, grouped in pairs, and played for an opportunity-sample of 21 volunteers from the Architectural Acoustics section of the 145th meeting of the Acoustical Society of America in Nashville. Participants listened to the 11 recorded pairs over headphones and were asked to determine (1) if the two recordings sounded different, (2) which recording was more likely to have a double slope or had a more dramatic double slope, and (3) which of the two recordings they prefer.

  19. Municipal solid waste slope failure. 2: Stability analyses

    SciTech Connect

    Stark, T.D.; Eid, H.T.; Evans, W.D.; Sherry, P.E.

    2000-05-01

    Analyses are presented to investigate the case of a large slope failure in a municipal solid waste (MSW) landfill that developed through the underlying native soil. The engineering properties of the waste and native soil are described in a companion paper by Eid et al. (2000). Some of the conclusions from this case history include (1) native colluvial/residual soils in the Cincinnati area underlying MSW can mobilize a drained shear strength less than the fully softened value without recent evidence of previous sliding; (2) strain incompatibility and progressive failure can occur between MSW and underlying materials and cause a reduction in the mobilized shear strength; (3) a stability evaluation of interim slopes, especially when the slope toe will be excavated, blasting will be occurring, and waste placement continues at the top of slope, should be conducted, even though it may not be required by regulations; and (4) the reappearance of cracking at the top of an MSW landfill slope is probably an indication of slope instability and not settlement.

  20. Recent carbonate slope development on southwest Florida continental margin

    SciTech Connect

    Brooks, G.R.; Holmes, C.W.

    1987-05-01

    The southwest Florida continental slope bordering the Florida Strait contains a thick sequence of seaward-prograding sediments. Sediments consist principally of a mixture of shallow water and pelagic carbonate sands and muds deposited rapidly on the upper slope. Sedimentary patterns are interpreted to be a function of high-frequency sea level fluctuations. Most vigorous off-shelf transport and highest sedimentation rates (exceeding 2.5 m/1000 years) occur during early transgressions and late regressions when water depths on the shelf are shallow. During sea level highstands, off-shelf transport is less vigorous and sedimentation rates decrease. During sea level lowstands, no off-shelf transport takes place and erosion of the previously deposited sequence occurs as a result of an increase in erosional capacity of the Florida Current. The presence of at least nine such sequences, all with similar characteristics, indicates that these processes have been occurring since at least the late Pleistocene in response to high-frequency glacial fluctuations. The location of the southwest Florida slope between the rimmed Bahama platform and the nonrimmed remainder of the west Florida margin, as well as similarities with ancient carbonate slope deposits formed during periods when shelf-edge reef-forming organisms were lacking, suggest that depositional patterns on the southwest Florida slope may be indicative of a transition between rimmed and nonrimmed carbonate platform environments. The southwest Florida slope may provide a valuable modern analog for identifying similar transitional environments in the geologic record.

  1. Effect of Fluoridated Sealants on Adjacent Tooth Surfaces

    PubMed Central

    Cagetti, M.G.; Carta, G.; Cocco, F.; Sale, S.; Congiu, G.; Mura, A.; Strohmenger, L.; Lingström, P.; Campus, G.

    2014-01-01

    A double-blind randomized clinical trial was performed in 6- to 7-yr-old schoolchildren to evaluate, in a 30-mo period, whether the caries increment on the distal surface of the second primary molars adjacent to permanent first molars sealed with fluoride release compounds would be lower with respect to those adjacent to permanent first molars sealed with a nonfluoridated sealant. In sum, 2,776 subjects were enrolled and randomly divided into 3 groups receiving sealants on sound first molars: high-viscosity glass ionomer cement (GIC group); resin-based sealant with fluoride (fluoride-RB group); and a resin-based sealant without fluoride (RB group). Caries (D1 – D3 level) was recorded on the distal surface of the second primary molar, considered the unit of analysis including only sound surfaces at the baseline. At baseline, no differences in caries prevalence were recorded in the 3 groups regarding the considered surfaces. At follow-up, the prevalence of an affected unit of analysis was statistically lower (p = .03) in the GIC and fluoride-RB groups (p = .04). In the GIC group, fewer new caries were observed in the unit of analysis respect to the other 2 groups. Incidence rate ratios (IRRs) were 0.70 (95% confidence interval: 0.50, 0.68; p < .01) for GIC vs. RB and 0.79 (95% confidence interval: 0.53, 1.04; p = .005) for fluoride-RB vs. RB. Caries incidence was significantly associated with low socioeconomic status (IRR = 1.18; 95% confidence interval: 1.10, 1.42; p = .05). Dental sealant high-viscosity GIC and fluoride-RB demonstrated protection against dental caries, and there was evidence that these materials afforded additional protection for the tooth nearest to the sealed tooth (clinical trial registration NCT01588210). PMID:24846910

  2. Subduction initiation adjacent to a relic island arc

    NASA Astrophysics Data System (ADS)

    Leng, W.; Gurnis, M.

    2013-12-01

    Although plate tectonics is well established, how subduction initiates over tectonic history has remained obscure. It has been proposed that passive margins may be a possible place for subduction initiation, but there is no obvious Cenozoic example of such a scenario, including along the passive margins of the Atlantic Ocean. With a computational method that follows the deformation of a visco-elasto-plastic medium, here we show that a favourable locale for subduction initiation is the juxtaposition of an old oceanic plate adjacent to a young, but relic arc. Significant density anomalies leading to subduction initiation arise from two major factors. One is the compositional difference between the relic arc crust and the oceanic lithospheric mantle; the other is the thermal difference due to the age offset between the two plates. With such a setup, we observe spontaneous subduction initiation if the oceanic crust is significantly weakened by pore fluid pressure. If the oceanic crust is relatively strong, a small amount of plate convergence is required to induce subduction. The evidence that Izu-Bonin-Mariana and Tonga-Kermedec subduction zones both initiate adjacent to a relic island arc support our conclusions. The initiation of both subduction zones at 51-52 Ma with commensurate compression on their respective overriding plates support a causal link between both subduction initiation events through a change in Pacific Plate motion. Our results provide an explanation for the rarity of subduction initiation at the passive margins. The continental lithosphere is typically old and cold. Consequently, the thermal effects cancel the compositional buoyancy contrast between the continental crust and the oceanic lithospheric mantle, making subduction initiation difficult at passive margins.

  3. Prevention of enamel demineralization adjacent to glass ionomer filling materials.

    PubMed

    Forss, H; Seppä, L

    1990-04-01

    In order to study the release of fluoride and prevention of enamel demineralization by different filling materials, standardized cavities were prepared in 80 extracted human molars. The cavities were filled as follows: 1. Fuji II F; 2. Ketac-Fil; 3. Ketac-Silver; 4. Silar. Twenty molars were used as controls (no filling). Enamel slabs with the fillings were subjected to 9 days of demineralization (30 min daily) and remineralization (artificial saliva, replaced daily). Fluoride release in the saliva was determined on days 1, 3, 5, and 9. Enamel fluoride content adjacent to the cavities was determined initially and after the de-remineralization using the acid etch technique. On day 1, the largest amount of fluoride in the saliva was released by Fuji, but on day 9 the largest amount was released by Ketac-Fil. Ketac-Silver released significantly less fluoride than Fuji and Ketac-Fil. The average initial fluoride content of enamel was 2200 ppm. After the test period, fluoride contents adjusted for biopsy depth were 1822, 1690, 1693, 1337, and 888 ppm in groups 1-5, respectively. The amounts of phosphorus dissolved by the second acid etch were 28.9 (SE 2.6), 30.2 (2.0), 34.4 (2.8), 44.1 (2.7), and 42.2 (2.4) micrograms, respectively. Softening of surface enamel during the test period was clearly reduced in teeth filled with Fuji and Ketac-Fil. The results show that glass ionomer materials release considerable amounts of fluoride and prevent demineralization of the adjacent enamel in vitro. Fuji and Ketac-Fil seem to be more effective than Ketac-Silver.

  4. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. Link to an amendment published at 76 FR 35744, June 20, 2011. (a... adjacent waters, Mass. (a) * * * (2) Anchorage B. All waters bounded by a line beginning at 41°36′42.3″...

  5. Esophagectomy - open

    MedlinePlus

    Trans-hiatal esophagectomy; Trans-thoracic esophagectomy; En bloc esophagectomy; Removal of the esophagus - open; Ivor-Lewis esophagectomy, Blunt esophagectomy; Esophageal cancer - esophagectomy - open; Cancer of the esophagus - esophagectomy - open

  6. Terrigenous Sedimentation Patterns at Reefs Adjacent to the Guanica Bay Watershed, Southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Sherman, C.; Whitall, D.

