Science.gov

Sample records for adjacent polymer chains

  1. Inulin crystal initiation via a glucose-fructose cross-link of adjacent polymer chains: atomic force microscopy and static molecular modelling.

    PubMed

    Cooper, Peter D; Rajapaksha, K Harinda; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2015-03-01

    Semi-crystalline microparticles of inulin (MPI) have clinical utility as potent human vaccine adjuvants but their relevant surface structure and crystal assembly remain undefined. We show inulin crystal surfaces to resemble multi-layered, discoid radial spherulites resulting from very rapid formation of complex tertiary structures, implying directed crystal initiation. Physical and in silico molecular modelling of unit cells confirm steric feasibility of initiation by hydrogen-bonded cross-linking of terminal glucose to a fructose of another chain, mimicking bonding in sucrose crystals. A strong, chelate-like dual H-bond is proposed to compel the known antiparallel alignment of inulin chains. Such cross-linking would require one extra fructose per chain in the native inulin crystal, as observed. Completion of five H-bonded internal ring-domains would 'lock in' each new 6-fructose structural unit of each antiparallel helix pair to create a new isoform. All known properties of inulin isoforms follow readily from these concepts. PMID:25498723

  2. Folding of Polymer Chains in Early Stage of Crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Shichen; Miyoshi, Toshikazu

    Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of = 3-4 (assuming an adjacent re-entry fraction of of 100%) during mesomorphic formation process via nucleation and growth in the early stage. This work was financially supported by the National Science Foundation (Grant DMR-1105829 and 1408855) and startup funds from the UA.

  3. Polymer Chain Reinforcement across Narrow Interfaces: Entanglements Versus Chain Friction

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Fredrickson, Glenn H.; Kramer, Edward J.

    2002-03-01

    It is widely believed that entangled chains that bridge a glassy polymer/polymer interface solely determine its fracture energy (G_c). However, experiments show that while Gc increases with interfacial width (w), Gc vs. w/d_t, where dt is the tube diameter of the melt, is not universal. For some polymer pairs Gc increases dramatically even when w << d_t, while for others Gc does not increase until w >= d_t. We demonstrate that the friction stress for polymer loop pull-out from the interface is given by f_monoρ_merw/2 where f_mono is the static friction coefficient per mer and ρ_mer is the mer number density. Unlike interfaces with short block copolymers, where the friction stress for block pull-out is limited by a maximum areal density of block copolymer, the polymer/polymer friction stress grows linearly with w. For interfaces as narrow as 3 nm, it can be large enough to induce crazing. A model that includes both loop pull-out and chain entanglement shows that modest changes in f_mono can account for the fact that Gc versus w/dt is non-universal. A high areal density of bridging, entangled chains is therefore sufficient, but not necessary, to reinforce polymer interfaces.

  4. Effect of chain stiffness on polymer properties

    NASA Astrophysics Data System (ADS)

    Luettmer-Strathmann, Jutta

    2008-03-01

    Static and dynamic properties of polymers are affected by the stiffness of the chains. In this work, we investigate structural and thermodynamic properties of a lattice model for semiflexible polymer chains. The model is an extension of Shaffer's bond- fluctuation model and includes attractive interactions between monomers and an adjustable bending penalty that determines the Kuhn segment length. For isolated chains, a competition between monomer-monomer interactions and bending penalties determines the chain conformations at low temperatures. For dense melts, packing effects play an important role in the structure and thermodynamics of the polymeric liquid. In order to investigate static properties as a function of temperature and chain stiffness, we perform Wang-Landau type simulations and construct densities of states over the two-dimensional state space of monomer-monomer and bending contributions to the internal energy.

  5. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-03-15

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  6. Polymer nanocomposites: permeability, chain dynamics, mechanical properties

    NASA Astrophysics Data System (ADS)

    Sahu, Laxmi

    2005-03-01

    Polymer nanocomposites based on dispersion of surfactant treated expandable smectite clays such as montmorillonite layered silicates (MLS) have shown promise as organic-inorganic hybrids with the potential to improve barrier properties. Separately, flexible displays based on plastic substrates have reduced lifetimes tied to the low barrier properties. While there has been a general attribution of improved barrier properties to the tortuous path, this does not consider the influence the introduction of a secondary filler has on the morphology of the host polymer. Here we examine the influence of MLS nanoplatelets on the barrier properties and chain dynamics of polymers. We investigate the potential for host polymer modification by comparing two crystallizable polymers nylon and PET and resulting well dispersed nanocomposites. We study mechanical, cyclic fatigue and permeability of films. Permeability of the biaxially stretched film and when the film undergoes fatigue of 50 and 10000 cycles are also measured. Chain dynamics were modeled based on the Burger model fit to creep-recovery data. A systematic approach to predict the permeability considering amorphous, crystalline and MLS content and comparison with experimental values were done. We also conducted water absorption measurements to highlight the water absorption differences in the two polymers. Dimensional stability of PET was studied by measuring coefficient of thermal expansion of thin film on Si substrate by ellipsometry method.

  7. The Packing of Granular Polymer Chains

    SciTech Connect

    Zou, Ling-Nan; Cheng, Xiang; Rivers, Mark L.; Jaeger, Heinrich M.; Nagel, Sidney R.; UC

    2009-12-01

    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here, we examine the disordered packing of chains constructed out of flexibly connected hard spheres. Using x-ray tomography, we find that long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally, we uncover close similarities between the packing of chains and the glass transition in polymers.

  8. Single-Chain Semiconducting Polymer Dots

    PubMed Central

    2015-01-01

    This work describes the preparation and validation of single-chain semiconducting polymer dots (sPdots), which were generated using a method based on surface immobilization, washing, and cleavage. The sPdots have an ultrasmall size of ∼3.0 nm as determined by atomic force microscopy, a size that is consistent with the anticipated diameter calculated from the molecular weight of the single-chain semiconducting polymer. sPdots should find use in biology and medicine as a new class of fluorescent probes. The FRET assay this work presents is a simple and rapid test to ensure methods developed for preparing sPdot indeed produced single-chain Pdots as designed. PMID:25521606

  9. Macromolecular recognition: Recognition of polymer side chains by cyclodextrin

    NASA Astrophysics Data System (ADS)

    Hashidzume, Akihito; Harada, Akira

    2015-12-01

    The interaction of cyclodextrins (CD) with water soluble polymers possessing guest residues has been investigated as model systems in biological molecular recognition. The selectivity of interaction of CD with polymer-carrying guest residues is controlled by polymer chains, i.e., the steric effect of polymer main chain, the conformational effect of polymer main chain, and multi-site interaction. Macroscopic assemblies have been also realized based on molecular recognition using polyacrylamide-based gels possessing CD and guest residues.

  10. Glassy dynamics in condensed isolated polymer chains.

    PubMed

    Tress, Martin; Mapesa, Emmanuel U; Kossack, Wilhelm; Kipnusu, Wycliffe K; Reiche, Manfred; Kremer, Friedrich

    2013-09-20

    In the course of miniaturization down to the nanometer scale, much remains unknown concerning how and to what extent the properties of materials are changed. To learn more about the dynamics of condensed isolated polymer chains, we used broadband dielectric spectroscopy and a capacitor with nanostructured electrodes separated by 35 nanometers. We measured the dynamic glass transition of poly(2-vinylpyridine) and found it to be bulk-like; only segments closer than 0.5 nanometer to the substrate were weakly slowed. Our approach paves the way for numerous experiments on the dynamics of isolated molecules. PMID:24052303

  11. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  12. Touching polymer chains by organic field-effect transistors

    PubMed Central

    Shao, Wei; Dong, Huanli; Wang, Zhigang; Hu, Wenping

    2014-01-01

    Organic field-effect transistors (OFETs) are used to directly “touch” the movement and dynamics of polymer chains, and then determine Tg. As a molecular-level probe, the conducting channel of OFETs exhibits several unique advantages: 1) it directly detects the motion and dynamics of polymer chain at Tg; 2) it allows the measurement of size effects in ultrathin polymer films (even down to 6 nm), which bridges the gap in understanding effects between surface and interface. This facile and reliable determination of Tg of polymer films and the understanding of polymer chain dynamics guide a new prospect for OFETs besides their applications in organic electronics and casting new light on the fundamental understanding of the nature of polymer chain dynamics. PMID:25227159

  13. Role of the Interfacial Interactions from an Adjacent Wall on Polymer Diffusion

    NASA Astrophysics Data System (ADS)

    Choi, Jihoon; Clarke, Nigel; Winey, Karen; Meth, Jeffrey; Composto, Russell

    2015-03-01

    The tracer diffusion of deuterated polystyrene (dPS; Mn = 23 - 1866 kg/mol) with a thickness (l) is measured diffusing away from hydroxyl-terminated, phenyl-terminate, and PS-grafted silicon substrates. For a hydroxyl-functionalized substrate, short polymer chains (Mn = 23 and 49 kg/mol; l >>Rg) exhibit a diffusion coefficient that is comparable to bulk PS, whereas long polymer chains (Mn = 532 and 1866 kg/mol; l polymer chains showed a moderate slowing down. These experiments demonstrate that the polymer diffusion of thin, confined films (~ Rg) away from the substrate is determined by the friction due to surface-monomer contacts, and is sensitive to the chemical state of the substrate, providing a new insight into a role of the interfacial interactions on polymer dynamics.

  14. Brownian Dynamics Simulations of Flow Induced Conformation of Single Polymer Chains

    NASA Astrophysics Data System (ADS)

    Oztekin, Alparslan; Webb, Edward; Zhang, Frank; Cheng, Xuanhong

    2012-11-01

    Coarse-grained molecular dynamics simulation of single polymer chains is conducted to examine flow induced conformational changes of single polymer chains in shear and extensional flows. Dynamic properties of polymeric molecules are described using bead-spring models; these models put coarse grain groups of atoms into single particles, connected to adjacent particles via spring like interactions. A common representation of the bonded interaction, or spring, is given by the Finitely Extensible Non-linear Elastic model. The constants used in the model are determined form single-molecule force spectroscopic experiments. Simulations and experiments will help to achieve a clear picture of how von Willebrand Factor, a blood clotting protein, model system for flow-induced activation, achieves flow sensing at the single protein/polymer level. The model includes bead-bead interactions, hydrodynamic interaction, the volume of the beads and spring-spring interaction for finitely extensible dumbbell and other spring models. The effects of walls on the dynamics of polymer chains are also presented. The results are presented for various chain lengths and flow conditions. Hydrodynamic interaction and the presence of wall have strong influences on the dynamics of the polymer chain.

  15. Mass Distributions of Linear Chain Polymers

    PubMed Central

    Hubler, Shane L.; Craciun, Gheorghe

    2012-01-01

    Biochemistry has many examples of linear chain polymers, i.e., molecules formed from a sequence of units from a finite set of possibilities; examples include proteins, RNA, single-stranded DNA, and paired DNA. In the field of mass spectrometry, it is useful to consider the idea of weighted alphabets, with a word inheriting weight from its letters. We describe the distribution of the mass of these words in terms of a simple recurrence relation, the general solution to that relation, and a canonical form that explicitly describes both the exponential form of this distribution and its periodic features, thus explaining a wave pattern that has been observed in protein mass databases. Further, we show that a pure exponential term dominates the distribution and that there is exactly one such purely exponential term. Finally, we illustrate the use of this theorem by describing a formula for the integer mass distribution of peptides and we compare our theoretical results with mass distributions of human and yeast peptides. PMID:23024448

  16. Variational collision integrator for polymer chains

    NASA Astrophysics Data System (ADS)

    Leyendecker, Sigrid; Hartmann, Carsten; Koch, Michael

    2012-05-01

    The numerical simulation of many-particle systems (e.g. in molecular dynamics) often involves constraints of various forms. We present a symplectic integrator for mechanical systems with holonomic (bilateral) and unilateral contact constraints, the latter being in the form of a non-penetration condition. The scheme is based on a discrete variant of Hamilton's principle in which both the discrete trajectory and the unknown collision time are varied (cf. [R. Fetecau, J. Marsden, M. Ortiz, M. West, Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM J. Appl. Dyn. Syst. 2 (2003) 381-416]). As a consequence, the collision event enters the discrete equations of motion as an unknown that has to be computed on-the-fly whenever a collision is imminent. The additional bilateral constraints are efficiently dealt with employing a discrete null space reduction (including a projection and a local reparametrisation step) which considerably reduces the number of unknowns and improves the condition number during each time-step as compared to a standard treatment with Lagrange multipliers. We illustrate the numerical scheme with a simple example from polymer dynamics, a linear chain of beads, and test it against other standard numerical schemes for collision problems.

  17. Nonaffine chain and primitive path deformation in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, J. D.; Goulbourne, N. C.

    2016-08-01

    Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.

  18. Nanoscience of single polymer chains revealed by nanofishing.

    PubMed

    Nakajima, Ken; Nishi, Toshio

    2006-01-01

    The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Theta solvent (cyclohexane) shows good agreement with a worm-like chain model and, therefore, gives microscopic information about entropic elasticity. Furthermore, the nanofishing technique can be used for dynamic viscoelastic measurement of single polymer chains. An AFM cantilever is mechanically oscillated at its resonant frequency during the stretching process. This technique enables the estimation of quantitative and simultaneous elongation-dependent changes of stiffness and viscosity of a single chain with the use of a phenomenological model. In this study, the effect of solvent on viscosity in low extension regions reveals that the viscosity is attributed to monomer-solvent friction. Thus, static and dynamic nanofishing techniques are shown to give powerful experimental proofs for several basic questions in polymer physics. The techniques are expected to reveal hidden properties of polymer chains or polymer solutions by any types of macroscopic measurements in the future. PMID:17099889

  19. Linear DNA-linked colloidal chains: a model to visualize polymer dynamics

    NASA Astrophysics Data System (ADS)

    Biswal, Sibani; Byrom, Julie; Du, Daniel

    2012-02-01

    We present the development of synthetic materials consisting of chains of DNA-linked paramagnetic colloids that have rigidity and length specificity. These chains have demonstrated capability for folding and self-assembly. This is classic bead-spring-bead model can be a model system to visualize polymer dynamics. Here, I will describe the formation mechanism and stability of these DNA-linked magnetic particle chains. I will also describe a model that describes the total energy landscape that describes the inter-particle interactions and provides a workable theory toward the optimization of experimental parameters in synthesizing more stable and reliable colloidal assemblies. In addition to stability, we will also present the use of a colloidal worm-like chain (WLC) model system to describe chain dynamics. We measure bending rigidity by monitoring the thermal fluctuations of the chains. We show that the persistence length of the chains can be tuned from 1 to 50 mm (L/LP = 0.002 - 0.1), by changing the length of the DNA used to link adjacent particles from 75 to 15 bases. We also will show that the bending relaxation dynamics of these chains, which match well with theoretical predictions, further supporting the validity of using these colloidal chains as models for semiflexible polymer systems in both equilibrium and dynamic studies.

  20. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    NASA Astrophysics Data System (ADS)

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-07-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites.

  1. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases.

    PubMed

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  2. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    PubMed Central

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  3. Polymer chain simulations in microchannels with Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios; Karniadakis, George; Caswell, Bruce

    2006-03-01

    In this work we employ Dissipative Particle Dynamics (dpd) for simulations of dilute polymer solutions using bead-spring representations. We present comparison of two time-marching schemes: the popular velocity-Verlet and Lowe's scheme. Schmidt number effects are investigated for a series of cases, including λ-dna molecules under shear (using the Marko-Siggia wormlike chain spring law) and Poiseuille flow in microchannels. Effects on the polymer depletion layer, power-law profiles and apparent viscosities are presented as a function of the number of beads per polymer chain.

  4. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  5. Glass formation behavior of an isolated polymer chain

    NASA Astrophysics Data System (ADS)

    Merling, Weston; Mileski, Jack; Simmons, David

    2015-03-01

    A single polymer chain in isolation logically represents the extreme limit of nanoconfinement with respect to segmental dynamics and glass formation. Work in thin polymer films suggests that one should expect a large Tg suppression in such systems. However, recent dielectric relaxation measurements of isolated chains of P2VP on a silica substrate found bulk-like Tg in this system, apparently raising questions about the nature of observed nanoconfinement effects on the glass transition. Here we describe simulations of glass formation in an isolated polymer chain, both free-floating and deposited on a substrate. Results indicate that free-floating isolated polymer chains exhibit a depression in the dynamic glass transition temperature equivalent to more than 100K in polystyrene units. However, when a chain is deposited on a substrate with sufficiently favorable surface interactions, bulk-like dynamics can be recovered due to competition between the free-surface and adsorbed interface. When this compensation effect is taken account, these results indicate that the observation of bulk-like dynamics in isolated P2VP chains on a silica substrate is consistent with observations of large Tg suppressions in polymer films supported by less attractive substrates. This material is based upon work supported by the National Science Foundation under Grant No. DMR1310433.

  6. Generalized conservation law for main-chain polymer nematics

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Podgornik, Rudolf

    2016-05-01

    We explore the implications of the conservation law(s) and the corresponding so-called continuity equation(s), resulting from the coupling between the positional and the orientational order in main-chain polymer nematics, by showing that the vectorial and tensorial forms of these equations are in general not equivalent and cannot be reduced to one another, but neither are they disjoint alternatives. We analyze the relation between them and elucidate the fundamental role that the chain backfolding plays in the determination of their relative strength and importance. Finally, we show that the correct penalty potential in the effective free energy, implementing these conservation laws, should actually connect both the tensorial and the vectorial constraints. We show that the consequences of the polymer chains' connectivity for their consistent mesoscopic description are thus not only highly nontrivial but that its proper implementation is absolutely crucial for a consistent coarse-grained description of the main-chain polymer nematics.

  7. Supramolecular polymers: Chain growth in control

    NASA Astrophysics Data System (ADS)

    Deng, Renren; Liu, Xiaogang

    2015-06-01

    Supramolecular polymerizations typically proceed through stepwise intermolecular mechanisms, concomitant with many side reactions to yield aggregates of unpredictable size, shape and mass. Now, a chain-growth strategy is shown to allow assembly of molecules into supramolecular chain structures endowed with precisely controlled characteristics.

  8. Main chain type benzoxaine polymers for high performance applications

    NASA Astrophysics Data System (ADS)

    Chernykh, Andrey

    A new polymer with benzoxazine group in the main chain has been synthesized through the Mannich condensation of a difunctional phenol, formaldehyde and a diamine. Obtained polymer has weight average molecular weight of approximately 10,000 Da and a moderately broad polydispersity index. The new polymer is used to manufacturer self-supporting film of thermosetting resins. Aiming to obtain higher molecular weight, click chemistry approach has been applied to synthesize linear benzoxazine polymers. Three types of polymers have been prepared from dipropargyl- and novel diazide-functionalized benzoxazine monomers, showing a tremendous flexibility for applying click reaction to obtain various polymer architectures. The weight average molecular weight is estimated to be in the range from 50,000 to 100,000 Da which is significantly higher than the benzoxazine polymers which have been chain extended via Mannich reaction. Further developing approach of polycondensation of the monomers containing ozaxine rings, the oxidative coupling approach has been utilized in order to couple benzoxazines with terminal acetylene groups. A model benzoxazine compound containing diacetylene linkage exhibits unexpectedly low exothermic peak with the onset around 140°C, which is significantly lower than the temperature of conventional benzoxazine polymerization. The initial model studies have been made in order to understand this phenomenon and preliminary explanation is given. Extending this pathway to the difunctional propargyl- and ethynyl-functionalized benzoxazine monomers, a series of novel benzoxazine polymers containing diacetylene groups in the main chain have been synthesized. The weight average molecular weight of the polymers is achieved to be up to 50,000 Da. The effect of diacetylene moiety on the benzoxazine crosslinking behavior is even more pronounced for the obtained linear polymers showing exothermic peak with the onset at around 125°C and its maximum at 185°C. Upon

  9. Anionic synthesis of in-chain and chain-end functionalized polymers

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Sumana

    The objective of this work was to anionically synthesize well-defined polymers having functional groups either at the chain-end or along the polymer chain. General functionalization methods (GFM) were used for synthesizing both kinds of polymers. Chain-end functionalized polymers were synthesized by terminating the anionically synthesized, living polymer chains using chlorodimethylsilane. Hydrosilation reactions were then done between the silyl-hydride groups at the chain-ends and the double bonds of commercially available substituted alkenes. This produced a range of well-defined polymers having the desired functional groups at the chain-ends. In-chain functionalized polymers were synthesized by anionically polymerizing a silylhydride functionalized styrene monomer: (4-vinylphenyl)dimethysilane. Polymerizations were done at room temperature in hydrocarbon solvents to produce well-defined polymers. Functional groups were then introduced into the polymer chains by use of hydrosilation reactions done post-polymerization. The functionalized polymers produced were characterized using SEC, 1H and 13C NMR, FTIR, MALDI TOF mass spectrometry and DSC. The monomer reactivity ratios in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane were also measured. A series of copolymerizaions was done with different molar ratios of styrene(S) and (4-vinylphenyl)dimethylsilane(Si). Three different methods were used to determine the values of the monomer reactivity ratios: Fineman-Ross, Kelen-Tudos and Error-In-Variable (EVM) methods. The average values of the two monomer reactivity ratios obtained were: r Si = 0.16 and rS = 1.74. From these values it was observed that in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane, the second monomer was preferentially incorporated into the copolymer chain. Also, rSirS = 0.27, which shows that the copolymer has a tendency to have an alternating structure. Amino acid-functionalized polymers (biohybrids) were

  10. Single chain stochastic polymer modeling at high strain rates.

    SciTech Connect

    Harstad, E. N.; Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  11. Highly Ordered Single Conjugated Polymer Chain Rod Morphologies

    SciTech Connect

    Adachi, Takuji; Brazard, Johanna; Chokshi, Paresh; Ganesan, Venkat; Bolinger, Joshua; Barbara, Paul F.

    2010-10-15

    We have reexamined the fluorescence polarization anisotropy of single polymer chains of the prototypical conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) isolated in a poly(methyl methacrylate) (PMMA) matrix employing improved synthetic samples that contain a much smaller number of tetrahedral chemical defects per chain. The new measurements reveal a much larger fraction of highly anisotropic MEH-PPV chains, with >70% of the chains exhibiting polarization anisotropy values falling in the range of 0.6-0.9. High anisotropy is strong evidence for a rod-shaped conformation. A comparison of the experimental results with coarse grain, beads on a chain simulations reveals that simulations with the usual bead-bead pairwise additive potentials cannot reproduce the observed large fraction of high polarization values. Apparently, this type of potential lacks some yet to be identified molecular feature that is necessary to accurately simulate the experimental results.

  12. Particle-directed assembly of semiflexible polymer chains.

    PubMed

    McGovern, Michael; Dorfman, Kevin D; Morse, David C

    2016-07-20

    We use Langevin dynamics simulations to study aggregation of semiflexible polymers driven by attractions between polymers and spherical particles. We consider a simple model with purely repulsive polymer/polymer and particle/particle interactions but attractive polymer/particle interactions. We find a rich "phase diagram" that contains several different types of globular and rod-like aggregates with either liquid-like or crystalline structure for the particle positions. Systems that exhibit rod-like aggregates with crystalline internal order exhibit a discontinuous rod-globule transition, while systems with liquid-like internal order exhibit a smooth crossover between isotropic and elongated aggregates with increasing chain stiffness. Polymers in elongated liquid-like aggregates often adopt helical configurations that wind around the axis of the aggregate. PMID:27378073

  13. Characteristics of main chain decomposable STAR polymer for EUV resist

    NASA Astrophysics Data System (ADS)

    Iwashita, Jun; Hirayama, Taku; Takagi, Isamu; Matsuzawa, Kensuke; Suzuki, Kenta; Yoshizawa, Sachiko; Konno, Kenri; Yahagi, Masahito; Sato, Kazufumi; Tagawa, Seiichi; Enomoto, Kazuyuki; Oshima, Akihiro

    2011-04-01

    The concept of nonlinear acid diffusion coefficient would be emphasized to achieve better latent image quality, resulting in better lithographic performance. Focusing on realizing the concept, we previously reported about a main chain decomposable star shaped polymer (STAR polymer).STAR polymer consists of a core unit and several arm units which connect to the core unit with easily acid cleavable bonding. (Fig.1) The main chain decomposition system is ideal to achieve promoted acid diffusion at exposed area because it accompanies great molecular weight reduction at exposed area. The significance of the STAR system had been confirmed for partially protected poly(p-hydroxystyrene) (PHS) considering arm length and core structure. Employing p-hydroxy-α-methylstylene (PHOMS) for arm structure, novel STAR polymer with appropriate glass transition temperature (Tg) could be realized. (Fig.2) Poly PHOMS is known to undergo acid-catalyzed decomposition from the polymer end. Lithographic performance comparison between the STAR polymer and the linear polymer as a control using a Micro Exposure Tool (MET) would be exhibited. Thermal property change with exposure and dissolution charactersitic will be also discussed. Moreover main chain decomposition mechanism was investigated with flood EB irradiation.

  14. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    PubMed

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  15. Does a polymer chain probe solvent dynamics?

    NASA Astrophysics Data System (ADS)

    Peterson, Steve; Echeverria, Isabel; Schrag, John

    2001-03-01

    We have examined the dynamics of polyisoprene (both in bulk and in solution) using viscoelastic and oscillatory flow birefringence measurements. Surprisingly, the breadth of the relaxation time spectrum for the polymer appears to narrow significantly when going from bulk to solution conditions. This suggests an apparent flexibility difference in the polymer that may actually reflect dynamic spatial heterogeneity in the solvent (a glass former). Our results suggest a connection with experimental evidence of dynamic heterogeneities in glass forming liquids (Ediger, M.D., Annu. Rev. Phys. Chem., 2000, 51:99-128) and results of molecular dynamics simulations (Donati, C., et al., PRL, 80, 11, 1998).

  16. Static properties of polymer chains in porous media

    NASA Astrophysics Data System (ADS)

    Honeycutt, J. D.; Thirumalai, D.

    1989-04-01

    The static properties of a polymer molecule in a porous medium are investigated. The porous medium is simulated using a site percolation model in which the various sites are occupied (or unoccupied) randomly. A freely jointed chain is allowed to move in continuous space between the obstacles. Effects of excluded volume interactions between the links have also been studied. Using a generalized Flory theory, we have shown that, when the strength of disorder is large enough, the mean square end-to-end distance scales as N2ν, where N is the number of links in the chain, and ν takes on a value different from that for a free chain. Under these conditions, the polymer assumes a compact, globule-like conformation. For sufficiently large N, the Flory theory gives ν=1/(d+2) for freely jointed chains and ν=1/d for chains with excluded volume. Various correlation functions such as the distribution of the end-to-end distance and density profile of monomers with respect to the center of mass of the chain have been computed using Monte Carlo simulations. These results are interpreted using scaling concepts and an approximate variational theory based on replica methods. The limitations of the replica variational theory are assessed by an application to the directed polymer in a quenched random environment. We have also studied the shape fluctuations that the polymer molecule undergoes in the random environment. It is argued that these shape fluctuations are relevant to the transport mechanism of polymers in random media. The results obtained for the porous media are contrasted with those found for polymers in media where the obstacles are arranged in a regular manner.

  17. New polymer systems: Chain extension by dianhydrides

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.

    1972-01-01

    The results are presented for a systematic investigation on the use of anhydrides to prepare stable elastomeric materials for space use, under mild reaction conditions. The three anhydrides investigated were found to provide effective chain extension of hydroxy-terminated poly(alkylene oxides) and poly(butadienes). These were tetrahydrofuran tetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic diahydride. The most effective catalyst investigated was ferric acetylacetonate, which resulted in chain extension at 333 K (60 C). One feature of these anhydride reactants is that they are difunctional as anhydrides, but tetrafunctional if conditions are selected that lead to reaction of all carboxyl groups. Therefore, chain extension can be effected and then followed by crosslinking via the residual carboxyl groups.

  18. Grafted polymers inside cylindrical tubes: Chain stretching vs layer thickness

    NASA Astrophysics Data System (ADS)

    Suo, Tongchuan; Whitmore, Mark D.

    2013-04-01

    We present a study of the detailed structure of grafted polymer chains and the layers they form inside cylindrical tubes, using the finitely extensible nonlinear elastic chain model and numerical self-consistent field theory. For very large tube radius, the chain stretching and layer thicknesses are the same as for polymers grafted to a planar surface. For decreasing radius, our calculations indicate that the layer almost always gets thinner, although there can be situations where it is very slightly thicker. However, we find that this thinning is not necessarily due to changes to the polymers: in fact, the root-mean-squared layer thickness would decrease even if the polymers themselves are completely unchanged. Furthermore, we find that the polymer stretching can increase at the same time that the layer thickness decreases. These apparent paradoxes are resolved by analyzing and distinguishing between the volume fraction profiles and monomer number distributions in these systems, including how they change and why. We also find that, in a given system, parts of each polymer move towards the curved surface and parts away from it, and that these differences are key to understanding the behavior.

  19. Effect of nanoconfinement on liquid-crystal polymer chains

    NASA Astrophysics Data System (ADS)

    Micheletti, Davide; Muccioli, Luca; Berardi, Roberto; Ricci, Matteo; Zannoni, Claudio

    2005-12-01

    We apply a Monte Carlo polymerization model for Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] monomers that we have recently introduced [J. Chem. Phys. 121, 9123 (2004)] to investigate with computer simulations the effects of nanoconfinement and anchoring type on the structure of the main-chain liquid-crystal polymers formed in thin films, in the presence of several types of surface alignment: parallel to the interface (random and uniform) or perpendicular to it (homeotropic). We perform first a study of the confined monomers and then we examine the features of the polymer chains obtained from an isotropic or nematic sample. We find a significant effect of the anchoring conditions on the characteristics of the chains and particularly striking differences between planar and homeotropic boundaries. Furthermore, our results indicate that the choice of different anchorings could be used to tune the linearity and degree of polymerization of the chains.

  20. Effect of nanoconfinement on liquid-crystal polymer chains.

    PubMed

    Micheletti, Davide; Muccioli, Luca; Berardi, Roberto; Ricci, Matteo; Zannoni, Claudio

    2005-12-01

    We apply a Monte Carlo polymerization model for Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] monomers that we have recently introduced [J. Chem. Phys. 121, 9123 (2004)] to investigate with computer simulations the effects of nanoconfinement and anchoring type on the structure of the main-chain liquid-crystal polymers formed in thin films, in the presence of several types of surface alignment: parallel to the interface (random and uniform) or perpendicular to it (homeotropic). We perform first a study of the confined monomers and then we examine the features of the polymer chains obtained from an isotropic or nematic sample. We find a significant effect of the anchoring conditions on the characteristics of the chains and particularly striking differences between planar and homeotropic boundaries. Furthermore, our results indicate that the choice of different anchorings could be used to tune the linearity and degree of polymerization of the chains. PMID:16375493

  1. Long-time dynamics of chains in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Green, Peter

    2009-03-01

    In polymer nanocomposites (PNCs), the presence of the nanoparticles has a marked effect on the dynamics and the Tg. In one limit, the chains become strongly attached to the particles, and two glass transitions, and bimodal dynamics, may be observed. In the other, where the chain/particle interactions are weak, the chain friction factor, z(T) can undergo significant changes, manifested in the translational diffusion and viscosity. In the polymethyl methacrylate (PMMA)/C60 system, the dynamics slow down, accompanied by an increase in the glass transition. At the same time, the temperature dependence of the relaxations remains the same as pure PMMA. In polystyrene (PS)/Au-thiol capped PS ligands, the dynamics and the glass transition could be induced to increase or decrease, through manipulation of molecular parameters in the system. In this presentation, we propose a mechanism to describe translational diffusion and Tg in PNC systems in which the polymer chain/nanoparticle interactions are weak.

  2. Molecular Dynamics Simulation of Electrophoresis of a Telehelic Polymer Chain

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aniket

    2002-08-01

    We report the conformational and the dynamical properties of an end-labeled polymer chain embedded in a porous medium made of randomly distributed immobile spherical obstacles using a stochastic Molecular Dynamic(MD) simulation method for several obstacle densities and for various bias strenghts applied only to one end of the chain. First, various properties of the chain are studied when the external bias is set to zero. We then extend the stochastic MD simulation to study the electrophresis of a polymer chain driven by (i) a steady and (ii) a time dependent electric field. These studies are relevant for various time dependent gel electrophoresis methods widely used to separate DNA molecules. The qualitative features are compared with experiments, analytic theories, and recent Monte Carlo Simulation results.

  3. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  4. New polymer systems: Chain extension by dianhydrides

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.

    1974-01-01

    Three anhydrides provide effective chain extension of hydroxy-terminated polyalkylene oxides and polybutadienes. Novel feature of these anhydride reactants is that they are difunctional as anhydrides, but they are tetrafunctional if conditions are selected that lead to total esterification or reaction of all carboxyl groups.

  5. Statistical Behavior of Polymer Chains in Curved Space

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Shi, An-Chang; Zhang, Hongdong; Qiu, Feng; Yang, Yuliang

    2014-03-01

    Recently, we have derived the modified diffusion equation of the propagator (the end-segment distribution function) in general curved space for both Gaussian and wormlike chains. Mathematically, a Gaussian-curvature term appears as an extra external field in the diffusion equation of Gaussian chains while there is an additional normal-curvature term for the case of wormlike chains. The basic statistical behavior of polymer chains in curved space can be also extracted by examining these newly derived diffusion equations revealing that Gaussian chains are aware of the intrinsic curvature of the space but are blind to the external curvature while wormlike chains can feel both. We thank the financial support from NSFC (No. 21104010).

  6. Hyperbranched polymer stars with Gaussian chain statistics revisited.

    PubMed

    Polińska, P; Gillig, C; Wittmer, J P; Baschnagel, J

    2014-02-01

    Conformational properties of regular dendrimers and more general hyperbranched polymer stars with Gaussian statistics for the spacer chains between branching points are revisited numerically. We investigate the scaling for asymptotically long chains especially for fractal dimensions df = 3 (marginally compact) and df = 2.5 (diffusion limited aggregation). Power-law stars obtained by imposing the number of additional arms per generation are compared to truly self-similar stars. We discuss effects of weak excluded-volume interactions and sketch the regime where the Gaussian approximation should hold in dense solutions and melts for sufficiently large spacer chains. PMID:24574057

  7. Dynamics of a polymer chain confined in a membrane.

    PubMed

    Ramachandran, S; Komura, S; Seki, K; Gompper, G

    2011-05-01

    We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time. PMID:21562968

  8. Particle-Directed Assembly of Semiflexible Polymer Chains

    NASA Astrophysics Data System (ADS)

    McGovern, Michael; Dorfman, Kevin; Morse, David

    We use molecular dynamics simulations to investigate several models of semiflexible polymers that exhibit an attractive interaction with spherical particles. The organization of semiflexible polymer chains through attractive interactions with spherical particles occurs in several important processes in nature, such as the winding of DNA around histones and counter-ion condensation of charged polymers. The process is also of technological interest in the packaging of DNA for delivery to cells. In this presentation, we will present data on both the phase behavior and the kinetics of self-assembly as a function of the stiffness of the polymers, the attractive potential between the monomers and the particles, and the relative size of the monomers and particles. Our simulations suggest a transition between globular and rod-like aggregates that changes from a gradual to a sudden transition depending on particle size, and that rod formation is a slow, nucleation dependent process.

  9. Surface Diffusion of Single Polymer Chain Using Molecular Dynamics SIMULATION*

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel; Kumar, Sanat; Granick, Steve

    2004-05-01

    Results of recent experiments on polymer chains adsorbed from dilute solution at solid-liquid interface show the power scaling law dependence of the chain diffusivity, D, as a function of the degree of polymerization, N, D ˜ N^3/2. By contrast, DNA molecules bound to fluid cationic lipid bilayers follows Rouse dynamics with D ˜ N^1. We used molecular dynamics simulations to gain an understanding of these dissimilar scaling behaviors. Our model systems contain chains comprised of N monomers connected by anharmonic springs described by the finite extendible nonlinear elastic, FENE potential, embedded into a solvent of N=1 monomers. Two types of simulations we performed: (i) the chain is confined to two dimensions, (ii) the three dimensional chain in the solvent is confined between two solids plates. With randomly placed impenetrable obstacles on the surface, the diffusion of 2D chains exhibits, D ˜ N^3/2 behavior, when the chain radius of gyration, Rg, is larger than half the distance between obstacles, and D ˜ N^1 for shorter chains. In the presence of an athermal solvent, the scaling exponent is 0.75 due to hydrodynamic forces, for the two-dimensional system. We will also discuss the nature of dynamic adsorption transition and effects of hydrodynamics forces on chain diffusion for the three-dimensional simulations.

  10. Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby G.

    2010-04-01

    Anomalous diffusion of polymer chains in a polymer nanocomposite melt is investigated for different polymer-nanoparticle interaction strengths using stochastic molecular dynamics simulations. For spherical nanoparticles dispersed in a polymer matrix the results indicate that the chain motion exhibits three distinct regions of diffusion, the Rouse-like motion, an intermediate subdiffusive regime followed by a normal Fickian diffusion. The motion of the chain end monomers shows a scaling that can be attributed to the formation of strong “networklike” structures, which have been seen in a variety of polymer nanocomposite systems. Irrespective of the polymer-particle interaction strengths, these three regimes seem to be present with small deviations. Further investigation on dynamic structure factor shows that the deviations simply exist due to the presence of strong enthalpic interactions between the monomers with the nanoparticles, albeit preserving the anomaly in the chain diffusion. The time-temperature superposition principle is also tested for this system and shows a striking resemblance with systems near glass transition and biological systems with molecular crowding. The universality class of the problem can be enormously important in understanding materials with strong affinity to form either a glass, a gel or networklike structures.

  11. Self-Assembly of Emulsion Droplets into Polymer Chains

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; McMullen, Angus; Brujic, Jasna

    We experimentally investigate `beads-on-a-string' models of polymers using the spontaneous assembly of emulsion droplets into linear chains. Droplets functionalized with surface-mobile DNA allow for programmable 'monomers' through which we can influence the three-dimensional structure of the assembled 'polymer'. Such model polymers can be used to study conformational changes of polypeptides and the principles governing protein folding. In our system, we find that droplets bind via complementary DNA strands that are recruited into adhesion patches. Recruitment is driven by the DNA hybridization energy, and is limited by the energy cost of surface deformation and the entropy loss of the mobile linkers, yielding adhesion patches of a characteristic size with a given number of linkers. By tuning the initial surface coverage of linkers, we control valency between the droplets to create linear or branched polymer chains. We additionally control the flexibility of the model polymers by varying the salt concentration and study their dynamics between extended and collapsed states. This system opens the possibility of programming stable three-dimensional structures, such as those found within folded proteins.

  12. Rouse mode analysis of chain relaxation in polymer nanocomposites

    DOE PAGESBeta

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2015-04-20

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, asmore » in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.« less

  13. Rouse mode analysis of chain relaxation in polymer nanocomposites

    SciTech Connect

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2015-04-20

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.

  14. Phase Transitions of Single Semistiff Polymer Chains

    NASA Astrophysics Data System (ADS)

    Bastolla, Ugo; Grassberger, Peter

    1997-12-01

    We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low- T states. This allows us to study in detail the phase diagram as a function of nn attraction ɛ and stiffness x. It shows a θ-collapse line with a transition from open coils (small ɛ) to molten compact globules (large ɛ) and a freezing transition toward a state with orientational global order (large stiffness x). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996), J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, the θ-temperature increases with stiffness x. The freezing temperature increases even faster, and reaches the θ-line at a finite value of x. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniach et al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.

  15. Conformational switching of modified guest chains in polymer brushes

    NASA Astrophysics Data System (ADS)

    Romeis, D.; Sommer, J.-U.

    2013-07-01

    Using a numerical quasi off-lattice self-consistent field method which describes heterogeneous chains of spherical monomers we study the case of a densely grafted polymer brush with a fraction of free chain ends being replaced by a modified end-group differing in size and solvent selectivity. We can confirm the observation from molecular dynamics simulations that upon changing the solvent conditions, a switching in location of end-groups which are bigger than monomers from a state "exposed" to the solvent (on the top of the brush) to a "hidden" state (inside the brush) takes place. Our numerical method allows a detailed study of the switching effect as a function of the relevant parameters, such as grafting density, chain length, size of end-groups and their volume fraction. We find that the switching effect is enhanced for long chains, low fractions of modified chains, and big end-groups. We consider the case of low fraction of modified chains in more detail using a test chain method. Here, we explore the optimal grafting density as a function of the size of the end-groups, where the switching is most sensitive. These values can be in the experimental range for end-groups which are at least 3-4 times bigger than the monomers. The end-groups can be realized by attaching nano-particles to the last monomer of a brush-chain.

  16. Polymer side-chains as arms for molecular recognition

    NASA Astrophysics Data System (ADS)

    South, Clinton Ray

    This thesis describes research based on synthetic protocols, methodologies, and applications of polymers containing side-chain molecular recognition elements. The motivation for the thesis lies in the belief among many in the field that a strict covalent paradigm for polymer chemistry is reaching its limit. The use of molecular recognition, in lieu of covalent chemistry, potentially presents a path through the current limits of polymer science. The work described in the following chapters of this thesis is, at least in part, a testament to this proposal. The first two chapters present a basic introduction and survey of the fundamental noncovalent interactions that are ubiquitous in the research of supramolecular polymers and molecular recognition. A hierarchy of noncovalent interactions, molecular recognition, and self-assembly is outlined and discussed. Chapter 2 lays the foundation for the remaining chapters of this thesis by presenting several examples of prior work related specifically to the use of molecular recognition on the side-chains of polymers. The next two chapters present research focused on advancing the functionalization of polymers through molecular recognition. The goal of this research is primarily to develop a general polymer backbone that both site-specifically and strongly associates noncovalently with small molecular substrates. These chapters demonstrate that both architecturally controlled block copolymers and random terpolymers can accept a full load of different substrates without interference among distinct molecular recognition elements along the polymer backbone. Chapters 5 and 6 present a unique application of polymers containing molecular recognition elements, templated synthesis. Chapter 5 first discusses lessons learned from small molecule based templated synthesis in which a template and a substrate are held together by metal coordination and a subsequent bond forming reaction occurs. Ultimately, the results of this chapter

  17. Large deviations of Rouse polymer chain: First passage problem

    NASA Astrophysics Data System (ADS)

    Cao, Jing; Zhu, Jian; Wang, Zuowei; Likhtman, Alexei E.

    2015-11-01

    The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations and measure the mean first-passage time τ(z) for the free end to reach a certain distance z away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of τ(z) are observed, with transition between them varying as a function of chain length. We use these simulation results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations leads us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.

  18. Large deviations of Rouse polymer chain: First passage problem.

    PubMed

    Cao, Jing; Zhu, Jian; Wang, Zuowei; Likhtman, Alexei E

    2015-11-28

    The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations and measure the mean first-passage time τ(z) for the free end to reach a certain distance z away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of τ(z) are observed, with transition between them varying as a function of chain length. We use these simulation results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations leads us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more. PMID:26627948

  19. Adsorption-driven translocation of polymer chain into nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Neimark, Alexander V.

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation.

  20. Adsorption-driven translocation of polymer chain into nanopores.

    PubMed

    Yang, Shuang; Neimark, Alexander V

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation. PMID:22697566

  1. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-11-01

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification

  2. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    SciTech Connect

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  3. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.

    PubMed

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification. PMID:26627943

  4. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. PMID:26754772

  5. Chain extension of a confined polymer in steady shear flow

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Pinaki; Cherayil, Binny J.

    2012-11-01

    The growing importance of microfluidic and nanofluidic devices to the study of biological processes has highlighted the need to better understand how confinement affects the behavior of polymers in flow. In this paper we explore one aspect of this question by calculating the steady-state extension of a long polymer chain in a narrow capillary tube in the presence of simple shear. The calculation is carried out within the framework of the Rouse-Zimm approach to chain dynamics, using a variant of a nonlinear elastic model to enforce finite extensibility of the chain, and assuming that the only effect of the confining surface is to modify the pre-averaged hydrodynamic interaction. The results, along with results from the corresponding calculations of finitely extensible versions of both the Rouse and Rouse-Zimm models, are compared with data from experiments on the flow-induced stretching of λ-phage DNA near a non-adsorbing glass surface [L. Fang, H. Hu, and R. G. Larson, J. Rheol. 49, 127 (2005), 10.1122/1.1822930]. The comparison suggests that close to a surface hydrodynamic screening is significant, and causes the chains to become effectively free-draining.

  6. Folding of polymer chains with short-range binormal interactions

    NASA Astrophysics Data System (ADS)

    Craig, A.; Terentjev, E. M.

    2006-05-01

    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils.

  7. Equilibrium chain conformations of bound polymers at the polymer melt/solid interface

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Sendogdular, Levent; Endoh, Maya; Koga, Tadanori

    2014-03-01

    We report the equilibrium conformations of bound polymer chains formed on planar solids. In this study, bound polystyrene (PS) layers onto silicon (Si) substrates were used as a model system. Three 50 nm-thick PS thin films were prepared by using different film processes (i.e., spin coating, dip coating, and floating) following prolonged thermal annealing and subsequent solvent leaching. The structures of the bound layers on Si were then characterized by using x-ray reflectivity and atomic force microscopy. We found that the adsorption kinetics for the dip coating film is much longer than that for the spun cast film or the floating film. It was also found that all the bound PS layers are composed of two different nanoarchitectures: flattened chains that constitute the inner higher density region of the bound layers and loosely adsorbed polymer chains that form the outer bulk-like density region. We acknowledge the financial support from NSF Grant No. CMMI-084626.

  8. Localization of chain dynamics in entangled polymer melts

    NASA Astrophysics Data System (ADS)

    Guenza, M. G.

    2014-05-01

    The dynamics of polymer melts in both the unentangled and entangled regimes is described by a Langevin equation for the correlated motion of a group of chains, interacting through both intra- and inter-molecular potentials. Entanglements are represented by an intermolecular monomer-monomer confining potential that has no effect on short chains, while interpolymer interactions, responsible for correlated motion and subdiffusive center-of-mass dynamics, are represented by an intermolecular center-of-mass potential derived from the Ornstein-Zernike equation. This potential ensures that the liquid of phantom chains reproduces the compressibility and free energy of the real samples. For polyethylene melts the calculated dynamic structure factor is found to be in quantitative agreement with neutron spin echo experiments of polyethylene melts with chain lengths that span both the unentangled and the entangled regimes. The theory shows a progressive localization of the cooperative chain dynamics at the crossover from the unentangled to the entangled regime, in the spirit of the reptation model.

