Laplacian versus adjacency matrix in quantum walk search
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Tarrataca, Luís; Nahimov, Nikolay
2016-06-01
A quantum particle evolving by Schrödinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Laplacian and adjacency matrix. The two walks differ qualitatively and quantitatively in their required jumping rate, runtime, sampling of marked vertices, and in what constitutes a natural initial state. Thus the choice of the Laplacian or adjacency matrix to effect the walk has important algorithmic consequences.
49 CFR 236.404 - Signals at adjacent control points.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Signals at adjacent control points. 236.404 Section 236.404 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR...
Freely suspended quantum point contacts
NASA Astrophysics Data System (ADS)
Rössler, C.; Herz, M.; Bichler, M.; Ludwig, S.
2010-05-01
We present a versatile design of freely suspended quantum point contacts with particular large one-dimensional subband quantization energies of up to Δɛ≈10 meV. The nanoscale bridges embedding a two-dimensional electron system are fabricated from AlGaAs/GaAs heterostructures by electron-beam lithography and etching techniques. Narrow constrictions define quantum point contacts that are capacitively controlled via local in-plane side gates. Employing transport spectroscopy, we investigate the transition from electrostatic subbands to Landau quantization in a perpendicular magnetic field. The large subband quantization energies allow us to utilize a wide magnetic field range and thereby observe a large exchange split spin-gap of the two lowest Landau-levels.
Controlling superconductivity by tunable quantum critical points.
Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson
2015-01-01
The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. PMID:25737108
Code of Federal Regulations, 2012 CFR
2012-07-01
... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point..., Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and...
Spotlighting quantum critical points via quantum correlations at finite temperatures
Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo
2011-06-15
We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.
Detecting quantum critical points using bipartite fluctuations.
Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn
2012-03-16
We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases. PMID:22540493
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less
Quantum-to-classical crossover near quantum critical point
NASA Astrophysics Data System (ADS)
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-01
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-01-01
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Characterizations of fixed points of quantum operations
Li Yuan
2011-05-15
Let {phi}{sub A} be a general quantum operation. An operator B is said to be a fixed point of {phi}{sub A}, if {phi}{sub A}(B)=B. In this note, we shall show conditions under which B, a fixed point {phi}{sub A}, implies that B is compatible with the operation element of {phi}{sub A}. In particular, we offer an extension of the generalized Lueders theorem.
Quantum point contacts as heat engines
NASA Astrophysics Data System (ADS)
Pilgram, Sebastian; Sánchez, David; López, Rosa
2015-11-01
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.
Spontaneous Spin Polarization in Quantum Point Contacts
NASA Astrophysics Data System (ADS)
Rokhinson, Leonid
2007-03-01
Mesoscopic systems exhibit a range of non-trivial spin-related phenomena in the low density regime, where inter-particle Coulomb interactions become comparable to their kinetic energy. In zero-dimensional systems spontaneous polarization of a few-electron quantum dot leads to a spin blockade, a remarkable effect where mismatch of a single spin blocks macroscopic current flow. In two-dimensional hole gases there is an experimental evidence of a finite spin polarization even in the absence of a magnetic field. In one-dimensional systems quantum wires and quantum point contacts - a puzzling so-called ``0.7 structure'' has been observed below the first quantization plateau. Experiments suggest that an extra plateau in the conductance vs gate voltage characteristic at 0.7x2e^2/h is spin related, however, the origin of the phenomenon is not yet understood and is highly debated. We report direct measurements of finite polarization of holes in a quantum point contact (QPC) at conductances G < 2e^2/h [1]. We incorporated QPC into a magnetic focusing device so that polarization can be measured directly using a recently developed spatial spin separation technique [2]. Devices are fabricated from p-type GaAs/AlGaAs heterostructures. A finite polarization is measured in low-density regime, when conductance of a point contact is tuned to < 2e^2/h. We found that polarization is stronger in samples with well defined ``0.7 structure''. [1] L.P. Rokhinson, L.N. Pfeiffer and K.W. West,``Spontaneous spin polarization in quantum point contacts,'' Physical Review Letters 96, 156602 (2006) [2] L.P. Rokhinson, V. Larkina, Y.B. Lyanda-Geller, L.N. Pfeiffer and K.W. West, ``Spin separation in cyclotron motion,'' Physicsl Review Letters 93, 146601 (2004)
Navigated Pin-Point Approach to Osteoid Osteoma Adjacent to the Facet Joint of Spine
Neo, Masashi; Takemoto, Mitsuru; Nishizawa, Kazuya; Imai, Shinji
2016-01-01
Osteoid osteoma (OO) is a benign osteoblastic tumor. Its curative treatment is complete removal of the nidus, where intraoperative localization of the nidus governs clinical results. However, treatment can be difficult since the lesion is often invisible over the bony surface. Accordingly, establishment of an ideal less invasive surgical strategy for spinal OO remains yet unsettled. We illustrate the efficacy of a computed tomography (CT)-based navigation system in excising OO located adjacent to the facet joint of spine. In our 2 cases, complete and pin-point removal of the nidus located close to the facet joint was successfully achieved, without excessive removal of the bone potentially leading to spinal instability and possible damage of nearby neurovascular structures. We advocate a less invasive approach to spinal OO, particularly in an environment with an available CT-based navigation system. PMID:26949472
Dynamic trapping near a quantum critical point
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli
2015-02-01
The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Salimi, S.
2007-05-01
Using the spectral distribution associated with the adjacency matrix of graphs, we introduce a new method of calculation of amplitudes of continuous-time quantum walk on some rather important graphs, such as line, cycle graph Cn, complete graph Kn, graph Gn, finite path and some other finite and infinite graphs, where all are connected with orthogonal polynomials such as Hermite, Laguerre, Tchebichef, and other orthogonal polynomials. It is shown that using the spectral distribution, one can obtain the infinite time asymptotic behavior of amplitudes simply by using the method of stationary phase approximation (WKB approximation), where as an example, the method is applied to star, two-dimensional comb lattices, infinite Hermite and Laguerre graphs. Also by using the Gauss quadrature formula one can approximate the infinite graphs with finite ones and vice versa, in order to derive large time asymptotic behavior by WKB method. Likewise, using this method, some new graphs are introduced, where their amplitudes are proportional to the product of amplitudes of some elementary graphs, even though the graphs themselves are not the same as the Cartesian product of their elementary graphs. Finally, by calculating the mean end to end distance of some infinite graphs at large enough times, it is shown that continuous-time quantum walk at different infinite graphs belong to different universality classes which are also different from those of the corresponding classical ones.
Spin polarization in quantum point contact structures
NASA Astrophysics Data System (ADS)
Ngo, Anh; Ulloa, Sergio
2008-03-01
One of the important goals in the field of spintronics is to produce spin-polarized currents in semiconductors [1]. The Rashba spin-orbit interaction is useful in this regard, because its strength is controllable by applying an electric field. In this work we study ballistic transport through semiconductor quantum point contact systems under different confinement geometries and applied fields. In particular, we investigate how the lateral spin-orbit coupling, as induced by the lateral confinement potential, plays a non-trivial role on the spin polarization of the current, even in the absence of magnetic field. We find that high spin polarization can be obtained by controlling the asymmetric shape of the confinement potential, and contrast our results with previous work in the literature [2]. This behavior suggests a novel scheme to implement spin-filters without external magnetic fields, and we present its dependence on structural parameters. [1] S. A. Wolf, et al., Spintronics: a spin based electronic vision of the future, Science 294, 1488-1495 (2001). [2] M. Eto, et al., Spin polarization at semiconductor point contacts in absence of magnetic field, J. Phys. Soc. Jpn. 74, 1934 (2005).
Fermion-induced quantum critical points: beyond Landau criterion
NASA Astrophysics Data System (ADS)
Yao, Hong; Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai
According to Landau criterion, phase transitions must be first-order when cubic terms of order parameters in the Landau-Ginzburg free energy are allowed by symmetry. Here, from both renormalization group analysis and sign-problem-free quantum Monte Carlo simulations, we show that second-order quantum phase transitions can occur at such putatively-first-order quantum phase transitions in strongly-interacting Dirac semimetals in two spatial dimensions. Such type of Landau-criterion-violating quantum critical points are induced by massless fermionic modes at the quantum phase transitions. We call them ``fermion-induced quantum critical points''. From Majorana-quantum-Monte-Carlo simulations and renormalization analysis, we find that the critical exponentials at the kekule valence-bond-solid transition of the Dirac fermions on the honeycomb lattice are highly-nonclassical. We also discuss experimental signatures of the kekule quantum critical point which may be realized in graphene-like systems.
Graphene-based superconducting quantum point contacts
NASA Astrophysics Data System (ADS)
Moghaddam, A. G.; Zareyan, M.
2007-11-01
We investigate the Josephson effect in the graphene nanoribbons of length L smaller than the superconducting coherence length and an arbitrary width W. We find that in contrast to an ordinary superconducting quantum point contact (SQPC), the critical supercurrent Ic is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers, Ic decreases monotonically with lowering W/L and tends to a constant minimum for a narrow nanoribbon with Wlesssim{}L. The minimum Ic is zero for the smooth edges but eΔ0/hbar for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further analysis of the current-phase relation and the Josephson coupling strength IcRN in terms of W/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other hand for a zigzag nanoribbon, we find that, similar to an ordinary SQPC, Ic is quantized but to the half-integer values (n+1/2)4eΔ0/hbar.
Cavity-assisted dynamical quantum phase transition at bifurcation points
NASA Astrophysics Data System (ADS)
Tian, Lin
2016-04-01
Coupling a quantum many-body system to a cavity can create bifurcation points in its phase diagram, where the ground state makes sudden switchings between different phases. Here we study the dynamical quantum phase transition of a transverse field Ising model coupled to a cavity. We show that an infinitesimal quench of the cavity driving at the bifurcation points induces gradual evolution of the Ising model to pass across the quantum critical point and excites quasiparticles. Meanwhile, when the driving is slowly ramped through the bifurcation points, the adiabaticity of the evolution and the number of quasiparticle excitations are strongly affected by cavity-induced nonlinearity. Introducing and manipulating cavity-induced nonlinearity hence provide an effective approach to control the dynamics and the adiabaticity of adiabatic quantum processes. This model can be implemented with superconducting quantum circuits.
Telegraph noise in coupled quantum dot circuits induced by a quantum point contact.
Taubert, D; Pioro-Ladrière, M; Schröer, D; Harbusch, D; Sachrajda, A S; Ludwig, S
2008-05-01
Charge detection utilizing a highly biased quantum point contact has become the most effective probe for studying few electron quantum dot circuits. Measurements on double and triple quantum dot circuits is performed to clarify a back action role of charge sensing on the confined electrons. The quantum point contact triggers inelastic transitions, which occur quite generally. Under specific device and measurement conditions these transitions manifest themselves as bounded regimes of telegraph noise within a stability diagram. A nonequilibrium transition from artificial atomic to molecular behavior is identified. Consequences for quantum information applications are discussed. PMID:18518321
Gravity from entanglement close to a quantum critical point
NASA Astrophysics Data System (ADS)
Faulkner, Thomas
2015-04-01
Entanglement entropy (EE) in quantum many-body systems reveal interesting non-local aspects of the state or phase of the system. For example, topological order in gapped phases may be characterized in this way. We present calculations of entanglement close to a quantum critical point with relativistic invariance that reveal the existence of an emergent gravitational theory in one higher dimension. The gravitational theory encodes the entanglement of the quantum system in an efficient way. In this way calculations of EE, a usually notoriously difficult quantity to calculate, are reduced to a simple computation in classical gravity. The answer we find is in the spirit of the AdS/CFT duality but goes beyond it since our results apply to any relativistic quantum critical point and not just the known theories with classical gravity duals.
Coulomb Interaction between InAs/GaAs Quantum Dots and Adjacent Impurities
Engstroem, O.; Kaniewska, M.; Kaczmarczyk, M.
2011-12-23
Defects positioned close to a plane of quantum dots (QDs) are shown to be influenced by coulomb interaction effect when the quantum dots are charged by electrons. Signals from deep level transient spectroscopy (DLTS) measurement give rise to a mirror effect in the spectrum depending on movement of the defect energy level in relation to the Fermi-level as a result of the electron traffic at the QDs.
Theory of microwave-assisted supercurrent in quantum point contacts.
Bergeret, F S; Virtanen, P; Heikkilä, T T; Cuevas, J C
2010-09-10
We present a microscopic theory of the effect of a microwave field on the supercurrent through a quantum point contact of arbitrary transmission. Our theory predicts that (i) for low temperatures and weak fields, the supercurrent is suppressed at certain values of the superconducting phase, (ii) at strong fields, the current-phase relation is strongly modified and the current can even reverse its sign, and (iii) at finite temperatures, the microwave field can enhance the critical current of the junction. Apart from their fundamental interest, our findings are also important for the description of experiments that aim at the manipulation of the quantum state of atomic point contacts. PMID:20867598
Thermal conductivity at a disordered quantum critical point
NASA Astrophysics Data System (ADS)
Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.
2016-04-01
Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T 0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.
Parallel quantum-point-contacts as high-frequency-mixers
NASA Astrophysics Data System (ADS)
Haubrich, A. G. C.; Wharam, D. A.; Kriegelstein, H.; Manus, S.; Lorke, A.; Kotthaus, J. P.; Gossard, A. C.
1997-06-01
The results of high-frequency mixing experiments performed upon parallel quantum point contacts defined in the two-dimensional electron gas of an AlxGa1-xAs/GaAs heterostructure are presented. The parallel geometry, fabricated using a novel double-resist technology, enables the point-contact device to be impedance matched over a wide frequency range and, in addition, increases the power levels of the mixing signal while simultaneously reducing the parasitic source-drain capacitance. Here, we consider two parallel quantum point-contact devices with 155 and 110 point contacts, respectively; both devices operated successfully at liquid helium and liquid nitrogen temperatures with a minimal conversion loss of 13 dB.
Reprint of : Quantum point contacts as heat engines
NASA Astrophysics Data System (ADS)
Pilgram, Sebastian; Sánchez, David; López, Rosa
2016-08-01
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.
Stochastic Approximation of Dynamical Exponent at Quantum Critical Point
NASA Astrophysics Data System (ADS)
Suwa, Hidemaro; Yasuda, Shinya; Todo, Synge
We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S = 1 / 2 quantum XY model, or equivalently the hard-core boson system, in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z = 1 . Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition. We will discuss also the system with random magnetic fields, or the dirty boson system, bearing a non-trivial dynamical exponent.Reference: S. Yasuda, H. Suwa, and S. Todo Phys. Rev. B 92, 104411 (2015); arXiv:1506.04837
Stochastic approximation of dynamical exponent at quantum critical point
NASA Astrophysics Data System (ADS)
Yasuda, Shinya; Suwa, Hidemaro; Todo, Synge
2015-09-01
We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z . During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S =1 /2 quantum X Y model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z =1 , i.e., the three-dimensional classical X Y universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2 +2 ) governs the quantum phase transition.
Local dynamic nuclear polarization using quantum point contacts
Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L. ); van der Vaart, N.C. ); Foxon, C.T. )
1994-08-15
We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.
Experimental consequences of quantum critical points at high temperatures
NASA Astrophysics Data System (ADS)
Freitas, D. C.; Rodière, P.; Núñez, M.; Garbarino, G.; Sulpice, A.; Marcus, J.; Gay, F.; Continentino, M. A.; Núñez-Regueiro, M.
2015-11-01
We study the C r1 -xR ex phase diagram finding that its phase transition temperature towards an antiferromagnetic order TN follows a quantum [(xc-x ) /xc ] ψ law, with ψ =1 /2 , from the quantum critical point (QCP) at xc=0.25 up to TN≈600 K . We compare this system to others in order to understand why this elemental material is affected by the QCP up to such unusually high temperatures. We determine a general criterion for the crossover, as a function of an external parameter such as concentration, from the region controlled solely by thermal fluctuations to that where quantum effects become observable. The properties of materials with low coherence lengths will thus be altered far away from the QCP.
NASA Astrophysics Data System (ADS)
Kim, Song-Hyok; Kang, Chol-Jin; Kim, Yon-Il; Kim, Kwang-Hyon
2015-05-01
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. We investigate quantum phase transition between local moment phase and Kondo screened strong coupling phase in triple quantum dots where energy levels of dots are deviated from the particle-hole symmetric point. The effect of on-site energy of dots on quantum phase transition between local moment phase and Kondo screened strong coupling phase in triple quantum dots is studied based on the analytical arguments and the numerical renormalization group method. The results show that the critical value of tunnel coupling between side dots decreases when the energy level of embedded dot rises up from the symmetric point to the Fermi level and the critical value increases when the energy levels of two side dots rise up. The study of the influence of on-site-energy changes on the quantum phase transitions in triple quantum dots has the importance for clarifying the mechanism of Kondo screening in triple quantum dots where energy levels of dots are deviated from the particle-hole symmetric point.
Intact quasiparticles at an unconventional quantum critical point
NASA Astrophysics Data System (ADS)
Sutherland, M. L.; O'Farrell, E. C. T.; Toews, W. H.; Dunn, J.; Kuga, K.; Nakatsuji, S.; Machida, Y.; Izawa, K.; Hill, R. W.
2015-07-01
We report measurements of in-plane electrical and thermal transport properties in the limit T →0 near the unconventional quantum critical point in the heavy-fermion metal β -YbAlB4 . The high Kondo temperature TK≃200 K in this material allows us to probe transport extremely close to the critical point, at unusually small values of T /TK<5 ×10-4 . Here we find that the Wiedemann-Franz law is obeyed at the lowest temperatures, implying that the Landau quasiparticles remain intact in the critical region. At finite temperatures we observe a non-Fermi-liquid T -linear dependence of inelastic-scattering processes to energies lower than those previously accessed. These processes have a weaker temperature dependence than in comparable heavy fermion quantum critical systems, revealing a temperature scale of T ˜0.3 K which signals a sudden change in the character of the inelastic scattering.
Fixed point structure of quenched, planar quantum electrodynamics
Love, S.T.
1986-07-01
Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs.
Mode Specific Backscattering in a Quantum Point Contact.
Kozikov, A A; Steinacher, R; Rössler, C; Ihn, T; Ensslin, K; Reichl, C; Wegscheider, W
2015-12-01
We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigating QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau. PMID:26569040
Komnik, A; Saleur, H
2011-09-01
We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage. PMID:21981487
Gate-Defined Graphene Quantum Point Contact in the Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Nakaharai, S.; Williams, J. R.; Marcus, C. M.
2011-07-01
We investigate transport in a gate-defined graphene quantum point contact in the quantum Hall regime. Edge states confined to the interface of p and n regions in the graphene sheet are controllably brought together from opposite sides of the sample and allowed to mix in this split-gate geometry. Among the expected quantum Hall features, an unexpected additional plateau at 0.5h/e2 is observed. We propose that chaotic mixing of edge channels gives rise to the extra plateau.
Quantum percolation and transition point of a directed discrete-time quantum walk
Chandrashekar, C. M.; Busch, Th.
2014-01-01
Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols. PMID:25301394
Quantum percolation and transition point of a directed discrete-time quantum walk.
Chandrashekar, C M; Busch, Th
2014-01-01
Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols. PMID:25301394
Point form relativistic quantum mechanics and relativistic SU(6)
NASA Technical Reports Server (NTRS)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Effects of dissipation on a quantum critical point with disorder.
Hoyos, José A; Kotabage, Chetan; Vojta, Thomas
2007-12-01
We study the effects of dissipation on a disordered quantum phase transition with O(N) order-parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to the Hertz theory of the itinerant antiferromagnetic transition. PMID:18233349
Instability of the Quantum-Critical Point of Itinerant Ferromagnets
NASA Astrophysics Data System (ADS)
Chubukov, Andrey V.; Pépin, Catherine; Rech, Jerome
2004-04-01
We study the stability of the quantum-critical point for itinerant ferromagnets commonly described by the Hertz-Millis-Moriya (HMM) theory. We argue that in D≤3 long-range spatial correlations associated with the Landau damping of the order parameter field generate a universal negative, nonanalytic |q|(D+1)/2 contribution to the static magnetic susceptibility χs(q,0), which makes HMM theory unstable. We argue that the actual transition is either towards incommensurate ordering, or first order. We also show that singular corrections are specific to the spin problem, while charge susceptibility remains analytic at criticality.
Detection of Majorana Kramers Pairs Using a Quantum Point Contact.
Li, Jian; Pan, Wei; Bernevig, B Andrei; Lutchyn, Roman M
2016-07-22
We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements. PMID:27494493
Detection of Majorana Kramers Pairs Using a Quantum Point Contact
NASA Astrophysics Data System (ADS)
Li, Jian; Pan, Wei; Bernevig, B. Andrei; Lutchyn, Roman M.
2016-07-01
We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements.
Coherent tunnelling across a quantum point contact in the quantum Hall regime.
Martins, F; Faniel, S; Rosenow, B; Sellier, H; Huant, S; Pala, M G; Desplanque, L; Wallart, X; Bayot, V; Hackens, B
2013-01-01
The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling. PMID:23475303
Coherent tunnelling across a quantum point contact in the quantum Hall regime
Martins, F.; Faniel, S.; Rosenow, B.; Sellier, H.; Huant, S.; Pala, M. G.; Desplanque, L.; Wallart, X.; Bayot, V.; Hackens, B.
2013-01-01
The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling. PMID:23475303
Scanning gate spectroscopy of a quantum Hall island near a quantum point contact
NASA Astrophysics Data System (ADS)
Hackens, Benoit; Martins, Frederico; Faniel, Sebastien; Bayot, Vincent; Rosenow, Bernd; Desplanque, Ludovic; Wallart, Xavier; Pala, Marco; Sellier, Hermann; Huant, Serge
2013-03-01
We report on low temperature (100 mK) scanning gate experiments performed at high magnetic field (around 10 T) on a mesoscopic device patterned in an InGaAs/InAlAs heterostructure. Magnetotransport measurements yield signatures of ultra-small Quantum Hall Islands (QHI) formed by closed quantum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to locate and probe a single QHI near a quantum point contact. The presence of Coulomb diamonds in the local spectroscopy confirms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.
NASA Astrophysics Data System (ADS)
Bhole, Gaurav; Anjusha, V. S.; Mahesh, T. S.
2016-04-01
A robust control over quantum dynamics is of paramount importance for quantum technologies. Many of the existing control techniques are based on smooth Hamiltonian modulations involving repeated calculations of basic unitaries resulting in time complexities scaling rapidly with the length of the control sequence. Here we show that bang-bang controls need one-time calculation of basic unitaries and hence scale much more efficiently. By employing a global optimization routine such as the genetic algorithm, it is possible to synthesize not only highly intricate unitaries, but also certain nonunitary operations. We demonstrate the unitary control through the implementation of the optimal fixed-point quantum search algorithm in a three-qubit nuclear magnetic resonance (NMR) system. Moreover, by combining the bang-bang pulses with the crusher gradients, we also demonstrate nonunitary transformations of thermal equilibrium states into effective pure states in three- as well as five-qubit NMR systems.
Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.
Fradkin, Eduardo; Moore, Joel E
2006-08-01
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function. PMID:17026083
Quantum Density of Probability at the Classical Peculiar Point
NASA Astrophysics Data System (ADS)
Buonanno, L.; Renna, M.; Pavlotsky, I. P.
The so-called no-interaction theorem of D.G. Currie, T.F. Jordan, E.C. Sudarshan, H. Leutwyler, G. Marmo and N. Mukunda makes it possible to construct relativistic quasi-classical particle dynamics in the post-Galilean approximation only.1-4 In this approximation the Lagrangians are singular on some surfaces of the phase space. The dynamical properties are essentially peculiar on the singular surfaces.5-8 In the particular case of the rectilinear motion of two electrons the peculiar point appears when the distance between the particles r=r0, where r0=e2/mc2 (the so-called “radius of an electron”). Here m and e are respectively the mass and the charge of the electron, c is the speed of light. In this paper it is shown that in the simple case of a one-dimensional system of two electrons with the symmetrical initial condition v1=-v2 (v1 and v2 are the velocities of the particles), the density of probability tends to zero when the distance between electrons tends to r0. In other words, the point of the classical phase-space, which cannot be crossed by the trajectory of the system, reflects at the point where the corresponding quantum system has the vanishing probability.
Quantum Hall Effect near the charge neutrality point in graphene
NASA Astrophysics Data System (ADS)
Leon, Jorge; Gusev, Guennadii; Plentz, Flavio
2013-03-01
The Quantum Hall effect (QHE) of a two-dimensional (2D) electron gas in a strong magnetic field is one of the most fascinating quantum phenomena discovered in condensed matter physics. In this work we propose to study the transport properties of the single layer and bilayer of graphene at the charge neutrality point (CNP) and compare it with random magnetic model developed in theoretical papers in which we argue that at CNP graphene layer is still inhomogeneous, very likely due to random potential of impurities. The random potential fluctuations induce smooth fluctuations in the local filling factor around ν = 0. In this case the transport is determined by special class of trajectories, ``the snake states'', propagating along contour ν = 0. The situation is very similar to the transport of a two-dimensional particles moving in a spatially modulated random magnetic field with zero mean value. We especially emphasize that our results may be equally relevant to the composite fermions description of the half-filled Landau level. The authors thank to CNPq and FAPESP for financial support for this work.
Observation of conductance doubling in an Andreev quantum point contact
NASA Astrophysics Data System (ADS)
Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.
One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.
Oscillating fidelity susceptibility near a quantum multicritical point
Mukherjee, Victor; Dutta, Amit; Polkovnikov, Anatoli
2011-02-15
We study scaling behavior of the geometric tensor {chi}{sub {alpha},{beta}}({lambda}{sub 1},{lambda}{sub 2}) and the fidelity susceptibility {chi}{sub F} in the vicinity of a quantum multicritical point (MCP) using the example of a transverse XY model. We show that the behavior of the geometric tensor (and thus of {chi}{sub F}) is drastically different from that seen near a critical point. In particular, we find that it is a highly nonmonotonic function of {lambda} along the generic direction {lambda}{sub 1}{approx}{lambda}{sub 2}={lambda} when the system size L is bounded by the shorter and longer correlation lengths characterizing the MCP: 1/|{lambda}|{sup {nu}{sub 1}}<
Practical Point-to-Point Free-Space Quantum Key Distribution over 1/2 KM
Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.
1999-02-01
We have demonstrated point-to-point single-photon quantum key distribution (QKD) over a free-space optical path of {approximately}475 m under daylight conditions. This represents an increase of >1,000 times farther than any reported point-to-point demonstration, and >6 times farther than the previous folded path daylight demonstration. We expect to extend the daylight range to 2 km or more within the next few months. A brief description of the system is given here. The QKD transmitter, a.k.a. ''Alice'' (Fig. 1), consists of three thermoelectrically cooled diode lasers, a single interference filter (IF), two optical attenuators, two linear polarizers, two non-polarization beam-splitters (BSs), and a 27x beam expander. The two data-lasers' (dim-lasers') wavelengths are temperature controlled and constrained by the IF to {approximately}773 {+-} 0.5 nm, while the transmitted wavelength of the bright-laser (timing-laser) is {approximately}768 nm; the data-lasers are configured to emit a weak pulse of approximately 1 ns duration. The transmitter incorporates no active polarization switching--a first in QKD.
Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.
1997-01-01
A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.
Graphene Quantum Point Contact Transistor for DNA Sensing
NASA Astrophysics Data System (ADS)
Girdhar, Anuj
2014-03-01
Over the past few years the need has grown for low-cost, high-speed, and accurate biomolecule sensing technology. Graphene is a promising choice for use in such sensing applications, as its single-atom thickness and unique electronic structure is suitable for probing biomolecules like DNA at a very high resolution. We propose the design of a transistor containing a graphene nanoribbon sensing layer with a nanopore for the simultaneous detection and control of a translocating DNA molecule. Through the combination of molecular dynamics simulations, a self-consistent Poisson equation solver, and electronic transport theory, we show that the motion of a DNA molecule through a nanopore can be observed by measuring conductance modulations in the graphene nanoribbon. We also demonstrate that the sensitivity of the graphene sheet conductance to external charges can be enhanced by modulating its carrier concentration as well as by choosing a quantum point contact geometry for the graphene nanoribbon. In addition, we propose the use of extra gates to control both the lateral and translocating motion of a DNA molecule inside the nanopore. I would like to acknowledge Oxford Nanopore Technology as well as the Beckman Institute for Advanced Science for their support.
Probing dopants in wide semiconductor quantum point contacts.