    2014-12-01

    Guanica Bay is an estuary on the southwest coast of Puerto Rico with numerous nearshore reefs located in adjacent coastal waters. As part of the multi-agency Guanica Bay Watershed Project, a study was undertaken to establish baseline levels of terrigenous sedimentation reaching reefs adjacent to the Guanica Bay watershed as well as establish spatial and temporal patterns in its delivery. To characterize and quantify sedimentation patterns, sediment traps were established at nine reef sites occurring along an ~ 14 km stretch of coastline centered on the outlet of the bay. Sites were located at shallow reefs within 2 km of the shore at depths of ~ 10 m. Two additional sites were located at the mouth of the Rio Loco where it empties into Guanica Bay and at the mouth of the bay where it opens into adjacent coastal waters. Traps were collected monthly from August 2009 through July 2012 to determine both the amount of sediment accumulation (mg cm-2 day-1) and its composition. Composition is expressed in terms of relative amounts of calcium carbonate (in situ production), organic material and terrigenous material. Average trap accumulation rates among the reef sites ranged from ~ 3 to 28 mg cm-2 day-1. Average percent terrigenous material within reef accumulation ranged from ~ 20% to 30%. While trap accumulation rates are highly variable on both spatial and temporal scales, the composition of sediments and relative amount of terrigenous material is fairly uniform. Similar temporal patterns in accumulation rates among the sites without corresponding changes in composition of sediments point to resuspension of bottom sediments by wave action as a primary driver of sedimentary dynamics at these reefs. Sites closest to Guanica Bay display the highest degree of terrigenous influence in terms of trap accumulation rates and percent terrigenous material, which is consistent with Guanica Bay serving as a local source of terrigenous material to coastal waters. However, the lack of

  7. 78 FR 38358 - Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Bureau of Land Management Call for Nominations: North Slope Science Initiative, Science Technical Advisory Panel, Alaska AGENCY: Bureau of Land Management, Alaska State Office, North Slope Science... North Slope Science Initiative, Science Technical Advisory Panel, in accordance with the provisions...

  8. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.

    2013-12-01

    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (<5 m), relatively dark markings on steep (25°-40°) slopes that appear and incrementally grow during warm seasons over low-albedo surfaces, fade when inactive, and recur over multiple Mars years. The fans on which RSL terminate have distinctive color and spectral properties. The initially confirmed RSL appear and lengthen in the late southern spring through summer from 48°S to 32°S latitudes, favoring equator-facing slopes--times and places with peak surface temperatures from >250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal

  9. Soil properties in high-elevation ski slopes

    NASA Astrophysics Data System (ADS)

    Filippa, Gianluca; Freppaz, Michele; Letey, Stéphanie; Corti, Giuseppe; Cocco, Stefania; Zanini, Ermanno

    2010-05-01

    The development of winter sports determines an increasing impact on the high altitude ecosystems, as a consequence of increased participation and an increasing demand of high quality standards for skiable areas. The construction of a ski slope is associated with a certain impact on soil, which varies as a function of the degree of human-induced disturbance to the native substrata. In this work, we provide a description of the characteristics of alpine tundra ski-slope soils and their nutrient status, contrasted with undisturbed areas. The study site is located in the Monterosaski Resort, Aosta Valley, NW Italy (45°51' N; 7°48' E). We chose 5 sites along an altitudinal gradient between 2700 and 2200 m a.s.l.. Per each site, one plot was established on the ski slope, while a control plot was chosen under comparable topographic conditions a few meters apart. Soils were described and samples were collected and analysed for main chemical-physical properties. In addition an evaluation of N forms, organic matter fractionation and microbial biomass was carried out. Soil depth ranged between 10 to more than 70 cm, both on the ski slope and in the undisturbed areas. A true organo-mineral (A) horizon was firstly identified at 2500 m a.s.l., while a weathering horizon (Bw) was detected at 2400 m a.s.l.. However, a Bw horizon thick enough to be recognised as diagnostic for shifting soil classification order from Entisols to Inceptisols (USDA-Soil Taxonomy) was detected only below 2400 m a.s.l.. Lithic Cryorthents were predominant in the upper part of the sequence (above 2500 m a.s.l.), both in the ski slope and the undisturbed areas; Typic Cryorthents were identified between 2500 and 2400 m a.s.l., while Inceptisols were predominant between 2400 and 2200 m a.s.l.. Chemical-physical properties will be discussed focusing on the main differences between ski slope and undisturbed soils, as determined by the ski slope construction. Pedogenetic processes at high altitude are

  10. How semantic biases in simple adjacencies affect learning a complex structure with non-adjacencies in AGL: a statistical account

    PubMed Central

    Poletiek, Fenna H.; Lai, Jun

    2012-01-01

    A major theoretical debate in language acquisition research regards the learnability of hierarchical structures. The artificial grammar learning methodology is increasingly influential in approaching this question. Studies using an artificial centre-embedded AnBn grammar without semantics draw conflicting conclusions. This study investigates the facilitating effect of distributional biases in simple AB adjacencies in the input sample—caused in natural languages, among others, by semantic biases—on learning a centre-embedded structure. A mathematical simulation of the linguistic input and the learning, comparing various distributional biases in AB pairs, suggests that strong distributional biases might help us to grasp the complex AnBn hierarchical structure in a later stage. This theoretical investigation might contribute to our understanding of how distributional features of the input—including those caused by semantic variation—help learning complex structures in natural languages. PMID:22688639

  11. Constraining the Formation of Submarine Gullies on Continental Slopes

    NASA Astrophysics Data System (ADS)

    Shumaker, L.; Jobe, Z. R.; Graham, S. A.

    2015-12-01

    Submarine gullies are ubiquitous on continental slopes and steep areas of seafloor worldwide, but their role in sediment transport remains unresolved. Direct observation of flows in the submarine realm is rare and expensive, but by analyzing basic geometries of gullies in the sedimentary record, it is possible to gain insight into the behavior of the flows that formed them. In shallow 3D seismic reflection data from the Taranaki Basin, New Zealand, we document gullies preserved in a Pliocene-Pleistocene progradational margin sequence. These gullies commonly form aggradational complexes hundreds of meters thick, showing alternating periods of erosion, inactivity, and roughly self-similar aggradation in response to slope sedimentation. Erosional phases speak of modification by energetic turbidity currents, whereas sediment drapes point to extended periods of flow quiescence and hemipelagic deposition. We pair these observations with morphometrics of over 600 gullies in seafloor bathymetry from continental margins worldwide. The slopes of these modern gullies and interfluves are both well described by a power-law decay with along-profile distance. The decay of slopes with distance (concavity) obtained from power-law relationships for interfluves and gullies are well correlated, although gullies attain higher slopes and are slightly more concave than neighboring interfluves. The self-similar growth of gullies in the subsurface and the strong similarity between gully and interfluve profiles in all datasets suggests a link between the evolution of gullies and of the slopes on which they form. We conclude by presenting a conceptual model in which gully and slope morphology are tightly coupled.

  12. Effect of subthreshold slope on the sensitivity of nanoribbon sensors

    NASA Astrophysics Data System (ADS)

    Sun, K.; Zeimpekis, I.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-07-01

    In this work, we investigate how the sensitivity of a nanowire or nanoribbon sensor is influenced by the subthreshold slope of the sensing transistor. Polysilicon nanoribbon sensors are fabricated with a wide range of subthreshold slopes and the sensitivity is characterized using pH measurements. It is shown that there is a strong relationship between the sensitivity and the device subthreshold slope. The sensitivity is characterized using the current sensitivity per pH, which is shown to increase from 1.2% ph‑1 to 33.6% ph‑1 as the subthreshold slope improves from 6.2 V dec‑1 to 0.23 V dec‑1 respectively. We propose a model that relates current sensitivity per pH to the subthreshold slope of the sensing transistor. The model shows that sensitivity is determined only on the subthreshold slope of the sensing transistor and the choice of gate insulator. The model fully explains the values of current sensitivity per pH for the broad range of subthreshold slopes obtained in our fabricated nanoribbon devices. It is also able to explain values of sensitivity reported in the literature, which range from 2.5% pH‑1 to 650% pH‑1 for a variety of nanoribbon and nanowire sensors. Furthermore, it shows that aggressive device scaling is not the key to high sensitivity. For the first time, a figure-of-merit is proposed to compare the performance of nanoscale field effect transistor sensors fabricated using different materials and technologies.