  9. Finite cohesion due to chain entanglement in polymer melts.

    PubMed

    Cheng, Shiwang; Lu, Yuyuan; Liu, Gengxin; Wang, Shi-Qing

    2016-04-14

    Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts. PMID:26931322

  10. Effects of polymer side chains on the self-assembling of conjugated polymer in thin film

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfei; Wang, Yiqing; Bunz, Uvw H. F.; Perahia, Dvora

    2006-03-01

    Conjugated polymers are inherently semi-conducting and optically active materials, with immense potential applications in organic electro-optical devices. The chemical structure of the polymer including the rigidity of the backbone and the nature of substituents affect their association as well as their electro-optical response. The following work reports the effects of different side chains on the structure and fluorescence of highly conjugated polymer, poly(para phenyleneethynylene) (PPE). When substituted by long polylactide side chains they self-assemble into wires with fingerprint-like arrangement, casting from chloroform solutions on oxidized silicon wafer. With increasing content of poor solvent, the dimension of the structures increased and then crystallized area appeared, as showed in AFM studies. The introducing of the long flexible polymer side chains has significantly reduced the stacking between rigid backbones. This in tern results in a frequency shift in their fluoresces response, indication changes in the electronic levels. Direct measurements of the electronic levels using ATM are currently in progress.

  11. Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities

    SciTech Connect

    Niedzwiedz, K.; Wischnewski, A.; Monkenbusch, M.; Richter, D.; Strauch, M.; Straube, E.; Genix, A.-C.; Arbe, A.

    2007-04-20

    We present a neutron scattering investigation on a miscible blend of two polymers with greatly different glass-transition temperatures T{sub g}. Under such conditions, the nearly frozen high-T{sub g} component imposes a random environment on the mobile chain. The results demand the consideration of a distribution of heterogeneous mobilities in the material and demonstrate that the larger scale dynamics of the fast component is not determined by the average local environment alone. This distribution of mobilities can be mapped quantitatively on the spectrum of local relaxation rates measured at high momentum transfers.

  12. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains.

    PubMed

    Aoki, Daisuke; Uchida, Satoshi; Takata, Toshikazu

    2015-06-01

    Topology transformation of a star polymer to a linear polymer is demonstrated for the first time. A three-armed star polymer possessing a mechanical linking of two polymer chains was synthesized by the living ring-opening polymerization of δ-valerolactone initiated by a pseudo[2]rotaxane having three hydroxy groups as the initiator sites on the wheel component and at both axle termini. The polymerization was followed by the propagation end-capping reaction with a bulky isocyanate not only to prevent the wheel component deslippage but also to introduce the urethane moiety at the axle terminal. The resulting rotaxane-linked star polymer with a fixed rotaxane linkage based on the ammonium/crown ether interaction was subjected to N-acetylation of the ammonium moiety, which liberated the components from the interaction to move the wheel component to the urethane terminal as the interaction site, eventually affording the linear polymer. The physical property change caused by the present topology transformation was confirmed by the hydrodynamic volume and viscosity. PMID:25892579

  13. New 4,5-dichlorophthalhydrazidate-bridged chained coordination polymers

    NASA Astrophysics Data System (ADS)

    Jin, Juan; Wu, Di; Jia, Ming-Jun; Peng, Yu; Yu, Jie-Hui; Wang, Yu-Chang; Xu, Ji-Qing

    2011-03-01

    The hydrothermal self-assemblies of Pb 2+/Cd 2+ salt, 4,5-dichlorophthalic acid (dcpha), N 2H 4·H 2O together with 1,10-phenanthroline·H 2O (phen) or 2,2'-bipyridine (bpy) generated two new monoacylhydrazidate-bridged 1-D chained coordination polymers [Pb 2(DCPTH) 4(phen) 2] 1 and [Cd 3(DCPTH) 2(dcph) 2(bpy) 2] 2 (DCPTH=4,5-dichlorophthalhydrazidate, dcph=4,5-dichlorophthalate). The monoacylhydrazidate ligand DCPTH originated from the hydrothermal in situ acylation reaction between dcpha and N 2H 4·H 2O. In compound 1, two types of coordination modes for DCPTH are found, which link alternately the Pb(II) centers into a 1-D chain structure of compound 1 with ancillary phen molecules. In compound 2, DCPTH and dcph as the mixed bridges extend the Cd(II) centers into a 1-D chain structure of compound 2 with auxiliary bpy molecules. DCPTH in compound 2 shows a different coordination mode from those observed in compound 1.

  14. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. PMID:27258171

  15. A hybrid model for molecular-dynamics simulations of semiflexible main-chain liquid-crystalline polymer melts

    NASA Astrophysics Data System (ADS)

    Yung, K. L.; He, Lan; Xu, Yan; Shen, Y. W.

    2005-12-01

    This Note proposes a new hybrid model that combines the Gay-Berne/Lennard-Jones (GB/LJ) and bead-spring models to simulate semiflexible main-chain liquid-crystalline polymers (LCPs) for improving simulation efficiency without compromising accuracy. In the new model, one bead and two nonlinear springs are used to describe the flexible spacers between two adjacent rigid units described by ellipsoidal particles. The model is found to be able to describe, with accuracy, detailed structural properties of semiflexible main-chain LCPs, such as the odd-even effects of their thermodynamic properties, where the bead-spring model cannot depict. In our experiments, the speed of simulation for the hybrid model was shown to be up to ten times faster than that for the GB/LJ model when the number of molecular chains exceeded 150.

  16. Force extension response of single self-associating polymer chains

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Alexander-Katz, Alfredo

    2012-02-01

    The structure and dynamics of polymeric molecules plays a crucial role in a number of synthetic and biological processes. Great progress has been made in using force spectroscopy methods, such as optical tweezers and atomic force microscopy, to probe these properties of single molecules in novel ways. While there has been significant advances at using analytical theory to model the behavior of, for example, single domain unfolding or multi-domain unfolding of identical domains, we consider for the first time the force-extension behavior of self-associating homopolymers. We use a Brownian dynamics simulation with a Bell-like association model that represents, in a coarse-grained fashion, biological polymers such as von Willebrand Factor that use domain-domain interactions to modulate a larger quaternary structure. We also present a theoretical description of pulling that utilizes a master equation description of the relevant coordinate of the polymer network's ``shortest chain.'' We can accurately reproduce the force-extension features, notably the appearance of a dissipative plateau upon the increase of the association time scale, and provide a clear conceptual description of the appearance of this feature. Qualitative comparison to von Willebrand pulling in experiment is shown.

  17. Enzyme stabilization by linear chain polymers in ultrafiltration membrane reactors

    SciTech Connect

    Greco, G.; Gianfreda, L.

    1981-10-01

    The experimental results discussed in this article concern pi-nitrophenylphosphate hydrolysis by acid phosphatase in an ultrafiltration membrane reactor. The basic conclusions drawn are : 1) Linking the enzyme to a soluble support does not give rise to an increase in its stability while the chemical manipulations involved result in marked reductions in enzymic activity. 2) Enzyme entrapment within a proteic gel produces a considerable increase in its thermal stability as compared to the diluted native enzyme; this presumably stems from drastic reductions in enzyme mobility. 3) Correspondingly, considerable reductions occur in enzyme activity that depend on substrate mass transfer resistances within the gel layer. 4) Small amounts of linear chain water-soluble synthetic polymers (polyacrylamides) give rise to high macromolecular concentration levels in the reactor region where the enzyme is dynamically immobilized and produce the same enzyme stabilization as gel entrapment. 5) Only minor substrate mass transfer limitations take place in this region and hence enzyme activity is virtually unaffected. 6) Both effects (stabilization and slight activity reduction) seem not to depend strongly on the characteristics of the soluble polymer (molecular weight and ionic character). (Refs. 16).

  18. Stretching of a polymer chain anchored to a surface: the massive field theory approach

    NASA Astrophysics Data System (ADS)

    Usatenko, Zoryana

    2014-09-01

    Taking into account the well-known correspondence between the field theoretical φ4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases \\tilde{z}\\ll1 and \\tilde{z}\\gg1 , where \\tilde{z}=z^\\prime/Rz . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer.

  19. Optical properties of extended-chain polymers under stress

    NASA Astrophysics Data System (ADS)

    Ramirez, Rafael G.; Eby, R. K.

    1995-09-01

    Birefringence and x-ray diffraction experiments have been carried out on Kevlar 49(superscript R) fibers under tensile stress to monitor structure changes under the stress field. The origin of the observed birefringence is discussed in some detail. Results from theoretical calculations using semi-empirical molecular orbital techniques are presented and contrasted to the experimental observations. The calculations involved the estimation of chain polarizability and were performed under simulated stress conditions using the AM1 Hamiltonian in MOPAC. Polarizability is then used to calculate the birefringence as a function of tensile stress, by using existing internal field theory. This theoretical approach is applied to predict the optical properties of highly oriented extended-chain polyethylene, as well as those for poly(p' phenylene therephtalamide); the latter being the base polymer in Kevlar fibers. Results reveal reasonable birefringence predictions when compared to available experimental results in the literature. Also, it is found that the contribution from orienting crystallites under the stress field, to the measured birefringence in Kevlar fibers, is only a small fraction of the total. However, the calculations predict a significant contribution from deformation (extension) at the molecular level.

  20. Molecular description of the collapse of hydrophobic polymer chains in water

    NASA Astrophysics Data System (ADS)

    Livadaru, Lucian; Kovalenko, Andriy

    2004-09-01

    We propose a self-consistent molecular theory of conformational properties of flexible polymers in solution. It is applied to the collapse of a hydrophobic polymer chain in water, and can be readily generalized to any polymer-solvent system (e.g., copolymers with high complexity). We stress the potential of this method for a variety of problems, such as protein folding.

  1. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    PubMed

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM. PMID:15497133

  2. Distribution of Chains in Polymer Brushes Produced by a “Grafting From” Mechanism

    DOE PAGESBeta

    Martinez, Andre P.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2016-01-11

    The molecular weight and polydispersity of the chains in a polymer brush are critical parameters determining the brush properties. However, the characterization of polymer brushes is hindered by the vanishingly small mass of polymer present in brush layers. In this study, in order to obtain sufficient quantities of polymer for analysis, polymer brushes were grown from high surface area fibrous nylon membranes by ATRP. We synthesized the brushes with varying surface initiator densities, polymerization times, and amounts of sacrificial initiator, then cleaved from the substrate, and analyzed by GPC and NMR. Characterization showed that the surface-grown polymer chains were moremore » polydisperse and had lower average molecular weight compared to solution-grown polymers synthesized concurrently. Furthermore, the molecular weight distribution of the polymer brushes was observed to be bimodal, with a low molecular weight population of chains representing a significant mass fraction of the polymer chains at high surface initiator densities. Moreover, the origin of this low MW polymer fraction is proposed to be the termination of growing chains by recombination during the early stages of polymerization, a mechanism confirmed by molecular dynamics simulations of brush polymerization.« less

  3. Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: A molecular simulation study

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Khare, Rajesh

    2014-12-01

    Effect of chain architecture on the chain size, shape, and intrinsic viscosity was investigated by performing molecular dynamics simulations of polymer solutions in a good solvent. Four types of chains - linear, comb shaped, H-shaped, and star - were studied for this purpose using a model in which the solvent particles were considered explicitly. Results indicated that the chain length (N) dependence of the mean squared radius of gyration of the chains followed a power-law behavior < {R_g^2 } rangle ^{1/2} ˜ N^\\upsilon with scaling exponents of υ = 0.605, 0.642, 0.602, and 0.608, for the linear, comb shaped, H-shaped, and star shaped chains, respectively. The simulation results for the geometrical shrinking factor were higher than the prior theoretical predictions for comb shaped chains. Analysis of chain shape demonstrated that the star chains were significantly smaller and more spherical than the others, while the comb and H-shaped polymer chains showed a more cylindrical shape. It is shown that the intrinsic viscosity of the chains can be calculated by plotting the specific viscosity determined from simulations against the solution concentration. The intrinsic viscosity exhibited linear behavior with the reciprocal of the overlap concentration for all chain architectures studied. The molecular weight dependence of the intrinsic viscosity followed the Mark-Houwink relation, [η] = KMa, for all chain architectures. When comparing the calculated values of exponent a with the literature experimental values, agreement was found only for the H and star chains, and a disagreement for the linear and comb chains. The viscosity shrinking factor of the branched chains was compared with the available experimental data and the theoretical predictions and a general agreement was found.

  4. Chain Length and Grafting Density Dependent Enhancement in the Hydrolysis of Ester-Linked Polymer Brushes.

    PubMed

    Melzak, Kathryn A; Yu, Kai; Bo, Deng; Kizhakkedathu, Jayachandran N; Toca-Herrera, José L

    2015-06-16

    Poly(N,N-dimethylacrylamide) (PDMA) brushes with different grafting density and chain length were grown from an ester group-containing initiator using surface-initiated polymerization. Hydrolysis of the PDMA chains from the surface was monitored by measuring thickness of the polymer layer by ellipsometry and extension length by atomic force microscopy. It was found that the initial rate of cleavage of one end-tethered PDMA chains was dependent on the grafting density and chain length; the hydrolysis rate was faster for high grafting density brushes and brushes with higher molecular weights. Additionally, the rate of cleavage of polymer chains during a given experiment changed by up to 1 order of magnitude as the reaction progressed, with a distinct transition to a lower rate as the grafting density decreased. Also, polymer chains undergo selective cleavage, with longer chains in a polydisperse brush being preferentially cleaved at one stage of the hydrolysis reaction. We suggest that the enhanced initial hydrolysis rates seen at high grafting densities and high chain lengths are due to mechanical activation of the ester bond connecting the polymer chains to the surface in association with high lateral pressure within the brush. These results have implications for the preparation of polymers brushes, their stability under harsh conditions, and the analysis of polymer brushes from partial hydrolysates. PMID:26010390

  5. Segregation of chain ends to the surface of a polymer melt: Effect of surface profile versus chain discreteness.

    PubMed

    Mahmoudi, P; Matsen, M W

    2016-08-01

    Silberberg has argued that the surface of a polymer melt behaves like a reflecting boundary on the random-walk statistics of the polymers. Although this is approximately true, independent studies have shown that violations occur due to the finite width of the surface profile and to the discreteness of the polymer molecule, resulting in an excess of chain ends at the surface and a reduction in surface tension inversely proportional to the chain length, N . Using self-consistent field theory (SCFT), we compare the magnitude of these two effects by examining a melt of discrete polymers modeled as N monomers connected by Hookean springs of average length, a , next to a polymer surface of width [Formula: see text]. The effects of the surface width and the chain discreteness are found to be comparable for realistic profiles of [Formula: see text] ∼ a. A semi-analytical approximation is developed to help explain the behavior. The relative excess of ends at the surface is dependent on the details of the model, but in general it decreases for shorter polymers. The excess is balanced by a long-range depletion that has a universal shape independent of the molecular details. Furthermore, the approximation predicts that the reduction in surface energy equals one unit of kBT for every extra chain end at the surface. PMID:27498981

  6. Stabilization of nanorods in polymer melts by end-adsorbed chains

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie L.

    2007-03-01

    Adsorbed or grafted polymers are often used to provide steric stabilization of colloidal particles. When the particle size approaches the nanoscale, the curvature of the particles becomes relevant, and rules of thumb based on the behavior of polymers attached to flat surfaces may no longer apply. To investigate this effect for the case of cylindrical symmetry, I use a classical density functional theory applied to a coarse-grained model to study the polymer-mediated interactions between two nanorods. The rods are immersed in a polymer melt consisting of two kinds of chains: 1) a small fraction of chains of length N with ends that are attracted to the rods so that they form a polymer brush on the rods; and 2) a matrix of chains of length P which have no interactions with the rods. Calculations of the density profiles and potential of mean force reveal the effects of curvature compared to similar calculations for chains adsorbed to flat planar surfaces.

  7. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast, a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior.

  8. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  9. Monte Carlo simulations for a fluctuating sphere labeled on a flexible polymer chain in good solvents

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Shew, Chwen-Yang

    2001-11-01

    Monte Carlo simulations are conducted to investigate a model composed of a fluctuating sphere labeled on one chain end of an isolated flexible chain polymer in good solvents. The labeled sphere is to model the instantaneous size of a bound flexible chain segment or a vibrating chromophore on a polymer chain. We assume the vibration of the sphere is governed by a harmoniclike potential, and the sphere size stays positive. We first address the issue regarding the confinement effect induced by a flexible chain. To rationalize the simulation results, we carry out a detailed analysis for a simple case containing a dimer grafted onto a fluctuating sphere. Using the sphere with a large size fluctuation, we find that the fluctuating sphere can be confined within the coiled polymer chain, and even trapped inside the grooves between neighboring monomers. The results imply the confinement effects may influence the properties of chromophores labeled on polymers or drugs bound to biopolymers. Moreover, in a separate study, we show the fluctuating sphere model can be used to fit a bound flexible chain segment, and provides a means to parameterize a polymer chain to a dumbbell, with possible applications in the dynamics of dilute polymer solutions.

  10. A flexible polymer chain in a critical solvent: Coil or globule?

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Kiselev, M. G.

    2015-02-01

    We study the behavior of a flexible polymer chain in the presence of a low-molecular weight solvent in the vicinity of a liquid-gas critical point within the framework of a self-consistent field theory. The total free energy of the dilute polymer solution is expressed as a function of the radius of gyration of the polymer and the average solvent number density within the gyration volume at the level of the mean-field approximation. Varying the strength of attraction between polymer and solvent we show that two qualitatively different regimes occur at the liquid-gas critical point. In case of weak polymer-solvent interactions the polymer chain is in a globular state. On the contrary, in case of strong polymer-solvent interactions the polymer chain attains an expanded conformation. We discuss the influence of the critical solvent density fluctuations on the polymer conformation. The reported effect could be used to excert control on the polymer conformation by changing the thermodynamic state of the solvent. It could also be helpful to estimate the solvent density within the gyration volume of the polymer for drug delivery and molecular imprinting applications.

  11. Conjugated polymers containing diketopyrrolopyrrole units in the main chain

    PubMed Central

    Rabindranath, A Raman; Zhang, Kai; Zhu, Yu

    2010-01-01

    Summary Research activities in the field of diketopyrrolopyrrole (DPP)-based polymers are reviewed. Synthetic pathways to monomers and polymers, and the characteristic properties of the polymers are described. Potential applications in the field of organic electronic materials such as light emitting diodes, organic solar cells and organic field effect transistors are discussed. PMID:20978619

  12. Effects of nanostructure geometry on polymer chain alignment and device performance in nanoimprinted polymer solar cell

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2013-03-01

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. This article demonstrates our recent studies on the nanostructure geometry effects on the nanoimprint induced poly(3 hexylthiophene-2,5-diyl) (P3HT) chain alignment and photovoltaic performance. Out-of-plane and in-plane grazing incident X-ray diffractions are employed to characterize the chain orientations in P3HT nanogratings with different widths and heights. It is found that nanoimprint procedure changes the initial edge-on alignment in non-imprinted P3HT thin film to a vertical orientation which favors the hole transport, with an organization height H≥ 170 nm and width in the range of 60 nm<= W< 210 nm. Samples with better aligned molecules lead to a larger crystallite sizes as well. Imprinted P3HT/[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) solar cells show an increase in power conversion efficiency (PCE) with the decrease of nanostructure width, and with the increase of height and junction area. Devices with the highest PCE are made by the fully aligned and highest P3HT nanostructures (width w= 60 nm, height h= 170 nm), allowing for the most efficient charge separation, transport and light absorption. We believe this work will contribute to the optimal geometry design of nanoimprinted polymer solar cells.

  13. Record high hole mobility in polymer semiconductors via side-chain engineering.

    PubMed

    Kang, Il; Yun, Hui-Jun; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi

    2013-10-01

    Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm(2)/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π-π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature. PMID:24053786

  14. Excluded-volume interaction induced stiffness of comb polymer with densely grafted side-chains

    NASA Astrophysics Data System (ADS)

    Qiu, Feng

    2014-03-01

    Excluded-volume interaction has been widely recognized to cause expansion of polymer chain at large length scale. However, its effect on chain conformations at small length scale has been studied to less extent. Here we consider a comb polymer with its backbone densely grafted by side-chains as a model system. The method analogue to solving the electrostatic persistence length problem for either rigid or flexible polyelectrolytes is employed. For comb polymers with rigid backbone near the rod limit, the excluded-volume interaction induced persistence length scales linearly with the volume of the side-chain. While for flexible backbone, the persistence length depends on the side-chain volume more weakly. Field theoretic method that is relevant to address this problem is also explored and discussed. Work supported by NSFC.

  15. Conformation of a flexible polymer in explicit solvent: Accurate solvation potentials for Lennard-Jones chains.

    PubMed

    Taylor, Mark P; Ye, Yuting; Adhikari, Shishir R

    2015-11-28

    The conformation of a polymer chain in solution is coupled to the local structure of the surrounding solvent and can undergo large changes in response to variations in solvent density and temperature. The many-body effects of solvent on the structure of an n-mer polymer chain can be formally mapped to an exact n-body solvation potential. Here, we use a pair decomposition of this n-body potential to construct a set of two-body potentials for a Lennard-Jones (LJ) polymer chain in explicit LJ solvent. The solvation potentials are built from numerically exact results for 5-mer chains in solvent combined with an approximate asymptotic expression for the solvation potential between sites that are distant along the chain backbone. These potentials map the many-body chain-in-solvent problem to a few-body single-chain problem and can be used to study a chain of arbitrary length, thereby dramatically reducing the computational complexity of the polymer chain-in-solvent problem. We have constructed solvation potentials at a large number of state points across the LJ solvent phase diagram including the vapor, liquid, and super-critical regions. We use these solvation potentials in single-chain Monte Carlo (MC) simulations with n ≤ 800 to determine the size, intramolecular structure, and scaling behavior of chains in solvent. To assess our results, we have carried out full chain-in-solvent MC simulations (with n ≤ 100) and find that our solvation potential approach is quantitatively accurate for a wide range of solvent conditions for these chain lengths. PMID:26627969

  16. Detailed simulation of the role of functionalized polymer chains on the structural, dynamic and mechanical properties of polymer nanocomposites.

    PubMed

    Liu, Jun; Shen, Jianxiang; Gao, Yangyang; Zhou, Huanhuan; Wu, Youping; Zhang, Liqun

    2014-11-28

    To systematically study the effect of functionalized chain groups on polymer nanocomposites, we perform our simulation work in the following two ways. In the case of dilute loading of nanoparticles (NPs) with different geometries (spherical, sheet-like, rod-like NPs), we adopt coarse-grained molecular dynamics simulation to study the structural, dynamic and mechanical properties of polymer nanocomposites influenced by the terminal groups of linear polymer chains. We observe that the terminal groups have more probability to be adsorbed onto the surface of NPs with decreasing temperature, chain molecular weight and increasing chain stiffness. For all NPs with different geometries, more terminal groups segregate into the surface of NPs with increase in the interaction energy εf-n between the terminal groups and the NPs. We also notice that the attractive interaction between the terminal groups and the sheet-like NPs induces the appearance of a gradient of translational dynamics of polymer chains, and the relaxation at the chain length scale is evidently different for various adsorbed layers, whereas the segmental relaxation only becomes slightly slower nearby the sheet-like NPs. For both pure and filled systems with spherical NPs, it is found that the stress-strain curves and bond orientations are significantly enhanced with increase in the interaction strength between the terminal groups as well as terminal groups and NPs. In the case of concentrated loading of NPs, we construct the atomistic models of C60, CNT and graphene to accurately account for the "many body effect." We explore the influence of the functionalization position along the chain backbone on the dispersion kinetics, realizing that the end-functionalization is more effective. The end-groups effect on the chain configuration, chain packing and graphene equilibrium dispersibility is examined. The translational and rotational (segmental and terminal relaxation) dynamics influenced by the interactions

  17. Prediction of Solution Properties of Flexible-Chain Polymers: A Computer Simulation Undergraduate Experiment

    ERIC Educational Resources Information Center

    de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez

    2008-01-01

    This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…

  18. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    NASA Technical Reports Server (NTRS)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  19. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  20. Novel biaxial nematic phases of side-chain liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akihiko

    2012-12-01

    We present a mean field theory to describe biaxial nematic phases of side-chain liquid crystalline polymers, in which rigid side-chains (mesogens) and rigid-backbone chains favor mutually perpendicular orientations. Taking into account both excluded volume and attractive interactions between rigid rods, novel biaxial nematic phases are theoretically predicted. We calculate uniaxial and biaxial orientational order parameters as a function of temperature and the length of backbone chains. We find a first-order biaxial-biaxial phase transition and a first (or second)-order uniaxial-biaxial one, depending on the length of mesogens and backbone chains.

  1. Computational polymer physics: Hard-sphere chain in solvent systems

    NASA Astrophysics Data System (ADS)

    Gautam, Avinash; Gavazzi, Daniel; Taylor, Mark

    2009-10-01

    In this work we present results for chain conformation in two simple chain-in-solvent systems constructed from hard-sphere monomers of diameter D. The first system consists of a flexible chain of fused hard spheres (i.e., bond length L=D) in a monomeric hard-sphere solvent. The second system consists of a flexible tangent hard-sphere chain (L=D) in a dimeric hard-sphere solvent with L=D. These systems are studied using Monte Carlo simulations which employ both single-site crankshaft and multi-site pivot moves to sample the configuration space of the chain. We report chain structure, in terms of site-site probability functions, as a function of solvent density. In all cases, increasing solvent density leads to an overall compression of the chain. At high solvent density the chain conformation is closely coupled to the local solvent structure and we speculate that incommensurate structures may lead to interesting conformational transitions.

  2. Stretching Response of Knotted and Unknotted Polymer Chains

    NASA Astrophysics Data System (ADS)

    Caraglio, Michele; Micheletti, Cristian; Orlandini, Enzo

    2015-10-01

    Recent theoretical and experimental advances have clarified the major effects of knotting on the properties of stretched chains. Yet, how knotted chains respond to weak mechanical stretching and how this behavior differs from the unknotted case are still open questions and we address them here by profiling the complete stretching response of chains of hundreds of monomers and different topology. We find that the ratio of the knotted and unknotted chain extensions varies nonmonotonically with the applied force. This surprising feature is shown to be a signature of the crossover between the well-known high-force stretching regime and the previously uncharacterized low-force one. The observed differences of knotted and unknotted chain response increases with knot complexity and are sufficiently marked that they could be harnessed in single-molecule contexts to infer the presence and complexity of physical knots in micron-long biomolecules.

  3. Topological coarse graining of polymer chains using wavelet-accelerated Monte Carlo. II. Self-avoiding chains.

    PubMed

    Ismail, Ahmed E; Stephanopoulos, George; Rutledge, Gregory C

    2005-06-15

    In the preceding paper [A. E. Ismail, G. C. Rutledge, and G. Stephanopoulos J. Chem. Phys. (in press)] we introduced wavelet-accelerated Monte Carlo (WAMC), a coarse-graining methodology based on the wavelet transform, as a method for sampling polymer chains. In the present paper, we extend our analysis to consider excluded-volume effects by studying self-avoiding chains. We provide evidence that the coarse-grained potentials developed using the WAMC method obey phenomenological scaling laws, and use simple physical arguments for freely jointed chains to motivate these laws. We show that coarse-grained self-avoiding random walks can reproduce results obtained from simulations of the original, more-detailed chains to a high degree of accuracy, in orders of magnitude less time. PMID:16008482

  4. Chain conformation near the substrate interface in nanoparticle stabilized polymer thin films

    NASA Astrophysics Data System (ADS)

    Barkley, Deborah; Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Yuan, Guangcui; Satija, Sushil; Zhang, Yugang; Gang, Oleg; Karim, Alamgir

    When nanoparticles (NPs) are added to polymer thin films, they often migrate to the film-substrate interface and form a ``diffused immobile interfacial layer'', which serves to screen the polymer-substrate interaction and suppress dewetting. The fundamental, but unsolved question is how the conformations of the polymer chains in the layer are affected by the NPs and how that impacts the enhancement of film stability. To address the question, we used dodecane thiol-functionalized gold NPs (2.4 nm diameter) and polystyrene (PS, Mw =30kDa). We found that the critical concentration of the Au NPs to induce complete dewetting suppression of 20 nm-thick PS/Au thin films on cleaned Si substrates is 5 wt% (wt of particle/wt of polymer). To investigate the interfacial structures at the polymer-solid interface, we rinsed the annealed PS/Au thin films with toluene and characterized the residual interfacial layers by using various x-ray and neutron scattering techniques. The results indicate that the conformation of the polymer chains closer to the substrate becomes less flattened with the addition of gold NPs, allowing chains at the substrate to entangle more effectively with free chains comprising the bulk film. The detailed mechanism will be discussed. T.K. acknowledges funding from NSF Grant (CMMI-1332499).

  5. The Effect of Acid-Base Interactions on Conformation of Adsorbed Polymer Chains

    NASA Astrophysics Data System (ADS)

    Dhopatkar, Nishad; Zhu, He; Dhinojwala, Ali

    Adsorption of polymer chains from solutions is of fundamental interest in polymer science. This absorption process is governed by the complex interplay between the solvent-polymer, polymer-substrate, and solvent-substrate interaction energies. In early 1970's, Fowkes and his coworkers have introduced the concept of acid base interactions in explaining why PMMA (basic) adsorption was extremely low on acidic substrates from acidic solvents. The acidic solvent molecules compete with the surface for binding with the basic polymer sites and this reduces the adsorption of PMMA. Here, by using interface-selective sum frequency generation spectroscopy (SFG) and attenuated-total-reflectance (ATR)-FTIR spectroscopy we directly measure whether the solvent or polymer molecules interact with the substrate in acidic, basic, and neutral solvents. Surprisingly, we find that the surface acidic site (hydroxyl) groups are still covered with PMMA chains in acidic solvent. The PMMA chains in acidic solvent adsorb with much higher fraction of chains as trains in comparison to loops and tails. Such differences in the static and dynamic conformations have consequences in understanding the exchange kinetics, colloidal stabilization, chromatographic separations, adhesion and friction, and stabilization of nanocomposites.

  6. Parallelized event chain algorithm for dense hard sphere and polymer systems

    SciTech Connect

    Kampmann, Tobias A. Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-15

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers.

  7. Scattering function of semiflexible polymer chains under good solvent conditions.

    PubMed

    Hsu, Hsiao-Ping; Paul, Wolfgang; Binder, Kurt

    2012-11-01

    Using the pruned-enriched Rosenbluth Monte Carlo algorithm, the scattering functions of semiflexible macromolecules in dilute solution under good solvent conditions are estimated both in d = 2 and d = 3 dimensions, considering also the effect of stretching forces. Using self-avoiding walks of up to N = 25,600 steps on the square and simple cubic lattices, variable chain stiffness is modeled by introducing an energy penalty ε(b) for chain bending; varying q(b) = exp (-ε(b)∕k(B)T) from q(b) = 1 (completely flexible chains) to q(b) = 0.005, the persistence length can be varied over two orders of magnitude. For unstretched semiflexible chains, we test the applicability of the Kratky-Porod worm-like chain model to describe the scattering function and discuss methods for extracting persistence length estimates from scattering. While in d = 2 the direct crossover from rod-like chains to self-avoiding walks invalidates the Kratky-Porod description, it holds in d = 3 for stiff chains if the number of Kuhn segments n(K) does not exceed a limiting value n(K)(*) (which depends on the persistence length). For stretched chains, the Pincus blob size enters as a further characteristic length scale. The anisotropy of the scattering is well described by the modified Debye function, if the actual observed chain extension (end-to-end distance in the direction of the force) as well as the corresponding longitudinal and transverse linear dimensions - (2), are used. PMID:23145745

  8. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  9. Simple model for chain packing and crystallization of soft colloidal polymers

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Karayiannis, Nikos Ch.

    2013-07-01

    We study a simple bead-spring polymer model exhibiting competing crystallization and glass transitions. Constant-pressure molecular dynamics simulations are employed to study phase behavior and morphological order. For adequately slow quench rates, chain systems exhibit a first-order phase transition (crystallization) below a critical temperature T=Tcryst. We observe the formation of close-packed crystallites of FCC and/or HCP order, separated by domain walls, twin defects, and amorphous regions. Such crystal structures closely resemble the corresponding ordered morphologies of athermal polymer packings: fully flexible chains retain random-walk-like configurations in the crystalline state and do not form lamellae, while semiflexible chains do form lamellae. The model presented here is well suited to the modeling of granular and colloidal polymers, in particular for elucidating the factors that dictate the formation of specific ordered morphologies.

  10. High-order sampling schemes for path integrals and Gaussian chain simulations of polymers

    SciTech Connect

    Müser, Martin H.; Müller, Marcus

    2015-05-07

    In this work, we demonstrate that path-integral schemes, derived in the context of many-body quantum systems, benefit the simulation of Gaussian chains representing polymers. Specifically, we show how to decrease discretization corrections with little extra computation from the usual O(1/P{sup 2}) to O(1/P{sup 4}), where P is the number of beads representing the chains. As a consequence, high-order integrators necessitate much smaller P than those commonly used. Particular emphasis is placed on the questions of how to maintain this rate of convergence for open polymers and for polymers confined by a hard wall as well as how to ensure efficient sampling. The advantages of the high-order sampling schemes are illustrated by studying the surface tension of a polymer melt and the interface tension in a binary homopolymers blend.

  11. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    NASA Astrophysics Data System (ADS)

    Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.

  12. Chemically Realistic Tetrahedral Lattice Models for Polymer Chains: Application to Polyethylene Oxide.

    PubMed

    Dietschreit, Johannes C B; Diestler, Dennis J; Knapp, Ernst W

    2016-05-10

    To speed up the generation of an ensemble of poly(ethylene oxide) (PEO) polymer chains in solution, a tetrahedral lattice model possessing the appropriate bond angles is used. The distance between noncovalently bonded atoms is maintained at realistic values by generating chains with an enhanced degree of self-avoidance by a very efficient Monte Carlo (MC) algorithm. Potential energy parameters characterizing this lattice model are adjusted so as to mimic realistic PEO polymer chains in water simulated by molecular dynamics (MD), which serves as a benchmark. The MD data show that PEO chains have a fractal dimension of about two, in contrast to self-avoiding walk lattice models, which exhibit the fractal dimension of 1.7. The potential energy accounts for a mild hydrophobic effect (HYEF) of PEO and for a proper setting of the distribution between trans and gauche conformers. The potential energy parameters are determined by matching the Flory radius, the radius of gyration, and the fraction of trans torsion angles in the chain. A gratifying result is the excellent agreement of the pair distribution function and the angular correlation for the lattice model with the benchmark distribution. The lattice model allows for the precise computation of the torsional entropy of the chain. The generation of polymer conformations of the adjusted lattice model is at least 2 orders of magnitude more efficient than MD simulations of the PEO chain in explicit water. This method of generating chain conformations on a tetrahedral lattice can also be applied to other types of polymers with appropriate adjustment of the potential energy function. The efficient MC algorithm for generating chain conformations on a tetrahedral lattice is available for download at https://github.com/Roulattice/Roulattice . PMID:27045228

  13. Interplay between chain stiffness and excluded volume of semiflexible polymers confined in nanochannels

    NASA Astrophysics Data System (ADS)

    Muralidhar, Abhiram; Tree, Douglas R.; Wang, Yanwei; Dorfman, Kevin D.

    2014-02-01

    The properties of channel-confined semiflexible polymers are determined by a complicated interplay of chain stiffness and excluded volume effects. Using Pruned-Enriched Rosenbluth Method (PERM) simulations, we study the equilibrium properties of channel-confined polymers by systematically controlling chain stiffness and excluded volume. Our calculations of chain extension and confinement free energy for freely jointed chains with and without excluded volume show excellent agreement with theoretical predictions. For ideal wormlike chains, the extension is seen to crossover from Odijk behavior in strong confinement to zero-stretching, bulk-like behavior in weak confinement. In contrast, for self-avoiding wormlike chains, we always observe that the linear scaling of the extension with the contour length is valid in the long-chain limit irrespective of the regime of confinement, owing to the coexistence of stiffness and excluded volume effects. We further propose that the long-chain limit for the extension corresponds to chain lengths wherein the projection of the end-to-end distance along the axis of the channel is nearly equal to the mean span parallel to the axis. For DNA in nanochannels, this limit was identified using PERM simulations out to molecular weights of more than 1 megabase pairs; the molecular weight of λ-DNA is found to exhibit nearly asymptotic fractional extension for channels sizes used commonly in experiments.

  14. Disorder, pre-stress and non-affinity in polymer 8-chain models

    NASA Astrophysics Data System (ADS)

    Cioroianu, Adrian R.; Spiesz, Ewa M.; Storm, Cornelis

    2016-04-01

    To assess the role of single-chain elasticity, non-affine strain fields and pre-stressed reference states we present and discuss the results of numerical and analytical analyses of a modified 8-chain Arruda-Boyce model for cross-linked polymer networks. This class of models has proved highly successful in modeling the finite-strain response of flexible rubbers. We extend it to include the effects of spatial disorder and the associated non-affinity, and use it to assess the validity of replacing the constituent chain's nonlinear elastic response with equivalent linear, Hookean springs. Surprisingly, we find that even in the regime of linear response, the full polymer model gives very different results from its linearized counterpart, even though none of the chains are stretched beyond their linear regime. We demonstrate that this effect is due to the fact that the polymer models are under considerable pre-stress in their ground state. We show that pre-stress strongly suppresses non-affinity in these unit cell models, resulting in a marked stiffening of the bulk response. Polymer networks with some degree of flexibility are thus intrinsically prestressed, and one effect of such prestresses is to reduce non-affine deformations. Combined, these findings may help explain why fully affine mechanical models, in many cases, predict the bulk mechanical response of disordered polymer networks so well.

  15. Naphthalene Tetracarboxydiimide-Based n-Type Polymers with Removable Solubility via Thermally Cleavable Side Chains.

    PubMed

    Hillebrandt, Sabina; Adermann, Torben; Alt, Milan; Schinke, Janusz; Glaser, Tobias; Mankel, Eric; Hernandez-Sosa, Gerardo; Jaegermann, Wolfram; Lemmer, Uli; Pucci, Annemarie; Kowalsky, Wolfgang; Müllen, Klaus; Lovrincic, Robert; Hamburger, Manuel

    2016-02-01

    Multilayer solution-processed devices in organic electronics show the tendency of intermixing of subsequently deposited layers. Here, we synthesize naphthalene tetracarboxydiimide (NDI)-based n-type semiconducting polymers with thermally cleavable side chains which upon removal render the polymer insoluble. Infrared and photoelectron spectroscopy were performed to investigate the pyrolysis process. Characterization of organic field-effect transistors provides insight into charge transport. After the pyrolysis homogeneous films could be produced which are insoluble in the primary solvent. By varying curing temperature and time we show that these process parameters govern the amount of side chains in the film and influence the device performance. PMID:26829619

  16. Equilibrium and shear-induced conformations of a side-chain liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Noirez, L.; Vigoureux, P.

    2000-11-01

    These studies delineate the conformations adopted by a side-chain liquid-crystalline polymer subjected to a steady-state shear flow as well as the corresponding me so pha se director orientations. Two distinct director orientations are identified in the nematic phase, giving evidence of a shear-induced transition from a flow-aligning to a non flow-aligning behavior. This transition coincides, at rest, with a subtle change from prolate to oblate polymer main-chain conformation. In the smectic phase, the layers form multilayer cylinders oriented along the velocity axis.

  17. Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites.

    PubMed

    Iijima, Motoyuki; Kobayakawa, Murino; Yamazaki, Miwa; Ohta, Yasuhiro; Kamiya, Hidehiro

    2009-11-18

    An anionic surfactant comprising a hydrophilic poly(ethylene glycol) (PEG) chain, hydrophobic alkyl chain, and polymerizable vinyl group was synthesized as a capping agent of nanoparticles. TiO(2) nanoparticles modified by this surfactant were completely dispersible in various organic solvents with a wide range of polarities, such as nitriles, alcohols, ketones, and acetates. Furthermore, these particles were found to be dispersible in various polymers with different properties, such as thermosetting epoxy resins and radical polymerized poly(methylmethacrylate) (PMMA). A polymer composite of surface-modified TiO(2) nanoparticles in epoxy resins prepared by using the developed surfactant also possessed temperature-induced shape memory properties. PMID:19852463

  18. Pore translocation of polymer chains with physical knots

    NASA Astrophysics Data System (ADS)

    Suma, Antonio; Rosa, Angelo; Micheletti, Cristian

    The driven traslocation of knotted chains through narrow pores has important implications for single-molecule manipulation contexts. Its complex phenomenology is, however, still largely unexplored, both as a function of knot complexity and the magnitude of the driving, translocating force. We accordingly report on a systematic theoretical and computational investigation of both aspects. In particular we consider the case of flexible chains accommodating a large repertoire of knots that are driven through pores too narrow to allow for their passage. We show that the observed rich translocation phenomenology can be rationalised in a transparent mechanical framework that can further be used for predictive purposes.

  19. Single polymer chains in poor solvent: Using the bond fluctuation method with explicit solvent

    NASA Astrophysics Data System (ADS)

    Jentzsch, Christoph; Werner, Marco; Sommer, Jens-Uwe

    2013-03-01

    We use the bond fluctuation model with explicit solvent to study single polymer chains under poor solvent conditions. Static and dynamic properties of the bond fluctuation model with explicit solvent are compared with the implicit solvent model, and the Θ-temperatures are determined for both solvent models. We show that even in the very poor solvent regime, dynamics is not frozen for the explicit solvent model. We investigate some aspects of the structure of a single collapsed globule and show that rather large chain lengths are necessary to reach the scaling regime of a dense sphere. The force-extension curve of a single polymer chain under poor solvent conditions in the fixed end-to-end distance ensemble is analyzed. We find that the transition of the tadpole conformation to the stretched chain conformation is rather smooth because of fluctuation effects, which is in agreement with recent experimental results.

  20. Single polymer chains in poor solvent: using the bond fluctuation method with explicit solvent.

    PubMed

    Jentzsch, Christoph; Werner, Marco; Sommer, Jens-Uwe

    2013-03-01

    We use the bond fluctuation model with explicit solvent to study single polymer chains under poor solvent conditions. Static and dynamic properties of the bond fluctuation model with explicit solvent are compared with the implicit solvent model, and the Θ-temperatures are determined for both solvent models. We show that even in the very poor solvent regime, dynamics is not frozen for the explicit solvent model. We investigate some aspects of the structure of a single collapsed globule and show that rather large chain lengths are necessary to reach the scaling regime of a dense sphere. The force-extension curve of a single polymer chain under poor solvent conditions in the fixed end-to-end distance ensemble is analyzed. We find that the transition of the tadpole conformation to the stretched chain conformation is rather smooth because of fluctuation effects, which is in agreement with recent experimental results. PMID:23485321

  1. Recent advances in metathesis-derived polymers containing transition metals in the side chain.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Simionescu, Bogdan C; Demonceau, Albert; Fischer, Helmut

    2015-01-01

    This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  2. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    PubMed Central

    Demonceau, Albert; Fischer, Helmut

    2015-01-01

    Summary This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  3. The Frozen State in the Liquid Phase of Side-Chain Liquid-Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Mendil, H.; Noirez, L.; Baroni, P.; Grillo, I.

    2006-02-01

    Quenched isotropic melts of side-chain liquid-crystal polymers reveal surprisingly an anisotropic polymer conformation. This small-angle neutron-scattering (SANS) result is consistent with the identification of a macroscopic, solidlike response in the isotropic phase. Both experiments (rheology and SANS) indicate that the polymer system appears frozen on millimeter length scales and at the time scales of the observation. This result implies that the flow behavior is not the terminal behavior and that cross-links or entanglements are not a necessary condition to provide elasticity in melts.

  4. Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis.

    PubMed

    Liu, Chenchen; Yamaguchi, Yoshinori; Sekine, Shinichi; Ni, Yi; Li, Zhenqing; Zhu, Xifang; Dou, Xiaoming

    2016-03-01

    Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment. PMID:26648455

  5. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Weir, Michael; Boothroyd, Stephen; Johnson, David; Thompson, Richard; Coleman, Karl; Clarke, Nigel

    Graphene and related two-dimensional materials are excellent candidates as filler materials in polymer nanocomposites due to their extraordinary physical properties and high aspect ratio. To explore the mechanism by which the filler affects the bulk properties of these unique systems, and to build understanding from the macromolecular level upwards, we use a combination of small-angle neutron scattering (SANS) and oscillatory rheology. Where a good dispersion is achieved in poly(methyl methacrylate)-graphene oxide (PMMA-GO) nanocomposites, we observe a reduction in the polymer radius of gyration with increasing GO concentration that is consistent with the predicted behavior of polymer melt chains at a solid interface. We use concepts from thin-film polymer physics to formulate a scaling relation for the reduction in entanglements caused by the GO interfaces. Using these scaling arguments, we utilize SANS results to directly estimate the changes to the elastic plateau modulus of the network of entangled polymer chains, and find a correlation with the measured bulk rheology. We present a direct link between interfacial confinement effects and the bulk polymer nanocomposite properties, whilst demonstrating a model system for measuring thin film polymer physics in the bulk.

  6. Reversible melting of extended-chain and folded-chain polymer crystals

    NASA Astrophysics Data System (ADS)

    Androsch, Rene; Wunderlich, Bernhard; Radusch, Hans-Joachim

    2005-03-01

    The reversibility of crystallization and melting of crystals of polytetrafluoroethylene (PTFE) and polyethylene (PE) of extended-chain and folded-chain morphology has been investigated by temperature-modulated differential scanning calorimetry (TMDSC). The total and average specific reversibility of folded-chain crystals is considerably larger than in the case of extended-chain crystals. This experimental observation can be attributed to a different number of points of possible decoupling between crystallized and amorphous sequences along individual, partially crystallized molecules within the globally semi-crystalline superstructure in extended-chain and folded-chain crystals. Due to incomplete melting of the macromolecules, the morphology of the folded-chain crystal allows molecular segments to reversibly melt and crystallize as a function of temperature. The extended-chain conformation, in turn, inhibits reversible melting due to the required molecular nucleation after complete melting of a single molecule. The experimental findings support both, the concepts of lateral-surface activity and molecular nucleation presented earlier.