Yakimenko, I I; Berggren, K-F
2016-03-16
Effects of randomly distributed impurities on conductance, spin polarization and electron localization in realistic gated semiconductor quantum point contacts (QPCs) have been simulated numerically. To this end density functional theory in the local spin-density approximation has been used. In the case when the donor layer is embedded far from the two-dimensional electron gas (2DEG) the electrostatic confinement potential exhibits the conventional parabolic form, and thus the usual ballistic transport phenomena take place both in the devices with split gates alone and with an additional metallic gate on the top. In the opposite case, i.e. when the randomly distributed donors are placed not far away from the 2DEG layer, there are drastic changes like the localization of electrons in the vicinity of confinement potential minima which give rise to fluctuations in conductance and resonances. The conductance as a function of the voltage applied to the top gate for asymmetrically charged split gates has been calculated. In this case resonances in conductance caused by randomly distributed donors are shifted and decrease in amplitude while the anomalies caused by interaction effects remain unmodified. It has been also shown that for a wide QPC the polarization can appear in the form of stripes. The importance of partial ionization of the random donors and the possibility of short range order among the ionized donors are emphasized. The motivation for this work is to critically evaluate the nature of impurities and how to guide the design of high-mobility devices. PMID:26885626
Avoided ferromagnetic quantum critical point in CeRuPO
NASA Astrophysics Data System (ADS)
Lengyel, E.; Macovei, M. E.; Jesche, A.; Krellner, C.; Geibel, C.; Nicklas, M.
2015-01-01
CeRuPO is a rare example of a ferromagnetic (FM) Kondo-lattice system. External pressure suppresses the ordering temperature to zero at about pc≈3 GPa. Our ac-susceptibility and electrical-resistivity investigations evidence that the type of magnetic ordering changes from FM to antiferromagnetic (AFM) at about p*≈0.87 GPa . Studies in applied magnetic fields suggest that ferromagnetic and antiferromagnetic correlations compete for the ground state at p >p* , but finally the AFM correlations win. The change in the magnetic ground-state properties is closely related to the pressure evolution of the crystalline-electric-field level scheme and the magnetic Ruderman-Kittel-Kasuya-Yosida exchange interaction. The Néel temperature disappears abruptly in a first-order-like fashion at pc, hinting at the absence of a quantum critical point. This is consistent with the low-temperature transport properties exhibiting Landau-Fermi-liquid behavior in the whole investigated pressure range up to 7.5 GPa.
Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y
2009-12-11
At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226
Quantum Hall effect in a quantum point contact at Landau filling fraction ν=52
NASA Astrophysics Data System (ADS)
Miller, Jeffrey; Radu, Iuliana; Zumbühl, Dominik; Levenson-Falk, Eli; Kastner, Marc; Marcus, Charles; Pfeiffer, Loren; West, Ken
2007-03-01
We study the transport properties of quantum point contacts (QPC) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits excellent bulk fractional quantum Hall effect, including a strong plateau in the Hall resistance at Landau level filling fraction ν= 52. We find that the ν=52 plateau is identifiable in point contacts with lithographic separations as small as 0.8 microns, but is not present in a 0.5 micron QPC. We study the temperature and dc-current-bias dependence of the ν=52 plateau---as well as neighboring fractional and integer plateaus---in the QPC. We also discuss our method to study the QPC at one filling fraction while the bulk remains at a higher filling fraction. Research supported in part by Microsoft Corporation, Project Q, and HCRP at Harvard University, and ARO (W911NF-05-1-0062), the NSEC program of the NSF (PHY-0117795) and NSF (DMR-0353209) at MIT.
Universal Entanglement Entropy in 2D Conformal Quantum Critical Points
Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah
2008-12-05
We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.
Quantum-ring spin interference device tuned by quantum point contacts
Diago-Cisneros, Leo; Mireles, Francisco
2013-11-21
We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-10-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν =0.80(3) and η =0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states.
Nonlinear I-V Curve at a Quantum Impurity Quantum Critical Point
NASA Astrophysics Data System (ADS)
Baranger, Harold; Chung, Chung-Hou; Lin, Chao-Yun; Zhang, Gu; Ke, Chung-Ting; Finkelstein, Gleb
The nonlinear I-V curve at an interacting quantum critical point (QCP) is typically out of reach theoretically. Here, however, we provide a striking example of an analytical calculation of the full nonlinear I-V curve at the QCP. The system that we consider is a quantum dot coupled to resistive leads - a spinless resonant level interacting with an ohmic EM environment in which a QCP similar to the two-channel Kondo QCP occurs. Recent experiments studied this criticality via transport measurements: the transmission approaches unity at low temperature and applied bias when tuned exactly to the QCP (on resonance and symmetric tunnel barriers) and approaches zero in all other cases. To obtain the current at finite temperature and arbitrary bias, we write the problem as a one-dimensional field theory and transform from electrons in the left/right leads to right-going and left-going channels between which there is weak two-body backscattering. Drawing on dynamical Coulomb blockade theory, we thus obtain an analytical expression for the full I-V curve. The agreement with the experimental result is remarkable.
Quantum Monte Carlo calculations for point defects in semiconductors
NASA Astrophysics Data System (ADS)
Hennig, Richard
2010-03-01
Point defects in silicon have been studied extensively for many years. Nevertheless the mechanism for self diffusion in Si is still debated. Direct experimental measurements of the selfdiffusion in silicon are complicated by the lack of suitable isotopes. Formation energies are either obtained from theory or indirectly through the analysis of dopant and metal diffusion experiments. Density functional calculations predict formation energies ranging from 3 to 5 eV depending on the approximations used for the exchange-correlation functional [1]. Analysis of dopant and metal diffusion experiments result in similar broad range of diffusion activation energies of 4.95 [2], 4.68 [3], 2.4 eV [4]. Assuming a migration energy barrier of 0.1-0.3 eV [5], the resulting experimental interstitial formation energies range from 2.1 - 4.9 eV. To answer the question of the formation energy of Si interstitials we resort to a many-body description of the wave functions using quantum Monte Carlo (QMC) techniques. Previous QMC calculations resulted in formation energies for the interstitials of around 5 eV [1,6]. We present a careful analysis of all the controlled and uncontrolled approximations that affect the defect formation energies in variational and diffusion Monte Carlo calculations. We find that more accurate trial wave functions for QMC using improved Jastrow expansions and most importantly a backflow transformation for the electron coordinates significantly improve the wave functions. Using zero-variance extrapolation, we predict interstitial formation energies in good agreement with hybrid DFT functionals [1] and recent GW calculations [7]. [4pt] [1] E. R. Batista, J. Heyd, R. G. Hennig, B. P. Uberuaga, R. L. Martin, G. E. Scuseria, C. J. Umrigar, and J. W. Wilkins. Phys. Rev. B 74, 121102(R) (2006).[0pt] [2] H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998). [0pt] [3] A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999). [0pt
Thermal Ising transitions in the vicinity of two-dimensional quantum critical points
NASA Astrophysics Data System (ADS)
Hesselmann, S.; Wessel, S.
2016-04-01
The scaling of the transition temperature into an ordered phase close to a quantum critical point as well as the order parameter fluctuations inside the quantum critical region provide valuable information about universal properties of the underlying quantum critical point. Here, we employ quantum Monte Carlo simulations to examine these relations in detail for two-dimensional quantum systems that exhibit a finite-temperature Ising-transition line in the vicinity of a quantum critical point that belongs to the universality class of either (i) the three-dimensional Ising model for the case of the quantum Ising model in a transverse magnetic field on the square lattice or (ii) the chiral Ising transition for the case of a half-filled system of spinless fermions on the honeycomb lattice with nearest-neighbor repulsion. While the first case allows large-scale simulations to assess the scaling predictions to a high precision in terms of the known values for the critical exponents at the quantum critical point, for the later case, we extract values of the critical exponents ν and η , related to the order parameter fluctuations, which we discuss in relation to other recent estimates from ground-state quantum Monte Carlo calculations as well as analytical approaches.
Quantum Theory from Observer's Mathematics Point of View
Khots, Dmitriy; Khots, Boris
2010-05-04
This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.
Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates
Wei, Da; Li, Hai-Ou; Cao, Gang; Luo, Gang; Zheng, Zhi-Xiong; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
Graphene double quantum dots (DQDs) open to use charge or spin degrees of freedom for storing and manipulating quantum information in this new electronic material. However, impurities and edge disorders in etched graphene nano-structures hinder the ability to control the inter-dot tunnel coupling, tC, the most important property of the artificial molecule. Here we report measurements of tC in an all-metal-side-gated graphene DQD. We find that tC can be controlled continuously about a factor of four by employing a single gate. Furthermore, tC, can be changed monotonically about another factor of four as electrons are gate-pumped into the dot one by one. The results suggest that the strength of tunnel coupling in etched graphene DQDs can be varied in a rather broad range and in a controllable manner, which improves the outlook to use graphene as a base material for qubit applications. PMID:24213723
Experimental observation of saddle points over the quantum control landscape of a two-spin system
NASA Astrophysics Data System (ADS)
Sun, Qiuyang; Pelczer, István; Riviello, Gregory; Wu, Re-Bing; Rabitz, Herschel
2015-04-01
The growing successes in performing quantum control experiments motivated the development of control landscape analysis as a basis to explain these findings. When a quantum system is controlled by an electromagnetic field, the observable as a functional of the control field forms a landscape. Theoretical analyses have predicted the existence of critical points over the landscapes, including saddle points with indefinite Hessians. This paper presents a systematic experimental study of quantum control landscape saddle points. Nuclear magnetic resonance control experiments are performed on a coupled two-spin system in a 13C-labeled chloroform (13CHCl3) sample. We address the saddles with a combined theoretical and experimental approach, measure the Hessian at each identified saddle point, and study how their presence can influence the search effort utilizing a gradient algorithm to seek an optimal control outcome. The results have significance beyond spin systems, as landscape saddles are expected to be present for the control of broad classes of quantum systems.
The features of ballistic electron transport in a suspended quantum point contact
Shevyrin, A. A. Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.
2014-05-19
A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction.
Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory
NASA Astrophysics Data System (ADS)
Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna
2016-08-01
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
Area law for fixed points of rapidly mixing dissipative quantum systems
Brandão, Fernando G. S. L.; Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David
2015-10-15
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.
Athermal domain-wall creep near a ferroelectric quantum critical point
Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori
2016-01-01
Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041
Athermal domain-wall creep near a ferroelectric quantum critical point.
Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori
2016-01-01
Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041
Athermal domain-wall creep near a ferroelectric quantum critical point
NASA Astrophysics Data System (ADS)
Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori
2016-02-01
Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.
Quantum Transport of Disordered Weyl Semimetals at the Nodal Point
NASA Astrophysics Data System (ADS)
Sbierski, Björn; Pohl, Gregor; Bergholtz, Emil J.; Brouwer, Piet W.
2014-07-01
Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the degeneracy point and without interactions, theory predicts the existence of a critical disorder strength beyond which the density of states takes on a nonzero value. Predictions for the conductivity are divergent, however. In this work, we present a numerical study of transport properties for a disordered Weyl cone at zero energy. For weak disorder, our results are consistent with a renormalization group flow towards an attractive pseudoballistic fixed point with zero conductivity and a scale-independent conductance; for stronger disorder, diffusive behavior is reached. We identify the Fano factor as a signature that discriminates between these two regimes.
Quantum transport of disordered Weyl semimetals at the nodal point.
Sbierski, Björn; Pohl, Gregor; Bergholtz, Emil J; Brouwer, Piet W
2014-07-11
Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the degeneracy point and without interactions, theory predicts the existence of a critical disorder strength beyond which the density of states takes on a nonzero value. Predictions for the conductivity are divergent, however. In this work, we present a numerical study of transport properties for a disordered Weyl cone at zero energy. For weak disorder, our results are consistent with a renormalization group flow towards an attractive pseudoballistic fixed point with zero conductivity and a scale-independent conductance; for stronger disorder, diffusive behavior is reached. We identify the Fano factor as a signature that discriminates between these two regimes. PMID:25062216
Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts
NASA Astrophysics Data System (ADS)
Brun, B.; Martins, F.; Faniel, S.; Hackens, B.; Cavanna, A.; Ulysse, C.; Ouerghi, A.; Gennser, U.; Mailly, D.; Simon, P.; Huant, S.; Bayot, V.; Sanquer, M.; Sellier, H.
2016-04-01
The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.
Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts.
Brun, B; Martins, F; Faniel, S; Hackens, B; Cavanna, A; Ulysse, C; Ouerghi, A; Gennser, U; Mailly, D; Simon, P; Huant, S; Bayot, V; Sanquer, M; Sellier, H
2016-04-01
The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts. PMID:27081995
Kondo phase shift at the zero-bias anomaly of quantum point contacts
NASA Astrophysics Data System (ADS)
Brun, Boris; Martins, Frederico; Faniel, Sébastien; Hackens, Benoit; Cavanna, Antonella; Ulysse, Christian; Ouerghi, Albdelkarim; Gennser, Ulf; Mailly, Dominique; Simon, Pascal; Huant, Serge; Bayot, Vincent; Sanquer, Marc; Sellier, Hermann
The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.
Hybrid Quantum Point Contact-Superconductor Devices Using InSb Nanowires
NASA Astrophysics Data System (ADS)
Gill, Stephen; Damasco, John Jeffrey; Car, Diana; Bakkers, Erik; Mason, Nadya
Recent experiments using hybrid nanowire (NW)-superconductor (SC) devices have provided evidence for Majorana quasiparticles in tunneling experiments. However, these tunneling experiments are marked by a soft superconducting gap, which likely originates from disorder at the NW-SC interface. Hence, clean NW-SC interfaces are important for future Majorana studies. By carefully processing the NW-SC interface, we have realized quantized conductance steps in quantum point contacts fabricated from InSb NWs and superconducting contacts. We study the length dependence of ballistic behavior and the induced superconductivity in InSb NWs by quantum point contact spectroscopy. Additionally, we discuss how the transport in InSb NW-SC quantum point contacts evolves in magnetic field.
NASA Astrophysics Data System (ADS)
Liu, Bao; Zhang, Feng-Yang; Song, Jie; Song, He-Shan
2015-06-01
We propose a direct measurement scheme to read out the geometric phase of a coupled double quantum dot system via a quantum point contact(QPC) device. An effective expression of the geometric phase has been derived, which relates the geometric phase of the double quantum dot qubit to the current through QPC device. All the parameters in our expression are measurable or tunable in experiment. Moreover, since the measurement process affects the state of the qubit slightly, the geometric phase can be protected. The feasibility of the scheme has been analyzed. Further, as an example, we simulate the geometrical phase of a qubit when the QPC device is replaced by a single electron transistor(SET).
Doping-Induced Quantum Critical Point in an Itinerant Antiferromagnet TiAu
NASA Astrophysics Data System (ADS)
Santiago, Jessica; Svanidze, Eteri; Besara, Tiglet; Siegrist, Theo; Morosan, Emilia
The recently discovered itinerant magnet TiAu is the first antiferromagnet composed of non-magnetic constituents. The spin density wave ground state develops below TN ~36 K, about an order of magnitude smaller than in Cr. Achieving a quantum critical point in this material would provide a better understanding of weak itinerant antiferromagnets, while giving long sought-after insights into the effects of spin fluctuations in itinerant electron systems. While the application of pressure increases the ordering temperature TN, partial substitution of Ti provides an alternative avenue towards achieving a quantum critical point. The non-Fermi liquid behavior accompanies the quantum phase transition, as evidenced by the divergent specific heat coefficient and linear temperature dependence of the resistivity. The transition is accompanied by enhanced electron-electron correlations as well as strong spin-fluctuations, providing an experimental avenue for the verification of the self-consistent theory of spin fluctuations.
Spin current source based on a quantum point contact with local spin-orbit interaction
Nowak, M. P.; Szafran, B.
2013-11-11
Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.
Conductance oscillations in quantum point contacts of InAs/GaSb heterostructures
NASA Astrophysics Data System (ADS)
Papaj, Michał; Cywiński, Łukasz; Wróbel, Jerzy; Dietl, Tomasz
2016-05-01
We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay as a function of the distance to the edge. This is in contrast to the behavior of the edge states in HgTe quantum wells, which decay into the bulk in a simple exponential manner. The difference between the two materials is brought about by spatial separation of electrons and holes in InAs/GaSb, which affects the magnitudes of the parameters describing the particle-hole asymmetry and the strength of intersubband coupling within the Bernevig-Hughes-Zhang model. We show that the character of the wave-function decay impacts directly the dependence of the point contact conductance on the constriction width and the Fermi energy, which can be verified experimentally and serves to accurately determine the values of the relevant parameters. In the case of InAs/GaSb heterostructures, the conductance magnitude oscillates as a function of the constriction width following the oscillations of the edge state penetration, whereas in HgTe/(Hg,Cd)Te quantum wells a single switching from transmitting to reflecting contact is predicted.
Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes G.
2016-05-01
There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor. This term originates from a quantum-theoretical treatment of the fluctuation-dissipation theorem (FDT). Is the zero-point term really there, or is it only an experimental artifact, due to the uncertainty principle, for phase-sensitive amplifiers? Could it be removed by renormalization of theories? We discuss some historical measurement schemes that do not lead to the effect predicted by the FDT, and we analyse new features that emerge when the consequences of the zero-point term are measured via the mean energy and force in a capacitor shunting the resistor. If these measurements verify the existence of a zero-point term in the noise, then two types of perpetual motion machines can be constructed. Further investigation with the same approach shows that, in the quantum limit, the Johnson–Nyquist formula is also invalid under general conditions even though it is valid for a resistor-antenna system. Therefore we conclude that in a satisfactory quantum theory of the Johnson noise, the FDT must, as a minimum, include also the measurement system used to evaluate the observed quantities. Issues concerning the zero-point term may also have implications for phenomena in advanced nanotechnology.
Reprint of : Dynamics of a quantum wave emitted by a decaying and evanescent point source
NASA Astrophysics Data System (ADS)
Delgado, F.; Muga, J. G.
2016-08-01
We put forward a model that describes a decaying and evanescent point source of non-interacting quantum waves in 1D. This point-source assumption allows for a simple description that captures the essential aspects of the dynamics of a wave traveling through a classically forbidden region without the need to specify the details of the inner region. The dynamics of the resulting wave is examined and several characteristic times are identified. One of them generalizes the tunneling time-scale introduced by Büttiker and Landauer and it characterizes the arrival of the maximum of the wave function. Diffraction in time and deviations from exponential decay are also studied. Here we show that there exists an optimal injection frequency and detection point for the observation of these two quantum phenomena.
The Unicellular State as a Point Source in a Quantum Biological System
Torday, John S.; Miller, William B.
2016-01-01
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413
The Unicellular State as a Point Source in a Quantum Biological System.
Torday, John S; Miller, William B
2016-01-01
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413
Exact conductance through point contacts in the {nu}=1/3 fractional quantum Hall Effect
Fendley, P.; Ludwig, A.W.W.; Saleur, H. |
1995-04-10
The conductance for tunneling through an impurity in a Luttinger liquid is described by a universal scaling function. We compute this scaling function exactly, by using the thermodynamic Bethe ansatz and a kinetic (Boltzmann) equation. This model has been proposed to describe resonant tunneling through a point contact between two {nu}=1/3 quantum Hall edges. Recent experiments on quantum Hall devices agree well with our exact results. We also derive the exact conductance and {ital I}({ital V}) curve, out of equilibrium, in this fully interacting system.
Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer
Golubev, D.; Utsumi, Y.; Marthaler, M.; Schön, G.
2013-12-04
Motivated by recent experiments on the real-time single-electron counting through a semiconductor GaAs double quantum dot (DQD) by a nearby quantum point contact (QPC), we develop the full-counting statistics of coupled DQD and QPC system. By utilizing the time-scale separation between the dynamics of DQD and QPC, we derive the modified master equation with tunneling rates depending on the counting fields, which fulfill the detailed fluctuation theorem. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiments.
Ising nematic quantum critical point in a metal: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Lederer, Samuel
The Ising nematic quantum critical point (QCP) associated with the zero temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We have carried out a minus sign-free quantum Monte Carlo study of this QCP for a two dimensional lattice model with sizes up to 24 × 24 sites. The system remains non-superconducting down to the lowest accessible temperatures. The results exhibit critical scaling behavior over the accessible ranges of temperature, (imaginary) time, and distance. This scaling behavior has remarkable similarities with recently measured properties of the Fe-based superconductors proximate to their putative nematic QCP. With Yoni Schattner, Steven A. Kivelson, and Erez Berg.
Heat capacity and magnetization of CoNb2O6 near quantum critical point
NASA Astrophysics Data System (ADS)
Liang, Tian; Koohpayeh, Seyed; Krizan, Jason; Dutton, Sian; McQueen, Tyrel; Cava, Robert; Phuan Ong, N.
2012-02-01
CoNb2O6 is a quasi-1D quantum magnet in which magnetic Co^2+ ions are ferromagnetically arranged into nearly isolated chains along the c axis with the magnetic moment confined in the ac-plane. By applying transverse magnetic field along b-axis, quantum phase transition from magnetically ordered phase to paramagnetic phase occurs. Evidence for emergent E8 symmetry was recently obtained by neutron scattering near the quantum critical point (QCP) in an applied transverse magnetic field of 5.5 T We will report on experiments to investigate the behavior of the heat capacity and torque magnetization in the vicinity of the QCP and discuss their implications.
Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Dell'Agnello, Simone; Esposito, Giampiero; Simo, Jules
2015-04-01
Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics; i.e., at the Lagrangian libration points of stable equilibrium, the planetoid is not exactly at an equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we prove in detail that for collinear Lagrangian points the quantum corrections are also of the same order of magnitude in the Earth-Moon system. Third, we discuss the prospects of measuring, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points, both stable and unstable. Therefore, the present paper investigates, eventually, a restricted three-body problem involving Earth, the Moon, and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist.
Theory of the nematic quantum critical point in a nodal superconductor
NASA Astrophysics Data System (ADS)
Kim, Eun-Ah
2008-03-01
In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.
Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P
2013-07-01
We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (Nquantum critical regime (|x|quantum disordered (x>/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition. PMID:23944420
Universal Scaling in the Fan of an Unconventional Quantum Critical Point
Melko, Roger G; Kaul, Ribhu
2008-01-01
We present the results of extensive finite-temperature Quantum Monte Carlo simulati ons on a SU(2) symmetric, $S=1/2$ quantum antiferromagnet with a frustrating four-s pin interaction -- the so-called 'JQ' model~[Sandvik, Phys. Rev. Lett. {\\bf 98}, 22 7202 (2007)]. Our simulations, which are unbiased, free of the sign-problem and car ried out on lattice sizes containing in excess of $1.6\\times 10^4$ spins, indicate that N\\'eel order is destroyed through a continuous quantum transition at a critica l value of the frustrating interaction. At larger values of this coupling the param agnetic state obtained has valence-bond solid order. The scaling behavior in the 'q uantum critical fan' above the putative critical point confirms a $z=1$ quantum pha se transition that is not in the conventional $O(3)$ universality class. Our result s are consistent with the predictions of the 'deconfined quantum criticality' scena rio.
Non-linear superflow of a unitary Fermi gas through a quantum point contact
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Husmann, Dominik; Uchino, Shun; Krinner, Sebastian; Häusler, Samuel; Brantut, Jean-Philippe; Giamarchi, Thierry; Esslinger, Tilman
2016-05-01
Point contacts provide simple connections between macroscopic particle reservoirs. In electric circuits, strong links between metals, semiconductors, or superconductors have applications for fundamental condensed-matter physics as well as quantum information processing. However, for complex, strongly correlated materials, links have been largely restricted to weak tunnel junctions. We studied resonantly interacting Fermi gases of 6 Li atoms connected by a tunable, ballistic quantum point contact, finding a nonlinear current-bias relation. At low temperature, our observations agree quantitatively with a theoretical model in which the current originates from multiple Andreev reflections. In a wide contact geometry, the competition between superfluidity and thermally activated transport leads to a conductance minimum. Our system offers a controllable platform for the study of mesoscopic devices based on strongly interacting matter.
Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.
Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th
2016-07-13
We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization. PMID:27347816
Quantum point contact displacement transducer for a mechanical resonator at sub-Kelvin temperatures
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi
2013-11-04
Highly sensitive displacement transduction of a 1.67 MHz mechanical resonator with a quantum point contact (QPC) formed in a GaAs heterostructure is demonstrated. By positioning the QPC at the point of maximum mechanical strain on the resonator and operating at 80 mK, a displacement responsivity of 3.81 A/m is measured, which represents a two order of magnitude improvement on the previous QPC based devices. By further analyzing the QPC transport characteristics, a sub-Poisson-noise-limited displacement sensitivity of 25 fm/Hz{sup 1/2} is determined which corresponds to a position resolution that is 23 times the standard quantum limit.
On the existence of point spectrum for branching strips quantum graph
Popov, I. Yu. Skorynina, A. N.; Blinova, I. V.
2014-03-15
The quantum graph having the form of branching strips with hexagonal (honeycomb) structure is considered. The Hamiltonian is determined as free 1D Schrödinger operator on each edge and some “boundary” conditions at each vertex. We obtain the conditions ensuring the point spectrum's existence for the Schrödinger operator of the system and relations that give us the eigenvalues.
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
NASA Astrophysics Data System (ADS)
Herbut, Igor F.
2016-07-01
Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .
Scaling near the Quantum-Critical Point in the SO(5) Theory of the High-T{sub c} Superconductivity
Kopec, T. K.; Zaleski, T. A.
2001-08-27
We study the quantum-critical point scenario within the unified theory of superconductivity and antiferromagnetism based on the SO(5) symmetry. Closed-form expression for the quantum-critical scaling function for the dynamic spin susceptibility is obtained from the lattice SO(5) quantum nonlinear {sigma} -model in three dimensions, revealing that in the quantum-critical region the frequency scale for spin excitations is simply set by the absolute temperature. Implications for the non-Fermi liquid behavior of the normal-state resistivity due to spin fluctuations in the quantum-critical region are also presented.
A Novel Quantum Dots–Based Point of Care Test for Syphilis
2010-01-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots–based method reached up to 100% (95% confidence interval [CI], 91–100%), while those of the colloidal gold-based method were 82% (95% CI, 68–91%) and 100% (95% CI, 91–100%), respectively. In addition, the naked-eye detection limit of quantum dot–based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold–based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening. PMID:20672123
A novel quantum dots-based point of care test for syphilis.
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-01-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening. PMID:20672123
A Novel Quantum Dots-Based Point of Care Test for Syphilis
NASA Astrophysics Data System (ADS)
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-05-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2014-01-01
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594
Resolution of point sources of light as analyzed by quantum detection theory.
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1973-01-01
The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
The resolution of point sources of light as analyzed by quantum detection theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1972-01-01
The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point
Wolf, Bernd; Tsui, Yeekin; Jaiswal-Nagar, Deepshikha; Tutsch, Ulrich; Honecker, Andreas; Remović-Langer, Katarina; Hofmann, Georg; Prokofiev, Andrey; Assmus, Wolf; Donath, Guido; Lang, Michael
2011-01-01
The presence of a quantum-critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T,r) in the vicinity of a QCP, yielding particularly strong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of ∂S/∂B near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), (∂T/∂B)S and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu2+-containing coordination polymer, which is a very good realization of a spin-½ antiferromagnetic Heisenberg chain—one of the simplest quantum-critical systems.
Weak phase stiffness and nature of the quantum critical point in underdoped cuprates
Yildirim, Yucel; Ku, Wei
2015-11-02
We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La_{1–x}Sr_{x})_{2}CuO_{4}, a kinetics-driven d-wave superconductivity is obtained above the critical doping δ_{c} ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δ_{c} that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.
Weak phase stiffness and nature of the quantum critical point in underdoped cuprates
Yildirim, Yucel; Ku, Wei
2015-11-02
We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc thatmore » dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less
Single-point position and transition defects in continuous time quantum walks
Li, Z. J.; Wang, J. B.
2015-01-01
We present a detailed analysis of continuous time quantum walks (CTQW) with both position and transition defects defined at a single point in the line. Analytical solutions of both traveling waves and bound states are obtained, which provide valuable insight into the dynamics of CTQW. The number of bound states is found to be critically dependent on the defect parameters, and the localized probability peaks can be readily obtained by projecting the state vector of CTQW on to these bound states. The interference between two bound states are also observed in the case of a transition defect. The spreading of CTQW probability over the line can be finely tuned by varying the position and transition defect parameters, offering the possibility of precision quantum control of the system. PMID:26323855
Phase reconstruction near to the two-dimensional ferromagnetic quantum critical point
NASA Astrophysics Data System (ADS)
Pedder, Chris; Karahasanovic, Una; Kruger, Frank; Green, Andrew
2012-02-01
We study the formation of new phases in two dimensions near to the putative quantum critical point of the itinerant ferromagnet to paramagnet phase transition. In addition to the first order and helimagnetic behaviour found in non-analytic extensions to Hertz-Millis theory [1] and in the quantum order-by-disorder approach [2], we find a small region of spin nematic order. Our approach also admits a concurrent formation of superconducting order. We further study the effect of small deformations from quadratic electron dispersion -- as previously found in three dimensions, these enlarge the region of spin nematic order at the expense of spiral order.[4pt] [1] D. Belitz, T.R. Kirkpatrick and T. Vojta, Rev. Mod. Phys. 77, 579 (2005),. V. Efremov, J.J. Betouras, A.V. Chubukov Phys. Rev. B 77, 220401(R), (2008)[0pt] [2] G. J. Conduit Phys. Rev. A 82, 043604 (2010)
NASA Astrophysics Data System (ADS)
Muro, Tatsuya; Nishihara, Yoshitaka; Norimoto, Shota; Ferrier, Meydi; Arakawa, Tomonori; Kobayashi, Kensuke; Ihn, Thomas; Rössler, Clemens; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner
2016-05-01
We report a precise experimental study on the shot noise of a quantum point contact (QPC) fabricated in a GaAs/AlGaAs based high-mobility two-dimensional electron gas (2DEG). The combination of unprecedented cleanliness and very high measurement accuracy has enabled us to discuss the Fano factor to characterize the shot noise with a precision of 0.01. We observed that the shot noise at zero magnetic field exhibits a slight enhancement exceeding the single particle theoretical prediction, and that it gradually decreases as a perpendicular magnetic field is applied. We also confirmed that this additional noise completely vanishes in the quantum Hall regime. These phenomena can be explained by the electron heating effect near the QPC, which is suppressed with increasing magnetic field.