  13. Unusual megafaunal assemblages on the continental slope off Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Hecker, Barbara

    Megafaunal assemblages were studied in August-September 1992 using a towed camera sled along seven cross-isobath transects on the continental slope off Cape Hatteras. A total of 20,722 megafaunal organisms were observed on 10,918 m 2 of the sea floor between the depths of 157 and 1 924 m. These data were compared with data previously collected off Cape Hatteras in 1985 and at other locations along the eastern U.S. coast between 1981 and 1987. Megafaunal populations on the upper and lower slopes off Cape Hatteras were fouond to be similar, in terms of density and species composition, to those observed at the other locations. In contrast, megafaunal abundances were found to be elevated (0.88 and 2.65 individuals per m 2 during 1985 and 1992, respectively) on the middle slope off Cape Hatteras when compared to most other slope locations (<0.5individuals per m 2). These elevated abundances mainly reflect dense populations of three demersal fish, two eel pouts ( Lysenchelys verrilli and Lycodes atlanticus) and the witch flounder Glyptocephalus cynoglossus, and a large anemone ( Actinauge verrilli). These four species dominated the megafauna off Cape Hatteras, whereas they represented only a minor component of megafaunal populations found at other slope locations. Additionally, numerous tubes of the foraminiferan Bathysiphon filiformis were observed off Cape Hatteras, but not elsewhere. The high density of demersal fish found off Cape Hatteras appears to be related to the high densities of infaunal prey reported from this area. The high densities of A. verrilli and B. fuliformis may be related to the same factors responsible for the high infaunal densities, namely enhanced nutrient inputs in the form of fine particles. Extreme patchiness also was observed in the distributions of the middle slope taxa off Cape Hatteras. This patchiness may reflect the habitat heterogeneity of this exceptionally rugged slope and the sedentary nature of the organisms inhabiting it.

  14. Effect of subthreshold slope on the sensitivity of nanoribbon sensors

    NASA Astrophysics Data System (ADS)

    Sun, K.; Zeimpekis, I.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-07-01

    In this work, we investigate how the sensitivity of a nanowire or nanoribbon sensor is influenced by the subthreshold slope of the sensing transistor. Polysilicon nanoribbon sensors are fabricated with a wide range of subthreshold slopes and the sensitivity is characterized using pH measurements. It is shown that there is a strong relationship between the sensitivity and the device subthreshold slope. The sensitivity is characterized using the current sensitivity per pH, which is shown to increase from 1.2% ph-1 to 33.6% ph-1 as the subthreshold slope improves from 6.2 V dec-1 to 0.23 V dec-1 respectively. We propose a model that relates current sensitivity per pH to the subthreshold slope of the sensing transistor. The model shows that sensitivity is determined only on the subthreshold slope of the sensing transistor and the choice of gate insulator. The model fully explains the values of current sensitivity per pH for the broad range of subthreshold slopes obtained in our fabricated nanoribbon devices. It is also able to explain values of sensitivity reported in the literature, which range from 2.5% pH-1 to 650% pH-1 for a variety of nanoribbon and nanowire sensors. Furthermore, it shows that aggressive device scaling is not the key to high sensitivity. For the first time, a figure-of-merit is proposed to compare the performance of nanoscale field effect transistor sensors fabricated using different materials and technologies.

  15. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

    NASA Astrophysics Data System (ADS)

    Fan, Gang; Zhang, Jianjing; Wu, Jinbiao; Yan, Kongming

    2016-08-01

    A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert-Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

  16. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  17. Hydrologic behavior of a steep forested slope prone to shallow landsliding

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Simoni, Alessandro

    2015-04-01

    Over the past ten years, the frequency of debris flows in the Northern Apennines of Italy has significantly increased. Gravitational movements in the area are dominated by slow-moving landslides involving fine-grained soils and, to a lesser extent, by shallow slips in weathered arenaceous rocks. During the past 5 years, at least 20 debris flow events were triggered by exceptional rainfall events. Although no fatalities of injuries resulted from these landslides, the appearance of this new danger generated great concern among local communities. The Civil Protection Agency of the Emilia-Romagna region therefore decided to produce a debris flow susceptibility map to target high-risk zones and to help local authorities in emergency planning. This task, however, is particularly difficult due to the lack of historical data required to apply heuristic or statistical methods. In this context we installed a monitoring system on a representative slope in order to investigate the hydrologic response to rainfall and to support the choice of a suitable deterministic model. The selected slope is close to the village of Porretta Terme (Province of Bologna, Italy) at an elevation of 510 m asl. The slope has an inclination of about 30° and consists of a thin soil cover (0.5-1 thickness) lying over a fractured arenaceous bedrock. The soil is a well-graded sand with silt, gravel, cobbles, and weathered rock blocks. The slope is densely vegetated with grass, shrubs and mature trees. Part of the slope failed on the 30th November 2008 after a rainfall of 140 mm in 24 hours. A shallow slide of the soil mantle rapidly mobilized into debris flow leaving the bedrock exposed in the source area. The monitoring system is located on an unfailed slope close to the initiation area. The system consists of three stations aligned along the maximum slope at a distance of 15-20 m. Each station is equipped with: i) an open-standpipe piezometer installed near the soil-rock interface (1 m deep); ii

  18. Karstic slope "breathing": morpho-structural influence and hazard implications

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the

  19. Late Quaternary Morphological Changes of the Waipaoa River Outer Shelf and Upper Slope, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, J. P.; Sumners, B.; Alexander, C.; Orpin, A.; Gerber, T.; Pratson, L.

    2006-12-01

    The outer shelf and slope seaward of the Waipaoa River, New Zealand has experienced considerable morphological change in the late Quaternary. The complexion of the margin has evolved as a result of sedimentation affected by sea level, oceanographic, and tectonic forcings. Integration of seismic, core and multibeam data indicate that the modern seabed morphology along a 30-km stretch of the margin can be categorized as 3 distinct regions: 1) east of Ariel Anticline the shelf edge is scalloped-shaped and steep, with a thin blanket of Holocene mud (generally <5 m); 2) immediately seaward of the Waipaoa River mouth, two shelf-indenting but small canyons with distinct gully patterns are found, and moderately think (<15 m) Holocene sediments are seen in the vicinity; and, 3) east of Lachlan Anticline where a larger canyon incises the shelf, gullying is smoothed by a Holocene mud fill (0- >15 m thick). These intra-system morphological differences are thought to reflect the complex and continual evolution of the margin. Seismic and multibeam evidence suggests a paleo-river channel incised across the Ariel Anticline and supplied a considerable volume of sediment to the low-stand coastline, in the northern portion of the study area. This delta apparently experienced a failure, producing an expansive debris field in the adjacent slope basin and the distinct scalloped-shaped shelf-edge morphology. With sea-level rise, shelf sediment storage has been enhanced, but off-shelf transport has been maintained throughout the Holocene. The pattern of sediment accumulation suggests sediment escaping through Poverty Gap is being advected southward into Lachlan Canyon. As a result the erosional gully morphology that was created during the low-stand, which is still evident to the north, is subsequently being overlain.

  20. Lake Shewa Rock-Slope Failures and Water Impoundment, Badakshan Province, Afghanistan

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Weihs, B. J.

    2009-12-01

    Lake Shewa in northeastern Badakshan Province, Afghanistan, was dammed in antiquity when a large rock-slope failure (RSF) from the strongly fault-shattered and well weathered Archean gneisses of the Zirnokh peaks to the north moved down fault and foliation planes for ~1700 m into the Arakht River valley. This dammed up the river and its tributaries to a dam thickness of ~400 m (~1.6 cubic km volume), producing a 12-km-long lake that is as much as 270 m deep, leaving ~80 m of freeboard to the top of the dam. The valley had been glaciated in the past and the debuttressing caused by prior ice melt-out most likely reduced shear strength, while the active faulting with associated seismicity likely increased shear stress. At least five separate slope failures occurred at the site of the landslide dam, with a ~960-m-long rock glacier at the head giving evidence of long-prior emplacement of the main RSF. An additional massive rock slide also occurs in an adjacent valley 9 km north along the large strike-slip fault that passes through the main scarp. Spring seepage through the Shewa dam face has caused several recent subsidiary slump failures of the landslide mass, which if continued at a large enough scale for long enough, or with additional seismicity from the two active strike-slip fault systems that cross beneath the landslide dam, could threaten its integrity. The world’s largest known landslide dam (Usoi, ~550m thickness, ~2 - 2.5 cubic km volume) was triggered by a seismic event and occurs nearby in Tajikistan.

  1. Transverse bed slope effects in an annular flume

    NASA Astrophysics Data System (ADS)

    Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim

    2016-04-01

    Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse

  2. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    PubMed Central

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σci, and the parameter of intact rock mi. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σci is relatively small, the relation between F and σci is nonlinear, but when σci is relatively large, the relation is linear; with the increase of mi, F decreases first and then increases. PMID:25147838

  3. Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes

    DOE PAGES

    Xu, W.; Zhu, W. D.; Smith, S. A.; Cao, M. S.

    2016-03-18

    While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less

  4. Along-slope current generation by obliquely incident internal waves

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg; Slinn, Donald N.