  7. Correlation functions of main-chain polymer nematics constrained by tensorial and vectorial conservation laws.

    PubMed

    Svenšek, Daniel; Podgornik, Rudolf

    2015-09-21

    We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small. PMID:26395733

  8. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer

    SciTech Connect

    Hmadeh, Mohamad; Fang, Lei; Trabolsi, Ali; Elhabiri, Mourad; Albrecht-Gary, Anne-Marie; Stoddart, J. Fraser

    2010-01-01

    We report a variety of [c2]daisy chain molecules which undergo quantitative, efficient, and fully reversible molecular movements upon the addition of base/acid in organic solvents. Such externally triggered molecular movements can induce the contraction and extension of the [c2]daisy chain molecule as a whole. A linear polymer of such a bistable [c2]daisy chain exerts similar types of movements and can be looked upon as a candidate for the development of artificial muscles. The spectrophotometric investigations of both the monomeric and polymeric bistable [c2]daisy chains, as well as the corresponding model compounds, were performed in MeCN at room temperature, in order to obtain the thermodynamic parameters for these mechanically interlocked molecules. Based on their spectrophotometric and thermodynamic characteristics, kinetic analysis of the acid/base-induced contraction and extension of the [c2]daisy chain monomer and polymer were conducted by employing a stopped-flow technique. These kinetic data suggest that the rates of contraction and extension for these [c2]daisy chain molecules are determined by the thermodynamic stabilities of the corresponding kinetic intermediates. Faster switching rates for both the contraction and extension processes of the polymeric [c2]daisy chain were observed when compared to those of its monomeric counterpart. These kinetic and thermodynamic investigations on [c2]daisy chain-based muscle-like compounds provide important information for those seeking an understanding of the mechanisms of actuation in mechanically interlocked macromolecules.

  9. Correlation functions of main-chain polymer nematics constrained by tensorial and vectorial conservation laws

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Podgornik, Rudolf

    2015-09-01

    We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small.

  10. Chain entanglements and fracture energy in interfaces between immiscible polymers

    NASA Astrophysics Data System (ADS)

    Silvestri, Leonardo; Brown, Hugh R.; Carrà, Stefano; Carrà, Sergio

    2003-10-01

    It is a very well-known experimental fact that the toughness of interfaces obtained by joining pairs of immiscible glassy polymers is strongly correlated to the interfacial width. Several models have been proposed in the literature to estimate the fracture energy of these interfaces, but the agreement displayed with the experimental data cannot be considered satisfactory. In this paper a new model is proposed for polymers with molecular weight higher than the critical value for the onset of entanglements. The model is based on a precise and realistic calculation of the areal density of entangled strands across the interface, that is the crucial parameter determining the toughness of the glassy joints. In this paper a new fracture regime is also introduced, called "partial crazing," corresponding to a situation where, due to the fact that some of the load-bearing strands are broken during plastic deformation, the craze can start, but not fully develop. Model predictions are then compared with a series of literature fracture energy experimental data, showing excellent agreement.

  11. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates.

    PubMed

    Jiang, Jingxian; Zhang, Guangfa; Wang, Qiongyan; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2016-04-27

    Because the emission of perfluorooctanoic acid (PFOA) was completely prohibited in 2015, the widely used poly- and perfluoroalkyl substances with long perfluoroalkyl groups must be substituted by environmentally friendly alternatives. In this study, one kind of potential alternative (i.e., fluorinated polymers with short perfluorobutyl side chains) has been synthesized from the prepared monomers {i.e., (perfluorobutyl)ethyl acrylate (C4A), (perfluorobutyl)ethyl methacrylate (C4MA), 2-[[[[2-(perfluorobutyl)]sulfonyl]methyl]amino]ethyl acrylate (C4SA), and methacrylate (C4SMA)}, and the microstructure, super wetting performance, and applications of the synthesized fluorinated polymers were systematically investigated. The thermal and crystallization behaviors of the fluoropolymer films were characterized by differential scanning calorimetry and wide-angle X-ray diffraction analysis, respectively. Dynamic water-repellent models were constructed. The stable low surface energy and dynamic water- and oil-repellent properties of these synthesized fluorinated polymers with short perfluorobutyl side chains were attributed to the synergetic effect of amorphous fluorinated side chains in perfluoroalkyl acrylate and crystalline hydrocarbon pendant groups in stearyl acrylate. Outstanding water- and oil-repellent properties of fabrics and any other substrates could be achieved by a facile dip-coating treatment using a fluorinated copolymer dispersion. As a result, we believe that our prepared fluorinated copolymers are potential candidates to replace the fluoroalkylated polymers with long perfluorinated chains in nonstick and self-cleaning applications in our daily life. PMID:27052113

  12. Novel effects of chain flexibility, external force, and background stochasticity on polymer translocation

    NASA Astrophysics Data System (ADS)

    Sung, Wokyung

    2011-03-01

    The polymer translocation through membranes and the polymer crossing over activation barriers in general, are ubiquitous in cell biology and biotechnological applications. Because they are interconnected flexible systems, polymers in translocation incur entropic barriers but can thermally surmount them with unusual sensitivity to background biases. In the presence of non-equilibrium noises characteristic of living environments, the translocation can speed up much when resonant activation occurs. As a related issue, I will also discuss the problem of polymer surmounting a potential barrier, where the chain flexibility enhances the crossing. Furthermore, when the chain flexibility leads to conformational changes, the crossing rate can be even more dramatically increased. This conformational flexibility and variability enhance the stochastic resonance, where the chain crossing dynamics at an optimal temperature and chain length is maximally coherent and resonant to a minute periodic force. Utilizing the self-organizing behaviors mentioned above, we may learn about bio-molecular machinery of living as well as clever means of manipulating it. Korea Research Foundation.

  13. Z-Group ketone chain transfer agents for RAFT polymer nanoparticle modification via hydrazone conjugation

    PubMed Central

    Bandyopadhyay, Saibal; Xia, Xin; Maiseiyeu, Andrei; Mihai, Georgeta; Rajagopalan, Sanjay

    2012-01-01

    A ketal-containing trithiocarbonyl compound has been synthesized and characterized as a chain transfer agent (CTA) in Reversible Addition Fragmentation Transfer (RAFT) polymerization. The ketal functionality does not interfere with RAFT polymerization of acrylate monomers, which proceeds as previously reported to yield macro-CTA polymers and block co-polymers. Post-polymerization ketal cleavage revealed ketone functionality at the polar terminus of an amphiphilic block co-polymer. Hydrazone-formation was facile in both organic solution as well as in aqueous buffer where polymer nanoparticle assemblies were formed, indicating a conjugation/end-functionalization yield of 40–50%. Conjugation was verified with fluorescein, biotin and Gd-DOTA derivatives, and though the trithiocarbonate linkage is hydrolytically labile, we observed stable conjugation for several days at pH 7.4. and 37°C. As expected, streptavidin binding to biotinylated polymer micelles was observed, and size-change based relaxivity increases were observed when Gd-DOTA hydrazide was conjugated to polymer micelles. Cell-uptake of fluorescently labeled polymer micelles was also readily tracked by FACS and fluorescence microscopy. These polymer derivatives demonstrate a range of potential theranostic/biotechnological applications for this conveniently accessible keto-CTA, which include ligand-based nanoparticle targeting and fluorescent/MR nanoparticle contrast agents. PMID:23148126

  14. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  15. The effect of chain rigidity on the interfacial layer thickness and dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.

    There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.

  16. First steps toward the construction of a hyperphase diagram that covers different classes of short polymer chains

    NASA Astrophysics Data System (ADS)

    Sabeur, Sid

    2014-06-01

    We present the results of a multicanonical Monte Carlo study of flexible and wormlike polymer chains, where we investigate how the polymer structures observed during the simulations, mainly coil, liquid, and crystalline structures, can help to construct a hyperphase diagram that covers different polymer classes according to their thermodynamic behavior.

  17. A Microscopic Model for Diffusion of a Polymer Chain in the Entangled Regime

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Erzan, Ayþe; Pekcan, Önder

    1997-01-01

    In the entangled regime the reptation concept [1,2] is the most successful in describing the dynamical behavior of a single chain. Using scaling concepts some quantities such as translational diffussion coefficient for the polymer center of mass Dtr, and renewal time {t} [3] have been calculated in the reptation model. This model is used for representing the low-frequency motions of a polymer molecule in a fluid of entangled chains, neglecting rapid relaxation processes that are attributed to local conformal transitions of backbone. Helfand and collabrators have studied the kinetics of conformational transitions in chain molecules, and they find that single-bond rotations followed by the compensating rearrangement of neigboring units are predominantly responsible for local motions [4]. Such models have also been considered by Erman and co-workers [5]. The purpose of this study to understand reptation at a microscopic level. We consedir rapid relaxation processes, that are singlet- or double -bond rotations; motion along the contour of the chain is due to displacments caused by rearangements of the neighboring units. We recover the usual scaling behavior of the diffusion coefficients and relaxation times with the chain mass. Moreover, the effective activation energy that is found from the local jump model for translational motion of the chain center of mass compares favorably with experiment and is independent of the molecular weight for large enough chains [6]. We are also able to account for the apparent temperature of this "activation energy".

  18. Impact of systematic chain architecture changes on the glass transition and modulus of thin polymer films

    NASA Astrophysics Data System (ADS)

    Vogt, Bryan; Torres, Jessica; Stafford, Christopher; Register, Richard; Uhrig, David

    2012-02-01

    We will discuss two systems that significantly impact the thin film behavior with minor changes in chemistry and chain architecture. First, two polymers based on 5-(2-phenylethylnorbornene) are examined. Depending on the polymerization route chosen, the resulting polymer backbone is comprised of either bicyclic (norbornyl) units, which leads to a relatively rigid polymer with a high bulk Tg, or monocyclic (cyclopentyl) units, which leads to a more flexible structure with a lower bulk Tg. The modulus and Tg of the rigid bicyclic polymer is thickness independent down to <10 nm, whereas the modulus of the more flexible monocyclic polymer decreases with decreasing thickness. By hydrogenation of the pendant phenyl ring to the cyclohexyl counterpart, we illustrate that minor changes in the relative flexibility of the side chain do not impact the observed thin film behavior. Second, a series of polystyrene with controlled branching including linear, comb, 6-arm star and centipede. Based upon the molecular mass of the arms, the comb polymer has a significantly larger persistence length and interestingly exhibits only a modest decrease in Tg (9 K) at 5 nm, while the moduli is thickness independent.

  19. Entangled polymer chain melts: orientation and deformation dependent tube confinement and interchain entanglement elasticity

    SciTech Connect

    Sussman, Daniel; Schweizer, Kenneth

    2013-01-01

    The phenomenological reptation-tube model is based on a single chain perspective and was originally proposed to explain the remarkable viscoelastic properties of dense entangled polymer liquids. However, simulations over the last two decades have revealed a fundamental tension in the model: it assumes that bonded, single-chain backbone stresses are the sole polymer contribution to the slowly relaxing component of stress storage and elasticity, but mounting evidence suggests that at the local level of forces it is interchain contributions that dominate, as in simple liquids. Here we show that based on a chain model constructed at the level of self-consistently determined primitive paths, an explicit force-level treatment of the correlated intermolecular contributions to stress that arise from chain uncrossability can essentially quantitatively predict the entanglement plateau modulus associated with the soft rubbery response of polymer liquids. Analogies to transient localization and elasticity in glass-forming liquids are identified. Predictions for the effect of macroscopic deformation and anisotropic orientational order on the tube diameter are also made. Based on the interchain stress perspective the theory reproduces some aspects of the rheological response to shear and extensional deformations associated with the single chain tube model.

  20. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    PubMed Central

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  1. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  2. Compliant random fields in gels formed from side-chain liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul; Ye, Fangfu; Lu, Bing; Xing, Xiangjun

    2013-03-01

    Localized polymer-chain backbones in gels formed from side-chain liquid crystalline polymers serve to create random fields that induce local orientational order of the nematogenic pendants of the side chains. These random fields differ, however, from conventional ones, in that they are compliant, and thus themselves undergo thermal fluctuations. We develop a free energy that describes local nematic ordering in presence of such compliant random fields. In particular, we show that, as a result of this compliance, the free energy has a qualitatively new structure, unattainable via truly static random fields. We discuss the physical implications this free energy, focusing on the consequences of the compliant nature of the random fields.

  3. Sensing Polymer Chain Dynamics through Ring Topology: A Neutron Spin Echo Study.

    PubMed

    Gooßen, Sebastian; Krutyeva, Margarita; Sharp, Melissa; Feoktystov, Artem; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Richter, Dieter

    2015-10-01

    Using neutron spin echo spectroscopy, we show that the segmental dynamics of polymer rings immersed in linear chains is completely controlled by the host. This transforms rings into ideal probes for studying the entanglement dynamics of the embedding matrix. As a consequence of the unique ring topology, in long chain matrices the entanglement spacing is directly revealed, unaffected by local reptation of the host molecules beyond this distance. In shorter entangled matrices, where in the time frame of the experiment secondary effects such as contour length fluctuations or constraint release could play a role, the ring motion reveals that the contour length fluctuation is weaker than assumed in state-of-the-art rheology and that the constraint release is negligible. We expect that rings, as topological probes, will also grant direct access to molecular aspects of polymer motion which have been inaccessible until now within chains adhering to more complex architectures. PMID:26551826

  4. Thermochromism of a poly(phenylene vinylene): untangling the roles of polymer aggregate and chain conformation.

    PubMed

    Wang, Chun-Chih; Gao, Yuan; Shreve, Andrew P; Zhong, Chang; Wang, Leeyih; Mudalige, Kumara; Wang, Hsing-Lin; Cotlet, Mircea

    2009-12-17

    We report reversible thermochromism of a conjugated polymer, poly{2,5-bis[3-(N,N-diethylamino)-1-oxapropyl]-1,4-phenylenevinylene} (DAO-PPV), in diluted solutions of toluene and 1,2-dichlorobenzene. By means of temperature- and solvent-dependent steady-state spectroscopy, picosecond time-resolved photoluminescence spectroscopy, and dynamic light scattering, we provide new insights into the role of polymer aggregates in defining the thermochromic behavior of PPVs. We find DAO-PPV to exhibit a low temperature state with vibronically structured red visible absorption and emission spectra. Structurally, this low temperature state is a densely packed and disordered polymer aggregate, which contains a fraction of well-ordered, packed polymer chains. These ordered regions serve as low energy trap sites for the more disordered regions in the aggregate, thus regulating the final emission of the aggregate and imposing a vibronically resolved emission spectrum, which is usually associated with emission from one or a few chromophores. The high temperature state of DAO-PPV is a loose aggregate, with structureless absorption and emission spectra in the green visible range. Structurally, the loose aggregate is a well-solvated aggregate retaining the physical dimension of the dense aggregate but for which interchain interactions are diminished with the increase of temperature. As a result, the spectroscopic behavior of the loose aggregate is very similar if not identical to that of the single polymer chain. Increased solubility untangles polymer aggregates into single, dispersed, polymer chains, as we demonstrate here for DAO-PPV in 1,2-dichlorobenzene and at high temperature. PMID:19928846

  5. Dependence of the viscosity on the chain end dynamics in polymer melts

    NASA Astrophysics Data System (ADS)

    Paeßens, Matthias

    2003-06-01

    We compare the Rubinstein-Duke model for reptation to a model where the boundary dynamics are modified by calculating the viscosity of polymer melts. The question is investigated whether the viscosity is determined by details of the dynamics of the polymer ends or by the stretching of the polymer. Toward this end, the dependence of the viscosity on the particle density of the lattice gas models which can be identified by the stretching is determined. We show that the influence of the stretching of the polymer on the absolute value of the viscosity in the scaling limit of very long chains is much bigger than the influence of the boundary dynamics, whereas the corrections of the scaling of the viscosity depends significantly on the details of the boundary dynamics.

  6. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2015-06-01

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ˜0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  7. Critical Behavior of Two Interacting Linear Polymer Chains in a Good Solvent

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, Yashwant

    1997-12-01

    A model of two interacting (chemically different) linear polymer chains is solved exactly using the real-space renormalization group transformation on a family of Sierpinski gasket type fractals and on a truncated 4-simplex lattice. The members of the family of the Sierpinski gasket-type fractals are characterized by an integer scale factor b which runs from 2 to ∞. The Hausdorff dimension d F of these fractals tends to 2 from below as b → ∞. We calculate the contact exponent y for the transition from the State of segregation to a State in which the two chains are entangled for b = 2-5. Using arguments based on the finite-size scaling theory, we show that for b→∞, y = 2 - v(b) d F, where v is the end-toend distance exponent of a chain. For a truncated 4-simplex lattice it is shown that the system of two chains either remains in a State in which these chains are intermingled in such a way that they cannot be told apart, in the sense that the chemical difference between the polymer chains completely drop out of the thermodynamics of the system, or in a State in which they are either zipped or entangled. We show the region of existence of these different phases separated by tricritical lines. The value of the contact exponent y is calculated at the tricritical points.

  8. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    SciTech Connect

    Dorenbos, G.

    2015-06-14

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  9. Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers

    NASA Astrophysics Data System (ADS)

    Yamada, Toshiki; Kaji, Takahiro; Aoki, Isao; Yamada, Chiyumi; Mizuno, Maya; Saito, Shingo; Tominari, Yukihiro; Tanaka, Shukichi; Otomo, Akira

    2016-03-01

    We investigated the dielectric properties of side-chain electro-optic polymers in a broad THz frequency region (90 GHz to 7 THz). For this investigation, we used terahertz time domain spectroscopy and the absorption coefficient in a broader frequency region of up to 20 THz that was obtained by far-infrared spectroscopy. The polymers studied were a new methacrylate polymer with a high-hyperpolarizability chromophore as the sidechain, a side-chain copolymer Disperse Red 1 polymethylmethacrylate, and pure polymethylmethacrylate. The dielectric properties in the low THz frequency region (∼0.1 THz) provide us with important information about the intrinsic refractive index for ultrahigh-speed electro-optic modulation (∼100 GHz), as well as versatile information such as the absorption coefficient and dielectric loss. The THz and far-infrared spectroscopic data in the wide frequency region provide us with the fundamental data for applications of side-chain electro-optic polymers within THz generation and detection.

  10. Communication: Role of short chain branching in polymer structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Jun Mo; Baig, Chunggi

    2016-02-01

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions.

  11. Communication: Role of short chain branching in polymer structure and dynamics.

    PubMed

    Kim, Jun Mo; Baig, Chunggi

    2016-02-28

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions. PMID:26931673

  12. Ordering of anisotropic polarizable polymer chains on the full many-body level.

    PubMed

    Dean, David S; Podgornik, Rudolf

    2012-04-21

    We study the effect of dielectric anisotropy of polymers on their equilibrium ordering within mean-field theory, but with a formalism that takes into account the full n-body nature of van der Waals (vdW) forces. Dielectric anisotropy within polymers is to be expected as the electronic properties of the polymer will typically be different along the polymer than across its cross section. It is therefore physically intuitive that larger charge fluctuations can be induced along the chain than perpendicular to it. We show that this dielectric anisotropy leads to n-body interactions which can induce an isotropic-nematic transition. The two body and three body components of the full vdW interaction are extracted and it is shown how the two body term behaves like the phenomenological self-aligning-pairwise nematic interaction. At the three body interaction level we see that the nematic phase that is energetically favorable is discotic, however, on the full n-body interaction level we find that the normal axial nematic phase is always the stable ordered phase. The n-body nature of our approach also shows that the key parameter driving the nematic-isotropic transition is the bare persistence length of the polymer chain. PMID:22519348

  13. Inorganic polymers: morphogenic inorganic biopolymers for rapid prototyping chain.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Shen, Zhijian; Feng, Qingling; Wang, Xiaohong

    2013-01-01

    In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, as well as a post-processing, i.e., surface modification/functionalization to enhance the biocompatibility of the scaffold or to bind some bioactive component. A solution might be provided by the introduction of novel inorganic biopolymers, biosilica and polyphosphate, which resist harsh conditions applied in the RP chain and are morphogenetically active and do not need supplementation by growth factors/cytokines to stimulate the growth and the differentiation of bone-forming cells. PMID:24420716

  14. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-01

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  15. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory.

    PubMed

    Xu, Wen-Sheng; Freed, Karl F

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems. PMID:26178121

  16. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  17. Oligomer-to-polymer transition in short ethylene glycol chains connected to mobile hydrophobic anchors.

    PubMed

    Tanaka, Motomu; Rehfeldt, Florian; Schneider, Matthias F; Gege, Christian; Schmidt, Richard R; Funari, Sérgio S

    2005-01-01

    We studied the structure of short ethylene glycol (EG) chains with N repeating units (EGN, N = 3, 6, 9, 12, and 15) connected to hydrophobic dihexadecyl chains by means of a combination of differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS/WAXS). These synthetic amphiphiles dispersed in water form planar lamellar stacks and hexagonal cylinders confining the EG chains to restricted geometries. Owing to the self-assembly of the anchoring points, the lateral density of EG chains in planar lamella can be quantitatively controlled. Furthermore, the chain-melting phase transition of the anchors enables us to "switch" the intermolecular distance reversibly. SAXS/WAXS results suggest that the shorter EG chains (N = 3, 6, and 9) assume a helical conformation in stacks of planar lamella. When the EG chains are further elongated (N = 12 and 15), the lamellar periodicities cannot be explained by a linear extrapolation of shorter oligomers, but can be interpreted well as polymer brushes following the scaling theorem. Such rich phase behaviors of EGN molecules can be used as a simple model of oligo/poly-saccharide chains on cell surfaces, which act not only as flexible repellers between neighboring cells but also as stable spacers for functional ligands. PMID:15688653

  18. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation

    PubMed Central

    2015-01-01

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene-b-ethylene oxide) or pure poly(butadiene-b-ethylene oxide-d4) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air–water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies. PMID:25642383

  19. Effect of chain stiffness on structural and thermodynamic properties of polymer melts

    NASA Astrophysics Data System (ADS)

    Luettmer-Strathmann, Jutta

    2008-03-01

    Static and dynamic properties of polymers are affected by the stiffness of the chains. In this work, we investigate structural and thermodynamic properties of a lattice model for semiflexible polymer chains. The model is an extension of Shaffer's bond- fluctuation model [1] and includes attractive interactions between monomers and an adjustable bending penalty that determines the Kuhn segment length. For isolated chains, a competition between monomer-monomer interactions and bending penalties determines the chain conformations at low temperatures. For dense melts, packing effects play an important role in the structure and thermodynamics of the polymeric liquid. In order to investigate static properties as a function of temperature and chain stiffness, we perform Wang-Landau type simulations and construct densities of states over the two- dimensional state space of monomer-monomer and bending contributions to the internal energy. In addition, we present first results from an algorithm for equation-of-state effects in lattice models. [1] J. S. Shaffer, J. Chem. Phys. 101, 4205 (1994).

  20. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    NASA Astrophysics Data System (ADS)

    Moreno, Nicolas; Nunes, Suzana P.; Calo, Victor M.

    2015-11-01

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e.,  ≥ 200 beads per chain) with a significant reduction in the number of particles required (i.e.,  ≥ 20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  1. Effect of chain stiffness on interfacial slip in nanoscale polymer films

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2013-11-01

    The results obtained from molecular dynamics simulations of the friction at an interface between polymer melts and weakly attractive crystalline surfaces are reported. We consider a coarse-grained bead-spring model of linear chains with adjustable intrinsic stiffness. The structure and relaxation dynamics of polymer chains near interfaces are quantified by the radius of gyration and decay of the time autocorrelation function of the first normal mode. We found that the friction coefficient at small slip velocities exhibits a distinct maximum which appears due to shear-induced alignment of semiflexible chain segments in contact with solid walls. At large slip velocities, the friction coefficient is independent of the chain stiffness. The data for the friction coefficient and shear viscosity are used to elucidate main trends in the nonlinear shear rate dependence of the slip length. The influence of chain stiffness on the relationship between the friction coefficient and the structure factor in the first fluid layer is discussed. Financial support from the National Science Foundation (CBET-1033662) is gratefully acknowledged.

  2. Interaction of Nano-Sized Materials With Polymer Chains in Polymer-Nanocomposite Thin Films-An AFM Perspective

    SciTech Connect

    Verma, Gaurav; Kaushik, Anupama; Ghosh, Anup K.

    2011-12-12

    Nanocomposite thin films were prepared with polyurethane as a matrix and organically modified clay as a filler. The interfacial interaction between the exfoliated clay nanoplatelets and the polymeric chains has been investigated by using Atomic Force Microscopy (AFM). The nanoclay platelets show a preferential association with the hard domains of polyurethane matrix on the surface of the thin films. The pendant hydroxyl group on the nanoplatelets attract the isocyanate of the polyisocyanate and a urethane group is formed. This leads to the 'clouding' and 'entwining' of the nanoplatelets by the hard segmental chains. This is the first visual evidence of nanomaterial filler and polymer matrix interaction and it could open up a spectrum of novel property achievements in nanocomposite thin films. Also the understanding of this interaction can lead to more controlled architecture of nanocomposites.

  3. Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites.

    PubMed

    Bouty, Adrien; Petitjean, Laurent; Chatard, Julien; Matmour, Rachid; Degrandcourt, Christophe; Schweins, Ralf; Meneau, Florian; Kwasńiewski, Paweł; Boué, François; Couty, Marc; Jestin, Jacques

    2016-04-12

    The question of the influence of nanoparticles (NPs) on chain dimensions in polymer nanocomposites (PNCs) has been treated mainly through the fundamental way using theoretical or simulation tools and experiments on well-defined model PNCs. Here we present the first experimental study on the influence of NPs on the polymer chain conformation for PNCs designed to be as close as possible to industrial systems employed in the tire industry. PNCs are silica nanoparticles dispersed in a styrene-butadiene-rubber (SBR) matrix whose NP dispersion can be managed by NP loading with interfacial coatings or coupling additives usually employed in the manufacturing mixing process. We associated specific chain (d) labeling, and the so-called zero average contrast (ZAC) method, with SANS, in situ SANS and SAXS/TEM experiments to extract the polymer chain scattering signal at rest for non-cross linked and under stretching for cross-linked PNCs. NP loading, individual clusters or connected networks, as well as the influence of the type, the quantity of interfacial agent and the influence of the elongation rate have been evaluated on the chain conformation and on its related deformation. We clearly distinguish the situations where the silica is perfectly matched from those with unperfected matching by direct comparison of SANS and SAXS structure factors. Whatever the silica matching situation, the additive type and quantity and the filler content, there is no significant change in the polymer dimension for NP loading up to 15% v/v within a range of 5%. One can see an extra scattering contribution at low Q, as often encountered, enhanced for non-perfect silica matching but also visible for perfect filler matching. This contribution can be qualitatively attributed to specific h or d chain adsorption on the NP surface inside the NP cluster that modifies the average scattering neutron contrast of the silica cluster. Under elongation, NPs act as additional cross-linking junctions

  4. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers.

    PubMed

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J

    2013-10-01

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459

  5. Drift of a polymer chain in a porous medium —A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Avramova, K.; Milchev, A.

    2002-01-01

    We investigate the drift of an end-labeled telehelic polymer chain in a frozen disordered medium under the action of a constant force applied to the one end of the macromolecule by means of an off-lattice bead spring Monte Carlo model. The length of the polymers N is varied in the range 8chains can be interpreted as described by a scaling theory based on Pincus blobs. The variation of drag velocity with C in this interval of field intensities is qualitatively described by the law of Mackie-Meares. The threshold field intensity B_ab{c} itself is found to decrease linearly with C.

  6. Volume holographic recording in nanoparticle-polymer composites doped with multifunctional chain transfer agents

    NASA Astrophysics Data System (ADS)

    Guo, Jinxin; Fujii, Ryuta; Tomita, Yasuo

    2015-10-01

    We report on an experimental investigation of the properties of volume holographic recording in photopolymerizable nanoparticle-polymer composites (NPCs) doped with chain transferring multifunctional di- and tri-thiols as chain transfer agents. It is shown that the incorporation of the multifunctional thiols into NPCs more strongly influences on volume holographic recording than that doped with mono-thiol since more chemical reactions involve in the polymer network formation. It is found that, as similar to the case of mono-thiol doping, there exist optimum concentrations of di- and tri-thiols for maximizing the saturated refractive index modulation. It is also seen that recording sensitivity monotonically decreases with an increase in multifunctional thiol concentration due to the partial inhibition of the photopolymerization event by excessive thiols.

  7. Conformation and elasticity of a charged polymer chain bridging two nanoparticles

    SciTech Connect

    Nowicki, W. Nowicka, G.

    2013-12-07

    A complex composed of a charged flexible polymer chain irreversibly attached with its ends to surfaces of two nanoparticles was investigated using the Metropolis Monte Carlo method on a simple cubic lattice. The simulations were performed in the presence of explicit ions. The bridging chain and the nanoparticles bearing the same and the opposite sign charges were considered. Changes in the free energy of the complex upon its stretching or compression, together with the magnitude of the elastic force, were examined. The relative roles of energetic and entropic effects in determining the properties of the complex were identified. Also, the adsorption of charged monomers on the opposite-sign charged nanoparticles and its influence on the examined quantities was studied. Moreover, a simple semi-analytical approach to the thermodynamics of the polymer bridge was derived.

  8. Single-chain folding of polymers for catalytic systems in water.

    PubMed

    Terashima, Takaya; Mes, Tristan; De Greef, Tom F A; Gillissen, Martijn A J; Besenius, Pol; Palmans, Anja R A; Meijer, E W

    2011-04-01

    Enzymes are a source of inspiration for chemists attempting to create versatile synthetic catalysts. In order to arrive at a polymeric chain carrying catalytic units separated spatially, it is a prerequisite to fold these polymers in water into well-defined compartmentalized architectures thus creating a catalytic core. Herein, we report the synthesis, physical properties, and catalytic activity of a water-soluble segmented terpolymer in which a helical structure in the apolar core is created around a ruthenium-based catalyst. The supramolecular chirality of this catalytic system is the result of the self-assembly of benzene-1,3,5-tricarboxamide side chains, while the catalyst arises from the sequential ruthenium-catalyzed living radical polymerization of the different monomers followed by ligand exchange. The polymers exhibit a two-state folding process and show transfer hydrogenation in water. PMID:21405022

  9. Equilibrium flattening process of irreversibly adsorbed polymer chains on a solid

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Kawaguchi, Daisuke; Tanaka, Keiji

    We here report the equilibrium process of adsorbed polymer chains on a solid by sum frequency generation (SFG) spectroscopy. Polystyrene (PS,Mw = 290 kDa) thin films prepared onto quartz prisms (a weakly attractive system) were used as a model system. Spin-cast PS 50 nm films on quartz surface (QS) were annealed at 150 °C >Tg for up to 100 h and subsequently rinsed with chloroform to derive the ``flattened chains'' that lie flat onto the substrate surface. The SFG results for the ``matured'' flattened chains after annealing for 96 h revealed the strong interfacial orientation of the backbone chains and weak orientation of PS phenyl rings at the QS which is in contrast to a PS spin-cast film annealed at 150 °C for 1 h: the phenyl rings were strongly directed toward the QS, while the backbone chains were weakly orientated at the QS. We postulate that the increase in the number of solid/segment contacts of the backbone chains is the driving force for this equilibrium flattening process. We will also discuss the generality of this flattening process by using solvent-cast PS thin films where the chains are randomly oriented near the QS. Acknowledgement: NSF Grant No. CMMI-1332499.

  10. Impact of molecular orientation on thermal conduction in linear-chain polymer films

    SciTech Connect

    Kurabayashi, K.; Goodson, K.E.

    1999-07-01

    Polymer films are serving as passive regions in fast logic circuits and as active regions in organic optoelectronic devices, such as light-emitting diodes. Recent data illustrated the strong anisotropy in the thermal conductivity of polyimide films of thickness near one micrometer, with the in-plane value larger by a factor of approximately five. This manuscript extends previous theoretical work on heat conduction in stretched bulk polymers to model the conductivity anisotropy in linear-chain polymer films. Predictions are based on the standard deviation of the angle of molecular orientation with respect to the film in-plane direction, which can be investigated using birefringence data, and the expected conductivity anisotropy in a material with perfectly-aligned strands. The modeling and previous data indicate that the anisotropy factor could increase to a value larger than 10 for polyimide films much thinner than 1 micrometer.

  11. Inducing Planar Orientation in Side‐Chain Liquid‐Crystalline Polymer Systems via Interfacial Control

    PubMed Central

    2016-01-01

    Abstract For efficient photoresponses of liquid‐crystal (LC) azobenzene (Az) polymer systems, planar LC orientation of the Az mesogenic group is required because the light irradiation process usually occurs with normal incidence to the film surface. However, LC molecules with a rodlike shape tend to orient perpendicularly to the film surface according to the excluded volume effect theory. This review introduces new approaches for inducing planar orientation in side‐chain LC Az polymer films via interface and surface molecular designs. The planar orientation offers efficient in‐plane photoalignment and photoswitching to hierarchical LC architectures from molecular LC mesogens and LC phases to mesoscopic microphase‐separated structures. These approaches are expected to provide new concepts and possibilities in new LC polymer devices. PMID:26775770

  12. Inducing Planar Orientation in Side-Chain Liquid-Crystalline Polymer Systems via Interfacial Control.

    PubMed

    Nagano, Shusaku

    2016-02-01

    For efficient photoresponses of liquid-crystal (LC) azobenzene (Az) polymer systems, planar LC orientation of the Az mesogenic group is required because the light irradiation process usually occurs with normal incidence to the film surface. However, LC molecules with a rodlike shape tend to orient perpendicularly to the film surface according to the excluded volume effect theory. This review introduces new approaches for inducing planar orientation in side-chain LC Az polymer films via interface and surface molecular designs. The planar orientation offers efficient in-plane photoalignment and photoswitching to hierarchical LC architectures from molecular LC mesogens and LC phases to mesoscopic microphase-separated structures. These approaches are expected to provide new concepts and possibilities in new LC polymer devices. PMID:26775770

  13. Path Integral Approach to a Single Polymer Chain with Random Media

    NASA Astrophysics Data System (ADS)

    Kunsombat, Ch.; Sa-Yakanit, V.

    In this paper we consider the problem of a polymer chain in random media with finite correlation. We show that the mean square end-to-end distance of a polymer chain can be obtained using the Feynman path integral developed by Feynman for treating the polaron problem and successfuly applied to the theory of heavily doped semiconductor. We show that for short-range correlation or the white Gaussian model we derive the results obtained by Edwards and Muthukumar using the replica method and for long-range correlation we obtain the result of Yohannes Shiferaw and Yadin Y. Goldschimidt. The main idea of this paper is to generalize the model proposed by Edwards and Muthukumar for short-range correlation to finite correlation. Instead of using a replica method, we employ the Feynman path integral by modeling the polymer Hamiltonian as a model of non-local quadratic trial Hamiltonian. This non-local trial Hamiltonian is essential as it will reflect the translation invariant of the original Hamiltonian. The calculation is proceeded by considering the differences between the polymer propagator and the trial propagator as the first cumulant approximation. The variational principle is used to find the optimal values of the variational parameters and the mean square end-to-end distance is obtained. Several asymptotic limits are considered and a comparison between this approaches and replica approach will be discussed.

  14. Folding mechanism of a polymer chain with short-range attractions

    NASA Astrophysics Data System (ADS)

    Leitold, Christian; Dellago, Christoph

    2014-10-01

    We investigate the crystallization of a single, flexible homopolymer chain using transition path sampling. The chain consists of N identical spherical monomers evolved according to Langevin dynamics. While neighboring monomers are coupled via harmonic springs, the non-neighboring monomers interact via a hard core and a short-ranged attractive potential. For a sufficiently small interaction range λ, the system undergoes a first-order freezing transition from an expanded, disordered phase to a compact crystalline state. Using a new shooting move tailored to polymers combined with a committor analysis, we study the transition state ensemble of an N = 128 chain and search for possible reaction coordinates based on likelihood maximization. We find that typical transition states consist of a crystalline nucleus with one or more chain fragments attached to it. Furthermore, we show that the number of particles in the crystalline core is not well suited as a reaction coordinate. We then present an improved reaction coordinate, which includes information from the potential energy and the overall crystallinity of the polymer.

  15. Preferential positioning of a nanoparticle bound to a polymer: Exact enumeration of a self-avoiding walk chain model

    NASA Astrophysics Data System (ADS)

    Khoo, Andy; Iwaki, Takafumi; Shew, Chwen-Yang; Yoshikawa, Kenichi

    2009-09-01

    A lattice chain model is extended to investigate the preferential position of a sticky sphere bound to a polymer chain, motivated by wrapping one nanosize core-histone with DNA to form a nucleosome structure. It was shown that the single bound histone is populated in DNA chain ends from the experiment by T. Sakaue et al. [Phys. Rev. Lett. 87, 078105 (2001)]. Here, the possible mechanisms are examined to elucidate such behavior. For neutral chains or ionic chains in high salt concentrations, spheres bound on the middle of chain may trigger conformational constraints to reduce conformational entropy. For ionic chains, the bound sphere can be driven to chain ends if its effective charge and the charge of chain monomers are of like charge. The two-dimensional chain is further studied to mimic the chromosome strongly adsorbed onto surfaces, of which behavior is similar to the three-dimensional case with minor difference due to surface confinement.

  16. Coarse-grained description of polymer blends as chains of interacting soft particles

    NASA Astrophysics Data System (ADS)

    Walton, Kevin; Guenza, Marina

    We present an analytic pair potential in a coarse grain description of a polymer blend where each chain is represented as a chain of soft-colloidal particles. This coarse grain model is based on integral theory that can represent the chains at variable levels.The particles have soft repulsion at separation less than the size of each coarse grain unit and a long repulsive tail with small attractive portion. While the short range pieces of the potential dominates the liquid structure, the long range tail dominate the thermodynamics of the system. So an accurate potential in both the short and long range distances is need to keep give correct structure and thermodynamical properties in the coarse grain description.

  17. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    NASA Astrophysics Data System (ADS)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  18. Monte Carlo simulations to study the effect of chain stiffness on static and dynamic properties of polymer melts

    NASA Astrophysics Data System (ADS)

    Khanal, Kiran; Luettmer-Strathmann, Jutta

    2009-04-01

    Static and dynamic properties of polymers are affected by the stiffness of the chains. In this work, we investigate structural and thermodynamic properties of a lattice model for semiflexible polymer chains. The model is an extension of Shaffer's bond- fluctuation model and includes attractive interactions between monomers and an adjustable bending penalty that determines the Kuhn segment length. This allows us to model melts of flexible and semiflexible chains. For this work, we performed Monte Carlo simulations for polymer melts with a range of bending parameters and densities. Results for chain dimensions show that the Kuhn segment length increases monotonously with the bending penalty and has a linear dependence for a range of bending parameters. Results for self diffusion constants show that the translational mobility is strongly reduced by increasing chain stiffness. We also investigate equation-of-state properties of the melts.

  19. The chain sucker: translocation dynamics of a polymer chain into a long narrow channel driven by longitudinal flow.

    PubMed

    Luo, Kaifu; Metzler, Ralf

    2011-04-01

    Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a narrow channel of width R embedded in two dimensions, driven by a force proportional to the number of monomers in the channel. Such a setup mimics typical experimental situations in nano/microfluidics. During the translocation process if the monomers in the channel can sufficiently quickly assume steady state motion, we observe the scaling τ ∼ N∕F of the translocation time τ with the driving force F per bead and the number N of monomers per chain. With smaller channel width R, steady state motion cannot be achieved, effecting a nonuniversal dependence of τ on N and F. From the simulations we also deduce the waiting time distributions under various conditions for the single segment passage through the channel entrance. For different chain lengths but the same driving force, the curves of the waiting time as a function of the translocation coordinate s feature a maximum located at identical s(max), while with increasing the driving force or the channel width the value of s(max) decreases. PMID:21476775

  20. Memory effect in the chain-collapse process in a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Maki, Yasuyuki; Sasaki, Naoki; Nakata, Mitsuo

    2004-12-01

    The effect of temperature perturbation on a single-chain-collapse process was studied for poly(methyl methacrylate) with the molecular weight Mw=1.05×107 in the mixed solvent of tert-butyl alcohol+water (2.5 vol %). In the chain-collapse process after a quench from the θ temperature to a temperature T1, the temperature was changed from T1 to T2 at the time t1 after the quench and returned to T1 at the time t1+t2. In the three stages at T1, T2, and T1, measurements of the mean-square radius of gyration of polymer chains were carried out by static light scattering and the chain-collapse process was represented by the expansion factor as a function of time. An effect of chain aggregation on the measurements was negligibly small because of the very slow phase separation. For the negative temperature perturbation (T1>T2), the chain-collapse processes observed in the first and third stages were connected smoothly and agreed with the collapse process due to a single-stage quench to T1. A memory of the chain collapse in the first stage at T1 was found to persist into the third stage at the same temperature T1 without being affected by the temperature perturbation of T2 during t2. The memory effect was observed irrespective of the time period of t2. The positive temperature perturbation (T1chain-collapse process.

  1. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  2. Optical Nanofluidic Piston: Assay for Dynamic Force-Compression of Single Confined Polymer Chains

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Zimny, Philip; Macos, Patrick; Massarelli, Geremia; Tétreault-La Roche, David; Reisner, Walter

    2014-03-01

    While single-molecule approaches now have a long-history in polymer physics, past methodology has a key limitation : it is not currently possible to apply well-defined forces to a precise number of chains in a well-defined volume. To this end,we have developed a nanofluidic assay for the study of DNA compression in vitro, the optical nanofluidic piston. The optical nanofluidic piston is a nanofluidic analog of a macroscopic piston-cylinder apparatus based on a nanosphere (``the piston'') optically trapped inside a 200-400nm nanochannel with embedded barrier (the ``cylinder''). The nanofluidic piston enables quantification of force required to compress single or multiple chains within a defined volume. We present combined fluorescence and force-measurements for the compression of T4 DNA under a variety of compression rates. Surprisingly, we find that compression occurs on a force-scale roughly 100x higher than that predicted by equilibrium theories, suggesting that the DNA is present in highly entangled states during the compression. Moreover, we observe that compression at high rates induces a ``shock-wave'' of high-polymer concentration near the bead, suggesting that our setup can quantitatively access novel non-equilibrium polymer phenomena.

  3. Chain Dynamics in Solid Polymers and Polymerizing Systems as Revealed by Broadband Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Graham

    2008-08-01

    A number of techniques are used to study the chain-dynamics of solid polymers, including those of dielectric relaxation [1-4], dynamic mechanical thermal analysis (DMTA) [1, 5], multinuclear NMR relaxations [6], quasi-elastic dynamic light scattering [7] and neutron scattering [8] (QELS & QENS) and transient fluorescence depolarization (TFD) [9]. Each technique has its own particular probe of the dynamics in a material. e.g. dielectric relaxation gives information on the angular motions of molecular chain-dipoles (for dipole relaxation) and the translational motions of ions (for f-dependent electrical conduction); NMR relaxations relate to the angular motions of chemical bonds; QELS relates to fluctuations in local refractive index; QENS to the time-dependent van Hove correlation function (suitably-defined) for proton-containing groups; TFD to the angular motions of fluorescent groups in a chain. Due to its relevance to practical applications of materials, DMTA is pre-eminent among the many physical techniques applied to solid polymers, but interpretations of behaviour in terms of molecular properties remain difficult since the direct link between an applied macroscopic stress and the molecular response of polymer chains in a bulk material remains an unsolved problem. Of the above techniques, Broadband Dielectric Spectroscopy (BDS) offers several advantages. (a) Materials may be studied in the frequency range 10-6 to 1010 Hz, over wide ranges of temperature and applied pressure, using commercially-available instrumentation. (b) Since the electrical capacitance of a film is inversely proportional its thickness, free-standing and supported films may be studied down to nm-thicknesses, giving e.g. information on the behaviour of the dynamic Tg as sample thickness approaches molecular dimensions. (c) Theoretical interpretations of dielectric relaxation and a.c. conduction are well-established in terms of Fourier transforms of molecular time correlation functions (TCFs

  4. Crystallization of Polymer Chains Chemically Attached on a Surface: Lamellar Orientation from Flat-on to Edge-on.

    PubMed

    Chen, Yihuang; Gan, Tiansheng; Ma, Chunfeng; Wang, Linge; Zhang, Guangzhao

    2016-05-26

    Crystallization of polymer chains confined on a surface greatly influences surface properties. We have grafted comb-like copolymer, consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) backbone and semicrystalline poly(ε-caprolactone) (PCL) side chains, on silicon surface and investigated the crystallization of such confined PCL chains upon solvent evaporation by using atomic force microscopy (AFM), grazing incidence wide-angle X-ray scattering (GI-WAXS), and polarized optical microscope (POM). Our studies reveal that the PCL chains align and form "flat-on" lamellae at a low PCL chain density. As the chain density increases, the comb-like polymer (PHEMA-g-PCL) chains undergo pancake-to-mushroom-to-brush transition, and the lamellae turn from "flat-on" to "edge-on" in orientation. Further increasing PCL chain density leads the "edge-on" lamellae to change from a quasi-two-dimensional (quasi-2D) to quasi-three-dimensional (quasi-3D). Because of the confinements of polymer chains, we can observe the evolution of spherulites at different stages during the mushroom-to-brush transition of PHEMA-g-PCL chains. The confinements also result in knobbly substructures in the edge-on lamellae. PMID:27149242

  5. Efficient estimation of contact probabilities from inter-bead distance distributions in simulated polymer chains

    NASA Astrophysics Data System (ADS)

    Meluzzi, Dario; Arya, Gaurav

    2015-02-01

    The estimation of contact probabilities (CP) from conformations of simulated bead-chain polymer models is a key step in methods that aim to elucidate the spatial organization of chromatin from analysis of experimentally determined contacts between different genomic loci. Although CPs can be estimated simply by counting contacts between beads in a sample of simulated chain conformations, reliable estimation of small CPs through this approach requires a large number of conformations, which can be computationally expensive to obtain. Here we describe an alternative computational method for estimating relatively small CPs without requiring large samples of chain conformations. In particular, we estimate the CPs from functional approximations to the cumulative distribution function (cdf) of the inter-bead distance for each pair of beads. These cdf approximations are obtained by fitting the extended generalized lambda distribution (EGLD) to inter-bead distances determined from a sample of chain conformations, which are in turn generated by Monte Carlo simulations. We find that CPs estimated from fitted EGLD cdfs are significantly more accurate than CPs estimated using contact counts from samples of limited size, and are more precise with all sample sizes, permitting as much as a tenfold reduction in conformation sample size for chains of 200 beads and samples smaller than 105 conformations. This method of CP estimation thus has potential to accelerate computational efforts to elucidate the spatial organization of chromatin.