Metal-insulator quantum critical point beneath the high Tc superconducting dome
Sebastian, Suchitra E.; Harrison, N.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Lonzarich, G. G.; Hardy, W. N.
2010-01-01
An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high Tc cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in Tc in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. PMID:20304800
Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing
NASA Astrophysics Data System (ADS)
Lee, J.; Han, J. E.; Xiao, S.; Song, J.; Reno, J. L.; Bird, J. P.
2014-02-01
Managing energy dissipation is critical to the scaling of current microelectronics and to the development of novel devices that use quantum coherence to achieve enhanced functionality. To this end, strategies are needed to tailor the electron-phonon interaction, which is the dominant mechanism for cooling non-equilibrium (`hot') carriers. In experiments aimed at controlling the quantum state, this interaction causes decoherence that fundamentally disrupts device operation. Here, we show a contrasting behaviour, in which strong electron-phonon scattering can instead be used to generate a robust mode for electrical conduction in GaAs quantum point contacts, driven into extreme non-equilibrium by nanosecond voltage pulses. When the amplitude of these pulses is much larger than all other relevant energy scales, strong electron-phonon scattering induces an attraction between electrons in the quantum-point-contact channel, which leads to the spontaneous formation of a narrow current filament and to a renormalization of the electronic states responsible for transport. The lowest of these states coalesce to form a sub-band separated from all others by an energy gap larger than the source voltage. Evidence for this renormalization is provided by a suppression of heating-related signatures in the transient conductance, which becomes pinned near 2e2/h (e, electron charge; h, Planck constant) for a broad range of source and gate voltages. This collective non-equilibrium mode is observed over a wide range of temperature (4.2-300 K) and may provide an effective means to manage electron-phonon scattering in nanoscale devices.
Entropy excess in strongly correlated Fermi systems near a quantum critical point
Clark, J.W.; Zverev, M.V.; Khodel, V.A.
2012-12-15
A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau
Feedback cooling of cantilever motion using a quantum point contact transducer
Montinaro, M.; Mehlin, A.; Solanki, H. S.; Peddibhotla, P.; Poggio, M.; Mack, S.; Awschalom, D. D.
2012-09-24
We use a quantum point contact (QPC) as a displacement transducer to measure and control the low-temperature thermal motion of a nearby micromechanical cantilever. The QPC is included in an active feedback loop designed to cool the cantilever's fundamental mechanical mode, achieving a squashing of the QPC noise at high gain. The minimum achieved effective mode temperature of 0.2 K and the displacement resolution of 10{sup -11} m/{radical}(Hz) are limited by the performance of the QPC as a one-dimensional conductor and by the cantilever-QPC capacitive coupling.
Influence of super-ohmic dissipation on a disordered quantum critical point.
Vojta, Thomas; Hoyos, José A; Mohan, Priyanka; Narayanan, Rajesh
2011-03-01
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables. PMID:21339559
Infinite randomness fixed point of the superconductor-metal quantum phase transition.
Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir
2008-07-18
We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)10.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field. PMID:18764263
Tunable strength saddle-point contacts impact on quantum rings transmission
NASA Astrophysics Data System (ADS)
González, J. J.; Diago-Cisneros, L.
2016-09-01
A particular subject of investigation is the role of several sadle-point contact (QPC) parameters on the scattering properties of an Aharonov-Bohm-Aharonov-Casher quantum ring (QR) under Rashba-type spin orbit interaction. We discuss the interplay of the conductance with the confinement strengths and height of the QPC, which yields new and tunable harmonic and non-harmonics patterns, while one manipulates these constriction parameters. This phenomenology may be of utility to implement a novel way to modulate spin interference effects in semiconducting QRs, providing an appealing test-platform for spintronics applications.
Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir
2008-07-01
We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field.
Evolution of hyperfine parameters across a quantum critical point in CeRhIn5
NASA Astrophysics Data System (ADS)
Lin, C. H.; Shirer, K. R.; Crocker, J.; Dioguardi, A. P.; Lawson, M. M.; Bush, B. T.; Klavins, P.; Curro, N. J.
2015-10-01
We report nuclear magnetic resonance (NMR) data for both the In(1) and In(2) sites in the heavy-fermion material CeRhIn5 under hydrostatic pressure. The Knight shift data reveal a suppression of the hyperfine coupling to the In(1) site as a function of pressure, and the electric field gradient να α at the In(2) site exhibits a change of slope d να α/d P at Pc 1=1.75 GPa. These changes to the coupling constants reflect alterations to the electronic structure at the quantum critical point.
Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact
Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.
1998-12-07
We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance ({omega}{approximately}0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region.
Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.
Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele
2016-06-16
One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water. PMID:27203358
Singularity of the London Penetration Depth at Quantum Critical Points in Superconductors
NASA Astrophysics Data System (ADS)
Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir
2013-10-01
We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As1-xPx)2 [K. Hashimoto , Science 336, 1554 (2012)SCIEAS0036-807510.1126/science.1219821].
Magnetic-field control of quantum critical points of valence transition.
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2008-06-13
We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd. PMID:18643524
Terahertz magnetospectroscopy of a point contact based on CdTe/CdMgTe quantum well
NASA Astrophysics Data System (ADS)
Grigelionis, I.; Bialek, M.; Grynberg, M.; Czapkiewicz, M.; Kolkovski, V.; Wiater, M.; Wojciechowski, M.; Wróbel, J.; Wojtowicz, T.; Diakonova, N.; Knap, W.; Łusakowski, J.
2014-09-01
THz response of a number of samples based on CdTe/CdMgTe quantum wells grown by a molecular beam epitaxy was investigated at low temperatures and high magnetic fields. The experiments involved magnetotransport, photocurrent, and transmission measurements carried out with a monochromatic THz sources or a Fourier spectrometer. Samples of different geometry, with and without a gate metallization were used. We observed excitations of a two-dimensional plasma in the form of optically-induced Shubnikov-de Haas oscillations, cyclotron resonance transitions and magnetoplasmon resonances. A polaron effect was observed at magnetic fields higher than 10 T. A point contact device processed with an electron beam lithography was investigated as a detector of THz radiation. It was shown that the main mechanism responsible for a THz performance of the point contact was excitation of magnetoplasmons with a wave vector defined by geometrical constrictions of the device mesa.
Multiscale modeling of point defects in Si-Ge(001) quantum wells
Yang, B.; Tewary, V. K.
2007-04-01
A computationally efficient hybrid Green's function (GF) technique is developed for multiscale modeling of point defects in a trilayer lattice system that links seamlessly the length scales from lattice (subnanometers) to continuum (bulk). The model accounts for the discrete structure of the lattice including nonlinear effects at the atomistic level and full elastic anisotropy at the continuum level. The model is applied to calculate the discrete core structure of point defects (vacancies and substitutional impurities) in Si-Ge(001) quantum wells (QWs) that are of contemporary technological interest. Numerical results are presented for the short range and long range lattice distortions and strains in the lattice caused by the defects and their formation energy and Kanzaki forces that are basic characteristics of the defects. The continuum and the lattice GFs of the material system are used to link the different length scales, which enables us to model the point defects and extended defects such as the quantum well in a unified formalism. Nonlinear effects in the core of the point defects are taken into account by using an iterative scheme. The Tersoff potential is used to set up the lattice structure, compute the unrelaxed forces and force constants in the lattice, and derive the elastic constants required for the continuum GF. It is found that the overall elastic properties of the material and the properties of defects vary considerably when the material is strained from the bulk to the QW state. This change in the defect properties is very significant and can provide a characteristic signature of the defect. For example, in the case of a single vacancy in Ge, the strain reverses the sign of the relaxation volume. It is also found that the defect properties, such as the defect core structures, change abruptly across a Ge/Si interface. The transition occurs over a region extending from two to four lattice constants, depending upon the defect species.
Exotic quantum critical point on the surface of three-dimensional topological insulator
NASA Astrophysics Data System (ADS)
Bi, Zhen; You, Yi-Zhuang; Xu, Cenke
2016-07-01
In the last few years a lot of exotic and anomalous topological phases were constructed by proliferating the vortexlike topological defects on the surface of the 3 d topological insulator (TI) [Fidkowski et al., Phys. Rev. X 3, 041016 (2013), 10.1103/PhysRevX.3.041016; Chen et al., Phys. Rev. B 89, 165132 (2014), 10.1103/PhysRevB.89.165132; Bonderson et al., J. Stat. Mech. (2013) P09016, 10.1088/1742-5468/2013/09/P09016; Wang et al., Phys. Rev. B 88, 115137 (2013), 10.1103/PhysRevB.88.115137; Metlitski et al., Phys. Rev. B 92, 125111 (2015), 10.1103/PhysRevB.92.125111]. In this work, rather than considering topological phases at the boundary, we will study quantum critical points driven by vortexlike topological defects. In general, we will discuss a (2 +1 )d quantum phase transition described by the following field theory: L =ψ ¯γμ(∂μ-i aμ) ψ +| (∂μ-i k aμ) ϕ| 2+r|ϕ | 2+g |ϕ| 4 , with tuning parameter r , arbitrary integer k , Dirac fermion ψ , and complex scalar bosonic field ϕ , which both couple to the same (2 +1 )d dynamical noncompact U(1) gauge field aμ. The physical meaning of these quantities/fields will be explained in the text. Making use of the new duality formalism developed in [Metlitski et al., Phys. Rev. B 93, 245151 (2016), 10.1103/PhysRevB.93.245151; Wang et al., Phys. Rev. X 5, 041031 (2015), 10.1103/PhysRevX.5.041031; Wang et al., Phys. Rev. B 93, 085110 (2016), 10.1103/PhysRevB.93.085110; D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], we demonstrate that this quantum critical point has a quasi-self-dual nature. And at this quantum critical point, various universal quantities such as the electrical conductivity and scaling dimension of gauge-invariant operators, can be calculated systematically through a 1 /k2 expansion, based on the observation that the limit k →+∞ corresponds to an ordinary 3 d X Y transition.
Mapping out spin and particle conductances in a quantum point contact.
Krinner, Sebastian; Lebrat, Martin; Husmann, Dominik; Grenier, Charles; Brantut, Jean-Philippe; Esslinger, Tilman
2016-07-19
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at [Formula: see text] for weak interactions to plateau-like features at nonuniversal values as high as [Formula: see text] for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas. PMID:27357668
Spin dynamics in a quantum point contact showing the 0.7-anomaly
NASA Astrophysics Data System (ADS)
von Delft, Jan; Bauer, Florian; Heyder, Jan; Schimmel, Dennis; CeNS/ASC Team
2015-03-01
The 0.7-anomaly in the first conductance step of a quantum point contact is believed to arise from an interplay of geometry, spin dynamics and interaction effects. Various scenarios have been proposed to explain it, each evoking a different concept, including spontaneous spin polarization, or a quasi-localized state, or ferromagnetic spin fluctuations, or a van Hove ridge (a geometry-induced maximum in the density-of states). Though these scenarios differ substantially regarding numerous details, they all imply anomalous dynamics for the spins in the vicinity of the QPC. We have performed a detailed study of this spin dynamics in the central region of a parabolic quantum point contact, by using the functional renormalization group to calculate the dynamical spin-spin correlation function χ (x ,x' , ω) =∫0∞
Spin-dependent masses and field-induced quantum critical points
NASA Astrophysics Data System (ADS)
McCollam, A.; Daou, R.; Julian, S. R.; Bergemann, C.; Flouquet, J.; Aoki, D.
2005-04-01
We discuss spin-dependent mass enhancements associated with field-induced quantum critical points in heavy-fermion systems. We have recently observed this phenomenon on a branch of the Fermi surface of CeRu2Si2 above its metamagnetic transition, complementing earlier work. In CeCoIn5, at high fields above a field-induced quantum critical point, we see a strong spin-dependence of the effective mass on the thermodynamically dominant sheets of the Fermi surface. These observations reinforce the suggestion that ‘missing mass’ in some cerium-based heavy-fermion systems will be found on heavy spin-polarised branches of the Fermi surface. In all cases where this phenomenon is observed the linear coefficient of specific heat is field dependent; however, CeCoIn5 seems to be the first such heavy-fermion system in which the f-electrons are definitely contributing to the Fermi volume, which puts it beyond the existing theory intended for metamagnetic systems.
Quantum critical point and spin fluctuations in lower-mantle ferropericlase
Lyubutin, Igor S.; Struzhkin, Viktor V.; Mironovich, A. A.; Gavriliuk, Alexander G.; Naumov, Pavel G.; Lin, Jung-Fu; Ovchinnikov, Sergey G.; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Hemley, Russell J.
2013-01-01
Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth’s lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe2+ ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe2+ in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe2+ at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = Pc) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives Pc = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth’s lower mantle. PMID:23589892
Electron-photon interaction in a quantum point contact coupled to a microwave resonator
NASA Astrophysics Data System (ADS)
Mendes, Udson C.; Mora, Christophe
2016-06-01
We study a single-mode cavity weakly coupled to a voltage-biased quantum point contact. In a perturbative analysis, the lowest order predicts a thermal state for the cavity photons, driven by the emission noise of the conductor. The cavity is thus emptied as all transmission probabilities of the quantum point contact approach one or zero. Two-photon processes are identified at higher coupling, and pair absorption dominates over pair emission for all bias voltages. As a result, the number of cavity photons, the cavity damping rate, and the second-order coherence g(2 ) are all reduced and exhibit less bunching than the thermal state. These results are obtained with a Keldysh path-integral formulation and reproduced with rate equations. They can be seen as a backaction of the cavity measuring the electronic noise. Extending the standard P (E ) theory to a steady-state situation, we compute the modified noise properties of the conductor and find quantitative agreement with the perturbative calculation.
Mapping out spin and particle conductances in a quantum point contact
Krinner, Sebastian; Lebrat, Martin; Husmann, Dominik; Grenier, Charles; Brantut, Jean-Philippe; Esslinger, Tilman
2016-01-01
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at 1/h for weak interactions to plateau-like features at nonuniversal values as high as 4/h for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas. PMID:27357668
Unconventional Superconductivity in the Vicinity of the Local Quantum Critical Point
NASA Astrophysics Data System (ADS)
Si, Qimiao; Pixley, Jedediah; Deng, Lili; Ingersent, Kevin
2015-03-01
Unconventional superconductivity and its relationship with quantum criticality remains a central question in strongly correlated electron systems. In the case of heavy fermion metals, the existence of antiferromagnetic quantum critical points (QCPs) is well established. Theoretical work has identified the existence of a local QCP where the Kondo effect is driven critical concomitant with the vanishing of the magnetic order parameter. Experiments on the heavy fermion compound CeRhIn5 and other materials have provided strong evidence that such a QCP drives unconventional superconductivity. With this in mind we solve the periodic Anderson model using a cluster extended dynamical mean field theory. We show that the Kondo energy scale is continuously suppressed at the antiferromagnetic QCP, and we determine the scaling form of the order parameter susceptibility and find remarkable agreement with well-established experiments in the related heavy fermion system CeCu6-xAux. Most importantly, we find that the singlet pairing susceptibility is strongly enhanced at the QCP, which points towards a new pairing mechanism associated with both magnetic and local critical fluctuations.
Realization of an all-electric spin transistor using quantum point contacts
NASA Astrophysics Data System (ADS)
Chen, Tse-Ming; Chuang, Pojen; Ho, Sheng-Chin; Smith, Luke; Sfigakis, Francois; Pepper, Michael; Chen, Chin-Hung; Fan, Ju-Chun; Griffiths, Jonathan; Farrer, Ian; Beere, Harvey; Jones, Geb; Ritchie, Dave
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation, and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for the incorporation into integrated circuits. Here, we present an all-electric all-semiconductor spin field effect transistor, in which these obstacles are overcome by employing two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins--spin injection, manipulation, and detection--in a purely electrical manner. Such a device is compatible with large-scale integration and hold promise for future spintronic devices for information processing. Ref: P. Chuang et al., Nat. Nanotechnol. 10, 35 (2015).
NASA Astrophysics Data System (ADS)
Byers, L. C.; Stearns, L. A.; Finnegan, D. C.; LeWinter, A. L.; Gadomski, P. J.; Hamilton, G. S.
2014-12-01
Flow near the termini of tidewater glaciers varies over short time-scales due to mechanisms that are poorly understood. Repeat observations with high temporal and spatial resolution, recorded around the terminus, are required to better understand the processes that control flow variability. Progress in light detection and ranging (LiDAR) technology permit such observations of the near-terminus and the pro-glacial ice mélange, though standard workflows for quantifying deformation from point clouds currently do not exist. Here, we test and develop methods for processing displacements from LiDAR data of complexly deforming bodies. We use data collected at 30-minute intervals over three-days in August 2013 at Helheim Glacier, Greenland by a long-range (6-10 km), 1064 nm wavelength Terrestrial LiDAR Scanner (TLS). The total area of coverage was ~25 km2. Distributed shear in glaciers prevents a simple transformation for aligning repeat point clouds, but within small regions (~100 m2) strain is assumed to be minor between scans. Registering a large number of these individual regions, subset from the full point-cloud, results in reduced alignment errors. By subsetting in a regular grid, rasters of velocities between scans are created. However, using data-dependent properties such as point density causes the generation of unevenly spaced velocity estimations, which can locally improve resolution or decrease registration errors. The choice of subsets therefore controls the output product's resolution and accuracy. We test how the spatial segmentation scheme affects the displacement results and alignment errors, finding that displacements can be quantified with limited assumption of the true value of displacement for the subset, barring great morphological changes. By identifying areas that do not deform over the temporal domain of the dataset, and using these as the subsets to align, it should be possible to deduce which structures are accommodating strain. This allows for
Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy.
Brun, B; Martins, F; Faniel, S; Hackens, B; Bachelier, G; Cavanna, A; Ulysse, C; Ouerghi, A; Gennser, U; Mailly, D; Huant, S; Bayot, V; Sanquer, M; Sellier, H
2014-01-01
Quantum point contacts exhibit mysterious conductance anomalies in addition to well-known conductance plateaus at multiples of 2e(2)/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position. PMID:24978440
Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy
NASA Astrophysics Data System (ADS)
Brun, B.; Martins, F.; Faniel, S.; Hackens, B.; Bachelier, G.; Cavanna, A.; Ulysse, C.; Ouerghi, A.; Gennser, U.; Mailly, D.; Huant, S.; Bayot, V.; Sanquer, M.; Sellier, H.
2014-06-01
Quantum point contacts exhibit mysterious conductance anomalies in addition to well-known conductance plateaus at multiples of 2e2/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position.
Non-linear conductance in quantum point contacts of noble metals
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takayanagi, Kunio
2004-03-01
We studied the non-linear property of the electronic conductance of the noble metal nanocontact. Specimens were cleaned by Ar ion sputtering in UHV(`2 ˜10|7[Pa]) at room temperature. Current vs voltage curves (I-V curves) were obtained, while the metal contact was stretched by STM. The bias voltage at the contact was changed within 2V (using the triangle wave voltage 3`5kHz). Au, Pt, Ag and Cu quantum point contacts showed non-linear I-V curves. These metallic contacts presented the quantized conductance of the quantum unit G0(=2e2/h). I-V curves are fitted to a cubic function ( IaV+cV3 ). The value of c/a does not depend on the zero-bias conductance value, a. However, c/a values depend on metals (c/a ; Au=0.58 0.02, Ag=0.33 0.02, Cu= 0.40 0.03). The present result indicates that metals of lower resistance (higher mobility) give lower values of c/a.
NASA Astrophysics Data System (ADS)
Shahbazi, Maryam; Bourbonnais, Claude
2015-03-01
The electrical and thermal transport properties of the normal state of quasi-1D superconductors like Bechgaard salts are investigated by combining the linearised Boltzmann equation and the renormalisation group (RG) method. The collision integral operator is calculated using the Umklapp scattering amplitudes obtained by the RG method yielding the electrical resistivity(ρ) and Seebeck coefficient(S). The power law dependence, ρ (T) ~Tα , for resistivity is obtained by changing the antinesting parameter t⊥' simulating the pressure distance from the quantum critical point (QCP) between spin-density-wave (SDW) and d-wave SC (SCd) in the phase diagram. The resistivity evolves from a linear component (α ~= 1) at the QCP towards a Fermi liquid component (α ~= 2) with increasing t⊥', which confirms an extended region of quantum criticality as a result of interference between SCd and SDW causing an anomalous growth of Umklapp scattering. Its anisotropy is also tied to the k⊥-dependence of hot/cold scattering regions along the Fermi surface. Similar calculations for the Seebeck coefficient show deviations from the usual linear temperature dependence and also a change of sign near a SDW instability.
Quantum point contacts on two-dimensional electron gases with a strong spin-orbit coupling
NASA Astrophysics Data System (ADS)
Lee, Joon Sue; Pendaharkar, Mihir; Shojaei, Borzoyeh; McFadden, Anthony P.; Palmstrøm, Chris
Studies of electrical transport in one-dimensional semiconductors in a presence of a strong spin-orbit interaction are crucial not only for exploring the emergent phenomena, such as topological superconductivity, but also for potential spintronic applications by controlling of the electron spins. We investigate the electrical transport properties of one-dimensional confinement defined by electrostatic potentials on large area two-dimensional electron gases of InAs and InSb, which have a strong spin-orbit coupling. The high-quality InAs and InSb quantum wells are grown on antimonide buffers by molecular beam epitaxy, and the gate-tunable regions are created using Al2O3 or HfO2 gate dielectrics by atomic layer deposition. We will discuss the modulation of spin-orbit coupling in the two-dimensional electron gases and the spin-orbit-induced spin splitting by the split-gate quantum point contacts. This work was supported by Microsoft Research.
NASA Astrophysics Data System (ADS)
Kharkov, Yaroslav; Oleg P Sushkov Team
We consider two spin 1 / 2 fermions in a two-dimensional magnetic system that is close to the O (3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) ~ - 1 /rα , α ~ 0 . 75 , where r is separation between the fermions. The mechanism of the enhanced attraction is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent experimental establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates.
Casten, R. F.; Bonatsos, Dennis; McCutchan, E. A.
2009-01-28
Recently, a new signature for quantum phase transitional regions has been discussed. This signature, based on degeneracies of yrast and intrinsic excitations, can distinguish first and second order phase transitions, and is valid not only at or near the analytic critical points described by X(5) and E(5), but along the phase transitional line connecting them as well. In addition, a study of a number of recent analytic solutions to the Bohr Hamiltonian and of the dynamical symmetries of the IBA Hamiltonian has revealed a set of extremely simple and general analytic formulas that describe the energies of 0{sup +} states. For the case of flat-bottomed geometrical potentials, the formula depends solely on the number of relevant dimensions. For the IBA (large boson number limit) a single formula describes all three dynamical symmetries.
Lian, Xiaojuan Cartoixà, Xavier; Miranda, Enrique; Suñé, Jordi; Perniola, Luca; Rurali, Riccardo; Long, Shibing; Liu, Ming
2014-06-28
We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFs allows revealing significant structural differences in the CF of these two types of devices and RS modes.
Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts.
Heedt, S; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th
2016-05-11
One-dimensional ballistic transport is demonstrated for a high-mobility InAs nanowire device. Unlike conventional quantum point contacts (QPCs) created in a two-dimensional electron gas, the nanowire QPCs represent one-dimensional constrictions formed inside a quasi-one-dimensional conductor. For each QPC, the local subband occupation can be controlled individually between zero and up to six degenerate modes. At large out-of-plane magnetic fields Landau quantization and Zeeman splitting emerge and comprehensive voltage bias spectroscopy is performed. Confinement-induced quenching of the orbital motion gives rise to significantly modified subband-dependent Landé g factors. A pronounced g factor enhancement related to Coulomb exchange interaction is reported. Many-body effects of that kind also manifest in the observation of the 0.7·2e(2)/h conductance anomaly, commonly found in planar devices. PMID:27104768
Tunable graphene quantum point contact transistor for DNA detection and characterization
Girdhar, Anuj; Sathe, Chaitanya; Schulten, Klaus; Leburton, Jean-Pierre
2015-01-01
A graphene membrane conductor containing a nanopore in a quantum point contact (QPC) geometry is a promising candidate to sense, and potentially sequence, DNA molecules translocating through the nanopore. Within this geometry, the shape, size, and position of the nanopore as well as the edge configuration influences the membrane conductance caused by the electrostatic interaction between the DNA nucleotides and the nanopore edge. It is shown that the graphene conductance variations resulting from DNA translocation can be enhanced by choosing a particular geometry as well as by modulating the graphene Fermi energy, which demonstrates the ability to detect conformational transformations of a double-stranded DNA, as well as the passage of individual base pairs of a single-stranded DNA molecule through the nanopore. PMID:25765702
Electronic Magnetization of a Quantum Point Contact Measured by Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Kawamura, Minoru; Ono, Keiji; Stano, Peter; Kono, Kimitoshi; Aono, Tomosuke
2015-07-01
We report an electronic magnetization measurement of a quantum point contact (QPC) based on nuclear magnetic resonance (NMR) spectroscopy. We find that NMR signals can be detected by measuring the QPC conductance under in-plane magnetic fields. This makes it possible to measure, from Knight shifts of the NMR spectra, the electronic magnetization of a QPC containing only a few electron spins. The magnetization changes smoothly with the QPC potential barrier height and peaks at the conductance plateau of 0.5 ×2 e2/h . The observed features are well captured by a model calculation assuming a smooth potential barrier, supporting a no bound state origin of the 0.7 structure.
Mapping the current-current correlation function near a quantum critical point
NASA Astrophysics Data System (ADS)
Prodan, Emil; Bellissard, Jean
2016-05-01
The current-current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson's localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau-insulator or plateau-plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current-current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current-current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.
Multi-Valued Logic Gates based on Ballistic Transport in Quantum Point Contacts
Seo, M.; Hong, C.; Lee, S.-Y.; Choi, H. K.; Kim, N.; Chung, Y.; Umansky, V.; Mahalu, D.
2014-01-01
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs. PMID:24448272
NASA Technical Reports Server (NTRS)
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.
Fate of the Wiedemann-Franz Law near Quantum Critical Points of Electron Systems in Solids
NASA Astrophysics Data System (ADS)
Khodel, V. A.; Clark, J. W.; Shaginyan, V. R.; Zverev, M. V.
2015-12-01
We introduce and analyze two different scenarios for violation of the Wiedemann-Franz law in strongly correlated electron systems of solids, close to a topological quantum critical point (TQCP) where the density of states N(0) diverges. The first, applicable to the Fermi-liquid (FL) side of the TQCP, involves a transverse zero-sound collective mode that opens a new channel for the thermal conductivity, thereby enhancing the Lorenz number L(0) relative to the value L0 =π2 k B 2/3 e 2 dictated by conventional FL theory. The second mechanism for violation of the WF law, relevant to the non-Fermi-liquid (NFL) side of the TQCP, involves the formation of a flat band and leads instead to a reduction of the Lorenz number.
Equation of state for a trapped quantum gas: remnant of zero-point energy effects
NASA Astrophysics Data System (ADS)
Castilho, P. C. M.; Poveda-Cuevas, F. J.; Seman, J. A.; Shiozaki, R. F.; Roati, G.; Muniz, S. R.; Magalhães, D. V.; Bagnato, V. S.
2016-02-01
The study of the thermodynamic properties of trapped gases has attracted great attention during the last few years and can be used as a tool to characterize such clouds in the presence of other phenomena. Here, we obtain an equation of state for a harmonically trapped Bose-Einstein condensate taking the limit of T\\to 0 by means of global themodynamic variables. These variables allow us to explore limits in which the standard thermodynamics are not defined. Our results are taken in the high density limit, and the extrapolation for N\\to 1 is done later. Even in this situation, we qualitatively observe the well known existence of a zero-point energy for harmonic potentials in which the determination of conjugated variables is limited by the quantum nature of the system.
Entropy excess in strongly correlated Fermi systems near a quantum critical point
NASA Astrophysics Data System (ADS)
Clark, J. W.; Zverev, M. V.; Khodel, V. A.
2012-12-01
A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum ɛ(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n2(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum ɛ(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincaré mapping associated with the fundamental Landau equation connecting n(p) and ɛ(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario.
Det-Det correlations for quantum maps: Dual pair and saddle-point analyses
NASA Astrophysics Data System (ADS)
Nonnenmacher, S.; Zirnbauer, M. R.