    2001-10-01

    A series of numerical experiments is performed to investigate the breaking of obliquely incident internal waves propagating towards a bottom slope. The case of critical reflection is considered, where the angle between the wave group velocity vector and the horizontal matches the bottom slope angle. The flow evolution is found to be significantly different from the evolution observed previously in simulations of normally incident waves. The divergence of the Reynolds stress in the breaking zone causes a strong along-slope mean current, which changes the flow structure dramatically. The wave does not penetrate the current but breaks down at its upper surface as the result of a critical layer interaction. A continuously broadening mean along-slope current with an approximately constant velocity is produced. We propose a simple model of the process based on the momentum conservation law and the radiation stress concept. The model predictions are verified against the numerical results and are used to evaluate the possible strength of along-slope currents generated by this process in the ocean.

  5. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  6. The Influence of Slope Breaks on Lava Flow Surface Disruption

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  7. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  8. Investigating gully flow emplacement mechanisms using apex slopes

    NASA Astrophysics Data System (ADS)

    Kolb, Kelly Jean; McEwen, Alfred S.; Pelletier, Jon D.

    2010-07-01

    The origin of the martian gullies has been much debated since their discovery by the Mars Orbiter Camera (MOC, Malin, M.C., Edgett, K.S. [2000]. Science 288, 2330-2335). Several previous studies have looked at slope gradients in and around gullies, but none have used Digital Elevation Models (DEMs) from the High Resolution Imaging Science Experiment (HiRISE, McEwen, A.S., and 14 colleagues [2007]. J. Geophys. Res. 112 (E05), E0505S02), which has a pixel scale down to 25 cm/pixel. We use five 1 m/post HiRISE DEMs to measure gully apex slopes, the local channel gradient at the upslope extent of the gully debris apron, which marks a shift from erosion to deposition. The apex slope provides information about whether a flow was likely a typical dry granular flow (begins depositing on slopes ˜21°) or fluidized by some extra mechanism (depositing on shallower slopes). We find that 72% of the 75 gully fans studied were likely emplaced by fluidized flows. Relatively old gullies appear more likely to have hosted fluidized flows than relatively fresh gullies. This suggests a time and location dependent fluidizing agent, possibly liquid water produced in a different climate as previously proposed. Our results do not provide evidence for water-rich flows in gullies today.

  9. Infinite slope stability under steady unsaturated seepage conditions

    USGS Publications Warehouse

    Lu, N.; Godt, J.

    2008-01-01

    [1] We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework. Copyright 2008 by the American Geophysical Union.

  10. Landform Degradation and Slope Processes on Io: The Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  11. Altered marine tephra deposits as potential slope failure planes?

    NASA Astrophysics Data System (ADS)

    Wiemer, Gauvain; Kopf, Achim

    2015-08-01

    Weathering of tephra results in increasing proportions of mechanically weak, authigenic clay minerals (smectite). This suggests that altered tephra represent inherent weak layers in slope sediment sequences, and these may facilitate slope failure in submarine and other aquatic environments. In drained direct shear experiments, tephra in different alteration stages were compared to common sand-clay mixtures for geotechnical reference. Attention is drawn to the influence of particle shape on shear strength. The results revealed volcanic ash to have (1) a high strength end-member at low alteration stages due to particle roughness and angularity and (2) a low strength end-member after complete diagenetic alteration, both under static conditions. This would suggest that strongly altered volcanic ash layers could potentially be responsible for slope failures. However, a review of ODP and IODP Expedition reports shows that advanced ash alteration mostly occurs at depths below (>800 mbsf) those commonly observed for slope failure initiation (<400 mbsf). This, in turn, suggests that volcanic ash alteration does not play an important role in the initiation of slope failure.

  12. Linking Slope Sedimentation, Gradient, Morphology, and Active Faulting: An Integrated Example from the Palos Verdes Slope, Southern California Borderland

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Brothers, D. S.; Paull, C. K.; McGann, M.; Caress, D. W.; Conrad, J. E.

    2015-12-01

    Seafloor gradient variations associated with restraining and releasing bends along the active (1.6-1.9 mm/yr) right-lateral Palos Verdes Fault appear to control Holocene sediment thickness, depositional environment, and morphodynamic processes along a section of the continental slope offshore Los Angeles, California. Autonomous underwater mapping vehicle (AUV), remotely operated vehicle (ROV), and shipboard methods were used to acquire a dense grid of high-resolution chirp profiles (150 m line spacing; 11 cm vertical resolution), multibeam bathymetry (2 m grid), and targeted sediment core samples (<2 m length). Detailed interpretation of Holocene deposits in the chirp profiles combined with radiocarbon dating and laser particle-size analyses allow correlation of Holocene sediment thickness and seafloor gradient with sediment gravity flow deposits. Holocene down-slope flows appear to have been generated by mass wasting processes, primarily on the upper slope (~100-200 m water depth) where shipboard multibeam bathymetry reveals submarine landslide headwall scarps in a region that has been isolated from terrigenous sediment sources throughout the Holocene. Submarine landslides appear to have transformed into sandy and organic-rich turbidity currents that created up-slope migrating sediment waves, a low relief (<5 m) fault-bounded channel, and a series of depocenters. A down-slope gradient profile and a Holocene isopach down-slope profile show that the primary depocenter occurs within a small pull-apart basin associated with a decrease in seafloor gradient of ~1.5°. Holocene sediment-flow deposits vary in number, thickness, and character with subtle changes in seabed gradient (<0.5°) and depositional environment. These results help quantify morphodynamic sensitivity to seafloor gradients and have implications for down-slope flow dynamics, deep-water depositional architecture, Holocene sediment, nutrient, and contaminant transport, and turbidite paleoseismology along

  13. Seismic responses of two adjacent buildings. I. Data and analyses

    USGS Publications Warehouse

    Celebi, Mehmet

    1993-01-01

    In this two-part paper, responses of two, adjacent, seven-story buildings in Norwalk, California, to the Whittier-Narrows, Calif, earthquake of Oct. 1, 1987 are studied. Building A, instrumented according to code recommendations, and building B, extensively instrumented, are offset by 16.3 m from one another. The data set includes motions from the superstructure of both buildings, from a downhole below the foundation of building B, and from three free-field sites. Part I of the paper includes descriptions of the buildings, site, instrumentation, and analysis of the data of each building. System identification and spectral analysis techniques are employed in part I. Building A has identical first-mode frequencies of 0.65 Hz for both building axes. The strong-motion response characteristics of building A are considerably different than those determined from low-amplitude tests. Building B has fundamental modes at 0.76 Hz and 0.83 Hz in the major and minor axes, respectively. Torsional and diaphragm effects in building B are negligible.

  14. Snow Distribution Patterns in Clearings and Adjacent Forest

    NASA Astrophysics Data System (ADS)

    Golding, Douglas L.; Swanson, Robert H.

    1986-12-01

    Snow accumulation patterns were determined for clearings and adjacent forest at Marmot Creek experimental watershed and James River, Alberta. At maximum accumulation snow water equivalent (SWE) was greater in clearings than in forest whether clearings were large, as in 8- to 13-ha blocks where SWE averaged 20% more than in the forest, or small as in the ¼ to 6-H (height) diameter circular clearings where SWE was 13-45% greater than in the forest. SWE was 42 to 52% less in north than in south sectors of 2-6 H clearings. These differences increased with clearing size and time since beginning of accumulation period and are caused by snow ablation (melt and evaporation), a function of direct solar radiation reaching the snowpack. In such situations the snow that has accumulated on the ground cannot be considered a measure of the snow that has actually fallen there. For water balances and hydrologic modeling, snow measurements in partially cleared watersheds must be adjusted for temporal and spatial factors specific to the watershed.

  15. Seismic responses of two adjacent buildings. II. Interaction

    USGS Publications Warehouse

    Celebi, Mehmet

    1993-01-01

    Presented in this part of the two-part paper is a study of the relations between earthquake motions recorded from two, adjacent, seven-story buildings, from a downhole below the foundation of one of the buildings and from three free-field sites, all within one city block. This unique data set was obtained during the Whittier-Narrows, Calif. earthquake of Oct. 1, 1987, Part I includes background information on the two buildings, the site, and the data set. Building response characteristics of a code-type instrumented building (A) and an extensively instrumented building (B) are also studied. In this part, spectral analysis techniques are used to study the relationships between the motions of the roofs and basements, the downhole and the free-field sites. It is asserted that there is building-soil-building interaction between the two buildings at a frequency of 2.35 Hz. Furthermore, the free-field motions are shown to be influenced by the presence of the buildings.

  16. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  17. Herbicide interchange between a stream and the adjacent alluvial aquifer

    USGS Publications Warehouse

    Wang, W.; Squillace, P.