  6. Efficient estimation of contact probabilities from inter-bead distance distributions in simulated polymer chains.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2015-02-18

    The estimation of contact probabilities (CP) from conformations of simulated bead-chain polymer models is a key step in methods that aim to elucidate the spatial organization of chromatin from analysis of experimentally determined contacts between different genomic loci. Although CPs can be estimated simply by counting contacts between beads in a sample of simulated chain conformations, reliable estimation of small CPs through this approach requires a large number of conformations, which can be computationally expensive to obtain. Here we describe an alternative computational method for estimating relatively small CPs without requiring large samples of chain conformations. In particular, we estimate the CPs from functional approximations to the cumulative distribution function (cdf) of the inter-bead distance for each pair of beads. These cdf approximations are obtained by fitting the extended generalized lambda distribution (EGLD) to inter-bead distances determined from a sample of chain conformations, which are in turn generated by Monte Carlo simulations. We find that CPs estimated from fitted EGLD cdfs are significantly more accurate than CPs estimated using contact counts from samples of limited size, and are more precise with all sample sizes, permitting as much as a tenfold reduction in conformation sample size for chains of 200 beads and samples smaller than 10(5) conformations. This method of CP estimation thus has potential to accelerate computational efforts to elucidate the spatial organization of chromatin. PMID:25563926

  7. Side Chain Engineering of Naphthalenediimide-Based N-type Polymer for High-Performance All-Polymer Solar Cell near 6% Efficiency

    NASA Astrophysics Data System (ADS)

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon; Pusan National University (PNU) Collaboration; Lawrence Berkeley National Laboratory Collaboration

    2015-03-01

    Despite the attractive features of all-polymer solar cells (all-PSCs), i.e., enhanced absorption coefficients, the tunability of their energetic and chemical properties and their thermal and mechanical stabilities, they still face the great challenge of having significantly low power conversion efficiency (PCE) values of only 3-5%. The prominent origins of the poor efficiency of all-PSCs are the undesirable features of the bulk-heterojunction (BHJ) blend morphology including the phase-separated large-scale domain size, reduced ordering of the polymer chains. Tuning side alkyl chains of conjugated polymers is an effective route for manipulating the blend morphology in BHJ type solar cells. However, the role of side chains in all-PSCs is poorly understood. Herein, we report high-performing all-PSCs with 5.96% efficiency by developing a series of naphthalenediimide (NDI)-based polymer acceptors with different alkyl side chains. We demonstrated that the use of the PNDIT with hexyldecyl side chains produced highly-ordered polymer stackings with strong face-on geometry and at the same time, forming the optimal BHJ morphology with finely separated phase domains, all of which contributed together to induce well-balanced μe/ μh ratio and generate efficient all-PSCs with PCEs near 6%.

  8. Interface relaxation in electrophoretic deposition of polymer chains: effects of segmental dynamics, molecular weight, and field.

    PubMed

    Bentrem, Frank W; Xie, Jun; Pandey, R B

    2002-04-01

    Using different segmental dynamics and relaxation, characteristics of the interface growth is examined in an electrophoretic deposition of polymer chains on a three (2+1)-dimensional discrete lattice with a Monte Carlo simulation. Incorporation of faster modes such as crankshaft and reptation movements along with the relatively slow kink-jump dynamics seems crucial in relaxing the interface width. As the continuously released polymer chains are driven (via segmental movements) and deposited, the interface width W grows with the number of time steps t, W proportional, variant t(beta), (beta approximately 0.4-0.8), which is followed by its saturation to a steady-state value W(s). Stopping the release of additional chains after saturation while continuing the segmental movements relaxes the saturated width to an equilibrium value (W(s)-->W(r)). Scaling of the relaxed interface width W(r) with the driving field E, W(r) proportional, variant E(-1/2) remains similar to that of the steady-state W(s) width. In contrast to monotonic increase of the steady-state width W(s), the relaxed interface width W(r) is found to decay (possibly as a stretched exponential) with the molecular weight. PMID:12005836

  9. Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation.

    PubMed

    Hsu, Hsiao-Ping; Binder, Kurt

    2012-01-14

    Semiflexible macromolecules in dilute solution under very good solvent conditions are modeled by self-avoiding walks on the simple cubic lattice (d = 3 dimensions) and square lattice (d = 2 dimensions), varying chain stiffness by an energy penalty ε(b) for chain bending. In the absence of excluded volume interactions, the persistence length l(p) of the polymers would then simply be l(p) = l(b)(2d - 2)(-1)q(b) (-1) with q(b) = exp(-ε(b)/k(B)T), the bond length l(b) being the lattice spacing, and k(B)T is the thermal energy. Using Monte Carlo simulations applying the pruned-enriched Rosenbluth method (PERM), both q(b) and the chain length N are varied over a wide range (0.005 ≤ q(b) ≤ 1, N ≤ 50,000), and also a stretching force f is applied to one chain end (fixing the other end at the origin). In the absence of this force, in d = 2 a single crossover from rod-like behavior (for contour lengths less than l(p)) to swollen coils occurs, invalidating the Kratky-Porod model, while in d = 3 a double crossover occurs, from rods to Gaussian coils (as implied by the Kratky-Porod model) and then to coils that are swollen due to the excluded volume interaction. If the stretching force is applied, excluded volume interactions matter for the force versus extension relation irrespective of chain stiffness in d = 2, while theories based on the Kratky-Porod model are found to work in d = 3 for stiff chains in an intermediate regime of chain extensions. While for q(b) ≪ 1 in this model a persistence length can be estimated from the initial decay of bond-orientational correlations, it is argued that this is not possible for more complex wormlike chains (e.g., bottle-brush polymers). Consequences for the proper interpretation of experiments are briefly discussed. PMID:22260610

  10. Polymer chain in a good solvent between attracting walls. A scaling approach

    NASA Astrophysics Data System (ADS)

    Allegra, Giuseppe; Colombo, Emanuele

    1996-09-01

    measurements of the force exerted by polymer chains on confining surfaces, obtained by Klein and co-workers, appear to be consistent with these theoretical results.

  11. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-05-21

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  12. Vitrification of thin polymer films: from linear chain to soft-colloid like behavior

    NASA Astrophysics Data System (ADS)

    Glynos, Emmanouil; Frieberg, Bradley; Sakellariou, Georgios; Chremos, Alexandros; Green, Peter

    2015-03-01

    The glass transition temperature Tg of sufficiently thin, supported, polymer films is dependent on the film thickness. Based on the nature of the polymer substrate interactions Tg may increase, ΔTg >0, or decrease, ΔTg <0, in relation to the bulk. We show that for star-shaped macromolecules the value of ΔTg depends on the functionality f of the molecule, for polymer films supported by the same substrate. Specifically in the case of polystyrene (PS) macromolecules, with arms of molecular weight Marm<10 kg./mol., supported by silicon oxide substrates, ΔTg <0, when f<4. For much higher functionalities, f >= 32, where the polymer exhibits soft-colloid like behavior ΔTg ~ 0. For values of 40. The transition from the linear-chain to the soft-colloid behavior is gradual and occurs with increasing f and/or decreasing Marm. With the help of molecular dynamics simulations we rationalize this behavior in terms of competing entropic effects, associated with changes in f and Marm, which drives the ability of these molecules to efficiently pack at interfaces.

  13. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  14. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains.

    PubMed

    Png, Rui-Qi; Chia, Perq-Jon; Tang, Jie-Cong; Liu, Bo; Sivaramakrishnan, Sankaran; Zhou, Mi; Khong, Siong-Hee; Chan, Hardy S O; Burroughes, Jeremy H; Chua, Lay-Lay; Friend, Richard H; Ho, Peter K H

    2010-02-01

    Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor-acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible. PMID:19966791

  15. Analytical theory of finite-size effects in mechanical desorption of a polymer chain.

    PubMed

    Skvortsov, A M; Klushin, L I; Fleer, G J; Leermakers, F A M

    2010-02-14

    We discuss a unique system that allows exact analytical investigation of first- and second-order transitions with finite-size effects: mechanical desorption of an ideal lattice polymer chain grafted with one end to a solid substrate with a pulling force applied to the other end. We exploit the analogy with a continuum model and use accurate mapping between the parameters in continuum and lattice descriptions, which leads to a fully analytical partition function as a function of chain length, temperature (or adsorption strength), and pulling force. The adsorption-desorption phase diagram, which gives the critical force as a function of temperature, is nonmonotonic and gives rise to re-entrance. We analyze the chain length dependence of several chain properties (bound fraction, chain extension, and heat capacity) for different cross sections of the phase diagram. Close to the transition a single parameter (the product of the chain length N and the deviation from the transition point) describes all thermodynamic properties. We discuss finite-size effects at the second-order transition (adsorption without force) and at the first-order transition (mechanical desorption). The first-order transition has some unusual features: The heat capacity in the transition region increases anomalously with temperature as a power law, metastable states are completely absent, and instead of a bimodal distribution there is a flat region that becomes more pronounced with increasing chain length. The reason for this anomaly is the absence of an excess surface energy for the boundary between adsorbed and stretched coexisting phases (this boundary is one segment only): The two states strongly fluctuate in the transition point. The relation between mechanical desorption and mechanical unzipping of DNA is discussed. PMID:20151736

  16. Multiplicative luminescence enhancement induced by chain relaxation in ultrathin films of a conjugated polymer (MEH-PPV)

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Wei; Jou, Juo-Huei; Chang-Mou Yang, Arnold

    2006-03-01

    A surprising multiplication of light-emitting efficiency was observed in dewetting process of the conjugated luminescent polymer of poly (2-methoxy- 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV). The luminescent efficiency increased with the dewetting process and became about six-fold when the polymer film ruptured into tiny droplets. This enhancement appeared to be related to the carrier transport mechanisms and the motions of polymer chains. The effects of inter-molecular energy transport and molecular deformation of polymer chains were studied by examining the emission behavior in liquid and solid solutions. It was found that the molecular movements during stretching in the glassy state were quite different from that in the dewetting process. The latter was dominated by disengagement of inter-molecular entanglements while the former was strongly influenced by trapping mechanisms of chain entanglements due to rapid local molecular strains. This work is supported by National Science Council of Taiwan.

  17. Understanding entangled polymers: What we can learn from athermal chain packings

    NASA Astrophysics Data System (ADS)

    Karayiannis, Nikos

    2012-02-01

    The study of random and ordered packings (from atoms and colloidal particles to sand grains) has been the focus of extensive research. This is not surprising since an understanding of the mechanisms that control morphology and packing is the key to the design and synthesis of novel ``smart'' materials and functionalities. In particular, the study of packings of chain molecules presents challenges but also insights which are absent in monatomic systems and further allows for a direction comparison with them. In this contribution we give an overview of our work on very dense and nearly jammed packings of athermal polymers. We show that chain molecules can be as efficiently and as densely packed as monatomic analogs up to the same maximally random jammed state. We also show that an exact correspondence can be established between the statistical-mechanical ensembles of packings of monatomic, and chain systems, which yields insights on the universality of jamming. By studying the effect of concentration on polymer size and on the underlying network of topological hindrances we precisely identify the distinct universal scaling regimes and the corresponding exponents. An unsuspected connection, valid from dilute up to very dense assemblies, is established between knots (of intermolecular origin) and entanglements (intermolecular constraints). We finally show that, against expectations, entropy-driven crystallization can occur in dense systems of athermal polymers once a critical volume fraction is reached. Such phase transition is driven by the increase in translational entropy: ordered sites exhibit enhanced mobility as their local free volume becomes more spherical and symmetric. Incipient nuclei develop well defined, stack-faulted layered crystal morphologies with a single stacking direction. The ordering transition and the resulting complex morphologies are analyzed, highlighting similarities and differences with respect to monatomic crystallization.

  18. Two unprecedented 1D coordination polymer chains based on tetranuclear copper(II) building blocks

    SciTech Connect

    Li Gaijuan; Xing Yan Song Shuyan; Xu Ning; Liu Xianchun; Su Zhongmin

    2008-09-15

    The reaction of copper(II) sulfate with pyridine in DMF or methanol yield two unprecedented Cu(II) coordination polymers {l_brace}[Cu{sub 4}({mu}{sub 4}-O)(py){sub 4}(SO{sub 4}){sub 4}][{mu}-Cu(py)(DMF){sub 2}]{r_brace}{sub n}(1) and {l_brace}[Cu{sub 4}({mu}{sub 4}-O)(py){sub 4}(SO{sub 4}){sub 4}][{mu}-Cu(py){sub 4}]{r_brace}{sub n}(2), respectively. Single-crystal X-ray diffraction indicated that compound 1 crystallizes in the monoclinic system, space group p2(1)/n, a=14.542(5) A, b=16.359(5) A, c=18.951(5) A, {beta}=92.047(5){sup o}, V=4505(2) A{sup 3}, Z=4 while 2 is monoclinic C2/c, a=23.078(5) A, b=10.214(5) A, c=23.142(5) A, {beta}=115.471(5){sup o}, V=4925(3) A{sup 3}, Z=4. Both of the two compounds consist of tetrahedral tetranuclear [Cu{sub 4}({mu}{sub 4}-O)(py){sub 4}(SO{sub 4}){sub 4}] clusters that are bridged by pentacoordinated Cu atom for 1 or hexacoordinated Cu atoms for 2 through the sulfate oxygen to form the infinite one-dimensional polymer chains. - Graphical abstract: Two unprecedented Cu(II) coordination polymers have been prepared by using solvothermal method; they consist of tetrahedral tetranuclear clusters that are bridged by unique Cu(II) atom through the sulfate oxygen to form the infinite one-dimensional polymer chains (a) for complex 1 and (b) for complex 2.

  19. Dehydrocoupling and Silazane Cleavage Routes to Organic-Inorganic Hybrid Polymers with NBN Units in the Main Chain.

    PubMed

    Lorenz, Thomas; Lik, Artur; Plamper, Felix A; Helten, Holger

    2016-06-13

    Despite the great potential of both π-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B-N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic-inorganic hybrid polymers are presented, which consist of alternating NBN and para-phenylene units. Polycondensation with B-N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π-conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross-linking reaction with Zr(IV) . PMID:27151314

  20. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles

  1. A molecular dynamics study on universal properties of polymer chains in different solvent qualities. Part I. A review of linear chain properties.

    PubMed

    Steinhauser, Martin Oliver

    2005-03-01

    This paper investigates the conformational and scaling properties of long linear polymer chains. These investigations are done with the aid of Monte Carlo (MC) and molecular dynamics (MD) simulations. Chain lengths that comprise several orders of magnitude to reduce errors of finite size scaling, including the effect of solvent quality, ranging from the athermal limit over the theta-transition to the collapsed state of chains are investigated. Also the effect of polydispersity on linear chains is included which is an important issue in the real fabrication of polymers. A detailed account of the hybrid MD and MC simulation model and the exploited numerical methods is given. Many results of chain properties in the extrapolated limit of infinite chain lengths are documented and universal properties of the chains within their universality class are given. An example of the difference between scaling exponents observed in actual solvents and those observed in the extremes of "good solvents" and "theta-solvents" in simulations is provided by comparing simulation results with experimental data on low density polyethylene. This paper is concluded with an outlook on the extension of this study to branched chain systems of many different branching types. PMID:15836175

  2. Cyclic side-chain phenylazo naphthalene polymers: enhanced fluorescence emission and surface relief grating formation.

    PubMed

    Zhang, Hao; Zhou, Nianchen; Zhu, Xing; Chen, Xinrong; Zhang, Zhengbiao; Zhang, Wei; Zhu, Jian; Hu, Zhijun; Zhu, Xiulin

    2012-11-14

    Well-defined cyclic-polymers (cyclic-PAzoMMAs), bearing side-chain phenylazo naphthalene chromophore, were successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and copper(I)-catalyzed azide/alkyne cycloaddition "click" reaction, as verified by GPC, (1) H NMR, FTIR, and MALDI-TOF mass spectrometry. The cyclic-PAzoMMA showed higher glass transition temperatures than the linear-PAzoMMA with the same molecular weight. Interestingly, the cyclic-PAzoMMA exhibited deeper modulation depth (M.D.) induced by SRG, larger value of the photoinduced birefringence, increased fluorescence emission, and longer fluorescence lifetime in comparison with its linear counterpart. PMID:22965741

  3. Inter-Ring and Hexyl Chain Torsional Potentials in Poly (3-HEXYLTHIOPHENE) Oligomers: Scaling with the Length of the Conjugted Polymer Backbone

    NASA Astrophysics Data System (ADS)

    Bhatta, Ram S.; Perry, David S.; Yimer, Yeneneh; Tsige, Mesfin

    2011-06-01

    Density functional theory calculations are presented for the equilibrium structures and torsional potentials for isolated Poly (3-Hexylthiophene) (P3HT) oligomers up to 12 monomer units (up to 302 atoms). Calculations were performed at B3LYP/6-31++G(d,p) treating both the backbone of thiophene rings and the hexyl chains explicitly. One-dimensional inter-ring torsional potentials were calculated by rotating backbone around the central inter-ring bond and hexyl torsional potentials were calculated rotating n-hexyl group adjacent to the central inter-ring bond for each oligomer. The torsional and electronic properties change significantly for oligomers with 2 to 8 units but reach asymptotic values for a 10 unit P3HT chain, thereby suggesting the 10 unit long oligomer as a molecular model for the extended polymer. For P3HT oligomers having 10 or more units, all the rings and the hexyl groups are approximately coplanar except for one hexyl group at head end. The principal interaction that promotes the coplanarity of the hexyl groups is the attraction of the proximal methylene hydrogens to the sulfur on the adjacent thiophene ring. The cis conformation of the backbone is about 2kT higher than the trans minimum at room temperature. The gauche conformation of the hexyl group is within about half kT of the planar minimum. Therefore conformational polymorphisms of both types will likely be significant in the heterogeneous environment of photovoltaic devices.

  4. Adsorption of a single polymer chain on a surface: effects of the potential range.

    PubMed

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction

  5. Revealing the supramolecular nature of side-chain terpyridine-functionalized polymer networks.

    PubMed

    Brassinne, Jérémy; Jochum, Florian D; Fustin, Charles-André; Gohy, Jean-François

    2015-01-01

    Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks. PMID:25569082

  6. Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

    PubMed Central

    Brassinne, Jérémy; Jochum, Florian D.; Fustin, Charles-André; Gohy, Jean-François

    2015-01-01

    Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks. PMID:25569082

  7. Chain Gang-The Chemistry of Polymers (edited by Mickey Sarquis)

    NASA Astrophysics Data System (ADS)

    Collard, David M.

    1999-01-01

    Science in Our World, Vol. 5. Mickey Sarquis, series editor. Terrific Science Press: Middletown, OH, 1995. xiv + 149 pp. ISBN 1-883822-13-0. Spiral-bound, $13.95. Our familiarity with plastics makes polymers ideal examples of chemicals for discussion in K-12 science classes. Most importantly, polymers can be used as examples of chemicals that are safe to handle and of obvious use to society. The structures of polymers are easily represented by a number of models. These simple models go a long way in explaining the familiar physical properties of plastics. However, the introduction of polymers in the classroom relies on the availability of teaching material, experiments, and demonstrations that illustrate concepts in the current science curriculum. Chain Gang-The Chemistry of Polymers, one of the Science in Our World series published by the Center for Chemical Education at Miami University-Middletown (Ohio), will serve as a great resource for teachers interested in providing their students with a series of activities that can be related to their everyday experiences with these ubiquitous chemicals. After a brief introduction to some basic concepts, the book presents a series of 23 experiments. The collection of experiments presented here spans illustrations of chemistry, physical properties, analysis, and processing. Each experiment is recommended as either a hands-on activity or demonstration for various grade levels. A guide for the teacher suggests how the experiment can be used to illustrate topics in the science curriculum. The materials required for each activity are listed in detail, with quantities and sources (all materials are available from Flinn Scientific or hardware stores). There are detailed instructions for preparation of each experiment and how to introduce the experiment to students, and step-by-step instructions for activity. Very importantly, safety and disposal issues are clearly presented. Suggestions for cross-curriculum integration are also

  8. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    SciTech Connect

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z), mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.

  9. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    DOE PAGESBeta

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z),more » mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.« less

  10. Thermal breakage and self-healing of a polymer chain under tensile stress

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Dimitrov, D. I.; Rostiashvili, V. G.; Milchev, A.; Vilgis, T. A.

    2010-05-01

    We consider the thermal breakage of a tethered polymer chain of discrete segments coupled by Morse potentials under constant tensile stress. The chain dynamics at the onset of fracture is studied analytically by Kramers-Langer multidimensional theory and by extensive molecular dynamics simulations in one dimension (1D) and three dimension (3D) space. Comparison with simulation data in one and three dimensions demonstrates that the Kramers-Langer theory provides good qualitative description of the process of bond scission as caused by a collective unstable mode. We derive distributions of the probability for scission over the successive bonds along the chain which reveal the influence of chain ends on rupture in good agreement with theory. The breakage time distribution of an individual bond is found to follow an exponential law as predicted by theory. Special attention is focused on the recombination (self-healing) of broken bonds. Theoretically derived expressions for the recombination time and distance distributions comply with MD observations and indicate that the energy barrier position crossing is not a good criterion for true rupture. It is shown that the fraction of self-healing bonds increases with rising temperature and friction.

  11. Slow knot formation by suppressed self-reptation in a collapsed polymer chain

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuo; Nakamura, Yoshiki; Sasaki, Naoki; Maki, Yasuyuki

    2012-02-01

    Chain-expansion processes from knotted globules have been measured for poly(methyl methacrylate) (PMMA) in the mixed solvent tert-butyl alcohol (TBA) + water (2.5 vol %) by static light scattering. The solution was quenched from the Θ temperature of 41.5 ∘C to 37.0 ∘C, aged there for a time period tp, and then returned rapidly to the Θ temperature. The chain-expansion process was determined as a time evolution of the expansion factor α2 after the temperature increase. The measurement was carried out by changing the aging time tp from 240 to 7200 min, and the molecular weight from Mw = 4.0 × 106 to 1.5 × 107, by taking advantage of the extremely slow chain aggregation in the solution. The chain-expansion process obtained for Mw = 1.22 × 107 became slow with increasing tp, which revealed the knot formation in single globules. The characteristic time of the chain expansion from globules aged for tp = 7200 min was found to depend on the molecular weight as Mw2.7. This exponent, which is close to 3, demonstrated a disentanglement process due to self-reptation. The present data were compared with the previous data of the chain expansion from compact globules aged at 25.0 ∘C. The comparison made at Mw = 1.22 × 107 and at the same values of tp revealed that the chain expansion from the globules aged at 25.0 ∘C was much faster than that from the globules at 37.0 ∘C, indicating a lower knot density in the more compact globules. It was conjectured that the knot formation due to self-reptation would be suppressed in a compact globule because an entire conformational change required by knot formation would become difficult to occur in the confined space of high segment concentration, particularly for a long polymer chain. The chain collapse of PMMA in the mixed solvent has been observed to occur extremely slowly at the later stage. This slow process was explained by the suppressed self-reptation.

  12. Slow knot formation by suppressed self-reptation in a collapsed polymer chain.

    PubMed

    Nakata, Mitsuo; Nakamura, Yoshiki; Sasaki, Naoki; Maki, Yasuyuki

    2012-02-01

    Chain-expansion processes from knotted globules have been measured for poly(methyl methacrylate) (PMMA) in the mixed solvent tert-butyl alcohol (TBA) + water (2.5 vol %) by static light scattering. The solution was quenched from the Θ temperature of 41.5 °C to 37.0 °C, aged there for a time period t(p,) and then returned rapidly to the Θ temperature. The chain-expansion process was determined as a time evolution of the expansion factor α(2) after the temperature increase. The measurement was carried out by changing the aging time t(p) from 240 to 7200 min, and the molecular weight from M(w) = 4.0 × 10(6) to 1.5 × 10(7), by taking advantage of the extremely slow chain aggregation in the solution. The chain-expansion process obtained for M(w) = 1.22 × 10(7) became slow with increasing t(p), which revealed the knot formation in single globules. The characteristic time of the chain expansion from globules aged for t(p) = 7200 min was found to depend on the molecular weight as M(w)(2.7). This exponent, which is close to 3, demonstrated a disentanglement process due to self-reptation. The present data were compared with the previous data of the chain expansion from compact globules aged at 25.0 °C. The comparison made at M(w) = 1.22 × 10(7) and at the same values of t(p) revealed that the chain expansion from the globules aged at 25.0 °C was much faster than that from the globules at 37.0  °C, indicating a lower knot density in the more compact globules. It was conjectured that the knot formation due to self-reptation would be suppressed in a compact globule because an entire conformational change required by knot formation would become difficult to occur in the confined space of high segment concentration, particularly for a long polymer chain. The chain collapse of PMMA in the mixed solvent has been observed to occur extremely slowly at the later stage. This slow process was explained by the suppressed self-reptation. PMID:22463231

  13. Theory of microphase separation on side-chain liquid-crystalline polymers with flexible spacers.

    PubMed

    Hernández-Jiménez, M; Westfahl, H

    2007-05-01

    We model a melt of monodisperse side-chain liquid-crystalline polymers as a melt of comb copolymers in which the side groups are rod-coil diblock copolymers. We consider both excluded-volume and Maier-Saupe interactions. The first acts among any pair of segments while the latter acts only between rods. Using a free-energy functional calculated from this microscopic model, we study the spinodal stability of the isotropic phase against density and orientational fluctuations. The phase diagram obtained in this way predicts nematic and smectic instabilities as well as the existence of microphases or phases with modulated wave vector but without nematic ordering. Such microphases are the result of the competition between the incompatibility among the blocks and the connectivity constraints imposed by the spacer and the backbone. Also the effects of the polymerization degree and structural conformation of the monomeric units on the phase behavior of the side-chain liquid-crystalline polymers are studied. PMID:17541501

  14. Ionic polymer cluster energetics: Computational analysis of pendant chain stiffness and charge imbalance

    NASA Astrophysics Data System (ADS)

    Weiland, Lisa Mauck; Leo, Donald J.

    2005-06-01

    In recent years there has been considerable study of the potential mechanisms underlying the electromechanical response of ionic-polymer-metal composites. The most recent models have been based on the response of the ion-containing clusters that are formed when the material is synthesized. Most of these efforts have employed assumptions of uniform ion distribution within spherical cluster shapes. This work investigates the impact of dispensing with these assumptions in order to better understand the parameters that impact cluster shape, size, and ion transport potential. A computational micromechanics model applying Monte Carlo methodology is employed to predict the equilibrium state of a single cluster of a solvated ionomeric polymer. For a constant solvated state, the model tracks the position of individual ions within a given cluster in response to ion-ion interaction, mechanical stiffness of the pendant chain, cluster surface energy, and external electric-field loading. Results suggest that cluster surface effects play a significant role in the equilibrium cluster state, including ion distribution; pendant chain stiffness also plays a role in ion distribution but to a lesser extent. Moreover, ion pairing is rarely complete even in cation-rich clusters; this in turn supports the supposition of the formation of anode and cathode boundary layers.

  15. End-Functionalized Polymers and Junction-Functionalized Diblock Copolymers Via RAFT Chain Extension with Maleimido Monomers

    PubMed Central

    Henry, Scott M.; Convertine, Anthony J.; Benoit, Danielle S. W.; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new strategy is described for functionalizing the ω-terminal end of polymers synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization that provides spatially controlled bioconjugation sites. Traditional methods for preparing ω-functional polymers require the reduction of the RAFT chain-transfer agent to yield secondary or tertiary thiols of low reactivity or the synthesis of novel chain-transfer agents that contain reactive groups. As an additional strategy, N-substituted maleimido monomers have been used in a modified block polymerization to add a single maleimido unit onto the RAFT polymer with nearly quantitative efficiency. Unique reactive groups contained in the N-substituent are thereby added to the ω-terminal end of the polymer and are subsequently available for conjugation reactions. This technique has been demonstrated using N-(2-aminoethyl)maleimide trifluoroacetate to introduce a single primary amine to the ω-terminus of poly(dimethy-laminoethyl methacrylate) and poly(N-isopropyl acrylamide) and to a specialized block copolymer for siRNA delivery. Evidence for retention of functional RAFT endgroups is provided by synthesis results where chain-extended polyDMAEMA (Mn = 10 600 g/mol, Mw/Mn = 1.14) was used as a macro chain transfer agent for the polymerization of styrene, yielding a diblock polymer of low polydispersity (Mn = 20 300 g/mol, Mw/Mn = 1.11). It is thus also possible to construct diblock copolymers with a bioconjugation site precisely located at the junction between the two blocks. The chain-extended polymers are functionalized with an amine-reactive fluorescent dye or folic acid at conjugation efficiencies of 86 and 94%, respectively. The versatile chain-extension technique described here offers unique opportunities for the synthesis of well-defined polymeric conjugates to molecules of biological and targeting interest. PMID:19480416

  16. On the Anomalous Diffusion of a Polymer Chain in an Unentangled Melt

    NASA Astrophysics Data System (ADS)

    Baschnagel, Jorg

    2014-03-01

    The dynamics of polymer chains in unentangled melts is commonly described by the Rouse model. However, various experimental and simulation studies show that certain dynamical phenomena in unentangled melts cannot be explained by the Rouse theory. One of the puzzling observations is the anomalous diffusion of the center-of-mass (CM) of a polymer chain for times t polymer consisting of N monomers. We explore two attempts to explain this observation: (i) an approach based on the effective interactions between the CMs in the melt and (ii) an approach based on the hydrodynamic flow and viscoelasticity of the melt. For approach (i) we find a partial success: The theory accounts for the anomalous motion by yielding a negative power-law tail for the CM velocity autocorrelation function (CM VAF), Ccm(t) ~ -N-1t - 5 / 4 . This prediction is in good agreement with molecular-dynamics (MD) simulations utilizing Langevin dynamics with a strong damping constant. On the other hand, for simulations with momentum conserving dynamics (i.e., the experimentally relevant situation) the prediction of approach (i) is qualitatively incorrect. In the latter case, the CM VAF rather scales as Ccm(t) ~ -N - 1 / 2t - 3 / 2 . This behavior can be rationalized by approach (ii). The predictions of approach (ii) are found to be good quantitative agreement with the MD simulations. In collaboration with: J. Farago, H. Meyer, A. N. Semenov, J. P. Wittmer, A. Johner (Institut Charles Sadron).

  17. Detachment of semiflexible polymer chains from a substrate: A molecular dynamics investigation

    SciTech Connect

    Paturej, J.; Erbas, A.; Milchev, A.; Rostiashvili, V. G.

    2014-12-07

    Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force 〈f〉 vs height D of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the 〈f〉-D profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and dissipative particle dynamics-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the 〈f〉-D profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio ε{sub s}{sup B}/ε{sub s}{sup A} of the binding energies of A- and B-segments in the detachment of an AB-copolymer from adhesive surface strongly changes the 〈f〉-D profile whereby the B-spikes vanish when ε{sub s}{sup B}/ε{sub s}{sup A}<0.15. Eventually, performing an atomistic simulation of (bio)-polymers, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.

  18. Detachment of semiflexible polymer chains from a substrate: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Paturej, J.; Erbas, A.; Milchev, A.; Rostiashvili, V. G.

    2014-12-01

    Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force ⟨f⟩ vs height D of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the ⟨f⟩-D profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and dissipative particle dynamics-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the ⟨f⟩-D profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio ɛ _s^B / ɛ _s^A of the binding energies of A- and B-segments in the detachment of an AB-copolymer from adhesive surface strongly changes the ⟨f⟩-D profile whereby the B-spikes vanish when ɛ _s^B / ɛ _s^A < 0.15. Eventually, performing an atomistic simulation of (bio)-polymers, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.

  19. Specific features of the force and thermal elastic deformations of chain molecules and their energetics in polymer crystals

    NASA Astrophysics Data System (ADS)

    Slutsker, A. I.; Vettegren, V. I.; Kulik, V. B.; Gilyarov, V. L.; Polikarpov, Yu. I.; Karov, D. D.

    2016-04-01

    In polymer crystals (in particular, polyethylene), changes in the axial and contour lengths of skeletal interatomic bonds in chain molecules under mechanical loading (stretching) and heat treatment (heating) were measured using X-ray diffractometry and Raman spectrometry. The performed analysis of the measured force and temperature dependences gave theoretical descriptions of the deformation of a polymer crystal (the confirmation of the data available in the literature for mechanical loading and an original development for heating). The components of the potential energy of a deformed polymer crystal were determined both for stretching of skeletal bonds and for bending of chain molecules. It was found that there is a significant difference in the ratios of these components for a deformed polymer crystal under mechanical loading and during heating.

  20. Polymer gels with associating side chains and their interaction with surfactants

    NASA Astrophysics Data System (ADS)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  1. Polymer gels with associating side chains and their interaction with surfactants.

    PubMed

    Gordievskaya, Yulia D; Rumyantsev, Artem M; Kramarenko, Elena Yu

    2016-05-14

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well. PMID:27179504

  2. Evaluation of the end-to-end distance of chains solubilized in a polymer Langmuir monolayer by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumaki, Jiro

    Polymer chain packing in two-dimensional (2D) condense state is still not well understood. Direct observation of the chain packing in a monolayer should be the best way to understand this, however, it is still difficult even using atomic force microscopy (AFM) except for extraordinarily thick polymers. In this study, we successfully evaluate the end-to-end distance of the chains in a Langmuir-Blodgett monolayer composed of a conventional polymer by AFM. We successfully solubilized a small amount of a polystyrene-b-poly(methyl methacrylate)-b-polystyrene (PS-b-PMMA-b-PS) triblock copolymer in a PMMA Langmuir monolayer with the PS blocks being condensed as single-PS-block particles which could be used as a probe of the position of the chain ends. The evaluated end-to-end distance was 2.5 times longer than that of the 2D ideal chain, indicating the chains in the 2D monolayer are not strongly segregated but interpenetrates into other chains.

  3. Electrorheological Behavior of Main Chain Liquid Crystal Polymers in Thermotropic Nematic Solvents

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Ching; Jamieson, Alex. M.

    1998-03-01

    The increment in Miesowicz viscosity, δ η c on dissolving a main-chain liquid crystal polymer (LCP) in a nematic solvent was measured by cone-and-plate rheometry in the presence of a saturation electric field, applied perpendicular to the flow direction. In addition, the corresponding increment in the Leslie viscosity coefficient, δ α 2 was obtained from the dependence of the apparent viscosity response on the applied field strength, by curve-fitting to the torque balance equation using the 2D Ericksen-Leslie-Parodi theory. For the main-chain LCP TPB10, which has mesogenic groups separated by decamethylene spacers, both δ η c and δ α 2 exhibit, within experimental uncertainty, a linear dependence on the molecular weight. Using a hydrodynamic model of Brochard, this observation suggests that the chain behaves as a free-draining random coil, biased along the director. The temperature dependence of the relative viscosity increments, δ η c / η c ^o and δ α 2 / α 2 ^o, where η c ^o and α 2 ^o are the relevant solvent viscosities, exhibits Arrhenius behavior with an activation energy comparable to that for formation of hairpin turns in the spacer groups.

  4. Primitive models of chemical association. IV. Polymer Percus{endash}Yevick ideal-chain approximation for heteronuclear hard-sphere chain fluids

    SciTech Connect

    Kalyuzhnyi, Y.V. |; Lin, C.; Stell, G.

    1998-04-01

    We continue here our series of studies in which integral-equation theory is developed and used for the monomer-monomer correlation functions in a fluid of multicomponent freely jointed hard-sphere polymers. In this study our approach is based on Wertheim{close_quote}s polymer Percus{endash}Yevick (PPY) theory supplemented by the ideal-chain approximation; it can be regarded as a simplified version of Wertheim{close_quote}s four-density PPY approximation for associating fluids considered in the complete-association limit. The numerical procedure of this simplified theory is much easier than that of the original Wertheim{close_quote}s four-density PPY approximation, but the degree of accuracy is reduced. The theory can also be regarded as an extension of the PPY theory for the homonuclear polymer system proposed by Chang and Sandler [J. Chem. Phys. {bold 102}, 437 (1995)]. Their work is based upon a description of a system of hard-sphere monomers that associate into a polydisperse system of chains of prescribed mean length. Our theory instead directly describes a multicomponent system of associating monomers that form monodisperse chains of prescribed length upon complete association. An analytical solution of the PPY ideal-chain approximation for the general case of a multicomponent mixture of heteronuclear hard-sphere linear chain molecules is given. Its use is illustrated by numerical results for two models of copolymer fluids, a symmetrical diblock copolymer system, and an alternating copolymer system. The comparison with Monte Carlo simulations is given to gauge the accuracy of the theory. We find for the molecules we study here that predictions of our theory for heteronuclear chain systems have the same degree of accuracy as Chang and Sandler{close_quote}s theory for homonuclear chain systems. {copyright} {ital 1998 American Institute of Physics.}

  5. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Spruijt, Evan; Biesheuvel, P. M.; de Vos, Wiebe M.

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and chemical interactions between polymer chains and the surface. We compare our model predictions to data of a classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding energy of about 1.3 kBT per PVP segment at low p H . As the p H increases, the Si-OH groups become increasingly dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the adsorbed amount dropping sharply at a critical p H . Using this model for adsorption data on silica surfaces cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density of silanol groups.

  6. Organization of polymer chains onto long, single-wall carbon nano-tubes: effect of tube diameter and cooling method.

    PubMed

    Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G

    2014-01-14

    We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process. PMID:24437908

  7. The glass transition of polymers with different side-chain stiffness confined in free-standing thin films

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2015-02-01

    The effect of confinement on the glass transition temperature Tg of polymeric glass formers with different side chain stiffness is investigated by coarse-grained molecular dynamics simulations. We find that polymer with stiffer side groups exhibits much more pronounced Tg variation in confinement compared to that with relatively flexible side groups, in good agreement with experiments. Our string analysis demonstrates that the polymer species dependence of dynamics can be described by an Adam-Gibbs like relation between the size of cooperatively rearranging regions and relaxation time. However, the primary effect of changing side-group stiffness is to alter the activation barrier for rearrangement, rather than string size. We clarify that free-surface perturbation is the primary factor in determining the magnitude of Tg variation for polymers in confinement: It is more significant for polymers having higher Tg and results in much more pronounced reduction of surface Tg and then the overall Tg of the polymers.

  8. Phase behaviour of a dispersion of charge-stabilised colloidal spheres with added non-adsorbing interacting polymer chains.

    PubMed

    Gögelein, C; Tuinier, R

    2008-10-01

    We present a theory for the phase behaviour of mixtures of charge-stabilised colloidal spheres plus interacting polymer chains in good and theta -solvents within the framework of free-volume theory. We use simple but accurate combination rules for the depletion thickness around a colloidal particle and for the osmotic pressure up to the semi-dilute concentration regime. Hence, we obtain expressions for the free energy for mixtures of charged colloidal particles and non-adsorbing interacting polymers. From that, we calculate the phase behaviour, and discuss its topology in dependence on the competition between the charge-induced repulsion and the polymer-induced attraction. The homogeneous mixture of colloids and polymers becomes more stabilised against demixing when increasing the electrostatic repulsion. This charge-induced stabilisation is strongest for small polymer-to-colloid size ratios and is more pronounced for charged colloids mixed with polymers in a good solvent than for polymers in a theta -solvent. For the weakly charged regime we find that the phase diagram becomes salt-concentration-independent in the protein limit for charged colloids plus polymers in a theta -solvent. The liquid window, i.e., the concentration regimes where a colloidal liquid exists, is narrowed down upon increasing the charge-induced repulsion. Also this effect is more pronounced when charged colloids are mixed with polymer chains in a good solvent. In summary, we demonstrate that the solvent quality significantly influences the phase behaviour of mixtures of charged colloids plus non-adsorbing polymers if the range of the screened electrostatic repulsion becomes of the order of the range of the depletion-induced attraction. PMID:18791755

  9. Shape-Selectivity with Liquid Crystal and Side-Chain Liquid Crystalline Polymer SAW Sensor Interfaces

    SciTech Connect

    FRYE-MASON,GREGORY CHARLES; OBORNY,MICHAEL C.; PUGH,COLEEN; RICCO,ANTONIO; THOMAS,ROSS C.; ZELLERS,EDWARD T.; ZHANG,GUO-ZHENG

    1999-09-23

    A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.

  10. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications.

    PubMed

    Spanová, Alena; Horák, Daniel; Soudková, Eva; Rittich, Bohuslav

    2004-02-01

    Magnetic hydrophilic non-porous P(HEMA-co-EDMA), P(HEMA-co-GMA) and PGMA microspheres were prepared by dispersion (co)polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) or glycidyl methacrylate (GMA) in the presence of several kinds of magnetite. It was found that some components used in the preparation of magnetic carriers interfered with polymerase chain reaction (PCR). Influence of non-magnetic and magnetic microspheres, including magnetite nanoparticles and various components used in their synthesis, on the PCR course was thus investigated. DNA isolated from bacterial cells of Bifidobacterium longum was used in PCR evaluation of non-interfering magnetic microspheres. The method enabled verification of the incorporation of magnetite nanoparticles in the particular methacrylate-based polymer microspheres and evaluation of suitability of their application in PCR. Preferably, electrostatically stabilized colloidal magnetite (ferrofluid) should be used in the design of new magnetic methacrylate-based microspheres by dispersion polymerization. PMID:14698232

  11. Exploring the low temperature thermodynamics of lattice proteins and polymers with chain lengths > 1000

    NASA Astrophysics Data System (ADS)

    Wuest, Thomas

    2012-02-01

    Coarse-grained (lattice-) models have a long tradition in aiding to decipher the physical or biological complexity of polymers and proteins. Despite their simplicity however, numerical simulations of such models are often computationally very demanding and the quest for efficient algorithms is as old as the models themselves. I present a computational method based on Wang-Landau sampling in combination with suitable trial move sets which is particularly effective to study models such as the hydrophobic-polar (HP) lattice model of protein folding or its counterpart in polymer physics, the interactive self-avoiding walk (ISAW) at low temperatures. The approach provides a versatile and powerful mean for both the ground state search and the determination of the entire energy density of states (DOS) yielding reliable estimates of thermodynamic quantities for chain lengths > 4000 (ISAW) even in the very dense collapsed phase. The appearance of multiple low temperature pseudo-transitions for ISAWs will be elucidated. Further methodological improvements will be discussed.

  12. Large-scale simulations of a polymer melt/brush interface: Adhesion enhancement due to surface-tethered chains

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Grest, Gary; Stevens, Mark

    2000-03-01

    Many important adhesives consist of polymeric materials, that are used to bind together flat, hard surfaces. Experiments like the JKR pull test are able to measure the work needed to separate a polymer melt in contact with a flat substrate. Ignoring macroscopic dissipation mechanisms due to viscoelastic effects within the polymer melt, the work of adhesion is related to van der Waals forces between the substrate and melt. Recent experiments have shown that polymer chains tethered to the substrate enhance adhesion due to entanglements with the polymer melt. (L. Léger, E. Raphaël and H. Hervet, in Advances In Polymer Science), edited by S. Granick (Springer, Berlin, 1999), v. 138, p. 185. This increase in the work of adhesion (W_A) is a non-monotonic function of both the length (N) and surface density (σ) of the tethered chains. Using molecular dynamics (MD) simulations we study the dependence of WA on N, σ and the pulling rate. In our simulations, we also observe the various microscopic dissipation mechanisms such as pull-out and scission of the end-tethered chains, which is difficult to observe directly in an experiment. These large simulations are made possible by using a massively-parallel MD code run on Sandia's teraflop machine.

  13. Hydrothermal synthesis and structural characterization of two novel lanthanide supramolecular coordination polymers with nano-chains

    NASA Astrophysics Data System (ADS)

    Wan, Yong-Hong; Jin, Lin-Pei; Wang, Ke-Zhi

    2003-04-01

    Two novel lanthanide supramolecular coordination polymers, {[Nd 2(phth) 3(phen)(H 2O)]·H 2O} n ( 1, phth=phthalate, phen=1,10-phenanthroline) and {[Ho 2(phth) 3(phen)(H 2O) 2]·3H 2O} n ( 2), have been synthesized by hydrothermal method and characterized by X-ray diffraction. The results show that complex 1 crystallizes in triclinic space group P 1¯ with a=7.605(2) Å, b=12.972(4) Å, c=18.773(6) Å, α=109.778(5)°, β=91.657(5)°, γ=103.951(5)° and Z=2. Complex 1 has a one-dimentional nano-chain structure and the existence of hydrogen bonds and π- π interactions results in 2D network structure. Complex 2 crystallizes in triclinic space group P 1¯ with a=11.695(2) Å, b=13.488(3) Å, c=13.761(3) Å, α=87.09(3)°, β=67.40(3)°, γ=67.41(3)° and Z=2. Complex 2 features a zigzag double-chain and the hydrogen bonds lead to the formation of a three-dimensional network. Both Complex 1 and 2 have two metal environments.

  14. Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers.

    PubMed

    Mackey, Dana; O'Reilly, Paul; Naydenova, Izabela

    2016-05-01

    This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of [Appl. Opt.43, 2900 (2004)10.1364/AO.43.002900APOPAI1559-128X], which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in [J. Opt. Soc. Am. B27, 197 (2010)10.1364/JOSAB.27.000197JOBPDE0740-3224] by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behavior of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as well as material permeability, on refractive index modulation, refractive index profile, and grating distortion. The model reproduces many well-known experimental observations, such as the decrease of refractive index modulation at high spatial frequencies and appearance of higher harmonics in the refractive index profile when the diffusion rate is much slower than the polymerization rate. These properties are supported by a theoretical investigation which uses perturbation techniques to approximate the solution over various time scales. PMID:27140889

  15. The effect of chain stiffness on moisture diffusion in polymer hydrogel by applying obstruction-scaling model

    NASA Astrophysics Data System (ADS)

    Yang, Yoona; Chun, Myung-Suk

    2013-11-01

    In order to understand the moisture diffusion, we combine the obstruction-scaling model with the moisture clustering in confined spaces of the polymer hydrogel, with relevance to the performance of the super desiccant polymer. Special attention is focused on elucidating the effect of chain stiffness by considering the conformation of polymer chain on the basis of polymer physics. Relevant parameters for calculations are determined from literature information as well as the best fits for reported data performed with the copolymer. Our results exhibit the moisture diffusion decreases with increasing chain stiffness represented by the persistence length. Note that the larger persistence length provides smaller radius of openings in void spaces, resulting in the stronger hindrance effect on the moisture diffusion. Higher temperature makes the water molecules to be easier to form clusters, which provides the decrease in diffusivity. The increase of moisture diffusion at low humidity is attributed to the swelling of the chain, whereas its decrease at high humidity results from the water clustering.