2002-05-01
An attempt is made to clarify the ballistic nonlinear sigma model formalism recently proposed for quantum chaotic systems, by looking at the spectral determinant Z(s)=Det(1-sU) for quantized maps U∈U(N), and studying the correlator ωU(s)=∫dθ|Z(eiθs)|2. By identifying U(N) as one member of a dual pair acting in the spinor representation of Spin(4N), the expansion of ωU(s) in powers of s2 is shown to be a decomposition into irreducible characters of U(N). In close analogy with the ballistic nonlinear sigma model, a coherent-state integral representation of ωU(s) is developed. For generic U this integral has (N2N) saddle points and the leading-order saddle-point approximation turns out to reproduce ωU(s) exactly, up to a constant factor. This miracle is explained by interpreting ωU(s) as a character of U(2N), and arguing that the leading-order saddle-point result corresponds to the Weyl character formula. Unfortunately, the Weyl decomposition behaves nonsmoothly in the semiclassical limit N→∞, and to make further progress some additional averaging needs to be introduced. Several schemes are investigated, including averaging over basis states and an "isotropic" average. The saddle-point approximation applied in conjunction with these schemes is demonstrated to give incorrect results in general, one notable exception being a semiclassical averaging scheme, for which all loop corrections vanish identically. As a side product of the dual pair decomposition with isotropic averaging, the crossover between the Poisson and CUE limits is obtained.
Magnification of signatures of a topological phase transition by quantum zero point motion
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Ghaemi, Pouyan
2015-08-01
We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.
NASA Astrophysics Data System (ADS)
Roszak, K.; Cywiński, Ł.
2015-10-01
We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.
Measuring the distance from saddle points and driving to locate them over quantum control landscapes
NASA Astrophysics Data System (ADS)
Sun, Qiuyang; Riviello, Gregory; Wu, Re-Bing; Rabitz, Herschel
2015-11-01
Optimal control of quantum phenomena involves the introduction of a cost functional J to characterize the degree of achieving a physical objective by a chosen shaped electromagnetic field. The cost functional dependence upon the control forms a control landscape. Two theoretically important canonical cases are the landscapes associated with seeking to achieve either a physical observable or a unitary transformation. Upon satisfaction of particular assumptions, both landscapes are analytically known to be trap-free, yet possess saddle points at precise suboptimal J values. The presence of saddles on the landscapes can influence the effort needed to find an optimal field. As a foundation to future algorithm development and analyzes, we define metrics that identify the ‘distance’ from a given saddle based on the sufficient and necessary conditions for the existence of the saddles. Algorithms are introduced utilizing the metrics to find a control such that the dynamics arrive at a targeted saddle. The saddle distance metric and saddle-seeking methodology is tested numerically in several model systems.
Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.
Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada
2016-07-19
In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity. PMID:27382157
Spatiotemporal evolution of topological order upon quantum quench across the critical point
NASA Astrophysics Data System (ADS)
Lee, Minchul; Han, Seungju; Choi, Mahn-Soo
2016-06-01
We consider a topological superconducting wire and use the string order parameter to investigate the spatiotemporal evolution of the topological order upon a quantum quench across the critical point. We also analyze the propagation of the initially localized Majorana bound states after the quench, in order to examine the connection between the topological order and the unpaired Majorana states, which has been well established at equilibrium but remains illusive in dynamical situations. It is found that after the quench the string order parameters decay over a finite time and that the decaying behavior is universal, independent of the wire length and the final value of the chemical potential (the quenching parameter). It is also found that the topological order is revived repeatedly although the amplitude gradually decreases. Further, the topological order can propagate into the region which was initially in the nontopological state. It is observed that all these behaviors are in parallel and consistent with the propagation and dispersion of the Majorana wave functions. Finally, we propose local probing methods which can measure the nonlocal topological order.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
Wójcik, P. Adamowski, J. Wołoszyn, M.; Spisak, B. J.
2015-07-07
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts
NASA Astrophysics Data System (ADS)
Wan, J.; Cahay, M.; Debray, P.; Newrock, R.
2010-03-01
Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).
Second wind of the Dulong-Petit law at a quantum critical point
NASA Astrophysics Data System (ADS)
Khodel, V. A.; Clark, J. W.; Shaginyan, V. R.; Zverev, M. V.
2010-10-01
Renewed interest in 3He physics has been stimulated by experimental observation of non-Fermi-liquid behavior of dense 3He films at low temperatures. Abnormal behavior of the specific heat C( T) of two-dimensional liquid 3He is demonstrated in the occurrence of a T-independent term in C( T). To uncover the origin of this phenomenon, we have considered the group velocity of transverse zero sound propagating in a strongly correlated Fermi liquid. For the first time, it is shown that if two-dimensional liquid 3He is located in the vicinity of the quantum critical point associated with a divergent quasiparticle effective mass, the group velocity depends strongly on temperature and vanishes as T is lowered toward zero. The predicted vigorous dependence of the group velocity can be detected in experimental measurements on liquid 3He films. We have demonstrated that the contribution to the specific heat coming from the boson part of the free energy due to the transverse zero-sound mode follows the Dulong-Petit Law. In the case of two-dimensional liquid 3He, the specific heat becomes independent of temperature at some characteristic temperature of a few millikelvins.
NASA Astrophysics Data System (ADS)
Sahoo, Sharmistha; Stoudenmire, E. Miles; Stéphan, Jean-Marie; Devakul, Trithep; Singh, Rajiv R. P.; Melko, Roger G.
2016-02-01
At a quantum critical point, bipartite entanglement entropies have universal quantities which are subleading to the ubiquitous area law. For Renyi entropies, these terms are known to be similar to the von Neumann entropy, while being much more amenable to numerical and even experimental measurement. We show here that when calculating universal properties of Renyi entropies, it is important to account for unusual corrections to scaling that arise from relevant local operators present at the conical singularity in the multisheeted Riemann surface. These corrections grow in importance with increasing Renyi index. We present studies of Renyi correlation functions in the 1 +1 transverse-field Ising model (TFIM) using conformal field theory, mapping to free fermions, and series expansions, and the logarithmic entropy singularity at a corner in 2 +1 for both free bosonic field theory and the TFIM, using numerical linked cluster expansions. In all numerical studies, accurate results are only obtained when unusual corrections to scaling are taken into account. In the worst case, an analysis ignoring these corrections can get qualitatively incorrect answers, such as predicting a decrease in critical exponents with the Renyi index, when they are actually increasing. We discuss a two-step extrapolation procedure that can be used to account for the unusual corrections to scaling.
Interference features in scanning gate conductance maps of quantum point contacts with disorder
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Szafran, B.; Brun, B.; Sellier, H.
2016-08-01
We consider quantum point contact (QPC) defined within a disordered two-dimensional electron gas as studied by scanning gate microscopy. We evaluate the conductance maps in the Landauer approach with a wave-function picture of electron transport for samples with both low and high electron mobility at finite temperatures. We discuss the spatial distribution of the impurities in the context of the branched electron flow. We reproduce the surprising temperature stability of the experimental interference fringes far from the QPC. Next, we discuss funnel-shaped features that accompany splitting of the branches visible in previous experiments. Finally, we study elliptical interference fringes formed by an interplay of scattering by the pointlike impurities and by the scanning probe. We discuss the details of the elliptical features as functions of the tip voltage and the temperature, showing that the first interference fringe is very robust against the thermal widening of the Fermi level. We present a simple analytical model that allows for extraction of the impurity positions and the electron-gas depletion radius induced by the negatively charged tip of the atomic force microscope, and apply this model on experimental scanning gate images showing such elliptical fringes.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
NASA Astrophysics Data System (ADS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Quench dynamics near a quantum critical point: Application to the sine-Gordon model
NASA Astrophysics Data System (ADS)
de Grandi, C.; Gritsev, V.; Polkovnikov, A.
2010-06-01
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)˜υtr , based on the adiabatic expansion of the excitation probability in powers of υ . We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ2r+2(λ) , which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.
Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact
Karadi, C
1995-09-01
The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO{sub x}/Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs.
Is U3Ni3Sn4 best described as near a quantum critical point?
Booth, C.H.; Shlyk, L.; Nenkov, K.; Huber, J.G.; De Long, L.E.
2003-04-08
Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U{sub 3}Ni{sub 3}Sn{sub 4} is a stoichoiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.
Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions
NASA Astrophysics Data System (ADS)
Roy, Bitan; Juričić, Vladimir; Herbut, Igor F.
2016-04-01
We study the renormalization group flow of the velocities in the field theory describing the coupling of the massless quasi-relativistic fermions to the bosons through the Yukawa coupling, as well as with both bosons and fermions coupled to a fluctuating U(1) gauge field in two and three spatial dimensions. Different versions of this theory describe quantum critical behavior of interacting Dirac fermions in various condensed-matter systems. We perform an analysis using one-loop ɛ-expansion about three spatial dimensions, which is the upper critical dimension in the problem. In two dimensions, we find that velocities of both charged fermions and bosons ultimately flow to the velocity of light, independently of the initial conditions, the number of fermionic and bosonic flavors, and the value of the couplings at the critical point. In three dimensions, due to the analyticity of the gauge field propagator, both the U(1) charge and the velocity of light flow, which leads to a richer behavior than in two dimensions. We show that all three velocities ultimately flow to a common terminal velocity, which is non-universal and different from the original velocity of light. Therefore, emergence of the Lorentz symmetry in the ultimate infrared regime seems to be a rather universal feature of this class of theories in both two and three dimensions.
Schroeder, Almut; Ubaid-Kassis, Sara; Vojta, Thomas
2011-03-01
We report magnetization measurements close to the ferromagnetic quantum phase transition of the d-metal alloy Ni(1 - x)V(x) at a vanadium concentration of x(c)≈11.4%. In the diluted regime (x > x(c)), the temperature (T) and magnetic field (H) dependences of the magnetization are characterized by nonuniversal power laws and display H/T scaling in a wide temperature and field range. The exponents vary strongly with x and follow the predictions of a quantum Griffiths phase. We also discuss the deviations and limits of the quantum Griffiths phase as well as the phase boundaries due to bulk and cluster physics. PMID:21339558
Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N
2014-08-01
EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long
Lyo, S.K.
1999-01-04
We show that the low-temperature conductance (G) of a quantum point contact consisting of ballistic tunnel-coupled double-layer quantum well wires is modulated by an in-layer magnetic field B{sub {parallel}} perpendicular to the wires due to the anticrossing. In a system with a small g factor, B{sub {parallel}} creates a V-shaped quantum staircase for G, causing it to decrease in steps of 2e{sup 2}/{Dirac_h} to a minimum and then increase to a maximum value, where G may saturate or decrease again at higher B{sub {parallel}}'s. The effect of B{sub {parallel}}-induced mass enhancement and spin splitting is studied. The relevance of the results to recent data is discussed.
NASA Astrophysics Data System (ADS)
Pakmehr, M.; Whiteside, V. R.; Bhandari, N.; Newrock, R.; Cahay, M.; McCombe, B. D.
2013-08-01
We have studied the THz magneto-photoresponse of a 2DEG in an InAs quantum well with an embedded Quantum Point Contact in the frequency/field region where electron cyclotron resonance (CR) dominates the response. The photoresponse near CR is manifested as an envelope of the amplitude of the Shubnikov-de Haas oscillations of the 2DEG with a peak near the CR field. Clear spin-splitting of the quantum oscillations is observed for B > 4 T. Data were simulated by a model of resonant carrier heating, and from the simulations the carrier density, the CR effective mass, scattering times and the g-factor were obtained. We find a significantly enhanced g-factor apparently due to exchange interaction.
Spin-orbit splitting of valence and conduction bands in HgTe quantum wells near the Dirac point
NASA Astrophysics Data System (ADS)
Minkov, G. M.; Germanenko, A. V.; Rut, O. E.; Sherstobitov, A. A.; Nestoklon, M. O.; Dvoretski, S. A.; Mikhailov, N. N.
2016-04-01
Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov-de Haas oscillations and the Hall effect over a wide range of electron and hole densities yields surprising results: the top of the valence band is strongly split by spin-orbit interaction while the splitting of the conduction band is absent, within experimental accuracy. This holds true for the structures with normal and inverted band ordering. The results obtained are inconsistent with the results of kP calculations, in which the smooth electric field across the quantum well is only reckoned in. It is shown that taking into account the asymmetry of the quantum-well interfaces within a tight-binding method gives reasonable agreement with the experimental data.
Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts
NASA Astrophysics Data System (ADS)
von Pock, J. F.; Salloch, D.; Qiao, G.; Wieser, U.; Hackbarth, T.; Kunze, U.
2016-04-01
Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e2/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e2/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e2/h), resembling the "0.7 anomaly" in GaAs/AlGaAs QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e2/h) and 0.2(4e2/h) known as "0.85 anomaly" and "0.25 anomaly" in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e2/h, the 0.2(4e2/h) plateau is insensitive to dc bias voltage up to at least VDS = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Dappiaggi, Claudio; Nosari, Gabriele; Pinamonti, Nicola
2016-06-01
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
Second-order coherence of microwave photons emitted by a quantum point contact
NASA Astrophysics Data System (ADS)
Hassler, Fabian; Otten, Daniel
2015-11-01
Shot noise of electrons that are transmitted with probability T through a quantum point contact (biased at a voltage V0) leads to a fluctuating current that in turn emits radiation in the microwave regime. By calculating the Fano factor F for the case where only a single channel contributes to the transport, it has been shown that the radiation produced at finite frequency ω0 close to e V0/ℏ and at low temperatures is nonclassical with sub-Poissonian statistics (F <1 ). The origin of this effect is the fermionic nature of the electrons producing the radiation, which reduces the probability of simultaneous emission of two or more photons. However, the Fano factor, being a time-averaged quantity, offers only limited information about the system. Here, we calculate the second-order coherence g(2 )(τ ) for this source of radiation. We show that due to the interference of two contributions, two photon processes (leading to bunching) are completely absent at zero temperature for T =50 % . At low temperatures, we find a competition of the contribution due to Gaussian current-current fluctuations (leading to bunching) with the one due to non-Gaussian fluctuations (leading to antibunching). At slightly elevated temperatures, the non-Gaussian contribution becomes suppressed, whereas the Gaussian contributions remain largely independent of temperature. We show that the competition of the two contributions leads to a nonmonotonic behavior of the second-order coherence as a function of time. As a result, g(2 )(τ ) obtains a minimal value for times τ*≃ω0-1 . Close to this time, the second-order coherence remains below 1 at temperatures where the Fano factor is already above 1. We identify realistic experimental parameters that can be used to test the sub-Poissonian nature of the radiation.
All-electrical nonlinear fano resonance in coupled quantum point contacts
NASA Astrophysics Data System (ADS)
Xiao, Shiran
This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.
Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mišković, Z. L.
2014-10-15
We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.
NASA Astrophysics Data System (ADS)
Shah, Nayana; Lopatin, Andrei
2007-09-01
A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the standard approximation in order to capture the zero-temperature correction which results purely from the (dynamic) quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total, thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one, two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter is swept.
Nodal Fermi surface pocket approaching an optimal quantum critical point in YBCO
NASA Astrophysics Data System (ADS)
Sebastian, Suchitra; Tan, Beng; Lonzarich, Gilbert; Ramshaw, Brad; Harrison, Neil; Balakirev, Fedor; Mielke, Chuck; Sabok, S.; Dabrowski, B.; Liang, Ruixing; Bonn, Doug; Hardy, Walter
2014-03-01
I present new quantum oscillation measurements over the entire underdoped regime in YBa2Cu3O6+x and YBa2Cu4O8 using ultra-high magnetic fields to destroy superconductivity and access the normal ground state. A robust small nodal Fermi surface created by charge order is found to extend over the entire underdoped range, exhibiting quantum critical signatures approaching optimal doping.
Terahertz magneto-spectroscopy of a point contact based on CdTe/CdMgTe quantum well
NASA Astrophysics Data System (ADS)
Grigelionis, Ignas; Białek, Marcin; Grynberg, Marian; Czapkiewicz, Magdalena; Kolkovskiy, Valery; Wiater, Maciej; Wojciechowski, Tomasz; Wróbel, Jerzy; Wojtowicz, Tomasz; Diakonova, Nina; Knap, Wojciech; Łusakowski, Jerzy
2015-01-01
To understand a terahertz (THz) response of a point contact device, a number of samples based on CdTe/CdMgTe quantum wells grown by a molecular beam epitaxy were investigated at low temperatures and high magnetic fields. The experiments involved magneto-transport, photocurrent, and transmission measurements carried out with monochromatic THz sources or a Fourier spectrometer. Samples of different geometry with and without gate metallization were used. We observed excitations of a two-dimensional electron plasma in the form of optically induced Shubnikov-de Haas oscillations, cyclotron resonance transitions, and magneto-plasmon resonances. A polaron effect was observed at magnetic fields higher than 10 T. A point contact device processed with an electron beam lithography was investigated as a detector of THz radiation. It was shown that the main mechanism responsible for a THz performance of the point contact was excitation of magneto-plasmons with a wavevector defined by geometrical constrictions of the device mesa.
Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E
2011-07-01
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut. PMID:21797582
NASA Astrophysics Data System (ADS)
Zaletel, Michael P.; Bardarson, Jens H.; Moore, Joel E.
2011-07-01
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the “Shannon entropy” of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2014-12-31
We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density. PMID:25615362
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2014-12-01
We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density.
Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field
NASA Astrophysics Data System (ADS)
Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey
2015-03-01
Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.
Pairing interaction near a nematic quantum critical point of a three-band CuO2 model
Maier, Thomas A.; Scalapino, Douglas J.
2014-11-21
In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.
Pairing interaction near a nematic quantum critical point of a three-band CuO_{2} model
Maier, Thomas A.; Scalapino, Douglas J.
2014-11-21
In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO_{2} model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.
Thermal Conductivity through the Quantum Critical Point in YbRh2Si2 at Very Low Temperature
NASA Astrophysics Data System (ADS)
Taupin, M.; Knebel, G.; Matsuda, T. D.; Lapertot, G.; Machida, Y.; Izawa, K.; Brison, J.-P.; Flouquet, J.
2015-07-01
The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively, below and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point.
Quantum quenches in the sinh-Gordon model: steady state and one-point correlation functions
NASA Astrophysics Data System (ADS)
Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale
2016-06-01
We consider quantum quenches to the sinh-Gordon integrable quantum field theory from a particular class of initial states. Our analysis includes the case of mass and interaction quenches starting from a non-interacting theory. By means of the recently developed quench action method, we fully characterize the stationary state reached at long times after the quench in terms of the corresponding rapidity distribution. We also provide exact results for the expectation values of arbitrary vertex operators in the post-quench stationary state by proposing a formula based on the analogy with the standard thermodynamic Bethe ansatz. Finally, we comment on the behavior of the post-quench stationary state under the mapping between the sinh-Gordon field theory and the one-dimensional Lieb-Liniger model.
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Khots, Boris; Khots, Dmitriy
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
NASA Astrophysics Data System (ADS)
Isobe, Hiroki; Fu, Liang
2016-06-01
We study the effect of the long-range Coulomb interaction in j =3 /2 Dirac electrons in cubic crystals with the Oh symmetry, which serves as an effective model for antiperovskite topological crystalline insulators. The renormalization group analysis reveals three fixed points that are Lorentz invariant, rotationally invariant, and Oh invariant. Among them, the Lorentz- and Oh-invariant fixed points are stable in the low-energy limit, while the rotationally invariant fixed point is unstable. The existence of a stable Oh-invariant fixed point of Dirac fermions with finite velocity anisotropy presents an interesting counterexample to emergent Lorentz invariance in solids.
One-Dimensional Three-State Quantum Walk with Single-Point Phase Defects
NASA Astrophysics Data System (ADS)
Xu, Yong-Zhen; Guo, Gong-De; Lin, Song
2016-09-01
In this paper, we study a three-state quantum walk with a phase defect at a designated position. The coin operator is a parametrization of the eigenvectors of the Grover matrix. We numerically investigate the properties of the proposed model via the position probability distribution, the position standard deviation, and the time-averaged probability at the designated position. It is shown that the localization effect can be governed by the phase defect's position and strength, coin parameter and initial state.
Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto
2016-06-16
This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations. PMID:27214268
NASA Astrophysics Data System (ADS)
Pakmehr, Mehdi; Whiteside, Vincent; Bhandari, Nikhil; Cahay, Marc; Newrock, Richard; McCombe, Bruce
2013-03-01
We have studied the THz magneto-photoresponse of a 2DEG in an InAs quantum well with an embedded Quantum Point Contact in the frequency/field region where electron cyclotron resonance (CR) dominates the response suing several lines from an optically pumped THz laser. The photoresponse near CR is manifested as an envelope of the amplitude of the Shubnikov-de Haas oscillations of the 2DEG with a peak near the CR field. Clear spin-splitting of the quantum oscillations is observed for B > 4, while the SdH oscillations do not show resolved spin-splitting up to 10 T. Data were simulated by a model of resonant carrier heating (due to CR), and from the simulations the carrier density, the CR effective mass, scattering times and the g-factor were obtained. We find a significantly enhanced g-factor, apparently due to many-electron exchange interaction effects. The g-factor determined from fitting spin-split Landau level peaks increases with magnetic field. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost; work at the University of Cincinnati was supported by NSF ECCE 1028483.
Quantum Point Contacts and Valley Filters on a 6-fold Degenerate Hydrogen-terminated Si(111) Surface
NASA Astrophysics Data System (ADS)
Robertson, Luke D.; Hu, Binhui; Kane, B. E.
Hydrogen-terminated Si(111) surfaces preserve the 6-fold valley degeneracy and anisotropic electron mass predicted in bulk Si, providing a unique environment for 2-D electron systems (2DESs). Our group has demonstrated high mobility as well as the fractional quantum Hall effect for electrons confined on the Si(111) surfaces, establishing evidence that they are ideal platforms for 2DESs and lower dimensional systems. Recently, we have succeeded in fabricating high mobility ambipolar devices and have found that heavily p-doped regions can be used as lateral depletion gates for confinement of 2DESs induced by a top gate. Here, we describe our efforts to extend this technology to the nanoscale and in particular towards the fabrication of quantum point contacts (QPCs). QPCs realized in materials with anisotropic electron mass may exhibit valley filter phenomena leading to extreme sensitivity to single donor occupancy, and thus are of interest to measurement schemes for donor-based quantum information processing. Preliminary measurements and fabrication techniques will be discussed
Automatic synthesis of quantum circuits for point addition on ordinary binary elliptic curves
NASA Astrophysics Data System (ADS)
Budhathoki, Parshuram; Steinwandt, Rainer
2015-01-01
When designing quantum circuits for Shor's algorithm to solve the discrete logarithm problem, implementing the group arithmetic is a cost-critical task. We introduce a software tool for the automatic generation of addition circuits for ordinary binary elliptic curves, a prominent platform group for digital signatures. The resulting circuits reduce the number of -gates by a factor compared to the best previous construction, without increasing the number of qubits or -depth. The software also optimizes the (CNOT) depth for -linear operations by means of suitable graph colorings.
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.
2016-01-01
We analyze the effective Landé factor g* and its dependence on the orientation of the external magnetic field for a quantum point contact defined in the two-dimensional electron gas. The paper simulates the experimental procedure for evaluation of the effective Landé factors from the transconductance of a biased device in an external magnetic field. The contributions of the orbital effects of the magnetic field, the electron-electron interaction, and spin-orbit (SO) coupling are studied in low-temperature conditions (0.5 K). The anisotropy of the g* factors for the in-plane magnetic field orientation, which seems counterintuitive from the perspective of the effective SO magnetic field, is explained in an analytical model of the constriction as due to the SO-induced subband mixing. The asymmetry of the transconductance as a function of the gate voltage is obtained in agreement with the experimental data and the results are explained as due to depletion of the electron gas within the quantum point contact constriction and the related reduction of the screening as described within the DFT approach. The results for transconductance and the g* factors obtained are in a good agreement with the experimental data [Martin et al., Phys. Rev. B 81, 041303 (2010), 10.1103/PhysRevB.81.041303].
NASA Astrophysics Data System (ADS)
Zuo, Zheng-Wei; Kang, Da-wei; Wang, Zhao-Wu; Li, Liben
2016-08-01
The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. For the integer TI case, in a finite range of edge interaction parameter, there is a non-trivial stable fixed point which corresponds to the physical picture that the edge of TI breaks up into two sections at the junction, with one side coupling strongly to the Majorana fermion and exhibiting perfect Andreev reflection, while the other side decouples, exhibiting perfect normal reflection at low energies. This fixed point can be used as a signature of the Majorana fermion and tested by nowadays experiment techniques. For the fractional TI case, the universal low-energy transport properties are described by perfect normal reflection, perfect Andreev reflection, or perfect insulating fixed points dependent on the filling fraction and edge interaction parameter of fractional TI.
Stability of a spin-triplet nematic state near to a quantum critical point
NASA Astrophysics Data System (ADS)
Hannappel, G.; Pedder, C. J.; Krüger, F.; Green, A. G.
2016-06-01
We analyze a model of itinerant electrons interacting through a quadrupole density-density repulsion in three dimensions. At the mean-field level, the interaction drives a continuous Pomeranchuk instability towards d -wave, spin-triplet nematic order, which simultaneously breaks the SU(2) spin-rotation and spatial-rotation symmetries. This order is characterized by spin-antisymmetric, elliptical deformations of the Fermi surfaces of up and down spins. We show that the effects of quantum fluctuations are similar to those in metallic ferromagnets, rendering the nematic transition first order at low temperatures. Using the fermionic quantum order-by-disorder approach to self-consistently calculate fluctuations around possible modulated states, we show that the first-order transition is preempted by the formation of a helical spin-triplet d -density wave. Such a state is closely related to d -wave bond density wave order in square-lattice systems. Moreover, we show that it may coexist with a modulated, p -wave superconducting state.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-03-01
Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.
Spectral dimension of the universe in quantum gravity at a lifshitz point.
Horava, Petr
2009-04-24
We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity. PMID:19518693
Fermi points and topological quantum phase transitions in a multi-band superconductor.
Puel, T O; Sacramento, P D; Continentino, M A
2015-10-28
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model. PMID:26440940
NASA Astrophysics Data System (ADS)
Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R.
2016-04-01
The time dynamics of quantum correlations in the quantum transverse anisotropic X Y spin chain of infinite length is studied at zero and finite temperatures. The evolution occurs due to the instantaneous quenching of the coupling constant between the nearest-neighbor spins of the model, which is performed either within the same phase or across the quantum phase-transition point connecting the order-disorder phases of the model. We characterize the time-evolved quantum correlations, viz., entanglement and quantum discord, which exhibit varying behavior depending on the initial state and the quenching scheme. We show that the system is endowed with enhanced nearest-neighbor bipartite quantum correlations compared to that of the initial state, when quenched from the ordered to the deep disordered phase. However, nearest-neighbor quantum correlations are almost washed out when the system is quenched from the disordered to the ordered phase with the initial state being at the zero temperature. We also identify the condition for the occurrence of enhanced bipartite correlations when the system is quenched within the same phase. Moreover, we investigate the bipartite quantum correlations when the initial state is a thermal equilibrium state with finite temperature, which reveals the effects of thermal fluctuation on the phenomena observed at zero temperature. Finally, an analogous analysis is carried out for zero-temperature next-nearest-neighbor quantum correlations.
Temperature-dependent quantum electron transport in 2D point contacts.
Krishtop, T V; Nagaev, K E
2013-02-01
We consider the transmission of electrons through a two-dimensional ballistic point contact in the low-conductance regime near the pinch-off region. The scattering of electrons by Friedel oscillations of charge density results in a contribution to the conductance proportional to the temperature. The sign of this linear term depends on the range of the electron-electron interaction and appears to be negative for the relevant experimental parameters. PMID:23288558
Aramburu, José Antonio; García-Fernández, Pablo; García-Lastra, Juan María; Moreno, Miguel
2016-07-18
First-principle calculations together with analysis of the experimental data found for 3d(9) and 3d(7) ions in cubic oxides proved that the center found in irradiated CaO:Ni(2+) corresponds to Ni(+) under a static Jahn-Teller effect displaying a compressed equilibrium geometry. It was also shown that the anomalous positive g∥ shift (g∥ -g0 =0.065) measured at T=20 K obeys the superposition of the |3 z(2) -r(2) ⟩ and |x(2) -y(2) ⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn-Teller systems and later extended by Ham to the dynamic Jahn-Teller case. To our knowledge, this is the first genuine Jahn-Teller system (i.e. in which exact degeneracy exists at the high-symmetry configuration) exhibiting a compressed equilibrium geometry for which large quantum effects allow experimental observation of the effect predicted by O'Brien. Analysis of the calculated energy barriers for different Jahn-Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni(+) . PMID:27028895
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6
Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.