    1994-01-01

    Herbicide interchange between a stream and the adjacent alluvial aquifer and quantification of herbicide bank storage during high streamflow were investigated at a research site on the Cedar River flood plain, 10 km southeast of Cedar Rapids, Iowa. During high streamflow in March 1990, alachlor, atrazine, and metolachlor were detected at concentrations above background in water from wells as distant as 20, 50, and 10 m from the river's edge, respectively. During high streamflow in May 1990, alachlor, atrazine, cyanazine, and metolachlor were detected at concentrations above background as distant as 20, 50, 10, and 20 m from the river's edge, respectively. Herbicide bank storage took place during high streamflow when hydraulic gradients were from the river to the alluvial aquifer and the laterally infiltrating river water contained herbicide concentrations larger than background concentrations in the aquifer. The herbicide bank storage can be quantified by multiplying herbicide concentration by the "effective area" that a well represented and an assumed porosity of 0.25. During March 1990, herbicide bank storage values were calculated to be 1.7,79, and 4.0 mg/m for alachlor, atrazine, and metolachlor, respectively. During May 1990, values were 7.1, 54, 11, and 19 mg/m for alachlor, atrazine, cyanazine, and metolachlor, respectively. ?? 1994 American Chemical Society.

  18. Preparation and properties of adjacency crosslinked polyurethane-urea elastomers

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng

    2012-12-01

    Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.

  19. The Current Tectonics of the Yukon and Adjacent Area

    NASA Astrophysics Data System (ADS)

    Hyndman, R. D.; Leonard, L. J.

    2014-12-01

    The current tectonics across the Yukon and adjacent areas of western Northwest Territories (NWT) and northern British Columbia appear to be driven primarily by the Yakutat Terrane collision, an "indenter" in the corner of the Gulf of Alaska. GPS data show 1-10 mm/yr northward and eastward, decreasing inland. The rates from earthquake statistics are similar although there are important discrepancies. The eastern Cordillera earthquake mechanisms are mainly thrust in the Mackenzie Mountains of southwestern NWT where the Cordillera upper crust is overthrusting the craton. To the north, the mechanisms are mainly strike-slip in the Richardson Mountains that appear to lie along the edge of the craton. The deformation appears to be limited to the hot and weak Cordillera with the strong craton providing an irregular eastern boundary. For example, there is an eastward bow in the craton edge and the deformation in the Mackenzie Mountains. On the Beaufort Sea margin in the region of the Mackenzie Delta there appears to be a type of "subduction zone" with the continent very slowly overthrusting the oceanic plate, a process that has continued since at least the Cretaceous. A northward moving continental margin block is bounded by left lateral faulting in the west (Canning Displacement Zone of eastern Alaska) and right lateral faulting in the east (Richardson Mountains in eastern Yukon). There is almost no seismicity on this thrust belt but as for some other subduction zones such as Cascadia there is the potential for very infrequent great earthquakes.

  20. Adjacent level spondylodiscitis after anterior cervical decompression and fusion.

    PubMed

    Basu, Saumyajit; Sreeramalingam, Rathinavelu

    2012-05-01

    Postoperative spondylodiscitis after anterior cervical decompression and fusion (ACDF) is rare, but the same occurring at adjacent levels without disturbing the operated level is very rare. We report a case, with 5 year followup, who underwent ACDF from C5 to C7 for cervical spondylotic myelopathy. He showed neurological improvement after surgery but developed discharging sinus after 2 weeks, which healed with antibiotics. He improved on his preoperative symptoms well for the first 2 months. He started developing progressive neck pain and myelopathy after 3 months and investigations revealed spondylodiscitis at C3 and C4 with erosion, collapse, and kyphosis, without any evidence of implant failure or graft rejection at the operated level. He underwent reexploration and implant removal at the operated level (there was good fusion from C5 to C7) followed by debridement/decompression at C3, C4 along with iliac crest bone grafting and stabilization with plate and screws after maximum correction of kyphosis. The biopsy specimen grew Pseudomonas aeruginosa and appropriate sensitive antibiotics (gentamycin and ciprofloxacin) were given for 6 weeks. He was under regular followup for 5 years his myelopathy resolved completely and he is back to work. Complete decompression of the cord and fusion from C2 to C7 was demonstrable on postoperative imaging studies without any evidence of implant loosening or C1/C2 instability at the last followup. PMID:22719127

  1. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  2. Workflow for the fast evaluation of rock mass properties and stability of rock slopes along trafficways in Lower Austria

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Zangerl, Christian

    2016-04-01

    In Lower Austria there is a total of 17.000 km of provincial and 24.000 km of communal roads, to be maintained by the province and the municipalities. In addition, there are approx. 1.500 km of railroads, and the Danube as a major waterway. A large part of this infrastructure is, or is potentially, affected by various types of instability of adjacent slopes. Due to insufficient knowledge, as well as slope design and management practice in the past, every year, especially in connection to weather extremes, slopes known to be critical become active landslides again, and unexpected new ones arise, causing damage as well as financial stress. Engineering intervention, if possible, should be quick and effective. Geologists and engineers in public service, not having the means for detailed investigation in most cases, are using guidelines to assess the requirements to be met by slope design on traffic ways. But these guidelines don't reflect many of the newer scientific advances. Therefore, scientists at BOKU and backers in the administration want to gain more insight into causative factors, which, if successful, may render maintenance of traffic lines under critical conditions more effective and predictable. The specific project goal is to produce new guidelines to allow quick assessment of the most likely behaviour of rock masses common in the area, especially when cut into shape along infrastructure lines, using readily available information. The scientific investigations include simple and ready tests (like Schmidt hammer), as well as photogrammetry, laserscanning, and other complex geophysical and numerical techniques, but the final product (guidelines) is expected to work without such difficult methods. It is important to note, on the other hand, that the rock mass stability classification inherent in the new guidelines must allow distinction between conclusions which are safe, and conjectures which are in need of validation by contracted experts. It is planned to

  3. Coupling Between Hydrogeology And Progressive Failure Of Mountainous Rock Slopes: Field And Modelling Results From La Clapiere Valley (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.

    2005-12-01

    Hydromechanical effects of water flow within fractures are predominant effects that induce strength decrease of rock slopes and progressive failure propagation. A multi-parametric approach was conducted on the 70 km long La Clapière valley (Southern French Alps) consisting in mapping geology, hydrogeology and gravitational features, dating gravitational scarps and in monitoring slope springs yields, water chemistry and slope deformation for more than 10 years. First a hydromechanical model of rock slope behaviour was established and compared to bibliography. Second, taking this model as a reference, relationships between slope failure and hydrogeology were parametrically investigated using the two-dimensional distinct element method program UDEC. Rock slopes general structure consists in a superficial weathered zone (a few hundreds of meters thick) overlapping a deep intact zone. Penetrative discontinuities cut both zones. In the weathered zone tensile cracks scatter from the middle to the top of the slope. Large landslides are located at the slope foot. A perched saturated-with-water zone nested within the cracks is drained towards the slope foot through the landslides. Annual precipitation infiltrations induce hydromechanical effects that participate to the rock strength decrease through tilting and diffuse shear plane development. Such progressive failure propagation lasts over thousands of years (10 000 years in the studied area). Numerical study shows that, at the early stage of slope alteration, hydrostatic pressures are concentrated in tensile features of the upper part of the slope for moderate infiltration yield (mean inter-annual value). Pressure increase induces fracture shear dilation and traction opening that in reverse modifies flow paths and pressure. Consequence is tilting of rock columns with progressive diffuse failure at the columns' foot. A thick high porosity and high permeability weathered layer (up to hundreds meters thick) is generated

  4. Slope measurement of bent plates using double grating shearing interferometry

    SciTech Connect

    Dhanotia, Jitendra; Prakash, Shashi; Rana, Santosh; Sasaki, Osami

    2011-06-20

    A grating-based shearing interferometeric setup for slope measurement of bent plates has been proposed. The specimen under test is illuminated by a collimated beam from the laser. Light reflected from the specimen passes through two identical holographic gratings placed in tandem. The grating frequency has been so chosen that the diffracted orders from each grating are separated out distinctly. Two first-order beams diffracted from each of the gratings superpose in space. In the resulting interferogram, the fringes due to slope information of the object are visualized. Mathematical formulation for experimental determination of slope values has been undertaken. Validation of the experimental results with theoretical predictions in case of cantilever beam provides good correlation. The main advantage of the technique has been the realization of very compact geometry without the need for spatial filtering arrangement commonly associated with the grating-based techniques used to date.

  5. Sensitivity of atypical lateral fire spread to wind and slope

    NASA Astrophysics Data System (ADS)

    Simpson, Colin. C.; Sharples, Jason J.; Evans, Jason P.

    2016-02-01

    This study presents new knowledge of the environmental sensitivity of a dynamic mode of atypical wildland fire spread on steep lee-facing slopes. This is achieved through a series of idealized numerical simulations performed with the Weather Research and Forecasting (WRF) and WRF-Fire coupled atmosphere-fire models. The sensitivity of the atypical lateral fire spread across lee slopes is tested for a varying background wind speed, wind direction relative to the terrain aspect, and lee slope steepness. The results indicate that the lateral spread characteristics are highly sensitive to each of these environmental conditions, and there is a broad agreement with the empirical thresholds calculated for lateral spread events observed in the 2003 Canberra bushfires. A theory to explain these environmental thresholds and their apparent interdependency is presented. The results are expected to have important implications for the management of wildland fires in rugged terrain.