  16. Monte Carlo simulations of a polymer chain conformation. The effectiveness of local moves algorithms and estimation of entropy.

    PubMed

    Mańka, Agnieszka; Nowicki, Waldemar; Nowicka, Grażyna

    2013-09-01

    A linear chain on a simple cubic lattice was simulated by the Metropolis Monte Carlo method using a combination of local and non-local chain modifications. Kink-jump, crankshaft, reptation and end-segment moves were used for local changes of the chain conformation, while for non-local chain rearrangements the "cut-and-paste" algorithm was employed. The statistics of local micromodifications was examined. An approximate method for estimating the conformational entropy of a polymer chain, based on the efficiency of the kink-jump motion respecting chain continuity and excluded volume constraints, was proposed. The method was tested by calculating the conformational entropy of the undisturbed chain, the chain under tension and in different solvent conditions (athermal, theta and poor) and also of the chain confined in a slit. The results of these test calculations are qualitatively consistent with expectations. Moreover, the obtained values of the conformational entropy of self avoiding chain with ends fixed over different separations, agree very well with the available literature data. PMID:23765038

  17. Triazine‐Based Sequence‐Defined Polymers with Side‐Chain Diversity and Backbone–Backbone Interaction Motifs

    PubMed Central

    Mo, Kai‐For; Daily, Michael D.

    2016-01-01

    Abstract Sequence control in polymers, well‐known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence‐defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H‐bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence‐defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen‐bonding motifs, and will thus enable new macromolecules and materials with useful functions. PMID:26865312

  18. Control of the anchoring behavior of polymer-dispersed liquid crystals: effect of branching in the side chains of polyacrylates.

    PubMed

    Zhou, Jian; Collard, David M; Park, Jung O; Srinivasarao, Mohan

    2002-08-28

    A temperature-driven anchoring transition in a polymer/nematic fluid composite that is far from the bulk nematic-isotropic transition temperature is reported. A series of poly(methylheptyl acrylates) were studied to probe the subtle effects of the side chain structure of the polymer on control of the anchoring. A polymer-dispersed liquid crystal film made from TL205 and 1-methylheptyl acrylate shows only planar anchoring over the temperature range studied, while the films made from TL205 and each of the other methylheptyl acrylates or n-heptyl acrylate show the homeotropic-to-planar anchoring transition at temperatures between 70 and 78 degrees C. An interfacial model is proposed in which the different conformation of the side chains is suggested as the cause for the dramatic difference in the observed anchoring behavior. PMID:12188649

  19. Importance of Chain Connectivity in the Formation of Non-covalent Interactions between Polymers and Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Linton, Dias; Miller, Brad C.; Li, Huimin; Feigerle, Charles; Sumpter, Bobby G.; Dadmun, Mark D.

    2009-03-01

    Our work is focused on understanding and utilizing non-covalent electron donor-acceptor (EDA) interactions between polymers and SWNT to optimize interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites with polymer bound electron donating 2-(dimethylamino)ethyl methacrylate or electron accepting acrylonitrile and cyanostyrene moieties leads to improved SWNT dispersion if the interacting functional group is a minor component of a copolymer matrix. Correlation of experimental (Raman mapping, Raman D* band peak shifts, and optical microscopy) and computational results indicates that chain connectivity is critical in controlling the accessibility of the functional groups to form EDA interactions. Thus, controlling the amount of e^- donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.

  20. Calculation of the Radius of Gyration for a Linear Flexible Polymer Chain with Excluded Volume Interaction.

    NASA Astrophysics Data System (ADS)

    Shanes, Fredrick Charles

    1990-01-01

    We have calculated the radius of gyration for a three dimensional linear flexible polymer chain with excluded volume interaction. The resulting < S^2> is written as a perturbation series in the dimensionless excluded volume parameter z, and the series is written to O(z ^4) as = (Ll/6)(1 + 1.276190476z - 2.081948603z^2 + 6.564897382z^3 - 26.70629003z^4 + ...) where z = (3/2pil) ^{3/2}omegaL^ {1/2} with l the effective segment length, L the contour length, and omegal^2 the effective binary cluster integral for a pair of segments. The perturbation theory used to calculate has recently been applied to the mean square end-to-end distance for a linear flexible polymer chain by Muthukumar and Nickel. The theory essentially uses the continuum limit of the two -parameter model, Laplace transforms, and a diagrammatic expansion in conjunction with field theory methods. The perturbation theory was found to be much simpler to implement than the usual cluster expansion method, and thus we were able to extend the series from the previously known O(z^2) to O(z^4 ). The perturbation series for < S^2> and are divergent, and are only valid for small z values. However, the most interesting information about these properties occurs for large z values. The large z limit of the and series were extracted by using the direct renormalization method, and estimates for the critical exponents and scaling amplitudes were obtained. A quantity that is of theoretical interest is the large z limit of the ratio 6/< R^2>, since it is believed to be a universal constant (i.e., independent of the model). We calculated the ratio by applying four different renormalization schemes to the perturbation series for and , and we obtained a final estimate of 6 / = 0.9631 +/- 0.0003. We also analysed the Monte Carlo self-avoiding walk data for the ratio and found the large chain limit of 6 / = 0.9602 +/- 0.0002. The

  1. Effect of chain stiffness on the competition between crystallization and glass-formation in model unentangled polymers

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong T.; Smith, Tyler B.; Hoy, Robert S.; Karayiannis, Nikos Ch.

    2015-10-01

    We map out the solid-state morphologies formed by model soft-pearl-necklace polymers as a function of chain stiffness, spanning the range from fully flexible to rodlike chains. The ratio of Kuhn length to bead diameter (lK/r0) increases monotonically with increasing bending stiffness kb and yields a one-parameter model that relates chain shape to bulk morphology. In the flexible limit, monomers occupy the sites of close-packed crystallites while chains retain random-walk-like order. In the rodlike limit, nematic chain ordering typical of lamellar precursors coexists with close-packing. At intermediate values of bending stiffness, the competition between random-walk-like and nematic chain ordering produces glass-formation; the range of kb over which this occurs increases with the thermal cooling rate | T ˙ | implemented in our molecular dynamics simulations. Finally, values of kb between the glass-forming and rodlike ranges produce complex ordered phases such as close-packed spirals. Our results should provide a useful initial step in a coarse-grained modeling approach to systematically determining the effect of chain stiffness on the crystallization-vs-glass-formation competition in both synthetic and colloidal polymers.

  2. The synthesis and imaging study of a series of novel photoactive polymers with diazoketo groups in their side chains

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zou, Yingquan; Yang, Yuchun; Huang, Yong; Liu, Qisheng; Niu, Huinan

    2009-12-01

    A kind of photoactive polymer with diazoketo groups in its side chains has been reported in SPIE and other related papers, and this photoactive polymer can be used in deep UV non-CARs (non-chemically amplified resists) system. Based on the work above, a series of novel photoactive monomers with substituents like phenyl, p-methylphenyl, p-methoxyphenyl, p-dimethylaminophenyl on the end of the molecule are designed and synthesized. By changing their substituents, the maximum-absorption wavelength of the photoactive monomers has been moved to 356nm, and it still has comparatively large absorption at 365nm (I-line). A series of photoactive polymers were obtained by polymerizing the monomer with methyl methacrylate and 2-hydroxyethyl methacrylate together. Upon irradiaton in the waveleng of 365nm, the diazoketo groups which are in the side chains of the photoactive polymers undergo the wolff rearrangment and afford ketens that react with water to provide base-soluble photoproducts. Applying this kind of photoactive polymers to non-CARs, a positive image can be obtained. This kind of photoactive polymers have great value in I-line non-CARs, TFT-LCD and IC discrete devices processing. And its anti-dry etching ability is enhanced by the introduction of the benzene ring.

  3. Static and dynamic properties of the interface between a polymer brush and a melt of identical chains.

    PubMed

    Pastorino, C; Binder, K; Kreer, T; Müller, M

    2006-02-14

    Molecular-dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model, which includes excluded volume and backbone connectivity of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and nonequilibrium molecular-dynamics simulations at constant temperature and volume using the dissipative particle dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The obtained boundary conditions and slip length show a rich behavior as a function of grafting density and shear velocity. PMID:16483239

  4. Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase

    NASA Astrophysics Data System (ADS)

    Zhao, Tongyang; Wang, Xiaogong

    2013-09-01

    In this study, dissipative particle dynamics (DPD) method was employed to investigate the translational diffusion of rodlike polymer in its nematic phase. The polymer chain was modeled by a rigid rod composed of consecutive DPD particles and solvent was represented by independent DPD particles. To fully understand the translational motion of the rods in the anisotropic phase, four diffusion coefficients, D_{||}u, D_ bot u, D_{||}n, D_ bot n were obtained from the DPD simulation. By definition, D_{||}n and D_ bot n denote the diffusion coefficients parallel and perpendicular to the nematic director, while D_{||}u and D_ bot u denote the diffusion coefficients parallel and perpendicular to the long axis of a rigid rod u. In the simulation, the velocity auto-correlation functions were used to calculate the corresponding diffusion coefficients from the simulated velocity of the rods. Simulation results show that the variation of orientational order caused by concentration and temperature changes has substantial influences on D_{||}u and D_ bot u. In the nematic phase, the changes of concentration and temperature will result in a change of local environment of rods, which directly influence D_{||}u and D_ bot u. Both D_{||}n and D_ bot n can be represented as averages of D_{||}u and D_ bot u, and the weighted factors are functions of the orientational order parameter S2. The effect of concentration and temperature on D_{||}n and D_ bot n demonstrated by the DPD simulation can be rationally interpreted by considering their influences on D_{||}u, D_ bot u and the order parameter S2.

  5. Liquid crystalline polymers in good nematic solvents: Free chains, mushrooms, and brushes

    SciTech Connect

    Williams, D.R.M. . Lab. de Physique de la Matiere Condensee); Halperin, A. . Dept. of Materials)

    1993-08-02

    The swelling of main chain liquid crystalline polymers (LCPs) in good nematic solvents is theoretically studied, focusing on brushes of terminally anchored, grafted LCPs. The analysis is concerned with long LCPs, of length L, with n[sub 0] >> 1 hairpin defects. The extension behavior of the major axis, R[parallel], of these ellipsoidal objects gives rise to an Ising elasticity with a free energy penalty of F[sub el](R[parallel])/kT [approx] n[sub 0] [minus] n[sub 0](1 [minus] R[parallel][sup 2]/L[sup 2])[sup 1/2]. The theory of the extension behavior enables the formulation of a Flory type theory of swelling of isolated LCPs yielding R[parallel] [approx] exp(2U[sub h]/5kT)N[sup 3/5] and R [perpendicular] [approx] exp([minus]U[sub h]/10kT)N[sup 3/5], with N the degree of polymerization and U[sub h] the hairpin energy. It also allows the generalization of the Alexander model for polymer brushes to the case of grafted LCPs. The behavior of LCP brushes depends on the alignment imposed by the grafting surface and the liquid crystalline solvent. A tilting phase transition is predicted as the grafting density is increased for a surface imposing homogeneous, parallel anchoring. A related transition is expected upon compression of a brush subject to homeotropic, perpendicular alignment. The effect of magnetic or electric fields on these phase transitions is also studied. The critical magnetic/electric field for the Frederiks transition can be lowered to arbitrarily small values by using surfaces coated by brushes of appropriate density.

  6. Impact of glucose polymer chain length on heat and physical stability of milk protein-carbohydrate nutritional beverages.

    PubMed

    Chen, Biye; O'Mahony, James A

    2016-11-15

    This study investigated the impact of glucose polymer chain length on heat and physical stability of milk protein isolate (MPI)-carbohydrate nutritional beverages containing 8.5% w/w total protein and 5% w/w carbohydrate. The maltodextrin and corn syrup solids glucose polymers used had dextrose equivalent (DE) values of 17 or 38, respectively. Increasing DE value of the glucose polymers resulted in a greater increase in brown colour development, ionic calcium, protein particle size, apparent viscosity and pseudoplastic rheological behaviour, and greater reduction in pH, hydration and heat stability on sterilisation at 120°C. Incorporation of glucose polymers with MPI retarded sedimentation of protein during accelerated physical stability testing, with maltodextrin DE17 causing a greater reduction in sedimentation velocity and compressibility of sediment formed than corn syrup solids DE38. The results demonstrate that chain length of the glucose polymer used strongly impacts heat and physical stability of MPI-carbohydrate nutritional beverages. PMID:27283657

  7. Synthesis and Photophysical Properties of Soluble Low-Bandgap Thienothiophene Polymers with Various Alkyl Side-Chain Lengths

    SciTech Connect

    Bae, W. J.; Scilla, C.; Duzhko, V. V.; Jo, Jang; Coughlin, E. B.

    2011-05-27

    We report the facile synthesis and characterization of a class of thienothiophene polymers with various lengths of alkyl side chains. A series of 2-alkylthieno[3,4-b]thiophene monomers (Ttx) have been synthesized in a two-step protocol in an overall yield of 28–37%. Poly(2-alkylthieno[3,4-b]thiophenes) (PTtx, alkyl: pentyl, hexyl, heptyl, octyl, and tridecyl) were synthesized by oxidative polymerization with FeCl₃ or via Grignard metathesis (GRIM) polymerization methods. The polymers are readily soluble in common organic solvents. The polymers synthesized by GRIM polymerization method (PTtx-G) have narrower molecular weight distribution (Ð) with lower molecular weight (Mn) than those synthesized by oxidative polymerization (PTtx-O). The band structures of the polymers with various lengths of alkyl side chains were investigated by UV–vis spectroscopy, cyclic voltammetry, and ultraviolet photoelectron spectroscopy. These low-bandgap polymers are good candidates for organic transistors, organic light-emitting diodes, and organic photovoltaic cells.

  8. Structure and Electronic Properties of Polymer Chains and Graphene Nanoribbon Formed by Molecular Self-Assembly on Au(111)

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Fuentes-Cabrera, Miguel A.; Sumpter, Bobby G.; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, J.

    Graphene nanoribbons (GNRs) with bandgaps are promising building blocks for ultra-fast electronics. Bottom-up synthesis of GNRs from aromatic hydrocarbon molecules has been proven to be an effective way to control GNR's width with atomically precise edge structures. Using scanning tunneling microscopy (STM), we study the formation of both linear polymer chains and narrow GNRs in the bottom-up self-assembly process with the DBBA molecules as the precursor on Au(111). The linear polymer chains are formed after the deposition of DBBA and 200 °C annealing for 30 min. The polymers can be converted to 7-AGNRs (seven-carbon wide armchair GNRs) after 400 °C annealing. Interestingly, second-layer polymer is seen to survive on the GNRs during the annealing process. This result indicates that the Au(111) substrate plays an important role in the dehydrogenation process and the formation of GNRs, which is confirmed by our DFT calculations. Electronically, the polymers show a bandgap of 3.4 eV, much larger than that of GNRs. After annealing at 500 °C for 30 min, wider GNRs can form: 14-AGNR, 21-AGNR. The 7-AGNR shows a typical edge state at -1.1 eV, while for 14-AGNR it is at -1.35 eV. Moreover, junctions of GNRs with different widths can be formed with pronounced boundary states.

  9. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506

  10. Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers.

    PubMed

    Fei, Zhuping; Pattanasattayavong, Pichaya; Han, Yang; Schroeder, Bob C; Yan, Feng; Kline, R Joseph; Anthopoulos, Thomas D; Heeney, Martin

    2014-10-29

    Three novel polythiophene isomers are reported whereby the only difference in structure relates to the regiochemistry of the solubilizing side chains on the backbone. This is demonstrated to have a significant impact on the optoelectronic properties of the polymers and their propensity to aggregate in solution. These differences are rationalized on the basis of differences in backbone torsion. The polymer with the largest effective conjugation length is demonstrated to exhibit the highest field-effect mobility, with peak values up to 4.6 cm(2) V(-1) s(-1). PMID:25302474

  11. Exploring the correlation between molecular conformation and optoelectronic properties of conjugated polymers : side-chain versus main-chain electron acceptors

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Chen; Huang, Ching-I.

    2013-03-01

    Polythiophene derivatives have been shown among the most promising materials for solar cell application because of their high charge mobility and light absorption. In the mostly studied, a recombination process often occurs, which is mainly due to the fact that the mobility of hole is much lower than that of electron. Hence, research about conjugated polymers containing donor-accepter pairs (such as PT-TPD) becomes quite popular because these materials have narrow band-gaps. Interestingly, these experimental studies have indicated a much more complex correlation between the optoelectronic properties and molecular conformation for polymers with acceptor units on either main or side chain. However, the effects associated with the molecular packing on the resultant chain conformation behavior and thereafter the optoelectronic properties have not been systematically discussed. In order to clarify the effects of the molecular conformation as well as the optoelectronic properties, we employ molecular dynamics and quantum mechanical methods to examine PBTTPD molecules with acceptor unit (TPD) on either main or side chain Computation resources from the National Center for High-Performance Computing of Taiwan and Computer and Information Networking Center of National Taiwan University.

  12. A hierarchical model for surface effects on chain conformation and rheology of polymer solutions. II. Application to a neutral surface

    NASA Astrophysics Data System (ADS)

    Mavrantzas, Vlasis G.; Beris, Antony N.

    1999-01-01

    In this part, the general formulation described in Part I is applied to the modeling of the behavior of a dilute polymer solution near a purely repulsive, planar solid surface, i.e., near a noninteracting wall. The static equilibrium problem is considered first. The model equations here reduce to a minimization problem for the Helmholtz free energy of the system, which results into the well known equilibrium condition that the chemical potentials of all chain conformations in the interfacial area should be equal to each other. The numerical results show that the loss of polymer conformational entropy in the interfacial region gives rise to a strong polymer depletion which extends up to a distance about three times the equilibrium root-mean-square polymer end-to-end distance. Next, the problem of a polymer solution flowing past the wall is investigated. Here, the full model equations need to be considered; these are solved numerically with a spectral collocation technique. The numerical results show that the flow field enhances polymer depletion phenomena near the wall relative to those observed under equilibrium (static) conditions: By increasing the shear stress, the polymer concentration in the interfacial area decreases, in full agreement with available experimental data. Moreover, the flow field is found to affect significantly the chain conformations near the wall: The applied shear stress is seen to extend the chains along a primary direction, ξ, and to depress them in the transverse direction, η. The depletion of the interfacial region in polymer molecules is further seen to lead to the formation of a boundary layer close to the wall, where the macroscopic fluid velocity increases rapidly from its zero value exactly at the wall to its asymptotic bulk profile, resulting into an apparent macroscopic slip at the wall. The theoretically calculated slip coefficient is found to be of the same order of magnitude with the experimentally measured one, as reported

  13. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix J.; Vogelsang, Jan; Lupton, John M.

    2016-06-01

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  14. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    NASA Astrophysics Data System (ADS)

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-07-01

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H2O}n (1), {[Zn(bib)(atbip)]·H2O}n (2), [Zn(bib)(2,2‧-tda)]}n (3) and {[Zn(bib)(5-tbipa)]·EtOH}n (4), (H2atibdc=5-amino-2,4,6-triiodoisophthalic acid, H2atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2‧-H2tad=2,2‧-thiodiacetic acid, 5-H2tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1-4. The fluorescent properties of complexes 1-4 were studied. In addition, the thermal decompositions properties of 1-4 were investigated by simultaneous TG/DTG-DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1-4 are calculated by the integral Kissinger's method and Ozawa-Doyle's method. The activation energy E (E1=209.658 kJ·mol-1, E2=250.037 kJ mol-1, E3=225.300 kJ mol-1, E4=186.529 kJ·mol-1) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH‡, ΔG‡ and ΔS‡) at the peak temperatures of the DTG curves were also calculated. ΔG‡>0 indicates that the skeleton collapse is not spontaneous. ΔHd>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. Their thermal decompositions properties of 1-4 were

  15. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein.

    PubMed

    Liu, Dejing; Yang, Qian; Jin, Susu; Song, Yingying; Gao, Junfei; Wang, Ying; Mi, Huaifeng

    2014-02-01

    Core-shell molecular imprinting of nanomaterials overcomes difficulties with template transfer and achieves higher binding capacities for macromolecular imprinting, which are more important to the imprinting of natural low-abundance proteins from cell extracts. In the present study, a novel strategy of preparing core-shell nanostructured molecularly imprinted polymers (MIPs) was developed that combined the core-shell approach with assistant recognition polymer chains (ARPCs). Vinyl-modified silica nanoparticles were used as support and ARPCs were used as additional functional monomers. Immunoglobulin heavy chain binding protein (BiP) from the endoplasmic reticulum (ER) was chosen as the model protein. The cloned template protein BiP was selectively assembled with ARPCs from their library, which contained numerous limited-length polymer chains with randomly distributed recognition and immobilization sites. The resulting complex was copolymerized onto the surface of vinyl-modified silica nanoparticles under low concentrations of the monomers. After template removal, core-shell-structured nanoparticles with a thin imprinted polymer layer were produced. The particles demonstrated considerably high adsorption capacity, fast adsorption kinetics and selective binding affinities toward the template BiP. Furthermore, the synthesized MIP nanoparticles successfully isolated cloned protein BiP from protein mixtures and highly enriched BiP from an ER extract containing thousands of kinds of proteins. The enrichment reached 115-fold and the binding capacity was 5.4 μg g(-1), which were higher than those achieved by using traditional MIP microspheres. The advantageous properties of MIP nanoparticles hold promise for further practical applications in biology, such as protein analysis and purification. PMID:24140608

  16. Dielectric properties of liquid-crystal azomethine polymer with a side alkyl-substituted chain, doped with fullerene C60

    NASA Astrophysics Data System (ADS)

    Kovalev, D. S.; Kostromin, S. V.; Musteaţa, V.; Cozan, V.; Bronnikov, S. V.

    2016-04-01

    We studied the actual and imaginary components of the dielectric constant of liquid-crystal azomethine polymer with a side chain, doped with 0.5 wt % of fullerene C60, over a wide range of temperatures and frequencies; measurements were made by means of dielectric spectroscopy. By analyzing the frequency dependence of the dielectric constant, we detected the relaxation processes (α, β1, and β2) in the nanocomposite, corresponding to certain modes of molecular motion and described them by the Arrhenius equations (β1- and β2-processes) and the Vogel-Fulcher-Tamman equation (α-process). An antiplasticization effect is discovered after doping the polymer with fullerene C60, which manifests itself in increasing the glass transition temperature of the nanocomposite compared to this parameter typical of pure polymer.

  17. Mechanochromism and Mechanical-Force-Triggered Cross-Linking from a Single Reactive Moiety Incorporated into Polymer Chains.

    PubMed

    Zhang, Huan; Gao, Fei; Cao, Xiaodong; Li, Yanqun; Xu, Yuanze; Weng, Wengui; Boulatov, Roman

    2016-02-01

    Incorporation of small reactive moieties, the reactivity of which depends on externally imposed load (so-called mechanophores) into polymer chains offers access to a broad range of stress-responsive materials. Here, we report that polymers incorporating spirothiopyran (STP) manifest both green mechanochromism and load-induced addition reactions in solution and solid. Stretching a macromolecule containing colorless STP converts it into green thiomerocyanine (TMC), the mechanically activated thiolate moiety of which undergoes rapid thiol-ene click reactions with certain reactive C=C bonds to form a graft or a cross-link. The unique dual mechanochemical response of STP makes it of potentially great utility both for the design of new stress-responsive materials and for fundamental studies in polymer physics, for example, the dynamics of physical and mechanochemical remodeling of loaded materials. PMID:26805709

  18. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. PMID:26454051

  19. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).

    PubMed

    Fairbanks, Benjamin D; Gunatillake, Pathiraja A; Meagher, Laurence

    2015-08-30

    RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired. PMID:26050529

  20. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Pozo, O.; Collin, D.; Finkelmann, H.; Rogez, D.; Martinoty, P.

    2009-09-01

    We study the complex shear modulus G of two side-chain liquid-crystal polymers (SCLCPs), a methoxy-phenylbenzoate substituted polyacrylate (thereafter called PAOCH3 ), and a cyanobiphenyl substituted polyacrylate supplied by Merck (thereafter called LCP105) using a piezoelectric rheometer. Two methods of filling the cell are used: (a) a capillary method, which can be used only at high temperature because of the low value of the viscosity, and (b) the classical one, thereafter called compression method, which consists in placing the sample between the two slides of the cell and to bring them closer. By filling the cell at high temperature either with the compression or the capillary method, we show that the response of both compounds is liquidlike ( G'˜f2 and G″˜f , where f is the frequency) for temperatures higher than a certain temperature T0 and gel-like (G'˜const,G″˜f) below T0 . This change in behavior from the conventional flow response to a gel-like response, when approaching the glass transition, is observed for nonsliding conditions and for very weak-imposed shear strains. It can be explained by a percolation-type mechanism of preglassy elastic clusters, which correspond to long-range and long-lived density fluctuations that are frozen at the time scale of the experiment. The sample response is therefore the sum of two contributions: one is due to the flow response of the polymer melt and the other to the elastic response of the network formed by the preglassy elastic clusters. By filling the cell below T0 with the compression method, both compounds exhibit a gel-type behavior by gently bringing closer the slides of the cell and an anomalous low-frequency behavior characterized by G'=const and G″=const by increasing the pressure used to bring closer the slides of the cell. A compression-assisted aggregation of the preglassy elastic clusters can explain both the increase in the low-frequency elastic plateau when the sample thickness is decreased

  1. Statistical mechanics of polymer chains grafted to adsorbing boundaries of fractal lattices embedded in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2014-11-01

    We study the adsorption problem of linear polymers, immersed in a good solvent, when the container of the polymer-solvent system is taken to be a member of the Sierpinski gasket (SG) family of fractals, embedded in the three-dimensional Euclidean space. Members of the SG family are enumerated by an integer b (2≤b<∞), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the surface critical exponents γ11,γ1, and γs which, within the self-avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with both, one, and no ends grafted to the adsorbing surface (adsorbing boundary), respectively. By applying the exact renormalization group method, for 2≤b≤4, we have obtained specific values for these exponents, for various types of polymer conformations. To extend the obtained sequences of exact values for surface critical exponents, we have applied the Monte Carlo renormalization group method for fractals with 2≤b≤40. The obtained results show that all studied exponents are monotonically increasing functions of the parameter b, for all possible polymer states. We discuss mutual relations between the studied critical exponents, and compare their values with those found for other types of lattices, in order to attain a unified picture of the attacked problem.

  2. Main-chain Chiral Smectic Polymers Showing a Large Electroclinic Effect in the SmA* Phase

    SciTech Connect

    Walba,D.; Yang, H.; Shoemaker, R.; Keller, P.; Shao, r.; Coleman, D.; Jones, C.; Nakata, M.; Clark, N.

    2006-01-01

    The synthesis and characterization of a main-chain smectic liquid-crystalline polymer system designed for development into electromechanical actuators is described. The chemical structure is chosen to provide a large electroclinic effect in the SmA* phase, with large concomitant layer shrinkage (a rare combination). The polymers are prepared by acyclic diene metathesis polymerization (ADMET) of liquid-crystalline ,-dienes. Oligomers with a degree of polymerization of {approx}10-30 are obtained using Grubbs first-generation catalyst, while oligomers with a degree of polymerization of {approx}200 are obtained using Grubbs second-generation catalyst. All polymer samples show the following phase sequence: I - SmA* - SmC* - Glass. X-ray analysis of polymer powder samples demonstrates the desired layer shrinkage at the SmA* - SmC* transition. The polymers form well-aligned fibers by pulling from the isotropic melt, and X-ray analysis of fibers in the SmA* phase shows that in the bulk of the fiber the layers are oriented perpendicular to the fiber axis, while at the surfaces there appears to be a thin sheath where the layers are parallel to the fiber/air interface. The desired layer shrinkage with tilt at the SmA* - SmC* transition in these fibers is seen as well, and in the SmC* phase the fibers exhibit an interesting conical chevron layer structure. Electro-optic investigation of aligned thin films of the polymer, prepared from quenched fiber glasses using a novel technique, exhibit a large electroclinic effect, with substantial degradation of alignment quality upon field-induced tilt. This degradation in alignment quality, coupled with the layer shrinkage at the SmA* - SmC* transition demonstrated by X-ray scattering, strongly suggests the desired layer shrinkage with electroclinic tilt is in fact occurring in the polymer films.

  3. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: effects of chain length and composition.

    PubMed

    Posel, Zbyšek; Posocco, Paola; Lísal, Martin; Fermeglia, Maurizio; Pricl, Sabrina

    2016-04-21

    In this work, the structural features of spherical gold nanoparticles (NPs) decorated with highly grafted poly(styrene) (PS), poly(vinylpyridine) (PVP) and PS-PVP diblock copolymer brushes immersed in a good solvent are investigated by means of Dissipative Particle Dynamics (DPD) simulations as a function of grafted chain length and of homopolymer and copolymer chain composition. For NPs grafted either by PS or PVP homopolymer brushes (selected as a proof of concept), good agreement between the Daoud-Cotton theory, experimental evidence, and our DPD simulations is observed in the scaling behavior of single chain properties, especially for longer grafted chains, and in brush thickness prediction. On the other hand, for grafted chain lengths comparable to NP dimensions parabolic-like profiles of the end-monomer distributions are obtained. Furthermore, a region of high concentration of polymer segments is observed in the monomer density distribution for long homopolymers. In the case of copolymer-decorated NPs, the repulsion between PS and PVP blocks is found to substantially influence the radius of gyration and the shape of the end-monomer distribution of the relevant polymer shell. Moreover, for diblock chains, the un-swollen region is observed to be thinner (and, correspondingly, the swollen layer thicker) than that of a NP modified with a homopolymer of the same length. Finally, the lateral segregation of PS and PVP blocks is evidenced by our calculations and a detailed analysis of the corona behavior is reported, thus revealing the key parameters in controlling the surface properties and the response of diblock copolymer modified nanoparticles. PMID:26980360

  4. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin

    2012-10-01

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  5. Dynamics of a self-avoiding polymer chain in slit, tube, and cube confinements.

    PubMed

    Cui, Ting; Ding, Jiandong; Chen, Jeff Z Y

    2008-12-01

    Monte Carlo simulations are presented for the observation of the dynamics of a self-avoiding polymer in three types of confinement: slit, tube, and cube. We pay special attention to the parameter regime where the characteristic confinement dimension is smaller than the radius of gyration of the unconfined polymer. On the basis of the bond-fluctuation model, we measured the rotation time of the end-to-end vector of the polymer, the diffusion time for the center of the polymer to move a distance comparable to the root mean square end-to-end distance, and the looping time for the ends of the polymer to approach each other from an open position. As functions of the confinement width and polymer length, these three time scales are discussed in light of scaling theories. PMID:19256859

  6. Dynamics of a self-avoiding polymer chain in slit, tube, and cube confinements

    NASA Astrophysics Data System (ADS)

    Cui, Ting; Ding, Jiandong; Chen, Jeff Z. Y.

    2008-12-01

    Monte Carlo simulations are presented for the observation of the dynamics of a self-avoiding polymer in three types of confinement: slit, tube, and cube. We pay special attention to the parameter regime where the characteristic confinement dimension is smaller than the radius of gyration of the unconfined polymer. On the basis of the bond-fluctuation model, we measured the rotation time of the end-to-end vector of the polymer, the diffusion time for the center of the polymer to move a distance comparable to the root mean square end-to-end distance, and the looping time for the ends of the polymer to approach each other from an open position. As functions of the confinement width and polymer length, these three time scales are discussed in light of scaling theories.

  7. Strain hardening in startup shear of long-chain branched polymer solutions.

    PubMed

    Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing

    2013-08-01

    We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding. PMID:23971617

  8. Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization in Undergraduate Polymer Science Lab

    ERIC Educational Resources Information Center

    Nguyen, T. L. U.; Bennet, Francesca; Stenzel, Martina H.; Barner-Kowollik, Christopher

    2008-01-01

    This 8-hour experiment (spread over two 4-hour sessions) is designed to equip students with essential skills in polymer synthesis, particularly in synthesizing polymers of well-defined molecular weight. The experiment involves the synthesis and characterization of poly(vinyl neodecanoate) via living free radical polymerization, specifically the…

  9. Surface segregation of fluorinated moieties on random copolymer films controlled by random-coil conformation of polymer chains in solution.

    PubMed

    Xue, Dongwu; Wang, Xinping; Ni, Huagang; Zhang, Wei; Xue, Gi

    2009-02-17

    The relationship between solution properties, film-forming methods, and the solid surface structures of random copolymers composed of butyl methacrylate and dodecafluorheptyl methylacrylate (DFHMA) was investigated by contact angle measurements, X-ray photoelectron spectroscopy, sum frequency generation vibrational spectroscopy, and surface tension measurements. The results, based on thermodynamic considerations, demonstrated that the random copolymer chain conformation at the solution/air interface greatly affected the surface structure of the resulting film, thereby determining the surface segregation of fluorinated moieties on films obtained by various film-forming techniques. When the fluorinated monomer content of the copolymer solution was low, entropic forces dominated the interfacial structure, with the perfluoroalkyl groups unable to migrate to the solution/air interface and thus becoming buried in a random-coil chain conformation. When employing this copolymer solution for film preparation by spin-coating, the copolymer chains in solution were likely extended due to centrifugal forces, thereby weakening the entropy effect of the polymer chains. Consequently, this resulted in the segregation of the fluorinated moieties on the film surface. For the films prepared by casting, the perfluoroalkyl groups were, similar to those in solution, incapable of segregating at the film surface and were thus buried in the random-coil chains. When the copolymers contained a high content of DFHMA, the migration of perfluoroalkyl groups at the solution/air interface was controlled by enthalpic forces, and the perfluoroalkyl groups segregated at the surface of the film regardless of the film-forming technique. The aim of the present work was to obtain an enhanced understanding of the formation mechanism of the chemical structure on the surface of the polymer film, while demonstrating that film-forming methods may be used in practice to promote the segregation of fluorinated

  10. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films.

    PubMed

    Mendels, Dan; Tessler, Nir

    2016-01-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system's mobility by more than 5 orders of magnitude with respect to 'standard' amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered. PMID:27405103

  11. Thermodynamics of polymer nematics described with a worm-like chain model: particle-based simulations and SCF theory calculations

    NASA Astrophysics Data System (ADS)

    Greco, Cristina; Yiang, Ying; Kremer, Kurt; Chen, Jeff; Daoulas, Kostas

    Polymer liquid crystals, apart from traditional applications as high strength materials, are important for new technologies, e.g. Organic Electronics. Their studies often invoke mesoscale models, parameterized to reproduce thermodynamic properties of the real material. Such top-down strategies require advanced simulation techniques, predicting accurately the thermodynamics of mesoscale models as a function of characteristic features and parameters. Here a recently developed model describing nematic polymers as worm-like chains interacting with soft directional potentials is considered. We present a special thermodynamic integration scheme delivering free energies in particle-based Monte Carlo simulations of this model, avoiding thermodynamic singularities. Conformational and structural properties, as well as Helmholtz free energies are reported as a function of interaction strength. They are compared with state-of-art SCF calculations invoking a continuum analog of the same model, demonstrating the role of liquid-packing and fluctuations.

  12. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films

    NASA Astrophysics Data System (ADS)

    Mendels, Dan; Tessler, Nir

    2016-07-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system’s mobility by more than 5 orders of magnitude with respect to ‘standard’ amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered.

  13. Fabrication of chain-like Mn 2O 3 nanostructures via thermal decomposition of manganese phthalate coordination polymers

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Mohandes, Fatemeh; Davar, Fatemeh; Saberyan, Kamal

    2009-12-01

    A novel manganese coordination polymer [Mn(Pht)(H 2O)] n as a precursor was obtained by chemical precipitation involving an aqueous solution of anhydrous manganese acetate and phthalate anion as a potential O-banded ligand. Fourier transform infrared (FT-IR) results proved that phthalate anions coordinate to metal cations as a chelating bidentate ligand, making polymeric structure. The Mn 2O 3 nanostructures have been prepared via thermal decomposition of as-prepared manganese phthalate polymers as precursor in the presence of oleic acid (OA) and triphenylphosphine (TPP) as a stabilizer and capping. Different approaches such as FT-IR, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied to characterize the products. TEM images and XRD analysis indicated that the as-synthesized chain-like Mn 2O 3 has a crystal phase of cubic syngony with a mean size of ˜40 nm.

  14. Migration insertion polymerization (MIP) of cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP): a new concept for main chain metal-containing polymers (MCPs).

    PubMed

    Wang, Xiaosong; Cao, Kai; Liu, Yibo; Tsang, Brian; Liew, Sean

    2013-03-01

    We report a conceptually new polymerization technique termed migration insertion polymerization (MIP) for main chain metal-containing polymer (MCP) synthesis. Cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP) is synthesized and polymerized via MIP, resulting in air stable poly(cyclopentadienylcarbonyldiphenylphosphinobutanoyliron) (PFpP) displaying narrow molecular weight distribution. The backbone of PFpP contains asymmetric iron units connected by both phosphine coordination and Fe-acyl bonds, which is representative of a new type of polymer. Furthermore, PFpP is tested to be soluble in a wide range of organic solvents and shown to possess reactive Fp end groups. PFpP amphiphiles have therefore been prepared via an end group migration insertion reaction in the presence of oligoethylene phosphine. PMID:23425192

  15. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films

    PubMed Central

    Mendels, Dan; Tessler, Nir

    2016-01-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system’s mobility by more than 5 orders of magnitude with respect to ‘standard’ amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered. PMID:27405103

  16. Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers.

    PubMed

    Ata, Seisuke; Kobashi, Kazufumi; Yumura, Motoo; Hata, Kenji

    2012-06-13

    By using long single-walled carbon nanotubes (SWNTs) as a filler possessing the highest aspect ratio and small diameter, we mimicked the chain structure of polymers in the matrix and realized a highly conductive elastomeric composite (30 S/cm) with an excellent mechanical durability (4500 strain cycles until failure), far superior to any other reported conductive elastomers. This exceptional mechanical durability was explained by the ability of long and traversing SWNTs to deform in concert with the elastomer with minimum stress concentration at their interfaces. The conductivity was sufficient to operate many active electronics components, and thus this material would be useful for practical stretchable electronic devices. PMID:22546049

  17. Evidence for Distinct Polymer Chain Orientations in KC{sub 60} and RbC{sub 60 }

    SciTech Connect

    Launois, P.; Moret, R.; Hone, J.; Zettl, A. |

    1998-11-01

    The KC{sub 60} and RbC{sub 60} polymer phases exhibit contrasting electronic properties while powder diffraction studies have revealed no definite structural difference. We have performed single crystal x-ray diffraction and diffuse scattering studies of these compounds. It is found that KC{sub 60} and RbC{sub 60} possess different chain orientations about their axes, which are described by distinct space groups Pmnn and I2/m , respectively. Such a structural difference will be of great importance to a complete understanding of the physical properties. {copyright} {ital 1998} {ital The American Physical Society}

  18. Molecular engineering of side-chain liquid crystalline polymers by living cationic polymerization using Webster`s initiating system

    SciTech Connect

    Percec, V.

    1993-12-31

    Webster`s cationic initiating system (HO{sub 3}SCF{sub 3}/SMe{sub 2}) (Macromolecules, 23, 1918 (1990)) was shown by us (for a review see Adv. Mater., 4, 548 (1992)) to polymerize, via a living mechanism, mesogenic vinyl ethers which contain a large variety of functional groups. This is mostly because SMe{sub 2} is a softer nucleophile than any of the functional groups available in these monomers. The molecular engineering of side-chain liquid crystalline polymers with conventional and complex architectures via this polymerization technique will be discussed.

  19. New syndioregic main-chain, nonlinear optical polymers, and their ellipsometric characterization

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Nee, Soe-Mie F.; Hoover, James M.; Stenger-Smith, John D.; Henry, Ronald A.; Kubin, R. F.; Seltzer, Michael D.

    1991-12-01

    New nonlinear optical polymers (NLOP) having potential utility in waveguides for the modulation and switching of optical signals are reported. A new class of chromophoric polymers which assume a folded, polar conformation of the backbone have been prepared. The polymers have a syndioregic arrangement of chromophores within the backbone (i.e., a head-to-head, tail-to-tail configuration). Polymers were synthesized by the polymerization of difunctional, precoupled pairs of chromophores and difunctional, bridging groups. Glassy, noncentrosymmetric films were prepared by electric field poling and by Langmuir-Blodgett (LB) deposition. Characterization of multilayer LB films by null ellipsometry to determine the anisotropic refractive parameters was performed at different angles of incidence and at a wavelength of 1.0 (mu).

  20. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  1. The effects of long-chain polymers on tip vortex flow and cavitation inception

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Hsiao, Chao-Tsung; Chahine, Georges L.

    2011-11-01

    Experiments have shown that propeller/hydrofoil tip vortex cavitation can be suppressed by properly injecting dilute polymer solutions at the tip. However, the mechanisms for this phenomenon are not well understood yet. To understand better the underlying flow physics the tip vortex flow generated by a rotating propeller in water and a dilute polymer solution (FENE-P model) was numerically simulated. It is found that the vortex flow structure is changed by the non-Newtonian features of polymers. Phenomenally the vortical rotation in a polymer solution is slower and the vortex center pressure is higher than in water. The non-Newtonian stress is much stronger than the Newtonian stresses in water. To further understand the non-Newtonian stresses contribution, the FENE-P model is also applied to a simplified quasi-cylindrical vortex. It is found analytically that in addition to the three normal stresses that are expected to be quadratic in the shear rate, one of the shear components is also quadratic. We also studied polymer effects on the dynamics of a bubble nucleus in the tip vortex. The bubble was found to grow to an elongated large cavity in water while it collapses in the polymer solution for the same cavitation number. This work was supported by the Office of Naval Research, Contract N00014-04-C-0110, monitored by Dr. Ki-Han Kim.

  2. Co-assembly of Zn(SPh){sub 2} and organic linkers into helical and zig-zag polymer chains

    SciTech Connect

    Liu Yi; Yu Lingmin; Loo, Say Chye Joachim; Blair, Richard G.; Zhang Qichun

    2012-07-15

    Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (EG=ethylene glycol) (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized under solvothermal conditions at 150 Degree-Sign C or room temperature by the co-assembly of Zn(SPh){sub 2} and organic linkers such as 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPyTA) and 1,3-bis(trans-4-pyridylvinyl)benzene (BPyVB). X-ray crystallography study reveals that both polymers 1 and 2 crystallize in space group P2{sub 1}/c of the monoclinic system. The solid-state UV-vis absorption spectra show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. - Graphical abstract: Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized. Solid-state UV-vis absorptions show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Two novel one-dimensional coordination polymers have been synthesized. Black-Right-Pointing-Pointer TPyTA results in helical structures in 1 while BPyVB leads to zig-zag chains in 2. Black-Right-Pointing-Pointer Solid-state UV-vis absorption spectra and TGA analysis of the title polymers were studied.

  3. Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates.

    PubMed

    Stempfle, Florian; Ortmann, Patrick; Mecking, Stefan

    2016-04-13

    Other than their established short-chain congeners, polycondensates based on long-chain difunctional monomers are often dominated by the long methylene sequences of the repeat units in their solid-state structures and properties. This places them between traditional polycondensates and polyethylenes. The availability of long-chain monomers as a key prerequisite has benefited much from advances in the catalytic conversion of plant oils, via biotechnological and purely chemical approaches, likewise. This has promoted studies of, among others, applications-relevant properties. A comprehensive account is given of long-chain monomer syntheses and the preparation and physical properties, morphologies, mechanical behavior, and degradability of long-chain polyester, polyamides, polyurethanes, polyureas, polyacetals, and polycarbonates. PMID:27023340

  4. Influence of Belousov-Zhabotinsky substrate concentrations on autonomous oscillation of polymer chains with Fe(bpy)3 catalyst.

    PubMed

    Hara, Yusuke; Mayama, Hiroyuki; Fujimoto, Kenji

    2014-06-19

    We studied the effect of initial substrate concentrations in the Belousov-Zhabotinsky (BZ) reaction on the optical transmittance self-oscillation behavior of a polymer chain consisting of N-isopropylacrylamide (NIPAAm) and a Fe catalyst ([Fe(bpy)3]). The driving force of this transmittance self-oscillation was the solubility difference between the reduced and oxidized states of the [Fe(bpy)3] moiety in the polymer chain. The amplitude of the soluble-insoluble self-oscillation of poly(NIPAAm-co-[Fe(bpy)3]) was significantly smaller than that of poly(NIPAAm-co-[Ru(bpy)3]). Theoretical simulation results attributed this behavior to the small difference in the solvent qualities, C*, of the reduced and oxidized states. Furthermore, we clarified that poly(NIPAAm-co-[Fe(bpy)3]) required a narrower concentration range of HNO3 to exhibit self-oscillation than poly(NIPAAm-co-[Ru(bpy)3]), since transmittance self-oscillation occurred only for [HNO3] = 0.3 M. The period of self-oscillation of poly(NIPAAm-co-[Fe(bpy)3]) in solution was controlled mainly by NaBrO3 concentration and was hardly influenced by the initial concentration of malonic acid. PMID:24853126

  5. A statistical theory of coil-to-globule-to-coil transition of a polymer chain in a mixture of good solvents

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kalikin, N. N.; Kiselev, M. G.

    2016-05-01

    We present an off-lattice statistical model of a single polymer chain in mixed-solvent media. Taking into account the polymer conformational entropy, renormalization of solvent composition near the polymer backbone, the universal intermolecular excluded-volume and van der Waals interactions within the self-consistent field theory, the reentrant coil-to-globule-to-coil transition (co-nonsolvency) has been described in this paper. For convenience we split the system volume in two parts: the volume occupied by the polymer chain and the volume of bulk solution. Considering the equilibrium between two sub-volumes, the polymer solvation free energy as a function of radius of gyration and co-solvent mole fraction within internal polymer volume has been obtained. Minimizing the free energy of solvation with respect to its arguments, we show two qulitatively different regimes of co-nonsolvency. Namely, at sufficiently high temperature the reentrant coil-to-globule-to-coil transition proceeds smoothly. On the contrary, when the temperature drops below a certain threshold value a coil-globule transition occurs in the regime of first-order phase transition, i.e., discontinuous changes of the radius of gyration and the local co-solvent mole fraction near the polymer backbone. We show that, when the collapse of the polymer chain takes place, the entropy and enthalpy contributions to the solvation free energy of the globule strongly grow. From the first principles of statistical thermodynamics we confirm earlier speculations based on the MD simulations results that the co-nonsolvency is the essentially enthalpic-entropic effect and is caused by enthalpy-entropy compensation. We show that the temperature dependences of the solution heat capacity change due to the solvation of the polymer chain are in qualitative agreement with the differential scanning calorimetry data for PNIPAM in aqueous methanol.