2015-01-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018
NASA Astrophysics Data System (ADS)
Tremblay, A.-M. S.; Hébert, Charles-David; Sémon, Patrick
Layered organic superconductors of the BEDT family are model systems for understanding the interplay of the Mott transition with superconductivity, magnetic order and frustration. Recent experimental studies on a hole-doped compound reveal an enhancement of superconductivity and a rapid crossover between two different conducting phases above the superconducting dome. Using plaquette cellular dynamical mean field theory with state of the art continuous-time quantum Monte Carlo calculations, we study this problem with the two-dimensional Hubbard model on the anisotropic triangular lattice. Phase diagrams are in broad agreement with experiment. As in the case of the cuprates, we find, at finite doping in the unstable normal state, a first-order transition between a pseudogap and a correlated metal. We make several experimental predictions. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally. Supported by NSERC, CIFAR and the Tier I Canada Research Chair Program.
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6
NASA Astrophysics Data System (ADS)
Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.
2015-07-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition.
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6.
Liang, Tian; Koohpayeh, S M; Krizan, J W; McQueen, T M; Cava, R J; Ong, N P
2015-01-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018
Electrical control of the sign of the g factor in a GaAs hole quantum point contact
NASA Astrophysics Data System (ADS)
Srinivasan, A.; Hudson, K. L.; Miserev, D.; Yeoh, L. A.; Klochan, O.; Muraki, K.; Hirayama, Y.; Sushkov, O. P.; Hamilton, A. R.
2016-07-01
Zeeman splitting of one-dimensional hole subbands is investigated in quantum point contacts fabricated on a (311)-oriented GaAs-AlGaAs heterostructure. Transport measurements can determine the magnitude of the g factor, but cannot usually determine the sign. Here we use a combination of tilted fields and a unique off-diagonal element in the hole g tensor to directly detect the sign of g*. We are able to tune not only the magnitude, but also the sign of the g factor by electrical means, which is of interest for spintronics applications. Furthermore, we show theoretically that the resulting behavior of g* can be explained by the momentum dependence of the spin-orbit interaction.
NASA Astrophysics Data System (ADS)
Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan
2014-01-01
In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.
Observation of a 0.5 conductance plateau in asymmetrically biased GaAs quantum point contact
NASA Astrophysics Data System (ADS)
Bhandari, N.; Das, P. P.; Cahay, M.; Newrock, R. S.; Herbert, S. T.
2012-09-01
We report the observation of a robust anomalous conductance plateau near G = 0.5 G0 (G0 = 2e2/h) in asymmetrically biased AlGaAs/GaAs quantum point contacts (QPCs), with in-plane side gates in the presence of lateral spin-orbit coupling. This is interpreted as evidence of spin polarization in the narrow portion of the QPC. The appearance and evolution of the conductance anomaly has been studied at T = 4.2 K as a function of the potential asymmetry between the side gates. Because GaAs is a material with established processing techniques, high mobility, and a relatively high spin coherence length, the observation of spontaneous spin polarization in a side-gated GaAs QPC could eventually lead to the realization of an all-electric spin-valve at tens of degrees Kelvin.
Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan
2014-01-10
In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics. PMID:24483873
Peng, Juan Duan, Yifeng; Chen, PeiJian; Peng, Yan
2015-03-15
Analysis of the electronic properties of a two-dimensional (2D) deformed honeycomb structure arrayed by semiconductor quantum dots (QDs) is conducted theoretically by using tight-binding method in the present paper. Through the compressive or tensile deformation of the honeycomb lattice, the variation of energy spectrum has been explored. We show that, the massless Dirac fermions are generated in this adjustable system and the positions of the Dirac cones as well as slope of the linear dispersions could be manipulated. Furthermore, a clear linear correspondence between the distance of movement d (the distance from the Dirac points to the Brillouin zone corners) and the tunable bond angle α of the lattice are found in this artificial planar QD structure. These results provide the theoretical basis for manipulating Dirac fermions and should be very helpful for the fabrication and application of high-mobility semiconductor QD devices.
Spin-orbital liquid and quantum critical point in Y1 -xLaxTiO3
NASA Astrophysics Data System (ADS)
Zhao, Z. Y.; Khosravani, O.; Lee, M.; Balicas, L.; Sun, X. F.; Cheng, J. G.; Brooks, J.; Zhou, H. D.; Choi, E. S.
2015-04-01
The specific heat, the susceptibility under pressure, and the dielectric constant were measured for single crystals Y1 -xLaxTiO3 . The observed T2-dependent specific heat at low temperatures for 0.17 ≤x ≤0.3 samples shows a spin-orbital liquid state between the ferromagnetic/orbital ordering (x <0.17 ) and antiferromagnetic/possible orbital liquid phase (x >0.3 ) . The nonmonotonous pressure dependence of TC and the glassy behavior of the dielectric loss for the x =0.23 sample suggest that it is approaching a possible quantum critical point. All these properties result from the coupling between the strong spin and orbital fluctuations while approaching the phase boundary.
NASA Astrophysics Data System (ADS)
Heyder, Jan; Bauer, Florian; Schubert, Enrico; Borowsky, David; Schuh, Dieter; Wegscheider, Werner; von Delft, Jan; Ludwig, Stefan
2015-11-01
Quantum point contacts (QPCs) and quantum dots (QDs), two elementary building blocks of semiconducting nanodevices, both exhibit famously anomalous conductance features: the 0.7 anomaly in the former case, the Kondo effect in the latter. For both the 0.7 anomaly and the Kondo effect, the conductance shows a remarkably similar low-energy dependence on temperature T , source-drain voltage Vsd, and magnetic field B . In a recent publication [F. Bauer et al., Nature (London) 501, 73 (2013), 10.1038/nature12421], we argued that the reason for these similarities is that both a QPC and a Kondo QD (KQD) feature spin fluctuations that are induced by the sample geometry, confined in a small spatial regime, and enhanced by interactions. Here, we further explore this notion experimentally and theoretically by studying the geometric crossover between a QD and a QPC, focusing on the B -field dependence of the conductance. We introduce a one-dimensional model with local interactions that reproduces the essential features of the experiments, including a smooth transition between a KQD and a QPC with 0.7 anomaly. We find that in both cases the anomalously strong negative magnetoconductance goes hand in hand with strongly enhanced local spin fluctuations. Our experimental observations include, in addition to the Kondo effect in a QD and the 0.7 anomaly in a QPC, Fano interference effects in a regime of coexistence between QD and QPC physics, and Fabry-Perot-type resonances on the conductance plateaus of a clean QPC. We argue that Fabry-Perot-type resonances occur generically if the electrostatic potential of the QPC generates a flatter-than-parabolic barrier top.
Goh, S K; Tompsett, D A; Saines, P J; Chang, H C; Matsumoto, T; Imai, M; Yoshimura, K; Grosche, F M
2015-03-01
The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138 K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures. PMID:25793843
Interior building details of Building A, dungeon cell adjacent to ...
Interior building details of Building A, dungeon cell adjacent to northwest cell: granite and brick threshold, poured concrete floors, plastered finished walls, vaulted veiling; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
NASA Astrophysics Data System (ADS)
Viel, Alexandra; Coutinho-Neto, Maurício D.; Manthe, Uwe
2007-01-01
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7±0.3cm-1 is obtained, and the vibrational ground state energy is found to be 15122±4cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21±0.09cm-1 and the vibrational ground state energy to 14385±2cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe
2007-01-14
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface. PMID:17228955
NASA Astrophysics Data System (ADS)
Isobe, Hiroki; Yang, Bohm-Jung; Chubukov, Andrey; Schmalian, Jörg; Nagaosa, Naoto
2016-02-01
We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO2 /VO2 superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z ∝Ea with a >0 , and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z ∝(|log E |)-b with universal b =3 /2 .
NASA Astrophysics Data System (ADS)
Kormos, Márton; Wu, Jianda; Si, Qimiao
2014-03-01
When the transverse-field Ising chain at its quantum critical point is subjected to a small longitudinal field, the perturbed conformal field theory led to a field theory with an exotic E8 symmetry. Recent neutron scattering experiments have provided evidence for the lightest two particles in this E8 model in the quasi-1D Ising ferromagnet CoNb2O6. While the zero temperature dynamic of the model is well known, its finite-temperature counterpart has not yet been systematically studied. We study the low-frequency dynamical spin structure factor at finite temperatures using the form-factor method. We show that the dominant contribution to the spin dynamics comes from the channel between two lightest particles, and demonstrate how the spin dynamics differ from a diffusion form. Using these results, we determine the temperature dependence of the NMR relaxation rate. We suggest that, for CoNb2O6, measurements of the NMR relaxation rate provide a means to further test the applicability of the E8 model.
NASA Astrophysics Data System (ADS)
Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick
Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.
Strong enhancement of s -wave superconductivity near a quantum critical point of Ca3Ir4Sn13
Biswas, P. K.; Guguchia, Z.; Khasanov, R.; Chinotti, M.; Li, L.; Wang, Kefeng; Petrovic, C.; Morenzoni, E.
2015-11-11
We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca3Ir4Sn13 and Sr3Ir4Sn13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca1-xSrx)3Ir4Sn13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less
Isobe, Hiroki; Yang, Bohm-Jung; Chubukov, Andrey; Schmalian, Jörg; Nagaosa, Naoto
2016-02-19
We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO_{2}/VO_{2} superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z∝E^{a} with a>0, and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z∝(|logE|)^{-b} with universal b=3/2. PMID:26943551
NASA Astrophysics Data System (ADS)
Kinross, A. W.; Fu, M.; Munsie, T. J.; Dabkowska, H. A.; Luke, G. M.; Sachdev, Subir; Imai, T.
2014-07-01
The transverse field Ising chain model is ideally suited for testing the fundamental ideas of quantum phase transitions because its well-known T=0 ground state can be extrapolated to finite temperatures. Nonetheless, the lack of appropriate model materials hindered the past effort to test the theoretical predictions. Here, we map the evolution of quantum fluctuations in the transverse field Ising chain based on nuclear magnetic resonance measurements of CoNb2O6, and we demonstrate the finite-temperature effects on quantum criticality for the first time. From the temperature dependence of the Nb93 longitudinal relaxation rate 1/T1, we identify the renormalized classical, quantum critical, and quantum disordered scaling regimes in the temperature (T) vs transverse magnetic field (h ⊥) phase diagram. Precisely at the critical field h⊥c=5.25±0.15 T, we observe a power-law behavior, 1/T1˜T-3/4, as predicted by quantum critical scaling. Our parameter-free comparison between the data and theory reveals that quantum fluctuations persist up to as high as T ˜0.4J, where the intrachain exchange interaction J is the only energy scale of the problem.
NASA Astrophysics Data System (ADS)
Czachor, Marek; Wrzask, Klaudia
2009-09-01
Electromagnetic fields are quantized in a manifestly covariant way by means of a class of reducible “center-of-mass N-representations” of the algebra of canonical commutation relations (CCR). The four-potential A a ( x) transforms in these representations as a Hermitian four-vector field in Minkowski four-position space (without change of gauge), but in momentum space it splits into spin-1 massless photons and two massless scalars. What we call quantum optics is the spin-1 sector of the theory. The scalar fields have physical status similar to that of dark matter (spin-1 and spin-0 particle numbers are separately conserved). There are no negative-norm or zero-norm states. Unitary dynamics is given by the point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations as well as the dynamics are represented unitarily in the Hilbert space corresponding to N four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the N-oscillator gas and is given by any N-oscillator product state annihilated by all annihilation operators. The form of A a ( x) is determined by an analogue of the twistor equation. The same equation guarantees that the set of vacuum states is Poincaré invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with ultraviolet and infrared regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a Rényi type with α=1-1/ N; the Shannon limit N→∞ is an ultraviolet/infrared-regularized Poisson distribution. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonvanishing even for inertially moving charges. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged
NASA Astrophysics Data System (ADS)
Straßel, Dominik; Kopietz, Peter; Eggert, Sebastian
2015-04-01
Spin-dimer systems are a versatile playground for the detailed study of quantum phase transitions. Using the magnetic field as the tuning parameter, it is possible to observe a crossover from the characteristic scaling near critical points to the behavior of a finite-temperature phase transition. In this work we study two-dimensional coupled spin-dimer systems by comparing numerical quantum Monte Carlo simulations with analytical calculations of the susceptibility, the magnetocaloric effect, and the helicity modulus. The magnetocaloric behavior of the magnetization with temperature can be used to determine the critical fields with high accuracy, but the critical scaling does not show the expected logarithmic corrections. The zeros of the cooling rate are an excellent indicator of the competition between quantum criticality and vortex physics, but they are not directly associated with the quantum phase transition or the finite-temperature Berezinsky-Kosterlitz-Thouless transition. The results give a unified picture of the full quantum and finite-temperature phase diagram.
Reid, J.-Ph.; Tanatar, Makariy; Daou, R.; Hu, Rongwei; Petrovic, C.; Taillefer, Louis
2014-01-23
The in-plane thermal conductivity kappa and electrical resistivity rho of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point H-c, at which antiferromagnetic order ends. The thermal and electrical resistivities, w L0T/kappa and rho, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T-star similar or equal to 0.35 K, which depends weakly on H, w(T) and rho(T) both deviate downward and converge as T -> 0. We propose that T-star marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at H-c, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.
NASA Astrophysics Data System (ADS)
Yu, Wing Chi; Cheung, Yiu Wing; Saines, Paul J.; Imai, Masaki; Matsumoto, Takuya; Michioka, Chishiro; Yoshimura, Kazuyoshi; Goh, Swee K.
The family of the superconducting quasiskutterudites (CaxSr1-x)3Rh4Sn13 features a structural quantum critical point at xc = 0 . 9 , around which a dome-shaped variation of the superconducting transition temperature Tc is found. In this talk, we present the specific heat data for the normal and the superconducting states of the entire series straddling the quantum critical point. Our analysis indicates a significant lowering of the effective Debye temperature on approaching xc, which we interpret as a result of phonon softening accompanying the structural instability. Furthermore, a remarkably large enhancement of 2 Δ /kBTc and ΔC / γTc beyond the Bardeen-Cooper-Schrieffer values is found in the vicinity of the structural quantum critical point. Reference: Wing Chi Yu et al. Phys. Rev. Lett. (in press, 2015) This work was supported by the CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Grants-in-Aid from MEXT (22350029 and 23550152), and Glasstone Bequest, Oxford.
NASA Astrophysics Data System (ADS)
McCarthy, Kimberly Ann
1990-01-01
Divisions in definitions of creativity have centered primarily on the working definition of discontinuity and the inclusion of intrinsic features such as unconscious processing and intrinsic motivation and reinforcement. These differences generally result from Cohen's two world views underlying theories of creativity: Organismic, oriented toward holism; or mechanistic, oriented toward cause-effect reductionism. The quantum world view is proposed which theoretically and empirically unifies organismic and mechanistic elements of creativity. Based on Goswami's Idealistic Interpretation of quantum physics, the quantum view postulates the mind -brain as consisting of both classical and quantum structures and functions. The quantum domain accesses the transcendent order through coherent superpositions (a state of potentialities), while the classical domain performs the function of measuring apparatus through amplifying and recording the result of the collapse of the pure mental state. A theoretical experiment, based on the 1980 Marcel study of conscious and unconscious word-sense disambiguation, is conducted which compares the predictions of the quantum model with those of the 1975 Posner and Snyder Facilitation and Inhibition model. Each model agrees that while conscious access to information is limited, unconscious access is unlimited. However, each model differently defines the connection between these states: The Posner model postulates a central processing mechanism while the quantum model postulates a self-referential consciousness. Consequently, the two models predict differently. The strength of the quantum model lies in its ability to distinguish between classical and quantum definitions of discontinuity, as well as clarifying the function of consciousness, without added assumptions or ad-hoc analysis: Consciousness is an essential, valid feature of quantum mechanisms independent of the field of cognitive psychology. According to the quantum model, through a
Terahertz excitations near the quantum critical point in the 1D Ising chain quantum magnet CoNb2O6
NASA Astrophysics Data System (ADS)
Morris, Christopher M.; Valdés Aguilar, R.; Koopayeh, S.; McQueen, T. M.; Armitage, N. P.
2013-03-01
The one-dimensional magnet CoNb2O6 was recently demonstrated to be an excellent realization of a one-dimensional quantum Ising spin chain. It has been shown to undergo a quantum phase transition in a magnetic field oriented transverse to its ferromagnetically aligned spin chains. Low energy spin-flip excitations in the chains were recently observed via inelastic neutron scattering.[2] The energy spectrum of these excitations was shown to have a interesting energy scaling governed by symmetries of the E8 exceptional Lie group. Here, time-domain terahertz spectroscopy (TDTS) is used to investigate these optically active spin flip excitations in CoNb2O6 in an external magnetic field. For static magnetic fields oriented transverse to the spin chains, the terahertz excitations show evidence of the phase transitions that occur near the quantum critical magnetic field. Additional spin flip excitations are also observed for longitudinally oriented magnetic fields. Work supported by The Institute of Quantum Matter under DOE grant DE-FG02-08ER46544 and by the Gordon and Betty Moore Foundation.
Wong, Kin-Yiu; Gao, Jiali
2009-01-01
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert’s variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H3 reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H2, HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of
Taufour, Valentin; Kaluarachchi, Udhara S; Khasanov, Rustem; Nguyen, Manh Cuong; Guguchia, Zurab; Biswas, Pabitra Kumar; Bonfà, Pietro; De Renzi, Roberto; Lin, Xiao; Kim, Stella K; Mun, Eun Deok; Kim, Hyunsoo; Furukawa, Yuji; Wang, Cai-Zhuang; Ho, Kai-Ming; Bud'ko, Sergey L; Canfield, Paul C
2016-07-15
The temperature-pressure phase diagram of the ferromagnet LaCrGe_{3} is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFM_{Q}. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe_{3} is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets. PMID:27472137
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem; Nguyen, Manh Cuong; Guguchia, Zurab; Biswas, Pabitra Kumar; Bonfa, Pietro; De Renzi, Roberto; Lin, Xiao; Kim, Stella K.; et al
2016-07-13
Here, the temperature-pressure phase diagram of the ferromagnet LaCrGe3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe3 ismore » a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.« less
NASA Astrophysics Data System (ADS)
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem; Nguyen, Manh Cuong; Guguchia, Zurab; Biswas, Pabitra Kumar; Bonfà, Pietro; De Renzi, Roberto; Lin, Xiao; Kim, Stella K.; Mun, Eun Deok; Kim, Hyunsoo; Furukawa, Yuji; Wang, Cai-Zhuang; Ho, Kai-Ming; Bud'ko, Sergey L.; Canfield, Paul C.
2016-07-01
The temperature-pressure phase diagram of the ferromagnet LaCrGe3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ . Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q =0 to finite Q , as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.
Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al
2015-12-02
We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less
NASA Astrophysics Data System (ADS)
Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.
2015-12-01
We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.
Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13
NASA Astrophysics Data System (ADS)
Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.
The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).
NASA Astrophysics Data System (ADS)
Chagas, E. A.; Furuya, K.
2008-08-01
In the present work we analyze the quantum phase transition (QPT) in the N-atom Jaynes-Cummings model (NJCM) with an additional symmetry breaking interaction term in the Hamiltonian. We show that depending on the type of symmetry breaking term added the transition order can change or not and also the fixed point associated to the classical analogue of the Hamiltonian can bifurcate or not. We present two examples of symmetry broken Hamiltonians and discuss based on them, the interconnection between the transition order, appearance of bifurcation and the behavior of the entanglement.
Naimi, S.; Audi, G.; Lunney, D.; Beck, D.; Herfurth, F.; Blaum, K.; Boehm, Ch.; Borgmann, Ch.; George, S.; Kowalska, M.; Kreim, S.; Breitenfeldt, M.; Rosenbusch, M.; Schweikhard, L.; Herlert, A.; Neidherr, D.; Schwarz, S.; Zuber, K.
2010-07-16
Mass measurements of {sup 96,97}Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Wang, W.-M.
2008-01-01
We prove that the 1- d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper [EV] in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation.
NASA Astrophysics Data System (ADS)
Pan, W.; Klem, J. F.; Kim, J. K.; Thalakulam, M.; Cich, M. J.; Lyo, S. K.
2013-03-01
We present here our recent quantum transport results around the charge neutrality point (CNP) in a type-II InAs/GaSb field-effect transistor. At zero magnetic field, a conductance minimum close to 4e2 / h develops at the CNP and it follows semi-logarithmic temperature dependence. In quantized magnetic (B) fields and at low temperatures, well developed integer quantum Hall states are observed in the electron as well as hole regimes. Electron transport shows noisy behavior around the CNP at extremely high B fields. When the diagonal conductivity σxx is plotted against the Hall conductivity σxy, a conductivity circle law is discovered, suggesting a chaotic quantum transport behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh
2015-01-01
We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1 , in excellent agreement with the theoretical estimate.
Znojil, Miloslav
2013-09-15
It is known that the practical use of non-Hermitian (i.e., typically, PT-symmetric) phenomenological quantum Hamiltonians H≠H{sup †} requires an efficient reconstruction of an ad hoc Hilbert-space metric Θ=Θ(H) which would render the time-evolution unitary. Once one considers just the N-dimensional matrix toy models H=H{sup (N)}, the matrix elements of Θ(H) may be defined via a coupled set of N{sup 2} polynomial equations. Their solution is a typical task for computer-assisted symbolic manipulations. The feasibility of such a model-completion construction is illustrated here via a discrete square well model H=p{sup 2}+V endowed with a k-parametric close-to-the-boundary interaction V. The model is shown to possess (possibly, multiply degenerate) exceptional points marking the phase transitions which are attributable, due to the exact solvability of the model at any N<∞, to the loss of the regularity of the metric. In the parameter-dependence of the energy spectrum near these singularities one encounters a broad variety of alternative, topologically non-equivalent scenarios. -- Highlights: •New elementary non-Hermitian quantum Hamiltonians with real spectra proposed. •Exceptional points found and studied. •Non-equivalent stability-loss patterns of phase transition identified. •Hermitization matrices of metrics Θ constructed via symbolic manipulations and extrapolations at all N and k.
Quantum motion of a point particle in the presence of the Aharonov-Bohm potential in curved space
NASA Astrophysics Data System (ADS)
Silva, Edilberto O.; Ulhoa, Sérgio C.; Andrade, Fabiano M.; Filgueiras, Cleverson; Amorim, R. G. G.
2015-11-01
The nonrelativistic quantum dynamics of a spinless charged particle in the presence of the Aharonov-Bohm potential in curved space is considered. We chose the surface as being a cone defined by a line element in polar coordinates. The geometry of this line element establishes that the motion of the particle can occur on the surface of a cone or an anti-cone. As a consequence of the nontrivial topology of the cone and also because of two-dimensional confinement, the geometric potential should be taken into account. At first, we establish the conditions for the particle describing a circular path in such a context. Because of the presence of the geometric potential, which contains a singular term, we use the self-adjoint extension method in order to describe the dynamics in all space including the singularity. Expressions are obtained for the bound state energies and wave functions.
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Verdaguer, Enric
2016-03-01
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds to a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.
Adjacent Segment Disease Perspective and Review of the Literature
Saavedra-Pozo, Fanor M.; Deusdara, Renato A. M.; Benzel, Edward C.
2014-01-01
Background Adjacent segment disease has become a common topic in spine surgery circles because of the significant increase in fusion surgery in recent years and the development of motion preservation technologies that theoretically should lead to a decrease in this pathology. The purpose of this review is to organize the evidence available in the current literature on this subject. Methods For this literature review, a search was conducted in PubMed with the following keywords: adjacent segment degeneration and disease. Selection, review, and analysis of the literature were completed according to level of evidence. Results The PubMed search identified 850 articles, from which 41 articles were selected and reviewed. The incidence of adjacent segment disease in the cervical spine is close to 3% without a significant statistical difference between surgical techniques (fusion vs arthroplasty). Authors report the incidence of adjacent segment disease in the lumbar spine to range from 2% to 14%. Damage to the posterior ligamentous complex and sagittal imbalances are important risk factors for both degeneration and disease. Conclusion Insufficient evidence exists at this point to support the idea that total disc arthroplasty is superior to fusion procedures in minimizing the incidence of adjacent segment disease. The etiology is most likely multifactorial but it is becoming abundantly clear that adjacent segment disease is not caused by motion segment fusion alone. Fusion plus the presence of abnormal end-fusion alignment appears to be a major factor in creating end-fusion stresses that result in adjacent segment degeneration and subsequent disease. The data presented cast further doubt on previously established rationales for total disc arthroplasty, at least with regard to the effect of total disc arthroplasty on adjacent segment degeneration pathology. PMID:24688337
46 CFR 148.445 - Adjacent spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...
46 CFR 148.445 - Adjacent spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...
46 CFR 148.445 - Adjacent spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...
46 CFR 148.445 - Adjacent spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...
NASA Astrophysics Data System (ADS)
Putzke, C.; Carrington, A.; Walmsley, P.; Malone, L.; Fletcher, J. D.; See, P.; Vignolles, D.; Proust, C.; Badoux, S.; Kasahara, S.; Mazukami, Y.; Shibauchi, T.; Matsuda, Y.
2014-03-01
BaFe2(As1-xPx)2 presents one of the cleanest and clearest systems in which to study the influence of quantum critical fluctuations on high temperature superconductivity. In this material a sharp maximum in the magnetic penetration depth has been found at the quantum critical point (QCP x = 0 . 3) where Tc is maximal1. Specific heat and de Haas-van Alphen effect measurements2 show that this peak is driven by a corresponding increase in the quasiparticle effective mass. Based on these previous results a simple one-band theory would suggest that at the QCP we should expect a large increase in Hc 2 and a corresponding dip in Hc 1 . Actual measurements of these critical fields, which we present here, shows quite different behavior which we suggest is caused by an anomalous enhancement in the vortex core energy close to the QCP. 1 K.Hashimoto et.al., Science 336, 1554 (2012) 2 P.Walmsley, C.Putzke et.al., Phys. Rev. Lett. 110, 257002 (2013) This work was supported by the Engineering and Physical Sciences Research Council, EuroMagNET II, and KAKENHI from JSPS.
Jia, S.; Jiramongkolchai, P.; Suchomel, M. R.; Toby, B. H.; Checkelsky, J. G.; Ong, N. P.; Cava, R. J.
2011-01-01
In contrast to classical phase transitions driven by temperature, a quantum critical point (QCP) defines a transition at zero temperature that is driven by non-thermal parameters. In the known quantum critical d-electron systems, tuning the electronic bandwidth by means of changing the applied pressure or unit-cell dimensions, or tuning the d-state population, is used to drive the criticality. Here we describe how a novel chemical parameter, the breaking of bonds in Ge-Ge dimers that occurs within the intermetallic framework in SrCo{sub 2}(Ge{sub 1-x}P{sub x}){sub 2}, results in the appearance of a ferromagnetic (FM) QCP. Although both SrCo{sub 2}P{sub 2} and SrCo{sub 2}Ge{sub 2} are paramagnetic, weak itinerant ferromagnetism unexpectedly develops during the course of the dimer breaking, and a QCP is observed at the onset of the FM phase. The use of chemical bond breaking as a tuning parameter to induce QCP opens an avenue for designing and studying novel magnetic materials.
NASA Astrophysics Data System (ADS)
Carretta, P.; Pasero, R.; Giovannini, M.; Baines, C.
2009-01-01
The temperature (T) dependence of the muon and C63u nuclear spin-lattice relaxation rates 1/T1 in YbCu4.4Au0.6 is reported over nearly four decades. It is shown that for T→0 1/T1 diverges following the behavior predicted by the self-consistent renormalization (SCR) theory for a ferromagnetic quantum critical point. On the other hand, the static uniform susceptibility χs is observed to diverge as T-2/3 and 1/T1T∝χs2 , a behavior which is not accounted for by SCR theory. The application of a magnetic field H is observed to induce a crossover to a Fermi-liquid behavior and for T→0 1/T1 is found to obey the scaling law 1/T1(H)=1/T1(0)[1+(μBH/kBT)2]-1 .
NASA Astrophysics Data System (ADS)
Prócel, L. M.; Trojman, L.; Moreno, J.; Crupi, F.; Maccaronio, V.; Degraeve, R.; Goux, L.; Simoen, E.
2013-08-01
The quantum point contact (QPC) model for dielectric breakdown is used to explain the electron transport mechanism in HfO2-based resistive random access memories (ReRAM) with TiN(30 nm)HfO2(5 nm)Hf(10 nm)TiN(30 nm) stacks. Based on experimental I-V characteristics of bipolar HfO2-based ReRAM, we extracted QPC model parameters related to the conduction mechanism in several devices in order to make a statistical study. In addition, we investigated the temperature effect on the conduction mechanism and compared it with the QPC model. Based on these experimental results, we show that the QPC model agrees well with the conduction behavior of HfO2-based ReRAM memory cells.
NASA Astrophysics Data System (ADS)
Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys
2015-07-01
Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.
Wetlands not adjacent to streams (i.e. “non-adjacent wetlands”) are hypothesized to affect downgradient hydrology in a number of ways. Non-adjacent wetlands may, for example, attenuate peak flows, serve as focal points for groundwater recharge, and decrease streamflow...