  6. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  7. Instrumentation for slope stability -- Experience from an urban area

    SciTech Connect

    Flentje, P.; Chowdhury, R.

    1999-07-01

    This paper describes the monitoring of several existing landslides in an urban area near Wollongong in the state of New South Wales, Australia. A brief overview of topography and geology is given and reference is made to the types of slope movement, processes and causal factors. Often the slope movements are extremely slow and imperceptible to the eye, and catastrophic failures are quite infrequent. However, cumulative movements at these slower rates do, over time, cause considerable distress to structures and disrupt residential areas and transport routes. Inclinometers and piezometers have been installed at a number of locations and monitoring of these has been very useful. The performance of instrumentation at different sites is discussed in relation to the monitoring of slope movements and pore pressures. Interval rates of inclinometer shear displacement have been compared with various periods of cumulative rainfall to assess the relationships.

  8. Ancient and modern slopes in the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Zisk, S. H.; Downs, G. S.

    1982-06-01

    Ancient slope directions in the Martian Tharsis region are compared with new earth-based radar observations in an effort to detect tectonic deformations. Data were taken from 20-150 pixel/m Viking Orbiter images and from 200 m orthophotomosaics prepared by the U.S. Geological Survey. The positions of 475 lava flows were determined, covering widths between 5-10 km on higher slopes and 15-35 km on lower slopes. Most of the flows originated from four volcanos, although none issued from Olympus Mons, which makes up the central portion of the Plateau. Further radar-derived topography was made of, Arsia Mons and Syria Planum in latitudes 14-21 deg S to find differences in regional gradients and the lava flow directions, to determine if deformations occurred after the lava flows. A lithospheric stability is concluded, indicating no tectonic upheavals since the days of Tharsis Plateau volcanic activity.

  9. Model slope infiltration experiments for shallow landslides early warning

    NASA Astrophysics Data System (ADS)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  10. An Experimental Study of Submarine Canyon Evolution on Continental Slopes

    NASA Astrophysics Data System (ADS)

    Lai, S. Y.; Gerber, T. P.; Amblas, D.

    2013-12-01

    Submarine canyons define the morphology of many continental slopes and are conduits for the transport of sediment from shallow to deep water. Though the origin and evolution of submarine canyons is still debated, there is general agreement that sediment gravity flows play an important role. Here we present results from a simple, reduced-scale sandbox experiment designed to investigate how sediment gravity flows generate submarine canyons. In the experiments, gravity flows were modeled using either sediment-free or turbid saline currents. Unconfined flows were released onto an inclined bed of sand bounded on the downstream end by a movable floor that was incrementally lowered during the course of an experiment to produce an escarpment. This design was developed to represent the growth of relief across the continental slope. To monitor canyon evolution on the slope, we placed an overhead DSLR camera to record vivid time-lapse videos. At the end of each experimental stage we scanned the topography by imaging a series of submerged laser stripes, each projected from a motor-driven transverse laser sheet, onto a calibrated Cartesian coordinate system to produce high resolution bathymetry without draining the ambient water. In areas unaffected by the flows, we observe featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break are deeply incised by submarine canyons with well-developed channel networks. Our results show that downslope gravity flows and submarine falling base level are both required to produce realistic canyon morphologies at laboratory scale. Though our mechanism for generating relief may be a rather crude analogue for the processes driving slope evolution, we hope our novel approach can stimulate new questions about the coevolution of canyons and slopes and motivate further experimental work to address them.

  11. Deformation of slopes damaged during the 2015 Nepal earthquake sequence

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Brain, M.; Densmore, A.; Jordan, C.; Williams, J.; Kincey, M.; Oven, K.

    2015-12-01

    The 2015 Nepal Earthquake Sequence (EQS; the Gorkha EQ (eqG), Mw 7.8 [25/04/15]; the Kodari EQ (eqK), Mw 6.7 [26/05/15]; and Dolakha EQ (eqD), Mw 7.3 [12/05/15], plus associated aftershocks) triggered widespread landsliding, strongly evident in satellite imagery. In addition to the observed failures, pervasive ground cracking has been widely reported in Nepal. This is indicative of hillslope 'damage' (weakening) and, hence, the onset of shear surface development in as-yet unfailed slopes - a phenomenon previously observed in areas subjected to high-magnitude earthquake ground shaking and subsequent ongoing landsliding. Recent work on the efficacy of earthquakes in triggering landslides has proposed that the occurrence of failures is a function of damage accumulated in the slope. We present a unique field monitoring dataset on continuing slope deformation from hillslopes damaged during the 2015 Nepal EQS, in response to precipitation and continuing seismicity. Our study site is the Upper Bhote Koshi (UBK), with sites chosen from a chronology of landslide inventories captured from remotely sensed imagery since the Gorkha earthquake. Instruments were deployed during the monsoon on new and pre-existing landslides, and across cracked ground to monitoring precipitation inputs, slope-scale (micro-)seismicity, and slope displacements. Using our dataset, we draw preliminary conclusions on how the spatially-variable legacy of damage accumulated during high-magnitude earthquake-induced ground shaking events is manifest in patterns, rates and styles of post-seismic slope deformation.

  12. Evidence of slope instability in the Southwestern Adriatic Margin

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.

    2006-01-01

    The Southwestern Adriatic Margin (SAM) shows evidence of widespread failure events that generated slide scars up to 10 km wide and extensive slide deposits with run out distances greater than 50 km. Chirp-sonar profiles, side-scan sonar mosaics, multibeam bathymetry and sediment cores document that the entire slope area underwent repeated failures along a stretch of 150 km and that mass-transport deposits, covering an area of 3320 km2, are highly variable ranging from blocky slides to turbidites, and lay on the lower slope and in the basin. The SAM slope between 300-700 m is impacted by southward bottom currents shaping sediment drifts (partly affected by failure) and areas of dominant erosion of the seafloor. When slide deposits occur in areas swept by bottom currents their fresh appearence and their location at seafloor may give the misleading impression of a very young age. Seismic-stratigraphic correlation of these deposits to the basin floor, however, allow a more reliable age estimate through sediment coring of the post-slide unit. Multiple buried failed masses overlap each other in the lower slope and below the basin floor; the most widespread of these mass-transport deposits occurred during the MIS 2-glacial interval on a combined area of 2670 km2. Displacements affecting Holocene deposits suggest recent failure events during or after the last phases of the last post-glacial eustatic rise. Differences in sediment accumulation rates at the base or within the sediment drifts and presence of downlap surfaces along the slope and further in the basin may provide one or multiple potential weak layers above which widespread collapses take place. Neotectonic activity and seismicity, together with the presence of a steep slope, represent additional elements conducive to sediment instability and failure along the SAM. Evidence of large areas still prone to failure provides elements of tsunamogenic hazard.

  13. Scenarios to prioritize observing activities on the North Slope, Alaska in the context of resource development, climate change and socio-economic uncertainties

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Payne, J. F.; Lassuy, D.

    2014-12-01

    The North Slope of Alaska is experiencing rapid changes in response to interacting climate and socioeconomic drivers. The North Slope Science Initiative (NSSI) is using scenarios as a tool to identify plausible, spatially explicit future states of resource extraction activities on the North Slope and adjacent seas through the year 2040. The objective of the scenarios process is to strategically assess research and monitoring needs on the North Slope. The participatory scenarios process involved stakeholder input (including Federal, State, local, academic, industry and non-profit representatives) to identify key drivers of change related to resource extraction activities on the North Slope. While climate change was identified as a key driver in the biophysical system, economic drivers related to oil and gas development were also important. Expert-reviewed informational materials were developed to help stakeholders obtain baseline knowledge and stimulate discussions about interactions between drivers, knowledge gaps and uncertainties. Map-based scenario products will allow mission-oriented agencies to jointly explore where to prioritize research investments and address risk in a complex, changing environment. Scenarios consider multidecadal timescales. However, tracking of indicator variables derived from scenarios can lead to important insights about the trajectory of the North Slope social-environmental system and inform management decisions to reduce risk on much shorter timescales. The inclusion of stakeholders helps provide a broad spectrum of expert viewpoints necessary for considering the range of plausible scenarios. A well-defined focal question, transparency in the participation process and continued outreach about the utility and limitations of scenarios are also important components of the scenarios process.

  14. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    USGS Publications Warehouse

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  15. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    NASA Astrophysics Data System (ADS)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  16. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1986-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  17. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1991-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  18. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1989-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  19. Resonant generation of internal waves on a model continental slope.