  6. Exploiting Supramolecular Interactions for the Intramolecular Folding of Side-Chain Functionalized Polymers and Assembly of Anisotropic Colloids

    NASA Astrophysics Data System (ADS)

    Romulus, Joy

    The overarching goal presented in this thesis is the self-assembly of synthetic systems into higher ordered structures utilizing supramolecular chemistry. Noncovalent interactions including charge-transfer and hydrogen bonding as well as DNA hybridization are exploited to induce the assembly of polymers and colloids into well-defined architectures. This strategy provides a tunable handle on materials bulk properties that can be adjusted by simply changing variables such as temperature and solvent. A brief overview of design principles for the supramolecular assembly of side-chain functionalized polymers is presented. The polymerization technique selected was living ring-opening metathesis polymerization (ROMP), thus affording control over molecular weight and molecular weight distributions. ROMP also allowed for the incorporation of functional groups that were used to assemble the polymers into ordered structures. Charge-transfer motifs were exploited and shown to drive the assembly of random and alternating copolymers via intramolecular side-chain interactions. Incorporation of complementary hydrogen bonding motifs was shown to guide the single-chain folding of a multifunctional triblock copolymer into sheet-like structures. Precision over the size, shape, and monomer sequence were identified as key elements for efficient self-assembly. The self-assembly of colloids using DNA hybridization was also investigated. Previously, the majority of colloid-based research relied upon the self-assembly of spherical isotropic particles into closed-packed arrangements. In contrast, anisotropic particles may allow for the realization of open structures. By expanding upon a method to permanently cross-link DNA strands incubated on a colloidal surface, a new strategy to engineer patchy particles is described. These functional DNA-coated patches are demonstrated to direct particle assembly. The self-assembly of polymer and colloidal systems utilizing noncovalent interactions

  7. Effect of side-chain carbonyl groups on the interface of vinyl polymers with water.

    PubMed

    Oda, Yukari; Horinouchi, Ayanobu; Kawaguchi, Daisuke; Matsuno, Hisao; Kanaoka, Shokyoku; Aoshima, Sadahito; Tanaka, Keiji

    2014-02-11

    The nature of the polymer-water interface in the poly(methyl 2-propenyl ether) (PMPE)-water model system is investigated by sum-frequency generation spectroscopy, which at the moment gives the best depth resolution among available techniques. PMPE, synthesized via living cationic polymerization, is structurally similar to poly(methyl methacrylate) (PMMA) except for lacking a carbonyl group. We here probe the polymer local conformation as well as the aggregation states of water at the interface. Comparing the results of our measurements to the PMMA-water system, the effect of a carbonyl group on the water structure at the interface is discussed. This knowledge should be crucial to the design and construction of highly functionalized polymer interfaces for bioapplications. PMID:24467626

  8. Translocation of a Polymer Chain Through a Nanopore Starting From a Confining Nanotube: The Limit of high Peclet Numbers

    NASA Astrophysics Data System (ADS)

    Slater, Gary W.; Sean, David; de Haan, Hendrick

    2015-03-01

    We use Langevin Dynamics simulations to study a scenario where a confining nanotube is used as a way to limit the range of conformations available to a polymer chain prior to driven translocation. We find that the tube not only reduces the variance in translocation times (a useful result for practical applications), but also that the elongated polymer conformations yield longer translocation times (also a useful result) that can be dominated by the post-propagation process when the diameter of the nanotube is smaller than a universal critical value. We adapt the tension propagation theory for this geometry and find agreement with the simulations using a single friction parameter to model the roles of both the nanopore and the crowding. To gain insight into the physical mechanisms behind this effective friction, we systematically remove i) crowding on the trans-side and/or ii) monomer collisions with the membrane containing the nanopore. We find that higher Peclet numbers increase the impact of crowding on the trans side but diminish the impact of the friction between the nanopore and the polymer.

  9. Crystal-to-crystal transformation from a chain compound to a layered coordination polymer.

    PubMed

    Shi, Jinbiao; Zhang, Yan; Zhang, Bin; Zhu, Daoben

    2016-01-01

    A crystal-to-crystal transformation was observed from a green chain compound CuBr2(1,4-dioxane)2(H2O)2 (1) to a brown layered compound (CuBr2)3(1,4-dioxane)2 (2). The hydrogen bond connecting chains in were replaced by a μ-Br bridge in and the antiferromagnetic interaction between the metal atoms in became stronger than in 1. PMID:26600206

  10. Influence of alkyl chain length on charge transport in symmetrically substituted poly(2,5-dialkoxy- p -phenylenevinylene) polymers

    NASA Astrophysics Data System (ADS)

    Tuladhar, Sachetan M.; Sims, Marc; Kirkpatrick, James; Maher, Robert C.; Chatten, Amanda J.; Bradley, Donal D. C.; Nelson, Jenny; Etchegoin, Pablo G.; Nielsen, Christian B.; Massiot, Philippe; George, Wayne N.; Steinke, Joachim H. G.

    2009-01-01

    We report on the hole transport characteristics, as measured by time of flight, of a family of symmetrically substituted dialkoxy poly( p -phenylenevinylene) polymers with different side-chain length. As side-chain length is decreased, the magnitude of the hole mobility μh increases while the field dependence of μh becomes more positive and the temperature dependence of μh becomes stronger. For the shortest side-chain derivative studied, μh exceeds 10-4cm2V-1s-1 at electric fields greater than 105Vcm-1 . The trend in magnitude of μh with side-chain length is consistent with the expected increase in electronic wave-function overlap as interchain separation decreases, while the trends in electric-field and temperature dependences of μh are consistent with increasing site energy disorder. We show that the electrostatic contribution to the site energy difference for pairs of oligomers follows the observed trend as a function of interchain separation, although the pairwise contribution is too small to explain the data quantitatively. Nonresonant Raman spectroscopy is used to characterize the microstructure of our films. We construct spatial maps of the Raman ratio I1280/I1581 and confirm an expected decrease in average film density with side-chain extension. The structural heterogeneity in the maps is analyzed but no clear correlation is observed with transport properties, suggesting that the structural variations relevant for charge transport occur on a length scale finer than the resolution of ˜1μm .

  11. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  12. Peculiarities in gel permeation chromatography of flexible-chain polymers on macroporous swelling sorbents.

    PubMed

    Belenkii, B G; Vilenchik, L Z; Nesterov, V V; Kolegov, V J; Frenkel, S Y

    1975-06-18

    In gel permeation chromatography on macroporous swelling sorbents, deviations from the Benoit principle of universal calibration were observed. It is suggested that these are caused by different degrees of thermodynamic compatibility of the eluted polymers with the sorbent matrix. PMID:1150817

  13. Thermally triggered reversible transformation between parallel staggered stacking and plywood-like stacking of 1D coordination polymer chains.

    PubMed

    Sun, Jian-Ke; Jin, Xu-Hui; Chen, Chao; Zhang, Jie

    2010-08-01

    An unusual example showing reversible interconversion of chain-like isomers under controlled experimental settings is reported, which illustrates the key role of assembly conditions for the target packing architecture with related properties. The reaction of Mn(II) ions with an organic ligand 2-hydroxypyrimidine-4,6-dicarboxylic acid (H(3)hpdc) at room temperature gives a coordination polymer {[Mn(3)(hpdc)(2)(H(2)O)(6)] x 2 H(2)O}(n) containing parallel staggered stacking, whereas the reaction under hydrothermal conditions at 150 degrees C affords a compound {[Mn(3)(hpdc)(2)(H(2)O)(6)] x H(2)O}(n) possessing plywood-like stacking. Interestingly, two compounds contain similar one-dimensional chain components with different orientations that can be controlled by thermodynamic factors. Thermally triggered reversible interconversion of the two compounds was verified by X-ray powder, IR, and element analysis. The spin-canted antiferromagnetic behaviors are observed in as-synthesized samples, and the influence of chain orientations on magnetic properties has been detected. PMID:20608747

  14. Elastic coefficient of a single polymer chain by using Brownian dynamics analysis

    NASA Astrophysics Data System (ADS)

    Horinaka, J.; Maniwa, T.; Oharada, K.; Takigawa, T.

    2007-08-01

    The elastic coefficient of a single polystyrene chain has been experimentally evaluated by using Brownian dynamics analysis. The Brownian motion of the chain is probed using a particle trapped by optical tweezers with a negligibly small spring constant. The displacement of the particle due to Brownian motion is measured by an interferometer assembled using the same laser beam as the optical tweezers. Two methods are employed for Brownian dynamics analysis: (1) the analysis of the time course of the displacement of the particle and (2) the fitting of the power spectrum of Brownian motion with a Lorentzian. The elastic constant of a polystyrene chain in dichloromethane at 21 °C is estimated to be 6.4×10-6 and 1.1×10-5 N/m when methods (1) and (2) are employed, respectively. The elastic constant obtained by approximating the polystyrene chain to a freely jointed chain is in agreement with the experimentally evaluated elastic constant.

  15. Surface Dynamics of Free PS Chains on Chemically Identical Polymer Brushes: An XPCS Study

    NASA Astrophysics Data System (ADS)

    Ugur, Gokce; Akgun, Bulent; Jiang, Zhang; Narayanan, Suresh; Brittain, William J.; Foster, Mark D.

    2009-03-01

    We found no relaxation of fluctuations of the brush surfaces within the range of time (0.2 -1100 s) and length scale (0.6-3 um) studied by X-ray photon correlation spectroscopy(XPCS). This is true for PS brushes of thicknesses of 9 - 101 nm and grafting density of 0.12-0.6 chains/nm^2 at temperatures up to 130C above bulk Tg. Results on the dynamics of a layer of untethered 2.2k PS chains on top of a PS brush surface show that placing the PS chains atop the brush dramatically slows down the surface relaxations of the film surface. As the ratio of the thickness of the layer of untethered chains to the thickness of the highly dense brush drops below ˜0.5, the surface relaxations become too slow to be observed readily with XPCS. Reducing grafting density of the underlying brush markedly slows the surface dynamics. The surface dynamics of the layer of ``free'' PS chains are coupled with those of the underlying brush.

  16. Neutron reflectivity as a tool to study the interdigitation of grafted polymer chains and its dynamics

    NASA Astrophysics Data System (ADS)

    Leger, Liliane; Restagno, Frédéric; Cousin, Fabrice; Boue, François; Chenneviere, Alexis

    Three series of experiments aimed at characterizing the interdigitation between a brush and a melt, and based on neutron reflectivity, are presented and discussed. The density profile of brush chains has been analysed for series of annealing times, on h-PS brushes in contact with d-PS melts, as a function of molecular weights and grafting densities. We show that the relaxation dynamics of the brush chains can be modelled taking into account the long relaxation time of end tethered chains along with the reptation of the melt chains which accelerates the arm retraction process. Using a non-grafted layer with a thickness smaller than the equilibrium size of the brush when immersed into a thick melt allows one to apply chosen degrees of confinement to the brush. We show that the interdigitation dynamics is affected by such confinements, in a way reminiscent of the change of the glass transition temperature in nanometric PS films. Finally, when the upper d-PS layer is sheared above Tg, flow with large slip at the wall has been observed and interpreted in terms of stretching and expulsion of the grafted chains from the melt. We show how neutron reflectivity directly evidence this expulsion.

  17. Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?

    PubMed

    Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish

    2014-08-28

    The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional

  18. Effect of Long-chain Branching on Surface Dynamics of Polymer Films

    NASA Astrophysics Data System (ADS)

    Foster, Mark D.; Wang, Shih-Fan; Lee, Jae Sik; Yang, Sewoo; Jiang, Zhang; Narayanan, Suresh; Wu, David

    2009-03-01

    Thermally stimulated fluctuations of the surface of films of branched polystyrene chains have been studied using x-ray photon correlation spectroscopy (XPCS), a recently-developed technique that has already been applied to study the surfaces of melts of linear polystyrene chains. Surface relaxations of films of branched chains are faster than are those of films of linear analogs. However, the Tg's of the branched molecules are also lower. The variation in surface relaxation time as a function of scattering vector can be described well by a continuum hydrodynamic theory of thermally stimulated capillary waves with a nonslip boundary condition. However, the film viscosities inferred from fits of the theory to the data differ markedly from viscosities from bulk measurements. Acknowledgements: NSF support (CBET 0730692)

  19. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    NASA Astrophysics Data System (ADS)

    Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.

    2014-06-01

    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot

  20. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang

    2016-07-01

    Two zinc coordination polymers {[Zn2(TPPBDA)(oba)2]·DMF·1.5H2O}n (1), {[Zn(TPPBDA)1/2(tpdc)]·DMF}n (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn2(CO2)4] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn2+. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail.

  1. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays

    PubMed Central

    2013-01-01

    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor–donor–acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have been functionalized with the hydrogen bonding motifs. PMID:24478529

  2. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage.

    PubMed

    Arkın, Handan; Janke, Wolfhard

    2013-02-01

    In a recent computational study, we found highly structured conformations for the polymer-attractive sphere model system. Those conformations are of highly ordered spherical shape or form two-dimensional planar, compact to extended, random coil structures. The observed conformations range from desorbed to partially or even completely adsorbed. In order to present their shape characteristics, here we calculate the gyration tensor and related shape descriptors. PMID:23406146

  3. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    SciTech Connect

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of the crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.

  4. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  5. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  6. Scaling of the rupture dynamics of polymer chains pulled at one end at a constant rate.

    PubMed

    Fugmann, S; Sokolov, I M

    2009-02-01

    We consider the rupture dynamics of a homopolymer chain pulled at one end at a constant loading rate r . Compared to single bond breaking, the existence of the chain introduces two aspects into rupture dynamics: The non-Markovian aspect in the barrier crossing and the slow down of the force propagation to the breakable bond. The relative impact of both these processes is investigated, and the second one was found to be the most important at moderate loading rates. The most probable rupture force is found to decrease with the number of bonds as f{max} proportional, variant-[ln(const N/r)]2/3 and finally to approach a saturation value independent on N . All of our analytical findings are confirmed by extensive numerical simulations. PMID:19391768

  7. Distinct polymer chain orientations in KC{sub 60} and RbC{sub 60}

    SciTech Connect

    Launois, P.; Moret, R.; Erwin, S. C.; Hone, J.; Zettl, A.

    1999-09-30

    Polymerized alkali fullerides KC{sub 60} and RbC{sub 60} display different electronic properties. Single crystal X-ray diffraction and diffuse scattering studies show that the C{sub 60} chains possess different relative orientations about their axes. We will discuss this result in relation with electronic band structure calculations. The influence of pressure will also be discussed. (c) 1999 American Institute of Physics.

  8. The effect of side-chain length on the solid-state structure and optoelectronic properties of fluorene-alt-benzothiadiazole based conjugated polymers--a DFT study.

    PubMed

    Eslamibidgoli, Mohammad J; Lagowski, Jolanta B

    2012-11-01

    Using the dispersion corrected density functional theory (DFT-D/B97D) approach, we have performed bulk solid-state calculations to investigate the influence of side-chain length on the molecular packing and optoelectronic properties of poly (9,9-di-n-alkylfluorene-alt-benzothiadiazole) or FnBT's where n is the number of CH(2) units in the alkyl side-chains. Our results indicate that the FnBT's with longer side-chains in their most stable configurations, due to the significant intermolecular interactions between the side-chains, form lamellar crystal structures. On the other hand, for the FnBT's with shorter side-chains, two nearly degenerate stable crystal structures with nearly hexagonal symmetries have been found. These different packing structures can be attributed to the microphase separations between the flexible side-chains and the rigid backbones whose existence has been discussed in previous investigations for other hairy rod polymers. As a result of the efficient interchain interactions for the lamellar structures, the dihedral angle between the F and BT units is reduced by about 30°, providing a more planar configuration for the backbone. In turn, a more planar backbone leads to a decrease, about 0.2 and 0.3 eV, of the band gaps of the lamellar structures relative to the gap values for the gas and the nearly hexagonal phases, respectively. Time-dependent DFT (TD-DFT) was used to study the excited states of the monomers of FnBT's with various lengths of side-chains. TD-DFT study suggests that the absorption spectrum of the polymers with longer side-chains is red-shifted relative to the polymers with shorter side-chains and the gas phase. PMID:23050864

  9. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  10. Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad; Berryman, Joshua T.; Schilling, Tanja

    2014-09-01

    We present a molecular dynamics simulation study of crystal nucleation from undercooled melts of n-alkanes, and we identify the molecular mechanism of homogeneous crystal nucleation under quiescent conditions and under shear flow. We compare results for n-eicosane (C20) and n-pentacontahectane (C150), i.e., one system below the entanglement length and one above, at 20%-30% undercooling. Under quiescent conditions, we observe that entanglement does not have an effect on the nucleation mechanism. For both chain lengths, the chains first align and then straighten locally, then the local density increases and finally positional ordering sets in. At low shear rates the nucleation mechanism is the same as under quiescent conditions, while at high shear rates the chains align and straighten at the same time. We report on the effects of shear rate and temperature on the nucleation rates and estimate the critical shear rates, beyond which the nucleation rates increase with the shear rate. In agreement with previous experimental observation and theoretical work, we find that the critical shear rate corresponds to a Weissenberg number of order 1. Finally, we show that the viscosity of the system is not affected by the crystalline nuclei.

  11. Treatment of disordered and ordered systems of polymer chains by lattice methods

    PubMed Central

    Flory, Paul J.

    1982-01-01

    Classical lattice theories of systems of long-chain molecules provide estimates of the number Z of random configurations to the exclusion of ordered ones. The decrease of Z thus estimated to values [unk]1 with decrease in chain flexibility at high densities is genuine, but it does not take account of eligible ordered configurations; the latter are not a subset of the configurations whose numbers are estimated by classical lattice methods. Failure to recognize this fact and the fundamental distinction between disordered and ordered states has engendered misinterpretations and has cast doubt on the validity of lattice-statistical methods. In a system at equilibrium, the decline of Z (disordered) with decrease in chain flexibility must be arrested by a first order transition to an ordered state. The inference that approach of Z (disordered) to values <1 presages a thermodynamic transition of second order is tenable only if the array of ordered configurations, not comprehended by theories in which the mean field of unoccupied lattice sites is random, can be ignored. PMID:16593214

  12. Computation of the Mean First-Encounter Time Between the Ends of a Polymer Chain

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Kupka, I.; Holcman, D.

    2012-09-01

    Using a novel theoretical approach, we study the mean first-encounter time (MFET) between the two ends of a polymer. Previous approaches used various simplifications that reduced the complexity of the problem, leading, however, to incompatible results. We construct here for the first time a general theory that allows us to compute the MFET. The method is based on estimating the mean time for a Brownian particle to reach a narrow domain in the polymer configuration space. In dimension two and three, we find that the MFET depends mainly on the first eigenvalue of the associated Fokker-Planck operator and provide precise estimates that are confirmed by Brownian simulations. Interestingly, although many time scales are involved in the encounter process, its distribution can be well approximated by a single exponential, which has several consequences for modeling chromosome dynamics in the nucleus. Another application of our result is computing the mean time for a DNA molecule to form a closed loop (when its two ends meet for the first time).

  13. Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X

    PubMed Central

    Lee, Karin L.; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R.; El Sanadi, Caroline E.; Wen, Amy M.; Edelbrock, John F.; Pokorski, Jonathan K.; Commandeur, Ulrich; Dubyak, George R.

    2015-01-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature’s materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show biodistribution consistent with MPS clearance mechanisms; the protein:polymer hybrids are cleared from the body indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine. PMID:25769228

  14. Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X.

    PubMed

    Lee, Karin L; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R; El Sanadi, Caroline E; Wen, Amy M; Edelbrock, John F; Pokorski, Jonathan K; Commandeur, Ulrich; Dubyak, George R; Steinmetz, Nicole F

    2015-06-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature's materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show reduced interaction with cells of the MPS; the protein:polymer hybrids are cleared from the body tissues within hours to days indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine. PMID:25769228

  15. Non-Monotonic Concentration Effects in the Phase Behavior and Nematic Orders: Mixtures of Side-Chain Liquid Crystalline Polymers and Low-Molecular-Weight Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    2012-02-01

    Mixtures of side-chain liquid crystal polymers (SCLCPs) and low-molecular-weight liquid crystals (LMWLCs) are novel materials with applications such as optical data storage, non-linear optics, solid polymer electrolytes, chromatography and display materials. Recent experiments showed that the nematic-isotropic transition temperature and the nematic orders of each component vary non-monotonically with concentration. Existing theories, which combine the Flory-Huggins theory for isotropic mixing and the Maier-Saupe theory for nematic order, cannot explain such non-monotonicity. Here, we extend the existing theories by, first, incorporating the local steric constraints between the side-chain and the polymer backbone on the SCLCPs, and second, accounting for the crowding effects at high SCLCP concentrations. The new extended theory is able to resolve the discrepancies between the predictions of existing theories and the experimental observations.

  16. Phase equilibria and self-organizing behavior of side-chain liquid crystalline polymer mixtures

    NASA Astrophysics Data System (ADS)

    Chiu, Hao-Wen

    1998-12-01

    Phenomenological models for elucidating phase diagrams of binary smectic-A mixtures, polymer/smectic-A mixtures, induced smectic in nematic mixtures, and nematic/smectic mixtures have been proposed on the basis of the combination of the Flory-Huggins (FH) free energy of isotropic mixing and Maier-Saupe-McMillan (MSM) free energy for nematic/smectic ordering. The nematic and smectic order parameters have been coupled through the normalized partition and the orientation distribution functions. Flory-Huggins interaction parameter (chi) for isotropic mixing and the coupling term involving the nematic interaction parameter (nu) and the McMillan smectic interaction parameter (alpha) for phase transitions of liquid crystals have been incorporated in the calculation. The predictive capability of the combined FH/MSM theory has been demonstrated by testing with reported phase diagrams. Dynamics of phase separation and morphology development in mixtures of a nematic liquid crystal and a polymer due to thermal quenching have been investigated theoretically in comparison with experimental results. In the proposed model, the combined free energy densities of Flory-Huggins theory for isotropic mixing and Maier-Saupe (MS) theory for nematic ordering have been incorporated into the time-dependent Ginzburg-Landau equation (TDGL, type C). The temporal evolution of the structure factor and the emergence of phase separated liquid crystal (LC) domains have been simulated on the basis of an explicit central difference method based on a square lattice with a periodic boundary condition. Of particular interest is the observed plateau (or inflection) region in the growth dynamic curve, which may be attributed to the breakdown of the interconnected domains caused by the nematic ordering. The emergence of LC domains during polymerization induced phase separation in a polymer dispersed liquid crystal (PDLC) has been solved numerically by incorporating the reaction kinetics into the TDGL

  17. Investigation of the effects of short chain processing additives on polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Stclair, T. L.; Pratt, J. R.

    1986-01-01

    The effects of low level concentrations of several short chain processing additives on the properties of the 4,4'-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4'-diaminodiphenyl ether (ODA)/1,3'-diaminobenzene (m-phenylene diamine) (MPA) (422) copolyimide were investigated. It was noted that 5 percent MPD/phthalic anhydride (PA) is more effective than 5 percent ODA/PA and BDSDA/aniline (AN) in strengthening the host material. However, the introduction of 10 percent BDSDA/AN produces disproportionately high effects on free volume and free electron density in the host copolyimide.

  18. Phase diagram of a semiflexible polymer chain in a θ solvent: Application to protein folding

    NASA Astrophysics Data System (ADS)

    Doniach, S.; Garel, T.; Orland, H.

    1996-07-01

    We consider a lattice model of a semiflexible homopolymer chain in a bad solvent. Beside the temperature T, this model is described by (i) a curvature energy ɛh, representing the stiffness of the chain; (ii) a nearest-neighbor attractive energy ɛv, representing the solvent; and (iii) the monomer density ρ=N/Ω, where N and Ω denote, respectively, the number of monomers and the number of lattice sites. This model is a simplified view of the protein folding problem, which encompasses the geometrical competition between secondary structures (the curvature term modelling helix formation) and the global compactness (modeled here by the attractive energy), but contains no side chain information. By allowing the monomer density ρ to depart from unity one has made a first (albeit naive) step to include the role of the water. In previous analytical studies, we considered only the (fully compact) case ρ=1, and found a first order freezing transition towards a crystalline ground state (also called the native state in the protein literature). In this paper, we extend this calculation to the description of both compact and noncompact phases. The analysis is done first at a mean-field level. We then find that the transition from the high temperature swollen coil state to the crystalline ground state is a two-step process for which (i) there is first a θ collapse transition towards a compact ``liquid'' globule, and (ii) at low temperature, this ``liquid'' globule undergoes a discontinuous freezing transition. The mean-field value of the θ collapse temperature is found to be independent of the curvature energy ɛh. This mean-field analysis is improved by a variational bound, which confirms the independence of the θ collapse temperature with respect to ɛh. This result is confirmed by a Monte Carlo simulation, although with a much lower value of the θ temperature. This lowering of the collapse transition allows the possibility (for large ɛh) of a direct first order

  19. Preparation of nanoparticles bearing high density carbohydrate chains using carbohydrate-carrying polymers as emulsifier.

    PubMed

    Maruyama, A; Ishihara, T; Adachi, N; Akaike, T

    1994-10-01

    A novel method of preparing nanoparticles bearing high density carbohydrate chains on their surface is described. Carbohydrate-bearing nanoparticles of poly(lactic acid) or polystyrene were prepared by the solvent evaporation method using a carbohydrate-carrying polystyrene derivative which served as both an emulsifier and a surface coating. The diameter of the obtained nanoparticles ranged from 80 to 300 nm depending on the concentration of the polystyrene derivative. As the concentration of the polystyrene derivatives increased the nanoparticle diameter decreased, indicating that the polystyrene derivatives worked as an emulsifier. The obtained particles were specifically aggregated by carbohydrate-specific lectin, showing that the polystyrene derivative was retained on the particle surfaces and expressed carbohydrate residues. The density of carbohydrates on the particle surfaces was determined to be 3-5 molecules per square nanometre. The particles prepared by the present method were stably dispersed and hardly aggregated in aqueous media during storage and centrifugal treatment compared with the post-coated particles that were prepared by adsorbing polystyrene particles with the polystyrene derivative. In vitro study with isolated rat hepatocytes revealed that surface carbohydrate chains were recognized by hepatocytes. PMID:7888573

  20. Filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    NASA Astrophysics Data System (ADS)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.

    2002-02-01

    One of the important features of filled elastomers in general is the so-called strain amplification, or the enhancement of the local deformation of the rubbery matrix in comparison to the macroscopic deformation of the sample. This is due to the presence of the filler, taken as an indeformable substance, that changes the properties of the system, both macroscopically like the stiffnesss or the Young modulus, and microscopically like the local overstrain of chains. We used commercially interesting fillers, all of them based on silica particles showing different surface properties, while the rubbery matrix was a blend of protonated and deuterated polyisoprene (PI). We varied the filler volume fraction and the applied strain. First, we studied separately the two components of the composite, characterizing by X-ray and neutrons the filler, to use this information later in the extraction of the single chain scattering from SANS measurements. For a description of the microscopic deformation we rely on the previous finding on the unfilled network obtained using the tube model by Heinrich and Straube, modified and rewritten for SANS experiments on this kind of system.

  1. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  2. Magnetic molecularly imprinted polymers synthesized by surface-initiated reversible addition-fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution.

    PubMed

    Chen, Fangfang; Zhang, Jingjing; Wang, Minjun; Kong, Jie

    2015-08-01

    Magnetic molecularly imprinted polymers have attracted significant interest because of their multifunctionality of selective recognition of target molecules and rapid magnetic response. In this contribution, magnetic molecularly imprinted polymers were synthesized via surface-initiated reversible addition addition-fragmentation chain transfer polymerization using diethylstilbestrol as the template for the enrichment of synthetic estrogens. The uniform imprinted surface layer and the magnetic property of the magnetic molecularly imprinted polymers favored a fast binding kinetics and rapid analysis of target molecules. The static and selective binding experiments demonstrated a desirable adsorption capacity and good selectivity of the magnetic molecularly imprinted polymers in comparison to magnetic non-molecularly imprinted polymers. Accordingly, a corresponding analytical method was developed in which magnetic molecularly imprinted polymers were employed as magnetic solid-phase extraction materials for the concentration and determination of four synthetic estrogens (diethylstilbestrol, hexestrol, dienestrol, and bisphenol A) in fish pond water. The recoveries of these synthetic estrogens in spiked fish pond water samples ranged from 61.2 to 99.1% with a relative standard deviation of lower than 6.3%. This study provides a versatile approach to prepare well-defined magnetic molecularly imprinted polymers sorbents for the analysis of synthetic estrogens in water solution. PMID:25989155

  3. The importance of chain connectivity in the formation of non-covalent interactions between polymers and single-walled carbon nanotubes and its impact on dispersion

    SciTech Connect

    Linton, Dias; Driva, Paraskevi; Ivanov, Ilia N; Geohegan, David B; Feigerle, Charles S; Dadmun, Mark D

    2010-05-01

    In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol% AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.

  4. The importance of chain connectivity in the formation of non-covalent interactions between polymers and single-walled carbon nanotubes and its impact on dispersion

    SciTech Connect

    Sumpter, Bobby G; Dadmun, Mark D; Driva, Paraskevi; Ivanov, Ilia N; Geohegan, David B; Linton, Dias; Feigerle, Charles S

    2010-01-01

    In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol% AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.

  5. The Rouse-Mooney model for coherent quasielastic neutron scatterings of single chains well entangled in polymer melts

    NASA Astrophysics Data System (ADS)

    Lin, Y.-H.; Huang, C.-F.

    2008-06-01

    The dynamic structure factor (DSF) for single (labeled) chains well entangled in polymer melts has been developed based on the Rouse-Mooney picture; the DSF functions derived from the Langevin equations of the model in both discrete and continuous forms are given. It is shown that for all practical purposes, it is sufficient to use the continuous form to analyze experimental results in the ``safe'' q region (q being the magnitude of the scattering wave vector q) where the Rouse-segment-based theories are applicable. The DSF form reduces to the same limiting form as that of the free Rouse chain as q2a2 or q2R2-->∞ (a and R being the entanglement distance and the root mean square end-to-end distance, respectively), confirming what has been expected physically. The natural reduction to the limiting form allows the full range of DSF curves to be displayed in terms of the reduced Rouse variable q2(Zdt)0.5 in a unified way. The displayed full range represents a framework or ``map,'' with respect to which effects occurring in different regions of the DSF may be located and studied in a consistent manner. One effect is the significant or noticeable deviations of the theoretical DSF curves from the limiting curve in the region ~4>q2(Zdt)0.5>~0.1 (a time region where t<τ1e) to the faster side as qa is in the range 1-5. This is supported by the comparison of the experimental results of an entangled poly(vinylethylene) sample with the theoretical curves. The DSF functional forms predict plateaus with heights depending on the value of q-q-split plateaus-as can be experimentally observed in the time region greater than the relaxation time τ1e of the lowest Rouse-Mooney mode, when qa falls between ~1 and ~7. High sensitivity of the distribution of the q-split plateaus to a enables its value to be extracted from matching the calculated with the experimental results. The thus obtained a value for a well-entangled poly(ethylene-co-butene) polymer is in close agreement with the

  6. Two one-dimensional d10-metal coordination polymers based on polydentate Schiff-base ligand: Synthesis, crystal structure and luminescent properties

    NASA Astrophysics Data System (ADS)

    Niu, Wei-Jia; Wang, Jun-Li; Bai, Yan; Dang, Dong-Bin

    2012-06-01

    Two one-dimensional d10-metal coordination polymers {[AgL(H2O)]2[AgL(NO3)]2(NO3)2L(H2O)2}n (1) and [ZnLCl2]n (2) (L = N,N'-bis-(1-pyridin-4-yl-ethylidene)-hydrazine) have been synthesized and characterized by IR, elemental analysis, TG technique, XRPD and X-ray crystallography. Polymer 1 contains two types of 1D Ag-double-chain units. Ag(1)-double-chain unit is formed by linking two adjacent Ag(1)-L-chains through face-to-face π⋯π interactions, while Ag(2)-double-chain unit is formed through the combination of coordinating NO3- anions bridging interactions and π⋯π interactions between two adjacent Ag(2)-L-chains. Free ligands interact with the adjacent Ag(1)-double-chain units and Ag(2)-double-chain units to form a 3D supramolecular structure through multiform hydrogen bonds. For polymer 2, each ligand acts as a bis-monodentate bridging ligand to bind adjacent Zn(II) centers forming a one-dimensional chain structure. Furthermore, 1D chain is held together with its neighboring ones via Csbnd H⋯π interactions. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  7. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    SciTech Connect

    Matsubara, Hiroki Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  8. Effects of molecular structure on microscopic heat transport in chain polymer liquids.

    PubMed

    Matsubara, Hiroki; Kikugawa, Gota; Bessho, Takeshi; Yamashita, Seiji; Ohara, Taku

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7Tc) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs. PMID:25933776

  9. Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2014-12-01

    Wetting transparency/translucency/opacity of graphene recently has attracted great interest. The underlying mechanisms and physics for simple liquid droplets containing small molecules on graphene coated crystalline substrates have been studied extensively. However, the behavior of more complicated polymeric droplets on graphene coated amorphous substrates has not been explored. In this work, we perform molecular dynamics simulations to examine the wetting of long-chain ZDOL polymeric droplet on graphene coated amorphous hydrogenated diamond-like carbon or DLCH. We find that at room temperature, the droplet adopts a nearly spherical cap shape with no protruding foot on bare DLCH, and a complex multi-layered structure is formed at the droplet-substrate interface. With addition of graphene layers, externally, the height of the droplet decreases and the protruding foot at the droplet edge appears and grows in size; while internally, the complex multi-layered structure near the droplet-substrate interface remains, but the density distribution for the formed layers becomes increasingly non-uniform. A steady state of the droplet is attained when the number of graphene layers reaches three. These changes can be explained by the interactions between the droplet and substrate across the number of graphene layers. Therefore, it is concluded that the graphene monolayer and bilayer are translucent, while trilayer and above are opaque from the wetting point of view.

  10. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    SciTech Connect

    Li Hui . E-mail: lihui@bit.edu.cn; Guo Ming; Tian Hong; He Feiyue; Lee, G.-H.; Peng, S.-M.

    2006-11-15

    One-dimensional alternative chains of two lanthanum complexes: [La(L{sup 1}){sub 3}(CH{sub 3}OH)(H{sub 2}O){sub 2}].5H{sub 2}O (L{sup 1}=anion of {alpha}-cyano-4-hydroxycinnamic acid ) 1 and [La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].3H{sub 2}O (L{sup 2}=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C{sub 31}H{sub 36}LaN{sub 3}O{sub 17}, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, {alpha}=72.7960(10){sup o}, {beta}=83.3820(10){sup o}, {gamma}=67.1650(10)-bar , Z=2, R{sub 1}=0.0377, wR{sub 2}=0.0746; for 2: C{sub 33}H{sub 37}LaO{sub 14}, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, {alpha}=81.145(2){sup o}, {beta}=87.591(2){sup o}, {gamma}=67.345(5){sup o}, Z=2, R{sub 1}=0.0869, wR{sub 2}=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two {eta}{sup 3}-O bridges and four bridges (two {eta}{sup 2}-O and two {eta}{sup 3}-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  11. In situ x-ray scattering study of a main-chain thermotropic liquid crystalline polymer under oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Vaish, Nitin; Burghardt, Wesley R.; Zhou, Weijun; Kornfield, Julia A.

    2000-03-01

    Liquid crystalline polymers (LCPs) have been the subject of extensive studies because of potential commercial applications and scientific challenges. The excellent mechanical properties of LCPs arise from highly anisotropic molecular structure, which develops as a complex interplay between molecular dynamics and the applied flow field. We study the behavior of model thermotropic main-chain LCP (DHMS-7,9) under oscillatory shear flow using in situ X-ray scattering techniques. Experiments were done in nematic (140^o C) and x-phase (110^o C) to study the effects of frequency (0.5 - 50 rps) and strain amplitude (50 200In nematic phase, strong alignment in the flow direction (‘parallel’) was observed. The steady state was reached quickly either at high strain amplitudes or high frequencies. In x-phase, molecules aligned in flow direction at high strain levels or oscillation frequency, while alignment in vorticity (‘perpendicular’) direction was observed at low strain amplitude or frequency. In addition, we present the flipping of orientation from parallel to perpendicular alignment as a result of step change in temperature from 140^o C to 110^o C and oscillatory motion from a pre-aligned parallel state in x-phase.

  12. Low half-wave voltage Y-branch electro-optic polymer modulator based on side-chain polyurethane-imide

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Wang, Long-De; Li, Ruo-Zhou; Zhang, Qiang; Zhang, Tong

    2016-06-01

    A Y-branch electro-optic (EO) polymer modulator has been designed and fabricated. High performance side-chain polyurethane-imide (PUI) with a high EO coefficient of larger than 50 pm/V and a moderate glass-transition temperature (Tg) of 206∘C is used as EO polymer core layer of the modulator. The fabricated phase modulator exhibits a low half-wave voltage of 1.94 V at 1550 nm in single arm modulation with 1 cm EO interaction length and 2 cm total length. The results show that the modulator fabricated by side-chain PUI EO materials possesses potential applications in low driving voltage and low cost optical systems.

  13. Unraveling the Nanostructure and Chain Conformation of Peptide-polymer Conjugates in Solution using Small-angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lund, Reidar; Xu, Ting; Dong, He

    For therapeutics, polymer functionalization, often by poly(ethylene glycol), PEG (``PEGylation''), is an effective method to improve the solubility, increase the life time and protect the proteins from the immune system[1]. However it is essential that the proteins maintain their structural integrity in solution- thus the role of the polymer and their interactions with proteins needs to be understood. In this work we show how small-angle X-ray scattering (SAXS) can be used as a powerful technique to characterize the structural components of peptide-polymer conjugates in solution [2, 3]. We specifically show that by applying detailed modelling very detailed structural features can be revealed, including the PEG chain conformation. In the presentation we will provide an overview of the methodology, specifically addressing peptides that form either alpha-helical bundles [2, 3] or beta-sheet structures [4, 5] and relate their structure in solution to their crystal structure.

  14. Water soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1989-11-14

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  15. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    NASA Astrophysics Data System (ADS)

    Snyder, Chad R.; Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-01

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  16. Molecular Dynamics Simulation of Ion Solvation in Polymer Melts: Effects of Dielectric Inhomogeneity and Chain Connectivity on Solvation Energy of Ions

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Nakamura, Issei

    We study the ion solvation in block copolymer melts and polymer blends using molecular dynamics simulations. In our simulations, polymers are formed through the connection of beads that provide the dielectric response. Thus, we highlight the effect of the dielectric contrast between different species on the solvation energy of ions. We demonstrate the local enrichment of higher-dielectric components near ions, which corresponds well with the result of mean-field theories. Moreover, the chain connectivity significantly affects the reorientation of molecular dipoles in response to the electrostatic field from ions. Thus, we illustrate the marked difference in the solvation energy between the block copolymer and polymer blend. Importantly, the solvation energy substantially depends on the chain length of the polymers, in stark contrast to the Born solvation energy. We also show that our simulation results exhibit striking similarity to the result of the recent self-consistent mean field theories. However, for strongly correlated dipoles and ions, our simulations provide qualitatively opposite behaviors to these results, suggesting further development of the theoretical frameworks. This work was supported by the National Natural Science Foundation of China (21474112 and 21404103). We are grateful to the Computing Center of Jilin Province for essential support.

  17. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    SciTech Connect

    Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-21

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  18. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  19. Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Shigeta, Masahiro; Kamiya, Katsumasa; Uejima, Mitsugu; Okada, Susumu

    2015-03-01

    We demonstrate the possible candidate dispersion agents that can uniformly disperse carbon nanotubes (CNTs) into organic solvent, from among commercially available polymers. We find that CNTs were well dispersed into dimethylacetamide with the use of polystyrene, poly(vinyl chloride), and poly(vinyl pyrrolidone) as dispersion agents. Theoretical calculations revealed that the dispersibility of these polymers arises from the moderate strength and preferential directionality of the interactions between the CNTs and the polymers.

  20. The Dependence of Strength in Plastics upon Polymer Chain Length and Chain Orientation: An Experiment Emphasizing the Statistical Handling and Evaluation of Data.

    ERIC Educational Resources Information Center

    Spencer, R. Donald

    1984-01-01

    Describes an experiment (using plastic bags) designed to give students practical understanding on using statistics to evaluate data and how statistical treatment of experimental results can enhance their value in solving scientific problems. Students also gain insight into the orientation and structure of polymers by examining the plastic bags.…

  1. Epitaxial crystal growth and solid-state polymerization of piperonyl muconate on the {001} surface of KCl crystal for controlling polymer chain alignment.

    PubMed

    Onodera, Katsuya; Tanioku, Chiaki; Matsumoto, Akikazu

    2012-04-01

    We investigated the crystal growth of piperonyl (E,E)-muconate [bis(3,4-methylenedioxybenzyl) (E,E)-muconate, MDO] on inorganic crystalline substrates during vapor deposition for the control of polymer chain alignment by the subsequent solid-state photopolymerization of the MDO monomer thin films deposited on the substrate. We controlled the arrangement of the MDO molecules and the polymer chains produced on the substrate, depending on the lattice parameters of the substrate surfaces used. The epitaxial crystal growth of MDO on the {001} plane of a KCl single crystal was observed under the condition that the crystal lattice lengths of MDO agreed well with the specific space distance of the substrate; i.e., the KCl cubic crystal resulted in a d(110) value of 4.45 Å, which was very close to the value of the monomer stacking distance in the MDO crystal (d(s) = 4.43 Å). On the other hand, slightly large and too small d(110) values for KBr and NaCl, respectively, resulted in the less controlled and no epitaxial crystal growth of MDO. The irradiation of polarized UV light on the MDO thin-film crystal produced highly regulated polymer alignment in a specific direction on the KCl substrate. PMID:22476888

  2. Escape transition of a polymer chain from a nanotube: how to avoid spurious results by use of the force-biased pruned-enriched Rosenbluth algorithm.

    PubMed

    Hsu, Hsiao-Ping; Binder, Kurt; Klushin, Leonid I; Skvortsov, Alexander M

    2008-10-01

    A polymer chain containing N monomers confined in a finite cylindrical tube of diameter D grafted at a distance L from the open end of the tube may undergo a rather abrupt transition, where part of the chain escapes from the tube to form a "crownlike" coil outside of the tube. When this problem is studied by Monte Carlo simulation of self-avoiding walks on the simple cubic lattice applying a cylindrical confinement and using the standard pruned-enriched Rosenbluth method (PERM), one obtains spurious results, however, with increasing chain length the transition gets weaker and weaker, due to insufficient sampling of the "escaped" states, as a detailed analysis shows. In order to solve this problem, a new variant of a biased sequential sampling algorithm with resampling is proposed, force-biased PERM: the difficulty of sampling both phases in the region of the first order transition with the correct weights is treated by applying a force at the free end pulling it out of the tube. Different strengths of this force need to be used and reweighting techniques are applied. Using rather long chains (up to N=18000 ) and wide tubes (up to D=29 lattice spacings), the free energy of the chain, its end-to-end distance, the number of "imprisoned" monomers can be estimated, as well as the order parameter and its distribution. It is suggested that this algorithm should be useful for other problems involving state changes of polymers, where the different states belong to rather disjunct "valleys" in the phase space of the system. PMID:18999448

  3. Entanglements in quiescent and sheared polymer melts

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ryoichi; Onuki, Akira

    2004-10-01

    We visualize entanglements in polymer melts using molecular dynamics simulation. A bead at an entanglement interacts persistently for long times with the nonbonded beads (those excluding the adjacent ones in the same chain). The interaction energy of each bead with the nonbonded beads is averaged over a time interval τ much longer than microscopic times but shorter than the onset time of tube constraints τe . Entanglements can then be detected as hot spots consisting of several beads with relatively large values of the time-averaged interaction energy. We next apply a shear flow with rate much faster than the disengagement motion of entangled chains. With increasing strain the chains take zigzag shapes and one-half of the hot spots become bent. The chains are first stretched as a network but, as the bends approach the chain ends, disentanglements subsequently occur, leading to stress overshoot observed experimentally.

  4. Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography.

    PubMed

    Shahruzzaman, Md; Takafuji, Makoto; Ihara, Hirotaka

    2015-07-01

    The amphiphilic polymer-grafted silica was newly prepared as a stationary phase in high-performance liquid chromatography. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1-bromooctadecane. The obtained poly(octadecylpyridinium)-grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer-Emmett-Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)-grafted silica as an amphiphilic polymer stationary phase in high-performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl-bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl-bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation. PMID:25944152

  5. Transient and stationary flow behaviour of side chain liquid-crystalline polymers: Evidence of a shear-induced isotropic-to-nematic phase transition

    NASA Astrophysics Data System (ADS)

    Pujolle-Robic, C.; Olmsted, P. D.; Noirez, L.

    2002-08-01

    This letter describes the non-linear rheology of the isotropic phase of a thermotropic side chain liquid-crystal polymer (SCLCP), from which we infer a flow-induced iso- tropic-to-nematic (IN) phase transition above a critical shear stress and construct non-equilib- rium phase diagrams. In contrast to the well-studied wormlike-micellar solutions and predictions for simple liquid-crystalline systems, the critical stress does not vanish as the equilibrium transition temperature is approached from the above. We postulate that this is due to: i) the coupling between mesogens and the polymer backbone, whose equilibrium oblate nematic backbone conformation contrasts with the prolate non-equilibrium conformation; and ii) the peculiar topological constraints in SCLCP melts, which have been previously postulated as leading to long-lived clusters.

  6. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  7. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to

  8. Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are a primary product of the jluorotelomer industry, yet the role of commercial FTPs in degrading to form perjluorocarboxylic acids (P FCAs), including perjluorooctanoic acid, and P FCA precursors, remains ill-defined. Here we report on a 376-d...

  9. Water-soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1990-05-29

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  10. Water-soluble conductive polymers

    DOEpatents

    Aldissi, M.

    1988-02-12

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  11. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  12. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  13. Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding.