Cheng, Jie; Dong, Peng; Xu, Wei; Liu, Shengli; Chu, Wangsheng; Chen, Xianhui; Wu, Ziyu
2015-07-01
Many researchers have pointed out that there is a quantum critical point (QCP) in the F-doped SmOFeAs system. In this paper, the electronic structure and local structure of the superconductive FeAs layer in SmO(1-x)FxFeAs as a function of the F-doping concentration have been investigated using Fe and As K-edge X-ray absorption spectroscopy. Experiments performed on the X-ray absorption near-edge structure showed that in the vicinity of the QCP the intensity of the pre-edge feature at the Fe-edge decreases continuously, while there is a striking rise of the shoulder-peak at the As edge, suggesting the occurrence of charge redistribution near the QCP. Further analysis on the As K-edge extended X-ray absorption fine structure demonstrated that the charge redistribution originates mostly from a shortening of the Fe-As bond at the QCP. An evident relationship between the mysterious QCP and the fundamental Fe-As bond was established, providing new insights on the interplay between QCP, charge dynamics and the local structural Fe-As bond in Fe-based superconductors. PMID:26134807
33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....
33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....
33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....
33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....
33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....
Tu, Xingchen; Wang, Minglang; Hou, Shimin; Sanvito, Stefano
2014-11-21
Besides the peak at one conductance quantum, G{sub 0}, two additional features at ∼0.4 G{sub 0} and ∼1.3 G{sub 0} have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G{sub 0}, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G{sub 0}. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G{sub 0} conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.
Universal quantum computation by discontinuous quantum walk
Underwood, Michael S.; Feder, David L.
2010-10-15
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
NASA Astrophysics Data System (ADS)
Mkam Tchouobiap, S. E.
2014-02-01
Motivated by recent experiments, the dynamics of the ferroelectric soft mode and the ferroelectric phase transition mechanism in 18O isotope exchanged systems SrTi(16O1-x18Ox)3 (abbreviated as STO18-x) are reinvestigated as a function of the 18O isotope exchange rate x, within a quasiharmonic model (QHM) for quantum ferroelectric modes in double-Morse local potential with mean-field approximation interactions between modes. The approach was realized within the framework of the variational principle method at finite temperature through the quantum mean-field approximation and by taking into account the effect of isotope replacement through the predominant mass effect, the cell volume effect, homogeneity of the composition throughout the material and the concentration-dependent ferroelectric mode distortion effect. The dynamics of the lowest-frequency soft phonon mode clearly presents an increased softening phenomenon with increasing x and a complete one at the corresponding phase transition temperature Tc, demonstrating the perfect soft-mode-type quantum ferroelectric phase transition for x ⩾ xc. Also, a ferroelectric-paraelectric phase coexistence state has been found near the quantum critical point xc and its origin is discussed. The ferroelectric phase transition mechanism is analyzed and its nature discussed, where a second-order phase transition close to the tricritical point is predicted. In addition, the effect of quantum fluctuations on the soft mode dynamics is discussed which reveals its reduction with increasing x and the crossover of the soft mode dynamics from the quantum to the classic one at the full 18O exchange limit x = 1, for which the origin seems to lie in the new homogeneity associated with the direct reduction of quantum fluctuations effects on the soft mode behavior. Within the QHM, consistent agreement with some of the previous experimental results and theoretical predictions of quantum ferroelectricity throughout the full range of x are
43 CFR 420.3 - Adjacent lands.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....
43 CFR 420.3 - Adjacent lands.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....
43 CFR 420.3 - Adjacent lands.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of off-road vehicle use on Reclamation lands will...
43 CFR 420.3 - Adjacent lands.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...-managing agencies on adjacent lands (both public and private)....
43 CFR 420.3 - Adjacent lands.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...
Hall and transverse even effects in the vicinity of a quantum critical point in Tm1 - x Yb x B12
NASA Astrophysics Data System (ADS)
Sluchanko, N. E.; Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Anisimov, M. A.; Levchenko, A. V.; Filipov, V. B.; Shitsevalova, N. Yu.
2012-09-01
The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm1 - x Yb x B12 solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x c ≈ 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9-300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbium substitution in the range x > x c and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R H( T) for the Tm1 - x Yb x B12 compounds, in contrast to the invariable behavior R H( T) ≈ const found for TmB12. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x ≥ 0.5 with activation energies E g / k B ≈ 200 K and E a/ k B = 55-75 K, and the sign inversion of R H( T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm1 - x Yb x B12 solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained allow concluding that the emergence of Yb-Yb dimers in the Tm1 - x Yb x B12 cage-glass matrix is the origin of the metal
Sluchanko, N. E. Azarevich, A. N.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Anisimov, M. A.; Levchenko, A. V.; Filipov, V. B.; Shitsevalova, N. Yu.
2012-09-15
The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x{sub c} Almost-Equal-To 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9-300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbium substitution in the range x > x{sub c} and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R{sub H}(T) for the Tm{sup 1-x}Yb{sub x}B{sub 12} compounds, in contrast to the invariable behavior R{sub H}(T) Almost-Equal-To const found for TmB{sub 12}. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x {>=} 0.5 with activation energies E{sub g}/k{sub B} Almost-Equal-To 200 K and E{sub a}/k{sub B} 55-75 K, and the sign inversion of R{sub H}(T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained allow
Using BRDFs for accurate albedo calculations and adjacency effect corrections
Borel, C.C.; Gerstl, S.A.W.
1996-09-01
In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.
A ferromagnetic quantum critical point in heavy-fermion iron oxypnictide CeFe{sub 1−x}Cr{sub x}PO
Okano, T.; Matoba, M.; Kamihara, Y.; Kitao, S.; Seto, M.; Atou, T.; Itoh, M.
2015-05-07
We report crystallographic and magnetic properties of layered iron oxypnictide CeFe{sub 1−x}Cr{sub x}PO (x = 0.000–0.692). Interlayer distances between Ce{sub 2}O{sub 2} and (Fe{sub 1−x}Cr{sub x}){sub 2}P{sub 2} layers increase as a function of x, suggesting suppression of Kondo coupling among hybridized conducting orbitals and localized Ce 4f orbitals. CeFe{sub 1−x}Cr{sub x}PO (x = 0.100–0.384) exhibits finite ferromagnetic transition temperatures (T{sub curie}) obtained by Arrott plots, although {sup 57}Fe Mössbauer spectra reveal paramagnetic Fe sublattice at T ≥ 4.2 K. These results indicate that the ferromagnetic phase transitions of samples are mainly due to Ce sublattice. For the samples with x ≥ 0.500, no ferromagnetic order is observed down to 2 K. These results verify that ferromagnetic quantum critical points of CeFe{sub 1−x}Cr{sub x}PO appear at 0.045 ≤ x ≤ 0.100 and 0.384 ≤ x ≤ 0.500.
Lu, Fangchao; Tang, Ning; Huang, Shaoyun; Larsson, Marcus; Maximov, Ivan; Graczyk, Mariusz; Duan, Junxi; Liu, Sidong; Ge, Weikun; Xu, Fujun; Shen, Bo
2013-10-01
Gate-defined quantum point contacts (QPCs) were fabricated with Al0.25Ga0.75N/GaN heterostructures grown by metal-organic chemical vapor deposition (MOCVD). In the transport study of the Zeeman effect, greatly enhanced effective g factors (g*) were obtained. The in-plane g* is found to be 5.5 ± 0.6, 4.8 ± 0.4, and 4.2 ± 0.4 for the first to the third subband, respectively. Similarly, the out-of-plane g* is 8.3 ± 0.6, 6.7 ± 0.7, and 5.1 ± 0.7. Increasing g* with the population of odd-numbered spin-splitted subbands are obtained at 14 T. This portion of increase is assumed to arise from the exchange interaction in one-dimensional systems. A careful analysis shows that not only the exchange interaction but the spin-orbit interaction (SOI) in the strongly confined QPC contributes to the enhancement and anisotropy of g* in different subbands. An approach to distinguish the respective contributions from the SOI and exchange interaction is therefore proposed. PMID:24041238
NASA Astrophysics Data System (ADS)
Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li
2016-07-01
It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3‑x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3‑x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3‑x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.
Jokerst, Jesse V.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; McDevitt, John T.
2010-01-01
Recent humanitarian efforts have led to the widespread release of antiretroviral drugs for the treatment of the more than 33 million HIV afflicted people living in resource-scarce settings. Here, the enumeration of CD4+ T lymphocytes is required to establish the level at which the immune system has been compromised. The gold standard method used in developed countries, based on flow cytometry, though widely accepted and accurate, is precluded from widespread use in resource-scarce settings due to its high expense, high technical requirements, difficulty in operation-maintenance and the lack of portability for these sophisticated laboratory-confined systems. As part of continuing efforts to develop practical diagnostic instrumentation, the integration of semiconductor nanocrystals (quantum dots, QDs) into a portable microfluidic-based lymphocyte capture and detection device is completed. This integrated system is capable of isolating and counting selected lymphocyte sub-populations (CD3+CD4+) from whole blood samples. By combining the unique optical properties of the QDs with the sample handling capabilities and cost effectiveness of novel microfluidic systems, a practical, portable lymphocyte measurement modality that correlates nicely with flow cytometry (R2 = 0.97) has been developed. This QD-based system reduces the optical requirements significantly relative to molecular fluorophores and the mini-CD4 counting device is projected to be suitable for use in both point-of-need and resource-scarce settings. PMID:19023471
NASA Astrophysics Data System (ADS)
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
On the time-course of adjacent and non-adjacent transposed-letter priming
Ktori, Maria; Kingma, Brechtsje; Hannagan, Thomas; Holcomb, Phillip J.; Grainger, Jonathan
2014-01-01
We compared effects of adjacent (e.g., atricle-ARTICLE) and non-adjacent (e.g., actirle-ARTICLE) transposed-letter (TL) primes in an ERP study using the sandwich priming technique. TL priming was measured relative to the standard double-substitution condition. We found significantly stronger priming effects for adjacent transpositions than non-adjacent transpositions (with 2 intervening letters) in behavioral responses (lexical decision latencies), and the adjacent priming effects emerged earlier in the ERP signal, at around 200 ms post-target onset. Non-adjacent priming effects emerged about 50 ms later and were short-lived, being significant only in the 250-300 ms time-window. Adjacent transpositions on the other hand continued to produce priming in the N400 time-window (300-500 ms post-target onset). This qualitatively different pattern of priming effects for adjacent and non-adjacent transpositions is discussed in the light of different accounts of letter transposition effects, and the utility of drawing a distinction between positional flexibility and positional noise. PMID:25364497
FMRI evidence of acupoints specificity in two adjacent acupoints.
Liu, Hua; Xu, Jian-Yang; Li, Lin; Shan, Bao-Ci; Nie, Bin-Bin; Xue, Jing-Quan
2013-01-01
Objectives. Acupoint specificity is the foundation of acupuncture treatment. The aim of this study is to investigate whether the acupoint specificity exists in two adjacent acupoints. Design and Setting. Two adjacent real acupoints, LR3 (Taichong) and ST44 (Neiting), and a nearby nonacupoint were selected. Thirty-three health volunteers were divided into three groups in random order, and each group only received acupuncture at one of the three points. While they received acupuncture, fMRI scan was performed. Results. The common cerebral activated areas responding to LR3 and ST44 included the contralateral primary somatosensory area (SI) and ipsilateral cerebellum. Acupuncture at LR3 specifically activated contralateral middle occipital gyrus, ipsilateral medial frontal gyrus, superior parietal lobe, middle temporal gyrus, rostral anterior cingulate cortex (rACC), lentiform nucleus, insula, and contralateral thalamus. Stimulation at ST44 selectively activated ipsilateral secondary somatosensory area (SII), contralateral middle frontal gyrus, inferior frontal gyrus, lingual gyrus, lentiform nucleus, and bilateral posterior cingulate cortex (PCC). Conclusions. Acupuncture at adjacent acupoints elicits distinct cerebral activation patterns, and those specific patterns might be involved in the mechanism of the specific therapeutic effects of different acupoints. PMID:23762172
SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS
The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...
Border separation for adjacent orthogonal fields
Werner, B.L.; Khan, F.M.; Sharma, S.C.; Lee, C.K.; Kim, T.H. )
1991-06-01
Field border separations for adjacent orthogonal fields can be calculated geometrically, given the validity of some important assumptions such as beam alignment and field uniformity. Thermoluminescent dosimetry (TLD) measurements were used to investigate dose uniformity across field junctions as a function of field separation and, in particular, to review the CCSG recommendation for the treatment of medulloblastoma with separate head and spine fields.
El Hage, Krystel; Bereau, Tristan; Jakobsen, Sofie; Meuwly, Markus
2016-07-12
Halogenation is one of the cases for which advanced molecular simulation methods are mandatory for quantitative and predictive studies. The present work provides a systematic investigation of the importance of higher-order multipoles on specific sites of halobenzenes, other than the halogen, for static and dynamic properties in condensed-phase simulations. For that purpose, solute-solvent interactions using point charge (PC), multipole (MTP), and hybrid point charge/multipole (HYB) electrostatic models are analyzed in regions of halogen bonding and extended to regions of π orbitals of phenyl carbons. Using molecular dynamics simulations and quantum chemical methods, it is found that the sigma-hole does not only affect the halogen and the carbon bound to it but its effect extends to the carbons adjacent to the CX bond. This effect increases with the magnitude of the positive potential of the sigma-hole. With the MTP and HYB3 models, all hydration free energies of the PhX compounds are reproduced within 0.1 kcal/mol. Analysis of pair distribution functions and hydration free energies of halogenated benzenes provides a microscopic explanation why "point charge"-based representations with off-site charges fail in reproducing thermodynamic properties of the sigma-hole. Application of the hybrid models to study protein-ligand binding demonstrates both their accuracy and computational efficiency. PMID:27158892
Dutta, Anirban; Rahmani, Armin; Del Campo, Adolfo
2016-08-19
We show that a thermally isolated system driven across a quantum phase transition by a noisy control field exhibits anti-Kibble-Zurek behavior, whereby slower driving results in higher excitations. We characterize the density of excitations as a function of the ramping rate and the noise strength. The optimal driving time to minimize excitations is shown to scale as a universal power law of the noise strength. Our findings reveal the limitations of adiabatic protocols such as quantum annealing and demonstrate the universality of the optimal ramping rate. PMID:27588838
Code of Federal Regulations, 2010 CFR
2010-01-01
... disposal site adjacent to the Sanctuary off of the Golden Gate: Point ID No. Latitude Longitude 1 37.76458... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites... Subpart M of Part 922—Dredged Material Disposal Sites Adjacent to the Monterey Bay National...
Code of Federal Regulations, 2011 CFR
2011-01-01
... disposal site adjacent to the Sanctuary off of the Golden Gate: Point ID No. Latitude Longitude 1 37.76458... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Dredged Material Disposal Sites... Subpart M of Part 922—Dredged Material Disposal Sites Adjacent to the Monterey Bay National...
Universal computation by multiparticle quantum walk.
Childs, Andrew M; Gosset, David; Webb, Zak
2013-02-15
A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. We consider a generalization to interacting systems with more than one walker, such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions, and show that multiparticle quantum walk is capable of universal quantum computation. Our construction could, in principle, be used as an architecture for building a scalable quantum computer with no need for time-dependent control. PMID:23413349
Adjacent Segment Pathology after Lumbar Spinal Fusion.
Lee, Jae Chul; Choi, Sung-Woo
2015-10-01
One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804
Duality quantum computer and the efficient quantum simulations
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Long, Gui-Lu
2016-03-01
Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.
Adjacent Segment Pathology after Anterior Cervical Fusion
Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon
2016-01-01
Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541
Adjacent Segment Pathology after Anterior Cervical Fusion.
Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon; Kim, Sung Kyu
2016-06-01
Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
2006-11-01
in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
1995-04-01
in two-electron atoms R. Blümel and W. P. Reinhardt; Part III. Semiclassical Approximations: 20. Semiclassical theory of spectral rigidity M. V. Berry; 21. Semiclassical structure of trace formulas R. G. Littlejohn; 22. h-Expansion for quantum trace formulas P. Gaspard; 23. Pinball scattering B. Eckhardt, G. Russberg, P. Cvitanovic, P. E. Rosenqvist and P. Scherer; 24. Logarithm breaking time in quantum chaos G. P. Berman and G. M. Zaslavsky; 25. Semiclassical propagation: how long can it last? M. A. Sepulveda, S. Tomsovic and E. J. Heller; 26. The quantized Baker's transformation N. L. Balazs and A. Voros; 27. Classical structures in the quantized baker transformation M. Saraceno; 28. Quantum nodal points as fingerprints of classical chaos P. Leboeuf and A. Voros; 29. Chaology of action billiards A. M. Ozorio de Almeida and M. A. M. de Aguiar; Part IV. Level Statistics and Random Matrix Theory: 30. Characterization of chaotic quantum spectra and universality of level fluctuation laws O. Bohigas, M. J. Giannono, and C. Schmit; 31. Quantum chaos, localization and band random matrices F. M. Izrailev; 32. Structural invariance in channel space: a step toward understanding chaotic scattering in quantum mechanics T. H. Seligman; 33. Spectral properties of a Fermi accelerating disk R. Badrinarayanan and J. J. José; 34. Spectral properties of systems with dynamical localization T. Dittrich and U. Smilansky; 35. Unbound quantum diffusion and fractal spectra T. Geisel, R. Ketzmerick and G. Petschel; 36. Microwave studies in irregularly shaped billiards H.-J. Stöckmann, J. Stein and M. Kollman; Index.
NASA Astrophysics Data System (ADS)
Lo, C. F.; Kiang, D.
2003-12-01
Based upon a modification of Li et al.'s "minimal" quantization rules (Phys. Lett. A306(2002) 73), we investigate the quantum version of the Cournot and Bertrand oligopoly. In the Cournot oligopoly, the profit of each of the N firms at the Nash equilibrium point rises monotonically with the measure of the quantum entanglement. Only at maximal entanglement, however, does the Nash equilibrium point coincide with the Pareto optimal point. In the Bertrand case, the Bertrand Paradox remains for finite entanglement (i.e., the perfectly competitive stage is reached for any N>=2), whereas with maximal entanglement each of the N firms will still have a non-zero shared profit. Hence, the Bertrand Paradox is completely resolved. Furthermore, a perfectly competitive market is reached asymptotically for N → ∞ in both the Cournot and Bertrand oligopoly.
Reconstructing genome mixtures from partial adjacencies.
Mahmoody, Ahmad; Kahn, Crystal L; Raphael, Benjamin J
2012-01-01
Many cancer genome sequencing efforts are underway with the goal of identifying the somatic mutations that drive cancer progression. A major difficulty in these studies is that tumors are typically heterogeneous, with individual cells in a tumor having different complements of somatic mutations. However, nearly all DNA sequencing technologies sequence DNA from multiple cells, thus resulting in measurement of mutations from a mixture of genomes. Genome rearrangements are a major class of somatic mutations in many tumors, and the novel adjacencies (i.e. breakpoints) resulting from these rearrangements are readily detected from DNA sequencing reads. However, the assignment of each rearrangement, or adjacency, to an individual cancer genome in the mixture is not known. Moreover, the quantity of DNA sequence reads may be insufficient to measure all rearrangements in all genomes in the tumor. Motivated by this application, we formulate the k-minimum completion problem (k-MCP). In this problem, we aim to reconstruct k genomes derived from a single reference genome, given partial information about the adjacencies present in the mixture of these genomes. We show that the 1-MCP is solvable in linear time in the cases where: (i) the measured, incomplete genome has a single circular or linear chromosome; (ii) there are no restrictions on the chromosomal content of the measured, incomplete genome. We also show that the k-MCP problem, for k ≥ 3 in general, and the 2-MCP problem with the double-cut-and-join (DCJ) distance are NP-complete, when there are no restriction on the chromosomal structure of the measured, incomplete genome. These results lay the foundation for future algorithmic studies of the k-MCP and the application of these algorithms to real cancer sequencing data. PMID:23282028
NASA Astrophysics Data System (ADS)
Ekert, Artur
1994-08-01
As computers become faster they must become smaller because of the finiteness of the speed of light. The history of computer technology has involved a sequence of changes from one type of physical realisation to another - from gears to relays to valves to transistors to integrated circuits and so on. Quantum mechanics is already important in the design of microelectronic components. Soon it will be necessary to harness quantum mechanics rather than simply take it into account, and at that point it will be possible to give data processing devices new functionality.
Stress Wave Interaction Between Two Adjacent Blast Holes
NASA Astrophysics Data System (ADS)
Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali
2016-05-01
Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Stern, A.
2008-02-15
We construct a perturbative solution to classical noncommutative gauge theory on R{sup 3} minus the origin using the Groenewald-Moyal star product. The result describes a noncommutative point charge. Applying it to the quantum mechanics of the noncommutative hydrogen atom gives shifts in the 1S hyperfine splitting which are first order in the noncommutativity parameter.
Nodal structure and quantum critical point beneath the superconducting dome of BaFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Matsuda, Yuji
2012-02-01
Among BaFe2As2 based materials , the isovalent pnictogen substituted system BaFe2(As1-xPx)2 appears to be the most suitable system to discuss many physical properties, because BaFe2(As1-xPx)2 can be grown with very clean and homogeneous, as evidenced by the quantum oscillations observed over a wide doping range even in the superconducting dome giving detailed knowledge on the electronic structure. We investigate the structure of the superconducting order parameter in BaFe2(As0.67P0.33)2 (Tc=31,) with line nodes by the angle-resolved thermal conductivity measurements in magnetic field. The experimental results are most consistent with the closed nodal loops located at the flat part of the electron Fermi surface with high Fermi velocity. The doping evolution of the penetration depth indicates that nodal loop is robust against P-doping. Moreover, the magnitude of the zero temperature penetration depth exhibits a sharp peak at x=0.3, indicating the presence of a quantum phase transition deep inside the superconducting dome.[4pt] This work has been done in collaboration with T. Shibauchi, K. Hashimoto, S. Kasahara, M. Yamashita, T. Terashima, H. Ikeda (Kyoto), A. Carrington (Bristol), K. Cho, R. Prozorov, M. Tanatar (Ames), A.B. Vorontsov (Montana) and I.Vekhter (Louisiana).
Exchange coupling between laterally adjacent nanomagnets.
Dey, H; Csaba, G; Bernstein, G H; Porod, W
2016-09-30
We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing. PMID:27535227
Seismicity in Azerbaijan and Adjacent Caspian Sea
Panahi, Behrouz M.
2006-03-23
So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.
Boundary Layers of Air Adjacent to Cylinders
Nobel, Park S.
1974-01-01
Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855
Work and quantum phase transitions: quantum latency.
Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J
2014-06-01
We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models. PMID:25019721
30 CFR 56.9103 - Clearance on adjacent tracks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....
30 CFR 57.9103 - Clearance on adjacent tracks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....
30 CFR 56.9103 - Clearance on adjacent tracks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Clearance on adjacent tracks. 56.9103 Section..., Hauling, and Dumping Traffic Safety § 56.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....
30 CFR 57.9103 - Clearance on adjacent tracks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Clearance on adjacent tracks. 57.9103 Section..., Hauling, and Dumping Traffic Safety § 57.9103 Clearance on adjacent tracks. Railcars shall not be left on side tracks unless clearance is provided for traffic on adjacent tracks....
33 CFR 80.1395 - Puget Sound and adjacent waters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...
33 CFR 80.1395 - Puget Sound and adjacent waters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...
33 CFR 80.1395 - Puget Sound and adjacent waters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...
33 CFR 80.1395 - Puget Sound and adjacent waters.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...
33 CFR 80.1395 - Puget Sound and adjacent waters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...
NASA Astrophysics Data System (ADS)
Soltamov, V. A.; Tolmachev, D. O.; Il'in, I. V.; Astakhov, G. V.; Dyakonov, V. V.; Soltamova, A. A.; Baranov, P. G.
2015-05-01
The spin and optical properties of silicon vacancy defects in silicon carbide of the hexagonal 6 H polytype have been investigated using photoluminescence, electron paramagnetic resonance, and X-band optically detected magnetic resonance. It has been shown that different configurations of these defects can be used to create an optical alignment of their spin sublevels as in the case of low temperatures and at temperatures close to room temperature ( T = 293 K). The main specific feature of silicon vacancy centers in silicon carbide is that the zero-magnetic-field-splitting parameter of some centers remains constant with variations in the temperature, which indicates prospects for the use of these centers for quantum magnetometry. It has also been shown that a number of centers, on the contrary, are characterized by a strong dependence of the zero-magnetic-field-splitting parameter on the temperature, which indicates prospects for the use of these centers as temperature sensors.
Entanglement negativity after a local quantum quench in conformal field theories
NASA Astrophysics Data System (ADS)
Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei
2015-08-01
We study the time evolution of the entanglement negativity after a local quantum quench in (1 + 1)-dimensional conformal field theories (CFTs), which we introduce by suddenly joining two initially decoupled CFTs at their end points. We calculate the negativity evolution for both adjacent intervals and disjoint intervals explicitly. For two adjacent intervals, the entanglement negativity grows logarithmically in time right after the quench. After developing a plateau-like feature, the entanglement negativity drops to the ground-state value. For the case of two spatially separated intervals, a light-cone behavior is observed in the negativity evolution; in addition, a long-range entanglement, which is independent of the distance between two intervals, can be created. Our results agree with the heuristic picture that quasiparticles, which carry entanglement, are emitted from the joining point and propagate freely through the system. Our analytical results are confirmed by numerical calculations based on a critical harmonic chain.
Continuous-time quantum walks on star graphs
Salimi, S.
2009-06-15
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Dissipation in a Quantum Wire: Fact and Fantasy
NASA Astrophysics Data System (ADS)
Das, Mukunda P.; Green, Frederick
2008-10-01
Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.
NASA Astrophysics Data System (ADS)
Rae, Alastair
2012-03-01
Preface to the second edition; Preface to the first edition; 1. Quantum physics; 2. Which way are the photons pointing?; 3. What can be hidden in a pair of photons?; 4. Wonderful Copenhagen?; 5. Is it all in the mind?; 6. Many worlds; 7. Is it a matter of size?; 8. Backwards and forwards; 9. Only one way forward?; 10. Can we be consistent?; 11. Illusion or reality?; Further reading.
Intrinsic time quantum geometrodynamics
NASA Astrophysics Data System (ADS)
Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-08-01
Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.
Quantum optics, cavity QED, and quantum optomechanics
NASA Astrophysics Data System (ADS)
Meystre, Pierre
2013-05-01
Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.
Interaction between adjacent lightning discharges in clouds
NASA Astrophysics Data System (ADS)
Wang, Yanhui; Zhang, Guangshu; Zhang, Tong; Li, Yajun; Wu, Bin; Zhang, Tinglong
2013-07-01
Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.
Lin, Yue; Zhang, Yong Su, Liqin; Liu, Zhiqiang; Wei, Tongbo; Zhang, Jihong; Chen, Zhong
2014-01-14
We perform both spatially resolved electroluminescence (SREL) as a function of injection current and spatially resolved photoluminescence (SRPL) as a function of excitation power on InGaN quantum well blue light-emitting diodes to investigate the underlying physics for the phenomenon of the external quantum efficiency (EQE) droop. SREL allows us to study two most commonly observed but distinctly different droop behaviors on a single device, minimizing the ambiguity trying to compare independently fabricated devices. Two representative devices are studied: one with macroscopic scale material non-uniformity, the other being macroscopically uniform, but both with microscopic scale fluctuations. We suggest that the EQE–current curve reflects the interplay of three effects: nonradiative recombination through point defects, carrier localization due to either In composition or well width fluctuation, and nonradiative recombination of the extended defects, which is common to various optoelectronic devices. By comparing SREL and SRPL, two very different excitation/detection modes, we show that individual singular sites exhibiting either particularly strong or weak emission in SRPL do not usually play any significant and direct role in the EQE droop. We introduce a two-level model that can capture the basic physical processes that dictate the EQE–current dependence and describe the whole operating range of the device from 0.01 to 100 A/cm{sup 2}.
Sands, D.; Howari, H.
2005-10-15
Double quantum wells of CdTe in CdMnTe were implanted with argon ions to create vacancies and interstitials. This destroyed the photoluminescence (PL) emission from the top well and reduced the intensity from the bottom well. Pulsed radiation from an excimer laser emitting at 308 nm, with a full width at half maximum pulse lengths of 26 ns, was used to anneal the implantation damage and restore the luminescence. An optimum fluence close to 50 mJ cm{sup -2} exists for laser annealing, with the best results being obtained if single pulses are employed. Prior irradiation at lower fluences prevents full recovery of the luminescence when the higher fluence pulse is applied, and irradiation at lower fluences on unimplanted material causes a reduction in the luminescence from the top well. These results are interpreted in terms of vacancy creation and annihilation during the laser pulse. Calculations of the total number of vacancies created suggest that annihilation of the Te vacancies is the limiting step in the recovery of the PL in implanted material. It is proposed that loss of material from the surface, amounting to less than a monolayer, leads to the effective diffusion of vacancies into the solid.