    PubMed

    Zhang, H P; King, B; Swinney, Harry L

    2008-06-20

    We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes. PMID:18643589

  20. From the European slope to the North Sea

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Porter, Marie

    2015-04-01

    The European slope current is a density driven poleward current tracing the shelf edge from the Bay of Biscay into the Nordic Seas. This current is not entirely coherent along its length and is known to be disrupted by the wind, bathymetric irregularities and local circulation, potentially providing a source of relatively warm and nutrient rich water to the local shelf. On the Malin Shelf, to the north of Ireland and the west of Scotland, persistent intrusions of oceanic water occur onto the shelf near a bend in the slope. Additional pathways onto the shelf result from strong wind events, which cause ingress of slope water at multiple locations, while eddies in the Rockall Trough are known to pull water off the slope into deeper, abyssal regions. In July 2013, 30 surface drifters, 15 drogued at 15 m and 15 at 70 m, were deployed on the Malin Shelf slope. Of these drifters, all of those drogued at 15 m and 10 of those drogued at 70 m moved north-eastward from their release onto the shelf. The majority crossed onto the shelf within a relatively small area, within a 30km radius of 55.5°N, 10°W, and continued as a coherent group along the edge of the Irish coastal front for approximately 38 days. This current, estimated to transport approximately 0.5 Sv of water towards the Scottish coast, follows the Irish Coastal front and then the Islay front until it bifurcates around the Outer Hebrides, with half of the drifters passing inside, to the east through the Minch, and half passing outside, to the west. The control over the path taken is likely to have been the position and strength of the Islay Front. The tendency for the shallow drifters to cross onto the shelf more readily than the deeper ones suggests that the ingress onto the shelf varies with depth and is strongest at the surface. The deeper drifters generally spent longer in the slope region and were frequently pulled into the Rockall Trough. The drifter trajectories highlight a pathway for surface water (15 m

  1. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1987-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  2. Resonant generation of internal waves on a model continental slope.

    PubMed

    Zhang, H P; King, B; Swinney, Harry L

    2008-06-20

    We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes.

  3. Nepheloid layers and internal waves over continental shelves and slopes

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.

    1986-01-01

    Theoretical and laboratory results indicate that bottom velocities within shoaling internal gravity waves intensify upslope approximately inversely proportional to the water depth. The elevated velocities (and bottom stresses) caused by shoaling and, possibly, breaking internal waves might explain the generation and maintenance of near-bottom nepheloid zones and attached turbid plumes that have been observed over certain continental shelves and slopes. This process is proposed as an explanation of zones of relatively low transmissibility that emanate from the upper continental slope near Newport submarine canyon off southern California. ?? 1986 Springer-Verlag New York Inc.

  4. Waterbird use of high saltmarsh ponds created for open marsh water management (mosquito control)

    USGS Publications Warehouse

    Erwin, R.M.; Howe, M.A.; Dawson, D.K.

    1988-01-01

    The excavation of small (1 ha) natural ponds or pannes or adjacent tidal creeks. Recent modifications in pond construction in Delaware and New Jersey allow for shallower, more sloping basins which should enhance use by waterfowl and shorebirds while still ensuring a water reservoir to support fish populations.

  5. Pelagic ciliate communities within the Amundsen Sea polynya and adjacent sea ice zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Liu, Qian; Yang, Eun Jin; Wang, Min; Kim, Tae Wan; Cho, Kyoung-Ho; Lee, SangHoon

    2016-01-01

    Polynyas, areas of open water surrounded by sea ice, are sites of intense primary production and ecological hotspots in the Antarctic Ocean. This study determined the spatial variation in communities of pelagic ciliates in an Amundsen Sea polynya (ASP) and adjacent sea ice zones (SIZ) during austral summer from February to March 2012, and the results were compared with biotic and abiotic environmental factors. The species number, abundance and biomass were higher in the ASP than SIZ. Canonical analysis indicated that the communities in the ASP were distinct from those under the sea ice. The pelagic ciliate community structure was closely correlated with environmental variability. Several primary environmental variables, both alone and in combination, were found to affect community spatial patterns. The ciliate biomasses in the ASP and SIZ areas were both significantly correlated with total and nano-Chl a. This analysis of the ciliated microzooplankton communities associated with high primary production provides new insights into the roles of ciliates in biogeochemical cycles in high-latitude polynyas. Additionally, our findings provide detailed data on the composition, distribution, and structure of polynya ciliate communities in the Amundsen Sea.

  6. Pond use by captive African penguins (Spheniscus demersus) in an immersive exhibit adjacent to human bathers.

    PubMed

    Ozella, Laura; Favaro, Livio; Carnovale, Irene; Pessani, Daniela

    2015-01-01

    Nonhuman animals in zoos are exposed to a continuous human presence, which affects their behaviors and welfare. However, little is known about what role the "visitor effect" has on penguins in captivity. The African penguin (Spheniscus demersus) is an endangered species commonly housed in zoos worldwide. The aim of this study was to evaluate whether the abundance of human bathers could reduce the average time spent in the water of a colony of African penguins housed in an exhibit where their pond habitat was adjacent to a swimming pool. Observations were carried out on 7 penguins in the summer of 2009. Data were collected during 3 time periods (Time 1 [T1] = opening of the swimming season, Time 2 [T2] = core of the season, Time 3 [T3] = late season) of 14 days each. The human disturbance caused by bathers strongly reduced the pond use by penguins at T1 and T2, especially when there were large numbers of visitors. However, at T3, we observed that the overall use of the pond by penguins increased, and the average duration of their diving was no longer dependent on the number of visitors. PMID:25402201

  7. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  8. Pond use by captive African penguins (Spheniscus demersus) in an immersive exhibit adjacent to human bathers.

    PubMed

    Ozella, Laura; Favaro, Livio; Carnovale, Irene; Pessani, Daniela

    2015-01-01

    Nonhuman animals in zoos are exposed to a continuous human presence, which affects their behaviors and welfare. However, little is known about what role the "visitor effect" has on penguins in captivity. The African penguin (Spheniscus demersus) is an endangered species commonly housed in zoos worldwide. The aim of this study was to evaluate whether the abundance of human bathers could reduce the average time spent in the water of a colony of African penguins housed in an exhibit where their pond habitat was adjacent to a swimming pool. Observations were carried out on 7 penguins in the summer of 2009. Data were collected during 3 time periods (Time 1 [T1] = opening of the swimming season, Time 2 [T2] = core of the season, Time 3 [T3] = late season) of 14 days each. The human disturbance caused by bathers strongly reduced the pond use by penguins at T1 and T2, especially when there were large numbers of visitors. However, at T3, we observed that the overall use of the pond by penguins increased, and the average duration of their diving was no longer dependent on the number of visitors.

  9. Optical characterization of dissolved organic matter in the Amazon River Plume and the adjacent deep ocean

    NASA Astrophysics Data System (ADS)

    Cao, F.; Medeiros, P. M.; Miller, W. L.

    2012-12-01

    The Amazon River is the largest river in the world and a major source of terrestrially-derived organic matter to the Atlantic Ocean, accounting for ~ 20% of the global freshwater discharge. To document the quantity and quality of the colored dissolved organic matter (CDOM) in the Amazon River Plume (ARP), the optical properties (absorption and fluorescence intensity) of the CDOM were investigated in water samples collected during two cruises conducted at periods of low (Sep/2011) and high (Jul/2012) river discharge. Excitation emission matrix fluoresces combined with parallel factor analysis (EEMS-PARAFAC) was used to determine the composition of the CDOM, and four components were identified: two terrestrial humic-like components (C1 and C4), one marine humic-like component (C3), and one autochthonous tryptophan-like component (C2). This agrees with results of mass spectrometry analysis that showed a distinction among DOM composition found in river, plume, and open ocean water. Correlation analysis between the fluorescence components and salinity in the ARP suggests that humic-like fluorescent components can be used to trace DOM mixing behavior in the ARP and adjacent waters.

  10. A sedimentologic and 14C dating study of five eastern Australian upper continental slope submarine landslides

    NASA Astrophysics Data System (ADS)

    Clarke, S. L.; Hubble, T.; Webster, J.; Airey, D.; De Carli, E.; Ferraz, C.; Reimer, P. J.; Boyd, R.; Keene, J.

    2013-12-01

    Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within

  11. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  12. Seismotectonics of Northeastern United States and adjacent Canada

    SciTech Connect

    Yang, J.; Aggarwal, Y.P.