    PubMed

    Yao, Jingjing; Yu, Chenmin; Liu, Zitong; Luo, Hewei; Yang, Yang; Zhang, Guanxin; Zhang, Deqing

    2016-01-13

    Three diketopyrrolopyrrole (DPP)-quaterthiophene conjugated polymers, pDPP4T-1, pDPP4T-2, and pDPP4T-3, in which the molar ratios of the urea-containing alkyl chains vs branching alkyl chains are 1:30, 1:20, and 1:10, respectively, were prepared and investigated. In comparison with pDPP4T without urea groups in the alkyl side chains and pDPP4T-A, pDPP4T-B, and pDPP4T-C containing both linear and branched alkyl chains, thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 exhibit higher hole mobilities; thin-film mobility increases in the order pDPP4T-1 < pDPP4T-2 < pDPP4T-3, and hole mobility of a thin film of pDPP4T-3 can reach 13.1 cm(2) V(-1) s(-1) after thermal annealing at just 100 °C. The incorporation of urea groups in the alkyl side chains also has an interesting effect on the photovoltaic performances of DPP-quaterthiophene conjugated polymers after blending with PC71BM. Blended thin films of pDPP4T-1:PC71BM, pDPP4T-2:PC71BM, and pDPP4T-3:PC71BM exhibit higher power conversion efficiencies (PCEs) than pDPP4T:PC71BM, pDPP4T-A:PC71BM, pDPP4T-B:PC71BM, and pDPP4T-C:PC71BM. The PCE of pDPP4T-1:PC71BM reaches 6.8%. Thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 and corresponding thin films with PC71BM were characterized with AFM, GIXRD, and STEM. The results reveal that the lamellar packing order of the alkyl chains is obviously enhanced for thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3; after thermal annealing, slight inter-chain π-π stacking emerges for pDPP4T-2 and pDPP4T-3. Blends of pDPP4T-1, pDPP4T-2, and pDPP4T-3 with PC71BM show a more pronounced micro-phase separation. These observations suggest that the presence of urea groups may further facilitate the assemblies of these conjugated polymers into nanofibers and ordered aggregation of PC71BM. PMID:26669732

  14. Molecular dynamics study of the solution of semiflexible telechelic polymer chains with strongly associating end-groups

    NASA Astrophysics Data System (ADS)

    Khalatur, Pavel G.; Khokhlov, Alexei R.; Kovalenko, Julia N.; Mologin, Dmitrii A.

    1999-03-01

    We present the results of molecular dynamics simulations of micelle organization as well as the formation of micellar aggregates in the solutions of semiflexible telechelic chains with strongly attracting end-groups ("sticker sites"). Using the cluster size distribution function, we study associative equilibrium in the system of flexible and semiflexible chains. It is found that this process corresponds to the so-called "open association" model for micelle formation. The critical temperature of micelle formation Tc is calculated as a function of chain rigidity and system density ρ. We find that the value of Tc increases monotonically with the increase of Kuhn segment length A. Such a behavior takes place in wide range of densities, but only if the value of ρ is somewhat smaller than some threshold value. At high density, we observe the opposite tendency; the temperature Tc decreases monotonically as the value of A is increased. The type of equilibrium microstructures, emerging as a result of micellization in the strong segregation regime, depends essentially on the chain rigidity. In the case of flexible telechelic chains, relatively small flowerlike micellar aggregates are observed. For the system of semiflexible chains, we find rather distinctly appearance of microbundles with pronounced liquid-crystalline-like order. In this case, the spatial organization of the system is characterized by a cellular architecture which looks like "ceramics." Thus, significant morphological changes can be induced by varying of chain rigidity. At fixed system density and Tchain rigidity is increased. In other words, the gradual stretching out of the chains shifts the association equilibrium to formation of larger clusters. We have performed a comparative analysis of our

  15. Coil-bridge transition in a single polymer chain as an unconventional phase transition: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Klushin, Leonid I.; Skvortsov, Alexander M.; Polotsky, Alexey A.; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-01

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble.

  16. Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation.

    PubMed

    Klushin, Leonid I; Skvortsov, Alexander M; Polotsky, Alexey A; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-28

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble. PMID:24880326

  17. Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie

    2016-04-01

    The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.

  18. Synthesis and Non-Resonant Nonlinear Optical Properties of Push-Pull Side-Chain Azobenzene Polymers

    NASA Astrophysics Data System (ADS)

    Fedus, K.; Smokal, V.; Krupka, O.; Boudebs, G.

    In this work, we report preliminary results obtained for methacrylic polymers incorporating azobenzene side-group as nonlinear optical (NLO) active molecule. The trans-cis isomerization properties are discussed. The third-order non-resonant nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are measured using the Z-scan technique at 1064 nm in the picosecond regime. The influence of different electron-acceptor groups in azobenzene moieties on the nonlinear properties is investigated.

  19. The effects of polymer side-chain structure on roughness formation of ArF photoresist in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Uesugi, Takuji; Okada, Takeru; Wada, Akira; Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi; Samukawa, Seiji

    2012-02-01

    Low etching resistance and roughness formation of ArF photoresist during plasma etching are serious problems. We have previously found that decisive factors affecting the plasma resistance and roughness formation in an ArF photoresist are determined by ultraviolet/vacuum ultraviolet radiation and roughness formation is dominated by chemical reactions. In this paper, on the basis of our previous findings on the interaction between radiation species from plasma and ArF photoresist polymers, we investigated the polymer structural dependence for the degradation mechanism of ArF photoresist in the plasma etching processes. The etching resistance of ArF photoresist was improved by controlling the elemental ratio of oxygen atoms and ring structures in photoresist polymer. Furthermore, lactone C=O bond is found to be a key factor for roughness formation during the etching process. We have revealed the importance of the molecular structure of ArF photoresist for improving the surface roughness and etching resistance during the plasma etching process.

  20. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    SciTech Connect

    Guan, Lei; Wang, Ying

    2015-08-15

    A novel cobalt phosphonate, [Co(HL)(H{sub 2}O){sub 3}]{sub n} (1) (L=N(CH{sub 2}PO{sub 3}H){sub 3}{sup 3−}) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO{sub 6} octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis.

  1. Playing with Polymers.

    ERIC Educational Resources Information Center

    Chemecology, 1997

    1997-01-01

    Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)

  2. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    NASA Astrophysics Data System (ADS)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  3. Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes.

    PubMed

    Jutemar, Elin Persson; Jannasch, Patric

    2010-12-01

    Six different ionomers having various aromatic polymer backbones with pendant 2-sulfobenzoyl side chains were prepared by nucleophilic aromatic substitution reactions of lithium 2,6-difluoro-2'-sulfobenzophenone with 4,4-biphenol, 2,7-dihydroxynaphthalene, 4,4-isopropylidenediphenol, 4,4-dihydroxydiphenyl ether, 4,4'-thiodiphenol, and 4,4'-thiobisbenzenethiol, respectively, to produce four poly(arylene ether)s, one poly(arylene ether sulfide), and one poly(arylene sulfide). Mechanically tough proton-exchange membranes with ion-exchange capacities in the narrow range from 1.9 to 2.3 mequiv/g were cast from the high-molecular-weight ionomers, and subsequently investigated with respect to their structure-property relationships. Glass transitions were only detected for ionomers in the sodium salt form, and increasing glass-transition temperatures (Tg) were found to give higher thermal decomposition temperatures. Analysis by small-angle X-ray scattering indicated that the ionic clustering was promoted for ionomers with flexible polymer backbones and low Tg values. The proton conductivity of the membranes at 80 °C under fully humidified conditions was found between 0.02 and 0.2 S/cm and appeared to depend primarily on the Tg. PMID:21138250

  4. Influence of chain length and polymer concentration on the gelation of (amidated) low-methoxyl pectin induced by calcium.

    PubMed

    Capel, François; Nicolai, Taco; Durand, Dominique; Boulenguer, Patrick; Langendorff, Virginie

    2005-01-01

    The gelation of low-methoxyl pectin (LMP) induced by addition of Ca2+ was studied by measuring the storage modulus as a function of temperature during cooling. Samples with different molar masses were prepared by mechanical degradation. The effect of the molar mass and the pectin concentration on the gelation properties was investigated. The effect of partial amidation was studied by comparing LMP and partially amidated LMP with the same molar mass and degree of methylation. The results are compared to those from a model developed for Ca2+-induced pectin gelation, and good agreement is found except at low concentrations and low molar masses where the gels are weaker than predicted. At low concentrations intrachain bonding weakens the gel, while the presence of small pectin chains weakens the gel because it neutralizes binding sites on larger chains. PMID:16283714

  5. A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells.

    PubMed

    Yuan, Jun; Qiu, Lixia; Zhang, Zhiguo; Li, Yongfang; He, Yuehui; Jiang, Lihui; Zou, Yingping

    2016-05-25

    A new tetrafluoridequinoxaline electron accepting block from a quinoxaline core, which is substituted with a fluorine atom onto its backbone and side chains, was designed. A new copolymer (PBDTT-ffQx) was synthesized from tetrafluoridequinoxaline and benzodithiophene. The copolymer was characterized in detail. The photovoltaic properties were well investigated. A high PCE of 8.6% based on the single junction device was obtained. PMID:27025274

  6. Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes?

    SciTech Connect

    Devanathan, Ramaswami; Dupuis, Michel

    2012-08-28

    We present a detailed analysis of the nanostructure of short side chain (SSC) perfluorosulfonic acid membrane and its effect on H{sub 2}O network percolation, H{sub 3}O{sup +} and H{sub 2}O diffusion, and mean residence times of H{sub 3}O{sup +} and H{sub 2}O near SO{sub 3}{sup -} groups based on molecular dynamics simulations. We studied a range of hydration levels ({lambda}) at temperatures of 300 and 360 K, and compare the results to our previous findings in the benchmark Nafion membrane at 300 K. The water channel diameter is about 20% larger in Nafion, while the extent of SO3- clustering is more in SSC membrane. The calculated channel diameter is in excellent agreement with the recently proposed cylindrical water channel model of these membranes. The H{sub 2}O network percolation occurs at comparable hydration levels, and the diffusion coefficients of H{sub 2}O and H{sub 3}O{sup +} are similar in SSC and Nafion membranes. Raising the temperature of the SSC membrane from 300 to 360 K provides a much bigger increase in proton vehicular diffusion coefficient (by a factor of about 4) than changing the side chain length. H3O+ ions are found to exchange more frequently with SO{sub 3}{sup -} partners at the higher temperature. Our key findings are that (a) the hydrophobic-hydrophilic separation in the two membranes is surprisingly similar; (b) at all hydration levels studied, the longer side chain of Nafion is bent and is effectively equivalent to a short side chain in terms of extension into the water domain; and (c) proton transport along the centre of the channel is improbable and vehicular proton transport occurs between SO{sub 3}{sup -} groups. The simulations are validated by good agreement with corresponding experimental values for the simulated membrane density and diffusion coefficients of H{sub 2}O.

  7. From polymers to proteins: the effect of side chains and broken symmetry on the formation of secondary structures within a Wang-Landau approach.

    PubMed

    Škrbić, Tatjana; Badasyan, Artem; Hoang, Trinh Xuan; Podgornik, Rudolf; Giacometti, Achille

    2016-05-25

    We use a micro-canonical Wang-Landau technique to study the equilibrium properties of a single flexible homopolymer where consecutive monomers are represented by impenetrable hard spherical beads tangential to each other, and non-consecutive monomers interact via a square-well potential. To mimic the characteristics of a protein-like system, the model is then refined in two different directions. Firstly, by allowing partial overlap between consecutive beads, we break the spherical symmetry and thus provide a severe constraint on the possible conformations of the chain. Alternatively, we introduce additional spherical beads at specific positions in the direction normal to the backbone, to represent the steric hindrance of the side chains in real proteins. Finally, we consider also a combination of these two ingredients. In all three systems, we obtain the full phase diagram in the temperature-interaction range plane and find the presence of helicoidal structures at low temperatures in the intermediate range of interactions. The effect of the range of the square-well attraction is highlighted, and shown to play a role similar to that found in simple liquids and polymers. Perspectives in terms of protein folding are finally discussed. PMID:27137225

  8. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization

    SciTech Connect

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    2015-08-12

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  9. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization

    DOE PAGESBeta

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    2015-08-12

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  10. In-situ ultrasonic compatibilization of binary blends of flexible chain polyesters and aromatic liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Gunes, Kaan

    The objective of this research was to improve the properties of immiscible polymer blends by developing a new ultrasonic extrusion process. The ability of ultrasonic treatment to induce recombination reactions in polymer blends was anticipated to result in fast in-situ compatibilization of immiscible blends. In order to test this hypothesis, a new ultrasonic extruder operating at a frequency of 20 kHz at amplitudes of 5, 7.5, and 10 mum was developed. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and wholly aromatic liquid crystalline copolyesters (LCPs) were selected to illustrate the effect of ultrasonic treatment on copolymerization of components through transesterification reactions in blends. The LCPs studied were a copolymer of hydroxybenzoic and hydroxynaphthoic acid (LCP1) and a copolymer of dioxydiphenyl, terephthalic and isophthalic acid (LCP2). PET/PEN, PET/LCP1, PEN/LCP1, and LCP1/LCP2 blends and their components were subsequently injection molded and spun into fibers. PET underwent homopolymerization and degradation, respectively, at ultrasonic amplitudes of 7.5 mum and 10 mum, while PEN underwent degradation at all amplitudes. MALDI-TOF mass spectroscopy revealed greater amounts of hydroxyl and carboxyl terminated oligomers in ultrasonically treated PET and PEN. Transesterification (copolymer formation) was observed in PET/PEN blends, which was enhanced with ultrasonic treatment, as indicated by 1H NMR and MALDI-TOF. Oxygen permeability of compression molded films of untreated and ultrasonically treated PET/PEN blends followed theoretical predictions for miscible blends. Ultrasonic treatment of LCP1 at amplitudes of 7.5 and 10 mum led to improved mechanical properties of its injection moldings. On the other hand, LCP2 underwent degradation with treatment, leading to a reduction of mechanical properties of LCP2 and LCP1/LCP2 blends. However, due to enhanced fibrillation, these blends retained synergism such that moldings exhibited

  11. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  12. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties.

    PubMed

    Ahangari, Morteza Ghorbanzadeh; Fereidoon, Abdolhosein; Ganji, Masoud Darvish

    2013-08-01

    We performed first principles calculations based on density functional theory (DFT) to investigate the effect of epoxy monomer content on the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs). Our calculation results reveal that interfacial interaction increases with increasing numbers of epoxy monomers on the surface of SWCNTs. Furthermore, density of states (DOS) results showed no orbital hybridization between the epoxy monomers and nanotubes. Mulliken charge analysis shows that the epoxy polymer carries a positive charge that is directly proportional to the number of monomers. The Young's modulus of the nanotubes was also studied as a function of monomer content. It was found that, with increasing number of monomers on the nanotubes, the Young's modulus first decreases and then approaches a constant value. The results of a SWCNT pullout simulation suggest that the interfacial shear stress of the epoxy/SWCNT complex is approximately 68 MPa. These results agreed well with experimental results, thus proving that the simulation methods used in this study are viable. PMID:23609226

  13. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    PubMed

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  14. Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead-spring chain models for dilute polymers: The two-dimensional case

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Süli, Endre

    2016-07-01

    We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in a bounded domain Ω in Rd, d = 2, for the density ρ, the velocity u ˜ and the pressure p of the fluid, with an equation of state of the form p (ρ) =cpργ, where cp is a positive constant and γ > 1. The right-hand side of the Navier-Stokes momentum equation includes an elastic extra-stress tensor, which is the classical Kramers expression. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. This extends the result in our paper J.W. Barrett and E. Süli (2016) [9], which established the existence of global-in-time weak solutions to the system for d ∈ { 2 , 3 } and γ >3/2, but the elastic extra-stress tensor required there the addition of a quadratic interaction term to the classical Kramers expression to complete the compactness argument on which the proof was based. We show here that in the case of d = 2 and γ > 1 the existence of global-in-time weak solutions can be proved in the absence of the quadratic interaction term. Our results require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a nonnegative initial density ρ0 ∈L∞ (Ω) for the continuity equation; a square-integrable initial velocity datum u˜0 for the Navier-Stokes momentum equation; and a nonnegative initial probability density function ψ0

  15. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings. PMID:27299693

  16. Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G.

    PubMed

    Du, Kaifeng

    2014-12-29

    A peptide immobilized tentacle-type monolith is developed here for high-performance IgG purification. In this work, the glucose-anchored GMA molecules serve as monomers to be grafted into the tentacle-type chains on highly porous monolith by a series of chemical reactions. While maintaining high column permeability, the tentacle grafting endows the monolith with lots of reactive handles to anchor more peptides. With that, the grafted monolith shows high peptide density of about 155μmolmL(-1), up to approximately 4.7 times higher over the ungrafted one (33μmolmL(-1)). As a result, the static adsorbing capacity and dynamic adsorption capacity at 50% breakthrough point reach 101.8 and 83.3mgmL(-1) for IgG adsorption, respectively. Regeneration, recycle and reuse of grafted monolith are highly successful for 25 runs without obvious capacity loss. By taking these advantages of high capacity and excellent structure stability, the affinity grafted monolith is evaluated by using cleared human blood supernatant. And the result shows the peptide immobilized tentacle type monolith displays excellent specificity and high effectiveness for IgG purification. PMID:25476688

  17. Self-assembly of silver(I) coordination polymers from aminopyrimidyl derivatives and malonate acid: From 1D chain to 2D layer

    NASA Astrophysics Data System (ADS)

    Sun, Di; Zhang, Na; Xu, Qin-Juan; Luo, Geng-Geng; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-04-01

    Two new silver(I) coordination polymers (CPs) of the formula [Ag 2(dmapym) 4(mal)·H 2O] n ( 1) and [Ag 3(apym) 3(mal)NO 3] n ( 2) (dmapym = 2-amino-4,6-dimethylprimidine, apym = 2-aminopyrimidine, H 2mal = malonate) have been synthesized by reactions of AgNO 3 and 2-aminopyrimidyl ligands with malonate under the ammoniacal condition. Both complexes have been characterized by element analysis, IR and single-crystal X-ray diffraction. The monodentate dmapym and tridentate mal ligands link Ag(I) ions to give complex 1 a one-dimensional (1D) H-shaped chain structure. The complex 2 is a two-dimensional (2D) double sheet structure constructed by (4, 4) single sheet. Additionally, the hydrogen-bonding and C-H⋯π interactions also direct the self-assembly of supramolecular architectures. The photoluminescence properties of the 1 and 2 were investigated in the solid state at room temperature.

  18. Chain-length-dependent impact of band broadening on the molar-mass determination of synthetic polymers via size-exclusion chromatography.

    PubMed

    Wolpers, Arne; Vana, Philipp

    2016-08-01

    The impact of band-broadening (BB) on the molar-mass determination of synthetic polymers via size-exclusion chromatography (SEC) is systematically studied. BB is simulated using the exponentially modified Gaussian (EMG) model, which combines the two inherent and distinct characteristics contributing to BB in SEC: symmetric Gaussian broadening and asymmetric skewing. It is demonstrated that BB both during the measurement of the analyte itself and during the calibration process has an individual impact on molar-mass determination. In this context, particularly skewing leads to a chain-length-dependent underestimation of molar masses, with deviations of the apparent from the true ones of only a few percent for low molar masses to up to 20% for high ones for reasonable extents of BB. The impact is shown to be independent of the shape of the analyte⬢s molar-mass distribution (MMD) and affects broad and multimodal MMDs similarly to narrow and unimodal ones. As a consequence, strategies are presented for a comprehensive quantitative correction of the observed effects, which may find their application in refined SEC software packages. The potential impact of the findings on general conceptions of repeatability and reproducibility within SEC experiments is discussed. PMID:27393628

  19. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis.

    PubMed

    Xie, Xiaoyu; Chen, Liang; Pan, Xiaoyan; Wang, Sicen

    2015-07-31

    Magnetic molecularly imprinted polymers (MMIPs) have become a hotspot owing to the dual functions of target recognition and magnetic separation. In this study, the MMIPs were obtained by the surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using Sudan I as the template. The resultant MMIPs were characterized by transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and X-ray diffraction. Benefiting from the controlled/living property of the RAFT strategy, the uniform MIP layer was successfully grafted on the surface of RAFT agent-modified Fe3O4@SiO2 nanoparticles, favoring the fast mass transfer and rapid binding kinetics. The developed MMIPs were used as the solid-phase extraction sorbents to selectively extract four Sudan dyes (Sudan I, II, III, and IV) from chili powder samples. The recoveries of the spiked samples in chili powder samples ranged from 74.1 to 93.3% with RSD lower than 6.4% and the relative standard uncertainty lower than 0.029. This work provided a good platform for the extraction and removal of Sudan dyes in complicated matrixes and demonstrated a bright future for the application of the well-constructed MMIPs in the field of solid-phase extraction. PMID:26077971

  20. Rupture Orientation and Strain-induced Crystallization of Polymer Chain and Network in Vulcanized Polyisoprene During Uniaxial Deformation by in-situ Electron Spin Resonance(ESR) and Synchrotron X-ray Analysis

    SciTech Connect

    S Toki; R Takagi; M Ito; B Hsiao

    2011-12-31

    Different network structures of vulcanized polyisoprene rubbers were studied by in-situ ESR and synchrotron X-ray during deformation to analyze the rupture, orientation, and strain-induced crystallization of polymer chains and network points. Rupture of network points occur, depending on network structure, and create an un-reversible change in vulcanized rubber. The flexibility of network points affects the possibility of rupture, polymer orientation and strain-induced crystallization. Peroxide vulcanized network is rigid and un-rupturable. Poly-sulfide rich vulcanized network is more flexible and less rupturable than mono-sulfide rich vulcanized network. Chain flexibility and rupturability of network points affect the strain-induced crystallization and stress-strain relation.

  1. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  2. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  3. Electron transporting polymers for light emitting diodes

    SciTech Connect

    Li, Xiao-Chang; Giles, M.; Holmes, A.B.

    1995-12-01

    New oxadiazole-derived side chain polymers have been prepared by radical induced polymerization of the methacrylate precursors. The synthesis and characterization of the polymers as well as their application in enhancing emission in polymer LEDs will be reported.

  4. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  5. One step grafting of iron phthalocyanine containing flexible chains on Fe3O4 nanoparticles towards high performance polymer magnetic composites

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhou, Xuefei; Yang, Xulin; Jia, Kun; Liu, Xiaobo

    2015-07-01

    To develop high-performance inorganic particles/polymer composites, the interfacial interaction and dispersion of inorganic particles are the two essential issues to be considered. Herein, we report an effective approach to graft iron phthalocyanine containing flexible chains (NP-ph) on Fe3O4 nanoparticles (NP-ph@Fe3O4). The hybrids were monodispersed solid nanoparticles with the average diameter of about 250 nm. About 16.8% of the phthalocyanine oligomer was incorporated into the resulting NP-ph@Fe3O4 nanoparticles. The NP-ph@Fe3O4 nanoparticles were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PAEN) composites. The scanning electron microscopy (SEM) investigation showed that the NP-ph@Fe3O4 nanoparticles present better dispersion and interfacial compatibility with PAEN matrix than that of raw Fe3O4, which was further confirmed by rheological study. Consequently, the improved thermal stability and enhanced mechanical properties were obtained from composites using NP-ph@Fe3O4. Vibrating sample magnetometer (VSM) results showed that the prepared PAEN composites exhibited higher saturation magnetization and soft magnetic properties. Meanwhile, the saturation magnetization (Ms) of the PAEN/NP-ph@Fe3O4 composite films increased with the increase of the hybrid nanoparticles loading. Thus, the PAEN/NP-ph@Fe3O4 composite would find potential applications in organic magnetic films fields due to their high thermal stability, excellent flexibility and tunable magnetic properties

  6. SUMO chains: polymeric signals.

    PubMed

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  7. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials

    NASA Astrophysics Data System (ADS)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-01

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results

  8. Loop polymer brushes from polymer single crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Li, Christopher

    2014-03-01

    Loop polymer brushes represent a category of polymer brushes with both chain ends being tethered to a surface or interface with sufficiently high density. Due to this morphological difference, loop brushes exhibit distinct properties compared with traditional polymer brushes with single chain end being tethered. In our study, α, ω-functionalized polycaprolactone (PCL) single crystals were prepared as templates for polymer brush synthesis. By carefully controlling crystallization condition and immobilization, looped polymer brushes were successfully prepared. Comprehensive studies on the morphology and physical properties of these polymer brushes were carried out using Atomic Force Microscopy and FTIR. Advantages of using this method include exclusive loop morphology, high grafting density, controlled tethering sites and tunable loop size.

  9. Thermochromism and structural change in polydiacetylenes including carboxy and 4-carboxyphenyl groups as the intermolecular hydrogen bond linkages in the side chain.

    PubMed

    Tanioku, Chiaki; Matsukawa, Kimihiro; Matsumoto, Akikazu

    2013-02-01

    We investigated the thermochromic behavior of polydiacetylenes including the carboxy and 4-carboxyphenyl groups as the side-chain substituents adjacent to the conjugated main chain, and then, the thermal stability and the thermochromism reversibility of the polymers were related to changes in the polymer conformations monitored by IR and Raman spectroscopies and powder X-ray diffractions. The polydiacetylenes with no or a phenylene spacer between the main chain and the carboxylic acid moiety were revealed to exhibit a thermal resistance for maintaining reversible thermochromism in a high temperature range, rather than polydiacetylenes with a conventional structure with a flexible alkylene spacer. The molecular stacking structures of the diacetylenes and the corresponding polymers in the crystals were discussed based on the results of an X-ray single-crystal structure analysis as well as the powder X-ray diffraction measurements. PMID:23276165

  10. Influence of Irreversible Adsorption on the Glass Transition Temperature of Polymer Thin Films as Measured by Fluorescence

    NASA Astrophysics Data System (ADS)

    Burroughs, Mary; Priestley, Rodney

    2014-03-01

    Polymers confined to the nanometer length scale have been shown to exhibit deviations in the glass transition temperature (Tg) from the bulk. With the increasing use of confined polymers in nanotechnology, understanding and predicting this behavior is extremely relevant to industries ranging from pharmaceuticals to organic electronics. Recent work (Napolitano, Wübbenhorst, Nature Communications, 2, 260 (2011)) has connected deviations in Tg under confinement with irreversible physical adsorption of polymer chains at substrate interfaces. Here we investigate the influence of irreversibly adsorbed layers on the Tg of polystyrene (PS) thin films supported on silica via fluorescence. We examine the Tg of the brushes as a function of annealing time and irreversibly adsorbed layer thickness. By incorporating fluorescently labeled polymer layers into multilayered films of unlabeled polymer, we will examine the influence of brushes on adjacent layers dynamics. Finally, we will compare the results on PS with those of poly(methyl methacrylate).

  11. Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation.

    PubMed

    Barclay, Thomas G; Rajapaksha, Harinda; Thilagam, Alagu; Qian, Gujie; Ginic-Markovic, Milena; Cooper, Peter D; Gerson, Andrea; Petrovsky, Nikolai

    2016-06-01

    This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4nm thick, to give overall particle crystallinity of 78%. PMID:27083349

  12. Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs.

    PubMed

    Romano, Andrea; van der Plas, Linus H W; Witholt, Bernard; Eggink, Gerrit; Mooibroek, Hans

    2005-01-01

    Medium-chain-length poly-3-(R)-hydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters. The minimum gene-set for the accumulation of mcl-PHAs from de novo fatty acid biosynthesis has been identified in prokaryotes as consisting of the Pha-C1 polymerase and the ACP-CoA-transacylase. In this paper, the synthesis of mcl-PHAs has been attempted in transgenic potato (Solanum tuberosum L.) using the same set of genes that were introduced into potato by particle bombardment. Polymer contents of transgenic lines were analysed by gas chromatography and by a new simple method employing a size-exclusion filter column. The expression of the Pha-C1 polymerase and the ACP-CoA-transacylase in the plastids of transgenic potato led to the synthesis of a hydrophobic polymer composed of mcl-hydroxy-fatty acids with carbon chain lengths ranging from C-6 to C-12 in leaves of the selected transgenic lines. We strongly suggest that the polymer observed consists of mcl-PHAs and that this report establishes for the first time a possible route for the production of mcl-PHAs from de novo fatty acid biosynthesis in plants. PMID:15351883

  13. Copper-catalyzed Huisgen cycloaddition reactions used to incorporate NLO chromophores into high Tg Side-Chain Polymers for Electro-Optics

    NASA Astrophysics Data System (ADS)

    Liu, Jialei; Si, Peng; Liu, Xinhou; Zhen, Zhen

    2015-09-01

    Polymers based on N-phenyl maleimide, N-4-propargyl methoxy phenyl maleimide and methyl methacrylate was synthesized. High glass temperatures 183, 179, 159 °C respectively for P1, P2 and P3 were achieved. EO polymer P3-C1, P3-C2 and P3-C3 with about 30 wt% chromophore loading density were prepared by attaching Chromophore C1, C2 and C3 to polymer P3 using copper-catalyzed Huisgen cycloaddition reactions in mild reaction conditions and high yield. Among the EO polymers, P3-C3 showed us the best solubility in normal solvents and suitable glass temperature. EO films based on EO polymer P3-C3 showed us large EO coefficient of 50 pm/V @1310 nm and good long-term stability, 85% EO activity was kept after annealing at 85 °C for 200 h.

  14. Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis.

    PubMed

    Yang, Meixian; Zhang, Yingying; Lin, Shen; Yang, Xinlin; Fan, Zhijin; Yang, Lixia; Dong, Xiangchao

    2013-09-30

    A new bifunctional pyrazosulfuron-ethyl imprinted polymer was synthesized by the combination of molecular imprinting technology and living radical polymerization. In the synthesis, the pyrazosulfuron-ethyl imprinted polymer was obtained by the reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization followed by grafting poly(glyceryl monomethacrylate) (pGMMA) by the post-RAFT polymerization. In this research, we used polyethylene glycol (PEG) as the polymeric porogen in order to increase the porosity of the material which is a new porogen application in the precipitation polymerization. The imprinted polymer has selectivity for the template and ability of humic acids exclusion which has shown the merits of molecularly imprinted polymers and restricted access materials. An online solid-phase extraction/HPLC method for the analysis of three sulfonylurea residues in soil samples has been developed and validated. The recovery of 81-99% in the spiked levels of 40-200 μg kg(-1) was obtained and the limit of detection (LOD) and limit of quantification (LOQ) were less than 4.8 and 15.9 μg kg(-1) respectively. The results demonstrated that this bifunctional material can be used for the efficient pyrazosulfuron-ethyl extraction in the sulfonylurea residue analysis from environmental samples. PMID:23953454

  15. On the Importance of Noncovalent Carbon-Bonding Interactions in the Stabilization of a 1D Co(II) Polymeric Chain as a Precursor of a Novel 2D Coordination Polymer.

    PubMed

    Pal, Pampi; Konar, Saugata; Lama, Prem; Das, Kinsuk; Bauzá, Antonio; Frontera, Antonio; Mukhopadhyay, Subrata

    2016-07-14

    A new cobalt(II) coordination polymer 2 with μ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with μ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules). PMID:27295490

  16. Synthesis, crystal structure and properties of two 1D nano-chain coordination polymers constructed by lanthanide with pyridine-3,4-dicarboxylic acid and 1,10-phenanthroline

    SciTech Connect

    Song Huihua Li Yajuan; Song You; Han Zhangang; Yang Fang

    2008-05-15

    The hydrothermal reactions of LnCl{sub 3}.6H{sub 2}O (Ln=Eu, Tb), pyridine-3,4-dicarboxylic acid (3,4-pydaH{sub 2}), 1,10-phenthroline (phen) and NaOH in aqueous medium yield two metal-organic hybrid materials, [Eu{sub 2}(3,4-pyda){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (1) and [Tb{sub 2}(3,4-pyda){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (2), respectively. Both compounds have similar topology structure containing one-dimensional nano-chain, which is further assembled into a three-dimensional supramolecular network via {pi}-{pi} stacking interactions and hydrogen bonds. To the best of our knowledge, they represent the first example of nano-chain coordination polymers constructed by 3,4-pydaH{sub 2} and chelate heterocylic ligand. Interestingly, the 3,4-pyda anion exhibits three kinds of coordination modes in these complexes. The coordination modes of 3,4-pyda in complexes 1 and 2 have not been observed in other coordination polymers containing 3,4-pyda ligands. Compounds 1 and 2 exhibit strong fluorescent emission bands in the solid state at room temperature. Their magnetic analyses show that they exhibit different magnetic interactions. - Graphical abstract: Two novel lanthanide coordination polymers [M{sub 2}(pydc){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (M=Eu(1) and Tb(2), pydc=pyridine-3,4-dicarboxylate, phen=1,10-phenthroline) have been synthesized and characterized. Both compounds reveal a one-dimensional nano-chain, which is further assembled into a three-dimensional supramolecular network via {pi}-{pi} stacking interactions and hydrogen bonds. Their luminescent and magnetic properties have been investigated.

  17. Fructan synthesis, accumulation and polymer traits. II. Fructan pools in populations of perennial ryegrass (Lolium perenne L.) with variation for water-soluble carbohydrate and candidate genes were not correlated with biosynthetic activity and demonstrated constraints to polymer chain extension

    PubMed Central

    Gallagher, Joe A.; Cairns, Andrew J.; Thomas, David; Timms-Taravella, Emma; Skøt, Kirsten; Charlton, Adam; Williams, Peter; Turner, Lesley B.

    2015-01-01

    Differences have been shown between ryegrass and fescue within the Festulolium subline introgression family for fructan synthesis, metabolism, and polymer-size traits. It is well-established that there is considerable variation for water-soluble carbohydrate and fructan content within perennial ryegrass. However there is much still to be discovered about the fructan polymer pool in this species, especially in regard to its composition and regulation. It is postulated that similar considerable variation for polymer traits may exist, providing useful polymers for biorefining applications. Seasonal effects on fructan content together with fructan synthesis and polymer-size traits have been examined in diverse perennial ryegrass material comprising contrasting plants from a perennial ryegrass F2 mapping family and from populations produced by three rounds of phenotypic selection. Relationships with copy number variation in candidate genes have been investigated. There was little evidence of any variation in fructan metabolism across this diverse germplasm under these conditions that resulted in substantial differences in the complement of fructan polymers present in leaf tissue at high water-soluble carbohydrate concentrations. The importance of fructan synthesis during fructan accumulation was unclear as fructan content and polymer characteristics in intact plants during the growing season did not reflect the capacity for de novo synthesis. However, the retention of fructan in environmental conditions favoring high sink/low source demand may be an important component of the high sugar trait and the roles of breakdown and turnover are discussed. PMID:26528321

  18. A novel parallel-rotation algorithm for atomistic Monte Carlo simulation of dense polymer systems

    NASA Astrophysics Data System (ADS)

    Santos, S.; Suter, U. W.; Müller, M.; Nievergelt, J.

    2001-06-01

    We develop and test a new elementary Monte Carlo move for use in the off-lattice simulation of polymer systems. This novel Parallel-Rotation algorithm (ParRot) permits moving very efficiently torsion angles that are deeply inside long chains in melts. The parallel-rotation move is extremely simple and is also demonstrated to be computationally efficient and appropriate for Monte Carlo simulation. The ParRot move does not affect the orientation of those parts of the chain outside the moving unit. The move consists of a concerted rotation around four adjacent skeletal bonds. No assumption is made concerning the backbone geometry other than that bond lengths and bond angles are held constant during the elementary move. Properly weighted sampling techniques are needed for ensuring detailed balance because the new move involves a correlated change in four degrees of freedom along the chain backbone. The ParRot move is supplemented with the classical Metropolis Monte Carlo, the Continuum-Configurational-Bias, and Reptation techniques in an isothermal-isobaric Monte Carlo simulation of melts of short and long chains. Comparisons are made with the capabilities of other Monte Carlo techniques to move the torsion angles in the middle of the chains. We demonstrate that ParRot constitutes a highly promising Monte Carlo move for the treatment of long polymer chains in the off-lattice simulation of realistic models of dense polymer systems.

  19. Revising the mechanism of polymer autooxidation.

    PubMed

    Gryn'ova, Ganna; Hodgson, Jennifer L; Coote, Michelle L

    2011-01-21

    The basic scheme for autooxidation of polymers, originally developed by Bolland, Gee and co-workers for rubbers and lipids, is now widely applied to all types of polymeric materials. According to their scheme, the reaction that makes this process autocatalytic, referred to as the propagation step, is a hydrogen abstraction from the next substrate by the peroxyl radical (ROO˙ + RH → ROOH + R˙). In this study, using advanced quantum-chemical methods, we have shown that this step is actually characterised by largely positive Gibbs free energy (10-65 kJ mol(-1)) for most regular polymers with saturated chains (polypropylene, polyethylene, polyvinyl chloride, polyvinyl acetate, polyurethane, poly(methyl methacrylate) etc.) and even some polymers with unsaturated fragments (polystyrene, polyethylene terephthalate). Neither elevated temperature, nor solvation makes this process thermodynamically favourable. Only when the formed radical centre is conjugated with adjacent double bonds (as in polybutadiene) or captodatively stabilised by two suitable functional groups (such as a carbonyl and a lone pair donor such as oxygen or nitrogen), is the propagation step exoergic. Instead, we show that it is the presence of structural defects, such as terminal or internal double bonds, formed either during polymerisation or in the degradation process itself, that is responsible for the autooxidation of most polyesters and most polyalkenes. Recognition of the real mechanism of autooxidation in polymers is a key to developing strategies for the prevention of their degradation. PMID:21072412

  20. Polymers Are Everywhere.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1988-01-01

    Describes the history of the human understanding of polymers from alchemy to modern times. Discusses renaissance chemistry, polymers in the nineteenth century, synthetic elastomers, thermoplastic elastomers, fibers, coatings, adhesives, derivatives of natural rubber, thermosets, step-reaction, and chain polymerization. (CW)

  1. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  2. Chain networking revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing

    Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)

  3. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  4. Effect of tethering on the surface dynamics of a thin polymer melt layer.

    PubMed

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; Narayanan, Suresh; Satija, Sushil; Foster, Mark D

    2016-06-28

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. The portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. Since these hybrid samples containing a covalently tethered layer at the bottom do not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates, they provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction. PMID:27222250

  5. Chain Gang--The Chemistry of Polymers. Hands-on Science Activities for Grades 4-12. Science in Our World, Volume Five.

    ERIC Educational Resources Information Center

    Sarquis, Mickey, Ed.

    This monograph focuses on the chemistry of polymers and enables teachers to introduce their students to the concepts and processes of industrial chemistry and relate these concepts to the consumer products students encounter daily. This teacher resource module is organized into sections that provide information on how to use the resource module,…

  6. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  8. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  9. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  10. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  11. Swelling molecular entanglement networks in polymer glasses.

    PubMed

    McGraw, Joshua D; Dalnoki-Veress, Kari

    2010-08-01

    Entanglements in a polymer network are like knots between the polymer chains, and they are at the root of many phenomena observed in polymer systems. When a polymer glass is strained, cracklike deformations called crazes may be formed and the study of these regions can reveal much about the nature of entanglements. We have studied crazes in systems that are blends of long polymer chains diluted with chains of various small molecular weights. The range of diluting chain lengths is such that a fraction of them have conformations leading to entanglements. It has been found that a system with more short chains added acts like one in which the entanglement density is smaller than that in an undiluted system. We propose a model that quantitatively predicts the density of effective entanglements of a polydisperse system of polymer chains which is consistent with our experimental data. PMID:20866829

  12. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  13. Quantifying tie-molecule content in semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    McDermott, Amanda; Snyder, Chad; Deslauriers, Paul; Jones, Ronald

    Tie molecules bridging adjacent crystalline lamellae in semicrystalline polymers strongly impact mechanical properties, but they remain difficult to characterize. We demonstrate a new method of measuring tie-chain content: applying equilibrium swelling theory to small-angle neutron scattering patterns from semicrystalline polyethylene films whose interlamellar amorphous regions are swollen with deuterated organic solvent in a vapor-flow sample environment. To aid in validating the measurement, measured tie-chain content is compared with a primary structural parameter (PSP2) that is calculated from molecular architecture and correlates with slow crack growth behavior. Agreement is favorable for a linear polyethylene and a series of ethylene-hexene copolymers. Recent applications of the technique are also discussed.

  14. Molecular dynamics of polymer crystallization revisited: Crystallization from the melt and the glass in longer polyethylene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi

    2013-08-01

    Molecular mechanisms of the steady-state growth of the chain folded lamella and the cold crystallization across the glass transition temperature Tg are investigated by molecular dynamics simulation for a system of long polyethylene (PE)-like polymers made of 512 united atoms C512. The present paper aims to reconsider results of our previous simulations for short PE-like polymers C100 by carrying out very long simulations up to 1 μs for more realistic systems of much longer chains, thereby to establish the firm molecular image of chain-folded crystallization and clarify the specific molecular process of cold crystallization. We observe that the chain-folded lamella shows fast thickening-growth keeping marked tapered growth front. Despite the fast growth in much longer chains, the fold-surface is found to be predominantly of adjacent-reentry. Detailed inspections of the molecular pathway give an insightful image that can explain the apparently contradicting results. In addition, the fold-structure with specific spatial heterogeneity is found to give rise to heterogeneous mobility within the crystalline region. On the other hand, investigations of the cold crystallization during slow heating of the glassy film across Tg is found to give a granular texture made of small crystallites. The crystallites are found to nucleate preferentially near the free surfaces having lower Tg, and to be dominantly edge-on showing a definite tendency to orient their chain axes parallel to the free surface.

  15. Electro-optic Pockels and Kerr effects for the determination of X(2)and X(3): thin films of side-chain polymers containing dimethylaminonitrostilbene and of the polydiacetylene poly-(butoxycarbonylmethyleneurethane)

    NASA Astrophysics Data System (ADS)

    Herold, M.; Schmid, W.; Vogtmann, Th.; Schwoerer, M.; Fischer, R.; Haarer, D.

    1995-02-01

    A simple reflection method that is based on ellipsometry and the electro-optic Pockels and Kerr effects is adapted for the determination of the electro-optic susceptibilities chi (2) (- omega ; 0, omega ) and chi (3)(- omega ; 0, 0, omega ). Measurements were made on materials that consist of centrosymmetric molecules like the polydiacetylene poly-(butoxycarbonylmethyleneurethane) (poly-4BCMU) and on a noncentrosymmetric poled side-chain polymer that contains dimethylaminonitrostilbene (ANS). The results are compared with those acquired by other methods (e.g., second-harmonic generation, third-harmonic generation, and degenerate four-wave mixing). Large differences occur, especially for the chi (3) values. The effects of mechanical strains from electrostatic forces and from the field-dependent change of the absorption are discussed.

  16. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  17. Frontiers in polymer chemistry.

    PubMed

    Schlüter, A Dieter

    2013-01-01

    The article shows how the initial concept of Staudinger on linear macromolecules was expanded topologically by increasing the cross-section diameter of polymer chains and by introducing sheet polymers with planar rather than the commonly known linear repeat units. The two concrete projects addressed are the synthesis of dendronized and of two-dimensional polymers. It is explained how these novel macromolecules were achieved and which obstacles had to be overcome but also where these frontiers in polymer chemistry might lead to new insights in polymer science in general and novel applications in particular. The article also provides insights into analytical issues because both target macromolecules are in an extraordinarily high molar mass range and contrast/sensitivity issues can turn rather serious in particular for the two-dimensional polymers. PMID:24388233

  18. 75 FR 4295 - Premanufacture Notification Exemption for Polymers; Amendment of Polymer Exemption Rule to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... impurities, certain perfluoroalkyl moieties consisting of a CF3- or longer chain length. This exclusion... chain length (affected polymers). As specified in the regulatory text of this final rule (40 CFR 723.250... consisting of a CF3- or longer chain length. The proposed exclusion included polymers that contain any one...

  19. Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains.

    PubMed

    Yang, Yang; Zhang, Guanxin; Luo, Hewei; Yao, Jingjing; Liu, Zitong; Zhang, Deqing

    2016-02-17

    The sensing and detection of ammonia have received increasing attention in recent years because of the growing emphasis on environmental and health issues. In this paper, we report a thin-film field-effect transistor (FET)-based sensor for ammonia and other amines with remarkable high sensitivity and satisfactory selectivity by employing the DPP-bithiophene conjugated polymer pDPPBu-BT in which tert-butoxycarboxyl groups are incorporated in the side chains. This polymer thin film shows p-type semiconducting property. On the basis of TGA and FT-IR analysis, tert-butoxycarboxyl groups can be transformed into the -COOH ones by eliminating gaseous isobutylene after thermal annealing of pDPPBu-BT thin film at 240 °C. The FET with the thermally treated thin film of pDPPBu-BT displays remarkably sensitive and selective response toward ammonia and volatile amines. This can be attributed to the fact that the elimination of gaseous isobutylene accompanies the formation of nanopores with the thin film, which will facilitate the diffusion and interaction of ammonia and other amines with the semiconducting layer, leading to high sensitivity and fast response for this FET sensor. This FET sensor can detect ammonia down to 10 ppb and the interferences from other volatile analytes except amines can be negligible. PMID:26883723

  20. Polymers in a Vacuum

    SciTech Connect

    Deutsch, J. M.

    2007-12-07

    In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for monomer position oscillates with a period proportional to chain length. The oscillations and damping are analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but stretched chains still show damped oscillatory correlations.

  1. Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples.