Real applications of quantum imaging
NASA Astrophysics Data System (ADS)
Genovese, Marco
2016-07-01
In previous years the possibility of creating and manipulating quantum states of light has paved the way for the development of new technologies exploiting peculiar properties of quantum states, such as quantum information, quantum metrology and sensing, quantum imaging, etc. In particular quantum imaging addresses the possibility of overcoming limits of classical optics by using quantum resources such as entanglement or sub-Poissonian statistics. Albeit, quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now mature enough for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub-Rayleigh imaging.
Petroleum basins of Sakhalin and adjacent shelf
Mavrinski, Y.; Koblov, E. )
1993-09-01
Sixty-seven oil and gas fields have been discovered on Sakhalin and the adjacent shelf but the distribution of fields is uneven in north Sakhalin, south Sakhalin, and the Tatar basins. The sedimentary cover is composed of sandy, clayey, and siliceous rocks, with volcanogenic and coal-bearing deposits of Upper Cretaceous, Paleogene, and Neogene 8-12 km thick. Marine clayey and siliceous oil source rocks are regionally developed in the section at different stratigraphic levels; the organic matter is of mixed type and the content varies from 0.5 to 1.5%. The upper Oligocene and middle-upper Miocene source rocks in the north Sakhalin basin are typical, and the organic carbon content ranges from 1 to 5%. The level of organic matter catagenesis and conversion into hydrocarbons is high because of the high differential geothermal gradient in the basins, 30-50[degrees]C per km. Porous sandstones in the Miocene form the reservoirs in all fields with the exception of Okruzhnoye, where the pay zone is a siliceous claystone. Growth-fault rollovers and anticlines form the main traps ranging in area from 5 to 300 km[sup 2], with amplitudes between 100 and 600 m. both stratigraphic and structural traps have been identified. Considerable volumes of reserves are associated with the Miocene deposits of north Sakhalin, which are characterized by an optimum combination of oil source rocks, focused migration paths, and thick sequences of reservoirs and cap rocks. Six large fields have been discovered in the past 15 yr. Oil and condensate reserves stand at over 300 million MT, and gas reserves are about 900 billion m[sup 3].
Quantum repeated games revisited
NASA Astrophysics Data System (ADS)
Frąckiewicz, Piotr
2012-03-01
We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable.
NASA Astrophysics Data System (ADS)
Hammerath, F.; Bonfà, P.; Sanna, S.; Prando, G.; De Renzi, R.; Kobayashi, Y.; Sato, M.; Carretta, P.
2014-04-01
A superconducting-to-magnetic transition is reported for LaFeAsO0.89F0.11 where a per-thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (μSR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x =0.025% to x =0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x >0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low-energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate T1-1, is observed upon Mn substitution. The analysis of T1-1 for the sample closest to the crossover between superconductivity and magnetism (x =0.2%) points toward the presence of an antiferromagnetic quantum critical point around that doping level.
NASA Astrophysics Data System (ADS)
Erbetta, Davide; Ricci, Davide; Pacchioni, Gianfranco
2000-12-01
Embedding methods specifically designed to treat large molecules with bulky ligands or in polar solvents are used to describe the electronic structure of point defects in the covalently bonded solids SiO2, Si3N4, and Si2N2O. The mechanical relaxation of the lattice around a given defect, in particular an anion vacancy or interstitial, is described using the ONIOM approach where the system is partitioned in two regions, the local defect treated at the gradient corrected DFT level, and the surrounding matrix treated with a semiempirical Hamiltonian. In this way clusters of 100 atoms and more are used to describe a portion of the solid of 10-15 Å of diameter. The long-range lattice polarization induced by a charged defect, a charged oxygen vacancy or a proton bound to O or N atoms, is estimated by means of the isodensity polarized continuum model, IPCM, and compared with the approximate Born's formula. The two simplified embedding schemes provide a simple way to improve cluster models of neutral and charged defects in covalent materials.
Triple Point Topological Metals
NASA Astrophysics Data System (ADS)
Zhu, Ziming; Winkler, Georg W.; Wu, QuanSheng; Li, Ju; Soluyanov, Alexey A.
2016-07-01
Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.
Hydrocarbon provinces and productive trends in Libya and adjacent areas
Missallati, A.A. Ltd., Tripoli )
1988-08-01
According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.
Ius Chasma Tributary Valleys and Adjacent Plains
NASA Technical Reports Server (NTRS)
2006-01-01
This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.
Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about
Quantum structure and human thought.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2013-06-01
We support the authors' claims, except that we point out that also quantum structure different from quantum probability abundantly plays a role in human cognition. We put forward several elements to illustrate our point, mentioning entanglement, contextuality, interference, and emergence as effects, and states, observables, complex numbers, and Fock space as specific mathematical structures. PMID:23673022
Scheme of thinking quantum systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
View of north side from exterior stairs of adjacent building, ...
View of north side from exterior stairs of adjacent building, bottom cut off by fringed buildings, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI
Learning Non-Adjacent Regularities at Age 0 ; 7
ERIC Educational Resources Information Center
Gervain, Judit; Werker, Janet F.
2013-01-01
One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…
Delayed Acquisition of Non-Adjacent Vocalic Distributional Regularities
ERIC Educational Resources Information Center
Gonzalez-Gomez, Nayeli; Nazzi, Thierry
2016-01-01
The ability to compute non-adjacent regularities is key in the acquisition of a new language. In the domain of phonology/phonotactics, sensitivity to non-adjacent regularities between consonants has been found to appear between 7 and 10 months. The present study focuses on the emergence of a posterior-anterior (PA) bias, a regularity involving two…
Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...
Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
The speciation of marine particulate iron adjacent to active and passive continental margins
NASA Astrophysics Data System (ADS)
Lam, Phoebe J.; Ohnemus, Daniel C.; Marcus, Matthew A.
2012-03-01
We use synchrotron-based chemical-species mapping techniques to compare the speciation of suspended (1-51 μm) marine particulate iron collected in two open ocean environments adjacent to active and passive continental margins. Chemical-species mapping provides speciation information for heterogeneous environmental samples, and is especially good for detecting spectroscopically distinct trace minerals and species that could not be detectable by other methods. The average oxidation state of marine particulate iron determined by chemical-species mapping is comparable to that determined by standard bulk X-ray Absorption Near Edge Structure spectroscopy. Using chemical-species mapping, we find that up to 43% of particulate Fe in the Northwest Pacific at the depth of the adjacent active continental margin is in the Fe(II) state, with the balance Fe(III). In contrast, particulate iron in the eastern tropical North Atlantic, which receives the highest dust deposition on Earth and is adjacent to a passive margin, is dominated by weathered and oxidized Fe compounds, with Fe(III) contributing 90% of total iron. The balance is composed primarily of Fe(II)-containing species, but we detected individual pyrite particles in some samples within an oxygen minimum zone in the upper thermocline. Several lines of evidence point to the adjacent Mauritanian continental shelf as the source of pyrite to the water column. The speciation of suspended marine particulate iron reflects the mineralogy of iron from the adjacent continental margins. Since the solubility of particulate iron has been shown to be a function of its speciation, this may have implications for the bioavailability of particulate iron adjacent to passive compared to active continental margins.
Quantum hyperbolic geometry in loop quantum gravity with cosmological constant
NASA Astrophysics Data System (ADS)
Dupuis, Maïté; Girelli, Florian
2013-06-01
Loop quantum gravity (LQG) is an attempt to describe the quantum gravity regime. Introducing a nonzero cosmological constant Λ in this context has been a standing problem. Other approaches, such as Chern-Simons gravity, suggest that quantum groups can be used to introduce Λ into the game. Not much is known when defining LQG with a quantum group. Tensor operators can be used to construct observables in any type of discrete quantum gauge theory with a classical/quantum gauge group. We illustrate this by constructing explicitly geometric observables for LQG defined with a quantum group and show for the first time that they encode a quantized hyperbolic geometry. This is a novel argument pointing out the usefulness of quantum groups as encoding a nonzero cosmological constant. We conclude by discussing how tensor operators provide the right formalism to unlock the LQG formulation with a nonzero cosmological constant.
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Dinpajooh, Mohammadhasan; Siepmann, J. Ilja; Truhlar, Donald G.
2013-01-01
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
NASA Astrophysics Data System (ADS)
Morenzoni, Elvezio; Biswas, Pabitra; Guguchia, Zurab; Khasanov, Rustem; Chinotti, Manuel; Krieger, Jonas; Li, L.; Wang, Kefeng; Petrovic, Cedomir; Pomjakushina, Ekaterina
We report microscopic studies by muon spin rotation as a function of pressure of the (Ca1-xSrx)3Ir4Sn13 and (Ca1-xSrx)3Rh4Sn13 cubic compounds, which display superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). In Ca3Ir4Sn13 we find a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ~ 1 . 6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. Similar behavior is found in the other family. In spite of the conventional phonon-mediated BCS character of these weakly correlated 3-4-13 systems, the dependence of the effective superfluid density on the critical temperature put these compounds in the ``Uemura'' plot close to unconventional superconductors. These systems exemplify that conventional BCS superconductors can also display characteristics of unconventional superconductors. Supported by the Swiss National Science Foundation and by the U.S. DOE under Contract No. DE-SC00112704.
Quantum correlation via quantum coherence
NASA Astrophysics Data System (ADS)
Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing
2014-06-01
Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.
Thermoelastic response of thin metal films and their adjacent materials
Kang, S.; Yoon, Y.; Kim, J.; Kim, W.
2013-01-14
A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.
Quantum information approach to the azurite mineral frustrated quantum magnet
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abutalib, M.; Farouk, Ahmed; Abdalla, S.
2016-07-01
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at T_c < 1 K.
Quantum information approach to the azurite mineral frustrated quantum magnet
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abutalib, M.; Farouk, Ahmed; Abdalla, S.
2016-04-01
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at T_c < 1 K.
NASA Astrophysics Data System (ADS)
Meyers, Ronald E.; Deacon, Keith S.; Tunick, Arnold
2013-09-01
We report on an experimental demonstration of quantum imaging where the images are stored in both space and time. Quantum images of remote objects are produced with rotating ground glass induced chaotic laser light and two sensors measuring at different space-time points. Quantum images are observed to move depending on the time delay between the sensor measurements. The experiments provide a new testbed for exploring the time and space scale fundamental physics of quantum imaging and suggest new pathways for quantum information storage and processing. The moved quantum images are in fact new images that are stored in a space-time virtual memory process. The images are stored within the same quantum imaging data sets and thus quantum imaging can produce more information per photon measured than was previously realized.
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, ...
73. PASSAGE ADJACENT TO ROOM 232, EAST WING, SECOND FLOOR, LOOKING WEST BY NORTHWEST, SHOWING EASTERNMOST ARCH OF FORMER GREAT HALL NORTH ARCADE - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC
View of viaduct, looking SE from roof of adjacent parking ...
View of viaduct, looking SE from roof of adjacent parking garage. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA
Cement Leakage into Adjacent Vertebral Body Following Percutaneous Vertebroplasty
Park, Jae Hoo; Kim, Hyeun Sung
2016-01-01
Percutaneous vertebroplasty (PV) is a minimally invasive procedure for osteoporotic vertebral compression fractures that fail to respond to conventional conservative treatment. It significantly improves intolerable back pain within hours, and has a low complication rate. Although rare, PV is not free of complications, most of which are directly related to cement leakage. Because of its association with new adjacent fracture, the importance of cement leakage into the adjacent disc space is paramount. Here, we report an interesting case of cement leakage into the adjacent upper vertebral body as well as disc space following PV. To the best of our knowledge, there has been no report of cement leakage into the adjacent vertebral body following PV. This rare case is presented along with a review of the literature. PMID:27437018
1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL ...
1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL CO., MA. Sec. 4116, MP 193.75. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA
3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL ...
3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL CO., MA. Sec. 4116, MP 195.55. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA
33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY ...
33. HISTORIC PLAQUE MARKING WHERE JOHNSTON DIED, ADJACENT TO PATHWAY WITH CONCRETE CULVERT LEADING NORTH OUT OF RAVINE TOWARD JOHNSTON MEMORIAL SITE. VIEW NW. - Shiloh National Military Park Tour Roads, Shiloh, Hardin County, TN
Lock 4 View east of lock wall and adjacent ...
Lock 4 - View east of lock wall and adjacent roadway built atop tow path. The gate pocket can be seen at center. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA
1. Ninth Street (west) facade. Adjacent on the north is ...
1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC
2. THREEQUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS ...
2. THREE-QUARTER VIEW FROM ADJACENT ACCESS ROAD SHOWING THREE SPANS AND NORTHWEST APPROACH SPANS, LOOKING SOUTHEAST - Red River Bridge, Spanning Red River at U.S. Highway 82, Garland, Miller County, AR
1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD ...
1. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD HOMES, LOOKING SOUTH. GARAGE TO EXTREME LEFT, BUILDING 1 TO EXTREME RIGHT. - Techwood Homes (Public Housing), Bounded by North Avenue, Parker Street, William Street & Lovejoy Street, Atlanta, Fulton County, GA
3. View of north side of house facing from adjacent ...
3. View of north side of house facing from adjacent vacant property. Original wood lap siding and trim is covered by aluminum siding. Recessed side porch is in middle. - 645 South Eighteenth Street (House), Louisville, Jefferson County, KY
1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE ...
1. A BRICK AND CONCRETE FAN HOUSING ADJACENT TO ONE OF THE ADIT OPENINGS (VIEW TO THE NORTH). - Foster Gulch Mine, Fan Housing, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT
7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH ...
7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH (NOT IN STUDY AREA) - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA
OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY ...
OBLIQUE OF SOUTHWEST END AND SOUTHEAST SIDE, WITH ADJACENT FACILITY 391 IN THE FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
Complications in exodontia--accidental dislodgment to adjacent anatomical areas.
Grandini, S A; Barros, V M; Salata, L A; Rosa, A L; Soares, U N
1993-01-01
The authors report 4 cases of accidental dislodgement of teeth to adjacent anatomical areas during extraction. The causes and their prevention are discussed and solutions for the problem are suggested. PMID:8241759
6. Detail, vertical guides adjacent to east portal of Tunnel ...
6. Detail, vertical guides adjacent to east portal of Tunnel 28, view to southwest, 135mm lens with electronic flash fill. - Central Pacific Transcontinental Railroad, Tunnel No. 28, Milepost 134.75, Applegate, Placer County, CA
VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO ...
VIEW OF CONSTRUCTION CAMP ROCK FEATURE WITH OVER, ADJACENT TO THE COLUMBIA SOUTHERN CANAL. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
Pump house adjacent to the superintendent's house at the west ...
Pump house adjacent to the superintendent's house at the west end of the complex near Highway 101. Detail of Holloshaft pump. View to the south. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA
VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT ...
VIEW OF NORTHERN AND EASTERN SIDES FROM PARKING LOT ADJACENT TO BUILDING 199 (POLICE STATION) - U.S. Naval Base, Pearl Harbor, Post Office, Avenue A near Eleventh Avenue, Pearl City, Honolulu County, HI
24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO ...
24. INTERIOR VIEW, WILLIAM GRAY AT SIZING GUAGE ADJACENT TO BRADLEY HAMMER; NOTE THIS IS THE SAME TOOL AS BEING FORGED ABOVE - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV
Detail exterior view looking north showing piping system adjacent to ...
Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV
VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...
VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA
14. Charles Acey Cobb standing adjacent to the fish screen ...
14. Charles Acey Cobb standing adjacent to the fish screen he designed and installed in the Congdon Canal, facing southeast. Photo dates ca. late 1920's. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA
52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...
52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID
VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE ...
VIEW OF CONCRETE CHANNEL ADJACENT TO TUMALO FEED CANAL INTAKE STRUCTURE (DOWNSTREAM SIDE). LOOKING EAST/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
Approximating the largest eigenvalue of network adjacency matrices
NASA Astrophysics Data System (ADS)
Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.
2007-11-01
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. PMID:26276464
NASA Astrophysics Data System (ADS)
Munoz Saez, C.; Fauria, K.; Manga, M.; Hurwitz, S.; Namiki, A.
2014-12-01
Geyser eruption cycles can be influenced by adjacent and distant thermals sources, suggesting a hydraulic connection through permeable pathways. Diffusion of fluid pressure can be responsible for the communication between geysers. In this study we examine the processes linking two different geysers with adjacent thermal pools. The first was Vega Rinconada, located at El Tatio geyser field, Chile, where we measured temperature inside the conduit between the ground surface and a depth of seven meters, at one-meter intervals. The second was Lone Star Geyser in Yellowstone National Park, where we measured temperature of the overflow water at the base of the cone. Concurrently, we measured temperature and the water level in pools adjacent to both geysers. We found common elements in both geyser - pool systems: First, water temperature in both adjacent pools was below the boiling point and cooler than water in the geysers. Second, changes in pool water levels were correlated with eruptions of the geysers. During the quiescent period of the geysers, the water level increased in adjacent pools, while water level in the pools deceased during eruptions. Additionally, measurements inside of the conduit in Vega Rinconada Geyser showed that water temperature increased in the deepest part of the conduit during eruptions, while water temperature decreased in the shallow part of the geyser conduit (~1 to 2 m). These drops in temperature in the shallow conduit were coincident with the drop in water level in the adjacent pool. This suggests that after the initiation of an eruption, water may drain from the pool to the geyser. Furthermore, we observed a temperature drop of 3oC in the shallow conduit immediately preceding the end of an eruption. This suggests that flow from the pool to geyser contributes to eruption shut off. Our observations of geyser-pool systems indicate a hydrologic connection between the geysers and their adjacent pools. In the case of Vega Rinconada, cold water
MedlinePlus Videos and Cool Tools
... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...
NASA Astrophysics Data System (ADS)
Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.
2015-12-01
Wetlands not adjacent to streams (i.e. "non-adjacent wetlands") are hypothesized to affect downgradient hydrology in a number of ways. Non-adjacent wetlands may, for example, attenuate peak flows, serve as focal points for groundwater recharge, and decrease streamflow variability. The lack of spatially and temporally continuous data elucidating these relationships makes hydrological models an important medium for testing these hypotheses at broad spatial scales (e.g., mesoscale watersheds). We present results from two case studies that apply a hydrological model modified to represent non-adjacent wetland hydrological processes and thereby evaluate their watershed-scale aggregate hydrological effects. We focus on non-adjacent wetlands in two North American landscapes: (1) a ~202 km2 watershed in the Coastal Plain with an extensive distribution of Carolina Bay wetlands and (2) a ~1672 km2 watershed in the Great Plains, which is characterized by a dense distribution of landscape depressions (i.e., prairie potholes). Preliminary results suggest that non-adjacent wetlands significantly affect downgradient hydrology in both landscapes - specifically the baseflow and quickflow components of the hydrograph. However, the emergent watershed-scale hydrological effects of non-adjacent wetlands in the two diverse landscapes differ widely, primarily in response to the varying importance of wetland (e.g., discharge, recharge, flow-through) and wetland to stream transport (e.g., surface, shallow subsurface, deep groundwater flows) functions in these systems. We highlight the watershed-scale hydrological effects of non-adjacent wetlands in these two physiographic settings and describe the need for additional analyses of wetlands in disparate landscapes, using alternative conceptual and simulation models.
NASA Astrophysics Data System (ADS)
Georgescu, I. M.; Ashhab, S.; Nori, Franco
2014-01-01
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.
Tunable quantum well infrared detector
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu
2007-09-01
electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].
Quantum networks reveal quantum nonlocality.
Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio
2011-01-01
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.
On the Adjacent Eccentric Distance Sum Index of Graphs
Qu, Hui; Cao, Shujuan
2015-01-01
For a given graph G, ε(v) and deg(v) denote the eccentricity and the degree of the vertex v in G, respectively. The adjacent eccentric distance sum index of a graph G is defined as ξsv(G)=∑v∈V(G)ε(v)D(v)deg(v), where D(v)=∑u∈V(G)d(u,v) is the sum of all distances from the vertex v. In this paper we derive some bounds for the adjacent eccentric distance sum index in terms of some graph parameters, such as independence number, covering number, vertex connectivity, chromatic number, diameter and some other graph topological indices. PMID:26091095
Nonlinear spin wave coupling in adjacent magnonic crystals
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.; Nikitov, S. A.
2016-07-01
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Molecular disorganization of axons adjacent to human lacunar infarcts
Lee, Monica D.; Tung, Spencer; Vinters, Harry V.; Carmichael, S. Thomas
2015-01-01
Cerebral microvascular disease predominantly affects brain white matter and deep grey matter, resulting in ischaemic damage that ranges from lacunar infarcts to white matter hyperintensities seen on magnetic resonance imaging. These lesions are common and result in both clinical stroke syndromes and accumulate over time, resulting in cognitive deficits and dementia. Magnetic resonance imaging studies suggest that these lesions progress over time, accumulate adjacent to prior lesions and have a penumbral region susceptible to further injury. The pathological correlates of this adjacent injury in surviving myelinated axons have not been previously defined. In this study, we sought to determine the molecular organization of axons in tissue adjacent to lacunar infarcts and in the regions surrounding microinfarcts, by determining critical elements in axonal function: the morphology and length of node of Ranvier segments and adjacent paranodal segments. We examined post-mortem brain tissue from six patients with lacunar infarcts and tissue from two patients with autosomal dominant retinal vasculopathy and cerebral leukoencephalopathy (previously known as hereditary endotheliopathy with retinopathy, nephropathy and stroke) who accumulate progressive white matter ischaemic lesions in the form of lacunar and microinfarcts. In axons adjacent to lacunar infarcts yet extending up to 150% of the infarct diameter away, both nodal and paranodal length increase by ∼20% and 80%, respectively, reflecting a loss of normal cell-cell adhesion and signalling between axons and oligodendrocytes. Using premorbid magnetic resonance images, brain regions from patients with retinal vasculopathy and cerebral leukoencephalopathy that harboured periventricular white matter hyperintensities were selected and the molecular organization of axons was determined within these regions. As in regions adjacent to lacunar infarcts, nodal and paranodal length in white matter of these patients is
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Polyhedra in loop quantum gravity
Bianchi, Eugenio; Speziale, Simone; Dona, Pietro
2011-02-15
Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R{sup 3}: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.
Polyhedra in loop quantum gravity
NASA Astrophysics Data System (ADS)
Bianchi, Eugenio; Doná, Pietro; Speziale, Simone
2011-02-01
Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R3: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.
Zhuang Guilin; Chen Wulin; Zheng Jun; Yu Huiyou; Wang Jianguo
2012-08-15
A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.
NASA Astrophysics Data System (ADS)
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Quantum properties of QCD string fragmentation
NASA Astrophysics Data System (ADS)
Todorova-Nová, Šárka
2016-07-01
A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.
7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...
7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL
Colposcopy of vaginal and vulvar human papillomavirus and adjacent sites.
Hatch, K
1993-03-01
Human papillomaviral infections can affect the entire lower female genital tract as multifocal or multicentric disease as well as the surrounding anatomic and adjacent sites. The traditional colposcopic methods are necessary to assist in the diagnosis and help differentiate these infections from other disease mimics. PMID:8392676
Biogeochemistry of hydrothermally and adjacent non-altered soils
Technology Transfer Automated Retrieval System (TEKTRAN)
As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...
22. Float located adjacent to entry stair in filtration bed. ...
22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT
2. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD ...
2. VIEW FROM ROOFTOP OF BUILDING (MOTEL) ADJACENT TO TECHWOOD HOMES, LOOKING WEST. GEORGIA TECH DORMITORY BUILDING, 581-587 TECHWOOD DRIVE, IN FOREGROUND. - Techwood Homes (Public Housing), Bounded by North Avenue, Parker Street, William Street & Lovejoy Street, Atlanta, Fulton County, GA
10. Detail and contextual view of bridge and adjacent farmstead ...
10. Detail and contextual view of bridge and adjacent farmstead setting. Note laced vertical compression members, latticed portal strut, decorative strut bracing, and lightness of diagonal and lateral tension members. View to southeast through southeast portal from truss mid-span. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA
LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ...
LEHR NO. 2 AND LEHR NO. 3 ADJACENT TO FURNACE ROOM; THE PIPES AT THE BOTTOM ARE PART OF THE RADIANT HEATING SYSTEM USED FOR HEATING THE FACTORY DURING COLD WEATHER. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA
Effects on stink bugs of field edges adjacent to woodland
Technology Transfer Automated Retrieval System (TEKTRAN)
Producers face significant crop losses from stink bug species in the southeastern USA, but the high mobility and polyphagy of the bugs make predictions of their presence in crops difficult. While there is some evidence that they colonize crops from adjacent crops, there are no studies of their colo...
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING INTERSECTION OF ACACIA ...
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING INTERSECTION OF ACACIA ROAD WITH BIRCH CIRCLE. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ...
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ENTRY TO NEIGHBORHOOD. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING WESTERN SIDE OF ...
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING WESTERN SIDE OF NEIGHBORHOOD. VIEW FACING NORTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON ...
VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON RIGHT, AND HOUSING AREA ON LEFT. VIEW FACING EAST/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
How subaerial salt extrusions influence water quality in adjacent aquifers
NASA Astrophysics Data System (ADS)
Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat
2015-12-01
Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.
45. 1915 CLOTH ROOM ADJACENT TO PICKER ROOM, SECOND FLOOR, ...
45. 1915 CLOTH ROOM ADJACENT TO PICKER ROOM, SECOND FLOOR, NORTH END OF MILL NO. 2, WALL ON LEFT DIVIDING CLOTH ROOM ADDED LATER (PROBABLY C. 1970s). - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
Detail of north intermediate abutment pylon showing proximity of adjacent ...
Detail of north intermediate abutment pylon showing proximity of adjacent 1001-1007 East First Street (James K. Hill and Sons Pickle Works Building), facing east - First Street Bridge, Spanning Los Angeles River at First Street, Los Angeles, Los Angeles County, CA
8. Exterior view, showing tank and associated piping adjacent to ...
8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
4. REAR ELEVATION, DETAIL OF CONSTRUCTION, ADJACENT CORNER POSTS BETWEEN ...
4. REAR ELEVATION, DETAIL OF CONSTRUCTION, ADJACENT CORNER POSTS BETWEEN BUILDING PERIODS 1 AND 3. NOTE REUSED WOOD STRIP NAILED TO BUILDING PERIOD 1 POST INSCRIBED 'ST. LEONARD'. THERE ARE NO NAIL HOLES IN THE PERIOD 3 POST, THE FARRING STRIPS ADJUST FOR CLADDING - Charles' Gift, State Routes 2 & 4, Lusby, Calvert County, MD
1. OVERVIEW SHOWING FIRING CONTROL BLOCKHOUSE 0502 AND ADJACENT OBSERVATION ...
1. OVERVIEW SHOWING FIRING CONTROL BLOCKHOUSE 0502 AND ADJACENT OBSERVATION TOWER. WATER BRAKE TROUGH SEGMENT AT LOWER RIGHT. Looking north northeast. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
4. Elevation looking southwest from adjacent hills on northeast side ...
4. Elevation looking southwest from adjacent hills on northeast side of bridge, taken from river level. Note entire east side and substructure. - Presumpscot Falls Bridge, Spanning Presumptscot River at Allen Avenue extension, 0.75 mile west of U.S. Interstate 95, Falmouth, Cumberland County, ME
12. LOG FOUNDATION ELEMENTS OF THE SAWMILL ADJACENT TO THE ...
12. LOG FOUNDATION ELEMENTS OF THE SAWMILL ADJACENT TO THE CANAL, LOOKING EAST. BARREN AREA IN FOREGROUND IS DECOMPOSING SAWDUST. DIRT PILE IN BACKGROUND IS THE EDGE OF THE SUMMIT COUNTY LANDFILL. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO
Relativistic quantum cryptography
NASA Astrophysics Data System (ADS)
Molotkov, S. N.; Nazin, S. S.
2003-07-01
The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Universal quantum correlation close to quantum critical phenomena.
Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin
2016-01-01
We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size of the systems becomes large. Our results also indicate a universal behavior of the critical exponent of ITF under QRG theory that the critical exponent of different measures is identical, even when the quantities vary from entanglement measures to quantum correlation measures. This means that the two kinds of quantum correlation criterion including the entanglement-separability paradigm and the information-theoretic paradigm have some connections between them. These remarkable behaviors may have important implications on condensed matter physics because the critical exponent directly associates with the correlation length exponent. PMID:27189504
Universal quantum correlation close to quantum critical phenomena
Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin
2016-01-01
We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size of the systems becomes large. Our results also indicate a universal behavior of the critical exponent of ITF under QRG theory that the critical exponent of different measures is identical, even when the quantities vary from entanglement measures to quantum correlation measures. This means that the two kinds of quantum correlation criterion including the entanglement-separability paradigm and the information-theoretic paradigm have some connections between them. These remarkable behaviors may have important implications on condensed matter physics because the critical exponent directly associates with the correlation length exponent. PMID:27189504
Universal quantum correlation close to quantum critical phenomena
NASA Astrophysics Data System (ADS)
Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin
2016-05-01
We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size of the systems becomes large. Our results also indicate a universal behavior of the critical exponent of ITF under QRG theory that the critical exponent of different measures is identical, even when the quantities vary from entanglement measures to quantum correlation measures. This means that the two kinds of quantum correlation criterion including the entanglement-separability paradigm and the information-theoretic paradigm have some connections between them. These remarkable behaviors may have important implications on condensed matter physics because the critical exponent directly associates with the correlation length exponent.