    1981-06-10

    Data for local earthquakes recorded by a network of stations in northeastern United States and adjacent Canada were analyzed to study the seismicity, the relationship between earthquakes and known faults, the state of stress, and crustal and upper mantle velocity structure. In addition, portable seismographs were deployed in the field to study aftershocks. As a result, accurate locations for about 364 local earthquakes (2< or =m/sub b/< or =5) and 22 focal mechanism solutions were determined. A comparison of the spatial distribution of these events (1970--1979) with historical earthquakes (1534--1959) reveals that seismic activity in the northeast is relatively stationary in space: those areas that have had little or no seismicity historically are relatively aseismic today, whereas the historically active areas are also active today. The instrumental locations, historical seismicity, and focal mechanism solutions show an internal consistency that help us distinguish two distinct seismogenic provinces. (1) The Adirondack-western Quebec province is a northwesterly trending zone of seismic activity, about 200 km wide and at least 500 km long, extending from the SE Adirondacks into western Quebec, Canada. Thrust faulting on planes striking NNW to NW appears to predominate, and the inferred axis of maximum horizontal compression is largely uniform and trends WSW, nearly parallel to the calculated absolute plate motion of North America. Little or no seismicity is found where anorthosite outcrops at the surface. Correlations between gravity anomalies and earthquake locations suggest that seismic activity in this zone is localized to regions of steep NE or SW gradient in Bouguer anomalies. This zone does not appear to extend southeastward to Boston, as proposed by some workers. (2) The Appalachian province is a northeasterly trending zone of seismic activity extending from northern Virginia to New Brunswick, Canada.

  13. Changes in abundance and composition of anthropogenic marine debris on the continental slope off the Pacific coast of northern Japan, after the March 2011 Tohoku earthquake.

    PubMed

    Goto, Tomoaki; Shibata, Haruka

    2015-06-15

    Abundance and composition of anthropogenic marine debris were assessed on the basis of six bottom trawl surveys conducted on the continental slope off Iwate Prefecture, Pacific coast of northern Japan, in 2003, 2004 and 2011, and the temporal changes due to the Tohoku earthquake and tsunami in March 2011 evaluated. In 2003 and 2004, 54-94 items km(-2) of marine debris, dominated by sea-base sourced items mainly comprising fishing gear and related items from adjacent fishing grounds on the continental shelf, were quantified. In the post-earthquake period, the density increased drastically to 233-332 items km(-2), due to an increase in land-base sourced items generated by the tsunami. However, a major increase in abundance after the disaster, compared to the total amount of tsunami debris swept into the sea, was not found. Additional sources of land-based debris from the adjacent continental shelf are suggested in the present waters.

  14. Changes in abundance and composition of anthropogenic marine debris on the continental slope off the Pacific coast of northern Japan, after the March 2011 Tohoku earthquake.

    PubMed

    Goto, Tomoaki; Shibata, Haruka

    2015-06-15

    Abundance and composition of anthropogenic marine debris were assessed on the basis of six bottom trawl surveys conducted on the continental slope off Iwate Prefecture, Pacific coast of northern Japan, in 2003, 2004 and 2011, and the temporal changes due to the Tohoku earthquake and tsunami in March 2011 evaluated. In 2003 and 2004, 54-94 items km(-2) of marine debris, dominated by sea-base sourced items mainly comprising fishing gear and related items from adjacent fishing grounds on the continental shelf, were quantified. In the post-earthquake period, the density increased drastically to 233-332 items km(-2), due to an increase in land-base sourced items generated by the tsunami. However, a major increase in abundance after the disaster, compared to the total amount of tsunami debris swept into the sea, was not found. Additional sources of land-based debris from the adjacent continental shelf are suggested in the present waters. PMID:25921637

  15. Dynamic Downslope Travel Distance Modeling: Interflow Modeling from Bottom of Slope Upwards

    NASA Astrophysics Data System (ADS)

    Bitew, M. M.; Jackson, C. R.; McDonnell, J.; Vache, K. B.; Griffiths, N.; Blake, J. I.

    2014-12-01

    Downslope travel distance concepts for interflow moving over a leaky restricting layer allow dynamic interflow modeling starting from the bottom of the slope and modeling only the active contributing area as opposed to the normal approach that models the entire slope from the ridgetop no flow boundary. In watersheds featuring deep groundwater and a low conductivity layer laying under permeable topsoil, interflow contributing areas expand and shrink based on the thickness of the perched layer, the topographic slope, and the ratio of hydraulic conductivity of topsoil to that of the impending layer. In this work, we present the development and application of two dynamic interflow models that implemented a mobile boundary condition to track flow from each of contributing cells starting from the edge of stream reaches extending upslope and constrained by downslope travel distance. Both analytical models are based on Boussinesq assumptions with percolation while one is continuous and the other is event-based. The continuous interflow model incorporates a two layer soil moisture accounting water balance analysis, pedotransfer function, percolation, and evaporation routines. The event rain based analytical solution generates interflow time series based on dynamically updated distribution function of downslope travel distances of contributing cells. We applied both modeling approaches in an intensively instrumented headwater basin in the Upper Coastal Plain of South Carolina. Both models showed good agreement with observed perched water depth, interflow discharge and soil moisture observations from 110m long open interflow interception trench whose 5.6 hectares of contributing hillslope were fitted with nested piezometers, soil moisture sensors, and series of V-notch weir boxes.

  16. Java Programs for Using Newmark's Method and Simplified Decoupled Analysis to Model Slope Performance During Earthquakes

    USGS Publications Warehouse

    Jibson, Randall W.; Jibson, Matthew W.

    2003-01-01

    Landslides typically cause a large proportion of earthquake damage, and the ability to predict slope performance during earthquakes is important for many types of seismic-hazard analysis and for the design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane provides a useful method for predicting approximate landslide displacements. Newmark's method estimates the displacement of a potential landslide block as it is subjected to earthquake shaking from a specific strong-motion record (earthquake acceleration-time history). A modification of Newmark's method, decoupled analysis, allows modeling landslides that are not assumed to be rigid blocks. This open-file report is available on CD-ROM and contains Java programs intended to facilitate performing both rigorous and simplified Newmark sliding-block analysis and a simplified model of decoupled analysis. For rigorous analysis, 2160 strong-motion records from 29 earthquakes are included along with a search interface for selecting records based on a wide variety of record properties. Utilities are available that allow users to add their own records to the program and use them for conducting Newmark analyses. Also included is a document containing detailed information about how to use Newmark's method to model dynamic slope performance. This program will run on any platform that supports the Java Runtime Environment (JRE) version 1.3, including Windows, Mac OSX, Linux, Solaris, etc. A minimum of 64 MB of available RAM is needed, and the fully installed program requires 400 MB of disk space.

  17. Study of Geometric Parameters of Slope Streaks on Mars.

    NASA Astrophysics Data System (ADS)

    Brusnikin, Eugene; Kreslavsky, Mikhail; Karachevtseva, Irina; Zubarev, Anatoliy; Patratiy, Vyacheslav

    2015-04-01

    Slope streaks are a unique active phenomenon observed in low-latitude dusty regions on Mars. They are dark markings formed by an unknown type of run-away downslope propagation of surface disturbance. There are two kinds of hypotheses of their formation mechanism: "dry", involving granular follow, in particular, dust avalanche, and "wet", involving liquid flow, in particular, percolation of concentrated brines in shallow subsurface (1). Study of geometric characteristics of the slope streaks, especially their slopes, is a way to decipher their origin. We are carrying out an extensive set of measurements of geometric parameters of the slope streaks. We use stereo pairs of images obtained by High Resolution Imaging Science Experiment (HiRISE) onboard MRO orbital mission to Mars. These stereo pairs potentially allow geometric measurements (both horizontal and vertical) with accuracy on an order of a meter. Unfortunately, the digital terrain model is currently released for only one stereo pair in the regions of slope streak occurrence, and we have to work with raw, unprocessed stereo pairs. We perform direct photogrammetric measurements using PHOTOMOD software complex (http://www.racurs.ru/). We use our custom software to import "raw" HiRISE imgas (EDRs) and supplementary geometric information from SPICE into PHOTOMOD (2). We select tens to a hundred meters long segments in the beginning and the end of selected streaks and register length, azimuth, and slope of each segment. We also search for anomalously gentle parts of streaks. We analyze the obtained results by means of ESRI ArcGIS software. Our survey is in progress. So far we registered over a hundred of streaks. We found that the extent of the streaks varies from several meters to hundreds of meters. The streaks are formed in locales with a slope from 17 to 37 degrees. The lower boundary indicates that the streaks can propagate on slopes that are significantly gentler than the static angle of repose. Distal

  18. 30 CFR 77.1904 - Communications between slope and shaft bottoms and hoist operators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Communications between slope and shaft bottoms... WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1904 Communications between slope and... hoistman and all points in a slope or shaft where men are required to work. At least one of these...

  19. 30 CFR 77.1900 - Slopes and shafts; approval of plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Slopes and shafts; approval of plans. 77.1900... COAL MINES Slope and Shaft Sinking § 77.1900 Slopes and shafts; approval of plans. (a) Each operator of... slope or shaft that is commenced or extended after June 30, 1971. The plan shall be consistent...

  20. 30 CFR 77.1900 - Slopes and shafts; approval of plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Slopes and shafts; approval of plans. 77.1900... COAL MINES Slope and Shaft Sinking § 77.1900 Slopes and shafts; approval of plans. (a) Each operator of... slope or shaft that is commenced or extended after June 30, 1971. The plan shall be consistent...