    PubMed

    Hu, Xiaogang; Fan, Yanan; Zhang, Yi; Dai, Guimei; Cai, Quanling; Cao, Yujuan; Guo, Changjuan

    2012-06-20

    Surface reversible addition-fragmentation chain transfer (RAFT) polymerization method was firstly applied to the preparation of molecularly imprinted polymer (MIP) coated silicon solid-phase microextraction (SPME) fibers. With Sudan I as template, an ultra-thin MIP coating with about 0.55-μm thickness was obtained with homogeneous structure and controlled composition, due to the controllable radical growing and chain propagation in surface RAFT polymerization. The MIP-coated fibers were found with enhanced selectivity coefficients (3.0-6.5) to Sudan I-IV dyes in contrast with those reported in our previous work. Furthermore, the ultra-thin thickness of MIP coating was helpful to the effective elution of template and fast adsorption/desorption kinetics, so only about 18 min was needed for MIP-coated SPME operation. The detection limits of 21-55 ng L(-1) were achieved for four Sudan dyes, when MIP-coated SPME was coupled with liquid chromatography (LC) and mass spectrometry (MS) detection. The MIP-coated SPME-LC-MS/MS method was tested for the monitoring of ultra trace Sudan dyes in spiked chilli tomato sauce and chilli pepper samples, and high enrichment effect, remarkable matrix peaks-removing capability, and consequent high sensitivities were achieved to four Sudan dyes. PMID:22652263

  2. Syntheses, structures and properties of metal-carboxylate chain-based coordination polymers (CPs) with 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylate

    NASA Astrophysics Data System (ADS)

    Zhou, Xinhui; Song, Lin; Li, Liang; Yang, Tao

    2016-09-01

    Two coordination polymers (CPs) {[Mg2L(μ2-H2O) (μ2-DMA)]·DMA}n (1), and [Ag4L(DMF)2]n (2) (H4L = 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylic acid, DMA = N,N-dimethylacetamine, DMF = N,N-dimethylformamide) have been synthesized and structurally characterized. In 1 and 2, there exist a series of parallel aligned Msbnd Osbnd C chains, which are linked along two directions by para-terphenyl moieties of L4- ligands to lead to the metal-carboxylate chain-based three-dimensional frameworks. The photoluminescence properties of the compounds 1 and 2 have also been investigated. 1 displays blue-violet light emission with the emission maximum at 380 nm. 2 exhibits a broad emission peak from 300 to 800 nm with an emission maximum at 484 nm and some of the shoulder peaks.

  3. Exploring the effect of chain length of bridging ligands in cobalt(II) coordination polymers based on flexible bis(5,6-dimethylbenzimidazole) ligands: Synthesis, crystal structures, fluorescence and catalytic properties

    NASA Astrophysics Data System (ADS)

    Qin, Li; Li, Yue-Hua; Ma, Pei-Juan; Cui, Guang-Hua

    2013-11-01

    Two Co(II) coordination polymers derived from a dicarboxylate and two flexible bis(5,6-dimethylbenzimidazole) ligands with varying chain lengths equipped, namely [Co(bdmbmm)(nip)]n (1) and [Co2(bdmbmb)2(nip)2ṡH2O]n (2) (bdmbmm = 1,1'-bis(5,6-dimethylbenzimidazole)methane, H2nip = 5-nitroisophthalic acid, bdmbmb = 1,4-bis(5,6-dimethylbenzimidazole)butane), have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD) and single-crystal X-ray diffraction. Complex 1 forms a 1D looped-like chain consisting of two kinds of macrocycles, which is further arranged into a 2D supramolecular layer through face-to-face π-π stacking interactions; whereas complex 2 exhibits a 3D framework with a twofold interpenetrating diamondoid topology. The fluorescence and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate have been investigated.

  4. Secondary structures in long compact polymers

    NASA Astrophysics Data System (ADS)

    Oberdorf, Richard; Ferguson, Allison; Jacobsen, Jesper L.; Kondev, Jané

    2006-11-01

    Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte Carlo algorithm that uniformly samples compact polymer configurations in an efficient manner, allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self-averaging in the long-chain limit and strictly less than 1. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure.

  5. Secondary structures in long compact polymers.

    PubMed

    Oberdorf, Richard; Ferguson, Allison; Jacobsen, Jesper L; Kondev, Jané

    2006-11-01

    Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte Carlo algorithm that uniformly samples compact polymer configurations in an efficient manner, allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self-averaging in the long-chain limit and strictly less than 1. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure. PMID:17279930

  6. Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: where it is shown how finite oligomer chains tend to the infinite periodic polymer.

    PubMed

    Lacivita, Valentina; Rèrat, Michel; Orlando, Roberto; Ferrero, Mauro; Dovesi, Roberto

    2012-03-21

    The longitudinal polarizability, α(xx), and second hyperpolarizability, γ(xxxx), of polyacetylene are evaluated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in the periodic CRYSTAL code and a split valence type basis set. Four different density functionals, namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown that very tight computational conditions must be used to obtain well converged results, especially for γ(xxxx), that is, very sensitive to the number of k(->) points in reciprocal space when the band gap is small (as for LDA and PBE), and to the extension of summations of the exact exchange series (HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 k(->) points are required to obtain well converged total energy and equilibrium geometry, and 1200 for well converged optical properties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as small as 1.4 eV and the exchange summation must extend to about 130 Å from the origin cell. Total energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers -(C(2)H(2))(m)-, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that oligomers of that length provide an extremely poor representation of the infinite chain polarizability and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge differences are observed on α(xx) and γ(xxxx) of the polymer when different functionals are used, that is in connection to the well-known density functional theory (DFT) overshoot, reported in the literature about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes even more dramatic (about 500 for α(xx) and 10(10) for γ(xxxx)). On the basis of previous systematic

  7. Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: Where it is shown how finite oligomer chains tend to the infinite periodic polymer

    NASA Astrophysics Data System (ADS)

    Lacivita, Valentina; Rèrat, Michel; Orlando, Roberto; Ferrero, Mauro; Dovesi, Roberto

    2012-03-01

    The longitudinal polarizability, αxx, and second hyperpolarizability, γxxxx, of polyacetylene are evaluated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in the periodic CRYSTAL code and a split valence type basis set. Four different density functionals, namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown that very tight computational conditions must be used to obtain well converged results, especially for γxxxx, that is, very sensitive to the number of k points in reciprocal space when the band gap is small (as for LDA and PBE), and to the extension of summations of the exact exchange series (HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 k points are required to obtain well converged total energy and equilibrium geometry, and 1200 for well converged optical properties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as small as 1.4 eV and the exchange summation must extend to about 130 Å from the origin cell. Total energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers -(C2H2)m-, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that oligomers of that length provide an extremely poor representation of the infinite chain polarizability and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge differences are observed on αxx and γxxxx of the polymer when different functionals are used, that is in connection to the well-known density functional theory (DFT) overshoot, reported in the literature about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes even more dramatic (about 500 for αxx and 1010 for γxxxx). On the basis of previous systematic comparisons of results obtained with

  8. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling. PMID:27022765

  9. Interpenetrations in polymer brushes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amitabha; Nelson, Peter; Toral, Raúl

    1994-01-01

    We carry out Monte Carlo simulations in both lattice and off-lattice geometry, to study the configurational properties of a system of two polymer-coated plates. We compare our results with numerical and analytical self-consistent-field theories. For the short chain-lengths considered here, we find both compression and interpenetration of the polymer brushes as the plate separation is decreased, instead of the ``classical-limit'' picture of compression with no interpenetration.

  10. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  11. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    PubMed

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f < 10%) compared with experiments, while it underestimates it at high graphene volume fraction (f > 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene. PMID:26800434

  12. Grafted polymer under shear flow

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay

    2016-04-01

    A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.

  13. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  14. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  15. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...

  16. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....

  17. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  18. Irreversibility and Polymer Adsorption

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2003-02-01

    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the resultant nonequilibrium layers. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f)˜f-4/5, in rather close agreement with strong physisorption experiments [

    H. M. Schneider et al., LangmuirLANGD50743-7463 12, 994 (1996)
    ].

  19. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  20. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery.

    PubMed

    Han, Shangcong; Wan, Haiying; Lin, Daoshu; Guo, Shutao; Dong, Hongxu; Zhang, Jianhua; Deng, Liandong; Liu, Ruming; Tang, Hua; Dong, Anjie

    2014-02-01

    Nanoparticles (NPs) assembled from amphiphilic polycations have been certified as potential carriers for gene delivery. Structural modification of polycation moieties may be an efficient route to further enhance gene delivery efficiency. In this study two electroneutral monomers with different hydrophobicities, 2-hydroxyethyl methacrylate (HEMA) and 2-hydroxyethyl acrylate (HEA), were incorporated into the cationic poly(dimethylamino ethyl methacrylate) (PDMAEMA) side-chains of amphiphilic poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) (PCD) by random co-polymerization, to obtain poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate) (PCD-HEMA) and poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl acrylate) (PCD-HEA). Minimal HEA or HEMA moieties in PDMAEMA do not lead to statistically significant changes in particle size, zeta potential, DNA condensation properties and buffering capacity of the naked NPs. However, the incorporation of HEMA and HEA lead to reductions and increases, respectively, in the surface hydrophilicity of the naked NPs and NPs/DNA complexes, which was confirmed by water contact angle assay. These simple modifications of PDMAEMA with HEA and HEMA moieties significantly affect the gene transfection efficiency on HeLa cells in vitro: PCD-HEMA NP/DNA complexes show a much higher transfection efficiency than PCD NPs/DNA complexes, while PCD-HEA NPs/DNA complexes show a lower transfection efficiency than PCD NP/DNA complexes. Fluorescence activated cell sorter and confocal laser scanning microscope results indicate that the incorporation of hydrophobic HEMA moieties facilitates an enhancement in both cellular uptake and endosomal/lysosomal escape, leading to a higher transfection efficiency. Moreover, the process of endosomal/lysosomal escape confirmed in our research that PCD and its derivatives do not just rely on the proton sponge mechanism, but also

  2. Use of a Reliable Homemade Dilatometer To Study the Kinetics of the Radical Chain Polymerization of PMMA: An Undergraduate Polymer Chemistry Laboratory Kinetics Experiment

    NASA Astrophysics Data System (ADS)

    Mendicuti, Francisco; Martín, Olga; Tarazona, Maria Pilar

    1998-11-01

    In this laboratory experiment, a simple, reliable homemade dilatometer was used to study the kinetics of the radical chain polymerization of PMMA. The reaction was carried out in toluene with benzoyl peroxide as the initiator at a temperature of 80 °C. Each student studied the kinetics at a different initiator concentration constant. Pseudo-first-order plots permit students to obtain kapp and to demonstrate order 1 with respect to the monomer concentration. Finally, a log-log plot of kapp versus the initiator concentration from the data collected by each student demonstrates order 0.5 with respect to the initiator concentration. Results also agree with the rate constants of the process implicated in this type of polymerization.

  3. On the need to consider kinetic as well as thermodynamic consequences of the parking problem in quantitative studies of nonspecific binding between proteins and linear polymer chains.

    PubMed

    Munro, P D; Jackson, C M; Winzor, D J

    1998-04-20

    Attention is drawn to a need for caution in the thermodynamic characterization of nonspecific binding of a large ligand to a linear acceptor such as a polynucleotide or a polysaccharide-because of the potential for misidentification of a transient (pseudoequilibrium) state as true equilibrium. The time course of equilibrium attainment during the binding of a large ligand to nonspecific three-residue sequences of a linear acceptor lattice has been simulated, either by numerical integration of the system of ordinary differential equations or by a Monte Carlo procedure, to identify the circumstances under which the kinetics of elimination of suboptimal ligand attachment (called the parking problem) create such difficulties. These simulations have demonstrated that the potential for the existence of a transient plateau in the time course of equilibrium attainment increases greatly (i) with increasing extent of acceptor saturation (i.e., with increasing ligand concentration), (ii) with increasing magnitude of the binding constant, and (iii) with increasing length of the acceptor lattice. Because the capacity of the polymer lattice for ligand is most readily determined under conditions conducive to essentially stoichiometric interaction, the parameter so obtained is thus likely to reflect the transient (irreversible) rather than equilibrium binding capacity. A procedure is described for evaluating the equilibrium capacity from that irreversible parameter; and illustrated by application to published results [M. Nesheim, M.N. Blackburn, C.M. Lawler, K.G. Mann, J. Biol. Chem. 261 (1986) 3214-3221] for the stoichiometric titration of heparin with thrombin. PMID:17029698

  4. Polymer-Solid Interface Connectivity and Adhesion: Design of a Pressure Sensitive Adhesive

    NASA Astrophysics Data System (ADS)

    Bunker, Shana P.; Wool, Richard P.

    2007-03-01

    Adhesion at polymer-solid interfaces was explored for a new bio-based PSA in terms of sticker groups φX on the polymer, receptor groups φY on the solid and the strength of the X-Y acid-base interaction, χ. The polymer-solid interface models of Gong, Lee and Wool were extended with new percolation models of entanglements and interface strength to determine the optimal sticker group concentration φ*X. For the general case where φY and χ are constant, it is predicted that when φX<φ*X, the peel strength behaves as G1c˜φX/φ*X and the locus of failure is adhesive between the polymer and the solid. However, when φX>φ*X, failure occurs cohesively in a polymer-polymer interface adjacent to the solid and the strength decreases as G1c˜φ*X/φX. The switch from adhesive to cohesive failure can be understood in terms of the changes in the chain conformations of the adhered chains and their decreasing interpenetration X with the bulk chains, via X˜1/r, where r = χφXφY. The optimal value of φX which maximizes the adhesion and determines the mode of failure is given by φ*X 0.07/C, and for typical values of the characteristic ratio C in the range 7-10, φ*X 1% mole fraction, corresponding to about 2 sticker groups per critical entanglement length Mc. Supported by USDA

  5. Controlled Synthesis of Polymer Brushes via Polymer Single Crystal Templates

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    A novel synthetic method of polymer brushes using polymer single crystals (PSCs) as solid-state templates is introduced in this study. PSC has a quasi-2D lamellae structure with polymer chains fold back-and-forth perpendicular to the lamellae surfaces. During crystallization, the chain ends are excluded from the unit cell onto the lamellae surfaces, which makes the material extremely versatile in its functionality. Such structure holds the unique capability to harvest nanoparticles, or being immobilized onto macroscopic flat surfaces. After dissolving PSCs in good solvent, polymer brushes are chemically tethered on either nanoparticles or flat macroscopic surfaces. Because the chain-folding structure can be conveniently tailored by changing the molecular weight of polymer and the crystallization temperature, the thickness, grafting density and morphology of resulted polymer brushes can be precisely controlled. As a model system, poly(?-caprolactone) with thiol or alkoxysilane terminal groups was used, and polymer brushes were successfully prepared on both nanoparticles and glass/Au flat surfaces. The structure-property relationships of the as-prepared polymer brushes were studied in detail using multiple characterization techniques. First of all, when functionalizing nanoparticles, by engineering the chain-folding structure of the PSCs, interesting complex nanostructures can be formed by nanoparticles including Janus nanoparticles and nanoparticle dimers. These unique structures render hybrid nanoparticles very interesting responsive behavior which have been studied in detail in this dissertation. When grafted onto a flat surface on the other hand, not only the molecular weight and grafting density can be precisely controlled, the tethering points of a single polymer chain can also be conveniently tailored, resulting polymer brushes with either tail or loop structures. Such difference in brush structure can significantly alter the properties of functional surface

  6. Novel cathode interlayers based on neutral alcohol-soluble small molecules with a triphenylamine core featuring polar phosphonate side chains for high-performance polymer light-emitting and photovoltaic devices.

    PubMed

    Chen, Dongcheng; Zhou, Hu; Liu, Ming; Zhao, Wei-Ming; Su, Shi-Jian; Cao, Yong

    2013-04-12

    A new family of neutral alcohol-soluble small molecular materials comprised of electron-rich triphenylamine (TPA) and fluorene featuring phosphonate side chains (FEP) is reported, namely 3TPA-FEP, 2TPA-2FEP and TPA-3FEP, which have different TPA and FEP contents. Due to their good solubility in polar solvents like alcohol, multilayer devices can be fabricated by a wet process from orthogonal solvents. Polymer light-emitting devices with these materials as a cathode interlayer and Al as the cathode show greatly enhanced efficiencies in contrast to control devices without such a cathode interlayer, and their efficiencies are comparable with or even higher than devices with the low work-function metal Ba/Al as the cathode. In addition, high-performance polymer solar cells based on the poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM) system are also achieved with power conversion efficiencies of 7.21%, 6.90% and 6.89%, by utilizing 3TPA-FEP, 2TPA-2FEP and TPA-3FEP as the cathode interlayer, respectively. These efficiencies are also much higher than those for control devices without the cathode interlayer. Although TPA is well-known as a hole-transport unit, the current findings indicate that alcohol-soluble TPA-based small molecules are also a promising cathode interlayer for both electron injection and extraction. PMID:23386362

  7. Bottlebrush Polymer Additives for Binary Polymer Blends

    NASA Astrophysics Data System (ADS)

    Mah, Hui Zhen; Afzali, Pantea; Phan, Hanh; Qi, Luqing; Pesek, Stacy; Verduzco, Rafael; Stein, Gila

    Bottlebrush polymers are highly branched polymers that have been used in applications such as self-assembling photonics, drug delivery and stimuli-responsive surface coatings. However, they have not been widely studied as compatibilizers for polymer blends. In this study, bottlebrush polymers with poly(styrene-r-methyl methacrylate) side chains were used as additives for thin film blends of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The blends were heated above the glass transition temperature to drive phase separation, and the resulting morphology was characterized with atomic force microscopy and optical microscopy. Outcomes were compared with PS/PMMA blends that contain conventional compatibilizers such as linear random copolymers of poly(styrene-r-methyl methacrylate) and diblock PS-PMMA copolymers. The bottlebrush additive accumulates at the PS/PMMA interface and drives the formation of vesicle-like droplets that assemble into longer chains. The continuity of the chains depends on the blend composition, where a network structure is achieved close to the critical composition. This unusual microstructure was not observed with the other additives, and may be a consequence of preferential wetting of the bottlebrush by the PS phase.

  8. Chain Dynamics in Single Chain Limit by Rheological and Diffusion Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Wang, Shanfeng

    2004-03-01

    Our recent trace and self diffusion measurements , indicate (a) (b) that the molecular weight scaling of the self-diffusion coefficient is non-reptative for moderately entangled polymer melts as noted previously (c) but asymptotically approaches the reptative exponent of -2.0 for sufficiently entangled polymers, whereas the trace diffusion coefficient, measured by immersing a dilute amount of probe chains in a matrix of sufficiently entangled polymer of the same species, scales reptatively even for the probe chains of moderate entanglement. To further understand the behavior of probe chain dynamics in a matrix, we have measured the intrinsic viscosity and intrinsic storage and loss moduli of dilute solutions made of long chains (in dilution) and short chains, where both chain lengths can be much longer than the entanglement chain length. A rich variety of chain dynamics is observed including Stokes-Zimm behavior and Rouse like behavior as a function of the long and short chain lengths and concentration. (a) S.Q. Wang, Highlight Article, J. Polym. Sci. Polym. Phys., 41, 1589 (2003). (b) "Diffusion and Rheology of Binary Polymer Mixtures", S. Wang et al, Macromolecules, in press (2003). (c) T.P. Lodge, Phys. Rev. Lett. 83, 3218 (1999).

  9. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed. PMID:26799407

  10. Communication: When does a branched polymer become a particle?

    PubMed

    Chremos, Alexandros; Douglas, Jack F

    2015-09-21

    Polymer melts with topologically distinct molecular structures, namely, linear chain, ring, and star polymers, are investigated by molecular dynamics simulation. In particular, we determine the mean polymer size and shape, and glass transition temperature for each molecular topology. Both in terms of structure and dynamics, unknotted ring polymers behave similarly to star polymers with f ≈ 5-6 star arms, close to a configurational transition point between anisotropic chains to spherically symmetric particle-like structures. These counter-intuitive findings raise fundamental questions regarding the importance of free chain-ends and chain topology in the packing and dynamics of polymeric materials. PMID:26395679

  11. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Wang, Li-Ya

    2011-06-01

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2O)] n(1), [Zn(PHDA)(BPP)] n(2), and [Cu 2(PHDA) 2(BPP)] n(3) (H 2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 86 68 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.

  12. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  13. Role of Radical Species in Salicylaldiminato Ni(II) Mediated Polymer Chain Growth: A Case Study for the Migratory Insertion Polymerization of Ethylene in the Presence of Methyl Methacrylate.

    PubMed

    Ölscher, Franz; Göttker-Schnetmann, Inigo; Monteil, Vincent; Mecking, Stefan

    2015-11-25

    To date, an inconclusive and partially contradictive picture exists on the behavior of neutral Ni(II) insertion polymerization catalysts toward methyl methacrylate (MMA). We shed light on this issue by a combination of comprehensive mechanistic NMR and EPR studies, isolation of a key Ni(I) intermediate, and pressure reactor studies with ethylene and MMA, followed by detailed polymer analysis. An interlocking mechanistic picture of an insertion and a free radical polymerization is revealed. Both polymerizations run simultaneously (25 bar ethylene, neat MMA, 70 °C); however, the chain growth cycles are independent of each other, and therefore exclusively a physical mixture of homo-PE and homo-PMMA is obtained. A Ni-C bond cleavage was excluded as a free radical source. Rather a homolytic P-C bond cleavage in the labile aryl phosphine ligand and the reaction of low-valent Ni(0/I) species with specific iodo substituted N^O (Ar-I) ligands were shown to initiate radical MMA polymerizations. Several reductive elimination decomposition pathways of catalyst precursor or active intermediates were shown to form low-valent Ni species. One of those pathways is a bimolecular reductive coupling via intermediate (N^O)Ni(I) formation. These intermediate Ni(I) species can be prevented from ultimate decomposition by capturing with organic radical sources, forming insertion polymerization active [(N^O)Ni(II)-R] species and prolonging the ethylene polymerization activity. PMID:26571229

  14. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  15. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai; Xu, Su; McBranch, Duncan; Whitten, David

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  16. Nanoscale Study of Polymer Dynamics.

    PubMed

    Keshavarz, Masoumeh; Engelkamp, Hans; Xu, Jialiang; Braeken, Els; Otten, Matthijs B J; Uji-I, Hiroshi; Schwartz, Erik; Koepf, Matthieu; Vananroye, Anja; Vermant, Jan; Nolte, Roeland J M; De Schryver, Frans; Maan, Jan C; Hofkens, Johan; Christianen, Peter C M; Rowan, Alan E

    2016-01-26

    The thermal motion of polymer chains in a crowded environment is anisotropic and highly confined. Whereas theoretical and experimental progress has been made, typically only indirect evidence of polymer dynamics is obtained either from scattering or mechanical response. Toward a complete understanding of the complicated polymer dynamics in crowded media such as biological cells, it is of great importance to unravel the role of heterogeneity and molecular individualism. In the present work, we investigate the dynamics of synthetic polymers and the tube-like motion of individual chains using time-resolved fluorescence microscopy. A single fluorescently labeled polymer molecule is observed in a sea of unlabeled polymers, giving access to not only the dynamics of the probe chain itself but also to that of the surrounding network. We demonstrate that it is possible to extract the characteristic time constants and length scales in one experiment, providing a detailed understanding of polymer dynamics at the single chain level. The quantitative agreement with bulk rheology measurements is promising for using local probes to study heterogeneity in complex, crowded systems. PMID:26688072

  17. Interactions of complex polymers with nanoporous substrate.

    PubMed

    Ziebarth, Jesse D; Wang, Yongmei

    2016-06-28

    With the advance of polymer synthesis, polymers that possess unique architectures such as stars or cyclic chains, and unique chemical composition distributions such as block copolymers or statistical copolymers have become frequently encountered. Characterization of these complex polymer systems drives the development of interactive chromatography where the adsorption of polymers on the porous substrate in chromatography columns is finely tuned. Liquid Chromatography at the Critical Condition (LCCC) in particular makes use of the existence of the Critical Adsorption Point (CAP) of polymers on solid surfaces and has been successfully applied to characterization of complex polymer systems. Interpretation and understanding of chromatography behaviour of complex polymers in interactive chromatography motivates theoretical/computational studies on the CAP of polymers and partitioning of these complex polymers near the CAP. This review article covers the theoretical questions encountered in chromatographic studies of complex polymers. PMID:27263839

  18. Spectroscopic characterization of polymers: report

    SciTech Connect

    Koenig, J.L.

    1987-10-01

    Polymer characterization has presented major difficulties to the analytical chemist, who has had to develop techniques to cope with the challenge. Even the elementary problem of measuring molecular weight is not easy. Yet such measurements are essential, because the physical, mechanical, and flow properties depend on the length of the polymer chain. Because of the limited solubility and high viscosity of polymers, many classical techniques have been of little use or have had to be extensively modified to measure the molecular weight of polymers. Size-exclusion chromatographic techniques such as gel permeation have been developed to measure these molecular weight distributions. Special chromatographic instruments with a range of spectroscopic detectors (including infrared and laser-light scattering) have emerged commercially to aid the analytical chemist in the fundamental endeavor to measure the length of the polymer chain and its distribution. The author describes the advantages and disadvantages and disadvantages of various spectroscopic techniques.

  19. Engineering thermal conductivity in polymer blends

    NASA Astrophysics Data System (ADS)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  20. On the time-course of adjacent and non-adjacent transposed-letter priming

    PubMed Central

    Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan

    2014-01-01

    We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497

  1. Self-organizing conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoyong Michael

    2000-10-01

    A general and efficient synthetic route to semifluoroalkyl substituted thiophenes has been developed and a series of 3-semifluoroalkylthiophenes were synthesized. The lengths of the fluorocarbon chain and hydrocarbon spacer between thiophene and fluorocarbon were systematically altered to study their effect on the properties of the resulting polymers. Oxidative polymerization (FeCl3) and electrochemical polymerization of 3-semifluoroalkylthiophenes afforded regiorandom (head-to-tail coupling ˜70%) homopolymers. The solubility and thermal transition temperatures of the polymers are also dependent on the nature of side chains. The surface properties of the polymers are also a function of the length of fluoroalkyl side chains. From x-ray diffraction, the regiorandom polymers have low crystallinity. Two synthetic methods have been successfully utilized to prepare regioregular poly(3-semifluoroalkylthiophene)s (head-to-tail coupling >90%) and gave identical polymers. The regioregular polymers are highly conjugated and highly ordered. The long side chain substituted polythiophenes form a liquid crystal mesophase between the crystal solid and isotropic liquid phases. To prepare polymers bearing alternating 3-semifluoroalkylthiophene and alkylthiophene units, we developed synthetic methods to 3-semifluoroalkyl-4 '-alkyl-2,2'-bithiophenes. The 3-semifluoroalkyl-4 '-alkyl-2,2'-bithiophenes were polymerized to afford regiorandom and regioregular polymers. Regiorandom polymers have low crystallinity and conjugation. Regioregular, strictly alternating copolymer with 3-semifluoroalkylthiophene and alkylthiophene units are highly conjugated and ordered. The regioregular polymers self-assemble into bilayer structure in solid state due to phase separation between fluorocarbon and hydrocarbon. At high temperatures close to melting transition, the thiophene rings rotate and twist along the molecular axis to give a single layer structure. Methylene bridges were placed between the

  2. Driving magnetic colloidal polymers

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua; Olvera de La Cruz, Monica

    Magnetic colloids are of growing interest for applications such as drug delivery and in vitro tissue growth. Recent experiments have synthesized 1D chains of magnetic colloids into permanent colloidal polymers. We study magnetic colloidal polymers theoretically and computationally under the influence of time-varying external fields and find a rich set of controllable, dynamic conformations. By iterating through a sequence of conformations, these polymers can perform mechanical functions. We discuss possible roles for these polymers beyond those considered for single colloids. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  3. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  4. 38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS NEAR THE CENTER OF THE FACTORY BUILDING. AT THE LEFT FOREGROUND IS A MOVABLE TIRE BENDER FOR SHAPING ELI WINDMILL WHEEL RIMS. AT THE CENTER IS A FLOOR-MOUNTED CIRCA 1900 SNAG GRINDER OF THE TYPE USED FOR SMOOTHING ROUGH CASTINGS. ON THE WHEELED WORK STATION IS A SUNNEN BUSHING GRINDER, BEHIND WHICH IS A TRIPOD CHAIN VICE. IN THE CENTER BACKGROUND IS A WOODEN CHEST OF DRAWERS WHICH CONTAINS A 'RAG DRAWER' STILL FILLED WITH CLOTH RAGS PLACED IN THE FACTORY BUILDING AT THE INSISTENCE OF LOUISE (MRS. ARTHUR) KREGEL FOR THE CONVENIENCE AND CLEANLINESS OF WORKERS. IN THE LEFT BACKGROUND IS A CIRCA 1900 CROSS-CUTOFF CIRCULAR SAW. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  5. Impact of adjacent land use on coastal wetland sediments.

    PubMed

    Karstens, Svenja; Buczko, Uwe; Jurasinski, Gerald; Peticzka, Robert; Glatzel, Stephan

    2016-04-15

    Coastal wetlands link terrestrial with marine ecosystems and are influenced from both land and sea. Therefore, they are ecotones with strong biogeochemical gradients. We analyzed sediment characteristics including macronutrients (C, N, P, K, Mg, Ca, S) and heavy metals (Mn, Fe, Cu, Zn, Al, Co, Cr, Ni) of two coastal wetlands dominated by Phragmites australis at the Darss-Zingst Bodden Chain, a lagoon system at the Southern Baltic Sea, to identify the impact of adjacent land use and to distinguish between influences from land or sea. In the wetland directly adjacent to cropland (study site Dabitz) heavy metal concentrations were significantly elevated. Fertilizer application led to heavy metal accumulation in the sediments of the adjacent wetland zones. In contrast, at the other study site (Michaelsdorf), where the hinterland has been used as pasture, heavy metal concentrations were low. While the amount of macronutrients was also influenced by vegetation characteristics (e.g. carbon) or water chemistry (e.g. sulfate), the accumulation of heavy metals is regarded as purely anthropogenic influence. A principal component analysis (PCA) based on the sediment data showed that the wetland fringes of the two study sites are not distinguishable, neither in their macronutrient status nor in their concentrations of heavy metals, whereas the interior zones exhibit large differences in terms of heavy metal concentrations. This suggests that seaside influences are minor compared to influences from land. Altogether, heavy metal concentrations were still below national precautionary and action values. However, if we regard the macronutrient and heavy metal concentrations in the wetland fringes as the natural background values, an accumulation of trace elements from agricultural production in the hinterland is apparent. Thus, coastal wetlands bordering croplands may function as effective pollutant buffers today, but the future development has to be monitored closely to avoid

  6. Scaling probability distribution of granular chains in two dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Zheng, Ning; Wen, Pingping; Li, Liangsheng; Shi, Qingfan

    2014-08-01

    We experimentally investigate the scaling probability distributions of various intrachain distances of granular chains in two-dimensional static packing, the chain length of which ranges from N=64 to 2048. With the scaling method proposed in the polymer theory, the scaled data from granular chains tend to cluster together so as to form a single experimental fitting curve. We find that the statistical distributions for all chains show a striking scaling behavior which can be described by Redner-des Cloizeaux formula in polymer theory. Finally, a crucial contact exponent is estimated from the fitting curve and compared with that from self-avoiding walk and compacted polymer models.

  7. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  8. Border separation for adjacent orthogonal fields

    SciTech Connect

    Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )

    1991-06-01

    Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.

  9. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  10. Polymers for metal extractions in carbon dioxide

    DOEpatents

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  11. Ending Aging in Super Glassy Polymer Membranes

    SciTech Connect

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  12. Loop statistics in polymers in crowded environment

    NASA Astrophysics Data System (ADS)

    Haydukivska, K.; Blavatska, V.

    2016-02-01

    We analyze the probability to find a single loop in a long flexible polymer chain in disordered environment in d dimensions. The structural defects are considered to be correlated on large distances r according to a power law ˜r-a. Working within the frames of continuous chain model and applying the direct polymer renormalization scheme, we obtain the values of critical exponents governing the scaling of probabilities to find the loops of various positions along the chain as function of loops' length. Our results quantitatively reveal that the presence of structural defects in environment decreases the probability of loop formation in polymer macromolecules.

  13. Effects of tethered chains on adhesion

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Grest, Gary; Stevens, Mark

    2001-03-01

    We study adhesion between a polymer melt and substrate due to chemically attached polymer chains on the substrate surface. We have performed extensive molecular dynamics simulations to study the effect of temperature, crosslink density, tethered chain density (Σ), tethered chain length (N_t), tensile pull velocity (v) and chain stiffness on the adhesive failure mechanisms of pullout and/or scission of the tethered chains. We observe a crossover from pure chain pullout to chain scission as Nt and v are increased. The value of Nt at which this crossover occurs is comparable to the chain entanglement length for the coarse-grained model used. Experiments and simulations have shown that the energy required to separate a polymer melt from a substrate increases considerably if the formation of large voids, or crazing can be initiated in the melt. The onset of crazing depends on the temperature and the interaction strength of the substrate with the melt. We also present data illustrating the additional effects of tethered chains on crazing mechanisms.

  14. A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish

    PubMed Central

    Xu, Hui; Xu, Yuci; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Xia, Haiping; Lin, Zhiqun

    2015-01-01

    Assembling nanoparticles into one-dimensional (1D) nanostructures with precisely controlled size and shape renders the exploration of new properties and construction of 1D miniaturized devices possible. The physical properties of such nanostructures depend heavily on the size, chemical composition, and surface chemistry of nanoparticle constituents, as well as the close proximity of adjacent nanoparticles within the 1D nanostructure. Chemical synthesis provides an intriguing alternative means of creating 1D nanostructures composed of self-assembled nanoparticles in terms of material diversity, size controllability, shape regularity, and low-cost production. However, this is an area where progress has been slower. We report an unconventional yet general strategy to craft an exciting variety of 1D nanonecklace-like nanostructures comprising uniform functional nanodiscs periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymers as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisc kebabs are periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain. PMID:26601151

  15. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    PubMed

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  16. Nanoimprint lithography for functional polymer patterning

    NASA Astrophysics Data System (ADS)

    Cui, Dehu

    2011-07-01

    Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. Then, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. After that, Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and

  17. Conductive polymer-based material

    DOEpatents

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  18. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  19. Adjacent Segment Pathology after Anterior Cervical Fusion.

    PubMed

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu

    2016-06-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  20. Potentials of Mean Force Between Rigid Solvated Polymers

    SciTech Connect

    FRINK, LAURA J.D.; SALINGER, ANDREW G.

    1999-09-29

    In this letter we discusses the first application of 3-dimensional nonlocal density functional calculations to the interactions of solvated rigid polymers. The three cases considered are cylindrical polymers, bead-chain polymers, and periodic polymers. We calculate potentials of mean force, and show that polymer surface structure plays a critical role in determining the solvation energy landscape which in turn controls routes to assembly of the macromolecules.

  1. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  2. High cation transport polymer electrolyte

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  3. A novel cobalt (I) coordination polymer with mixed thiocyanate and quinoline ligands: crystal structure, magnetism and luminescent properties.

    PubMed

    Li, Lei; Chen, Shuai; Zhou, Rui-Min; Bai, Yan; Dang, Dong-Bin

    2014-01-01

    A new Co(I) one-dimensional coordination polymer [Co(SCN)(ql)]n (ql=quinoline) (1) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Co(I) atom has a distorted trigonal pyramidal N2S2 (1) environment with two S atoms and one N atom from three μ-1,1,3-thiocyanate bridge ligands and one N atom from ql ligand. Two S atoms from two μ-1,1,3-SCN- bridging ligands bridge two centers to obtain bimetallic 4-membered ring. Adjacent 4-membered rings are linked by a pair of μ-1,1,3-SCN- bridging ligands to form a 1D stair-case like chain. The luminescent properties and magnetic properties of the polymer 1 were investigated in the solid state. PMID:24211622

  4. Mixed ligand coordination polymer based on 5-nitroisophthalic acid and 1-(4-nitrophenyl)-1,2,4-triazole: Synthesis, characterization, magnetic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Le; Ju, Wen-Wen; Tao, Jian-Qing; Xin, Rong; Wang, Jun; Xu, Xiao-Juan

    2015-09-01

    A new Cu(II) coordination polymer, namely, [Cu(NPT)2(NO2-BDC)]n (1) (NO2-H2BDC = 5-nitro-1,3-benzenedicarboxylic acid, NPT = 4-(4-nitrophenyl)-1,2,4-triazole) has been synthesized under hydrothermal condition and characterized by elemental analysis, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction study reveals that complex 1 features one-dimensional chain structure. The magnetic studies reveal that the antiferromagnetic interactions exist between the adjacent CuII ions. Moreover, complex 1 displays highly photocatalytic degradation activity for the degradation of rhodamine B, methylene blue and methyl orange.

  5. Syntheses, crystal structure and properties of two novel coordination polymers with the flexible tetrazole-1-acetic acid (Htza)

    SciTech Connect

    Dong Wenwen; Zhao Jun; Xu Li

    2008-05-15

    Two new coordination polymers, [Ag(tza)]{sub {infinity}} (1) (Htza=tetrazole-1-acetic acid) and [Cu(tza){sub 2}]{sub {infinity}} (2) have been prepared at room temperature and characterized by X-ray crystallography, IR, UV-vis, fluorescence spectra and magnetism analysis. Compound 1 exhibits extended helical chains through bridging ligand tza. The Ag{center_dot}{center_dot}{center_dot}Ag interactions between the adjacent chains form a 3-D framework featuring the extended tza-connected Ag chains that obviously affect the photoluminescent property. Compound 2 features undulated layered structure with hourglass-shaped [Cu{sub 4}(tza){sub 4}] as subunits with the weak ferromagnetic interactions between Cu(II) ions, which are further stabilized by inter-lamellar C-H{center_dot}{center_dot}{center_dot}O hydrogen bonds in the resulting 3-D supramolecular framework. - Graphical abstract: Two novel coordination polymers, [Ag(tza)]{sub {infinity}} (1) and [Cu(tza){sub 2{infinity}} (2) have been prepared and characterized. Compound 1 features extended double-stranded helical chains. Compound 2 features undulated layered structure with hourglass-shaped [Cu{sub 4}(tza){sub 4}] as subunits with the weak ferromagnetic interactions between Cu(II) ions.

  6. Supramolecular polymers: Molecular machines muscle up

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.; Stoddart, J. Fraser

    2013-01-01

    A supramolecular polymer made of thousands of bistable [c2]daisy chains amplifies individual nanometric displacements up to the micrometre-length scale, in a concerted process reminiscent of muscular cells.

  7. The interplay of ion crosslinking, free ion content, and polymer mobility in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2010-03-01

    We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.

  8. IUPAC International Symposium on Polymers for Advanced Technologies, Jerusalem, Israel, Aug. 16-21, 1987, Proceedings

    SciTech Connect

    Lewin, M.

    1988-01-01

    The present conference discusses topics in radiation-sensitive, radiation-modified, and cured polymers, polymers of photoconductive, electroconductive, and piezoelectric type, polymers for advanced structures, liquid-crystal polymers, high-performance polymers compounded from flexible macromolecules, polymer networks, polymer blends, and the matching of composites with adhesives. Attention is given to the industrial radiation-curing of polymers, a frequency-analysis of ferroelectricity, liquid crystal polyester fibers, photochromic and thermochromic liquid crystals, diacetylene-based single-crystal fibers, interpenetrating polymer networks, chain-length development in complex epoxy-amine matrices, and a statistical-thermodynamic theory of polymer precipitation fractionation.

  9. Entanglement swelling in polymer glasses

    NASA Astrophysics Data System (ADS)

    McGraw, Joshua; Dalnoki-Veress, Kari

    2010-03-01

    A polymer system in which the chains are much longer than the entanglement molecular weight is well entangled. When a glassy polymer film composed of such chains is uniaxially strained, deformations called crazes may be formed. It is well established that the study of crazes can reveal much about the nature of entanglements. Here, we present results of crazing experiments in which well entangled polystyrene networks have been diluted with various weight fractions of polystyrene with molecular weights in the vicinity of the entanglement molecular weight. Upon dilution, the systems assume an effective reduction in the entanglement density which is a function of both the weight fraction and molecular weight of the small chains. A model which combines simple ``chain packing'' with ``binary contact'' ideas is proposed. The model is found to quantitatively describe measurements in systems with two and three molecular weight components, and can easily be extended to polydisperse systems.

  10. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  11. Reconstructing genome mixtures from partial adjacencies.

    PubMed

    Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J

    2012-01-01

    Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028

  12. Biochemical synthesis of electroactive polymers

    NASA Astrophysics Data System (ADS)

    Alva, Shridhara; Kumar, Jayant; Marx, Kenneth A.; Tripathy, Sukant K.

    1998-04-01

    Horseradish peroxidase catalyzed oxidative free radical coupling of phenols and anilines has been utilized in the synthesis of soluble polymers with interesting electronic and optical properties. The main chain azopolymers synthesized by this method are soluble in polar solvents and undergo cis-trans isomerization upon exposure to light. The photoinduced conformational changes in the polymers are influenced by the molecular weight of the polymer. Water soluble polyanilines have been synthesized by polymerizing monomers containing polar functional groups. These polymers are reversible redox systems and show interesting optical properties, which are dependent on the solution pH. A polymeric ligand has been synthesized following this reaction, which may be used in the fabrication of metal ion sensors. We further describe the potential of these polymers in sensing and other related applications.

  13. Restructuring polymers via nanoconfinement and subsequent release

    PubMed Central

    2012-01-01

    Summary During the past several years my students and I have been utilizing certain small-molecule hosts to create nanostructured polymers. This is accomplished by first forming noncovalently bonded inclusion complexes (ICs) between these small-molecule hosts and guest polymers, followed by the careful removal of the host crystalline lattice to obtain a coalesced bulk polymer. We have repeatedly observed that such coalesced polymer samples behave distinctly from those produced from their solutions or melts. Coalesced amorphous homopolymers exhibit higher glass-transition temperatures, while crystallizable homopolymers coalesced from their ICs display higher melting and crystallization temperatures, and sometimes different crystalline polymorphs. When ICs are formed with block copolymers or with two or more different homopolymers, the resulting coalesced samples can exhibit intimate mixing between the copolymer blocks, or between entire homopolymer chains. Each of the distinct behaviors observed for polymers coalesced from their ICs is a consequence of the structural organization of the polymer–host-ICs. Polymer chains in host-IC crystals are confined to occupy narrow channels (diameter ~0.5–1.0 nm) formed by the small-molecule hosts around the included guest polymers during IC crystallization. This results in the separation and high extension of the included guest polymer chains, which leads, following the careful removal of the host molecule lattice, to unique behaviors for the bulk coalesced polymer samples. Apparently, substantial degrees of the extended and unentangled natures of the IC-included chains are retained upon coalescence. In this review we summarize the behaviors and uses of coalesced polymers, and attempt to draw conclusions on the relationship between their behavior and the organization/structures/conformations of the constituent polymer chains achieved upon coalescence from their ICs. PMID:23019466

  14. Fragmentation pathways of polymer ions.

    PubMed

    Wesdemiotis, Chrys; Solak, Nilüfer; Polce, Michael J; Dabney, David E; Chaicharoen, Kittisak; Katzenmeyer, Bryan C

    2011-01-01

    Tandem mass spectrometry (MS/MS) is increasingly applied to synthetic polymers to characterize chain-end or in-chain substituents, distinguish isobaric and isomeric species, and determine macromolecular connectivities and architectures. For confident structural assignments, the fragmentation mechanisms of polymer ions must be understood, as they provide guidelines on how to deduce the desired information from the fragments observed in MS/MS spectra. This article reviews the fragmentation pathways of synthetic polymer ions that have been energized to decompose via collisionally activated dissociation (CAD), the most widely used activation method in polymer analysis. The compounds discussed encompass polystyrenes, poly(2-vinyl pyridine), polyacrylates, poly(vinyl acetate), aliphatic polyester copolymers, polyethers, and poly(dimethylsiloxane). For a number of these polymers, several substitution patterns and architectures are considered, and questions regarding the ionization agent and internal energy of the dissociating precursor ions are also addressed. Competing and consecutive dissociations are evaluated in terms of the structural insight they provide about the macromolecular structure. The fragmentation pathways of the diverse array of polymer ions examined fall into three categories, viz. (1) charge-directed fragmentations, (2) charge-remote rearrangements, and (3) charge-remote fragmentations via radical intermediates. Charge-remote processes predominate. Depending on the ionizing agent and the functional groups in the polymer, the incipient fragments arising by pathways (1)-(3) may form ion-molecule complexes that survive long enough to permit inter-fragment hydrogen atom, proton, or hydride transfers. PMID:20623599

  15. Classical Hodgkin Lymphoma Arising Adjacent to a Breast Implant.

    PubMed

    Ryan, Ciara; Ged, Yasser; Quinn, Fiona; Walker, Jan; Kennedy, John; Gillham, Charles; Pittaluga, Stefania; McDermott, Ronan; Vandenberghe, Elisabeth; Grant, Cliona; Flavin, Richard

    2016-08-01

    Breast implant-associated lymphoma has recently gained wide recognition. Anaplastic large cell lymphoma (ALCL) is the most frequently diagnosed subtype in this setting but the spectrum is broadening. A 66-year-old woman developed swelling and itch around her saline implant 6 years after its insertion. Imaging revealed a fluid collection surrounding the implant with an adjacent mass. Microscopy showed sclerotic tissue punctuated by discrete cellular nodules comprising small lymphocytes, eosinophils and interspersed large atypical Hodgkin Reed-Sternberg (HRS)-like cells. The HRS-like cells stained positively for CD30 and CD15 by immunohistochemistry. Small T-lymphocytes formed rosettes around HRS-like cells. Appearances were consistent with classical Hodgkin lymphoma (HL). Multiplex polymerase chain reaction demonstrated no clonal rearrangements of immunoglobulin or T-cell receptor genes, however, a t(14;18)(q32;q21)BCL2-JH translocation involving the major breakpoint region of the bcl2 gene was present. Staging positron emission tomography-computed tomography scan revealed FDG-avid masses in the right axilla and pelvis. Subsequent pathological examination identified low-grade follicular lymphoma (FL) with a t(14;18) translocation at these sites. To our knowledge, this is the first case of HL arising adjacent to a breast implant. An awareness of this diagnosis is important as classical HL, with its prominent mixed inflammatory background, may be overlooked as a reactive process when histologically assessing capsulectomy specimens. It is also important in the differential diagnosis for implant-associated ALCL as both contain large atypical CD30-positive cells highlighting the need for full immunohistochemical and molecular workup in such cases. This case also adds to the large body of literature regarding the association between HL and FL. PMID:26888955

  16. Stochastic resonance during a polymer translocation process.

    PubMed

    Mondal, Debasish; Muthukumar, M

    2016-04-14

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly. PMID:27083746

  17. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, M.

    2016-04-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  18. Phase stability and dynamics of entangled polymer-nanoparticle composites

    SciTech Connect

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-06-10

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  19. Plasmonic polymers unraveled through single particle spectroscopy.

    PubMed

    Slaughter, Liane S; Wang, Lin-Yung; Willingham, Britain A; Olson, Jana M; Swanglap, Pattanawit; Dominguez-Medina, Sergio; Link, Stephan

    2014-10-01

    Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers. PMID:25155111

  20. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.