Network-Centric Quantum Communications
NASA Astrophysics Data System (ADS)
Hughes, Richard
2014-03-01
Single-photon quantum communications (QC) offers ``future-proof'' cryptographic security rooted in the laws of physics. Today's quantum-secured communications cannot be compromised by unanticipated future technological advances. But to date, QC has only existed in point-to-point instantiations that have limited ability to address the cyber security challenges of our increasingly networked world. In my talk I will describe a fundamentally new paradigm of network-centric quantum communications (NQC) that leverages the network to bring scalable, QC-based security to user groups that may have no direct user-to-user QC connectivity. With QC links only between each of N users and a trusted network node, NQC brings quantum security to N2 user pairs, and to multi-user groups. I will describe a novel integrated photonics quantum smartcard (``QKarD'') and its operation in a multi-node NQC test bed. The QKarDs are used to implement the quantum cryptographic protocols of quantum identification, quantum key distribution and quantum secret splitting. I will explain how these cryptographic primitives are used to provide key management for encryption, authentication, and non-repudiation for user-to-user communications. My talk will conclude with a description of a recent demonstration that QC can meet both the security and quality-of-service (latency) requirements for electric grid control commands and data. These requirements cannot be met simultaneously with present-day cryptography.
Quantum graph as a quantum spectral filter
Turek, Ondrej; Cheon, Taksu
2013-03-15
We study the transmission of a quantum particle along a straight input-output line to which a graph {Gamma} is attached at a point. In the point of contact we impose a singularity represented by a certain properly chosen scale-invariant coupling with a coupling parameter {alpha}. We show that the probability of transmission along the line as a function of the particle energy tends to the indicator function of the energy spectrum of {Gamma} as {alpha}{yields}{infinity}. This effect can be used for a spectral analysis of the given graph {Gamma}. Its applications include a control of a transmission along the line and spectral filtering. The result is illustrated with an example where {Gamma} is a loop exposed to a magnetic field. Two more quantum devices are designed using other special scale-invariant vertex couplings. They can serve as a band-stop filter and as a spectral separator, respectively.
Fundamental aspects of quantum Brownian motion
Haenggi, Peter; Ingold, Gert-Ludwig
2005-06-01
With this work we elaborate on the physics of quantum noise in thermal equilibrium and in stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem we discuss some important consequences that must hold for open, dissipative quantum systems in thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the context of both, the nonlinear generalized quantum Langevin equation and the path integral approach. We discuss the consequences of the time-reversal symmetry for an open dissipative quantum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral methodology is applied to the decay of metastable states assisted by quantum Brownian noise.
ASCR Workshop on Quantum Computing for Science
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum hair and quantum gravity
Coleman, S. ); Krauss, L.M. ); Preskill, J. ); Wilczek, F. )
1992-01-01
A black hole may carry quantum numbers that are not associated with massless gauge fields, contrary to the spirit of the 'no-hair' theorems. The 'quantum hair' is invisible in the classical limit, but measurable via quantum interference experiments. Quantum hair alters the temperature of the radiation emitted by a black hole. It also induces non-zero expectation values for fields outside the event horizon; these expectation values are non-perturbative in [Dirac h], and decay exponentially far from the hole. The existence of quantum hair demonstrates that a black hole can have an intricate quantum-mechanical structure that is completely missed by standard semiclassical theory.
Zurek, Wojciech H
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
NASA Astrophysics Data System (ADS)
Harju, Antti J.
2016-06-01
This is a study of orbifold-quotients of quantum groups (quantum orbifolds {Θ } rightrightarrows Gq). These structures have been studied extensively in the case of the quantum S U 2 group. A generalized theory of quantum orbifolds over compact simple and simply connected quantum groups is developed. Associated with a quantum orbifold there is an invariant subalgebra and a crossed product algebra. For each spin quantum orbifold, there is a unitary equivalence class of Dirac spectral triples over the invariant subalgebra, and for each effective spin quantum orbifold associated with a finite group action, there is a unitary equivalence class of Dirac spectral triples over the crossed product algebra. A Hopf-equivariant Fredholm index problem is studied as an application.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.
2015-12-02
We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe_{0.957}Cu_{0.043})_{2}As_{2}, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe_{2}As_{2} and superconducting Ba(Fe_{1–x}Ni_{x})_{2}As_{2} compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe_{0.957}Cu_{0.043})_{2}As_{2}, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.
NASA Astrophysics Data System (ADS)
Moulopoulos, K.
2015-06-01
A quantum system that lies nearby a magnetic or time-varying electric field region, and that is under periodic boundary conditions parallel to the interface, is shown to exhibit a "hidden" Aharonov-Bohm effect (magnetic or electric), caused by fluxes that are not enclosed by, but are merely neighboring to our system - its origin being the absence of magnetic monopoles in 3D space (with corresponding spacetime generalizations). Novel possibilities then arise, where a field-free system can be dramatically affected by manipulating fields in an adjacent or even distant land, provided that these nearby fluxes are not quantized (i.e. they are fractional or irrational parts of the flux quantum). Topological effects (such as Quantum Hall types of behaviors) can therefore be induced from outside our system (that is always field-free and can even reside in simply-connected space). Potential novel applications are outlined, and exotic consequences in solid state physics are pointed out (i.e. the possibility of field-free quantum periodic systems that violate Bloch's theorem), while formal analogies with certain high energy physics phenomena and with some rather under-explored areas in mechanics and thermodynamics are noted.
Archer, Charles J.; Faraj, Ahmad A.; Inglett, Todd A.; Ratterman, Joseph D.
2012-10-23
Methods, apparatus, and products are disclosed for providing nearest neighbor point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: identifying each link in the global combining network for each compute node of the operational group; designating one of a plurality of point-to-point class routing identifiers for each link such that no compute node in the operational group is connected to two adjacent compute nodes in the operational group with links designated for the same class routing identifiers; and configuring each compute node of the operational group for point-to-point communications with each adjacent compute node in the global combining network through the link between that compute node and that adjacent compute node using that link's designated class routing identifier.
38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX ...
38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX GAP ROTARY RECTIFIER. THIS UNIT GENERATED A MAGNETIC PULSE WHICH WAS TRANSMITTED TO THE COLLECTION PLATES IN THE ELECTROSTATIC PRECIPITATOR CHAMBER. THESE PERIODIC PULSES VIBRATE THE PLATES AND CAUSE PRECIPITATED ARTICLES OF SMOKE AND FLY ASH TO FALL TO THE BOTTOM OF THE PRECIPITATOR CHAMBER. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Conference room 211, adjacent to commander's quarters, with vault door ...
Conference room 211, adjacent to commander's quarters, with vault door at right. Projection area at center is equipped with automatic security drapes. Projection room uses a 45 degree mirror to reflect the image onto the frosted glass screen. Door on far left leads to display area senior battle staff viewing bridge, and the commander's quarters - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
Epithelial dysplasia immediately adjacent to oral squamous cell carcinomas.
Wright, A; Shear, M
1985-08-01
A number of workers have attempted to identify dysplastic features which may be predictors of malignant change, by prospective studies of dysplastic lesions. In the present study we have looked at dysplastic changes immediately adjacent to established squamous carcinomas in an attempt to determine whether any predictors can be identified in this way. Eighty cases were included in the study for whom information on tobacco usage was known. Clinical details were recorded. Histological features in epithelium immediately adjacent to the carcinoma were studied in representative sections. Eighteen specific histological characteristics were noted as present or absent. Data were transferred by Conversational Monitoring System (CMS) terminal, processed and analyzed by the Statistical Analysis System (SAS) Computer package. Only 8 patients were non-smokers (10%). Dysplastic changes in adjacent epithelium were frequently multicentric. Changes appear to occur first in the basal layer in the form of disturbance of polarity or basal cell hyperplasia, while other dysplastic features are absent. The feature referred to as basal cell hyperplasia appears, in fact, to represent disturbed epithelial maturation. In 80% of cases increased nucleo-cytoplasmic ratio appears to result from a decrease in cytoplasmic volume rather than increased nuclear size. A defect in RNA synthesis may be a factor. A sharp decrease in inflammatory cells in the lamina propria of adjacent epithelium, compared with that of the carcinoma, was observed. Russell bodies were noted in 5 of the 8 lesions in non-smokers (63%) and in 16 of 72 lesions in smokers (22%) (p less than 0.001; Chi2 17.65). PMID:3928850
20. Interior view of fuel storage pit or vault adjacent ...
20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Mathematical foundation of quantum annealing
Morita, Satoshi; Nishimori, Hidetoshi
2008-12-15
Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.
Divergent viral presentation among human tumors and adjacent normal tissues.
Cao, Song; Wendl, Michael C; Wyczalkowski, Matthew A; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J; Gay, Hiram; Chen, Ken; Rader, Janet S; Dipersio, John F; Chen, Feng; Ding, Li
2016-01-01
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696
Osteochondroma of the hip with adjacent bursal chondromatosis.
Gould, Elaine S; Baker, Kevin S; Huang, Mingqian; Khan, Fazel; Hoda, Syed
2014-12-01
It is well established that irregular bursae can form adjacent to an osteochondroma (bursa exostotica) as a result of mechanical irritation and that these bursae can be complicated by inflammation, hemorrhage, or infection. Bursal chondromatosis is a rare complication, with only seven published cases in the literature according to our searches. We present the case of a 53-year-old female who presented with slowly progressive left hip/thigh pain and was found to have an osteochondroma arising from the lesser trochanter with numerous ossified bodies in the adjacent soft tissues. MRI demonstrated osteochondral bodies in a fluid-filled bursa adjacent to the osteochondroma, with several of the bodies noted to be fairly displaced from the osteochondroma cartilaginous cap. At surgery, the osteochondroma was removed and numerous bodies of varying sizes were excised, some of which were noted to be adherent to the bursal lining and others that were separated/distant from the cartilage cap. The question arises as to whether this process represents bursal chondromatosis resulting from benign neoplasia of cells lining the abnormal bursa, "cartilage shedding" from the osteochondromatous cap, or both. The purpose in presenting this case is to introduce a rare complication of an osteochondroma, demonstrate that soft tissue calcification and osteochondral densities displaced from an underlying osteochondroma are not always the result of sarcomatous degeneration, and provide support for the theory that cells lining a bursa in a nonphysiologic location can undergo benign neoplasia with subsequent formation of osteochondral bodies. PMID:25001874
Divergent viral presentation among human tumors and adjacent normal tissues
Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li
2016-01-01
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696
Quantum Games under Decoherence
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen
2016-02-01
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which
Entanglement-Based Quantum Cryptography and Quantum Communication
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2007-03-01
Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-01-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-06-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-03-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Functional angiocoupling between follicles and adjacent corpus luteum in heifers.
Ginther, O J; Siddiqui, M A R; Baldrighi, J M
2016-07-15
In single ovulating cattle, ipsilateral versus contralateral interovarian relationships refer to a dominant follicle (DF) and CL in the same versus opposite ovaries. The ipsilateral relationship consists of the DF-CL and the devoid (no DF or CL) intraovarian pattern, and the contralateral relationship consists of the DF pattern and the CL pattern. The DF-CL pattern involves positive effects on both the DF and CL when adjacent (≤3-mm apart) versus separated as follows: greater diameter of DF (e.g., 10.5 ± 0.4 vs. 9.0 ± 0.4 mm), greater percentage of the DF wall with color Doppler signals of blood flow (40.2% ± 2.0% vs. 24.5% ± 1.9%), greater cross-sectional area of the CL (2.2 ± 0.1 vs. 1.8 ± 0.2 cm(2)), and greater percentage of the entire CL with blood flow signals (51.8% ± 1.2% vs. 42.5% ± 3.1%). Additional examples of positive coupling are (1) future DF on Day 0 (day of ovulation) is closer to the CL than the future largest subordinate and (2) diameter of growing follicles on Day 0 and the growth rate on Days 0 to 2 are greater for follicles that are adjacent than separated from the CL. An example of a negative intraovarian effect is decreasing diameter and loss of future DF status of a largest follicle when adjacent to a regressing CL. The impact of the continuity of ovarian angioarchitecture during the periovulatory follicular wave was exemplified in 17 of 18 waves by conversion of an ovary with only the preovulatory follicle to the postovulatory DF-CL pattern. Functional angiocoupling from commonality in angioarchitecture of the DF and adjacent CL would account for both the positive two-way coupling between DF and CL during the luteal phase and the negative effect of a regressing CL on an adjacent follicle during luteolysis. PMID:27056414
All-photonic intercity quantum key distribution
Azuma, Koji; Tamaki, Kiyoshi; Munro, William J.
2015-01-01
Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic ‘intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically. PMID:26671044
All-photonic intercity quantum key distribution
NASA Astrophysics Data System (ADS)
Azuma, Koji; Tamaki, Kiyoshi; Munro, William J.
2015-12-01
Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic `intercity' QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically.
Eigenspace-based tracking for feature points
NASA Astrophysics Data System (ADS)
Peng, Chen; Chen, Qian; Qian, Wei-xian
2014-05-01
Feature point tracking deals with image streams that change over time. Most existing feature point tracking algorithms only consider two adjacent frames at a time, and forget the feature information of previous frames. In this paper, we present a new eigenspace-based tracking method that learns an eigenspace representation of training features online, and finds the target feature point with Gauss-Newton style search method. A coarse-to-fine processing strategy is introduced to handle large affine transformations. Several simulations and experiments on real images indicate the effectiveness of the proposed feature tracking algorithm under the conditions of large pose changes and temporary occlusions.
Smeared quantum phase transition in the dissipative random quantum Ising model
NASA Astrophysics Data System (ADS)
Vojta, Thomas; Hoyos, José A.
2010-01-01
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100 (2008) 240601] of smeared quantum phase transitions.
NASA Astrophysics Data System (ADS)
Steffen, Matthias
2013-03-01
Quantum mechanics plays a crucial role in many day-to-day products, and has been successfully used to explain a wide variety of observations in Physics. While some quantum effects such as tunneling limit the degree to which modern CMOS devices can be scaled to ever reducing dimensions, others may potentially be exploited to build an entirely new computing architecture: The quantum computer. In this talk I will review several basic concepts of a quantum computer. Why quantum computing and how do we do it? What is the status of several (but not all) approaches towards building a quantum computer, including IBM's approach using superconducting qubits? And what will it take to build a functional machine? The promise is that a quantum computer could solve certain interesting computational problems such as factoring using exponentially fewer computational steps than classical systems. Although the most sophisticated modern quantum computing experiments to date do not outperform simple classical computations, it is increasingly becoming clear that small scale demonstrations with as many as 100 qubits are beginning to be within reach over the next several years. Such a demonstration would undoubtedly be a thrilling feat, and usher in a new era of controllably testing quantum mechanics or quantum computing aspects. At the minimum, future demonstrations will shed much light on what lies ahead.
NASA Astrophysics Data System (ADS)
Ryabov, V. A.
2015-08-01
Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.
Quantum games as quantum types
NASA Astrophysics Data System (ADS)
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Impact of adjacent land use on coastal wetland sediments.
Karstens, Svenja; Buczko, Uwe; Jurasinski, Gerald; Peticzka, Robert; Glatzel, Stephan
2016-04-15
Coastal wetlands link terrestrial with marine ecosystems and are influenced from both land and sea. Therefore, they are ecotones with strong biogeochemical gradients. We analyzed sediment characteristics including macronutrients (C, N, P, K, Mg, Ca, S) and heavy metals (Mn, Fe, Cu, Zn, Al, Co, Cr, Ni) of two coastal wetlands dominated by Phragmites australis at the Darss-Zingst Bodden Chain, a lagoon system at the Southern Baltic Sea, to identify the impact of adjacent land use and to distinguish between influences from land or sea. In the wetland directly adjacent to cropland (study site Dabitz) heavy metal concentrations were significantly elevated. Fertilizer application led to heavy metal accumulation in the sediments of the adjacent wetland zones. In contrast, at the other study site (Michaelsdorf), where the hinterland has been used as pasture, heavy metal concentrations were low. While the amount of macronutrients was also influenced by vegetation characteristics (e.g. carbon) or water chemistry (e.g. sulfate), the accumulation of heavy metals is regarded as purely anthropogenic influence. A principal component analysis (PCA) based on the sediment data showed that the wetland fringes of the two study sites are not distinguishable, neither in their macronutrient status nor in their concentrations of heavy metals, whereas the interior zones exhibit large differences in terms of heavy metal concentrations. This suggests that seaside influences are minor compared to influences from land. Altogether, heavy metal concentrations were still below national precautionary and action values. However, if we regard the macronutrient and heavy metal concentrations in the wetland fringes as the natural background values, an accumulation of trace elements from agricultural production in the hinterland is apparent. Thus, coastal wetlands bordering croplands may function as effective pollutant buffers today, but the future development has to be monitored closely to avoid
Finding a New Home for Quantum States
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.; Appleby, D. Marcus; Zhu, Huangjun
2015-03-01
In the Quantum Bayesian interpretation of quantum mechanics, or QBism as it has come to be called, a significant effort has been made to find a good representation of quantum states, quantum measurement operators, and quantum time-evolution maps, all directly in terms of probabilities and conditional probabilities. The proposed means for doing this has involved a particularly interesting kind of fiducial quantum measurement called a symmetric informationally complete (SIC) measurement. If such objects exist for all finite-dimensional Hilbert spaces, then QBism will have all that it wants. But this suggests a natural follow-on question: Whether one might turn the tables and take the new formalism so developed as a foundation for quantum theory to begin with? This talk with describe a few recently discovered features of quantum theory when seen from this point of view.
Exophytic Atheroma Mimicking Papillary Fibroelastoma Adjacent to the Aortic Valve.
Cho, Tomoki; Tokunaga, Shigehiko; Yasuda, Shota; Izubuchi, Ryo; Masuda, Munetaka
2015-09-01
Follow-up echocardiography in a 69-year-old man with alcoholic cardiomyopathy showed a mass above the aortic valve near the left coronary ostium. Transesophageal echocardiography and computed tomography suggested a papillary fibroelastoma with a high risk of embolism. At operation we found an exophytic atheroma adjacent to the left coronary artery orifice. The atheroma was removed, and the patient made an uneventful recovery. We describe this very rare case of an exophytic atheroma mimicking a papillary fibroelastoma situated at the left coronary orifice. PMID:26354633
Compression of adjacent anatomical structures by pulmonary artery dilation.
Dakkak, Wael; Tonelli, Adriano R
2016-06-01
Pulmonary hypertension is the commonest condition leading to dilated pulmonary artery. We describe three different types of compression of adjacent anatomical structures by dilated pulmonary arteries. We included involvement of the left main coronary artery, left recurrent laryngeal nerve and tracheobronchial tree. Compression of these structures can cause major complications such as myocardial ischemia, hoarseness and major airway stenosis. We present a case for each scenario and review the literature for each of these complications, focusing on patients' characteristics and contemporary management. PMID:26898826
Synthesis of a Molecule with Four Different Adjacent Pnictogens.
Hinz, Alexander; Schulz, Axel; Villinger, Alexander
2016-08-22
The synthesis of a molecule containing four adjacent different pnictogens was attempted by conversion of a Group 15 allyl analogue anion [Mes*NAsPMes*](-) (Mes*=2,4,6-tri-tert-butylphenyl) with antimony(III) chloride. A suitable precursor is Mes*N(H)AsPMes* (1) for which several syntheses were investigated. The anions afforded by deprotonation of Mes*N(H)AsPMes* were found to be labile and, therefore, salts could not be isolated. However, the in situ generated anions could be quenched with SbCl3 , yielding Mes*N(SbCl2 )AsPMes* (4). PMID:27377437
Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters.
Engl, Oliver D; Fritz, Sven P; Wennemers, Helma
2015-07-01
Oxindoles with adjacent tetrasubstituted stereocenters were obtained in high yields and stereoselectivities by organocatalyzed conjugate addition reactions of monothiomalonates (MTMs) to isatin-derived N-Cbz ketimines. The method requires only a low catalyst loading (2 mol %) and proceeds under mild reaction conditions. Both enantiomers are accessible in good yields and excellent stereoselectivities by using either Takemoto's catalyst or a cinchona alkaloid derivative. The synthetic methodology allowed establishment of a straightforward route to derivatives of the gastrin/cholecystokinin-B receptor antagonist AG-041R. PMID:26033441
Interaction of Cracks Between Two Adjacent Indents in Glass
NASA Technical Reports Server (NTRS)
Choi, S. R.; Salem, J. A.
1993-01-01
Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.
CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.
Kiilsgaard, Thor H.; Patten, Lowell L.
1984-01-01
The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less
Supersymmetric Quantum Field Theories
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2005-03-01
We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.
NASA Astrophysics Data System (ADS)
Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie
2016-05-01
In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.
NASA Astrophysics Data System (ADS)
Xu, Ping
We introduce a general notion of quantum universal enveloping algebroids (QUE algebroids), or quantum groupoids, as a unification of quantum groups and star-products. Some basic properties are studied including the twist construction and the classical limits. In particular, we show that a quantum groupoid naturally gives rise to a Lie bialgebroid as a classical limit. Conversely, we formulate a conjecture on the existence of a quantization for any Lie bialgebroid, and prove this conjecture for the special case of regular triangular Lie bialgebroids. As an application of this theory, we study the dynamical quantum groupoid , which gives an interpretation of the quantum dynamical Yang-Baxter equation in terms of Hopf algebroids.
NASA Astrophysics Data System (ADS)
Braun, Daniel; Giraud, Olivier; Braun, Peter A.
2010-03-01
We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)
Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, François; Glenn, Orit A; Barkovich, A James; Studholme, Colin
2011-01-01
The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063
Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks
Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi
2009-01-01
In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705
The carbonate system of the amur estuary and the adjacent marine aquatic areas
NASA Astrophysics Data System (ADS)
Koltunov, A. M.; Tishchenko, P. Ya.; Zvalinskii, V. I.; Chichkin, R. V.; Lobanov, V. B.; Nekrasov, D. A.
2009-10-01
In July 2007, integrated studies of the Amur Estuary and the adjacent aquatic areas were performed on board R/V Professor Gagarinskii within the project of the Amur River basin exploration. On the basis of the data obtained during the cruise, the carbonate system of the Amur Estuary in the summer period was considered. It was shown that the distribution of the carbonate parameters in the Amur Estuary and the adjacent aquatic areas points to the high intensity of the bio-geochemical processes of production and mineralization of organic matter. It was found that the organic matter destruction is prevailing over the photosynthesis in the riverine part of the estuary. This aquatic area is a source of carbon dioxide for the atmosphere and rates as a heterotrophic basin. On the contrary, the surface waters at the outer boundaries of the estuary (the Gulf of Sakhalin and the Tatar Strait) act as a sink of the atmospheric carbon dioxide, which is caused by the intense photosynthesis in this area. This part of the estuary is treated as an autotrophic basin.
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures. PMID:15662409
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Image registration using a weighted region adjacency graph
NASA Astrophysics Data System (ADS)
Al-Hasan, Muhannad; Fisher, Mark
2005-04-01
Image registration is an important problem for image processing and computer vision with many proposed applications in medical image analysis.1, 2 Image registration techniques attempt to map corresponding features between two images. The problem is particularly difficult as anatomy is subject to elastic deformations. This paper considers this problem in the context of graph matching. Firstly, weighted Region Adjacency Graphs (RAGs) are constructed from each image using an approach based on watershed saliency. 3 The vertices of the RAG represent salient regions in the image and the (weighted) edges represent the relationship (bonding) between each region. Correspondences between images are then determined using a weighted graph matching method. Graph matching is considered to be one of the most complex problems in computer vision, due to its combinatorial nature. Our approach uses a multi-spectral technique to graph matching first proposed by Umeyama4 to find an approximate solution to the weighted graph matching problem (WGMP) based on the singular value decomposition of the adjacency matrix. Results show the technique is successful in co-registering 2-D MRI images and the method could be useful in co-registering 3-D volumetric data (e.g. CT, MRI, SPECT, PET etc.).
Adjacent flaps for lower lip reconstruction after mucocele resection.
Ying, Binbin
2012-03-01
Mucocele forms because of salivary gland mucous extravasation or retention and is usually related to trauma in the area of the lower lip. It is a common benign lesion in the oral region. Although there are many conservative treatments such as the creation of a pouch (marsupialization), freezing (cryosurgery), micromarsupialization, and CO2 laser vaporization, surgical resection is the most commonly used means. Generally speaking, an elliptic incision was made to fully enucleate the lesion along with the overlying mucosa and the affected glands, then direct suturing is adequate. However, in some cases, direct suturing could cause lower lip deformity, and adjacent flaps for lower lip reconstruction after mucocele resection might be quite necessary. Based on our experience, adjacent mucosal flaps could be used when lesions were close to or even break through the vermilion border or their diameters were much more than 1 cm. A-T advancement flaps and transposition flaps were the mostly applied ones. Follow-up showed that all patients realized primary healing after 1 week postoperatively with satisfactory lower lip appearance, and there was no sign of increasing incidence of relapse. PMID:22421867
Historical volcanoes of Armenia and adjacent areas: What is revisited?
NASA Astrophysics Data System (ADS)
Karakhanian, A.; Jrbashyan, R.; Trifonov, V.; Philip, H.; Arakelian, S.; Avagyan, A.; Baghdassaryan, H.; Davtian, V.
2006-07-01
The validity of some data in Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62] that are revisited by R. Haroutiunian is considered. A conclusion is made that the revisions suggested by Haroutiunian concern unessential parts of the content of work by Karakhanian et al. [Karakhanian, A., Djrbashian, R., Trifonov V., Philip H., Arakelian S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113, 1, 319-344; Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., Ghoukassyan, Yu., 2003. Volcanic hazards in the region of the Armenian nuclear power plant. Journal of Volcanology and Geothermal Research, 126/1-2, 31-62]. This article presents new evidence and re-proves the earlier conclusions that are disputed or revised by R. Haroutiunian.
Quantum pump in quantum spin Hall edge states
NASA Astrophysics Data System (ADS)
Cheng, Fang
2016-09-01
We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.
Searching for quantum speedup in quasistatic quantum annealers
NASA Astrophysics Data System (ADS)
Amin, Mohammad H.
2015-11-01
We argue that a quantum annealer at very long annealing times is likely to experience a quasistatic evolution, returning a final population that is close to a Boltzmann distribution of the Hamiltonian at a single (freeze-out) point during the annealing. Such a system is expected to correlate with classical algorithms that return the same equilibrium distribution. These correlations do not mean that the evolution of the system is classical or can be simulated by these algorithms. The computation time extracted from such a distribution reflects the equilibrium behavior with no information about the underlying quantum dynamics. This makes the search for quantum speedup problematic.
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems. PMID:17090467
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
NASA Astrophysics Data System (ADS)
Błaszak, Maciej; Domański, Ziemowit
2012-02-01
This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic
NASA Astrophysics Data System (ADS)
Peng, Xiao-Fang; Wang, Xin-Jun; Chen, Li-Qun; Li, Jian-Bo; Zhou, Wu-Xing; Zhang, Gui; Chen, Ke-Qiu
2014-06-01
We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.
NASA Astrophysics Data System (ADS)
Shields, William
2004-05-01
Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.
Nanoparticle transport from mouse vagina to adjacent lymph nodes.
Ballou, Byron; Andreko, Susan K; Osuna-Highley, Elvira; McRaven, Michael; Catalone, Tina; Bruchez, Marcel P; Hope, Thomas J; Labib, Mohamed E
2012-01-01
To test the feasibility of localized intravaginal therapy directed to neighboring lymph nodes, the transport of quantum dots across the vaginal wall was investigated. Quantum dots instilled into the mouse vagina were transported across the vaginal mucosa into draining lymph nodes, but not into distant nodes. Most of the particles were transported to the lumbar nodes; far fewer were transported to the inguinal nodes. A low level of transport was evident at 4 hr after intravaginal instillation, and transport peaked at about 36 hr after instillation. Transport was greatly enhanced by prior vaginal instillation of Nonoxynol-9. Hundreds of micrograms of nanoparticles/kg tissue (ppb) were found in the lumbar lymph nodes at 36 hr post-instillation. Our results imply that targeted transport of microbicides or immunogens from the vagina to local lymph organs is feasible. They also offer an in vivo model for assessing the toxicity of compounds intended for intravaginal use. PMID:23284844
Dynamic networks community detection via low rank component recovery of adjacency matrices
NASA Astrophysics Data System (ADS)
Bao, Wei; Michailidis, George
Dynamic community detection in networks has been of high interest due to its various applications. In this work, we apply low rank extraction technique on adjacency matrices to approximate the community structures. Not only can we accurately identify the phase transition time points where significant changes in the community structures occur, but also we can increase the accuracy of the core community structures recovered in the `peace' time ranges by averaging the low rank components. A systematic methodology has been proposed as how to accomplish the target. Factor model, and stochastic block model (including weighted scenario) have been tested for the robustness of our model. Besides, applications on both Kuramoto model and US Senate Roll Call data are also carried out and interesting results are obtained.